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FACTORS FOR CONVERTING ENGLISH UNITS TO INTERNATIONAL SYSTEM (SI) UNITS

Multiply English units

miles (mi)

feet (ft)

square miles (mi~)
cubic feet per second

(££3/s)

By

1.609
.30L48

2.59
.028317

To obtain SI units

kilometres (km)

metres (m) 5
square kilometres (km~)
cubic metres per second

(m3/s)



WASTE-ASSIMILATION STUDY OF KOSHKONONG CREEK BELOW

SEWAGE-TREATMENT PLANT AT SUN PRAIRIE, WISCONSIN

R. S. Grant

ABSTRACT

A waste-load-assimilation study of a reach of Koshkonong Creek below
the Sun Prairie, Wisconsin, sewage-treatment-plant (STP) outfall indicated
that a high level of treatment would be required to meet Wisconsin water-
quality standards. To maintain a minimum dissolved-oxygen concentration of
5 milligrams per litre during the critical summer low-flow period, 5-day
carbonaceous biochemical-oxygen demand in waste discharges should not
exceed 5 milligrams per litre and ammonium nitrogen should not exceed
1.5 milligrams per litre. Advanced treatment with denitrification is
required because stream-reaeration coefficients are not high enough to
offset deoxygenation caused by an abundance of attached biological slimes.
The slimes apparently consumed dissolved oxygen at a rate of about 110 milli-
grams per litre per day at the time of the stream survey.

During the critical summer low-flow period, natural stream discharge
is very small compared to waste-water discharge, so benefits of dilution
are insignificant.

An evaluation of two proposed alternative waste-water discharge sites
indicated that the present discharge site is hydraulically superior to
these sites.

Stream-reaeration coefficients used in the study were based on measure-
ments using the radioactive-tracer method.

INTRODUCTION

The Federal Water Pollution Control Act of 1965 and the amendments in
1972 require the various States to adopt and meet water-quality standards
approved by the Federal Govermment. The water-quality standards of Wisconsin
require, in part, that wastes discharged into a stream do not cause DO
(dissolved-oxygen) concentrations to drop below 5.0 mg/l (milligrams per
litre) in waters classified for fish, aquatic life, and recreational use.
Wastes also are not to cause toxic conditions or excessively high temperatures
in the receiving waters.



The purpose of this study was to evaluate the waste-assimilative
capacity of a reach of Koshkonong Creek at Sun Prairie, Wis., for determi-
nation of waste loading compatible with Wisconsin water-quality standards.
The study was done in cooperation with the Wisconsin Department of Natural
Resources.

The study area is in northeastern Dane County, Wis., (fig. 1) near Sun
Prairie, which has a population of 9,935 (1970 census). Koshkonong Creek
heads near Sun Prairie and flows through the south side of the city (fig. 2).
The study reach begins in the city and ends at County Trunk Highway T
(station 31, fig. 2). The entire reach has been ditched and realined and
is bordered by agricultural and undeveloped land downstream from Sun Prairie.
During low~flow periods nearly all the discharge of Koshkonong Creek near
Sun Prairie is sewage-treatment-plant effluent.

WASTE DISCHARGES

Waste water enters the study reach from the Sun Prairie sewage-treatment
plant and from a canning company (Wis. Dept. of Nat. Resources, 1971). The
sewage-treatment-plant effluent is discharged just upstream from station 3
(fig. 2). The effluent quantity and quality varies widely. Ground water
infiltrates the sewers in the spring when the water table is high and
causes much higher discharge and much lower quality effluent to Koshkonong
Creek than during other seasons of the year because the plant capacity is
not large enough to treat high flows adequately. Waste water from the
canning company is discharged periodically into Koshkonong Creek upstream
from the municipal sewage-treatment-plant outfall near station 1 (fig. 2)
causing DO concentrations less than 5 mg/l upstream from the municipal
outfall periodically (fig. 3). However, samples of the cannery effluent
were not taken for verification.

During the DO survey May 2, the stream temperature in reach 3-21
ranged from 12.5° to 15.0°C (Celsius), and the stream discharge at station 3
was about 4 ft3/s (0.1 m3/s); May 28 the temperature ranged from 12.0° to
15.5°C and the discharge 6 to 10 ft3/s (0.2 to 0.3 m3/s); August 23 the
temperature ranged from 17.0° to 19.00C and the discharge 4.5 to 6.5 ££3/s
(0.1 to 0.2 m3/s); and September 3 the temperature ranged from 16.0° to
19.0°C and the discharge 2.8 to 4.0 ft3/s (0.08 to 0.11 m3/s).

Canning-company waste sprayed periodically east of reach 3-6 (fig. 2)
may be reaching Koshkonong Creek in high concentrations near station 6
through field-drainage tiles and perhaps surface runoff. This was postulated
based on an observed large increase in CBOD (carbonaceous biochemical-
oxygen demand) at station 6 (fig. 15) and on field observatious that a
milky brown substance was discharging into this reach from a field tile
during the stream survey. The CBOD concentration of the tile discharge was
estimated to be greater than 250 mg/l. There was no apparent increase in
NBOD (nitrogeneous biochemical-oxygen demand) at station 6 (fig. 16). The
canning company was spraying at the time of the survey.
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CBOD data are presented in figures L4-13. CBOD used in the simulations
was that based on using one part sample and five parts dilution water (1:6
dilution).

The curves presented in figure 6 represent CBOD for the same waste-
water sample split into three parts. Each part was diluted differently for
laboratory analysis. The ultimate CBOD (CBOD ) determined from the sample
containing 1 part waste water and 19 parts dllutlon water (1:20 dilution)
was 55.0 mg/l. The 1:12 dilution yielded CBOD,, = 36.0 mg/l and the 1:6
dilution 26.0 mg/1l.

Because of the disparities in CBOD]J determined using different dilution
ratios, data for 1:6 dilutions only were used in the modeling because these
data were available for nearly all the stream CBOD samples taken. The CBODU
for a 1:6 dilution of the sewage-treatment-plant effluent (fig. 5) had to
be estimated for this reason, so that all data would be compatible. The
estimate agreed very well, however, with a mass-balance computation using
1:6 CBOD), determined upstream and downstream from the municipal outfall.

Based on CBOD data obtained during the stream surveys of September 3
and May 28, 197&, it was found that the CBODu was about 1.8 times the CBOD:
(5-day CBOD) well downstream from the sewage-treatment plant. Therefore,
for the waste-load-allocation analyses CBOD5 was computed using

— CBODy
1.8

BOD
CBO 5

Much of the CBOD is being discharged into Koshkonong Creek as settleable
solids (fig. 14). Instream BOD reaction-rate coefficients for the day of
the stream survey are presented in figures 15 and 16.

STREAM-MODEL CALIBRATION

A steady-state segmented DO model developed by Bauer and Jennings
(1975) was used for this study. The model utilizes a modified Streeter-
Phelps equation that incorporates nitrogeneous, benthal, photosynthetic,
and respiration effects on the DO balance. The model takes the following
form:

K t
Doe = initial DO deficit,
K L K.t K.t
Kgl—_ur (e 1 - e 2) = geficit due to CBOD,
1



= (e ® - e °) = deficit due to NBOD,
K. - K
2 n
R —K2t .
E—-(l - e ) = deficit due to plant respiration,
2
B Kot
Ef-(l - e ) = deficit due to bottom deposits, and
2
p Kot
- E—-(l - e ) = mean daily photosynthetic DO production.
2
Where: K, = atmospheric reaeration-rate constant (per day);
K, = decay-rate constant for the CBOD (per day);
Lu = ultimate CBOD concentration (milligrams per litre);

K = decay-rate constant for the NBOD (per day);

]

NBOD concentration (milligrams per litre);

P = oxygen produced by photosynthesis (milligrams per litre
per day);

R = oxygen utilized by algal respiration (milligrams per
litre per day);

B = oxygen used by the stream-bottom deposits (milligrams
per litre per day);

t = elapsed time (days); and

D = initial dissolved-oxygen deficit (milligrams per litre).

The model was calibrated by fitting an observed DO profile of Koshkonong
Creek for September 3, 1974 (fig. 3), using water-quality data collected
that day. Measurements were made of all parameters used in the model
except for benthal and algal effects, which were determined using oxygen-
balance computations by adjusting the model to fit the observed data
through reach 3-21.
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Stream-reaeration coefficients were determined using radioactive
tracers and the energy-dissipation model. The radiotracer method was used
to calibrate the energy-dissipation mogdel:

Ah
K, =0
where: K,, is the base e reaeration coefficient, per hour;

Ah is the change in water-surface elevation in the stream reach,
in feet;

t is the time of flow through the reach, in hours, and
C is the escape coefficient, per foot.

Ko, Ah, and t were measured November 26, 1974, in reach 3-12 {fig. 2) so

that C could be computed for each subreach (table 1). C was then corrected
to the water temperatures observed during the stream survey of September 3,
so that Ko during the survey could be computed for reach 3-12. For reach 12-
21, the C from reach 10-12 was used but corrected to the appropriate water
temperatures. For reach 21-31, a C similar to that of reach 3-10 was used
because the reaches are somewhat similar.

Total and dissolved carbonaceous and nitrogeneous BOD were determined
along with the associated deoxygenation and stream-removal-rate coefficients.
Nitrogen compounds at each station were determined for use in computation
of stoichiometric NBOD using

NBOD = L.h (NHh—N + Org-N) + 1.1 (NOQ-N)
where: NBOD is nitrogeneous biochemical-oxygen demand, in milligrams
per litre;

NHh-N is ammonium nitrogen concentration, in milligrams per
litre;

Org-N is organic nitrogen concentration, in milligrams per
litre; and

NO.-N is nitrite nitrogen concentration, in milligrams per
litre.

Organic nitrogen (Org-N) concentration was determined using

Org-N = (KJD-N) - (NH_-N)

3

where: KJD-N is Kjeldahl nitrogen concentration, in milligrams per
litre.
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model are included in the "Computer Qutput" section.
coefficients presented were computed using natural logarithms.
data were not available to verify the calibrated model.

ammonia nitrogen.
of 2 mg/l.

Stream discharge was measured using current meters (table 2). Time of

travel in the stream was measured using a fluorescent dye tracer.

The values of the various parameters used to calibrate the stream

WASTE-LOAD ALLOCATION

All reaction-rate
Adequate

Waste-load-allocation studies were made for the current discharge site

Table 2.--Stream discharge during time-of-travel studies and during Q

and two potential discharge sites to see what combinations of waste loading
would meet Wisconsin water-quality standards.
concentration of 5 mg/l was the goal along with nontoxic concentrations of
One allocation run also was made for minimum stream DO

Summer and winter allocations were computed using water temper-
atures of 25° and 5°C, respectively.

An instantaneous minimum DO

3

7,10

Station 31 Station 10 Station 21

. bate (£t3/s) (rt3/s) (££3/s)
May 8, 1974 5.5 10.4 16.2
May 21, 1974 6.2 2 7.5 211.5
August 2T, 197k 4.6 4.3 6.6
November 26, 197k 2.6 3.1 ——
.02 .05 .2

% 10

lStation 3 is approximately 50 ft downstream from sewage-treatment-

plant outfall.

2Approximate stream discharge.

3Discharges measured during time-of-travel studies include sewage-
treatment-plant effluent. The figures for the Q7 10 represent natural
b

streamflow only.
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Existing Discharge Site

A summary of the results of nine allocation runs for the existing
discharge site is presented in table 3. E¥ach run is summarized in one row
of the table. A copy of the computations for the second waste-lcad-allocation
analysis is included in the "Computer Output" section.

The reaction-rate coefficients used in the waste-load-allocation runs
were the same as in the model-calibration analysis but were corrected to
the appropriate temperature. It was assumed that all waste water discharging
into Koshkonong Creek would be from the municipal outfall, including waste
water from the cannery, and that there would be no runoff from the cannery's
waste-water spray irrigation site into Koshkonong Creek.

Benthal oxygen demand by biological slimes in reach 3-10 (fig. 2) was
proportioned to the waste loading and was adjusted for temperature also
(table 11). Sludge demand was set equal to zero because the high-quality
effluent from advanced treatment with denitrification required to meet
water-quality standards presumably should eliminate the sludge problem with
proper sewage-treatment-plant operation. Effects of the present sludge
blank should diminish with time.

Algal effects were not incorporated into the allocation model because
photosynthesis cannot be relied upon as a source of dissolved oxygen,
especially during warm, cloudy days when deoxygenation rates are high and
photosynthetic DO production is low compared with sunny days.

Time of travel used in the allocation studies was the same as that
used in the calibration analysis because no stable relationship between
time of travel and stream discharge could be developed.

The stream discharge used in the allocation runs was that of the
effluent plus the Q7 10 (annual minimum T-day mean discharge that occurs on
the average of once in 10 years). The Q7,10 1s so small that it will have
very little beneficial dilution effect on water quality in the study reach

(fig. 17).

The resultant loadings shown in table 3 are instantaneous maximum
loadings that will produce the corresponding minimum DO concentrations in
Koshkonong Creek. Short-term loadings in excess of those shown in table 3
may produce lower DO levels because longitudinal mixing through the DO sag
zone may not be great enough for sufficient dampening of effects of short-
term excess loads. Therefore, use of daily or long-term waste-load averages
as evidence of compliance with water-quality standards may be inapplicable.

Alternative Discharge Sites

A cursory evaluation of alternative discharge sites for Sun Prairie
waste water near stations 14 and 21 (fig. 2) was made to see what degree of
treatment would be required to meet Wisconsin water-quality standards in

2k



Table 3.--Waste-load-allocation summary

2 3 Minimum Effluent

DO 1 CBOD5 NHh"N DO in and stream

effluent y 5

(me/1) (me/1) (mg/1) stream temperature
g & (mg/1) (oc)
6.0 5.0 1.5 4.5 25
7.0 5.0 1.5 5.0 25
8.0 5.0 1.5 5.4 25
8.0 7.0 1.5 4.4 25
8.0 5.0 3.0 5.1 25
8.0 5.0 k.o .6 25
6.0 10.0 1.5 60,2 25
8.0 18.3 4.0 5.0 5
6.0 12.8 4,0 5.0 5

1Dissolved—oxygen concentration in effluent channel
below outfall weir.

25-day carbonaceous BOD of effluent at outfall.
SAmmonia nitrogen concentration of effluent at outfall.
*Lowest instantaneous dissolved—oxygen concentration

computed in the stream for the loading on the same row of
the table.

*Assumed effluent temperature same as stream temperature
during Q7 10 low flow.
9

®At station T (fig. 2). DO increased to 4.9 mg/l by
station 21.

the reaches of Koshkonong Creek downstream from these locations. Sufficient
data were not collected for a thorough evaluation of these sites, but the
avallable data strongly indicate that a higher degree of treatment than that
at the present discharge site would probably be necessary to maintain a
minimum stream DO of 5 mg/l, primarily because stream-reaeration capacity

in the reaches below these proposed sites is much lower than that near the
present site.
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SUMMARY

Advanced treatment with denitrification of Sun Prairie waste-water
discharge to Koshkonong Creek will be necessary to meet Wisconsin water-
quality standards, as shown by the waste-load-allocation summary (table 3).
Natural stream discharge is very small compared to the waste-water discharge,
so benefits of dilution are minimal. The stream-reaeration capacity alone
is not high enough to maintain at least 5 mg/l of DO in the stream.

The present discharge site (station 3, fig. 2) will probably require
a lower degree of treatment than the alternative sites at stations 1k and
21 for maintaining a minimum DO of 5 mg/l in the study reach.

Ground-water infiltration into the Sun Prairie waste-water-collection
system in the spring when the water table is high produces very high
discharges into the sewage-treatment plant. Despite the high inflow of
ground water to the system the quality of the effluent during these periods
is considerably lower than at other times of the year because waste water
passes through the treatment plant so fast that it cannot be treated adequately.

High BOD and low dissolved oxygen have been found in Koshkonong Creek
upstream from the municipal outfall near the cannery cooling-water outfall.
Waste water has been reported to enter the study reach from the cannery
(Wis. Dept. Nat. Resources, 1971) and the cause is probably discharge from
this source. Samples of the cannery effluent were not taken for verification,
however. Also, cannery waste water being sprayed east of reach 3-6 is
apparently reaching the stream in strong concentrations through field-
drainage tiles and (or) surface runoff.

Removal or enlargement of farm culverts at stations 15 and 20 (fig. 2)
along with removal of fallen trees and debris in reach 17-31 would probably
alleviate sludge problems and enhance stream-reaeration capacity. Recurring
debris accumulations would have to be removed periodically to maintain
free-flowing conditions.

The effects of storm sewer discharge on water quality and the computations
and evaluation of BOD loading were not investigated.
COMPUTER OUTPUT
The following pages contain computer output for the model-calibration

run and the waste-load-gllocation run for the critical summer low-flow
condition.
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STEADY STATE SEGMENTED DISSOLVED OXYGEN MODEL

(Bauer and Jennings, 1975)
Ue Se GEOLOGICAL SURVEY

DATE OF LAST REVISION, FEBRUARY 19674

MODEL CALIBRATION RUN FOR 9/3/74-KOSHKONONG CREEK WASTE ASSIMILATION STUDY

NUMBER OF SUBREFACHES FOR THIS PROBLEM = 8
INITIAL CHOD CONC (Mi/L) AT STARTING DISTANCE = 25.800
INITIAL NBOD CONC (MG/L) AT STARTING DISTANCE = 70.700

INITIAL DO CONC (MG/L) AT STARTING DISTANCE = 5.500
STREAMFLOW (CFS) AT STARTING DISTANCE = 24840
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TABLE4 S UBPREACH LINEAR RUNOEFFTF

DATA

SUBREACH

NGV H WN -

TABLE 5

OO0 VOO OVO ~
s e =
VRV,

CFS)

c80D
(MG/L)

6.0

COCOCO OO

® & & o ¢ o

CO OO0 OOC

NBOD

(MG/L)

0.0

SO0 O00O0D

e ® @ o & o

QOO OO0

DO

(MG/L)

0.0

SOOI
® ® ¢ o 0 o o
coCoQooo

REACH DESCRIPTION DATA

( MAJUOR TRIBUTARIES AND MAIN STEM )

SUBREACH

NS W

KEy: colt

rFXQC=~IODTMMDIDODP

————— s w—

CODE

ccCccCccCcec oo

ROCKY
ROCKY
ROCKY
ROCKY
ROCKY
ROCKY

MUD
MUD
MUD
MUD
MUD
MUD

NAME

STATIONS
STATIONS
STATIONS
STATIONS
STATIONS
STATIONS
STATIONS
STATIONS

3-6
6-17
71-10
10-12
12-14
14-17
17-21
21-31

BOTTOM=POOL RIFFLE~LIGHT VEGETATION
B80TTOM=POOL Ri FFLE-MEDIUM VEGETATION
BOTTOM=POOL RIFFLE-HEAVY VEGETATION
BOTTOM=CHANNEL CONTROL-LIGHT VEGETATION
BOTTOM=CHANNEL CONTROL-MEDIUM VEGETATION
BOTTOM-CHANNEL CONTROL~-HEAVY VEGETATION
BOTTOM=POOL RIFFLE-~LIGHT VEGETATION

BOTTOM=POOL RIFFLE-MEDIUM VEGETATION

BOTTOM=POUL RIFFLE-HEAVY VEGETATION

BOTTOM=CHANNEL CONTROL-LIGHT VEGETATION
BOTTOM=CHANNEL CONTROL=-MEDIUM VEGETATION
BOTTOM=CHANNEL CONTROL-HEAVY VEGETATION
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TABLE6., W ASTE SOURCE AND MINOR TRIBUTARY DATA

SUBREACH DATE CODE NAME Q CB0OD NBOD Do TEMP
(CFS) (MG/L) (MG/L) (MG/L) (DEG. C)
1 9/74 A SUN PRAIRIE STP Ceb 26,0 75.1 6.3 1840
9/74 A CAN.WASTE NR STa 6 0.3 354.,0 0e0 0.0 20.0
6 9/74 A TRIB NR STATION 14 0.3 5.7 3.0 17.4 19.0
KEY: SOURCE CODE
A UeSeGEOLOGICAL SURVEY-WATER RESOURCES DIVISION-MADISONsWISCONSIN
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TABLE 7 I NPUT PARAMETERS

CONCENTRATIONS OF =--

SUBREACH CARBONACEOUS ULT. BND NITROGENOUS BOD DO DEFICIT
3 0.0 0.0 0.0
2 354,000 0.0 9,000
3 0.0 0.0 0.0
4 0.0 0.0 0.0
5 0.0 0.0 0.0
6 5700 3.000 -8.500
i 0.0 0«0 0.0
8 0.0 0e0 0.0

DIRECT DISCHARGES OF =~

SUBREACH CARBONACEOUS ULT. BOD NITROGENOUS BOD DO DEFICIT
1 0.0 0.0 0.0
e 0.0 0.0 0.0
3 0.0 0.0 0.0
4 0.0 0.0 0.0
5 0.0 0.0 0.0
6 0.0 0.0 0.0
7 0.0 0.0 0.0
) 0.0 0.0 0.0

SUBREACH NET PHOTOSYNTHETIC DO PRODUCTION BENTHIC DO DEMAND
(MG/L/DAY) (MG/L/DAY)
1 00 1100
2 00 M0 0
3 00 200
4 30.000 0.0
5 15.000 0.0
6 7.000 0.0
7 6.000 0.0
8 0.0 0.0

GEOMETHKY

SUBREACH FLOW CHANGE STATIONS TRAV.TIME TEMP
(CFS) (HRS) (DEG.CENT)
1 0.0 3-6 0.97 16.50
2 0.3 6-7 0.45 16.90
3 0.0 7-10 2.08 17.00
4 0.0 10-12 1.80 18.00
5 0.0 12-14 2445 19.00
6 0.3 1417 3.38 18.80
7 0.0 17-21 3.37 16.50
A 0.0 21-31 6.92 13.80
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SUBREACH

©~NU D WA

REACTION

TABLE 7.

INPUT PARAMETERS- CONTINUED

COEFFICIENTS

KR

2579
2539
2529
1.981
0.527
1387
1777
10975

K1

0.130
0.280
0.280
0.250
0.250
0.250
0.200
0.160

TEMPERATURE CORRECTED REACTION COEFFICIENTS

SUBREACH

TN WM

SUBREACH

TN W N

KR

26248
2248
2e248
1.832
0.507
1.323
1.549
1.549

K1

0.113
0.248
0.249
0.231
Vel40
0,239
0.174
0.125

KN

0.299
0,299
0,299
N.584
0.404
0.317
0.317
0.317

DO SATURATION
(MG/L)

9.687
9.603
9.582
9.377
9.180
9.219
9.687

10.293

32

(/DAY AT 20 DEG. C)

KN

0.343
0.338
0.336
0.632
0.420
0332
0.364
0.404

K2

B850
B8.930
44050
3.140
1.580
1560
1,490
2e810
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STEADY STATE SEGMENTED DISSOLVED OXYGEN MODEL
(Bauer and Jennings, 1975)

Ue Se GFOLOGICAL SURVEY

DATE OF LAST REVISIONs FEBRUARY 1974

SUN PRAIRIE WASTE=LOAD ALLOCATION==-SUMMER RUN

NUMBER OF SUBREACHES FOR THIS PROBLEM = 8

INITIAL CBOD CONC (MG/L) AT STARTING DISTANCE

= 9.000
INITIAL NBOD CONC (MG/L) AT STARTING DISTANCE = 6.600
INITIAL DO CONC (MG/LY AT STARTING DISTANCE = 7.000
STREAMFLOW (CFS) AT STARTING DISTANCE = 2580

36



TABLEY S UBREACH LINEAR RUNOFF DATA

SUBREACH Q ca800 NBOD Do
(CFS) (MG/L) (MG/L) (MG/L)
1 0.01 0.0 0.0 8.0
2 0.0 0.0 0.0 8.0
3 0.02 0.0 0.0 8.0
4 0.03 0.0 0.0 8.0
5 0.04 0.0 0.0 8.0
6 0.03 0.0 0.0 8.0
7 0.03 0.0 0.0 8.0
8 0.17 0.0 0.0 8.0

TABLE10O W ASTE SOURCE AND MINOR TRIBUTARY DATA

SUBREACH CODE NAME Q CBOD=-5S NBOD Do TEMP
(CFS) (MG/L) (MG/L) (MG/L) (DEG. C)
1 A STP EFFLUENT®Q7,10 2eb 5,0 6.6 7.0 25.0

KEY: SOURCE COOE

A UeS«GEOLOGICAL SURVEY=WATER RESOURCES DIVISION-MADISONsWISCONSIN
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TABLE11 INPUT PARAMETERS-CONTINUED

REACTION COEFFI1CIENTS (/DAY AT 20 DEG. C)

SUBREACH KR K1 KN
1 2.579 0.130 0.343
2 24539 0.130 0.338
3 24529 0.130 0.336
4 1.981 0.130 0.632
5 0.527 0.130 0.420
6 1.387 0.130 0.332
7 1.777 0.130 0.364
8 1.975 0.130 0.404

TEMPERATURE CORRECTED REACTION COEFFICIENTS

SUBREACH KR K1 KN K2
)\ 3.138 0.158 0417 10650
2 3.089 0.158 0.411 10650
3 3.077 0.158 0.4009 40320
4 2.410 0.158 0.769 36660
5 0.661 0.158 0.511 1.800
6 l.687 0.158 0.404 1.800
7 2.162 0.158 0.443 1.800
8 24403 0.158 0.4932 34580
SUBREACH DO SATURATION

(MG/L)

1 8.125

2 8.125

3 8.125

N 4 8.125

S 8.125

6 8.125

1 8.125

8 8.125
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