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HYDROLOGY OF A NUCLEAR-PROCESSING PLANT SITE,

ROCKY FLATS, JEFFERSON COUNTY, COLORADO

By R. Theodore Hurr

ABSTRACT

Accidental releases of contaminants resulting from the operation of the
U.S. Energy Research and Development Administration's nuclear-processing and
recovery plant located on Rocky Flats will move at different rates through
-different parts of the hydrologic system. Rates of movement are dependent
upon the magnitude of the accidental release and the hydrologic conditions at
the time of the release. For example, during wet periods, a contaminant re-
sulting from a 5,000-gallon (19,000-1litre) release on the land surface would
enter the ground-water system in about 2 to 12 hours. Ground-water flow in
the Rocky Flats Alluvium might move the contaminant eastward at a rate of
about 3 to 11 feet (0.9 to 3.4 metres) per day, if it remains dissolved.
Maximum time to a point of discharge would be about 3 years; minimum time
could be a few days. A contaminant entering a stream would then move at a
rate of about 60 feet (18 metres) per minute under pool-and-riffle condi-
tions. The rate of movement might be about 420 feet (128 metres) per minute
under open-channel-flow conditions following intense thunderstorms.

INTRODUCTION

Purpose

The U.S. Energy Research and Development Administration, formerly the

U.S. Atomic Energy Commission, administers the operation of a nuclear process-
ing and recovery plant, known as the Rocky Flats Plant, in Jefferson County,
16 mi (26 km) northwest of Denver, Colo. (fig. 1). To assess the potential
impact of plant operations on the hydrologic environment, the U.S. Geological
Survey on behalf of the the U.S. Atomic Energy Commission began a study in
1972 of the surface-water and ground-water hydrology of the plant area and

vicinity, to determine how contaminants would be distributed spatially and
" temporally as they move through the hydrologic system.
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Figure 1. — Index map showing location of the Rocky Flats Plant and study area.
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Methods of Investigation

Aspects of the hydrology of the area have been reported by M. R. Mudge
and R. F. Brown (written commun., 1952), and in reports by John A. Blume .&
Associates (1972) and Engineering-Science, Inc. (1974). However, the pre-
vious studies were not sufficiently detailed to permit a definition of
hydrologic or hydrogeologic relationships. Therefore, additional investi-
gations, including geologic mapping, test drilling, surface and borehole
geophysical measurements, collection of additional well data and water-level
measurements, and installation of three stream-gaging stations and a stream-
sediment sampler, were necessary. Two of the gaging stations were equipped
with recording rain gages. Data resulting from these field studies were
incorporated with the existing data for interpretation.

The geologic map (pl. 1) was modified from reports and maps by Spencer
(1961), Malde (1955), Wells (1967), Van Horn (1972), and Sheridan, Maxwell,
and Albee (1967). Geological mapping by Chase and McConaghy (1972) and Van
Horn (1957), and faulting shown by Weimer (1973), and Gude and McKeown (1953)
also were considered.

Acknowledgments
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this study. Their help is greatly appreciated. Special recognition is due
to C. T. Illsley, an engineer with Rockwell International, the commercial
cperaters cof the Rocky Flats Plant, for hic continued assistance and cooper-

ation in making available, tabulating, and analyzing plant-related data.

GEOLOGIC SETTING

The geologic framework of the study area directly affects the movement
and quality of ground water and surface water. Therefore, a knowledge of the
geology is needed to understand the hydrology of the Rocky Flats study area.
A brief description of the stratigraphy and structural geology of the study
area is included. A more detailed description is provided at the end of this
report in the section entitled Supplemental Information.

Stratigraphy

The rocks in the study area range in age from Precambrian to Holocene.
The oldest rocks are the Precambrian gneisses, schists, and quartzites that
form the core of the Front Range west of the area. Beneath the area the
Precambrian rocks are at a depth of about 12,000 ft (3,700 m). Stratigraph-
ically above these rocks are sedimentary bedrock formations which range in
age from Pennsylvanian to Late Cretaceous, and surficial deposits which range
in age from Pleistocene to Holocene. The surficial deposits rest uncomform-
ably on the eroded surface of the folded and faulted bedrock formations.



The top of the Pierre Shale of Cretaceous age is considered by the
author to be the base of the hydrologic system which could be affected by
operations at the Rocky Flats Plant. Therefore, stratigraphic descriptions
will be limited to those formations which are younger than the Pierre Shale.

Bedrock Formations

Three bedrock formations are important to the hydrology of the study
site. In ascending order, the three formations are the Fox Hills Sandstone,
Laramie Formation, and Arapahoe Formation of Cretaceous age. The geologic
units and their stratigraphic relationships are shown on plate 1.

The Fox Hills Sandstone, about 40 to 90 ft (12 to 27 m) thick, consists
of sandy shale grading stratigraphically upward into a massive sandstone.
The Fox Hills Sandstone is conformably overlain by the Laramie Formation.

The Laramie Formation is divisible into two units; a lower sandstone
unit and an upper shale unit. The lower sandstone unit consists of 150 to
320 ft (46 to 98 m) of interbedded sandstone and claystone. The lower sand-
stone unit together with the Fox Hills Sandstone is collectively referred to
as the Laramie-Fox Hills aquifer. The upper shale unit of the Laramie For-
mation is a 450- to 630-ft (137- to 192-m) thickness of claystone. The
Laramie Formation is conformably overlain by the Arapahoe Formation.

The Arapahoe Formation is a continental deposit of lenticular sands
interbedded with clay. Maximun thickness of the formation im the study area
is about 270 ft (82 m). The lower one-half of the formation contains more
sand beds than the upper one-half. The Arapahoe Formation is the uppermost
bedrock formation and is either exposed at land surface or covered uncon-

formably by unconsolidated surficial deposits.
Surficial Deposits

Surficial deposits within the study area are generally less than 50 ft
(15 m) thick and consist of terrace alluvium, colluvium, and valley fill.
There are several levels of terraces cut in the alluvium that were formed by
stream erosion. The oldest terraces are topographically highest. As the
streams eroded their channels, new terraces were formed. Consequently, the
youngest terraces are topographically lower than the older terraces. Erosion
has formed deposits of colluvium (not shown on pl. 1) on the sides and at the
base of steep slopes in the stream valleys. The valley bottoms consist of
valley-£fill deposits from sedimentation by streams.

All of the surficial deposits consist of clay, silt, sand, gravel,
cobbles, and frequently boulders. The source of these deposits is primarily
the Precambrian quartzite from the mountains to the west, but also includes
the sedimentary bedrock and older surficial deposits.

10



The oldest surficial deposit in the study area is the pre-~Rocky Flats Al-
luvium, which caps some hills and terrace remnants along the western edge of

the area (pl. 1). Next youngest is the Rocky Flats Alluvium which dominates
the topography and hydrology of the entire study area. The Rocky Flats Allu-
vium is a broad, planar deposit which in this area is an alluvial fan depos-
ited downslope from the mouth of Coal Creek Canyon. Contact springs commonly
issue from the base of the Rocky Flats Alluvium. The next youngest formations
are the Verdos and Slocum Alluviums. These formations are of little hydro-
logic importance, except south of Leyden where contact springs at the base of
the Verdos Alluvium have provided a municipal water supply for Leyden. The
alluvial deposits are shown on plate 1.

Structure

The general geologic structure of the area is reflected in the north-
striking beds dipping to the east or southeast. In the western part of the
area the beds are nearly vertical to overturned. In the eastern part, the
strike swings to the northeast and the dip of the beds is less than 1% degrees
to the southeast. An east-west geologic section through the study area is
shown on plate 1. ’

The Golden fault (pl. 1) stretches northwest across the study area. The
fault is a medium- to high-angle, west-dipping, reverse fault which displaces
the Verdos Alluvium in the southern part of the area (pl. 1). A branch of
the Golden fault trends to the northwest and joins at the mouth of Coal Creek
Canyon with the Livingston chezar zone shown on nlate 1, Tn the northern part
of the study area faulting is high-angle and normal, trending in a north-
eastern direction. Observations during the current study indicate that the
Eggleston fault extends into the study area.

HYDROLOGY

Surface Water

The surface-water system in the study area supplies water to two.reser-
voirs used for municipal water supply and recharges aquifers used for domestic
water supply. Consequently, the accidental release of a contaminant into the
surface-water system could affect surface- and ground-water quality. The fol-
lowing sections describe the relationships between surface and ground water.

General Description

Six streams, all ephemeral, are included in the study area. Of these,
Walnut Creek, South Walnut Creek, and Woman Creek are the most important be-
cause they drain the Rocky Flats Plant site. The drainage basins of Walnut,
South Walnut, and Woman Creeks are shown on plate 2. The other three streams
in the study area are Coal Creek, Rock Creek, and Leyden Gulch.

11



Walnut Creek and South Walnut Creek head in the study area and flow east-
ward. South Walnut Creek is tributary to Walnut Creek which flows into Great
Western Reservoir as shown schematically on figure 2. Great Western Reservoir
supplies water to the city of Broomfield (fig. 1).

Woman Creek heads in the study area, draining the south side of Rocky
Flats Plant, and flows eastward into Standley Lake (pl. 2 and fig. 2).
Standley Lake provides irrigation storage and the municipal water supply for
the city of Westminster (fig. 1).

Coal Creek and Rock Creek (pl. 2 and fig. 2) flow northward out of the
study area and Leyden Gulch is tributary to Leyden Lake (fig. 2). Coal and
Rock Creeks drain the northern part and Leyden Gulch drains the southern part
of the study area.

Six ditches convey water through the study area (fig. 2). The South
Boulder Diversion Canal carries water southward from South Boulder Creek
(north of the study area) to Ralston Reservoir, which supplies water to the
city of Denver. The water supply for the Rocky Flats Plant is obtained from
South Boulder Diversion Canal and Ralston Reservoir. The Last Chance, Church,
McKay, and Kinnear Ditch and Reservoir Co. Ditches divert water from Coal
Creek. The Last Chance Ditch delivers water to Rocky Flats Lake and Twin
Lakes. Outflow from Rocky Flats Lake is transported out of the area by Smart
Ditch. The Church Ditch supplies water to Upper Church Lake and Great Western
Reservoir, McKay Ditch supplies water to Great Western Reservoir, and Kinnear
Ditch and Reservoir Co. Ditch supply water to Standley Lake.

Precipitation

Precipitation, principally from rainfall and to a lesser extent snowmelt,
produces surface runoff in the study area. The duration, amount, and areal
distribution of precipitation are required to develop rainfall-runoff rela-
tions and to compute rates of contaminant movement. The locations of the
rainfall gages in the study area are shown on plate 2. Graphs of cumulative
precipitation during l15-minute increments for selected storms on Walnut Creek
and Woman Creek basins are shown on plate 3. The length of the curves indi-
cates the duration of the storm, or series of storms; the height of the curves
shows the cumulative rainfall; and the slope of the curves indicates the rain-
fall intensity with the restriction that rates are measured in increments of
15 minutes. The maximum rainfall intensity for the storms shown on plate 3
was approximately 0.6 inch (15.2 mm) per hour during May 6, 1973. Rainfall
intensities for the other storms range from less than 0.1 inch (2.5 mm) per
hour to about 0.5 inch (12.7 mm) per hour.

Daily precipitation totals for the Woman Creek, Walnut Creek, and Rocky
Flats precipitation stations are presented in the section entitled Supplemen-
tal Information at the back of the report. Data for the Rocky Flats station
are not given for periods when the other two stations were closed for the
winter,

12
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The period of record for rainfall at the Walnut and Woman Creek stations
is insufficient for a frequency analysis of rainfall. However, a report by
the Denver Regional Council of Governments (1972) contains rainfall-recurrence
interval data by township for the metropolitan area. A plot of data (fig. 3)
from the above report for T. 2 S., R. 70 W., the township in which the Rocky
Flats Plant is located, shows the relationship between rainfall and recurrence
interval.

Streamflow

The water that moves through stream and man-made channels in the study
area results from direct surface runoff following periods of rainfall and snow-
melt, baseflow supplied by seeps and springs, and diversions and wastewater
from various man-related activities. The network of streams and channels is
a potential transmission system for contaminants derived from the study area.
A knowledge of both volume and rate of movement of water through the surface-
water system is required in order to evaluate effects of possible contaminant
releases on downstream areas.

Stream-gaging stations were established in 1972 on Walnut Creek, South
Walnut Creek, and Woman Creek to measure outflow from the plant area. The
streamflow records also provided data for deriving rainfall-runoff relations
and for estimating rate of water movement through the network of streams.
Daily streamflow for each of the three gaging stations is given in the sec-
tion entitled Supplemental Information at the back of the report. Basin
boundarics and cubdivicicns of each basin are shown on plate 2, Physicsl

characteristics for the total and subdivided parts of the three basins are
listed in table 1.

A complex network of canals, ditches, and reservoirs exists in and near
the study area and it affects the rate of movement of water through the
stream system. The general relationship between each of the gaged streams
and the canals, ditches, and reservoirs is discussed below followed by dis-
cussions of on-channel reservoirs and a generalized water budget for Great
Western Reservoir.

Walnut Creek.--Until September 1974, Walnut Creek drained an area of
1.24 mi% (3.21 km?) above the gaging station. The natural streamflow was
augmented by diversions from Coal Creek through Church and McKay Ditches. A
new ditch was constructed in September 1974 from the SW4NW% see. 10, T. 2 S.,
R. 70 W., to the center of sec. 2, T. 2 S., R. 70 W., where it joined a small
tributary to Walnut Creek that enters downstream from the gaging station. In
effect, this ditch intercepts all of the flow from subbasins IC and ID (pl. 2)
including the Coal Creek diversions and diverts the flow around the gaging
station. The remaining gart of the basin, subbasins IA and IB, has a combined
drainage area of 0.84 mi® (2.18 km?). Three on-channel reservoirs presently
regulate flow at the gaging station. Two of these on-channel reservoirs were
constructed during 1974, the other was constructed prior to 1972.

14
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South Walnut Creek.--The total drainage area of South Walnut Creek above
the gaging station is 0.46 mi2 (1.19 km?). Subbasin IIA drains the north-
central part of the plant area and has a drainage area of 0.21 mi? (0.54 km?2).
This subbasin has four on-channel retention reservoirs.

Prior to late 1974, the effluent from the plant's sanitary sewage dispo-
sal system was discharged into South Walnut Creek. This discharge, which
averaged 6.8 Mgal (25.7 MR) per month during 1971-73 (table 2), resulted in
continuous flow in South Walnut Creek and Walnut Creek below the mouth of
South Walnut Creek. Since late 1974 the practice has been to try to keep all
process wastewater on the plant site, and discharge it by evaporation.

Table 2.--Monthly raw water feed and sanitary-sewer effluent,
Rocky Flats Plant, 1971-731
[Values are in millions of gallons]

Raw water feed Sanitary sewer effluent
Month 1971 1972 1973 1971 1972 1973
Jan. 11.58 11.63 12.23 7.47 6.56 5.96
Feb. 13.31 12.72 12.05 6.38 6.84 5.41
Mar. 14.51 16.30 9.94 6.99 6.62 6.23
Apr. 11.45 14.05 10.69 7.43 6.95 7.39
May 15.51 18.50 16.00 7.90 6.82 7.05
June 24,44 16.98 14.85 7.35 6.98 5.34
July 7.76 15.78 12,72 7.55 6.59 5.33
Aug. 32.51 21.12 11.99 7.51 6.91 4.91
Sept. 20.60 15.07 11.52 8.44 6.37 4.68
Oct. 13.97 10.86 ~————- 6.68 6.92 5.50
Nov. 14.03 12.19 ——— 6.55 6.47 5.10
Dec. 14.36 10.39  ——=—- 6.80 6.60 5.48
Total  194.03  175.59  2111.99 87.05 80.63 68.38

Ipata supplied by operators of Rocky Flats Plant.
2Partvyear total.

Woman Creek.--Prior to July 1973, the area south of the plant drained by
Woman Creek above the gaging station was 2.10 mi2 (5.44 km?). In July 1973,
the gaging station was moved upstream from the on-channel retention reservoir
to a site where the total drainage area was 1.77 mi? (4.58 km2?). The natural
flow of Woman Creek is augmented by diversions from Coal Creek through Kin-~
near Ditch, this flow is conveyed downstream to Standley Lake. Other sources
of flow augmentation are leakage and spillage from South Boulder Diversion
Canal, and seasonal pumpage to dewater a clay pit. Prior to June 1975,
backwash from the plant's water-supply filter system was also discharged into
Woman Creek.
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On-channel reservoirs.--The on-channel reservoirs were surveyed in the
spring of 1972 to determine the area and volume (table 3) of the operating
pools. Most of the dams have been raised since 1972, and the area-volume re-
lationship extended. Two additional reservoirs were constructed in 1974 on
Walnut Creek for which no data are presented. The effect of the reservoirs
on the daily flows of Woman Creek, Walnut Creek, and South Walnut Creek was
small before the practice began of storing some plant outflow on the plant
site. The reservoirs were usually full so that inflow and outflow were
nearly equal. The most significant effect was the timing and height of peak
flows resulting from storms.

Table 3.--Area and volume of selected on-channel reservoirs,
Rocky Flats Plant, spring 1972

. Area, Volume,

Name Drainage .
in acres in acre~feet

A-1 Walnut Creek 1.13 6.23
B~1 South Walnut Creek-—-=---- .30 .57
B-2 do .58 1.95
B-3 do .53 1.90
B~4 do 42 - 1.78
c-1 Woman Creek .80 1.80

Water Budget--Great Western Reservoir.--The municipal water supply for
the city of Broomfield is stored in Great Western Reservoir. An estimated
95 percent of the municipal supply was diverted from Clear Creek and the
remaining percentage equally divided between diversions from Coal Creek and
effluent from the Rocky Flats Plant (Vern Chaney, oral commun., 1972). A
water budget of annual reservoir operation (table 4) provides an estimate of
net unmeasured inflow to the reservoir. Net inflow is actual inflow minus
reservoir evaporation and seepage. An estimate of average annual evaporation
is 300 to 400 acre-ft (0.37 to 0.49 hm3) per year based on data extrapolated
from Ralston Reservoir (D. B. Adams, oral commun., 1975). There are no
measurements of seegage outflow; however, seepage is estimated to be
50 acre-ft (0.06 hm’) per year. 1In 1973, through the end of September, the
observed net inflow to Great Western Reservoir was 1,080 acre-ft (1.33 hm3).
Assuming average annual values of evaporation (400 acre—ft or 0.49 hm3) and
seepage loss (50 acre-ft or 0.06 hm®) the actual inflow would have been about
1,530 acre-ft (1.89 hm3®). The measured total flow of Walnut Creek and South
Walnut Creek was about 870 acre-ft (1.07 hm3). The difference is due pri-
marily to runoff below these gaging stations following a single storm on
May 5-6, 1973, in which the 24~hour precipitation was about 2.5 in (64 mm).
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Table 4.--Annual reservoir operations for Great Westerm Reservoir
[Data provided by courtesy of G. E. Wilson, city of Broomfield;
units are acre-feet]

Inflow . Net inflow
Year £ Raw water  _ Change in storage fro

rom withdrawal Calculated Observed rom

Clear Creek Walnut Creek
1970 1,645 1,696 -51 +300 351
1971 1,154 2,003 849 -390 459
1972 1,325 2,376 -1,051 =260 791
19731 1,679 1,864 -185 +895 1,080

1‘I‘hrough September 27.

Relation of Runoff to Rainfall--Volume and Timing

The volume and timing of surface runoff depends on the volume and rate
of rainfall or snowmelt, soil-moisture content, infiltration rate, nature of
vegetation cover, and slope of the land surface. Streamflow and rainfall
data for the study area were used to develop rainfall-runoff relations and to
estimate travel times for movement through the streams. The rainfall-runoff
relations and travel-time data can be used to determine the rate at which an
accidentally released contaminant resulting from plant operations might be
transported from the plant site.

The rainfall-runoff relation for Woman Creek basin (fig. 4) was devel-
oped by examining the rainfall and streamflow records and plotting the storm
rainfall against the volume of surface runoff attributable to the storm. The
runoff averages about 1.4 percent of the rainfall, assuming equal rainfall
distribution over the entire basin. This small volume of storm runoff indi-
cates a high infiltration rate for the soil cover in the basin. This point
is discussed in more detail later in the report. Another factor contributing
to the small volume of runcff is that most of the records that were used to
develop the relations shown on figure 4 resulted from frontal storms with
long rainfall durations. The rainfall intensity during this type of storm
seldom exceeds the potential infiltration rate of the soil; thus, little
surface runoff is generated. The runoff from intense summer thunderstorms
would be much greater because of the high rainfall intensities associated
with this type of storm. Because of insufficient data, a quantitative rela-
tionship between thunderstorm rainfall and runoff could not be derived.
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The rainfall and runoff data for Woman Creek basin were also used to
compute time lag for the basin. These data indicate that the time lag be-
tween the centroid of rainfall and the centroid of the runoff hydrograph may
be as long as 8 hours for small-volume, low-intensity rainstorms and about
3.5 hours for storms with larger volumes and higher intensities (fig. 5).
Another measure of the travel time of water in Woman Creek was made by timing
the movement of releases from South Boulder Diversion canal. The travel time
required for releases to reach various points along the channel is listed in
table 5. The relation between time of arrival of peak flow after releases
and the rate of flow measured at the gaging station is shown on figure 6.
Although the above estimates of travel times generally agree, the computed
times are based on very small stream rises and the information is not readily
transferable to other reaches in the study area.

To provide a more meaningful measure of rate of movement through the
surface-water system, a procedure was developed based on the time of rise of
runoff hydrographs. The rainfall-runoff data for the study area include no
data for intense thunderstorms; however, such data are available for several
basins in the Denver area. These data were examined and an average time of
rise of the hydrograph was computed for each basin. Next, the main-channel
length from the gage site to the basin divide was measured and this value was
divided into the average time of rise of the hydrograph. This value, herein
called the travel-time coefficient, represents the time, in minutes, required
to move 1 ft (0.3 m) along a straight line toward the gage site. The travel-
time coefficient computed from the above-mentioned data is 0.0024 minute per
foot.

The following assumptions were made in developing the procedure:

1. Travel time in the vicinity of the study area is a linear function
of distance measured along a straight line between the points of interest.

2. Rainfall excess is uniformly distributed over the basin and runoff
begins at the same time at all points in the basin.

3. The time of first discernible rise of the hydrograph indicates
beginning of runoff.

4. The time between first discernible rise and peak of the hydrograph
represents travel time for the maximum length of channel upstream from the

gage.

5. Streambed slopes, overland-flow slopes, and channel roughness in
the study area are generally uniform; thus, results of travel-time computa-
tions are transferable.

The first four assumptions are generally supported by unit-hydrograph

theory for simple stream systems while the fifth assumption implies homogen-
iety of physical basin characteristics--an intuitively acceptable assumption.
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Figure 6. — Timec-of-travel relations on Woman Creek.
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Application of the travel-time coefficient requires a straight-line
measurement of distance between the point of potential contaminant release
and the downstream point of interest. This distance is then multiplied by
the travel-time coefficient of 0.0024 minute per foot to obtain the travel
time, in minutes, between the two points. The travel time computed by this
procedure would represent the minimum time of travel following intense thun-
derstorms because of the use of straight-line distances and because of the
possible delaying effects of on-channel reservoirs.

Quantitative rainfall-runoff relations could not be developed for Walnut
Creek because of numerous water-management changes made at the Rocky Flats
Plant during the course of the investigation. The changes were previously
discussed. Because of the similar physical characteristics of the basins,
Walnut Creek probably has runoff characteristics similar to Woman Creek.

Surface-runoff characteristics of South Walnut Creek probably are
highly variable, depending primarily on storm location over the basin.
Runoff from a storm centered over the southern part of the basin would have
a short time lag--probably much less than 1 hour. Conversely, a storm over
the northern part of the basin would produce runoff with a time lag ranging
from less than an hour to several days, depending on the influence of the
four on-channel reservoirs and on the intensity and duration of the storm.
The relation between time of arrival of peak flow of South Walnut Creek and
the rate of flow measured at the gaging station is shown on figure 6..

Ground Water

Ground water occurs in the Rocky Flats Alluvium, valley fill, Arapahoe
Formation, and Laramie-Fox Hills aquifer. Recharge is from rainfall, snow-
melt, and percolation from streams, ditches, and reservoirs. Discharge is by
seeps, springs, base flow to the streams, and evapotranspiration. Ground
water also leaves the area as subsurface flow.

Rocky Flats Alluvium

Ground water in the Rocky Flats Alluvium is recharged by infiltration of
water from rain, snowmelt, and surface-water sources. The infiltration rate
is high. Moreland and Moreland (1975, table 5) reported that infiltration
rates in the top 5 ft (1.5 m) of soil developed on the Rocky Flats Alluvium
range from 0.2 to 6.0 in (5 to 150 mm) per hour. Branson, Miller, and McQueen
(1964, table 2) reported infiltration rates for stony soil on the Rocky Flats
Alluvium range from 3.90 to 7.35 in (99 to 187 mm) per hour.

Water that infiltrates into the soil increascs the moisture content of
the soil profile. If the soil-moisture content is less than field capacity,
the water will be stored in the unsaturated zone, and discharged to the
atmosphere by evapotranspiration. If soil-moisture content exceeds field
capacity, the water will move downward and recharge the saturated zone.
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The water table in the Rocky Flats Alluvium rises in response to
recharge during the spring and declines when recharge ceases during the
remainder of the year. The annual cycle of water-table fluctuation is illus-
trated on figure 7, which is the hydrograph from well DP 1-66. Well DP 1-66
is shown on figure 8. The hydrograph shows that, overall, the water table
declined from April 1974 to March 1975. Recharge caused the water table to
rise from March to June 1975, after which the water table began to decline.
Recharge from precipitation caused the rise in water level in October and
November. A few of the numerous sharp peaks on the hydrograph were caused
by natural recharge, but most are due to recharge from irrigation of a small
plot of trees near well DP 1-66.

-‘Water-level changes caused by irrigation indicate that the effective
porosity of the alluvium near well DP 1-66 is about 0.10. Water levels in
well DP 1-66 respond to irrigation within 2 to 4 hours when the water level
is 10 to 20 ft (3 to 6 m) below land surface. Thus, water percolates through
the alluvium at about 5 ft (1.5 m) per hour. If the infiltration rate is
0.5 ft (0.15 m) per hour, then the effective porosity of the alluvium is
0.10.

Variations in the water table at the Rocky Flats Plant were determined
by measuring seasonal changes in water levels in 13 observation wells during
a 3-year period. The hydrographs for these wells are shown on figure 8. The
location of the wells is shown on figure 9. A comparison of the two hydro-
graphs for observation well DP 1-66 (figs. 7 and 8) indicates that seasonal
measurements do not provide a complete record of water-level fluctuations.
However, seasonal measurements do provide a means of comparing and analyzing
hydrologic conditions. All of the hydrographs on figure 8, except those for
observation wells DP 3-66 and 4-71, show a similar pattern of fluctuation.
This similarity indicates that the wells are in the same aquifer and respond
to the same hydrologic stimuli. Observation wells DP 3-66 and 4-71 probably
penetrate a different aquifer.

The water levels on figure 8 were compared with geologic contacts from
lithologic logs of the observation wells and nearby test holes. Although the
hydrographs are similar, some of the water levels are below the base of the
Rocky Flats Alluvium. This indicates that the underlying bedrock is hydrau-
lically connected to the Rocky Flats Alluvium.

Ground water in the Rocky Flats Alluvium flows generally eastward; move-
ment is largely controlled by the topography of the bedrock. The configura-
tion of the bedrock surface beneath the alluvium, determined from well logs
and test pits, is shown on figure 10. The shape of the water table and the
direction of ground-water movement are shown on figure 11. The direction of
flow is perpendicular to the water-table contours. The hydraulic conductiv-
ity of the alluvium is estimated to be about 35 ft/d (3.3 m/d). From the
water-table map (fig. 11), the hydraulic gradient ranges from 0.02 to 0.05.
Assuming an effective porosity of 0.10, the pore velocity ranges from 7 to
18 ft/d (2.1 to 5.5 m/d).
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The thickness of the saturated alluvium at the Rocky Flats Plant is
shown on figure 12. Ground-water flow in the area is controlled by buried
channels in the bedrock where the alluvium is thickest. Areas where the
water table is below the base of the alluvium are outside the line showing
the boundary of saturated alluvium (fig. 11). The boundary moves as the
water table varies in response to seasonal changes in recharge.

Seeps and springs, supplied by ground water in the alluvium, issue from
the alluvium-bedrock contact along the sides of valleys in the study area.
Frequently, the location of seeps are marked by changes in the indigenous
vegetation. Various types of grasses, which have a high demand for water and
wilt quickly when the supply is restricted, are found at springs and seeps.
During spring and early summer when ground-water discharge is greatest, the
grasses are lush and vigorous, in contrast to the semiarid vegetation of ad-
jacent areas. Later in the season, as the ground-water discharge decreases,
the grasses wilt and turn yellow, while the semiarid vegetation continues to
thrive because of greater tolerance to water deficiency. Seepage that is
not evapotranspired by the plants either contributes to the baseflow of the
streams or recharges the valley-fill alluvium.

Valley-£fill alluvium

Ground water in the valley-fill alluvium is recharged by precipitation,
percolation from streams during periods of surface-water runoff, and by seeps
and springs discharging from the Rocky Flats Alluvium. Discharge from the
valley-fill alluvium is by evapotranspiration and seepage into other geologic
formations and streams. The direction of ground-water flow generally is
along the course of the stream. During periods of high surface-water flow,
water is lost to bank storage in the alluvium and returns to the stream after
runoff subsides.

The valley-fill alluvium is usually better sorted than the Rocky Flats
Alluvium and, therefore, is more permeable. Pore velocity is estimated to
range from 15 to 25 ft/d (4.6 to 7.6 m/d), depending on the hydraulic gradi-
ent. The deposits in the stream channel are usually very coarse and very
permeable. Pore velocities in the channel deposits may be several hundred
feet per day.

The movement of ground water to and from the valley-fill alluvium
varies along the length of the valleys. 1In the upper reaches of the valleys
where the valley fill is underlain by the Rocky Flats Alluvium, water moves
from the valley-fill alluvium to the Rocky Flats Alluvium. Ground-water
discharge to streams does not occur in the upper reaches of the valleys.
Downstream, where the valley bottom is below the base of the Rocky Flats
Alluvium, water moves from the Rocky Flats Alluvium to the valley fill;
ground water flows from the valley-fill aquifers to the streams. Where the
valleys have been cut into bedrock, water moves from the streams into the

valley fill and then recharges the underlying bedrock formation.
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Landslides are another form of material transport which is prevalent
throughout the study area. Landslides that occur on the sides of the valleys
are caused by hydration and lubrication of the bedrock clay. The predominant
clay mineral in the Arapahoe Formation is montmorillonite, which shrinks or
swells depending on the availability of water. Although most of the land-
slides appear to be old, some of the slides are actively moving, particularly
in areas of ground-water seepage. Alluvial material in the area, except
perhaps colluvium, is generally stable, but may be undermined by failure of
the underlying bedrock. Landslide scars also may provide a starting place
for erosion by runoff from precipitation.

Hypothetical Example of Contaminant Movement

The following example demonstrates how the movement of non-reactive
chemical constituents might occur. Assume that an accidental release or leak
occurs on or into the Rocky Flats Alluvium in the central plant area. If
this release or leak is less than 1,000 gals (3,800 &) of liquid and occurs
on an area of moderate size during a period of little or no precipitation,
most or all of the liquid may go to replenish soil moisture in the unsatura-
ted zone. Most of the liquid would probably remain in the soil column until

-flushed downward during the next period of recharge. Contamination probably
would be contained in the unsaturated zone until later recharge caused the
contaminant to move into the saturated zone.

Larger accidental releases, 5,000 gals (19,000 &) or greater, or smaller
releases occurring during wet periods or smaliler reieases on an area of very
small size might enter the ground-water system within 24 hours or less.
Recharge responses observed in well DP 1-66 indicate the time might be as
short as 2 to 4 hours.

The selection of 1,000 and 5,000 gals (3,800 and 19,000 %) to categorize
releases or leaks that would or would not directly affect the ground-water
system is based on interpretation of field data. The larger release or leak
is comparable to the volume of water applied to irrigate the plot of trees
near observation well DP 1-66 which caused the resulting water-level changes
in the observation well,

Once the contaminant is within the Rocky Flats Alluvium ground-water
system, flow will be generally eastward at about 3 to 11 ft (0.9 to 3.4 m)
per day. The velocities indicate a maximum travel time of about 3 years
along the longest flow line to a point of discharge. However, due to dif-
ferent lengths of the flow paths and hydrodynamic dispersion, detectable
concentrations of the contaminant might begin to appear in springs and seeps
issuing from the base of the alluvium in less than 3 months, possibly as soon
as a few days.
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Ground water issuing from springs and seeps at the base of the alluvium
flows down the sides of the valleys towards the streams. Travel time down
the slopes depends on the rate of discharge, the type of material on the
slope, and the angle and length of the slope. Estimates of travel time sug-
gest that colluvial slope cover derived from clay will transmit flow from
springs and seeps to the streams in several weeks or months; gravel-derived
colluvium transmits flow in hours to days; and uncovered bedrock slopes
transmit flow in a matter of hours.

If the streams are not flowing, the contaminant would probably remain in
the ground-water system of the streambed alluvium under conditions similar to
the initial accidental release or leak on the plant area. However, if the
streams are flowing, transport in the surface-water system is many times
faster than in the ground-water system.

The contaminant also could enter the surface-water system via runoff.
The rate of movement of contaminant by runoff would depend on the nature of
the event that produced the runoff; snowmelt, frontal storm, or thunderstorm.
Once in the streams, runoff from low-intensity frontal storms or snowmelt
might transport the contaminant at a rate of about 60 ft (18 m) per minute
based on data listed in table 5 and other basin lag-time data under pool-and-
riffle conditions in the stream channels. The rate of contaminant movement
by runoff from intense thunderstorms might be approximately 420 ft (128 m)
per minute assuming open-channel-flow conditions. This rate of movement is
based on calculations using the travel-time coefficient of 0.0024 minute per
foot, Roth rates were computed assuming the contaminant would be dissolved
and would move at the same rate as the water. Suspended contaminants would
move at a slightly lower rate than that given above. The rates of contami-
nant movement for both types of flow condition ignore the possible effects of
on-channel retention reservoirs.
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SUMMARY OF CONCLUSIONS

Accidental releases or leaks of contaminants onto an area of moderate
size and resulting from the operations of the Rocky Flats Plant might move
slowly or rapidly through the hydrologic system, depending on the magnitude
of the release or leak and the hydrologic conditions at the time. An acci-
dental release or leak of 1,000 gals (3,800 &) of a liquid contaminant during
a period of little or no precipitation would result in most or all of the
liquid contaminant replenishing soil moisture in the unsaturated zone. Most
of the contaminant probably would remain in the soil column until flushed
downward during the next period of recharge. Contamination, therefore, would
be local until later recharge moved the contaminant into the saturated zone.

Larger accidental releases or leaks, 5,000 gals (19,000 &) or greater,
or smaller releases or leaks occurring during wet periods or onto an area of
small size, probably would enter the ground-water system in 24 hours or less.
Recharge responses observed in an observation well indicate the time might be
as short as 2 to 4 hours. Ground-water movement within the Rocky Flats Allu-~
vium might move the contaminant, if it remains dissolved, generally eastward
at a rate of about 3 to 11 ft (0.9 to 3.4 m) per day. The ground-water ve-
locities indicate the maximum travel time would be about 3 years along the
longest flow line to a point of discharge. However, appearance of the con-
taminant in springs and seeps issuing from the base of the alluvium might
occur in less than 3 months, possibly as soon as a few days.

Movement of the contaminant from the springs or seeps down Lhe slopes
to the streams could take as long as several weeks or be as short as a few
hours, depending on the characteristics of the slopes. A contaminant might
move through the surface-water system at a rate of about 60 ft (18 m) per
minute under pool-and-riffle conditions in the streams. Under open-channel-
flow conditions following intense thunderstorms, the contaminant might move
at a rate of approximately 420 ft (128 m) per minute.
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Geologic Characteristics of the Pierre Shale and Younger Formations

Pierre Shale

The Pierre Shale composed of upper Cretaceous marine strata is-about
7,300 ft (2,225 m) thick in the vicinity of Rocky Flats. The Pierre Shale
consists of four units, the lower shale unit, the lower sandstone unit, the
upper shale unit, and the upper transition unit (Scott and Cobban, 1965).
The lower shale unit, approximately 1,600 ft (490 m) thick, is predominantly
dark-gray shale containing ironstone concretions and interbedded bentonitic
layers. The lower sandstone unit, consisting of the Hygiene Sandstone
Member, is about 600 ft (180 m) thick, and consists of dark-brown, well-
cemented, fine-grained sandstone, interbedded with dark-brown to dark-gray
shale. The upper shale unit, about 3,900 ft (1,190 m) thick, consists of
dark shale and claystone containing limestone and ironstone concretions and
layers of silty, sandy shale. The upper transition unit, about 1,200 ft
(365 m) thick, consists of dark to rust-brown, silty, sandy shale and inter-
bedded shaly sandstone layers. The Pierre Shale is overlain by the Fox Hills
Sandstone.

The Pierre Shale-Fox Hills Sandstone Contact

The Fox Hills Sandstone was originally described by Emmons, Cross, and
Eldridge (1896, p. 71) as consisting of 800 to 1,000 ft (240 to 300 m) of
soft, friable, sandy shale, with occasional interstratified bands of clay
capped by a persistent and characteristic sandstone, usually about 50 ft
{15 m) thick. Scott and Cobban (1965, p. 3) state, however, that this inter-
val includes all of the upper transition member of the Pierre Shale. 1In 1920,
Henderson (1920a, p. 22) suggested that had the Pierre Shale and the Fox Hills
Sandstone been studied in eastern Colorado, before publication of the forma-
tions in the upper Missouri region, the formations would not have been divided
at all, or would have been separated at a much higher horizon--at the base of
a massive upper sandstone--which he later designated as the Milliken Sandstone
Member of the Fox Hills Sandstone. This was the same sandstone described by
Emmons, Cross, and Eldridge (1896).

In 1932, the Rocky Mountain Association of Petroleum Geologists (Lover-
ing and others, 1932) agreed to define the base of the Fox Hills "* * * asg
the horizon below which the section is predominantly gray marine clay shales
and sandy shales of Pierre age, and above which the section changes rapidly
to a buff to brown sandstone containing numerous large gray to brown, hard,
sandy concretions. This lower concretionary member is commonly overlain by
a series of light-gray to brown sandstones and sandy shales." The report
further describes the base of the Fox Hills as being approximately 250 ft
(76 m) below the top of the Fox Hills at localities 45 mi (72 km) east of Den-
ver and 40 mi (64 km) north of Denver. The base was reported as about 100 ft
(30 m) below the top of the Fox Hills, 65 mi (104 km) northwest of Denver.
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However, Scott and Cobban (1965, p. 3) contended that this recommended lower
boundary of the Fox Hills was unmappable except in small areas of excellent
outcrops, and chose to map the top of the Pierre Shale at the base of the
Milliken Sandstone Member. Geophysical logs from wells in the Denver Basin
support the contention of Scott and Cobban (1965). For the purposes of this
report, the base of the Milliken Sandstone Member of the Fox Hills Sandstone
is the contact between the Pierre Shale and the Fox Hills Sandstone.

Fox Hills Sandstone

The Fox Hills Sandstone--Milliken Sandstone Member--usually has a thick-
ness of 40 to 90 ft (12 to 27 m) and consists of sandy shale grading strati-
graphically upward into massive sandstone. Based on the interpretation of
geophysical logs, the thickness in some areas may be as great as 150 to
200 ft (46 to 61 m), usually due to an increased thickness in the lower
sandy shale part of the unit. Some logs show sandstone beds below the hori-
zons usually considered to be the base of the Fox Hills; these beds are
interpreted to be tongues of the Fox Hills interfingering with the underlying
Pierre Shale.

Combining descriptions by Camacho (1969, p. 44-55) of two adjacent lo-
calities in the southern part of the study area, the Fox Hills Sandstone is
a tan to buff, feldspathic sandstone. The lower one-half tends to be thinly
bedded parallel laminae of silty, very fine-grained sandstone and some thin
beds of siltstone and shal The upper one-half is fine- to medium-grained,
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Laramie Formation

The Laramie Formation is a brackish-water, continental deposit conven-
iently divided into two units, the lower sandstone unit and the upper shale
unit. The lower sandstone unit ranges from about 150 ft (46 m) to a little
more than 320 ft (98 m) thick and consists of thin to massive beds of fine-
grained, moderate- to well-cemented sandstone interbedded with buff to dark,
carbonaceous claystone., Kaolinite-rich clay is mined from near the base of
this unit. Coal, in the middle and near the top of this unit, has been mined
between Leyden and Marshall, Colo. (fig. 1). The lower sandstone unit con-
sists of two subunits, the A and the B sands. The A sand, usually 5 to 40 ft
(1.5 to 12 m) above the top of the Fox Hills Sandstone, tends to be highly
resistant to weathering and forms the hogback ridges that extend from south
of Golden to Marshall, Colo. (fig. 1). The B sand ranges from a relatively
thick, massive sandstone to a series of thin sandstone beds interbedded with
organic-rich claystones. Hydrologically, the Fox Hills Sandstone and the
lower Laramie Formatfon--the A and the B sands--are collectively referred to
as the Laramie-Fox Hills aquifer.
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The upper shale unit of the Laramie Formation is about 450 to 630 ft
(137 to 192 m) thick and consists of buff to dark-gray, organic-rich clay-
stone. In many localities there are interbedded sand layers. Locally, about
100 to 200 ft (30 to 61 m) above the B sand, these sand layers are frequent
and thick enough to be collectively designated as the C sand.

Arapahoe Formation

The Arapahoe Formation is a Late Cretaceous, continental deposit of len-
ticular sand bodies interbedded with clay. Ironstone nodules and layers are
common, associated both with the sand bodies and the clay. Imprints of
leaves and woody material as well as carbonaceous remains of plant material
are commonly found where sand and clay are thinly interbedded. The lower
one-half of the formation contains more sand beds than the upper one-half.
Sand beds, as interpreted from geophysical logs, occurring at a stratigraphic
horizon about 750 to 800 feet (260 to 280 m) above the top of the Fox Hills
Sandstone, are used in this report as the base of the Arapahoe Formation.

The maximum thickness of the Arapashoe Formation observed in the study area
was about 270 ft (82 m) (test well 22-74). South and east of the study area,
interpretation of geophysical logs indicates that the thickness of the forma-
tion, where overlain by the Denver Formation of Late Cretaceous and

Paleocene age, ranges from 270 to 445 ft (82 to 136 m).

The sand bodies rarely exceed 5 to 8 ft (1.5 to 2.4 m) thick. The
lateral extent of these sand bodies may be hundreds of feet, but tens of feet
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several sand bodies which are not laterally connected. Individual beds with-
in the sand bodies range in thickness from 0.063 in (1.6 mm) to about 2 ft
(0.6 m) and usually show crossbedding. Ripple undulations of alternating
sand and clay lamellae have been observed. Hard ironstone lenses may be in-
terbedded with the sand and show little color banding. 1In the outcrop, the
color ranges from light buff to dark brown and cementation ranges from none
to moderate., Usually the darker colors are associated with the higher

degree of cementation. The cementing material is carbonate and iron. At one
locality, calcite (CaC0O,) and minor amounts of barite (BaSO ) were observed
filling joints in the sandstone.

An uncommon sedimentary feature was observed northeast of the study
area, along the Community Ditch, in NW4% sec. 32, T. 1 S., R. 69 W., where
nearly horizontal sandstone beds are underlain by other sandstone beds that
are almost vertical. This uncommon feature probably resulted from slump
faulting contemporaneous with deposition as described by Weimer (1973).

52



The sand particles are fine to medium, subrounded to rounded grains of
quartz. In some localities minor amounts of feldspar, mica, mafic minerals,
and clay particles are present. Locally, the size of clastic particles are
quite coarse. In the study area, the coarsest material ranges from very
fine to fine gravel. In the vicinity of Golden, however, small cobble-sized
clasts are not uncommon. Gravel-sized or coarser clasts occur at all strati-
graphic horizons in the lower one-half of the formation.

The clay in the Arapahoe Formation ranges in color from light to dark
gray, commonly with an olive-green cast. Oxidation or deposition of iron
along joints and fractures creates a mottled orange appearance. The clay
composition is montmorillonite with minor amounts of kaolinite and illite.
Ironstone layers, lenses, and concretions are common. Color banding in the
thinner layers of the ironstone locally is quite picturesque. In outcrops,
the clay weathers into irregular, equidimensional fragments that quickly dis-
integrate into smaller particles. Earth slumps involving 500 to 1,000 tons
(455 to 907 t) of material are common when the clay and weathering products
become wet or when a potential slip surface becomes saturated.

Geologic Characteristics of Surficial Deposits

Within the study area, surficial deposits are Pleistocene and Holocene
in age, and consist primarily of alluvium and colluvium. Older alluvium
forms many of the higher topographic surfaces between present-day streams
east of the mountain front. Younger alluvium occurs along the valleys of
thc present-day streams.  Cellwm

sides of the valleys and slopes of the hills in some areas.
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Pre-Rocky Flats Alluvium

The pre-Rocky Flats Alluvium, the oldest surficial deposit in the study
area, extends east of the mountain front only about 1 mi (1.6 km). Topo-
graphically it is about 40 to 100 ft (12 to 30 m) above the general plane
of the Rocky Flats Alluvium. Wells (1967, p. 45) described it as a pediment
deposit about 10 to 30 ft (3.0 to 9.1 m) thick, consisting of bouldery gravel
in a sand matrix. Van Horn (1972) adds that in places the top 1 to 6 ft (0.3
to 1.8 m) is clayey to pebbly silt. Scott (1972) suggests that it is perhaps
correlative with the Nussbaum Formation of early Pleistocene age.

Rocky Flats Alluvium

The Rocky Flats Alluvium is a series of laterally coalescing alluvial
fans deposited by streams, probably during floodflow. Where the streams
emerged from the mountains, the loss of gradient and presumably wider channel
width caused the streams to lose their carrying capacity and deposit their
particle load. This clogging of the channels caused lateral migration of the
streams during successive episodes of deposition, enlarging and thickening
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the fans. The minimal fan development in the vicinities of the present-day
Clear Creek and Boulder Creek suggests that the antecedents of these streams
were of sufficient strength and durability to convey particle loads down-
stream and not contribute to fan development. :

The Rocky Flats Alluvium unconformably overlies all of the older bed-
rock formations. The erosional surface on which it is deposited has a gen-
eral slope to the east. This surface, however, is quite irregular and has a
local relief of about 50 ft (15 m). The resistant sandstone beds in the
lower unit of the Laramie Formation formed a hogback ridge trending north
that stood above the level of the surrounding erosional surface. Streams
cutting through the hogbacks carved broad shallow valleys trending generally
east. The thickness of Rocky Flats Alluvium on the north-trending hogbacks
is small, in some places the alluvium is absent. The thickness of alluvium
above some of the east-trending bedrock channels is 100 to 120 ft (30 to
37 m) (Ackerman, 1974; Oliveira, 1975). The average thickness of the allu-
vium in the study area is about 20 to 30 ft (6 to 9 m).

The Rocky Flats Alluvium consists of beds of clayey, sandy silt, some of
which contain distinct horizons of subrounded gravel and cobbles. Locally,
there are lenses of clean, moderately sorted medium to very coarse sand.
Closer to the mountains, the alluvium tends to contain coarser material and
boulders 2 to 3 ft (0.6 to 0.9 m) in diameter are not uncommon. The gravel
and cobbles are light- to dark-gray, sometimes pinkish to light-tan, meta-
quartzite, and occasional pieces of gneiss, schist, granite, pegmatite, sand-~
stone, and siitstone. MNalde (1555, p. 225) reported that the gravel was
60 percent quartzite. Scott (1963, p. 13) states that, in the top 1 to
3.4 ft (0.3 to 1.0 m) at the type locality, the fragments are mostly schist
and gneiss with some quartzite. Although pebble counts were not made during
this study, repeated examination of the lithology, both on the surface and in
fresh excavations several feet deep, indicated that at least 80 percent, and
probably closer to 90 percent, of the gravel-size or larger fragments were
quartzite. The clayey, sandy silt is yellowish to light-reddish brown which
gives the formation its characteristic color. The sand particles are predom-
inantly light-colored quartz and quartzite which give the silt a somewhat
speckled appearance.

Malde (1955, p. 223) and Wells (1967, p. 47) both referred to the Rocky
Flats Alluvium as a pediment gravel. Scott (1963, p. 52) in his work in the
Kassler quadrangle calls the erosional surface beneath the gravel a pediment,
but did not call the gravel part of the pediment. In his description of the
Rocky Flats Alluvium in the Morrison Quadrangle (Scott, 1972) a height of the
pediment above modern streams is included, presumably meaning the height of
the upper surface of the deposit. Gary, McAfee, and Wolf (1972, p. 522) des-
cribe a pediment as an erosional feature, allowing, however, for a thin dis-
continuous veneer of alluvium. Under the definition of a pediplane (Gary and
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others, 1974, p. 523), the thickness of the veneer is limited to the effective
depth of flood scour. The stratification and limited thickness of individual
beds and total thickness of the formation indicate that the Rocky Flats Allu-
vium is depositional and, as such, it should not be called a pediment gravel.

Soil development on the Rocky Flats Alluvium may belong either to the
Nederland soil series or the Valmont soil series (Moreland and Moreland,
. A comparison of these soils is shown in table 6.

1975, sheet No. 30)

Table 6.--Comparison of Nederland and Valmont series soils
[After Moreland and Moreland, 1975]

Property

Soil Series

Nederland

Valmont

Parent material

01d high terraces and
alluvial fams.

0ld high terraces and
benches in gravelly and
cobbly, loamy alluvium.

-Drainage

Deep, well-drained soils.

Deep, well-drained soils.

Surface layer

Four inches (100 mm) of

brown, very cobbly,
sandy loam,

Four inches (100 mm) of
grayish-brown, light clay
loam containing varying

amounts of cobbles and
gravel.

Upper

Brown and reddish-brown,
heavy, coarse, sandy

Middle

loam and very cobbly,
sandy, clay loam, 16 in
(405 mm) thick.

Subsoil

Lower

Underlying these materi-
als to a depth of 60 in
(1,520 mm) or more is
reddish-brown, very

Underlying material

cobbly, coarse sandy
loam.

Brown clay loam, 3 in
(75 mm) thick.

Brown light clay, 13 in
(330 mm) thick.

Calcareous, light-brown,
gravelly, clay loam,
4 in (100 mm) thick.

Calcareous, pinkish-white

and light-brown, very
gravelly loam,
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Locally, particvlarly in the eastern part of the study area, calcium car-
bonate enrichment mottles the soil texture between 1 to 5 ft (0.3 to 1.5 m)
below land surface. In the SW/NW% sec. 12, T. 2 S., R. 70 W., calcium car-
bonate development in the upper 5 ft (1.5 m) of the Rocky Flats Alluvium has
produced dense, hard, thinly bedded layers of carbonate which become progres-
sively less defined and grade vertically downward into noncalcareous alluvium.
Individual layers of the carbonate material show wavy, concentric banding
similar in appearance to the algal limestone at the top of the Ogallala For-
mation of Tertiary age in eastern Colorado and western Kansas (Elias, 1931).
A layer 0.25- to 0.5-in (6~ to 13-mm) thick associated with the concentric
banding is made up of Golitic-like grains ranging from 0.005 to 0.035 in
(0.13 to 0.89 mm) in diameter. John L. Wray, Marathon 0il Co. (oral commun.,
1975), examined these carbonates in both hand specimens and thin sections,
and reported that they contained no evidence of algal organisms. The alter-
native then is that they are primary sedimentary, presumably inorganic,
accumulations of carbonate, or secondary accumulations associated with soil
development. Detailed field and petrographic investigation would be required
to determine which method is responsible.

Verdos Alluvium

The Verdos Alluvium occupies a topographic position about 50 to 100 ft
(15 to 30 m) below the Rocky Flats Alluvium, and within the study area was
deposited in alluvial fans and channels. The large deposit south of Leyden
Gulch appears to have been deposited as an alluvial fan by the antecedent of
Ralston Creek emanating from the mountains. The maximum thickness is about
40 ft (12 m). The rock fragments in this deposit are granite, pegmatite, and
gneiss with lesser amounts of older sedimentary rock and minor amounts of
gray quartzite and amphibolite. Around the periphery of the present extent
of the Rocky Flats Alluvium, the Verdos Alluvium was deposited as fans and
channel filling derived by erosion of the older alluvium. Coarseness of
these deposits retarded subsequent erosion, in some cases inverting their
former topographic position so that they now occupy knobs and ridges between
the present drainage. In some areas where the Rocky Flats Alluvium has con-
trolled erosion, the Verdos Alluvium is found as terraces on the sides of the
present-day valleys. The appearance and lithology is similar to the Rocky
Flats Alluvium except that it tends to be whitish gray in color, rather than
reddish brown, and does not contain the numerous large boulders. The second
generation of weathering and transport has further disintegrated the gneiss
and schist, reducing their percentage in the total composition. A well-
developed soil profile with calcium-carbonate enrichment commonly extends
into the underlying bedrock. The maximum observed thickness of the soil
profile is about 5 to 7 ft (1.5 to 2.1 m).
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Slocum Alluvium

The Slocum Alluvium is a gravel deposit containing much sand and silt
derived from erosion of bedrock and the older gravel deposits. Malde (1955,
P. 233) describes it as a diversity of alluvial, colluvial, and eolian depos-
its preserved in a large number of discontinuous outcrops on bedrock hills
and as low mounds surrounded by finer grained material that is locally mixed
and interbedded with the gravel. The formation has a maximum thickness in
the study area of about 20 ft (6.1 m), but is more commonly 5 to 10 ft (1.5
to 3.0 m) thick and occupies a topographic position of about 300 ft (90 m)
below the Rocky Flats Alluvium.

Terrace alluvium

Locally two Wisconsin-age terraces are associated with the present
drainage. These terraces consist of cobbles and pebble gravel containing
scattered boulders. Along Coal Creek this alluvium has a maximum thickness
of 12 ft (3.7 m) and consists of 65 to 70 percent quartzite, 30 to 35 percent
granite and gneiss, and 1 to 3 percent sandstone (Malde, 1955, p. 238).

Along Rock, Walnut, and Woman Creeks, the alluvium was derived from the bed-
rock and reworking of the older alluvial deposits, so the alluvium contains
more fine material and less granite and gneiss. The thickness is seldom more
than about 5 ft (1.5 m).

Valley fill

Valley fill occupies the bottom of the present valleys. Along Rock
Creek in the NW% sec. 31, T. 1 S., R. 69 W., a thickness of 15 ft (4.6 m) was
observed. Malde (1955, p. 243) reports that a thickness in excess of 10 ft
(3.0 m) is common. The valley fill ranges from dark-brown sandy clayey silt
to moderately sorted cobbles and small boulders. The valley fill, along
streams which head on the Rocky Flats Alluvium and have not yet cut through
to bedrock, tends to be coarse and have little or no fine material. Where
the valley fill is deposited on bedrock, however, 0.5 to 2 ft (0.2 to 0.6 m)
of cobbly sand and gravel commonly is overlain by several feet of sandy
clayey silt. Subsequent erosion and deposition locally may have added more
sand, gravel, and cobbles on top of the silt, or cut through the valley fill
to expose bedrock along the channel bottom. The composition of the parti-
cles, sand-size or larger, is quartzite and occasional ironstone fragments.

Colluvium

Colluvium is the product of mass wasting which collects on the sides
and at the base of hills and slopes. These depos’ts tend to be poorly sorted
mixtures of soil and debris from bedrock clay and sand, mixed with gravel and
cobbles derived from the older alluvium which caps the hills and ridges.
Although the thickness of these deposits rarely exceeds 2 to 3 ft (0.6 to
0.9 m), their widespread occurrence tends to mask much of the underlying
geology.
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Structure

The general geologic structure of the area is north-striking beds with
dips to the east or southeast. Major faulting is well documented in areas to
the north, west, and south.

Folding

The study area is located along the western edge of the Denver Basin
where monoclinal folding has résulted in steeply dipping north-trending beds.
In the western part of the area, the beds are nearly vertical to overturned.
The dip of the beds in the Laramie Formation 2 mi (3.2 km) east of the moun-
tain front, is 45-50° to the east. 1In the eastern part of the study area the
strike of the beds swings to the northeast and the dip is less than 1° to the
southeast.

Faulting

Several types of faulting are found in and adjacent to the study area,
all of which are related to the Laramide Orogeny of Late Cretaceous—early
Tertiary age. Extending into the study area from the south is the Golden
fault, which is a north-trending, medium- to high-angle, west-dipping,
reverse fault. This fault consists of several subparallel fault branches
which rarely affect any beds younger than the Fox Hills Sandstone. North of
Golden, in the vicinity of Leyden Gulch, a branch of the Golden fault trends
to the northwest to joim at the mouth of Coal Creek Canyon with the north-
west-trending Livingston shear zone. A branch of the Golden fault continues
north of Leyden Gulch to become lost in the Pierre Shale, particularly when
covered by the Rocky Flats Alluvium.

In the northern and northwestern part of the study area, high-angle nor-
mal faulting trending in a northeastern direction has been mapped by Spencer
(1961). Colton and Lowrie (1973) indicate, however, that this is only a
fraction of the faulting in the area. Weimer (1973, fig. 22) shows faulting
in the Golden area which parallels these northeast-trending faults in Boulder
County. He also shows what he calls "basin-margin faulting" trending north a
few hundred feet east of and paralleling the hogback ridges of the lower unit
of the Laramie. The northern limit of Weimer's basin-margin fault is at the
border between the Golden and Louisville 7%-minute quadrangle maps. Projec-
tion of this fault to the north coincides with the eastern limit of mining in
the now destroyed Caprock Mine near the center of sec. 16, T. 2 S., R. 70 W,
This mine had an inclined shaft which followed down the dip of the beds for
several hundred feet. Coal was mined by the room-and-pillar method along the
strike of the beds. Examination of mine records ~nd maps of the Rocky Moun-
tain Energy Co., owners of the mine, did not indicate whether or not the
eastern limit of mining was fault controlled (John Brown, oral commun.,
1975).
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Additional faulting in the study area, as shown on plate 1, was observed
during the current study. The extension of the Eggleston fault is inferred
from the alignment of minor displacements along a northwest-trending line.
The youngest faulting, that which shows displacement in the Verdos Alluvium,
occurs in the southern part of the area in the SW% sec. 23, T. 2 S., R. 70 W.
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