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ABSTRACT

Shoaling of subtidal and intertidal mud flats has permitted tidal
marshes to spread across large marginal areas of the San Francisco Bay
estuary during the past several thousand years.' By 1850 A.D. the tidal
marshes of the estuary, including those of the Sacramento -~ San Joaquin
Delta, covered an area nearly twice as large as the area of open water.
Nearly 95 percent of these marshes have been diked or filled during the
past 125 years.

Speciles distributions along leveled transects at six tidal marshes
indicate that elevation and water salinity are the principal ecological
factors that control the distribution of seed plants in the remaining
natural tidal marshes of the northern San Francisco Bay estuary; Marsh

surfaces sltuated near mean tide level are populated by robust mono-

cotyledons (e.g.; Spartina foliosa, Scirpus californicus), whereas
surfaces situated near high-~tide levels support dicotyledons and a few

small monocotyledonous species (e.g., Salicornia virginica, Distichlis

spicata). Marshes near the seaward end of the estuary are typically

occupied by 10-15 salt-tolerant species -(e.g., Spartina foliosa

Salicornia virginica), whereas marshes at the riverward end of the

estuary are inhabited by as many as 30 specles, most of which are known
to tolerate moderate or small amounts of salt (e.g., Scirpus spp.,

Phragmites communis, Typha latifolia).




INTRODUCTION
Purpose

More than half of the remaining tidal marshes in California are
situated in the San Francisco Bay estuary (MacDonald and Barbour, 1974,
p. 212-213). Despite widespread concern for.the preservation of these
wetlands, published information about their flora is scanty. Quantitative
data on the distribution of seed plants in natural tidal marshes has been
gathered only in the southern arm of the estuary (Hinde, 1954;

Rountree, 1973, p. 203-225). Published information about marshes
fringing the northern part of the estuary is restricted to general des-
cripfions of marshes in the lower reaches of the estuary (Howell, 1970;
Filice, 1954), and to topical studies of diked marshes that are located
in the upper reaches of the estuary.and are subjected to seasonal inun-
dation for duck clubs (George, Andersoﬁ, and McKinnie, 1965; Mall, 1969;
Rollins, 1973). The purpose of this study is to make a reconnaissance
of the distribution of the principal seed plants of natural tidal
marshes .of the northern San Francisco Bay estuary. This information
has several applications:

(1) The regional ;distribution of the principal tidal marsh
plants appears to be controlled by water salinity. Our records of the
present plant distribution permit comparative studiés at some future
date, when water salinities may differ because of proposed reductions
in the volume of fresh-water inflow to the estuary (California Dept. pf

Water Resources, 1960).



(2) The distribution of the principal seed plants within each marsh
is mainly controlled by the elevation of the surface on which they grow.
Knowledge of the elevation ranges of these plants permits detection of ‘
historic uplift or subsidence of marsh surfaces from changes in marsh
flora (e.g., Gilbert, 1908, p. 81-87; Jepson, 1908; Harvey, 1966, p. 22).

(3) The elevation and salinity ranges of living tidal marsh plants
can be used to interpret former sea levels and water salinities from
plant fossils contained in core samples of tidal marsh deposits. These
interpretations permit determination of shoreline changes and vertical
crustal\movement during the recent geologic past (e.g., Redfield, 1972;
Atwater, Hedel, and Helley, unpub. data).

Acknowledgements

This study has been supported as part of the U.S. Geological Survey's
efforts to identify earthquake hazards in the San Francisco Bay region.
We are grateful to several private land-owners and the California
Department of Parks and Recreation for granting access to their land.

Steve Talco drafted plates 3-8, and Virgil Frizzell reviewed the manu-

script.



METHODS OF STUDY

The elevation ranges of tidal marsh angiosperms were investigated
by noting the distribution of seed planté along leveled transects
across six tidal marshes. These marshes weré chosen to range in location
from the lower to upper reaches of the estuary (fig. 1) in order to
deterﬁine the effect of water salinity on floral populations. None of
the marshes are pristine because all have undefgone changes during the
past 125 years that can be attributed to the activities of man. As much
as possible, however, we visited marshes that have changed very little
according to the following criteria (table 1): (1) minimal disruption
of natural water circulation by levees and ditches, particularly at the
landward edge of the marsh; (2) existence of at least part of the marsh
surface prior to 1850; and (3) minimal' historic land subsid;;ce due to
withdrawal of ground water or natural gas. In addition, we tried to
investigate tidal marshes that displayed transitions from high-marsh to
low-marsh flora and from low-marsh flora to barren mudflats. These
transitions were poorly represented at the marshés near Petaluma,
Fairfield, and Bethel Island, where the marsh surfaces drop. abruptly
into natural and man-made sloughs (table 1; plates 5, 7, 8).

A topographic profile of each of the six tidal marshes was con-
structed from spot elevations located at horizoﬂtal intervals of 30 m
or less (plates 3-8). Elevations were referenced to the nearest bench
mark of the National Geodetic Survey (formerly, the U.S. Coast and
Geodetic Survey). We used the most recent leveling data for these
monuments, obtained from the early 1950's to the late 1960's, to
minimize errors due to historic land subsidence (see explanatory notes

on .plates 3-8). The bench-mark elevations were transferred across each



Figure 1.-~The northern San Francisco Bay estuary, where fresh water
from about 25 percent of California, including most of the Sierra
Nevada (snow-capped range at top), meets sea water from the Pacific
Ocean. As used in this report, northern San Francisco Bay estuary
refers to the open-water and tidal-marsh areas between the Golden
Gate and the eastern edge of the Sacramento-San Joaquin Delta,
thereby including 8an Pablo Bay, Carquinez Strait, Suisun Bay, and
the Sacramento-San Joaquin Delta (see index map). Triangles on the
index map show the approximate locations of the natural tidal
mar8hes at which we have studied the elevation ranges of seed plants
(plates 3-8). Infrared photograph courtesy of National Aeronautics
and Space Administration (Ames Research Center, Moffett Field,
Calif.), takeﬁ April 14, 1972, at an altitude of 20,000 m(65,000 ft)

from a U-2 aircraft.
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tidal marsh with a tripod-mounted self-aligning level and a stadia rod.
Individual readings had a maximum uncertainty of + 1 cm. Closure of
the leveling surveys at the Point San Pedro and Petaluma marshes
(plates 4, 5) indicated cumulative errors of about 5 cm.

The percentage abundance of seed plants was visually estimated at
each point of known elevation within a circle having a radius of about
1 m. Most species distributions were‘determined along a single
transect line at each marsh, but the elevation ranges of some plants
were Investigated elsewhere if these plants were represented inadequately
along the transect.

Identification and nomenclature follow Mason (1957) with the

yirginicq
exception of nomenclature for Salicornia, which follows Munz (1959).

A
Voucher specimens of ®the principal seed plants in each marsh have been
submitted to the herbarium of San Jose State University. Additional

specimens will be collected during the summer of 1976.



HISTORICAL AND ENVIRONMENTAL SETTING

OF THE TIDAL MARSHES

History of the estuary and its tidal marshes
Events prior to the arrival of European settlers

Ice ages and sea-level changes.-~About 20,000 years ago the site

of the San Francisco Bay estuary was roamed by bison, horses, ground
sloths, and camels. The combined San Joaquin and Sacramento Rivers
flowed through the Golden Gate and met the Pacific Ocean near the
Farallon Islands, about 50 km (30 mi) west of San Francisco. There
was no San Francisco Bay estuary.

The absence of an estuary 20,000 years ago can be attributed to
glacial ice. Between 15,000 and 25,000 years ago, sheets of ice up
to several kilometres in thickness covered large land areas in northern
latitudes, including most of Canada and the northernmost United States
(e.g., New England and the Puget Sound area). In addition, smaller
alpine glaciers occupied many high mountain areas. The volume of this
land ice in excess of what ice remains today was about 50 million km3
(Flint, 1971, p. 76~79), equal to enough water to change- the level of the
ocean surface by at least 100 m (330 ft.).l/ Thus, sea level 20,000
years ago was significantly lower than present levels because of the
large quantity of water that was locked into land ice. This low stand

of the sea left the entire site of the San Francisco Bay estuary above

sea level, so the estuary did not exist.

1/

=50 million km3 is also enough ice to make a solid cylinder with a
length equal to the distance from the earth to the moon and with a
diameter equal to the length of the San Mateo~Hayward bridge.



About 15,000 years ago the ice in northern latitudes began to melt.
Sea level rose as the melt water returned to the oceans, and by 10,000
years ago the rising sca entered the Colden Gate and began to spread
inland (plate 1). During the next 2,000 years the shoreline advanced
across gently sloping areas as rapidly as 35 m (116 ft) per year in
response to a sea-level rise of about 2 ecm (0.8 in) per year. This
rate of sca--level rise decrcased as the ice sheets disappecared, and has
averaged only 0.1-0.2 cm (0.04-0.08 in) per yecar during the past 6,000
years (fig. 2).

The inception of the present San Francisco Bay estuary coincides
in time with the first widesprcad humran habitation of the western
hemisphere (1a2ble 2), but other estuaries occupied the vicinity of the
present one long before man settled in the Americas. Study of core
samples collected by the California Division of Bay Toll Crossings
suggests that estuaries and stream valleys have altcrnately occupied
the vicinity of the present estuary during the past one milljion years
(Atwater', Hedel, and Helley, unpnb. dataj Bruce Ross, oral comuwun.,
1976). Presumably the stream valleys record seaward migrations‘of the
shoreline accompanying low stands of the sea, and the estuaries indicate
landward migrations of the shoreline accompanying high stands of the sea,
such as we have today. Like the sea-level rise of the past 15,000 years,
these sca-level fluctuations were protably related to waxing or waning of

glacial ice.



Figure 2.--Sea-level changes during the past 10,000 years at the
site of the southern arm of the San Francisco Bay estuary. The
thick line shows tﬁat sea level has risen more than 50 m (164 ft)
during the past 10,000 years. Most of this change in water level
occurred between 8,006 and 10,000 years ago, when seca level rose
about 2 cm (0.8 in) per year in response to melting of large con-
tinental ice sheets in northern latitudes. The rate of sea-level
rise decrecased more than ten-fold as these ice shecets disappeared,
and has averaged only 0.1-0.2 cm (0.04--0.08 in) per year during
the past QpOO years. The boxes repfesent uncertainties in the
ages and elevations of former sea lcvels. Most of this sea-level
data is based on the radiocarbon ages and elcvations of fossil
tidal marsh plants. Like their modern counterparts, these plants
probably grew very close to coeval sea levels. The plant fossils
were collected from core samples that were originally obtained by
the California Division of Bay Toll Crossings for bridge foundation
studies. This illustration is ad.:pted from the sca-level curve of

Atwater, Hedel, and Helley (unpub. data).
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Table 2.--A time scale for the history of the earth and for the history

of the San Francisco Bay area

Time

' Historical event

Date in

Events in the

Years before calendar Events of global San Francisco
present year;/ significance Bay area
4,500,000,000 January 1 Formation of the earth
600,000,000 November 12 First abundant life
225,000,000 December 13-26 Age of dinosours Formation of oldest
65,000,000 rocks in bay
area
65,000,000 - December 26-31 Age of mammals
present
4,000,000 = December 31 First hominids
2,000,000 4~8 p.m. (man-like creatures)
appear ®in East Africa
1,000,000 - December 31, Man continues to evolve Estuaries situated
present 10-12 p.m. Global climatic in the vicinity
fluctuations cause of San Francisco
numerous ice ages Bay during warm
intervals between
ice ages
100,000 December 31 Appearance of our Large estuary at
11:47 p.m. species, Homo the site of San
Sapiens Francisco Bay
(Atwater, Hedel,
and Helley, in
preparation)
25,000 - December 31 Most recent major ice Site of San Francisco
15,000 11:57~ covers Canada, New Bay is a broad
11:58 p.m. England, Seattle, valley populated by
Yosemite Valley; incense cedar,
sea level is about ground sloths,
100 m (330 ft) be- bison, and native
low its present horses; the com-
elevation bined San Joaquin
and Sacramento
Rivers flow through
the Golden Gate and
meet the Pacific
Ocean about 50 km
(30 mi) west of
San Francisco
10,000 December 31 "Ice sheets melt in The present San Ga

il o indesistesnsh i i i !
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ALV A LAAG LM AQGLALGBUSW
and water returns
to ocean basins,
causing a rapid
rise in sea level
First widespread

human habitation
of North America

-~ A CALLAN AN UQ]
estuary begins to
form as the rising
ocean enters the
Golden Gate

(plate 1)

0 - December 31 Most of recorded Tidal marshes spread
3,000 last 36 human history across tidal mud
seconds flats (fig. 3;
table 1)
200 December 31 American revolution Spaniards arrive
11/2
seconds
before
- midnight
0 - December 31 Birth of present 95 percent of
125 last 3/4 generations ‘historic tidal
second marshes diked or

filled (plate 2,
fig. 4)

1/ :
The time span of the earth's history, 4.5 billion years, is converted into a
single calendar year starting January 1 (4.5 billion years ago) and ending at the
last moment of New Year's Eve (today).
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Crowth of tidal marshes.--Rates of submergence (sea-level rise;

see fig. 2) and rates of sediment accumulation have largely controlled
the areal extent of the tidal marshes of the modern San Francisco Bay
estuary since its inceptioﬁ 10,000 years ago (Atwater, Hedel, and
Helley, unpub. data). Borehole investigations near San Francisco
suggest that tidal marshes 8,000-10,000 years ago were restricted to
narrow, discontinuoué bands at the margins of the ecxpanding estuary.
Probably the sea-level rise of 2 cm (0.8 in) per year excecded the
long-term rate of sediment accumulation on the marsh surfaces, so the
marshes were ultimately submcrged and relocated toward newly inundated
land arcas.

The rate of sediment accumulation began to equal or exceed the
rate of submcrgence in many parts of the estuary as the rate of sea-
level rise decrcased wore than ten-fold between 8,000 and 6,000 years
ago. Tihis shift crcated conditions more favorable to growth and main-
tenance of tidal marshes. For example, the thickness and radiocarbon
ages of pcat in the western part of the San Joaquin - Sacramento Delta
indicate that tidal marshes have persisted in this area for the past
6,000 years (Schlemon and Begg, 1973, p. 262), the marsh surfaces build-
ing vertically to keep pace with slowly rising sea levels. Nevertheless,
most of the extensive modern marshes around the lower reaches of the
estuary did not become ecstablished until several thousand years after
the inception of a slow rate of sca-level rise. The youth of these

marshes is indicated by the thinness of tidal-marsh deposits immediately

10



beneath their surfaces. Mud flat sediments typically underlie the veneer
of tidal-marsh deposits, suggesting that the marshes grew by spreading
across tidal mud flats (fig. 3). The lag between the inception of a slow
rate of sea-leve1>rise and the growth of these marshes probably represents
the time required for accumulating sediments to construct mud flat surfaces

that were high enough to.:support tidal-marsh vegetation.

Events subsequent to the arrival of European settlers

Topographic surveys by the U.S. Coast Survey in the 1850's portray
the San Francisco Bay estuary as it must have apgeared during the
California Gold Rush (plate 2). Collectively, the tidal marshes and
open-water bays éovered an are® slightly larger than the state of Rhode
Island (fig. 4). The area of tidal marsh was much greaﬁer than the area
of open water, with the Delta marshes comprising about 40 percent of the
total area and thé marshes of San Francisco, San Pablo, and Suisun bays
accounting for another 25 percent.

About 95 percent of the historic tidal marshes of the San Francisco
Bﬁy estuary have -been diked or filled since the California qud Rush
(fig. 4; plate 2). Most of the Delta marshes have been leveed for
farming. Crops have also been raised on many diked marshes fringing
Suisun Bay, but most of the diked wetlands in this area are now used
for duck-hunting and livestock-grazing (Mall, 1969, p. 8). The majority
of the marshes of San Pablo and San Francisco bays have béen converted
into grazing and farming lands, salt evaporation ponds, sites for
residential and industrial structures, garbage dumps, and transportation
facilities.

11



Figure 3.--History of a tidal marsh near Palo Alto. Many of the tidal
marshes fringing the southern arm of the San Francisco Bay estuary
have spread across previously barren mud flats during the past several
thousand years. This horizontal growth is evidenced by the presence
of mud-flat sediments beneath a cap of marsh deposits. Within the
cap of marsh deposits, cordgrass-marsh deposits commonly underlie
pickleweed-marsh deposits, so the marsh surfaces have also grown
vertically from about mean tide level (cordgrass-marsh deposits) to
high tide level (pickleweed-marsh deposits). Both horizontal and
vertical marsh growth are recorded by sediments beneath a tidal marsh
near Palo Alto (top diagram). The earliestestuarine sediments at
the site of this marsh cover a fossil land surface that was
inundated by the bay about 2,000-3,000 years ago. These sediments
lack roots in growth position and appear to represent a mud-flat
environment. _Sediments ultimately accumulated on the mud .flat more
rapidly than sea level rose, so that by about 1,000 A.D. the mud-flat
surface began to reach the level at which cordgrass can grow (bottom
diagram). By 1500 A.D. the cordgrass had probably advanced across
additional mud-flat areas. Concurrently, the cordgrass trapped
enough sediment to build the early-formed parts of the marsh
surface to near the average level of the higher of the daily tides,
and pickleweed replaced cordgrass in these high-marsh areas.
Horizontal and vertical growth probably continued in this manner
and produced the tidal marsh that was mapped by the Coast and Geodetic

Survey in 1857. Marsh growth has been arrested and even reversed

11¢



during the past 125 years (top diagram): cordgrass has replaced
pickleweed on much of the high marsh surface (Harvey, 1966, p. 22),
and the bayward edge of the marsh has beeﬁ eroded as much as 100
feet (30 metres) (Nichols and Wright, 1971). These changes can be
partly explained by a 3-foot (1 metre) relative rise in sea level
at the Palo Alto baylands during the past 50 years, most of which
was caused by land subsidence due to excessive pumping of ground-

water (Poland, 1971).
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Figure 4.--Historic changes in the area of natural tidal marshes of
the San Francisco Bay estuary, and comparisons with the areas of
other natural features and jurisdictions. Data sources: marshes
and open water of San Francisco Bay estuary ca. 1850 after Gilbert
(1917, p. 75, 78); marshes of San Francisco Bay estuary ca. 1970
from grid measurements of a 1:125,000-scale compilation of natural
tidal marshes based on a slightly smaller scale map by San Francisco
Bay Conservation and Development Commission (1969) and on 1:24,000
topographic maps; salt ponds after Jackson'(l969, p. 152); and
California wetlands exclusive of San Francisco Bay estuary after
California Coastal Zone Conservation Commissions (1975, p. 39).
See plate 2 for a map that shows historic changes in area and

distribution of natural tidal marshes.
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Many of the remaining natural tidal marshes have probably been
altered by man-induced changes of sea level, sedimentation, and water
salinity. A man-induced rise in sea level relative to land has affected
a large part of the southern arm of the estuary during the past 50 years.
This sea-level rise has been caused by subsidence of the land surface ac-
companying excessive withdrawal of ground water, and it measures about
1 m (3 ft.) near Palo Alto and 2 m (6 ft.) near Alviso (Poland, 1971)

(By comparison, tide records at San Francisco indicate that sea level
has risen only 0.15 m (0.5 ft.) during the past 125 years (James Dowden,
oral commun., 1975), apparently because of natural land subsidence or
world-wide sea-level changes). Land subsidence near Palo Alto and
Alviso due to ground-water withdrawal may be partly responsible for
erosion of the bayward edges of marshes in these aras and for local
replacement of pickleweed (Salicornia; a high-marsh plant) by cord-
grass (Spartina; a low-marsh plant) (fig. 3; Harvey, 1966, p. 22). How-
ever, the bayward edges of many of these same marshes also sustained c¢on-
siderable erosion during the last half of the nineteenth century
(Gilbert, 1917, p. 21-22), prior to known overdraft of ground water.

Unnaturally large amounts of sediment have been supplied to the
San Francisco Bay estuary during the past 125 years because of hydraulic
gold mining in the Sierra Nevada (Gilbert, 1917), urbanization (Knott,
1973), and dumping of dredge spoils. Accumulation of sediments derived
from these sources may largely account for rapid historic growth of
many marshes in the northern part of the estuary, such as a marsh near
Point San Pedro which has advanced as much as 300 m (1,000 ft.) across
previously barren mud flats since the California Gold Rush (plate 4;

Nichols and Wright, 1971).

12



Historic changes in the water salinity of the San Francisco Bay
estuary are likely because the fresh-water inflow from the Sacramento -
San Joaquin drainage has been cut in half since 1900 by-water—diversion
projects (California Dept. of Water Resources, 1960). The response of
plant(communities in tidal marshes to this diversion of fresh water is
unknown.

.
Native vegetation of the tidal marshes

Most of the major plants of the modern tidal marshes of the San
Francisco Bay estuary appear to be native. Table 3 is a partial list
of these pléntsf A more complete and better documented list could be
prepared followind a careful study of plant fossils from prehistoric
tidal marsh deposits.: As far as we know, this kind of investigation

has not yet been attempted.
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Physical environment of the modern tidal marshes

Climate

The climate of the San Francisco Bay region is characterized by mild,
wet winters and warm, dry summers. Precipit#tion is distinctly seasonal,
with most occurring from November to March and very little occurring
between June and September. Almost all precipitation is in the form
of rain.

Precipitation and temperature are influenced by elevation, local
topography, and proximity to the Pacific Ocean. In general, these
factors create slightly cooler and wetter conditions near the Golden

Gate than in the Delta region (fig. 5).

Tides

The surface of the San Francisco Bay estuary rises and falls twice
daily in response to tides. Successive tides have unequal heights be-
cause they include a large diurnal component, which produces a single
daily cycle, as well as a semi~diurnal component, which causes two
complete cycles each day.

Tide levels within the estuary are influenced mostly by the geometry
of the water bodies and by the fresh-water inflow from the Sacramento and
San Joaquin Rivers. The effect of geometry is most pronounced in the
southern arm of the estuary, where the tidal range varies by ﬁearly
two-fold (Homan and Schultz, 1963, p. 712). Fresh-water inflow appears
to increase tide levels in the northern part of the estuary because, with

respect to a constant datum, the principal

15



Figure 5.--Variations in water salinity, tide levels, precipitationm,
and air temperature (y-axes) along a longitudinal profile of the
northern San Francisco Bay estuary, extending from the Golden Gate
to the western Sacramento ~ San Joaquin Delta (x-axes). Salinity,
tidal, and climatic data from the margins of the estuary are pro-
jected onto the longitudinal profile (see index maps). Triangles
along the x—-axes show the projected locations of tidal marshes at
which we have studied the elevation ranges and distribution of
tidal-marsh plants. Numbers accompanying the triangles refer to
plates 3-8, which show detailed information about these marshes.
Data sources: surface-water salinities from Conomos and Peterson
(in press); tide levels from National Ocean Survey (1974, and
R. Smith, written commun., 1975—1976% given with respect to NGVD
(see table 4 for explanation of datums for heights and tide
levels); precipitation values at locations of plates 3-8 inter-
polated from an isoheytal map of the San Francisco Bay region
(Rantz, 1971); and air temperature data from U.S. National Climatic

Center (1969-1975).
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tidal datums rise 0.2-0.7 m (0.6-2.2 ft) between the Pacific Ocean the
Sacramento - San Joaquin Delta (fig. 5; see table 4 for a description

of datums for tide levels and heights).

Water salinity

The salinity of water throughout the San Francisco Bay estuary is
controlled mainly by the fresh-water discharge of the Sacramento and
San Joaquin Rivers (McCulloch, Peterson, Carlson, and Canomos, 1970,
p. 3).. This fresh-water inflow causes the salinity of the surface
water of the estuary to decrease ffom the Golden Gate to the Sacramento -
San Joaquiﬁ Delta (fig. 5). Salinity gradients are more complex in the
southern arm of the estuary because there is no large fresh-water dis-

charge at its head near San Jose (McCulloch, Peterson, Carlson, and Conomos, -

‘ -
-1

1970, p. 12). E
Pronounced seasonal variations in the fresh-water discharge from
the Sacramento and San Joaquin Rivers cause migration of the salinity
gradient for surface water in the northern part of the estuary (fig. 5;
Conomos and Peterson, in press). Peak dischargeé typically occur be-
tween December and June because of rainfall runofflduring the winter
and melting of the snow pack in the Sierra Nevada during the spring
(McCullth, Peterson, Carlson, and Conémos, 1970, p. 5). Fresh-water

inflows are much lower during summer and autumn months.
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Natural landforms of the tidal marshes

High-marsh surfaces.--The most extensive landforms of the tidal

marshes of the San Francisco Bay estuary are flat surfaces situated
near high tide levels. Excepting the channels that trench them, these
high-marsh surface; have so little relief (plates 4, 7) that they were
used as elevation datums for topographic surveys by the U.S. Coast and
Geodetic Survey in the late nineteenth century.

Mature, natural high—maréh surfaces are generally situated 0.0-0.15 m
(0.0-0.5 ft) above mean higher ﬁigh water (MHHW) (fig. 6; plates 4, 6,
7). Higher surfaces (plate 5) are probably due to man-induced sedimen-
tation. Some marsh surfaces formed during this century are éharacter-
ized by elevations lower than mean higher high water (plate 3), but
others have reached mature heights within the past 125 years (plate 4).

Thé narrow elevation range of the mature,. natural high-marsh
surfaces with respect to MHHW (fig. 6) suggests that tide levels control
the ultimate heights of high-marsh surfaces. The rate of sediment
accumulation on marsh surfaces probabiy d;clines és the surface'builds
" up to high-water leveis because the added height causes a decrease in
the frequenéy of inundation by sediment-laden water. Ultimately the
high-marsh surface may reach a stable. elevation with respect to tide

levels if the reduced sedimentation rate equals the combined rates of

erosion (Pestrong, 1972, p. 40) and sea-level rise.

18



Figure 6.--Elevations of high-marsh surfaces with respect to mean
higher high water. Mean higher high water (MHHW) is shown as a
band about 6 cm (2.4 in) wide to account'for uncertainties in its
elevation. The marsh surfaces that are known to have existed ca.
1850 (plates 4-7) are situated at or slightly above MHHW. Some
younger surfaces have also reached these levels (plate 4), but
others are considerably lower (plate 3). The age of the marsh
shown on plate 8 is not known. Parts of the marsh surface
portrayed on plate 5 may be anomalously high due to accumulation
of sediments dredged from ship channels and duck ponds. See
plates 3-8 for the topographic profiles and tide-level data on

which this figure is based.
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Low-marsh surfaces.--The parts of tidal marshes that slope from

high-marsh surfaces into tidal mud flats are much less extensive than
the high-marsh surfaces (plates 4, 6). The slopes of these low-marsh
surfaces in the northern part of the estuary are generally gradual.
ﬁowever, many low-marsh areas in the subsiding parts of the southern
arm of the estuary have been reduced to wave-cut cliffs up to 1 m
high (fig. 3).

Narrow low-marsh surfaces are also present along the banks of
sloughs. Most of these surfaces have been formed by slumping of
adjacent high-marsh areas into the sloughs (Pestrong, 1972, p. 33).

Sloughs.--Sloughs provide access for the tidal waters as they
flood and drain the marshes. In addition, some sloughs carry the
discharges from rivers and creeks. See Pestrong (1965) for discusi}on
of the sloughs in the southern arm of Lhe estuary.

Levees.--Natural levees once lined the major channels of the
Sacramento - San Joaquin Delta (Gilbert, 1917, plates 28, 29A). The
effect of these levees on tidal inundation of adjacent marshes is
unknown, but probably was inhibitory. Some of the trees and shrubs

sketched by Ringgold (1852) may have grown on these raised surfaces.
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DISTRIBUTION OF SEED PLANTS
Ecological factors
Elevation and water salinity are the principal ecological factors
that control the distribution of seed plants.in the natural tidal
marshes of the northern San Francisco Bay estuary; The elevation of
marsh surfaces with respect to tide levels governs the local distribution
of marsh plants. 1In general, robust monocotyledons populate the lowest
marsh surfaces, which are submerged by most high tides, whereas dicoty-
ledons and a few species of small monocotyledons inhabit surfaces situated
at or above the reach of high tides. The salinity of the water that
inundates the marshes determines the regional distribution of plant
species and communities. Marshes flooded by nearly undiluted sea water
are typically gzcupied by a small number of salt-tolerant species,
whereas marshes served by fresh or brackish water are inhabited by a

more diverse community that is dominated by species that typically

tolerate moderate to small amounts of salt (table 5; fig 7).
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Table 5.--Seed plants found at natural tidal marshes. This list is compiled
from field notes as well as from plates 3-8, so it is more complete than
the latter. Underlined X's indicate that voucher specimens have been
submitted to the herbarium of San Jos€ State University, San Jos€, Calif.

Plant name Richard- Pt. San Peta- Benicia ' Fair- Bethel
" son Bay Pedro luma Rec. Area field Is.

(Plate 3) (Pl. 4) (Pl. 5) (Pl. 6) (P1. 7) (Pl. 8)

Monocotyledons
TYPHACEAE
Typha latifolia X X X
GRAMINEAE
Distichlis spicata X X X X X
Phragmites communis X X X
Spartina foliosa X X X
CYPERACEAE
Scirpus acutus X
Scirpus californicus X X
Scirpus californicus? X
Scirpus Olneyi X X X X
Scirpus robustus X X X
JUNCACEAE
Juncus balticus X X X X X

Dicotyledons (see next page)

21
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Plant name Richard- Pt. San Peta- Benicia Fairfield Bethel
son Bay Pedro luma Rec. Area Is.
(Plate 3) (P1. 4) (P1. 5) (Pl. 6) (P1. 7) (P1. 8)

CHENOPODIACEAE

Atriplex patula X X X X X

Atriplex sp. X

Salicornia rubra X

Salicornia virginica X X X X X
CARYOPHYLLACEAE

Spergularia sp. X
POLYGONACEAE

Rumex crispus X X X - X X
FRANKENIACEAE

Frankenia grandifolia X X X X X
PLUMBAGINACEAE

Limonium commune

var. californicum X X X

CONVOLVULACEAE .

Cuscata salina X X X X X
COMPOSITAE .'

Cirsium sp. X

Cotula coronopifolia X

Grindelia cuneifolia X X X X.

Jaumea carnosa X X X
Unidentified species 1 1/1 3/3 5/4 18/18 5/4
Total species 11 14/10  15/13 21/14 32/30  10/9



Figure 7.--Comparison of the diversity of tidal-marsh seed plants
with water salinity along a longitudinal profile of the northe?n
San Francisco Bay estuary. The plant diversity is inversely related~
to water salinity: as salinity decreaseé with distance from the
Golden Gate, the number of species present at tidal marshes
(plates 3-7) increases. High-marsh plants account for most of this
increase in diversity. Diversity is low in our Delta marsh (plate 8)

because no high-marsh surface is present.
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Other potentially important variables derive from elevation and
water salinity: the soil moisture content and the frequency, duration,
and depth of submergence depend on the elevation of the marsh surface
with respect to tide levels; the amount of soil salt depends on the
salinity of the water inundating the marsh (Rollins, 1973); and soil-
water salinity depends in turn on soil moisture and salt. Additional
variables seem to have a negligible effect. For example, the trends of
precipitation and air temperature (fig. 5) indicate that the low-
diversity, salt-tolerant marsh communities near the Golden Gate are
subjected to a wetter and cooler climate than the mere heterogeneous,
nearly salt-intolerant communities of the Delta region.

Replacement of. salt-tolerant plants by those that tolerate little
salt is controlled largely by competition for spaée. Competition is
inevitable becaﬁse most salt-tolerant plants appear to tolerate or
prefer fresh watér (Penfound and Hathaway, 1938; Taylor, 1939; Barbour,

1970; Phleger, 1971).
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Grouping of species by elevation range

Mogt of the major seed plants in the natural tidal marshes of the
northern San Francisco Bay estuary can be grouped into one of the
following communities: (1) a low-marsh commﬁnity, composed of plants
that grow at the lowest elevations in the marsh (MTL or lower); (2)
a middle-marsh community, composed of plants that are generally
restricted to intermediate elevations (MIL to MHHW); and (3) a high-
marsh community, composed of plants that grow mainly at high elevations
(at or above MHHW). These communities typically overlap within a given
marsh, and they vary greatly in kinds, numbers, and vertical ranges of
constituent species along a longitudinal profile of the estuary.
Nevertheless, the persistence of vertical zonation throughout the
estuary indica;;s that elevation with respect to tide levels cqntrols
vertical plant distribution not only in salt-water tidal marshes, as
has been demonstrated by Johnson and York (1915, p. 136-143), Purer
(1942), Hinde (1954), Vogl (1966), and many others, but also in brackish-
and fresh-water tidal marshes. ‘

The following discussion of plant distribution is divided into
sections on low-, middle-, and high-marsh communities. Each section
contains a summary of the species composition and ecology of each com-

munity, followed by notes on principal species.
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Low-marsh plants
Description of the community
Only two or three species of seed plants grow on the lowest marsh

surfaces: Spartina foliosa,‘Scirpus californicus, and possibly Scirpus

acutus. Other plants probably cannot tolerate the prolonged submergence
endured by these species under certain salinity conditions. Water

salinity and competition restrict Spartina foliosa to the lower reaches

of the estuary and Scirpus californicus and Scirpus acutus to the upper

reaches (fig. 9). Consequently, Spartina foliosa shares only a few

tidal marshes in the middle of the estuary with these species of

Scirpus (compare figs. 14 and 15).

Spartina foliosa Trin. 1840

Spartina foliosa ranges in elevation from 0.0-0.3 m (0.0-1.0 ft)

below MTL to 0.2-0.5 m (0.7-1.6 ft) below MHHW (fig. 9). The upper
limit falls from west to east at San Pablo Bay because of progressive

replacement of Spartina foliosa by competitive species of Scirpus

(figs. 9, 10).

Individual plants of Spartina foliosa growing near MHHW are

typically half as tall as plants growing near MITL. Similar height
differences are displayed in North Carolina marshes by a closely

related species, Spartina alterniflora, and have been attributed to

greater salinities in high-marsh soils (Mooring, Cooper, and Seneca,

1971, p. 54).
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Figure 8.--Explanation of symbols used in figures 9-13 to show
occurrence and abundance of tidal-marsh seed plants. Solid lines
and black shading indicate widespread occurrence at a given
elevation; dashed lines and stippled shading show relatively
sparse occurrence. The width of each figure represents percentage
abundance and ranges continuously from 1-10 percé;t (one line-width)
to 100 percent (broadest part of figure). This representation of
occurrence and abundance is more refined than the symbols used in

plates 3-8. Data comes from field notes on percentage abundances

of plant species at known elevations.
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Figure 9.--Regional and vertical distribution of the principal low-marsh
plants in the natural tidal marshes of the northern San Francisco
Bay estuary. Symbols showing the occurrence and abundance of plants
are explained in fig. 8. Projection of data from the margins of the
estuary to the longitudinal profile is the same as in fig. 5. Also
see fig. 5 for sources of data on water salinity and tide levels.
The triangles along the bottom line show the projectéd locations of
the tidal marshes at which we have studied the elevation ranges of
seed plants. Numbers accompanying the triangles refer to plates
3-8, which present species distributions along leveled transects

across these marshes.
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Despite its preference for fresh water, as shown by greenhouse

experiments (Phleger, 1971), Spartina foliosa is restricted to areas

with mean winter surface-water salinities greater than 15 o/oo and
mean summer salinities greater than 20 o/oo (fig. 9). Spartina
foliosa is absent in fresher-water areas, where conditions for growth

should be more favorable, because it is replaced by Scirpus spp., Typha

latifolia and Phragmites communis (figs. 9, 10). Apparently, these

species compete successfully against Spartina foliosa in the upper

reaches of the estuary. Spartina foliosa's areas of competitive

advantage are confined to the lower reaches of the estuary (fig. 14),
perhaps because potential competitors are physiologically excluded by
high water salinities. -

Scirpus acutus Muhl. ex Bigel 1814 and Scirpus californicus (C. A. Mey)

Steud. 1841.

Similarities between Scirpus acutus and Scirpus californicus lead

to uncertainties in our identifications of these species. Some of the
specimens that we collected are readily identified by the nature of the
bristles subtending flowers and achenes and by the cross-sectional
shapes of the upper parts of the culms (Mason, 1957, p. 319, 321-323).
Other specimens, however, were not chosen and preserved with sﬁfficient
care to include diagnostic bristles, and they are called Scirpus

californicus? only because the upper parts of the culms are subterete.

In addition, our collections are insufficient to rule out the presence

of Scirpus acutus in marshes where only Scirpus californicus is listed

on table 5.
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While it may be locally joined by Scirpus. acutus, Scirpus

californicus is probably the principal low-marsh replacement of

Spartina foliosa in the fresh- and brackish-water pafts of the

estuary (figs. 9, 15). The upper limit of Scirpus californicus varies

little with respect to MHHW. The lower limit, however, drops from
0.3 m (1.0 ft) below MTL at Carquinez Strait to 0.3 m (1.0 ft) below

MLLW in the Delta (fig. 9), suggesting that Scirpus californicus

tolerates more submergence by fresh water than by brackish water.

The only occurrence of Scirpus acutus that we can document is at

a marsh near Petaluma (plate 5; fig. 9). The plants appear to be
anomalous in elevation (near MHHW) and size (1.5-2.0 m tall; elsewhere

Scirpus Scutus can gfbw as tall as 5 m (Mason, 1957, p. 323)), perhaps

because they are situated .near the seaward limit of the distribution of

tall bulrushes and tules.
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Middle-marsh plants
Description of the community
The tidal marshes near Point San Pedro, Petaluma, Benicia,
Fairfield, and Bethel Island (plates 4-8) contain plants that generally
grow between high-marsh surfaces and the lowest marsh surfaces. This

middle-marsh community includes Scirpus robustus, Scirpus Olneyi,

Phragmites communis, Typha latifolia, Cotula coronopofolia, Salicornia

rubra, and several unidentified species (table 5, figs. 10, 11). No
distinct middle-marsh plants are recognized at Richardson Bay (plate 3)

because Spartina foliosa, a low-marsh species, and Salicornia virginica,

a high-marsh species, occupy the intermediate elevations.

Scirpus robustus Pursh 1814

Scirpus robustus flourishes between MTL and MHHW at San Pablo Bay

and Carquinez Strait but is generally absent elsewhere in the estuary

(figs. 10, 16). The elevation range and abundance of Scirpus robustus

appear to be greatest where salinities are low enough to allow it to
grow and reproduce but high enough to preclude competition by Scirpus

Olneyi, Scirpus californicus, and Typha latifolia.

Surface-water salinities at San Pablo Bay are similar to soil

salinities at dominant stands of Scirpus robustus in the diked marshes

of Suisun Bay. The most favorable mean annual soil salinities for

Scirpus robustus in-the diked marshes of Suisun Bay are 7-32 o/oo, with

an optimal salinity of 22 o/oo (Mall, 1969, p. 35). In comparison, the
mean summer (summer and autumn) salinity of surface water at San Pablo
Bay between 1969 and 1975 was 18-29 o/oo, and the mean winter (winter

and spring) salinity was 13-18 o/oo (figs. 5, 10). These water
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Figure 10.--Regional and vertical distribution of the principal middle-
marsh plants in the natural tidal marshes of the northern
San Francisco Bay estuary. Symbols showing the occurrence and
abundance of plants are explained in fig. 8. Projection of data
from the margins of the estuary to the longitudinal profile is
the same as in fig. 5. Also see fig. 5 for sources of data on
water salinity and tide levels. The triangles along the bottom
line show the projected locations of the tidal marshes at which
we have studied the elevation ranges of seed plants. Numbers
accompanying the triangles refer to plates 3-8, which present

spéciles distributions along leveled transects across these marshes.
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salinities probably create similar salinities in the marsh soils
(e.g., Rollins, 1973), and therefore may provide a competitive

advantage for Scirpus robustus in the natural tidal marshes around San

Pablo Bay.

The scarcity or absence of Scirpus robustus in natural marshes

of Suisun Bay (plate 7) is noteworthy because this plant covers about
six percent of the diked marsh areas of Suisun Bay (Geoxge,

Anderson, and McKinnie, 1965, p. 10). In addition, its seeds provide
the major food for nearly 90 percent of the ducks that winter at
Suisun Bay (Mall, 1969, p. 15). Soil salinities are high in the
diked marshes because gun clubs flood these marshes at the start of
the hunting season when water salinities are high (George, Anderson,
and McKinnie, 1965, p. 1l1l). Year-xound . water circulation in the
natural marshes of Suisun Bay, on the other hand, permits leaching
of soil salts when the applied water is nearly fresh. Resulting soil
salinities in these natural marshes are probably low enough to give

Scirpus Olneyi and Typha latifolia a competitive advantage over

Scirpus robustus (fig. 10; Mall, 1969, p. 35).

Scirpus Olneyi Gray 1845

Scirpus Olneyi is most abundant in the natural marshes of Suisun

Bay and the Delta, where mean annual water salinities do not exceed
10 o/oo. However, it is also present as far west as western San Pablo
Bay (fig. 17), where water salinities are typically near 20 o/oo.

According to Mall (1969, p. 35), Scirpus Olneyi competes best at

soil salinities between 8 and 21 o/oo.
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Typha latifolia Linneé 1753

We have not attempted to distinguish Typha latifolia from possible

hybrids between it and Typha augustiolia (see Mason, 1957, p. 37).

Typha latifolia or a hybrid species of Typha tolerates greater

submergence than other middle-marsh plants (fig. 10). Distribution
is restricted to the marshes of Carquinez Strait, Suisun Bay, and

the Sacramento-San Joaquin Delta (fig. 18).

Phragmites communis Trin. 1820

Phragmites communis is generally restricted to the Delta region.

However, it does grow locally with Scirpus californicus as far west

as Carquinez Strait (fig. 19, plate 6).
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High-marsh plants
Description of the community
The most diverse group of tidal marsh p}ants inhabits high-marsh
surfaces. These nearly flat surfaces are typically situated 0.0-0.15 m
(0.0-0.5 ft) above MHHW (fig. 6). Plants that grow on them include

Salicornia virginica, Distichlis spicata, Frankenia grandifolia,

Atriplex patula, Jaumea carnosa, Grindelia cuneifolia, Limonium commune,

and some unidentified species that are confined to brackish- and

fresh-water marshes. Juncus balticus, a plant with a large and varied

elevation range, also grows high in some marshes and is discussed along

with these plants.

salicornia wirginica Linn€ 1753

The elevation range of Salicornia virginica progressively shrinks

toward the fresh-water end of the estuary because of competition from

middle-marsh planﬁs (figs. 10, 11). In addition, the percentaée

abundance of Salicornia virginica is reduced as water salinity falls

because of successful competition by other high-marsh species,

particularly Distichlis spicata, which is a better competitor than

Salicornia virginica where soil salinity is less than 35 o/oo (Mall,

1969, p. 42-43). Despite these changes in vertical distribution due to
water salinity, Salicornia is present on every high-marsh surface we
have studied (fig. 20; open circles on fig. 20 only refer to tidal

marshes that lack high-marsh surfaces).

Distichlis spicata (Linné) Greene 1887

Distichlis spicata typically grows above MHHW. Its uppermost

occurrences create a band at the landward.edge of many marshes, the
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Figure 11l.--Regional and vertical distribution of the principal high-
marsh -plants in the natural tidal marshes of the northern San Francisco
Bay estuary. Symbois showing the occurrence and abundance of plants
are explained in fig. 8. Projection of data from the margins of the
estuary to the longitudinal profile is the same as in fig. 5. Also see
fig. 5 for sources of data on water salinity and tide levels. The
triangles along the bottom line show the projected locations of the
tidal marshes at which we have studied the elevation ranges of seed
plants. Numbers accompanying the triangles refer to plates 3-8,

-which present species distributions along levelled transects across

these marshes.
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plants growing on relatively dry soils and situated above the other
major high-marsh plants (plates 3-6). Some of these occurrences
are characterized by stunted, sparsely distributed individuals. The

lower occurrences of Distichlis spicata at San Pablo Bay are restricted

to sparse patches among stands of Salicornia virginica or along the

edges of channels. However, Distichlis spicata is much more widespread

and abundant around Suisun Bay because it replaces Salicornia virginica

as the principal high-marsh plant (fig. 11). Like Salicornia virginica,

Distichlis spicata is present on all high-marsh surfaces that we have

visited (fig. 21).

Frankenia grandifolia (Cham. & Schl., Linne . 1826), Atriplex patula

(Linné 1753) and gJaumea carnosa (Less.) Gray in Torr. 1874

These plants are subordinate constituents of the high-marsh
community. They grow sparsely above MHHW (fig. 12) throughout the

estuary (figs. 22-24).

Grindelia cuneifoiia Nutt 1841

Grindelia cuneifolia typically grows on high-marsh surfaces-‘

bordering channels and also inhabits high-marsh soils that have been

disturbed by man. Grindelia cuneifolia appears to be restriced to

marshes fringing Carquinez Strait, San Pablo Bay, and San Francisco

Bay (fig. 25).

Juncus balticus Willd 1809

Juncus balticus responds to water salinity by growing at pro-

gressively lower elevations from the salt-water to fresh-water reaches
of the estuary (fig. 13). Like Scirpus californicus (fig. 9), it
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Figure 12.;-Regional and vertical distribution of the subordinate
high-marsh plants in the natural tidal marshes of the northern
San Francisco Bay estuary. Symbols showing the occurrence and
abundance of plants are explained in fig. 8. Projection of data
from the margins of the estuary to the longitudinal profile is
the same as in fig. 5. ‘Also see fig. 5 for sources of data on
water salinity and tide levels. The triangles along the bottom
line show the projected locations of the tidal marshes at which
we have studied the elevation ranges of seed plénts. Numbers
accompanying the triangles refer to plateg 3-8, which present
species distributions along levelled transects across these

marshes.
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Figure 13.--Regional and vertical distribution of Juncus balticus in
the natural tidal marshes of the northern San Francisco Bay
estuary. Symbols showing the occurrence and abundance of plants are
explained in fig. 8. Projection of data from the margins of the
estuary to the longitudinal profile is the same as in fig. 5. Also
see fig. 5 for sources of data on water salinity and tide levels.
The triangles along the bottom line show the projected locations of
the tidal marshes at which we have studied the elevation ranges of
seed plants. Numbers accompanying the triangles refer to plates 3-8
.which present species distributions along leveled transects across

these marshes.
-

32c¢



IN METRES

ELEVATION

|0 MINIMUM
N M
0

J
EAN WINTER

Salinity of surface water,1969-1975
Yeo

MAXIMUM

MEAN SUMMER

—

(o)
I

Juncus balticus

.
" re

MHHW

MTL

LS04

-------

TN %o el

P, pun
rHEEE

|

-2

0 20

DISTANCE FROM

1

40 60 80 100

GOLDEN GATE IN KILOMETRES

324

FEET

IN

ELEVATION



appears to tolerate greater submergences as water salinity decreases.
A preference for fresh water is also suggested by the absence of

Juncus balticus in the marshes of San Francisco Bay (fig. 26). Else-

where in California this species grows as high as 3,000 m (10,000

ft) above sea level (Mason, 1957, p. 351).
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Figure 14.--Distribution of Spartina foliosa Trin. in natural tidal

marshes of the San Francisco Bay estuary. The plant sketch was
drawn by Hylton Mayne from a specimen collected near Palo Alto,

Calif.
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Figure 15.--Distribution of Scirpus acutus Muhl. ex Bigel., and Scirpus

californicus (C. A. Mey) Steud. in natural tidal marshes of the

San Francisco Bay estuary. The plant sketch was drawn by M. B.

Pomeroy (Mason, 1957, p. 322) and illustrates the upper one-third

of the culm of a specimen of S. acutus.
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Figure 16.--Distribution of Scirpus robustus Pursh in natural tidal

marshes of the San Francisco Bay estuary. The plant sketch was

drawn by M. B. Pomeroy (Mason, 1957, p. 311).
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Figure 17.--Distribution of Scirpus Olneyi Gray in natural tidal marshes

of the San Francisco Bay estuary. The plant sketch was drawn by

M. B. Pomeroy (Mason, 1957, p. 316).
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Figure 18.--Distribution of Typha latifolia L. in natural tidal marshes

of the San Francisco Bay estuary. The plant sketch was drawn by
Hylton Mayne from an illustration by M. B. Pomeroy (Mason, 1957,

p. 40).
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Figure 19.--Distribution of Phragmites communis Trin. in natural tidal

marshes of the San Francisco Bay estuary. The plant sketch was
drawn by Hylton Mayne from an illustration by M. B. Pomeroy (Mason,

1957, p. 191).
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Figure 20.--Distribution of Salicornia virginica L. in natural tidal

marshes of the San Francisco Bay estuary. The plant sketch was
drawn by M. B. Pomeroy (Mason, 1957, p. 468) and illustrates
S. pacifica Standley, which is included in S. virginica L. by

Munz (1959).
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Figure 21.--Distribution of Distichlis spicata (L) Green in natural

tidal marshes of the San Francisco Bay estuary. The plant sketch was

drawn by M. B. Pomeroy (Mason, 1957, p. 146).
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Figure 22.--Distribution of Frankenia grandifolia Cham. & Schl. in natural

tidal marshes of the San Francisco Bay estuary. The plant sketch

was drawn by M. B. Pomeroy (Mason, 1957, p. 590).
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Figure 23.--Distribution of Atriplex patula L. in natural. tidal marshes

of the San Francisco Bay estuary. The plant sketch was drawn by
Hylton Mayne from an illustration by M. B. Pomeroy (Mason, 1957,

p. 454).
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Figure 24.--Distribution of Jaumea carnosa (Less.) Gray in natural

tidal marshes of the San Francisco Bay estuary. The plant sketch
was drawn by Hylton Mayne from an illustration by an unknown

artist in Mason (1957, p. 824).
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Figure 25.--Distribution of Grindelia cuneifolia Nutt. in natural

tidal marshes of the San Francisco Bay estuary. The plant sketch
was drawn by J. B. Sanders (Jepson, 1951, p. 1021) and illustrates

G. camporum Green.
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Figure 26.--Distribution of Juncus balticus Willd. in natural tidal
marshes of the San Francisco Bay estuary. The plant sketch was
drawn by Hylton Mayne from an illustration by M. B. Pomeroy

(Mason, 1957, p. 352). -
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SUMMARY

(1) Estuaries and stream valleys have alternately occupied the
vicinity of the present San Francisco Bay estuary during the past one
million years. The changing environments récord sea-level fluctuations
that were probably related to waxing and waning of large ice sheets in
northern latitudes. The most recent ,estuary began to form about 10,000
years ago (plate 1) in response to a rapid sea-level rise that
accompanied the melting of some of these ice sheets.

(2) The rate of sea-level rise (fig. 2) has influenced the areal
extent of tidal marshes since inceptiog of the estuary 10,000 years
ago. The rapid initial rise in sea level created conditions that were
unfavorable to growth of tidal marshes. During the past 6,000 years,
however, the rat:>of sea-level has beén slow enough for accumulating
sediments to shoal some of the margins of the estuary. These sediments
constructed tidal mud flats, many of which have been colonized by seed
plants during the past several thousand years kfig. 3) to produce
extensive marshes around San Francisco, San Pabio, and Suisun Bays.

(3) By 1856 A.D. the tidal marshes of the béys and the gacramento
San Joaquin Delta covered an area nearly twice as large as the afea of
open water of the bays and about two-thirds as large as the state of
Rhode Island. Nearly 95 percent of these marshes have been diked or
filled during the past 125 years (plate 2, fig. 4). Many of the
remaining natural tidal marshes have probably been altered by man-

 induced changes in sea level, sedimentation, and water salinity.
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(4) Natural high-marsh surfaces that existed ca. 1850 A.D. form
a flat plain that is ﬁresently situated 0.0-0.15 m (0.0-0.5 ft) above
mean higher high water fig. 6; plates 4-7). The narrow elevation range
of these surfaces with respect to mean higher .high water suggests that
tide levels control the ultimate heights of high-marsh surfaces.

(5) Species distributions along leveled transects at six tidal
marshes (plates 3-8) indicate that elevation and water salinity are the
principal ecological factors that control the distribution of seed
plants in the natural tidal marshes of the northern San Francisco Bay
estuary (figs. 7-13). Marsh surfaces situated near mean tide level are

populated by robust monocotyledons (e.g. Spartina foliosa, Scirpus

californicus), whereas surfaces situated near high-tide levels support

‘dicotyledons and a few species of small monocotyledons (e:g., Salicornia

A

virginica, Distichlis spicata). Marshes near the seaward end of the

estuary are typically occupied by 10-15 salt-tolerant species (e.g.,

Spartina foliosa, Salicornia virginica), whereas marshes at the riverward

end of the estuary are inhabited by as many as 30 species, most of which

are known to tolerate moderate or small amounts of salt (e.g., Scirpus

.spp., Phragmites communis, Typha latifolia).
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Plate 1.--Shorelines of the San Francisco Bay estuary during the past
10,000 years.. The 125-year-old shoreline is based on maps of the
historic margins of the estuary by Gilbert (1917, p. 76) and Nichols
and Wright (1971). The locations of older shorelines are estimated
by projecting sea-level changes during the past 10,000 ycars (i.e.,
water levels in a bathtub) onto maps of the land surface that was
inundated by the growing’cstuary during this time (i.e.,.the sides
of the bathtub). We assume the following sea levels, expressed.
relative to present mean sea level and based on data from the southern
arm of the <stuary (fig. 2; Atwater, Hedel, and Helley, unpub. data):
4,000 years ago, ~6.4 m (-21 ft); 3,000 years ago, -16.0 m (=53 ft);
and 10,000 years ago, -56.0 m (~183 ft). The topography of the land
surface inundated by the San Francisco Bay estuary is modified from
reconstructions by Goldman (1969, plafé 3) and the U.S. Army- Corps
of Engincers (1963, plates 6-7). These topographic reconstructions
are most accurate for the southern arm of the estuary .and least
accurate for the open-water areas of the northern part of the
‘estuary because of variations in the abundance and quality of bore-

hole data.



Plate 2.--Historic changes in the distribution of natural tidal
marshes of'the San franciséo Bay estuary. Marshes of the San
Joaquin—- Sacramento Delta ca. 1850 are traced from a photographic
enlargement of a map by Gilbert kl9l7, p. 76; scale 1:887,000);
Marshes fringing the remainder of the estuary are traéed from a
photographic reduction of a map by Nichols and Wright (1971;
scale 1:125,000). The map by Nichols and Wright is a compilation
of plane-table sheets, most of which were drawn by topographers
of the U. S. Coast Survey between 1850 and 1860 (original scale
generally 1:10,000). Modern mar;hes subject to natural tidal
inundation are sketched from a-land-use planning map by the San
Francisco Bay Conservation and Develoément Commission (1969;
scale approximately 1:250,000) and from topographic maps published
by the U. S. Geological Survey (1968 and 1973 editions; scale

1:24,000). Some marshes smaller than 0.1 km2 may be omitted from

our compilation.
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Plate l.--Shorelines of the San Francisco Bay estuary during the past
10,000 years. The 125-year-old shoreline is based on maps of the
historic margins of the estuary by Gilbert (1917, p. 76) and Nichols
and Wright (1971). The locations of older shorelines are estimated
by projecting sea-level changes during the past 10,000 years (i.e.,
water levels in a bathtub) onto maps of the land surface that was
inundated by the growing’estuary during this time (i.e., the sides
of the bathtub). We assume the following sea levels, expressed
relative to present mean sea level and based on data from the southern
arm of the estuary (fig. 2; Atwater, Hedel, and Helley, unpub. data):
4,000 years ago, -6.4 m (-21 ft); 8,000 years ago, -16.0 m (-53 ft);
and 10,000 years ago, —-56.0 m (-183 ft). The topography of the land
surface inundated by the San Francisco Bay estuary is modified from
reconstructions by Goldman (1969, plate 3) and the U.S. Army Corps
of Engineers (1963, plates 6-7). These topographié reconstructions
are most accurate for the southern arm of the estuary and least
accurate for the open-water areas of the northern part of the
estuary because of variations in the abundance and quality of bore-

hole data.
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Plate 2.--Historic changes in the distribution of natural tidal
marshes ofrthe San Francisco Bay estuary. Marshes of the San
Joaquin—- Sacramento Delta ca. 1850 are traced from a photographic
enlargement of a map by Gilbert kl9l7, p. 76; scale 1:887,000).
Marshes fringing the remainder of the estuary are traced frém a
photographic reduction of a map by Nichols and Wright (1971;
scale 1:125,000). The map by Nichols and Wright is a compilation
of plane-table sheets, most of which were &rawn by topographers
of the U. S. Coast Survey between 1850 and 1860 (original scale
generally 1:10,000). Modern marshes subject to natural tidal
inundation are sketched from a land-use planning map by the San
Francisco Bay Conservation and Development Commission (1969;
scale approximately 1:250,000) and from topographic maps published
by the U. S. Geological Survey (1968 and 1973 editions; scale
1:24,000). Some marshes smaller than 0.1 km2 may be omitted from

our compilation.



