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FOREWORD -

This report was prepared for use as a text in a short course
that was presented in Buenos Aires, Argentina, June-July, 1976. The
short course was sponsored by the Naval Hydrographic Service of the
Argentine Navy, under the auspices of the Organization of American
States. This program was a part of their Multinational Marine Science
Project.

The material contained in this report was drawn from many sources.
Although an effort was made to give proper credit to the multitude of
information sources used to prepare the report, some omissions may have

occurred. The author assumes full responsibility for all omissions.
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INTRODUCTION

The gravity method has a very important place in a well-planned
comprehensive geophysical program. The principles of gravitational attrac-
tion upon which the method is based are well-established. It follows,
therefore, that an interpretation of gravity data which has geological sig-
nificance must be based on an intelligent use of these underlying physical
principles, either directly or indirectly. It follows also that any attempt
to interpret gravity data into its geological import without respect to
these physical principles cannot be considered scientifically acceptable.

Much time and effort have been spent seeking directwcorrelations
between known geological structures aﬁd corresponding gravity measurements.
In many cases, such as those of some of the shallow salt domes of the Texas-
Louisiana Gulf Coast, very good direct correlétions exist. However, there
are some shallow salt domes in the same geological province for which the
gravity data show practically no anomaly. Hence, interpretation of gravity
data is complex.

Various techniques have been developed to aid in interpreting
gravity measurements in terms of the subsurface structure. The so-called
"curvature' data of torsion balance measurements, are an example. Other
techniques, which largely are of a subjective nature,'consist in reducing
gravity data to a "'residual" by various methods of "removing the regional."
The so-called '"'second derivative' method, although often said to be

"more mathematical," is also a subjective technique similar to the residual.



Graticules, nomograms, tables and charts are examples of other
interpretational techniques which relate gravity measurements to a geologic
model. To use these tools, the problem is first reduced in complexity by
a reduction in the number of parameters. For example, by assuming that one
horizontal dimension of the subsurface structure is infinite in extent,

a two-dimensional cross-section is developed. Then by reducing the
number of density differentials to only one, the solutions become manage-
able, although not unique.

This last type of interpretation if used intelligently is
scientifically honest in the sense that all these simplifying conditions
are clearly understood and that the principles of gravitational attraction
are not discarded. However, as is well known, even these methods of |
subsurface interpretation require careful application. FEvery person
interested in the interpretation of gravity data would do well to go
through both types of interpretational techniques to get the '"feel" of
the complexity of the problem even when it is reduced to relatively simple
proportions.

For completeness, the elementary physical concepts, definitions,
and mathematical formulations will be reviewed.

Force and Acceleration--The first of the three laws of motion, as

stated by Newton, says that a body will persist in its state of rest or
of uniform motion in a straight line unless impelled to change that state
by external forces. This law gives rise to the concept of force. To

understand the consequences of the physical principles embodied in this



law of motion, consider first a body in empty space indefinitely removed

in distance from any other body. It would be impossible to make any dis-
tinction between that body at rest or that body moving with constant velocity
in a straight line, unless we had some point of reference, to which point

we would have to ascribe arbitrarily the property of either being at rest

or of moving with constant velocity in a straight line. In other words, a
body at rest and a body moving uniformly in a straight line are in a very
important sense simply relative states of one another.

When a force is applied to such a body, however, things begin to
happen. What is a force? A force is a push or a pull. This simple defini-
tion will suffice for now, although force is a funaamental concept of
mechanics which is studied and understood by its properties. Force is an
undefined concept to which properties are ascribed to fit the nature of
the physical world as we experience it.

The important attributes--properties--of a force are: (1) Magnitude
(How big is it?), and (2) Direction. Intuitively, one may have a feeling
for these properties, but force can be defined in a quantitative manner
by examining the effects of applying a force to a body.

To do this we start with the elementary units of mechanics: (1) dis-
tance (measured in metres or feet or such), (2) mass (measured in grams or
pounds or such), and, (3) time (measured in seconds or such). The concepts

of distance and time are intuitively understood. But the concept of mass

must be dissociated from weight. By the mass of an object, one means the
amount of matter in it, regardless of its weight. A gram of matter is

the same here or anywhere else in the universe. The weight of this gram of



matter, on the other hand, will depend on its position and the attendant
forces. For example, a gram of water is defined as the mass of water, under

standard conditions, in a cubic centimetre. The weight of this water on the

earth, or anywhere else, for that matter, will vary from point to point.

But its mass is one gram. In the same way, the mass of any body is the
amount of matter in it, not its weight at some point.

Because it is practical to do so, and for no other reason; a gram
of mass of material is defined as the amount of the material whose weight
at an arbitrary point is equal to the weight of a gram of water at that
same point. Note that the gram of material so defined is the mass in a
certain volume, which is the same everywhere. .

Next, using a point of reference, consider a body of mass M (grams)
moving in a straight line with a velocity v'(cm/sec). With no force acting
on this body, it will persist in moving at this constant velocity (which
may be zero, if it is at rest). The momentum of this body is defined to be
the product of its mass and velocity. That is the momentum M of a body of

mass m moving with a velocity v.

M= mv;
and it follows that the units of M are
gr. cm, /see,
As an example, a body of 15 grams moving with a velocity of 25 en./sec. has
a momentum of 375 gr.cm./sec. A body at rest has a momentum of zero.
Newton's Second Law of Motion states that rate of change of momentum
is proportional to the force acting and takes place in the direction of that

force.



The phrase ''rate of change' refers to the time rate of change:
the change that occurs in the momentum - its increase or decrease - during
certain intervals of time. Thus, assuming the rate of change is constant,
for purposes of illustration, the rate of change of momentum is the amount
by which the momentum is increased (or decreased) each unit of time (second).
The unit of this rate of change of momentum is thus seen to be

(gr.cm./sec.)/sec.

The Second Law of Motion says essentially that the effect of a
force acting on a body is to change the momentum of that body at a rate
proportional to the magnitude of that force.

Consider, again; the momentum M of a body of mass M moving in a
straight line with constant velocity v.

M= mv.
Suppose a force - call it F for the present - is now applied in the
direction of this moving body. Its momentum will change, according to
the Second Law of Motion. The Mass M of the body cannot change; therefore,
only the velocity can change with the change of momentum.

By definition, rate of change of velocity is called acceleration

Accordingly, rate of change of momentum is equivalent to the product of
the mass of the body and its acceleration.

The Second Law of Motion thus reduces itself to the statement that
the product of the mass m of a body and its acceleration a (in a given
direction) is proportional to the force F acting to produce that accelera-
tion. The effect of a force, in other words, is to produce an acceleration

on a body in direct proportion to its magnitude.



If the factor of proportionality is assumed to be unity, the rela-

tion says that

F =3
In this case the units of the force F are those of the rate of change of
momentum:
(géicm./sec.j}sec.,
usually, and more simply, written
gr.cm./sec.2
This unit of force is defined, anew, as a dyne; i.e.,
1 dyne - 1 gr.cm./sec.2
Stated more specifically, 1 dyne is the amount of force required
to give a mass of 1 gram an acceleration of 1 cm./sec.2 In geophysics,
the unit gal is often used for acceleration. Thus 1 gal = 1 cm./sec.z,
and 1 dyne - 1 gr. gal. Gravity anomalies are stated in terms of milligals.
If one holds a 1-gram mass in h¥s hand, the force exerted upward
in this process is just enough to counterbalance the force of the earth
pulling on this 1-gram hass. If allowed to fall, the mass will fall with
an acceleration of 980 cm.sec.2 The pull of the earth on this gram - the
force exerted to hold it up - is thus

F= (1 gr.) x 980 (cm./sec.z)

980 dynes.

Roughly, then, a dyne is apprximately 1/980 - or, in round numbers,
1/1000 of the force needed to hold up 1 gram of matter.

The second attribute of the concept of force, direction, is funda-
mental. In common with some other mechanical quantities, like velocity

and acceleration, it is necessary to specify both the magnitude and direction



of a force for a complete definition. In this regard, then, it is called
a vector as contrasted with a scalar quantity which is specified only by
its magnitude.

Thus, one must not be content in saying, "A force of 10 dynes'';
the direction in which that force is applied must also be specified.
Customarily, then, a force is indicated by an arrow, nointing in the direction
of the force, the length of whose stem is equal to its magnitude.

Being a vectorial quantity, a force shares in common with other
types of vector quantities the properties of combining with other forces
into a resultant force; and of decomposition into components. The resultant
of two forces and the component of a force are graphically illustrated in

the figures below.

Gravitational Attraction--A force, as described above, is a push or

a pull. 1In our daily life forces of many types are experienced. There
are frictional forces and electrical forces; forces exerted in walking , in
pushing, in pulling; forces which impel machinery and forces which slow

things down.



One type of force which is completely all-pervading, ordinarily
taken for granted and seldom considered extraordinary, is the universal
force of gravitation. The fact that the universe nursues its orderly
course, that individuals dovnot float about but are kept down to earth,
all in response to universal gravitation: this usually fails to excite
more than passing interest. In fact, only very young infants seem to be
facinated in noticing that an object, left free, will fall, Grown-ups
have learned to expect the object to fall.

Until the beginning of quantitative and experiemental science, a
considerable amount of theological and other philosophical disputations
persisted, naive in some respects and tragic in others, which dealt with
falling bodies, orbits of planets and satellites and other celestial phen-
omena, all of which are known today to be moving in accordance with the
single universal law of gravitational attraction. Empirical astronomical
results made from observations - by the Egyptians, by the Greeks, and
later by Kepler and others - were for a long time known, but only as
individual items of considerable interest, curiosity and importance. The
unification of these items under a single physical law and its consequences
was one of the early triumphs of physical science and mathematics.

Newton, as is well known, first stated clearly the Law of

Universal Gravitation and pursued its implications with what he called

The Method of Fluxions, a mathematical tool he fashioned for his needs,
and which, today, is called the calculus. A whole new vista of science

was now opened in that experimental and observational science could make



rapid progress with the help of mathematical analysis. In the physical
sciences at least, it became possible to predict with certainty.

For simplicty, the universe can be considered to be made up of
particles of masses which will not be defined except to say that the
geometric dimensions of the particles are small. Indeed, they may be
considered as tiny spheres. Between every pair of such particles, a
force of attraction exists whose direction is along the straight line
joining those particles. That is, each particle in the universe '"pulls"
on every other particle.

How big is this pull existing between a pair of particles?
Intuitively, it would appear that this force should increase as the masses
of the particles increase. In fact, one proverty of this universal force
of gravitational attraction between two particles is that, in magnitude,
it is proportional to the masses of the two particles. It should appear
intuitively also that the farther removed these particles are from one
another, the smaller this force should be. For various reasons the 'inverse"
square law' suggests itself and becomes justified in later developments
by observation and measurement, terrestial and celestial.

Combining all these arguments, we now state the basic law of uni-
versal gravitational attraction in this manner:

There exists a force of attraction between each two particles
in the universe whose magnitude is proportional directly to the
masses of those particles and inversely to the square of the

distance between those particles.
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Specifically, let two particles vhose masses
are m, and m; be separated by a distance r.

The force f of attraction between them is

£ =G EL?%!E..

The numerical value of the proportionality factor G is a matter of the
units of mass, distance and force employed and is the same throughout
the universe.

In general, my and m, are expressed in grams, r in centimetres,

and f in dynes. Since
2
1 dyne =1 gr.em./sec.”,

the relation above says, in dimensions, that

in‘-cm-/sec.2 =q Er. . 8T.

cm? |

It follows, then, that the "unit" of the universal gravitational

constant G is
cm.3
2
gr.sec.

At first, there appears to be a severe difficulty in the statement

of the law of gravitation. It would seem that, as the distance between

the two particles decreses to zero, the attracting force increases in-

definitely because of the inverse-square relationship. The resolution of

A\l
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this apparent paradox is, however, suggested
- by this argument. Suppose that a very minute

particle of mass m, rests on a larger

1

(spherical) particle of radium r and svecific

gravity §. The mass of the second particle is

- 3
Dy = krr%
. 3

. . v

-

For the present, the assumption will be made that the larger particle
attracts the first one as though all its matter were concentrated at its

center (later this will be shown to be true for a homogeneous spherical

41Tr3

mass) . The magnitude of the force of attraction, since m, = —= is

4nr36 1 G 4m8m,

! 3 r? 3
Thus, f will approach zero, rather than increase indefinitely, as r approaches
Zero.

The gravitational constant G is universal in the sense that for any
particular set of units (the C.G.S. system, for example), it has the
same value throughout all space. For the most part we shall use the C.G.S.

system, in which the value is

4 L 5
G = 6.67 x 10°8 e
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This value has been determined experime ntally in the laboratory over
many years by careful refinements of the Cavendish experiment.

Generally, for calculations, it is useful to use

3
G =5 X 107 R sec.?

Accepting as true this value for G, the assumption that the earth is a
homogeneous sphere with a radius of 4000 miles and the principle stated
above that a homogeneous spherical mass attracts as if all of its mass
were concentrated at its center, the mean specific gravity of the edrth
can be calculated.

Recall that a gram of matter at the surface ofithe earth, and
the earth attract each other with a force of about 980 dynes (the
centrifugal effect of the earth's rotation may be neglected). Retween

two spheres the attraction is

Substituting F = 980 DYN€S>
]
3

g = 20 x 10-8 CHM.

) GR., ssc.2 ’

My o= 1 GRAM,

My = Ey, THE MASS OF THE EARTH,
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and the radius of the earth r in centimetres is

r = (k000 X 5280 x 30)

% 6.4 x 10° centimeters.

Now, if the specific gravity of the earth is D, then

Lrpe®D

3 .

mstz

e d

and the formula becomes:

:@ - Alxu"x 3 !
%O 3x10 x—g?'—rn

%0 « 20 x 10°X 12.5 X 6.4 x 10° .

hence

D=5.5,

That is to say, there is 5.5 times as much mass in the earth as there
would be if it were composed entirely of water. The "weight'" of the
earth is 5.5 times as great as it would be if composed entirely of
water.

Continuously Distributed Matter - The Gravitational '"Field"--

The statement of the Law of Universal Gravitation postulates the existence
of a specific force of attraction between every pair of particles. To
develop the consequences of this principle for masses as distinguished
from particles raises certain philosophical difficulties which are of

considerable practical importance, As in all physical science, the



14

resolution of these difficulties rests in observation and experimentation.
These, in turn, lead to refinement of theory, further analysis and predic-
tion, until a course is determined which best fits the ''real' universe as
we sense it.

In studying the gravitational attraction between two arbitrary
masses, one must come to a definite decision as to whether to consider
each of the masses as consisting of separate and discrete particles, or
to idealize the conception mathematically and consider each méss as con-
sisting of '"continuously distributed'" matter. Although a case may be
logically built for the first possibility, the second alternative--that
of continuously distributed matter--has the decided advantages of mathe-
matical tractability. It avoids the necessity of defining a vparticle,
and takes advantage of the close agreement of the results with observa-
tion and experimentation.

To introduce the concent of the gravitational force 'field'" due
to a body, consider, a mass M of volume V enclosed by a (smooth) surface

S. Let there be a particle of unit mass (1 gr., in the CGC system),

which will be called a unit
particle, at an arbitrary point P.

Think of the volume V as subdivided

av, into a large number, n, of small
pieces, the volume of the ith piece
being AVi, its mass AMi, and its
distance (say from its center of

gravity) to P, . If the mean
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density of this little volume, AVi is #., the force of attraction between

"

the unit particle and P and this little volume is, to a high degree of
accuracy (if AVi is small enough and I, large enough) equal in magnitude

to

AF] = G - 1 .‘PIAVI
)

)

and its direction lies along the line joining P to the ''center" of
Avi.
Now, utilizing the principles of the integral calculus, each Vi
is allowed to approach zero in such a way that its maximum diameter, too,
is allowed to approach zero. The number of subdivisions n of V increases
indefinitely and, in the limit, assuming this implied continuity of matter
constituting M, there will be a force of attraction F between the unit
particle at P and the mass M, definite in both magnitude and direction,
This force F is the limit of the
vectorial sum of these N forces,
AFi,
<———1r-““p It is evident from this
definition of the force F that its
value (in magnitude and direction)
will depend on the position of P
(which, at least for the present,
is assumed outside of V). 1In other
words, at each point of space a vector can be drawn representing in direction

and magnitude the force of attraction between a unit particle at that point
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and the mass M. This is schematically illustrated in the next Figure,
which one should visualize in its three-dimensional aspect.

A number of facts should be obvious, intuitively, at least, about
these vectors. In the first place, the magnitude of the force F decreases
with increasing distance of P from M. Also, as this distance gets larger,
the vector representing the value of the force F tends to point to a common
oosition of-M"(its center of gravitv)since M becomes rela-
tively at least, a particle for greatly removed positions of P. Finally,

and most importantly, these vectors vary continuously in space. By this we

mean that as the point P moves continuously in space, the corresnonding
vector F changes both in magnitude and direction in a continuous manner.
Each vector flows smoothly from one nosition to another.

These facts give rise to the concept of the field of force of M,

The field of force for M consists of the totality of these vectors in
space. It may become clear, from the figure, that as a result of the
magnitudes and dispositions of these vectors, there will be a system
of curves in space such that each vector will be tangent to one of these.

It is natural to call these curves the lines of force of this field, and

it becomes apparent that if a finite number of these lines of force is
drawn, the spacing of these lines will, in some way, depend on the magnitude
of the force in the neighborhood. Where the force is small - as in regions
remote from M, the spacing of the lines becomes sparse; and as the force
increases, on approaching M, the spacing becomes thick.

By considering the unit particle at P as a probe, moving it through

space and noting the attraction between it and the mass M, we have an



17

effective way of studying the field of force due to M.

The essence of most interpretations of gravity data having scien-
tific merit ultimately rests on the study 9f these gravitational fields.
That is, the gravitational field due to various types of masses, are
studied. The conclusions derived therefrom form the physical basis for

going in the reverse direction from gravity data to the geologic model.

GRAVITY EFFECTS OF CERTAIN GEOMETRICAL FORMS

The Field of Force of a Straight Rod--At this point it is instructive

to examine a few specific examples of fields of force in order that the
physical ideas may be made sharper. The base of a thin homogeneous rod;
so thin that it may be considered as a linear rather than a solid object,
will be considered first.

Let the x-axis of a coordinate system be laid out along the (linear)
rod, with the origin O at its center. The y- and z-axes are theh arbitrarily
set up through O, mutually perpendicular and each perpendicular, of course,

to the x-axis.

:(x,y,2)

Al
(0.,0,0) (3,0,0)
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If the length of the rod is 2a, the coordinates of the end-voints, A'
and A, become (-a,0,0) and (a,0,0). Let P:(x,y,z) be an arbitrary point
in space. It should be intuitively apvparent that the field of force

is cylindrically symmetric with respect to A'A. Hence all we need study
is a plane meridian section of this field, as indicated below. R is
chosen as the radial coordinate in an arbitrary plane section through
A'A and the coordinates of P are given by (§:r). Let the linear density

(gr./cm.) of

A'
(-2,0) 0 Ax (a,0)

The rod be P,so that the mass of an element of length Ax of the rod will
be pAx. (The x-coordinate has been retained along the rod.) In order to

keep the proper dimensions in mind, a unit particle at P will be indicated

by its mass I (=1 gr.) for didactic purposes.
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The magnitude of the force between the mass I at P and the mass

of the element Ax of which Q:(x,0,) is some point, is

L G 10O
ar ¢ (PQ)*

Its component in the x-direction is therefore

AF = -%_sz—x-cos (PQA)
s GIEAX . - X
(E-xF +r° JE-x7 +r

g . GIp(§-x)Ax |
(€ -x) + )%
Similarly, the component of AF in the r-direction is

AFe . GIP‘I”A}:
I(f -x) 4 r]”

From these elementary considerations we pass to the limit by

dividing A'A into a large number of these x-subdivisions, and then

letting this number increase indefinitely while at the same time requiring

all the Ax's to approach zero in length. We thus get, as the x-component, the

resultant force of attraction F between P and the rod:
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F o= -CGI - Xx)dx
X P (€ - x)* + rf|%
’.
= -GIp E - 1
/(E'a) +r W-ya)l...? : .

Similarly, the r-component of the force of attraction F between P and
the rod is

a

F = -GIpr dx
P [(E-x)!+r']"

a
. GIP r 8 - - 8
r & e v e

The force of atraction F of a unit particle at P toward the rod
is, then, indicated by the vector lying in the plane of the rod and the
point P (from the cylindrical symmetry of the situation) and has a com-

ponent parallel to the rod of

F oo 1 - 1
X GIp[J(E +a) +r° 7(? -a) + r{’

_GIM

S S S
= ’
2a ¢(£ +a) +r «(f -a) +rt

since the mass of the rod is M = 2ap .

The component of F in the orthogonal direction is

r r -a) +r (€+a) + 1
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A physical meaning can be given to these last two results so that
the field of force can be studied. First the results will be separated
from the coordinate system. Referring to the previous equations and to

the figure below,

the component of the force of attraction F parallel to the rod A'A may

be written as

. =GIM(_1__}_)

X 2a \s' 8
having arbitrarily designated the orientation A'A as positive in the
indicated direction. Similarly, the component at right angles to the

rod A'A in a meridian plane may be written as
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F _ _GIM| cosa cos a'
T 2a | s sina s' sina'

With the minuS-sign, a positive direction in the meridian plane at right

angles to the rod direction A'A has been chosen.

Let the angle between the force F and A'A be indicated by ¢. .
Then
tan ¢ = §
g' cos @ sin a' + s sin o cos !
s (s - s*) sin a sin a'
Since

s sinq = s8' sin Q' = H, .

the length of the altitude of the triangle A'PA on A'A, one concludes that

]
tan @ - SO8 Q@ + cos a
¢ sin a - sin '

The trigonometric manivulations follow, using the identity:

tan @ + tan Q
- tan @ tan a

tan (¢ + a) = 1

cos a +.cos '  8in g
sin ¢ - sin ' cos
- CoB a+ cos a' sin o

sin a - sin Q' cos Q

-¥

cos® @ + cos a cos a' + 8in® @ - sin @ sin Q'

= A

sina cos @ - sin a' cos a - sin @ cos @ - s8in a cos Q'

_ 14+ cos (a+a')
- - s8in {(a + a')

_l-cos[m- (a+a)
- -sin[f— (o + a')]

_l-cosz - Y
= T sin —-tan2
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(e

vhere Y = JA'PA.
This means that

g+ a-+ g’: v ;

and that, in fact, PB bisects JC A'PA. The force of attraction F,

therefore, between the unit particle at P and the rod A'A lies on the

bisector at P of the angle subtending the rod.

How large is this force F? It can be shown that the magnitude of

F is

where

b being the length of the bisector PB from P to the rod.

From this information, the field of force of the rod can be
constructed. At each point P of an arbitrary plane through the rod A'A
draw the bisector of the angle A'PA. Specifying a directién at each
point P of the plane in this manner, it can be shown that all these
directions do in fact define a family of curves in the plane. First, it

can be shown that the curve which is such that its tangent at any point
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bisects the angle at that point which subtends a linear segment (A'A),

is a hyperbola with the end points of the segment as its foci. It will
follow then that the vector at any point indicating the attraction of a
unit particle there to the rod A'A will be tangent to the hyperbola through
that point whose foci are A' and A. It will also follow that all these
vectors will align themselves so that their envelopes form a family of

hyperbolas whose foci are at A' and A,
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A few of these hyperbolas (with their asymptotes sketched in lightly)
are shown in the accompanying figure. Consider, then, the totality of
these hyperbolas in this plane, and then consider the totality of hyper-
bolas of this sort in "all" the other plane sections through A'A. All these

hyperbolas constitute the field of force of the linear rod. The hyperbolas

are called the lines of force.

If it is desired to find the vector representing the force of
attraction of a unit particle at any point of space toward the rod, one
need only draw the tangent to the only hyperbola of this system of
hyperbolas passing through that point. The magnitude of the vector will
depend on the '"density'" of lines of force.

It is instructive to consider a problem of practical concern in
gravimetric surveying. Suppose a plane P is parallel to the rod, A'A.

Suppose, further, that at an arbitrary

point P in this plane P, it is desired

P : to find the component Fn of the force

of attraction F between a unit particle

at P and the rod A'A,which is normal

Al A to p. To find Fn’ there is a choice
of mathematical approaches, one of which
would be a direct calculation using the
results obtained previously. This approach looks rather forbidding; so
another approach will be considered because of its relative simplicity and

for the sake of introducing further tools and concepts.
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Suppose that, from the mid-

point Q of A'A, a perpendicular
is dropped to the plane p and the
foot of it is designated O, as
the origin of a coordinate system.
The line in p parallel to A'A
is the x-axis, the y-axis is in
p perpendicular thereto. The line
0Q, oriented from 0 towards A'A
will then be the z-axis. As hefore,
the length of A'A is taken as 2a;
and 0Q = h. Thus, the coordinates
of the various points in the figure
are

o: (0,0,0)

A': (-8,0,1)

A: (a,O,h)

Q: (0,0,h)

Let P:(x,y,0) be a point of p where the

unit particle is located. If the linear density of the rod is p, the

element of mass contained in an element of length Aéﬁ surrounding the

point

K: (5;,0,1!)
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of A'A is
p Ak
and the force of attraction between P and the element at K is approximately
N’. = JGI Ae’ = GIPMi
r} (x -€)° + y*+ 1

where r; = PK, and I represents the unit mass at P. If the angle between

PK and the direction 0Q is indicated by i, the components of the force

AFn normal to p is, then,

GIpAL,
O = (x -&)F +y + 1 cos @y

) cIpaé, - n
T [x =€) + ¥+ n']%

It is now a simple step to get the component of force we are seeking

by setting up and integrating the proper integral; namely,

a

aé
GIfh [(x Z ¥yt e pn

-a a

Fu

¢ - x

(% + n®)[€% - 2&&x+ (x* + y*+ hTﬂi

GIph
-a

. a - X
(a + n*)[a® - 2ax + x* + y* + D'k

GIph

. a+ X
(a® + n*)[a® + 2ax + x* + y* + n)h
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GIPh a+ X a-Xx

+
a'+ nt Wa+ x) +y + h* Wa-x? +y!~|-hl

= Q?Iﬁ%l!{cos X PA'A + cos .\:PAA'}

These curves in the plane p assume an appearance of this sort:

X

It is also instructive to plot the "vertical gravity'" section

immediately over the rod (y = 0); namely

F - _GIfh 8+ x + 8 - X
7.6 at+nt /(a+x)'+h‘ /(a-x)‘+h’
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The '"vertical gravity" section along Oy, (x = 0), similarly, is:

Rl = 2cxeha{ 1

2.0 (af + nY)| /a? #H;j + h?

F

One final remark, which will be of some practical importance later,

should be made concerning the attraction between a unit particle and a

long rod.
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Refer to the result at the bottom of page 20. If P is on the
perpendicular bisector of the rod (61 0), the attracting force R,

oriented positively toward the rod, is

F = —2GIpa
r rfat + 2 °

If the length of the rod is allowed to increase indefinitely; i.e., if

we let a increase without limit, we have

_ 26IP .
et S

that is, the force of attraction Fr does not increase indefinitely, 1In
fact, the force of attraction between an infinite rod and a unit mass at
a distance r varies inversely with the distance r.

In practice, this result will be of importance in many problems because

(for practical purposes) "infinite" extension of the mass in one direction

can often be assumed. In addition, it is assumed that the mass is built

up of rods of infinite length in the same direction. How 'big" a dimension
must be to be considered "infinite" is, of course, a matter of sensitivity
of the measuring devices and the accuracy of the measurement desired or
attained.

The Circular Disc--The result at the bottom of page 20 which expresses

the force of gravitational attraction Fr between a unit mass I at a point P

on the perpendicular bisector of a rod of length 2a and at a distance T is
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F = ZGIEa
' ryya& +r
- GMI

raa! + !

where o is the linear density of

its mass. The force Fr is oriented

— rod (assumed constant) and M is
¥

r

l positively toward the rod. From

|
kﬁ-—-ar--¢-ﬁ-—-d--—*1

the symmetry of the situation,

arising from the fact that P is
taken on the perpendicular bisector of the rod, it follows that Fr is the
total force of attraction; that is, that there is no component at right
angles to R.

Consider, now, a point P, at which there is a unit mass I which
lies on the axis of a circular disc C. If this disc is of uniform
lamingr density, what is the force of gravitational attraction between
I and C? Since P is on the axis of C it follows immediately that the
force will be along this axis directed toward C. Through 0O, the center
of C, choose any diameter dd of C. At distances x and x+Ax from 0O,
draw two chords parallel to dd, the first being indicated by ss. These
two chords substantially (to within infinitesimal corrections of high
order) define a rod of length ss and width Ax, if Ax is small enough.

Now



where r is the distance PT, and T the midpoint of ss.
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in which a is the radius of C,
and if we denote the surface
density of C by 4, then the mass,

M, of this "rod" is, approximately,
M=8 .2 af -x* - ox.

Between I at P and this rod there
is an attractive force AF equal to

G .MM .1

aF = rf(a -x)+r

This, of course,

comes from the second of the equations of page 31 , with the symbols

replaced appropriately for our figure.

OF =

This last form, in turn becomes

2GIS Va® - x! Ax
i+ nJ(a -x) + (x + b))

- 26I8 Jai - x° Ax
at + bt fx* + ht '’

in which h is the distance from P to O.

The component of AF along PO is evidently

AR = AF cos 6

2GI§Ja’ - x° O h -
Je& + h? Jxt o+ n? (Jx! + h')

26I®hJa® - x' &x

]

at + h

(x* + h?)
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Accordingly, the attraction of I for the disc C is, then,

a
F - 2618h  J&' - x* ax
ya* + h? x* + nt

-8

at +h‘ x* + n?

LGISh / faf - x* ax

B %
_ _boIgn | Ve + n’ o xJe + n n’ P
yat + n h hVal a8
o

4GISh V&' + 0’ g _ g

\E.z +hz h 2 2

vy
L]

2018;{1 - F'Th?:l .

* This integration is performed by rewriting the integrand:

, \/a!-x’= 1 a® + b
a® - x

x! + nt x? + nt

and using Formulas 229 and 127 of B. 0. Peirce's "A Short Table of In-
tegrals".

The last result, which has an important béaring on what shall be later

referred to as the terrain correction, shows that the total force of

attraction between a unit particle I at a point P in the axis of a disc

and at a distance I from the disc, the radius of which is a is directed

along the axis toward the disc and in magnitude is equal to
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F = 20187[1 - \7:?%:7]

Recalling that J&is the surface.density of the disc, then the mass
of the disc is

M= ma!d
and the result may be rewritten as

P - 26IM

-]

Returning now to the first form of the result, notethat as the
radius a of the disc grows larger and larger; that is, as 2 —> «,

the force of attraction approaches a limiting value

1im F = 2GI3w,

a—+>oo

a value independent of h., That is, the attraction of a particle to an

infinitely extended thin plane sheet is independent of the distance of

the particle (h) from that sheet.

In practical terms, this means that the gravitational field
over the central area of a horizontally '"very extended" thin bed consists
of parallel lines, at right angles to the bed, so that the force of
attraction is constant in magnitude and vertical at great distances from
the bed. 1In fact, as we see, the ratio between the actual value of this

force and this limiting (constant) force is

P
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This result will form the basis of some numerical calculations for terrain

corrections which will be discussed later. :
Homogeneous sphere--

Let us now consider the

P:(0,0,r) ‘ attraction between a unit particle and
,F a homogeneous sphere. It is apparent,
from considerations of symmetry, that
the direction of the force lies along
the line joining the particle to the

center of the sphere. Let the radius

of the sphere be a and choose the x-axis

as the line which joins this center

to the unit particle, as drawn.

and .

when Az is sufficiently small, we have a thin disc of mass

oM =(at - zt) - 8- 82,
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in which 6 is the specific gravity of the material composing the sphere.

The attraction between the unit particle at P and this thin disc

is, according to the result of page 34.

2G- oM. 1T, r -z
a® -zt J@ -z') + (r - z)

=261 §-mla® - z5?)oz 1 r -z
(a® - zt) Ja' o+t - 2rzg ’

where r is the distance between the unit particle and the center of the

sphere.

Thus, the required force is

21nd (1 - X dz
vat + rt - 2rz
-a

a
201#8[:2 + (g';_gz__-_rg) \/a’ + rt .- 2rz;l

3rt
-a

3
"

= 2GIﬂ8[a+ (2r* - a' - ar)(r - a) +a - (2r? - a? + ar)(r + a[J

3rf 3rt

- 26Imd [68.1" + 2% - 6ar']
3r*

WGIwad _ GIM

POt e = ’

3rt rt



 *

since the mass of the sphere, M, is equal to

Lhrad
3

The result is well-known and of the upmost practical importance.

It says that the gravitation field of a homogeneous sphere (outside the mass

of that sphere) is the equivalent of the field of a particle of mass

equal to that of the sphere and located at the center of the sphere,

Since a spherical shell is formed by removing from a complete

sphere one that is concentric with it, it can be shown that the attraction

between a homogeneous spherical shell and a unit particle outside the

sphere is the same as though all the mass of the sphere were concentrated

at its center.

It is apparent that the same result applies to a sphere, or a spherical
shell, in which the density is a function of the radius alone.
The sphere is a useful model for approximating 3-dimensional

geological structures whose horizontal dimensions are substantially less

than the depth. Typical applications are for salt domes or igneous plugs

and intrusives. The sphere attracts as if all its mass were concentrated

as a point at its center. There-

X P
90|90,

fore, the gravity effect at

3
P(x,0,0,) is g = _(_3_);_13 4LR_(2;_D__
r 3r
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The vertical component of gravity g, is given by

g. = gecosb
z 3
. Gm z 4MR"pG Z
r2 T .3 (x2 + 22) 3/2
_amr3 o6 1
= X .
322 1+ X 372
Z
= K- f (x/2)
_ 8.520R° 1
22 1+ %% Y 3/2

where R and z are in kilofeet and

g, is in milligals
= 27.94pR3 1
22 (1+ X2y 3/2
Z2

where R and Z are in km

As an example, consider a sphere with radius R =3,000 ft., depth
to center z =5,000 ft. and P (density contrast) = 0.25., Calculate a

vertical gravity profile across the sphere.

_ 8.52 pR® 1
g, = ) 2
- [(1 N 3/2]
= K * f(x/2)
Substituting,
¢ (8.52) (0.25) (9) _ , 5

25
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and
10
x/z f (x/2) g, o .
L
0 1 2.31 J/~;
$§04
S
1/2 0.71 1.62 [1 % |z
/ L) \
\0_.;
1 0.35 0.81 T T TSR
: s v Ground surface’
7 - r
2 0.09 0.21 <E%?

A result of considerable significance that follows from the
fact that the attraction of a homogeneous sphere, outside of the sphere,
is the equivalent of that of a particle of equal mass located at the
center of the sphere is that it would be impossible to differentiate
between two such spheres (or spherical shells) of equal mass (of
different densities and thus of unequal radii) by measuring their fields
of attraction at points outside the spheres. This lack of uniqueness
in the determination of the attracting bodies from their gravitational
fields is one of the limitations of the gravity method.

Horizontal Cylinder--An infinite horizontal cylinder is a useful

model when approximating 2-dimensional geological structures whose
horizontal dimension is less than or not much greater than the depth to the
center. A long anticline would be an example of a geological structure

‘The gravity effect from a horizontal line element of infinite length at

P (x,0,0,) is. (see page 30)

2 Gm
r
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The vertical component of gravity g, is given 7
by [
g, = g cos 8 Z
g, = g cos O = 2G2m Z -l

T

If the horizontal line element is replaced by a cylinder having mass

per unit length of T Rzp,

2
g, = 2mp R %z = 216 P R —
- x“ +y

. 2 Gmp R2 1

Z X2+22

2
z
e

_ 2nG_p R? 1
= 5 =K« f (x/2)

z

1l + X
2
z
2
12,77 PR

= ——————— - f (x/z) where R and z are in kilofeet and

z g, is in milligals,

2

= ﬁl;géﬁi, * £ (x/z) where R and Z are in km

Thus, a homogeneous infinite horizontal cylinder attracts as if all

its mass were located at its axis. The depth z is the depth of an infinite

line mass which has the same mass as the cylinder and produces the same gravity

anomaly.

As an example, calculate the vertical gravity profile at right

angles across an infinite horizontal cylinder with radius R = 3,000 feet,
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depth to the center z = 5,000 feet, and density contrast p = 0,25,

2
Substituting in g_ = 12.77 o R . 1 >
z 1+ X

z -
ZZ
k= (12.77) (0.25) (9) _ ¢ ,,
s i
and 0
920
x/z  F(x/y) g, ; o.eK
Q
0 1 5,72 / %“NOA \\
L]
1/2 0.80 4,58 oz
\h‘—
1 0.50 2.86 =T 1 —— : T
t P K
2 0.20 1.14 z r - Grournd surface
A\
Y-
3 0.10 0.57 ()

The Vertical Fault--The vertical fault can be approximated by the

edge of a semi-infinite horizontal layer of finite thickness--a 1-dimensional
model. The gravity effect of this body can be calculated on the assumption

that the material is condensed into a thin sheet at the central plane

1 i i " " — .
-5 4 3 2 - o2 3 4 x/2 3 of the body. The vertical gravity
; tan"*zf -7
‘:: ______________ 3{‘@_’: ;rau/# face perperndicular € ffeCt 1s glven by
= ! ‘o paper

b -1 x

= 2Gpt [ = + tan -

gz P 2 z

or
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=K * f (x/z) = 12.77 p t £ (x/z) where t is in kilofeet
= 41.93 p t f(x/z) where t is in km
In both formulas g, - is in milligals. For a unit density contrast,

a fault throw t of 2390 cm (or 78 feet) is needed to produce a gravity

effect of 1 milligal. Thus, the thickness of faulted material of density

contrast p required to cause a gravity effect of 1 mgal is about 80/p feet -t

or 24/p metres.

|
| T ()
1 0| m/2
¢ -3 *% = | ] -~ © 0
:___.______-,? + o |7
Q

This expression applies for a sheet whose horizontal extent is infinite
compared with either the depth or thickness. From the accompanying gravity
profile for the fault, it is evident that it takes a distance of about

6 times the depth (from x = -3 to x = +3) to reach about 80% (from 0.1 to
0.9) of the theoretical total magnitude for an infinite width sheet. Thus,
5;%6 = 97 feet of unit density contrast material to

have a gravity effect of one milligal. Thus, for a given gravity effect

it would require

and density contrast, the required thickness, in feet, is

t = (100/ p) 7, Max
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where t is in feet, p is the density contrast, and g, max is the maximum
gravity relief in milligals. An example of applying this general rule is
shown in the attached figure of the gravity profile in the Los Angeles, CA

Basin. From the gravity profile across the basin, the gravity relief

+ 40 > 40
“
+ 30 e, 20
\\A .
+ 20 ~ *20
Qero ¥ 0
3 b
N o a3 ~ ,r‘ BTN g °
3 N - -
s T v am N = w0
- 20 Sa Pld 20
Jv ‘\~‘--“-_;-" -
-3 .
GRAVITY PROFILE =
€
. 3
x o
Ag § - i g 3 s p
-'“°°°] San Pedro i DOMINGUEZ 2 gp § Bty SanGabre! Mts.
sea ! , oL FIELD -~ al b oL rie Q ;
Ve g Fran,. = . .
Crs .

-5.0004|

19960

S o ', MILES
S o] S KILOMETERS
L e ]

is seen to be approximately 60 mgal. The density contrast between the
relatively recent Pliocene and Miocene sedimentary rocks and the
Franciscan metamorphic basement rocks is not known precisely, but can
be estimated to be between (2.7 - 2.2) = 0.4 and (2.7 - 2.4) = 0.3.

0

Using a value of 0.35, we have a thickness of %ggg or 300 feet per

miligal of gravity relief. Thus, the approximate thickness of the

sediments in the basin causing the 60 mgal anomaly would be (60) (300) =

18,000 ft.

.
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ACCURACY OF SUBSURFACE MODEL APPROXIMATIONS

Calculation of the gravity effect for simple geometrical shapes
is useful in practice because of the relative simplicity and reasonable

accuracy. Commonly used approximations include: (1) equivalent sphere

approximation for an infinitely long horizontal cylinder; (2) circular

plate approximation for horizontal slabs of finite width: (3) vertical

line element and thin horizontal plate approximations for vertical cylinders

of variable radii and heights (domes, salt domes, igneous plugs); and

(4) thin plate approximations for vertical dikes and horizontal faults

blocks.
Fault-frrors in some of the approximate calculations are remarkably
small (Hammer, 1974).* For example, the maximum error in the thin-plate

approximation.for an horizontal fault plate is less than 1% for a thickness/

depth ratio ranging up to 0.75, a very substantial fault throw (see figure below).

N —
[e]
]
'
~

20~ —20

-~
N
)
O
N
% 1o —10
S
N~
N
N
3 3
]
§ 8
5
-0
S it TTL Tt @ - -2
#x) i L P W9 sumrace + } {-x)
i v S(r‘-'ﬁ, 8 ! N M

RA™TIQ OF THICKNESS/DEPTH
t-075 N
PERCENTAGE ERROR=-074 AT POINT A A
PERCENTAGE ERROR=+ 1 55 AT POINT B (N '
MAXIMUM PERCENTAGE ERROR 8 ]
RE ANOMALY MAGNITUDE (ggt=0.50 \

NN "

*Hammer, S., 1974, Approximations in Gravity Interpretation Calculations,
Geophysics, v. 39, no. 2, pp. 205-222.
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For the semi-infinite fault block of finite thickness (throw), the gravity

effect is given by the general relation:

T
_ 2
g, = 2Gp Ijéz(t+d) - Gld-xlnr :l
1

Compressing the mass of the fault block vertically onto its central plane

given the thin-plate approximation:

m X
g, = 2Gto = 2Gpt [——2- + arctan ;]

The error in the approximate gravity value is

E(x) = g'(x)-g(x)

The error is zero directly above the fault and has equal maximum and

minimum values on opposite flanks. The maximum error calculated relative

to the magnitude of the anomaly

GRAVITY OF FAULT
ACCURACY OF THIN PLATE APPROXIMATION (at x = «) is less than 1/2%

!
ERROR = g-g A graph showing a summary plot

g(m)
9 =GRAVITY ANOMALY OF FAULT

9'= ANOMALY BY THIN PLATE
APPROXIMATION 2-dimensional fault block is

of errors for a thin-plate

approximation for a vertical

shown on the left. The error
is plotted relative to plate

thickness (t/z). It is apparent

1 1

that the accuracy of the thin

1

o
|
MAXIMUM ERROR -PERCENT

plate approximation is satis-

factory for all but the most

extreme cases.
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For an error not exceeding 2%, t/z may be as large as 1.5, for which the
fault throw is six times the depth to its top.

Equivalent Sphere Approximation--It is useful sometimes to assume

that the observed anticlinal gravity anomaly is caused by an infinitely
long horizontal cylinder and to calculate the interpreted structure in
terms of an equivalent sphere. The gravitational attraction for the

infinite horizontal cylinder is given by g, = 2GM[?—-—E——§—]. When

2
x“ + z
x =0, g(o) =2GM and the radius of the cylinder, Rc' can be defined as
Z
1/2
Rc = [g(o)Z/ZvG%
L0

\
N
lEQUW@LENT//>\
' SPHERE

~—
- ——
——— e -

g
-

The depth to the axis of the cylinder, Zs is given by the '"half-width"
of the anomaly: z = X*, The equivalent sphere defined 'to fit the gravity
profile of the horizontal cylinder at x - o and x - x* has the following

parameters .
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Depth: Zs = 1,305x* =1.3052c
2 1/3
Radius: RS = %g(o) . Zs /4wGp]

The calculated gravity profile for the equivalent sphere is obtained from

3
3/2
g = 4% §§__ 1
3Zs 1+ fz
. 72
S

Equating g'(o) and g(o), we obtain

p 1/3
R=1.367[—°- RZZ]
s 0 c ¢

S

Comparison of the gravity profiles (see figure) shows that the approximation

is very good. The difference is negligible except on the flanks where the

effect of the sphere falls off more rapidly. Although the radius of the

equivalent sphere is considerably larger than that of the cylinder,

the depth to the top is reasonably close to that of the original cylinder.
The error in the estimated depth depends on RC which depends on the
density contrast p. The radii in the figure were drawn assuming P = pc
and for two cases: (a) Rc = ZC/Z for which Rs = 1.722 RC (the depth

error is -11.3%) and (b) Rs =ZS = 1.3052c for which the top of the
interpreted sphere is at the surface. The denth error of the latter limiting

case is 100%.

Vertical Cylinder and Approximation by Axial Line Element--An important

class of geologic structures (e.g., igneous plugs, salt domes) can be
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approximated by vertical right cylinders. Unfortunately, calculating
the gravity effect of a vertical cylinder is easy only on the axis. At
all other points, the calculation involves elliptical integrals or a
series expansion of Legendre polynomials.

One approximation is to compress the mass of the vertical cylinder
into an infinitesimal vertical line element along the axis. The vertical

line approximation has a gravity effect which is given by

¢ = 1GoR? [a 1 ]
z S S
"1 2

2 2 1/2 1/2

where 5. = (x° + d%) and 5, = (< + (a+)?)

A comparison of the gravity profiles of the vertical cylinder and the
vertical line element is shown in the top portion of the accomnanying
figure together. with the error (gravity effect for line element minus

gravity effect for cylinder). The range of maximum (axial) error is shown
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in the next figure. The curves are vlotted in dimensionless unit H/d
with dimensionless unit R/d as the variable parameter. It is clear from

these curves that the axial line element is a poor approximation for a

vertical cylinder of finite radius. A more useful approximation is a

stack of thin horizontal discs.

1000

500—
S
Wy
QO
(LE 200
Q
R 1004 R/d=2
Y
X
z 50—
N
> R/d=|
N 20
S
g 10— \
W R/d=1/2

5 1 T T T T T
(¢} | 2 3 4 5 6 7
H/d

Vertical Cylinder Approximated by a Thin Horizontal Disc--Rapid

gravity profiles for a vertical cylinder can be obtained by using a thin
horizontal disc of the same mass located at the central depth of the cylinder.
Axial errors, expressed as a percentage of the central anomaly magnitude

for the cylinder, are shown in the next figure. The abscissa R/Z
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S=R/2
3 7
-0. t
-0.21
-0.5+
-
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S 2
'S
Q@
'*: -5+ ERROR IN APPROXIMATING
o A VERTICAL CYLINDER
-10+ BY A
THIN HORIZONTAL PLATE
-201 (ON THE AXIS)
-501
-100

is the radius of the cylinder in units of depth, Z, to the center of the
cylinder. The variable, H/Z, for the curves is the height of the cylinder
also expressed in units of the depth. For any adopted tolerable maximum
error, a horizontal line may be drawn to define the upper limits of the
radius and height of the cylinder for which the stated precision can be
achieved. The dashed line in the above figure corresponds to an allowable

error of 1%.
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An example of the practical apnlication of this information can be
described. The resultant curve of thickness (H/Z) versus radius (R/Z)
for a maximum error of 2% on the axis (smaller on the flanks) is shown
in the figure. This curve defines the minimum radius for a given height
(or conversely a maximum height for a given radius) to satisfy the adopted

precision criterion.

Q | 2 3 4
A T Rz | T
-i" VERTICAL CYLINDER
1 THICKNESS VERSUS RADIUS
41 FOR ERROR IN THE
St THIN PLATE APPROXIMATION
6T <2% ON THE AXIS
T+ AND < |1% FOR X >R
ABj“ﬁ x
F4 Lz >,
o] T
1
124
144
.64
.81
20 I

This information can be used to determine the layout of the minimum number

SURFACE of slices required to approximate

a salt dome, limiting the error of
the thin plate approximation to 2%.
The thickness of each disc is the
maximum, corresponding to its radius,
for which the largest incurred error

is less than 2%. The number of

discs is minimized to avoid unnecessary

calculation.




52

FACTORS AFFECTING THE CHARACTER OF
GRAVITY ANOMALIES

In calculating the gravity anomaly of a given structure, five

principal variables are important. These are: volume, density contrast,

depth, shape, and isolation. The magnitude of the gravity anomaly caused

by a structure depends directly on its volume times its density contrast.

The size of the anomaly and its sharpness decrease as a function of the
depth. These relations hold, however, only as long as the structure has

a concentrated shape. If the shape is diffuse, the observed anomaly will

be reduced in magnitude and sharpness. If the structure is not sufficiently
well isolated from other structures, similar or not, its own anomaly will
not be resolved from that of the other structures.

The following table summarizes the formulae to determine the maximum
gravitational attraction for the three anomaly classes: (1) l-dimensional
(slab); (2) 2-dimensional (horizontal cylinder); and (3) 3-dimensional
(sphere).

In each formula, R, Z and t are expressed in units of kilofeet or km, g, is
in milligals and p, the density contrast, is in CGS units (see Appendix E
for a conversion table to change R, Z and t to other units). The maximum

value of gravitational attraction is given by g, max.
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ANOMALY CLASS FORMULA FOR MAXIMUM GRAVITY (gz)
Shape Depth Density Size
Constant Contrast
I. Semi-infinite horizontal slab 12.77 o} t
(fault) (41.93)*
(one-dimensional) \
- s X
g, = 2G pt[2 + arctan z]
m X
g = 12.77 pt [_E' + arctan ';]

g,Max occurs as x/z ——>x

I1. Infinite horizontal cylinder 12.77 1/z o} R2
(anticline) (41.93)*
(two-dimensional)
z

= 2GM -———-——-——-]
& [ 2 4 52

_ 12.77 oR? 1
€z z 1+ 53

2
Z
gzmax occurs at x = 0
ITI. Sphere (salt dome) 2 3
(three dimensional, concentrated) 8.52 1/z 0 R
(27.94)

_ Z

g, =M [ 2.2 372]
(x7+z7)
3 3/2

_ 8.520R [ 1, ]

gz z2 1+ X

ol

Z

gzmax occurs when x = o

Note: R, Z and t are in kilofeet, g, in milligals, Pis the density contrast

(CGS Units), M is mass of the body.

* Use this constant when R, Z, and t are in km.
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Effect of Size of the Anomalous Mass on the Gravity Anomaly--

The most important variable in gravity anomalies is the size or amplitude

of the anomaly. The volume of a structure is directly proportional to the
size of the anomaly and can be computed if the depth and density contrast
are known. From the preceding table, one can see that the size of a
gravity anomaly due to a concentrated 3-dimension;l structure is inversely
proportional to the square of its depth. However, the gravity anomaly
decreases linearly with depth for a 2-dimensional structure (such as an
anticlinal ridge or a fold) and does not decrease with depth at all bhut
reamins constant for one-dimensional structures (slab, fault). The effect
of size parameter changes are shown below for a buried infinite horizontal

cylinder whose centeres of mass are buried at the same depth.

- S~ ground surface

p=1.0

R=5 ,000

Varying the size of the anomalous mass while holding the depth to

the center of the mass constant causes the amplitude of the anomaly to vary

but the anomaly breadth remainc constant. The next fieure shows the

3

1
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-
o d -y
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—g - -G——T—————f; T ground
5,000 surface

D=5,000 D=5,000 D=

2=6,000 6

R-1,000 |

A 78,000 2=10,000 1.0
R=3,000 R=5,000

effect of size of simple anomalous masses whose '"tops'" are buried at
the same depth. The conclusion is that--

Varying the size while holding the depth to the '"top' of the mass

constant causes both the amplitude and breadth of the anomaly to vary.

These two results lead to the following conclusion:

As long as an anomalous mass is simple and it is buried at the

same effective depth and deep enough so that its mass may be

considered to be concentrated at a point, along a line, or

a median plane, its gravity anomaly will change amplitude but

not breadth as its size is varied.

Effect of Depth of the Anomalous Mass on the Gravity Anomaly--

If all the variables (shape, size, and density contrast) are held constant
except depth to the center of a buried infinite horizontal cylinder, the
effect of depth on the gravity anomaly can be assessed. The figure which

follows shows that the breadth and amplitude of the anomalies vary as the
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depth varies. The following conclusions can be made:

If all other factors are held constant, increasing the depth

to the center of the mass of an anomalous body increases the

breadth of the gravity anomaly and decreases the amplitude.

The breadth of a gravity anomaly is primarily a function of

the shape and depth of the body.

Effect of Density Contrast of the Anamolous Mass on the Gravity

Anomaly-- If each of the anomalous masses have the same shape, size and
depth to the center of mass, but the density contrast is allowed to vary,

the effect of density contrast can be assessed.

O~
- 7 \\ .
—_—— s = = i d
groun
O O O - o
p=1.0 p=0.5. p=0,2 .

R=3,000 R-3,000 R=3,000
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The preceding figure shows that the amplitude of the gravitation
attraction varies as the density contrast varies, but the breadth of the
anomaly remains constant. The conclusion which follows is:

If all other factors are held constant, increasing the density

contrast increases the amplitude of the gravity anomaly, but does not

influence its breadth,

The sign of the density contrast associated with an anomalous mass
primarily determines the maximum or minimum nature of a gravity anomaly.
An anomaly with maximum tendencies indicates a positive density contrast,
whereas an anomaly with minimum tendencies indicates a negative density
contrast.

A number of factors influence rock density. In the case of sedi-
mentary rocks, the mineral composition and the age and depth of burial
are the most important parameters. The general order of increasing density
is: (1) soils and alluvium, (2) sandstones and conglomerates, (3) shales

and clays, and (4) calcareous rocks (limestones and dolomites) (see

- . . .
Igneaus rocks accompanying figure). Exceptions

) to this ordering do occur as a
Limestone "

[« ]

Shole consequence of unmsual porosities,

Sandstone the depth of the water table, and

[ J

Soil ond alluvium . the age and depth of burial.

Solt Sediments buried for long periods

SO Y S S VU S S S S SR S of time tend to consolidate and to

1.8 20 2.2 2.4 26 2.8 3.0
Density, g/cm3

80% fiducial limits of bulk densities
of various kinds of rocks density. In the case of igneous

1ithify, causing an increase in

rocks, the density usually increases
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as the silica content decreases. Thus, gabbro is usually more dense

than granite, diabase more dense than syenite, and basalt more dense
than rhyolite. Metamorphic rocks are the least suceptible to rules of

behavior, but, generally speaking, their density increases with degree

v

of metamorphism.

Effect of Attitude of the Anomalous Mass on the Gravity Anomaly--

The attitude is a function of the depth or variation of the depth to
different portions of an anomalous mass. The anomalous mass is a buried
semi-infinite slab of finite depth extent (a dike). If all the anomalous
masses have approximately the same mass and the ratio of the depth to the
top of the anomalous mass to the thickness of the slab is 0.5, the effect
of attitude of the mass on the gravity anomaly can be assessed. The

accompanying illustrations show the effect.
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These figures show that the same

approximate mass buried with the same

effective density contrast and a constant

depth to the upper edge can produce very

different gravity anomalies as the atti-

tude of the anomalous mass is varied.

Effect of Boundary Conditions of

the Anomalous Mass on the Gravity

Anomaly--The effect of varying the

boundary conditions of a semi-infinite

horizontal slab (fault) is shown in the accompanying figures which illustrate

the case of vertical. thrust, and normal faults, respectively.

VERTICAL FAULT:

vertical line through midpoint of.
fault structure

inflection point
ground surface

The gravity profile over a vertical fault has the steepest slope.
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THRUST FAULT:

vertical line through midpoint of
fault structure

ground surface

inflection point

The gravity profile over the thrust fault shows the sharpest curva-

ture concave upward.

NORMAL FAULT:

‘giz/-vertical line through midpoint of
fault structure

inflection point

ground surface

Note: The gravity value over the midpoint of the fault increases as the

fault changes from low angle normal to vertical to low angle thrust.
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Effect of Shape of Sedimentary Basin on the Gravity Anomaly--The

shape of the basin has an influence on the shape of the gravity profile
obtained over it. As shown in the accompanying figure, the shape of the
basin affects the amplitude of the gravity anomaly. All three basins

contain the same maximum thickness, but a different volume of rock.

milligals

IPO - e
— - ——

T - oy emmm—-. > e o
\Q.

density contrast = 1.0
W/D = 6
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Isolation and Resolution--Two gravity anomalies are said to be

resolved if they can be recognized as belonging to separate structures

The basic rule is that two must be separated by a distance of between

two and three times their depth to produce a total anomaly which can be

identified as a double instead of a single anomaly. The accompanying figures o

are for two infinite horizontal cylinders of equal effective densities -

and equal depths.

Af’—\‘ one position of zero

slope Two cylinders unresolved

Two cylinders at resolution limit
(distance between the centers of mass
approximately equals the depth of the
centers below the ground)

reversal

¥ note slight minimum
~\

Two cylinders resolved

When the two cylinders of equal
density are resolved there are
three parallel tangents.

-
g

w{
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Isolation refers primarily to the separation of an anomaly of

interest from regional gradients and noise. The accompanying figure shows

the relative difference between mise, anomalies of interest, and the
regional trend. The regional effect is a gradual and rather smooth change
of gravity in a certain direction. Noise consists of shallow features of

little immediate interest. Thus,the interpretation of gravity data requires

isolation of the anomaly of interest from the regional trend and the noise.

regional

iI'lc?eas ing q 3
maximum increasing
amplitude apparent
! source
anomaly depth
anomaly of and wave-length
interest
J noise
-.!l
&————
anomaly amplitude anomaly breadth apparent source depth
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It is instructive to consider the source of the earth's gravity
fiéld in discussingthe regional trend. All materials in the earth influence
the earth's gravity field, g, but because of the inverse distance behavior,
rocks which lie close to the point of observation will have a much greater
effectthan rocks located farther away. The bulk of the gravitational pull
of the earth has little to do with the rocks of the earth's crust; it is
caused by the enormous mass of the mantle and core. Because the mantle
and core are regular in shape and smoothly varying in density, the earth's
gravitational field is regular and smoothly varying also. Only about 0.3%
of g are due to the materials contained within the earth's crust and of this
small amount, about 15% (0.05% g) is accounted for by the uppermost 5 km of
rock, that region of the crust generally thought of as being the source of
"'"geological" phenomena. Changes in the densities of rocks within the upper
5 km will produce variations in g which generally do not exceed 0.01% of

g anywhere. Thus, geological structures contribute very little to the total

earth's gravitational field. They cause a point-by-point variation which

can be mapped and interpreted.

The problem of jisolation is shown schematically in the figure below.

field gravity (Bouguer) profiii;7

residual P

anomaly __"_3’ S
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The average gradient and profile smoothing methods are used to remove

the regional gradient. Each method is illustrated below.

A AVERAGE GRADIENT METHOD OF REGIONAL REMOVAL

residual gravity profile
-
/,‘ \\\/
‘ N spurious maximum
- Mo’ o .. & anomaly
- L
Horizontal Datum ~ ,-

B PROFILE SMOOTHING METHOD OF REGIONAL REMOVAL

observed field gravity ’/"“
(Bouguer) profilez /’
, /

Horizontal Datum NG
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Horizontal Attenuation of Fault Anomalies--Sharp gravity anomalies

are easy to identify, but the broad anomalies tend to merge into the
regional trend and are difficult to identify. For a fault-type feature

the sharpness of its gravity anomaly decreases with depth; for a long
anomaly, sharpness decreases with the square of depth; and for a concentra-
ted anomaly sharpness decreases as the cube of depth. In each case, the

sharpness decreases with depth one power faster than the maximum amplitude

of the anomaly.

KIND OF FEATURE - o

——
" <OEPTH 4000'
~. .
1 - DIMENSIONAL “-DEPTH 2000
o
~a

-1
____________,_/ _>oerTu 1000
L
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»
é
3
=
'3
o
o
o
/\

-
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(LONe)

. : R i f i P ‘ v
b 2000’3
--------- DEPTH 100"
3
\ _.-=DEPTH 2317
. 3 - DIMENSIONAL d
T P
(CONCENTRATED ) m wnTH w’

Variation in Amplitude and Sharpness of
Gravity Anomaly with Depth

Graviry
hi
i
1
i

For a fault of given throw, the maximum amplitude is maintained

(in the limit as x/z—®) regardless of the depth of burial. However,

with increasing depth of burial, its gravity anomaly suffers horizontal

attenuation. This will cause the deep-seated fault anomaly to become

eventually lost in the regional trend.
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DERIVATIVE METHODS OF DATA ENHANCEMENT
Derivative methods, of which the most popular one is the second

vertical derivative, have both advantages and disadvantages. The principal

advantage is that second derivative maps show changes in a steep gravity

slope which are difficult to see with graphical techniques. They emphasize

the effects of shallow geologic features and reduce the effects of deep

structures. Composite gravity anomalies which cannot be easily resolved
on the Bouguer gravity map may show up as separate components on a second

derivative map. The disadvantages include: (1) the observations must

be of high accuracy to offset the fact that the second derivative is

sensitive to small errors; (2) unless the gravity stations are eyenly and

closely spaced, the second derivative tends to be an interpretation of

the contours instead of the observed gravity values, (3) whereas it is

reasonably easy for the interpreter to understand the physical relation

between milligals of gravity and a rock mass, it is much harder to under-

stand the relation between the rock mass and the second derivative, and
(4) information (i.e., the amplitude of the anomaly) is lost in the process
of finding the second derivative.

It is instructive to evaluate the second vertical derivative for
the standard geometrical bodies and compare it with the g, versus X profile
obtained earlier.

Sphere--The vertical component of gravitational attraction for a
buried spherical mass is given by
g, = GM Z

(X2 . Z2)3/2
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To calculate maximum value of g, take the first vertical derivative,

%8, M (x2 - 22%)
37 - NI

(x= +

The inflection points of the gz versus x/z curve occur when the second

vertical derivative is zero;

2%y, _ 3ome2z’ -3 z
; 22 (XZ R 22) 7/2
2

3'g

—Z - 0 when 22% - 3x% = 0
572

or when X = JZ or x= 0.822
z \f? ’ )

Thus, the second vertical derivative is zero when x equals about 0.82 the

depth of burial of the §pheref

The second derivative has a maximum value

when x = 0.
2

It is negative when 3X2> 2Z” or when %- > 0.82. It is positive when

X . . .. X + 2
> < 0.82. The second derivative has a minimum value when E-= - =

) v

Oor X = 1.182Z.
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0 2nd derivative | “L'g’h‘"‘-ﬁt?*;—

-t I—L"‘i'—jl:'ff II

° 1o 20 x/l 30

Note that the second horizontal derivative is

azgz 36Mz (4X° -2%)

"

2 2

IX x% 4 22)7/2

and the inflection point of the g, VS X curve occurs when x

40
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NN

Infinite Horizontal Cylinder--The vertical component of gravitational

attract

attraction for a buried infinite horizontal cylinder is given by

g = 2GM [ Z ]
z 2 .2
X"+ Z

og, 4G-M-X-Z

2,2

37 (X2 + 27)

So g, max occurs when x = o



., _ _acMz z? - 3%

322 x% + 753
The second vertical derivative of g is zero when 22 - 3X2 = 0 or when
X == %-. Therefore, the g, versus x/z curve over a buried infinite

horizontal cylinder has an inflection point when x = * Z orXs= 0.58Z

The second derivative has its maximum value when X

0; it is negative

when |X|> 0.58Z. It has a minimum value at X = :,Z.

N )
o - B
‘C,ﬂA\IIYV‘_‘
N\ |
N |
. \i
T~
Pl || ] T o
2nd derivative 7 !
! |
20 X/ . 3o 40

Note that 32
g
z

2

2 2
= AGM (3X - 7) = 0 when x = :_E

o2+ 22 3 N

oX

Infinite Horizontal Slab--The vertical component of gravitational

attraction for a buried infinite horizontal slab (faulted slab) is given by
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_ Ll X
gz = 2Gpt [T + arctan 2—]

agz - . 2Gpt X
3z x2472
)2
f2 _ 4G tpx z
52° x? & 252

The second derivative of g, is zero when X = 0. Therefore the g versus

X/Z curve for the faulted slab has an inflection point over the edge of

the slab. The second derivative is positive when X>0 and negative when

X<0. It has a maximum value when X = :. Z . 0.57Z and a minimum value

3
when X = - 0.57Z. The second derivative anomaly over a faulted slab is

very distinctive.
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Numerical Calculation of 2nd Vertical Derivative from Potential

Field Data--If the values G(x,y) which are contoured on the map are from a
gravimeter or magnetometer survey, they represent a harmonic function on
a plane for which the third coordinate, z, is constant. They therefore

satisfy Laplace's equation

32G + 32G + 32G =0

3x2 Byz 322
or
_3_2_§= - 32G+_§_2£
2 2 2
oz ox oy

where the term on the left is the second vertical derivative of G in the
vertical direction and the terms on the right are second horizontal
derivatives in the x and y directions. If the data are sufficiently
accurate and if the control is close enough, the two horizontal deriva-
tives can be measured directly from the contour map. The equation above
then provides a means for calculating the vertical second derivative.
Thus, the second vertical derivative is a technique for isolating
smaller shallower geologic anomalies from the deep-seated regional trend.

Referring to the accompanying

figure, we can write down, from simple ‘(
geometrical considerations, approximate ba
expressions for the two horizontal

2 2
derivatives 3G and 3 G. 1n this by b

2 Z

ax oy
figure b1
bz’ b3, and b4 are four points on the

original contour map which lie on the

by
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circumference of a small circle of radius r whose center is at C. Let
the line segments bzb; and byb, be parallel to the x and y axes respec-
tively. We can use divided differences as follows:

2

3G=1 -C.(C- b3] _ by + by - 2C
ot [aze-co

9x r T r2

Likewise, parallel to the y axis

2
é_g =1 b2 - C - (C - b4)]= b2 + b4 - 2C
ayz T T T J r2
Hence,
2 2 2
3G=-f3G+3G]= 4 c- (bl + by + b3 + b4)
9x? 3x° ) 2 4

The term inside the bracket is the value at the center point C minus the
average of the four values on a circle of radius r. In the limit, as
the radius of the averaging circle approaches zero, we can write the
equation as:
2
d g = ié C- (b * by +bg* by)
4

lim
9z e

a}

In other words, the true mathematical second derivative is, except for the

constant factor 4/r2, the limiting case of a very simple type of grid

computing process which is in common use to produce so-called residual maps.
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If values could be interpolated, or read, from the original contour
map with absolute accuracy, four would theoretically be sufficient. Such
precision is seldom inherent in the data from geophysical surveys. There-
fore, eight or ten values, or more, are usually employed in order to
give a better average on the circle.

On actual gravity or magnetic maps it is not possible to reduce the
radius of the circle indefinitely. The practical limit, for the type
of control usually obtained in most surveys, is of the order of one half
to one mile. In areas where the anomalies are not too sharp, this will
often give a close approximation to the second derivative. Regardless

of the radius of the circles, however, the procedure always retains its

simple physical significance as being a measure of the departure of the

value of the central point from its neighborhood average.

All second derivative calculational systems used in practice are
of the form:
2 i —

D = ;5 (WOHO+W1H1+W2H2+ e +Wan)

(@]

where D is the derivative value, ﬁ; is the centerpoint value, H,, ﬁé .

Hn are average values on the n circles used in the approximation, Wl,
W2 e Wn are weighting factors, C is a numerical constant, and S is

the distance of the unit grid spacing. A representative example, due to

Henderson and Zietz (Geophysigs, v. 14, p. 528, 1949) is
32AT

3 = 2 [SATO - 4AT1 + AT2]

YA

where ZTH and ZTé are rings at distances of S,\J;: respectively.



DEPTH ESTIMATES

Sphere--The half-width anomaly for a sphere can be defined as follows.

Let X* be the value of X for which g, = 1/2 g, max, thus,

- M - Z 'GM
- 12 (—)
[X*2+Z2 ] 3/2 72
73 - [X*z . 2] 32
az2y% - &*2 . 223
a2 - \'2(*2 . 22]
so Z = 1.305X* or X* = 0.766Z

Thus, in the ideal case, a gravimeter would record 1/2 the maximum value

of the vertical gravity effect for a buried spherical mass at a distance X*

which is equal to 0.766 times the depth to the center of the mass. Alter-

natively, knowing the horizontal distance X* where the g2 profile is 1/2

its maximum value enables one to estimate the depth to the center of the

buried mass as 1.305 times the value of X*.

Cylinder--The half-width anomaly for an infinite horizontal cylindrical

mass is defined as follows (see figure). Let X* be the value of X for
which g; = 1/2 g, max,

Thus
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or Z = X*

Thus, the horizontal distance X* where theegz profile is 1/2 of its maximum

value is equivalent to the depth Z of the infinite horizontal line along

which the mass of the cylinder is concentrated.
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The half-width anomaly for the faulted slab is determined as

follows. Let X* be the

horizontal (map) distance from the vertical projection of the fault
trace to the point on the g, versus X curve where the gravity change is
1/2 the amplitude of the curve from the trace of the fault (inflection
point) to the maximum value which it asymptotically approaches as x—»
Let A = total amplitude = 2mGpt

X* is the distance at which g, = 1/4 A.

Thus X* is the point where g, = 1/2 (GZ () - Gz(o))

X* = 1/2 (2rGpt - nGpt)

Thus

Y *

2mGpt +2Gpt arctan X* _ 1 (mGot)
Z 2

(V *

2Gpt arctan %- = -—%1 Gpt

X*
arctan = = - %I' (-135° or 45°)

X =1or X* =12
Z

Thus, the half width of the gravity anomaly over a fault is equal to

the depth to the median plane of the faulted slab.




Depth estimates can be made from either the corrected gravity data or

from the second derivative data.

listed in the table below.

The depth estimation parameters are

Inflection 1/2 Width
Data Mass Anomaly Form Point . Point
Basic 1. Faulted slab X=0 X =1
Gravity Z Z
Data —p : : X
2. Infinite horizontal cylinder | X _ . - X _ 1
Z Z
3. Sphere X _ 11X _
Z 0.82 5 = 0.766
Mass Anomaly Form X max X zero
Second 1. Faulted slab Z = X max
Vertical
Derivative 2. Infinite horizontal cylinder Z =X zero
3. Sphere Z = 1.225X Max

X max =

on

2

9 gZ

3

Z

2

vs x profile

horizontal distance between max and min values

x zero = horizontal distance from max value to zero point

on

82

3

g

Z

2

vs x profile
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Two problems are in Appendix F to illustrate the application of the

depth estimation principles.
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CORRECTIONS APPLICABLE TO GRAVITY DATA

Two requirements must be fulfilled in order to produce useful gravity
maps. First, the measuring apparatus must be sufficiently sensitive to de-
tect the effects of local geologic structures on the gravitational field g
of the earth. Second, methods must be used to correct the data for all
sources of variation caused by other than the local geology.

Gravimeters--The gravitational field of the earth has a world-wide
average of about 980 gals with a total range of variation of about 5 gals,
or + 0.5%. Mineral ore bodies and geologic structures of interest seldom
produce fluctuations in g exceeding a few milligals, or about 1 part in
106 of g. To calculate details of the size and shape of these structures
requires a precision of 0,01 milligals, or about 1 part in 108 of the gravit-
ational field of the earth. Modern gravimeters (see figures) are essentially
an extremely sensitive spring balance and have reading sensitivities of 0,01

milligals. They respond to variations in g instead of measuring g directly.

The development of gravimeters has now reached the point at which the lim-

itation on the accuracy of interpretations is determined, pot by the reading

of data, but by the corrections which are applied to the data.
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The gravity method depends on the location of anomalies in the
earth's gravitational field and relating these anomalies to subsurface

structures or features. If the earth were an isolated, perfectly smooth,

spherical body of constant density with respect to its concentric composi-

tion shells and not rotating, the problem of interpreting the gravity data

obtained would be greatly simplified. In this case, the geoid (the

imaginary surface that has the same potential at every point such as the

surface of the ocean) would be a perfect sphere. Local density variations

or structural irregularities would then yield readily interpretable

anomalies in the geoid. Unfortunately, the earth is far from being a

perfect surface; it is far from being spherical and smooth, the density

changes considerably from continental material to ocean basin material,

and the effects of the sun and moon cannot be overlooked. In order to

obtain results that are not misleading, one must mathematically isolate,

stretch, and compress the earth until it conforms to the perfect model.

The following corrections do this.

The earth tide or drift correction smooths the effects of the sun and

the moon as well as correcting for the natural drift of the instrument.
This is easily done by establishing a base station and making periodic
readings at this station while the rest of the survey is being carried out.
All stations may be corrected to one arbitrarily chosen reading of the base
station, a procedure that may be done simply by plotting the variation of
gravity at the base station against time and recording the time at which
other station readings were taken. For sensitive modern instruments,

tidel charts are used to make the correction.
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Corrections to reduce the earth to a smooth body can be split

into three groups: (1) corrections involving differences in elevation above

sea level, (2) corrections involving the material between the actual ground

surface and the lower hypothetical smooth surface, (3) corrections for

nearby topographic highs and lows. The free air correction essentially

corrects all readings to an equal elevation above sea level. Based on
the assumption that the earth is a sphere (a fact that will be corrected

for later) this correction in effect corrects the data to a surface which

is everywhere an equal distance from the earth's gravitational center.

It can be shown from the inverse square law that gravity changes at a

rate of 0.094 milligal/foot (0.3086 milligal/m) change in elevation; therefore,
if a station is to be corrected downward to a datum, the correction would be plus

0.094h where h is the difference in elevation from the station to the
datum. If by chance, a reading were taken below the arbitrarily chosen
datum, the correction would be negative.

In the preceding free air correction, a new, smooth surface has
been established at some distance below (or above) the irregular surface
on which the original readings were made. It is still assumed that this
new datum is at the surface of the earth, an invalid assumption until the
material which is on top of the datum has been removed mathematically.
This correction (Bouguer)is subtracted because it is mathematically removing
material from the earth, except when the station is below the datum, in

which case it would be added. The Bouguer correction is 0.4193 P milligal/m, is

opposite in sign and directly related to the free air correction. For this

reason, the two corrections are often combined to give one correction,

F = 0.3086 - 0.04193 P milligal/m.
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The Bouguer correction has reduced the data to a smooth surface

by removing the material between this new surface and the surface upon

which the original measurements were made. The material was removed by

slabs which assumes that the original surface terrain was essentially

smooth and flat. Obviously, the lack of smoothness may be significant ~

when dealing with small gravitational anomalies. The effect of the terrain

is as follows. Hills will make the Bouguer correction too small, because

less material than is actually there is being removed; whereas, valleys

will make the Bouguer correction too large due to removing material that

never was there. Also, hills surrounding a station will exert a gravita-

tional pull that will be opposite to that of the normal pull of the earth.

Because of all of this, corrections for the hills and the valleys are always

added to the station value for land surveys. To compute the

effect that each hill and valley surrounding a station has on

the gravity at that point is a tedious process. The corrections

can be made with an accuracy of 0.1 to 1.0 mgal by the use of templates
and graphical methods (Appendix A contains terrain correction tables.)

The topographic features closest to the station will have by far the

greatest effect on the gravity reading whereas the topographic effect

decreases rapidly with distance from the station,
When the gravitational attraction is measured on the ocean surface
above the level of the ocean bottom, the Bouguer and terrain effects are

calculated as if the water were replaced by rock. The terrain effect for

a simple vertical cliff can be positive and negative. For a measurement
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1

Terrain correction for gravily measurement at sea surface.

at position 1, the Bouguer effect is calculated as if the depth h, extended
continuously and does not take into account the deeper water to the right
of the cliff. Therefore, the calculated Bouguer effect is too small and

the terrain correction is positive. At point 2, the Bouguer correction

does not see the higher topography to the left of P, the calculated effect

is too large and the terrain correction is negative. 1In the ideal case shown,

the change increases to the point P and then suddenly reverses, as shown

by the terrain correction curve in the upper part of the figure. In

actual topography, the cliff would not be vertical and the two sharp peaks
would be smoothed out. Because the instrument is above the topography

in ocean measurements, the effects are much larger than for land measure-
ments. For a survey off-shore California, terrain corrections of the order
of + 25 mgals were calculated. For gravity measurements made in the air,

the effects are even larger than for marine measurements, because the density
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contrast is rock relative to air rather than rock relative to water.

The - latitude correction is a correction which mathematically corrects

for the earth's rotation and makes it a sphere instead of an oblate
spheroid. Also, the rotation of the earth and the associated centrifugal
force causes an increase of gravity at the poles relative to the equator.
This correction utilizes the international gravity formula to obtain the
rate of change along a north-south line. The radius of the sphere is
arbitrarily chosen by selecting any one station as being on the sphere
and correcting the other stations so that all of the points now lie on
the spherical surface.

Summary--The earth is isolated in space by means of the earth tide

or drift correction, its surface is smoothed by means of free-air, Bouguer,

and the terrain corrections, and its rotation stopped and reshaped into a

sphere by means of the latitude corrections. If all of the corrections have

been done correctly and carefully, the remaining anomaly should be due only
to density contrasts caused by the replacement of a heavier or lighter mate-
rial (ore body or salt dome) or due to structural features such as faults,
anticlines, domes, etc. (see chart on next page).

Every correction need not be used in all cases. Those which are

essential and should always be used are the earth tide or drift, free

air, and Bouguer corrections. The terrain correction need not be used where
the ground is exceptionally flat or where a large anomaly is being dealt
with, The latitude correction need only be applied where the survey covers
considerable distances in the north-south direction. The gravity map

after the application of latitude, free-air, Bouguer, and terrain corrections

(if used) is called a Bouguer map. The largest single source of error in land

gravity maps is due to elevation errors.
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Correcting gravity measurements made at sea aboard a moving ship is more
complex than correcting land measurements. The horizontal and vertical accel=-
erations due to the movements of the ship can be O.lg (1oo,ooo milligals) or
more. The vertical motional accelerations are in the same direction as the
gravity being measured and must be eliminated by damping and filtering
operations. Any cross-coupling of horizontal forces to the vertical forces

must be eliminated or measured and removed. The cross-coupling correction

is & function of the particular gravimeter used in the gravity survey and is
normally effected by direct measurement and subsequent vectoral subtraction

or by mounting the gravimeter on a gyroscopically stable platform and developing
a cross-coupling correction in the instrument.

The Eétvas correction is required to remove the accelerational effeét

experienced by a body moving over a curved, rotating earth instead of being
stationary on the earth's surface. The Eotvos effect, which includes the
vertical component of the Coriolis force, can be quite large even for moderate
ship speeds. For example, at a speed of 10 knots on an eastward course at

the equator, there is a 75 milligal positive correction and on a westward
course, a 75 milligal negative correction. To make the Eotvos correction to
an accuracy of 1 milligal or less for nearly east-west courses, the ship's
speed must be known to about 0.1 knot; for nearly north-south courses, the
azimuth (heading angle relative to astronomic north) must be known to about 1°,

The greatest single source of uncertainty in sea gravity maps is location.

If a gravity value is to be determined at a closely defined point, its precision
is low because the short-time value near that point is strongly influenced by

short-period motional components. The higher the precision, the greater the

time over which the average must be taken and, depending on the speed of the

ship, the greater the distance over which the average is applicable.
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MATHEMATICAL BACKGROUND FOR CORRECTING GRAVITY DATA

A. Free air correction-- considers the change in gravity with change

P of distance from the center of the earth.
h The gravity at sea level is g = %g
(o]

geoid ‘_*_

where G = gravitational constant

M

mass of the earth

radius of curvature of the earth .

T

The gravity g at a point "P,'" "h' metres above sea level is
GM

g——'—z

=5 GM (r+h)-2 which can be expanded

GM[ PR NI CORN z%i)ni)r‘sh%...]

2 3

g = +3h _4h” + ...y oor
—7'( r2 T2
3

2h  3h h
O(l-—}l*—z- ig—"')

g

The free air correction, "gf” is g, -8

2
ggl_\ , 4h
gg= go-g = (@8 2ro + w57 - 000)

where gnlis the average gravity value = go/2 and T, is the average
radius of the earth.

The factor Efg_ is a constant at any gravity station. The second

and third t:%ms vanish except in very high altitudes. For example,
if h = 5000 metres, the influence of the second term is 1.7 mgal, but

for h = 2,000 metres, it is only 0.3 mgal. For h = 1000 m, the con-

tribution is only 0.07 mgal.

N

gf

0.3086 h milligals where h is in metres

gf = 0.09406 h milligals where h is in feet
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The Free Air correction is positive for areas above sea level and

negative for areas below sea level.

B. Bouguer Correction--In addition to the attraction of the Earth's mass

below the geoid's surface, the mass between the geoid and the observation
point exerts an attraction. This attraction must be removed from the
observed gravity.

Imagine a horizontal plane through the point "P'" so that there
is a plate of mass between the point '"P'" and the geoid. The attraction

of the mass element "dm'" on "P" can be found as follows:

G dM

dg = —— but
d2
dM = prdrd6dz
in cylindrical coordinates
d = r2 +22
so dg = Gp rdrgedz
d
but g = g cos B
z
so dg = Godezgzrdr
z d
T h2 r2 rdr
g =Gp de zdz , the vertical
z f [ (22 . rz) 3/2
o h T

attraction of a cylindrical ring at the point "P." If we let r;=0,T,= ©,h,=0

we have the attraction of an infinite rock layer of thickness h.
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The vertical attraction of the infinite rock layer of thickness

h is
g = 2rGph where h is the height above mean sea level
(the surface of the geoid)

So

gBouguer = anpm = 0.04185 Pnean milligals/metre

h
or
E—Bi’l‘ﬁﬂel = 0.01276p_ milligals/foot
pm = means density of earth

Using the relations

g= ¢ = 4 mGp, T, we have G = g

T 3 4ﬂpm T

Substituting in the equation

g Bouguer = 2mGph, we have
g Bouguer = 2mph (ég-———) . 3gph
4npm T me T

The value of g Bouguer must be subtracted from the observed gravity value
at "P" if the gravity station is above the datum (always opposite to gf).

Combining the free air and Bouguer corrections, we have-

G+G=gﬂ _2 .g_.p..h_
£ b
T 2 PnT
=2—§£(1-§£—.)=(1-3—r.—)f
ap, 40,
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The effect of the Bouguer correction is to diminish the effect of the
free air correction by about 1/3. We obtain different values for the
combined correction accoring to values for p and p m.

If p =2.67 gm/cm3 =0.034 mgal/foot

5 g 8
or the combined correction becomes

(0.094 - 0.034)h or 0.060n mgal where h is in feet

Table of combined correction values

Density (p) mgal/metre mgal /foot
1.6 0.2416 0.07364
1.7 0.2375 0.07237
1.8 0.2333 0.07109
1.9 0.2291 0. 06982
2.0 0. 2249 0. 06854
2.1 0.2207 0. 06726
2.2 0. 2165 0. 06599
2.3 0.2123 0.06471
2.4 0.2082 0. 06344
2.5 0. 2040 0.06216
2.6 0.1998 0. 06088

' 2.7 0.1956 | 0. 05960

Elevations must be known to about 1 foot (0.3 metre) if the combined

correction (gff 8, ) is to be accurate to less than 0.1 m gal.
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C. Terrain correction: This correction is made through the use of charts

and tables devised by S. Hammer (Geophysics, Vol. 4, pp. 184-194, 1939).
This correction is always positive for land measurements (see Appendix A).

D. Latitude correction: Because of the ellipticity of the earth and its

rotation, the acceleration of gravity on its surface is not constant, but
is a function of the latitude. We can make some calculations in order to
obtain an approximate value of the difference in the acceleration of
gravity at the poles and at the equator. Consider first the effect of
the polar flattening. If we assume that the earth attracts as if all its
mass were located at the center, the gravitational attraction at the poles

8 2

would be = M/ (6.3569 x 10 cm)

gpole .
At the equator, the gravitational attraction would be GM/(6.3784 x 108 cm)2

Their ratio is
gp/ge = (6.3784 x 108)2/(6,3569 X 108)2 equals 1.0043

Since gp is approximately 1000 gal, gp exceeds g by about 4 gals. However,
this assumes that the earth attracts as if all its mass were located at
its center which is not an entirely valid assumption. We must also take
account of the centrifugal acceleration.

The centrifugal acceleration is perpendicular to the axis of rotation
of the earth and is proportional to the distance from its axis. It is
zero at the poles and attains its maximum at the equator. Its value at
the equator is wzr where w is the angular acceleration and r is the equa-
torial radius of the earth. Thus we have

2 -
w'r equals (7.29211 x 10 5)2 x 6.3784 x 108 equals 3.4 gal.
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At the equator, the centrifugal force is directed opposite to
the gravitational attraction. Thus, we would expect the acceleration
of gravity at the poles to be about 7 or 8 gals greater than at the
equator, a difference which is slightly greater than the actual observed
value of about 5 gal.

In most cases, we wish to eliminate the differences in gravity
due to latitude variations because they tend to mask or confuse the
anomaly of interest.

The latitude correction takes into account the increase of
gravity from the equator to the pole and is usually made relative to an
arbitrary base latitude within the survey. To make the correction, the

internatibnal gravity formula is used. It is as follows:
gy - 978.049 (1+0.005288 sin2¢ -0.0000059 sin22¢)

We can use this formula directly or differentiate and obtain the rate

of change of gravity in a north - south direction.

2

0.8119 sin 2¢ mgal/km or

1 dgo = 1.307 sin2¢ mgal/mile or
R d¢
1 dgo = 0.0002475 sin 2¢ mgal/ft
R do

where R is the radius of curvature of the mean sphere (6371 km). In making
the correction in the northern hemisphere, the correction is subtracted
for points north of the reference latitude and added for points south of

the reference latitude. (The opposite is true for the southern hemisphere).
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E. Earth Tide or Drift Correction: This correction corrects for the

attractive effects of the sun and the moon as well as correcting for the

natural drift of the instrument. This correction is made by estaﬁlishing

a base station and making periodic readings at this station

at frequent intervals of time while the rest of the survey is being -
made. All stations are then corrected to the first reading at the

base station by plotting a graph of the variation of gravity at the base

station vs time, recording the times at which other station readings were

taken, and interpolating the magnitude of the correction for each station

from the graph. Earth tide charts are also used.

SPECIAL INTERPRETATIONAL AIDS
The simple formulas for spheres, cylinders, and faults canAsefve
very well as models to calculate the approximate magnitudes of gravity
effects for comparison with observed values. There are, however, many
interpretational problems in which the simple calculational models are
inadequate. When more detailed calculations are needed, graticules,
dot charts, solid angle charts, and other schemes are used. Each of these

will be discussed in the following pages.

Skeel's Graticule o # x
LY

~§)‘*
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The vertical component of gravitational attraction at origin "o" of prism

or solenoid ABCD (extending to infinity in direction normal to parer) is

A

n

g, = 200 (8, - 8) (2, - Z)

]

If we substitute p 1.0 cgs units and t = 100 metres (or 328.1 feet) in

the formula for an infinite slab: (Note: 328.1 ft = .3281 kilo ft)

Agz = (12.77) (1) (0.3281) = 4.19 milligals

Thus, an infinite plate of 100 metre thickness has a ﬁgz of almost 42 gravity

units per 1.0 cgs density contrast.

For (22 - Zl) = 100 metres and for (82 - 61) = 27, we then have the

attraction of an infinite sheet 100 metres thick of density contrast. 1.0 cgs.

By..constructing a graticule or template with 42 equal angles, the gravity
effect of any one compartment defined by the angles and boundaries of

the horizontal slab is 1/42 of the total effect or 1 gravity unit.

If t = 500 feet, then
Agz = (12.77) (1.0) (0.5)

i

64 gravity units
So 64 equal angles form the graticule
Skeel's has designed such a template to graphically determine the AS% of

irregularly shaped 2-dimensional bodies. (See figure on next page.)
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Dot Chart--In a dot chart, units of area are proportioned so that

they represent elements of mass having equal effects at the ofigin of
the chart.

Thus, these units increase in size with their distance from
the origin.

If these elements of area are made small enough, each such

area can be represented by a single dot at its center.

To determine the
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gravity effect of a 2-dimensional mass, it is necessary only to draw
an outline to the scale of the dot chart for the body being considered
and to count the number of dots lying within the area. The number of dots
at each point is multiplied by a factor which depends on the design of the
chart, the scale of the cross-section, and the density contrast. By re-
peating the operation for a number of points along a profile, the calculated
gravity effect can be obtained in a straight forward manner.

The dot chart developed by Morgan and Faessler (1972)* (shown above)
is applicable for 2 and 3-dimensional problems. End corrections are made
for 3-dimensional masses.

The following example will illustrate the use of the dot chart.
The application is for a horizontal cylinder having infinite strike extent
- a 2-D application. The cylinder's cross section is drawn at the scale
of 1:1800 (1 inch to 150 feet) and is overlaid on the chart at an offset of
137.16 m (450 ft.) Being a 2-D case, it is sufficient to count the number of
units covered by the body's cross section and substitute in the eguation

G=C+ P g . N where C = 0.05 = constant, p = density contrast = 0.2 gm/cms,

scale factor = 1800, and N = number of compartments or dots covered by the

*Morgan, N. A. and C. W. Faessler, 1972, A Two and Three Dimensional
Gravity Dot Chart, Geophysical Prospecting, v. 20, no. 2, pp. 363-374.
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