UNITED STATES DEPARTMENT OF INTERIOR
GEOLOGICAL SURVEY

SCHLUMBERGER SOUNDINGS IN THE UPPER RAFT RIVER
AND RAFT RIVER VALLEYS, IDAHO AND UTAH

BY

Adel A.R. Zohdy and Robert J. Bisdorf

Open-File Report 76-92
1976

This report is preliminary and has not been edited or revised for conformity with U. S. Geological Survey standards and nomenclature.
In 1975, the U. S. Geological Survey made seventy Schlumberger resistivity soundings in the Upper Raft River Valley and in parts of the Raft River Valley. These soundings compliment the seventy nine soundings made previously in the Raft River Valley (Zohdy and others, 1975) and bring the total number of soundings to 149. This work was done as part of a hydrogeologic study of the area.

Plate 1 shows the location, number, and azimuth of all 149 Schlumberger sounding stations. The location of the new stations are shown with solid circles, whereas the location of the previous stations (Zohdy and others, 1975) are shown with open circles. The new stations are numbered from 201 to 270. In the following, we present the data and interpretation of only the new soundings (Raft #201 through Raft #270).

The maximum symmetric electrode spacing, AB/2, used for some of the soundings reached 4,877 metres (16,000 feet). For a few soundings, (#202, #211, #214, #254, and #267) standard Schlumberger apparent resistivities were calculated for standard Schlumberger electrode spacings (AB/2) that are larger than the maximum possible symmetric spacing for the given location of these soundings. This was done by making measurements with asymmetric electrode spacings then using a correction formula. For example, with one current electrode remaining stationary at 1,829 metres
(6,000 feet), the second current electrode was moved to larger spacings of 2,438 metres (8,000 feet) and 3,048 metres (10,000 feet), respectively. The Schlumberger apparent resistivity at the larger electrode spacings was calculated from the formula

\[\bar{\rho}_s(BO) = BO^2 \left[\frac{2\pi}{MN} \cdot \frac{\Delta V \cdot (0.3048) - \bar{\rho}_s(AO)}{I \cdot AO^2} \right] \]

where

- \(\bar{\rho}_s(BO) \) = Schlumberger apparent resistivity at the larger electrode spacing \(BO \), in ohm-metres,
- \(BO \) = distance from center of potential electrodes, \(O \), to farthest current electrode, \(B \), in feet,
- \(AO \) = distance from center of potential electrodes, \(O \), to nearest current electrode, \(A \), in feet,
- \(\Delta V \) = potential difference measured with asymmetric array, in millivolts,
- \(I \) = intensity of electric current, in milliamperes,
- 0.3048 = conversion factor from feet to metres,
- \(\bar{\rho}_s(AO) \) = last Schlumberger apparent resistivity measured with the symmetric array at \(AB/2 = AO \), in ohm-metres.

This formula was derived by the senior author and theoretically is valid for horizontally layered laterally homogeneous media. In practice, errors in measurements are not substantially magnified provided that:

- a) The subsurface is laterally homogeneous,
- b) the asymmetric measurements are made to extend an ascending portion of the sounding curve, and
- c) the ratio of \(BO/AO \leq 1.7 \).
- For extending descending portions of a sounding curve, the limiting ratio of BO/AO should be made smaller, for example about 1.3.

All the sounding curves were automatically processed and interpreted (Zohdy, 1973 and 1975) as shown in the graphs given in the appendix. Each graph shows the following:

(1) Field data designated by a segmented solid-line curve with diamond symbols for observed data.

(2) A continuous-dashed curve which represents:

(a) The continuous "field" curve which is generally obtained by maintaining the position of the last segment and shifting each of the previous segments, up or down so that the last point on each segment coincides with the corresponding point on the following segment (Zohdy and others, 1973).

(b) The digitized curve at the rate of six points per logarithmic cycle. Although the individual digitized points are not depicted on the dashed curve (to avoid cluttering the graphs) they were computed using a subroutine in a computer program for bicubic spline functions (Anderson, 1971). The digitized data from the continuous dashed curve were then fed into the automatic interpretation program (Zohdy, 1973) to obtain the best fitting theoretical sounding curve for a horizontally layered medium. The automatic interpretation program used here was slightly modified from the one referred to in the above reference. The modifications are identical to those
used in another program recently written for inverting Wenner sounding curves (Zohdy and Bisdorf, 1975a).

(3) The theoretical best fitting sounding curve plotted as (+) signs.

(4) The detailed layering for which the theoretical curve is calculated.

(5) The D.Z. (Dar Zarrouk) curve for the detailed layering. The ordinate values for the D.Z. curves are shifted upward or downward by one logarithmic cycle or they are plotted on a separate sheet of graph paper (as for Raft #250) to avoid cluttering the graphs. The D.Z. curves can be used to obtain equivalent and simpler solutions containing fewer number of layers. In addition, they can be used to impose certain constraints on the layer thicknesses and resistivities (Zohdy, 1974).

All these graphs were generated on a graphic plotter. The plotter-driving subroutines were developed by G. I. Evenden of the U.S. Geological Survey.
References

RAFT #202

Computed from measurements made with an asymmetric array.
Computation from measurements made with an asymmetric array.
Computed from measurements made with an asymmetric array.
RESISTIVITIES IN OHM-METRES

AB/2, DEPTH, DZ-DEPTH, IN METRES

RAFT #216
RESISTIVITIES IN OHM-METRES

1000
100
10

AB/2, DEPTH, DZ-DEPTH, IN METRES

RAFT #220

1000
100
10

1
RESISTIVITIES IN OHM-METRES
RESISTIVITIES IN OHM-METRES

RAFT #227
RESISTIVITIES IN OHM-METRES

Bar Zarrouk curve for RAFT #250
RESISTIVITIES IN OHM-METRES

AB/2, DEPTH, DZ-DEPTH, IN METRES

RAFT #264
Computed from measurements made with an asymmetric array