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Preface

This is a first draft of a syllabus intended to be used as a guide
for a short course in the subject of sampling designs for conducting
geochemical surveys. It was prepared for a course sponsored by the
Division of Continuing Education, University of Calgary, on November 2-4,
1976, at the invitation of Dr, J. E., Klovan, Head, Department of Geology.

Sampling programs in field geochemistry vary widely in scope and
purpose and are directed at regions that may differ greatly in geologic
character., There is no single sampling design--no general type of
design-~-that will be adequate and efficient in all situations, There-
fore, the best that a syllabus such as this can do is to offer some
general principles that can be applied to the development of a sampling
éesign that will suit a particular need. It appears obvious to me
that the most useful and applicable principles are those associatéd
with the methods of analysis of variance, and most of this syllabus leads
up to the application of analysis of variance methods to geochemical
s;mpling problems, Other parts, supplementary in nature, are intended
to introduce the reader to some particular statistical methods that may
be of use in the analysis and interpretation of geochemical data. As
with most statistical methods, however, none can be properly applied
unless the sampling was appropriate, .

One essential element of any sampling design is a randomization
'procedure, particularly in the selection of the precise sampling points.
The notion of random sampling disturbs some geologists because they

feel that the samples should be collected purely on the basis of
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Sampling designs for geochemical surveys

I. General

The purpose of the course is to introduce the student to some
statistical concepts and methods that can be used to design geochemical
sampling programs in ways that will enable him to judge the reliability
of the results of the program (commonly, geochemical maps) with some
degree of objectivity, The same principles will enable him to design
sampling programs that have maximum efficiency in terms of both field
and laboratory costs,
1) Purpose and scope of geochemical surveys,

a) Geochemical exploration for mineral deposits--to identify
gecchamical anomalies, i.,e,, areas within a region that are
distinctly different geochemically from the region as a whole,

b) Environmental geochemistry--to describe the geochemical character
of a region, and 1:; variation in geochemical character, in ways
that will be of use i{n epidemiological studies by medical
scientists,

c) Investigations of environmental pollution-~to measure the
intensity and extent of alterations in the geocheamical environment
caused by activities of man,

d) Geologic studies--to msasure the abundance and distributions of
the elements, on local to global scales, as a means of studying

both local and global geologic processes,



2} Geological populations as frameworks for sampling,

In statistics, a population is any set of individuals (or objects)
having some common observable characteristic; a statistical sample is
a gubset of the population (Dixon and Massey, 1957, p. 30). In geology,
we usually ars interestad in rock or soil units that can be regarded
a8 populations only after they have been conceptually subdivided into
individuals, Each of the individuals constitutes a potential geological
sample, and a group of these samples constitutes the statistical sample,
Whether the population is a rock or soil unit or a populatiom in the
true statistical sense of the word, it can be defined in any manner
suitable for the purpose of the investigation. In many investigations,
and perticularly ia those directed at rock units, it is important to
distinguish between the target populations at which the investigations
are directed and sampled or available populations which are accessible
for sampling. A sampling frame is a 1list of all the individuals in the
population and can be used to sslect samples by objective proceduras;
sampling frames are almost never availabla in geochemical sampling and

80, other methods of selecting samples objectively mmst be used,



3) Concept and definition of sampling localities.

An individual sample or group of samples is usually taken from
a rock or soil unit to represent some part of the unit that is larger
than the sample itself, This part of the unit is the ssmpling
locality, Many sampling plans are nested and involve sampling at a
number of levels, Thus, areas may be selected within the region, sites
may be selected within the areas, and points may be selected within
the sites., The areas constitute the master sampiing localities, and
the sites are minor samnling localities. In many designs, sampling
localities of intermediate scale may occur, The lanpling points are
the specific exact locations from which the samples are taken and camnot
be resampled. The sampling localities can be defined in any manner
suitable for the pnrponé éf the investigation., In sempling stratified
rocks, for example, the sampling localities may be stratigraphic
sections or parts of sections. In many geochemical exploration programs
based on stream sediment sampling, the sampling localities are segments

of streams or stream intersections,



4) A 73eneral statistical model for geochemical sampling.

A statistical model is formed to define the sampling problem and
to specify the sampling design, The sampling and statistical analysis
are performed in accordance with the model and serve to estimats
paramstars associatad with the model., Sampling designs may be based
on a variety of diffsrent models depending on the nature and purpose
of the investigation, but a general nestad, or hiesrarchical, model is
appropriate in a great many geochemical problems. This model can be
used to estimats the nature of the geochemical variability and, therefore,
as a £irat stap in designing an efficient final sampling program. The
model will be described on a term-by-term basis,

I£ a rock or 30il umit were perfectly homogeneous on a sample-to-
sample scals, the geochemical value for the ZA sample, X , would be
the same for all samples and equal to the mean, /4 » for the entire unit:

x=mMm . . (1)
Laboratory measurement of the geochemical values, however would involve

at least some error, and a more realisitic model is:

2
Z-,;,"/“‘*GAL ’ ®

where € i3 the messurement error for the laboratory detarmination on

the %l sample, If the sum of all values of & tends toward zero as

the number of values incrsases, the sum of X  for all samples, divided

by the number of samples, will tend towards s However, i£ the s3um of

e, does not tend towards sero, the experiment will lasd to biased rasults.

The population of the values of €. must have a mean of zero for the



model to be valid, The total experiment (sampling, laboratory amalysis,
and statistical treatment) must be conducted in such a way that the
wvalues of € contained in the observed values of ¥ will tend toward
sero as the number of samples is increased,

Suppose now that the rock or soil unit varied in composition on
a regional scale so that the master sampling localities were each
compositionally homogeneous but varied from one to amother, Suppose
also that one sample was collected from each locality and that more
than one analysis was made of each, The appropriate sampling model
then would be:

Kif = p o+l (9 .
The term ; in this model is the difference between the mean for the
entire rock or soil unit and the value for the entire «ZA master
sampling locality, and %, is the JUA analytical determination on the
sample from the 2L locality. Suppose further that each of the master
sampling localities varied intermally and that a number of samples
vere taken from eech of them, The sampling model would be:
fLA;# ke a(;-;-p";} "e-&d(',k- . (4)

In this model, )g,,'&’é_ represents the 4% analytical determination om
the d’d’ sample from the -;ILunpung locality; M as before, is the
grand mean value for all individuals in the populatiomn; X; is the
difference between the grand mean and the mean for the <Zi locality,
/2., 18 the difference between the d,ﬁ/ sample from the <ZL locality

¢

and the mean for the .<2L locality, and €, 4 is the error in the £24

Y
apalytical determination on the OL&" sawple from the ﬂf locality.



Each of the subscriptad tarms to the rizht-hand side of the model should
have sums that tend toward zero as the numbers of sampling localities,
samples per locality, and analyses per sample are increased, It is
also required that these variables are uncorrelated with each other,

but this will be discussed im detail at a later time,

Hierarchical sampling models can contain any number of tarms; the
number will depend on the degree of detail sought regarding the nature
of the geochemical variation. Xrumbein and Slack (1956), in a study of
radioactivity in a shale bed in the Illinois basin, used 9 terms to
Tapresent scalas of variation ranging from basinwide to a few inches,
Shaw (1961) used a similar hierarchical model to assess the variatiom
agsociated with sampling (i.e., sampiing the sample), sample preparation,
and laboratory analysis.

The sampling model given in equation (%), h&wev‘t, is sufficient
for many problems in geochemical axploration. It cam be aade mors
complex by the addition of new terms if more detailed informatioa is
desired about the sources of variation in the data, or it can be simpli-

fled if the degree of laboratory error is not of concern. In the latter
case, the model would be:

Top =t Xl + Ly . (5)
The term A"'J- here is the difference between the value for the J.f/!_
sample from the L% locality and the mean for the .cZi locality (ra).
Thus, 23 J- represents the error due to both the selaction of the sample

and the laboratory analysis (the sum of Bl d‘ and &€ ".'a(ﬁ in equatiom 4),



5) Statistical properties of geochemical data.

a) Frequency distributions and data transformations

Frequency distributions are described by histograms or by
distribution curves (also distribution functions or probability
distribution functions). Histograms are formed by plotting the
frequency of occurrence, -f(‘x), against a range of X (see fig. 1).

As the number of occurrences increases and the range of X decreases,

the form of the histogram moves toward that of the distribution curve,
Because the number of occurrences that can be observed is always limited,
we never know the form of the distribution for the population, and this
has led to some controversy among geochemists, It is the form of the
distribution of the population that is important, not the form displayed
by the data on hand, Nevertheless, the data on hand provide our omnly
clue to the nature of tge population,

From the discussion of sampling models, it is apparent that each
geochemical value is, or at least can be viewed as, the sum of a number
of other variables., Accordingly, the frequency distribution of the
values will be determined by the distributions of these individual
variables, In other words, the form of the frequency distribution
will be determined by the nature of the regional variation in the rock
or soil unit, the nature of the local variation, and the nature of the
laboratory errors, Moreover, if more than one rock or soil unit are
sampled (or have influenced the samples--as in stream sediment sampling,
for example), the differences among the units and their relative extents

will also affect the nature of the observed frequency distribution.
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Investigations of this problem by means of computsr simulation have
been described by Govett, Goodfellow, Chapman, and Chork (1975).
It is obvious that geochemical frequemcy distributions cammnet be
expected to have the exact form of any classical distribution. In
order to use existing probability theory, some classical frequency
distribution must be assumed, It is necessary to choose the classical
distribution that best approximates the distribution displayed by the
data, Many statistical methods are said to be robust--that is, they
are not highly sensitive to differences between the classical
distribution essumed for the statistical amalysis and the actual
distribution of the population (See Kendall and Stuart, 1961, p. 465-9).
Most statistical methods have been developed for the analysis of
data from populations that are normally distributed, The normal

distribution curve is defined by:

Fx) = V'/’- exp (-C 7—'/‘02/ &5}) (6)

ovan

where M and G are parameters of the distribution--the mean and standard
deviation, respectively, A particular normel distribution is specified
by the notation: N&«)d‘} ); distribution curves for A ( 3)0.'7‘7), A/(.3.7J 0.99),
and A/(s,o./zzs) are shown in figure 2,
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Various statistical tests are available to determine the chances
that an observed frequency distribution of data could have resulted
from a population distribution that is normal, If the chances are
found to be good, statistical theory based on the normal distribution

can be applied without much fear of arriving at erronecus results.

However, if it is found that the sample distribution departs
markedly frop the npormal form, it may be advisable to transfom the
data in some manner--choosing a transformation that has a distribution
closer to normal., The transformation most commonly used in geochemistry
is the logarithm, If the logarithms of the geochemical values (the
values in units of ppm or percent, for example) for the entire
population are normally distributed, the population is lognormal,

In most geochemical problems, the entire population is never observed,
but if tests of the logarithms of the data fail to indicate
statistically significant departures from the normal distribution, the
population distribution is inferred to be lognormal, In practical
situations, more often than not, these tests do indicate significant
departures, and the inference of a lognormal population is commonly
not possible, However, in almost all problems involving minor element
distributions, the possibility of a2 normal population distribution can
be rejected with much greater confidence than can the possibility of

a lognormal distribution. Moreover, the logarithms of the data values
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almost always display approximately symmetrical frequency distributions,
whereas the frequency distributions of the original values are almost.
always highly asymmetrical, The symmetry of the log distributions
renders the log data acceptable for treatment by a wide range of
statistical tests based on normal distribution theory.
It may appear at the onset that we wish to study the geochemical
data in units of ppm or percent and that transformation of the data
to logarithms defeats this purpose, However, it should be noted that
experienced field geochemists,wittingly or unwittingly, almost always
interpret geochemical data in terms of logarithms even though they
commonly do not actually transform the dagg or use formal statistical
methods. Geochemical values are almost always compared on a proportional
basis; that is, the differences between 1 and 2 ppm, between 10 and
20 ppm, and between 100 and 200 ppm are considered equally significant
in both a statistical and geochemical sense, If all of these geochemical
values are transformed to logarithms (base 10),the difference for each
pair is 0.30103 and, therefore, treatment of the log data by conventional
statistical methods is in accord with the long-standing practice of
most geochemists, Transformation of the data to logarithms allows
one to examine proportional,rather than absolute, geochemical differences,
Another important reason for the log transformation is to avoid
the strong relations between the means and variances that are almost
always present in the original ppm or percent data. Such relations
can invalidate analysis of variance methods (Cochran, 1947) that are
almost necessary for rigorous analysis and interpretation of geochemical

data,

12



A final benefit of the log transformation is that variances
and covariances estimated for log data are independent of the
manner in which the original data are expressed. The log variance
of titanium, for example, is the same whether the data are expressed
as percent Ti, percent 1'102, parts per million Ti, or parts per
million Ti0,.

The lognormal distribution curve is defined by (from Aitchison

and Brown, 1957, p. 8):

f(@=xa_v’3;: ezﬁ(—(h‘}’-—/«)/&a‘z' (7

where /( and O~ are, respectively, the mean and the standard deviation

of the logarithms (base e). A particular lognormal (i.e.,, 2-parameter

Note: Throughout the syllabus,the notation "log" refers to logarithms

to the base 10 and "1n" specifies logarithms to the base e (2,21828).,
Conversions can bé made according to log = 0.43429xln or ln = 2,30259xlog.
The variance of log (vlog) and variance of 19 (Vln) are converted

according to V. = 0,18861xV, and V, = 5,3019XV

log In 1n 10g°

lognormal) distribution is specified by the notation:./‘.(/()c}).
Distribution curves for /. ( 3 0.‘/‘?) and N(a57 )‘//6.‘)9 are shown in
figure 3, The arithmetic mean and standard deviation of the geochemical
values from the lognormal population (curve./L) are precisely the same

as the respective parameters of the normal population (curveN )
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Distribution curves for A.(3.7,0.49) and for N(51.7,1688.6)
are shown in figure 4; as for the distributions represented in figure 3,
the two populations have precisely the same mean and standard deviation
when these parameters are expressed in terms of the original geochemical
values,

Distribution curves for A (3,0.1225) and N(21.4,59,4) are shown
in figure 5. The arithmetic means for both populations are 21.4 and
both standard deviations are 7.7(V§§TZ). The coefficient of variation
(standard deviation/mean) for the distributions in figure 5 is
considerably smaller than that for the distributions in figures 3 and 4,
and the lognormal and normal curves are more closely similar, The
asymmetry of a lognormal distribution curve increases with increasing
coefficient of variation (compare fig, 5 with figs, 3 and 4),

Those who have constructed histograms of minor element data from
geochemical investigations will recognize the lognormal distribution
forms, particularly the long tails that extend toward the higher
geochemical values (the values of X). If the frequency distributions
of the original data values have lognormal forms, the distributions
of the log values will be normal. The normal distributions correspond-

ing to the /L. distributions of figures 3, 4, and 5 were given in figure 2,
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eo~ Fig.5
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The common method for determining whether a group of geochemical
values could have been drawn from a normally distributed population
is to test the frequency distribution of the logs of the values for
conformance with the normal distribution. The first step in one of
these tests (the chi-square test) is to construct a histogram of the
log values. In most situations, the histogram of the log values will
be far more symmetrical than that of the original geochemical values.
In other situations, however, the frequency distribution of the log
values will be seen to retain some degree of positive skewness or to
display some negative skewness, When the log distributions are highly
skewed, either positively or negatively, it may be desirable to use
a three-parameter log transformation. This is done by adding a
constant to each of the original geochemical values before the logs
are taken., The constant should be negative if the log data are
positively skewed or positive if the log data are negatively skewed.

A particular three-parameter lognormal distribution is specified by
the notation ./\.('f’)/u,oz') where 7 1is the constant and/( and a-z are,
respectively, the mean and variance of the logarithms of %#7 where X

is the geochemical wvalue.
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b) Some properties of normal and lognormal distributioms.

The characteristics of a lognormal distribution can be fully
described in terms of the logarithms, and in this mamner, the descript-
ions are as simple as those for a normal distribution. That is, the
mode and median are both equal to /(where /( is the mean of the log-
arithms; the standard deviation is @, the standard deviation of the
logs; and the skewness and kurtosis (and :all higher moments) are both
zero, However, it is usually desirable to express these parameters
in terms of the original geochemical values. The expressions in
table 1 will be helpful for this purpose,

Population distributions are defined in terms of parameters;

estimates of the parameters are called statistics.
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Table l.-=Some parameters of the normal and lognormal distributions

Normal distribution Logrnormal distribution

N = qumber of individuals

in the population

Definitions
% = a geochemical valuse,
generally in units of
ppm or percent,
VaXd .2_-‘!‘— Ms Z it
~ N
z
Pa EL(2=p0 La E(fexp)
Il Y]

Hed!.ni/ Vo &P(/O
Mean (geochemical abundance)}/ M X = e,vu?u- %:.)
Standard deviationl/ _ - V- (exp(a™) -
Coefficient of varuciouy d'//( 7= ]/C-Kf (cr") -/
Skevnessl/ o 7 2s13 n
Kurtosi&’:/ [e) 'z, - 61‘ *Ib‘?fd- /6{2'
Geometric meanl/ A -e-- gre = exp (/<)
Geometric deviation -———— gd = exp (o)
Central (68 perceat) range/ (/l-c'j te (/( r0) (j""/j'd) Zo (j"‘ »_70')
Expected (95 percent) range> (H-1.76 c) to (/{ +1.960) (3’"—/50’ /-74) Zo (3’“_ xg9d /.96)

1/ Expressions for the lognormal distribucion are from Aitchison and Brown (1957, p. &).

2/ 1f the coefficient of variation exceeds 1.0, the lower limit of the central range for the normal
distribucion will be negative,

3/ 1f the coefficient of varliation exceeds 0.5, the lower limit of the expected range for the

normal distribution will be negative,
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¢) Measures of central tendency
The central value of a frequency distribution can be defined in
various ways (e.g., mean, median, mode)., Estimates of central values,
or of central tendency, are made for two principal purposes in geochemistry:
1) to estimate geochemical abundance (that is, the units of weight of
a chemical constituent per 100 or 10% units of rock or soil), and 2) to
estimate a typical concentration that can be used to characterize a
geologic population., The first of these purposes calls for an estimate
of the population arithmetic mean regardless of the form of the
population frequency distribution. If the frequency distributiom is
normal, or at least symmetrical, the estimated arithmetic mean is also
the best measure of the most typical concentration inasmuch as the
mean, median, and mode are all the same for a normal distribution
(table 1), However, if the distribution is asymmetrical, the arithmetic
mean will not nécessA;ily be a typical value. It is suggested that the
typical value to be used for describing geochemical distributions be
taken as the median=--that is, the value exceeded by exactly one-half
of the values for the population. The best measure of the median forAa
lognormal distribution is the geometric mean (gm) which is estimated by:
GM = exp (%) | (8)
where X 1s the arithmetic mean of the logarithms (base e), or by
GM= 10" 9

where Z is the arithmetic mean of the logs (base 10).
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The population median may also be estimated by the 50th percentile
(PSO)’ but this involves a graphical procedure and no method is
available for estimating its religbility. However, if a transformation
that renders the population frequency distribution symmetrical cannot
be found, the 50th percentile may be the only safe measure of the
population median. In fact, percentile (order) statistics are always
safe and appropriate as descriptive statistics regardless of the form

of the distribution.
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d) Measures of geochemical abundance and average grade.

The geochemical abundance of a chemical constituent is the units
of weight of the constituent per 100 or 106 weight units of the rock
or soil unit, depending on whether abundance is expressed as percent
or parts per million, and is equivalent to average grade in ore
evaluation. Estimates of geochemical abundance are generally not
important in geochemical exploration until after an ore deposit has
been located. They are necessary then in order to judge the pounds
or tons of the constituent that can be recovered by mining and milling
a given mass of ore, Such estimates may also be necessary in
investigations of environmental pollution in order to judge the amount
of the constituent that has been released to the environment, and in
studies of geochemical balance among various components of a geochemical
system,

The geochemical abundance of a constituent in a population is
equal to the population arithmetic mean, The arithmetic mean is at
the point on the.abscissa of the distribution curve that divides the
area under.the curve into two equal parts. The only difficulty here
is in choosing the best method for estimating the population arithmetic

mesan.,
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If the population frequency distribution is symmetrical and if
the samples have been collected either at random locations throughout
the rock or soil unit or at equal intervais or in equal clusters that
occur at equal intervals, an unbiased and efficient estimate, X, of
the population arithmetic mean, 4 , can be obtained from:

-2
n (10)

=
where Z is a geochemical value and ® is the number of values, If n
is large, equation (10) is appropriate regardless of the form of the
frequency distribution.

The sampling requirements for the use of equation (10) are rarely
met in problems of ore evaluation, however, because samples are almost
never available at randomly selecteé_or equal intervals throughout a
deposit, Most commonly, the samples are taken from drill cores that
are unequally spaced over the deposit. This has led to the development

of a variety of methods for computing weighted averages, in general,

according to:

7 - 2w xi
S —AL
Zw; (11)

where w; is a weighting factor that varies in proportion to the mass
of ore thought to be represented by the Zfﬁ.geochemical value, X;:.
The most common methods for determining appropriate values for «; are

the polygon and triangle methods (see Hazen, 1958).
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The theory of regionalized variables (geostatistics) developed by

G. Matheron and his associates over the past 15 years, largely in

France and in Montreal, Quebec, offers an alternative and highly
sophisticated means for determining the weighting factors for equation (11).
The determined weights will depend on the degree of continuity in the
ore deposit and on the spatial properties of the continuity., The

theory also provides methods for estimating the reliability of the

grade estimates as well as means for determination of total size and
value, The weight factors are determined by what are called kriging
procedures, The methods are distribution-free in the ordinary
statistical sense; however, they involve fitting another kind of model

to a variogram rather than to a sample frequency distribution, Some

of the same difficulties and arguments are encountered in the selection
of this model as are encountered in the selection of frequency
distribution models when using classical methods of statistics, The
primary purpose of geostatistical methods is to overcome the difficulties
caused by the fact that samples from ore deposits are rarely independent
in the sense required for clasical methods of statistical estimation,
Some excellent discussions of geostatistical concepts and methods, in
English, are given by Blais and Carlier (1968), David (1969, 1970),

Matheron (1963), Olea (1972), Davis (1973), and Agterberg (1974).
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In situations where n is small and the weighting of geochemical
values is unnecessary, but where the population frequency distribution
is believed to be lognormal rather than symmetrical, the arithmetic
mean is best estimated by the t-estimator of Sichel (1952, 1966).
The t-estimator is given by:

Z=GM- ¥ (V) (12)
where GM is the geometric mean (eqa. 8 or 9) and 3E(V) is a factor
that varies with the number of values, n, used to estimate GM and the
variance of the logarithms (base e) of the values (V). Part of a
table of xh(V) from Sichel (1966) is given here as table 2, and graphs
are given in figure 6 which can Be used to determine Xh(V) from the
geometric deviation, GD. (See equation 16 in the following section
of this syllabus,) The advantage of the t-estimator over the ordinary
estimate of the arithmetic mean (eq, 10) is that it is more efficient,
That is, repeated independent determinations of t in a given problem
will vary less than repeated independent determinations of X, Link
and Koch (1975) have pointed out that the t-estimator can be biased
if the population frequency distribution is not truly lognormal, but
the bias is small in many situations and can be less detrimental than
tﬁe inefficiency.of the ordinary arithmetic mean if the distribution

is highly asymmetrical.
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e) Measures of variability.

The most obvious measure of variability among geochemical values
is the range--the difference between the highest and lowest values=--
or the proportional range--the highest value divided by the lowest
value., These measures, however, are unstable in that they can be
expected to vary widely with the addition of new data, Other well-
known measures that are somewhat better in this regard are the
percentiles~-~the order statistics, Variabiiity can be expressed by
specifying, for example, the 5th and 95th percentiles (PS and P95) or
the 10th and 90th percentiles (P10 and Pgo). The central and expected
ranges as defined in table 1 can be approximated by specifying P__ and

16

and P84 or PZ.S and P97.5, respectively, The percentile measures are
valid and appropriate regardless of the form of the sample or population
frequency distributions, The disadvantage in using them, however, is
that they are estimated only by graphical procedures and they provide

no means for further mathematical analysis of the sources of the
variability in the data.

The most commonly used measure of variability is the variance or
its square root, the standard deviation., The variance, as defined for
the population in table 1, is estimated by:

2
&= é%:..’f_). " (13)

where X is a geochemical value and X is the mean of the n values,
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On comparison of equation (13) with the equation that defines
the population variance (table 1), it will be noted that the
denominator is n - 1 rather than ne The quantity n is the number of

independent values of x,, from which the variance is estimated, but

ij
n - 1 is the number of degrees of freedom available, This appears
reasonable when we consider the fact that if n = 1, zero degrees of
freedom are available,and the variance could not be estimated, If
the equation for the variance in table 1 were used to estimate the
population variance from small sets of data (i.e,, where n is small),
the estimates would be biased, whereas estimates from equation (13)
are unbiased.

For purposes of illustration, suppose that the entire population
consisted of three individuals--the values of 8, 6, and 4, The
population variance according to the definition in table 1 is 2,6667,
From a population of three individuals, it is possible to draw nine
different samples of two individuals each, These samples, and the

variances estimated from them by the two different methods are as follows:

Estimate d variance

Sample Values Table 1 Equation (13)
1 8 and 8 0 0
2 8 and 6 1 2
3 8 and 4 4 8
4 6 and 8 1 2
5 6 and 6 0 0
6 6 and & 1 2
7 4 and 8 4 8
8 4 and 6 1 2
9 4 and 4 0 0
Average e o o & ¢ 0 o o o » 1.3333 2. 6667

The average estimate from equation (12) is exact, whereas that from the

equation in table 1 is obviously wrong,
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The estimated central range of a normal distribution is from:
(E-4) to (% -fjA,)
and the estimated expected range is from:

(14)

(f - 764) to (E+/. 96.4,) (15)

The estimated central range is the range in which about 68 percent
of the population is estimated to occur. The expected range is the
range estimated to contain ébou;: 95 percent ofﬂ the( ‘;clapulation of values,
Some investigators regard values outside of the expected range as
geochemically aﬁoiaious (Ebens and othérs, 1973, p. 7).

If the population frequency distribution is assumed to be lognormal,
the variance of the logarithms is estimated with equation (13),
where X is taken as the logarithm of the geochemical value (base e or
base 10) and X is the mean of the logs. In this case, the limits of
the central and expected ranges are taken as the antilogs of the
expressions in (14) and (15). It is more convenient, however, to
estimate the geometric deviation (- 3J) according to either:

GD=exp(a) o~ GD= jo* (16)
depending on whether the variance was computed for logs to the base e
or base 10. The central range, then, is estimated by:
(am/ab) to (GM=x&D) (an

and the expected range by:

/o 96) (18)

(am/aD"7®) to (GMxGD

(Note: the value 1,96 is almost always replaced by 2 in actual

applications,)
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The lower limits of central and expected ranges for geochemical
populations, as estimated from lognormal theory, are always greater
than zero, no matter how low the mean or how great the variance.,

The lower limits estimated from normal theory, however, are commonly
negative and, therefore, entirely unrealistic,

The most important property of the variance is that of additivity.
The variance of the sum of two or more independent variables is equal
to the sum of their variances, Because of this property, it is possible
to partition the total variance of a geochemical variable among various
sources that contributed to the total variation. It is thereby
possible to assess the relative importance of both geologic factors
and various laboratory procedures as they have affected the observed

data,
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f) Variance of a mean and confidence intervals.

A statistical estimate of the mean or of any other parameter of
a geochemical population is based on an experiment--the experiment
consisting of field sampling and laboratory analysis according to some
plan., If the experiment is repeated over and over again according to
the same plan, a number of different estimates will be obtained., The
frequency distribution of these estimates is the sample distribution
of the statistic, and the variance of the sample distribution, or of
the statistic, is an inverse measure of the precision or efficiency
of the statistic, Fortunately, the variance of the statistic can be
predicted from the results of the first experiment--without repeating
the experiment a large number of times,

-

The variance of an estimated arithmetic mean is given by:

N
z A
<z * Q (19)

2
where & is the estimated variance of the individual geochemical values

(eq. 13), and 7 is the number of independent values that were used in

the calculation ofAf
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The need for 7 to represent the number of independent values used
in the calculation of.df' cannot be overemphasized. If any of the
values are related in some manner, the variance, 0'2', could be
seriously underestimated, Say, for example, that the A values were
actually collected from N1y randomly selected sampling localities,
with n.p values selected at random from within each locality (so that
fl:ﬂd n/,), rather than from /M points selected at random from throughqut
the region of investigation., The sampling, then, would be in accordance
with the model of equation (5). Rather than having N independent
values, we would have Ny independent means for the /4 localities.

Each of the means would have a variance equal to the variance within
localities,&z , divided by /’2’5. 2

7 £,

e
If an estimate of the variance among the true locality means is denoted

2
by 4 o‘(a variance '"component''), the variance among the 5 estimated means

(20)

is given by: 2z
2 L
,d.d + ___f-’
nﬂ (21)
The variance of the grand mean of all N values, or of the mean of the
A'eL means, is: - .A:-
A"’( *+ "lﬁ
- (22)
e,
or, more simply:
. =
-5
A?._ = ""',z = -+ .__-é—
* % 7 7 (23)
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The same arguments used in moving from equation (19) to equation (23)
can be employed in deriving estimating equations for situations where
the sampling design contained additional hierarchical levels and the
model contained other terms in addition to d.and/e. Just as equation (19)
requires that /2 represents the number of independent values used to
calculate AL, equation (23) requires that 2,4 represent the number of
independent means used to calcula:e.A;;and fksrebresent the number of
independent values within each sampling locality used to calculate4§;.
The manner in whichA;and A,; are calculated is discussed in later

sections of the syllabus on analysis of variance procedures.
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Some sampling designs, as will be discussed later in the syllabus,
involve sampling from populations of limited size, For example, at
some level of the design we may subdivide a square or rectangular area
into, say, four equal-sized quadrangles and then select two of the
quadrangles at random for sampling., In this situation, the population
consists of only 4 items, and we would have sampled one-half of the
population, Equations for estimating variances of means, as given in
equations (19) and (23) apply only where the fractions of the populations
that were sampled are small, If this sampling fraction is large,
correction terms must be applied (Cochran, 1963, p. 286). Equation (23)

with the correction terms would be:

T /- 2 J=Fffs 2
A = A, xR
= ng & R A“'ﬁ (23a)

where fig is the fraction of the sampling localities that were sampled
and f& is the fraction of the total number of potential samples in each
locality that were actually collected and analyzed, If all possible
sampling localities were sampled, 7;kis equal to 1 and if, as is usually
true, only a very small proportion of the potential samples in each
locality were collectad, é; is very near zero. In this situation,

equation (23a) reduces to equation (19).
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Confidence limits about an estimated mean,’,-r.' , are given by:

x Xt 4
il (24)

where g*is Student's _z, and is required because the variances used
in equations (19) to (23) are only estimates of the true variances.
The values of §*are read from a table of __Z;" such as that given in
table 3; the table is entered with &((the probability that the error

in the estimated mean exceeds the error indicated by § d“# and v (the
degrees of freedom available for estimating A’z). 1f A’-z has been
derived through expressions as given in equation (23), the number of .
degrees of freedom, ™, is less than straightforward. However, Cochran
(1963, p. 12) has pointed out, in effect, that if v is greater than
about 60, v may be taken as infinity (See table 3) without serious
error, We shall be even more liberal and take ¥ as infinity if it

is actually 10 or more, (If & is set at 0.05,5’0’05.-2.23 for v= 10,
Zp.05=2.00 for ¥ = 60, and _f;o.a &=1.96 for r= infinity.,) Ifd-gis
estimated from an equation similar to equation (23), the number of
degrees of freedom is more than 2 -/, but less than 7 -(’}:’/‘ Our
liberal rule allows us to take P as infinity if we have 11 or more
master sampling localities. Krumbein and Slack (1956) suggested ten

as a minimum,
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Table 3.-- PERCENTAGE POINTS OF THE f-DISTRIBUTION®

x .-
\ 050 | 025 | 010 | 005 | 0025 | 001 0.005
4

1.000C0 | 2.4142 | 6.3138 |12.706 (25.452 [63.657 | 127.32
0.81650 | 1.6036 | 2.9200 | 4.3027 | 6.2053 | 9.9248 | 14.089
0.76489 | 1.4226 | 2.3534 | 3.1825 | 4.1765 | 5.8409 7.4533
0.74070 | 1.3444 | 2.1318 | 2.7764 | 3.4954 | 4.6041 3.5976

0.72669 | 1.3009 | 2.0150 | 2.5706 | 3.i634 | 4.032! 4,7733
0.71756 | 1.27533 | 1.9432 | 2.4469 | 2.5687 | 3.7074 4.3168
071114 | 1.2543 | 1.8946 | 2.3646 | 2.2412 | 3.4995 4.0293
0.70639 ; 1.2403 | 1.3595 | 2.3C60 | 2.7515 | 3.3554 |- 3.8325
0.70272 | 1.2297 | 1.833 2.2622 | 2.6850 | 3.2498 3.6897

10 | 0.69981 | 1.2213 | 1.8125 | 2.2281 | 2.6338 | 3.1693 3.5814
U1 0.69745 | 1.2145 | 1.7959 | 2.2010 | 2.5931 { 3.1058 3.4966
12 | 0.69548 | 1.2089 | 1.7823 | 2.1788 | 2.56(0 | 3.0545 3.4284
1.7
1.7

Vo3 Wn &N -

13 0.69334 | 1.2041 7709 | 21604 | 2.5326 | 3.0123 3.3725
14 | 0.69242 | 1.20Cl 7613 | 2.1448 | 2.5C96 | 2.9758 3.3257

15 0.59120 | 1.1967 | 1.7530 | 2.1315 | 2.4899 | 2.9467 3.2860
16 0.55013 | 1.1937 | 1.7459 | 2.1199 | 2.4729 | 2.9208 3.2520
17 0.68919 | 1.1910 | 1.7396 | 2.1C98 | 2.4581 | 2.3982 3.2225
18 0.68837 | 1.1387 | 1.7341 | 2.1C09 | 12.4450 | 2.8784 3.1966
19 0.68763 | 1.1866 | 1.7291 | 2.0930 | 2.4334 | 2.8609 3.1737

20 | 0.68696 | 1.i848 | 1.7247 | 2.0860 | 2.4231 | 2.8453 3.1534
21 0.68635 | 1.1831 | 1.7207 | 2.0796 | 2.4138 | 2.83i4 3.1352
2 0.68580 | 1.1816 | L7171 | 2.0739 | 2.4055 | 2.8138 3.1188
23 0.68531 | 1.1302 | 1.7139 | 2.0687 | 2.3979 | 2.8073 3.1040
24 | 0.63435 | 1.1789 | 1.7109 | 2.0639 | 2.3910 @ 2.7969 3.0905

25 0.68443 | 1.1777 | 1.7081 | 2.059S | 2.3846 | 2.7874 3.0782
26 0.68405 | 1.1766 j 1.7056 | 2.0555 | 2.3788 | 2.7787 3.0669
27 0.68370 | 1.1757 l 1,7033 | 2.0518 | 2.3734 | 2.7707 3.0565
28 0.68335 | 1.1748 ¢ 1.7011 | 2.0484 | 2.3€385 | 2.7633 3.0469
29 0.68304 | 1.1739 ! 1.6991 | 2.0452 | 2.3638 | 2.7564 3.0380
30 | 0.68276 | 1.1731 | 1.6973 | 2.0423 | 2.3596 | 2.7500 3.0298
40 | 0.63066 | 1.1673 i 1.6839 | 2.0211 ! 2.3289 | 2.7045 2.9712
60 | 0.67362 | 1.1616 | 1.5707 | Z.0CO3 | 2.2991 | 2.6603 2.9146
120 | 0.67656 | 1.1539 I 1.6577 | 1.9799 | 2.2699 | 2.6174 2.8599
® 0.67449 | 1.1503 | 1.6449 | 1.9600 | 2.2414 | 2.5738 2.8070

* Computed by Maxine Merrington from “Tables of Percentage Points of the
Incomplete Beta Function,” Biomerrika, 32 (1941), pp. 168-181, by Catherine M.
Thompson, and reproduced by permission of Professor E. S. Pearson.

*From Bemnett and Franklin (1954, p. 696)



The 95 percent confidence limits (X = 0,05) for an estimated
arithmetic mean, X, are given by the range:
(12-/.964;) o (E+1P0g . (24)
If ‘)-.':and,o;‘were computed from the logs of the geochemical values,
the 95 percent confidence limits are given by the antilogs of the
limits in (24), Alternatively, we may set:
- GE = exp (,4.72) or GE = /o% (25)
depending on the base of the logarithms, and give the 95 percent range

of confidence as:

(6’[/65/.96) 2o (GMx GE/.?C.) 26)

where GM is the geometric mean., As mentioned previously, the value /75,
in practice, is almost always taken as equal to £,

A method, and tables, for estimating confidence intervals about
geochemi.cal abundances derived by means of Sichel's Z-estimator are

given by Sichel (1966).
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g) Means and variancas from censored sample distributions.

The terms censorsed and truncated as applied to frequency distributions
of geochemical data are commonly confused, In statistical terminology,
a distribution is censored when values below a certain limit or above
a certain limit can be counted but not measurad., The sample distribution
is left~- or right-censored, respectively, This situation is very commonly
encountergd in geochemistry when the population distribution overlaps
the chemist's lower or upper limits of analytical determination,
Truncated sample distributions, on the other hand, occur when values
of the population can be neither counted nor measured, One example of
this might be in measuring the diameters of mineral grains; grains with
very small diameters may be neither seen nor measured, and an unknown
- proportion of the frequency distribution is, therefore, missing.
Truncated sample distributions such as this are not ordinarily encountered
in field geochemistry.

Geochemists are commonly negligent in describing the manner in
which they handle the censored distribution problem in statistical
treatment of their data, In fact, they commonly do not even report
the fact that the data were censcred at all, This failure is not
exactly fair to the reader who may wish to judge the validity of the
statistical analysis. A useful device for reporting the degree of

censoring in a sample distribution is the detection ratio. The

detection ratio has the general form a:b, where a is the number of
geochemical samples in which the chemical constituent was measured by

the analyst and b is the total number oi samples that were analyzad,
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If the detection ratio is close to unity, the estimated mean
and variance are not highly sensitive to the method of estimation.
Where the detection ratio is smaller, however, this will not be true,
If the sample distribution is left-censored, amalytical reports of
"less chanl%b" specify geochemical values somewhere between zero and
%p where ’a is the lower limit of analytical determination. If the
distribution is right-censored, analytical reports of ''greater than
Z,"' specify values somewhere between X, and either 100 percenmt or
106 ppm, where ¥, in this case is the upper limit of amalytical
determination, A common practice among field geochemists has been to
assign "less than" reports a value of either zero percent or ppm or
some arbitrary value immediately below the lower limit of analytical
determination. Reports of ''greater than'" are less common, but are
generally assigned some arbitrary valué immediately above the upper
limit of amalytical determination, Justification for the assignment
of arbitrary values to reports of '"less than'" and "greater than" exists
only where the detection ratio is near unity and the computational
results are almost independent of any reasonable arbitrary value that
may be chosen., Arbitrary assignments are necessary when the data are
to be analyzed by analysis of variance methods or by almost any
multivariate statistical procedure, They are not necessary, however,

for the estimation of means and variances.
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Methods given by Cohen (1959, 1961) can be used to estimate the
population mean and variance from a censored sample distribution,
The estimating equations are:

Z= % -QA(E-%,) (27)
and

z 2 = 2

a4 =)+ AR -%,) (28)
where i"and [A.’)’- are the mean and variance of the n.' values that
are uncensored (that is, analytical reports other than '"'less than'
or "'greater than')., Equations (27) and (28) are valid for singly-
censored sample distributions only; they cannot be used where the
distribution is both left- and right-censored., The factor "\ is
read from tables (see Cohen, 1959, 1961) or from graphs (fig, 7) and
varies with the degree of censoring and with the quantity:

)"
(2"~ %" 2%

The degree of censoring is given by A=n%? where 12' is the number

of amalytical reports of ''less than" or ''greater than'' and /2 is the
total number of samples analyzed, The quantity /‘. is also equal to

one minus the detection ratio.
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Fig. 7

sinabedaleangd

0.45 E

Q.9 - 0.9

Q7,_—"_———'————____——' 0.35 307

06 & , 0.30 J 06
E ____—— E

Q.5 3 0.25 - = 0.5

ol 0.20 = 04

03 = 0.15 = o3

0.2 E— 0.10 - 0.2

0.1 B h=0.05 3 01
:]Jlli!lllllllllljIlllllllllll[!]llxll|"|llllllllllllllli]lllll(IIllllllll‘J]llllllllllllllll‘!lllllml]Ajloll)u‘lllllllllnllll

0

© ol 02 03 04 05 06 07 08 09 10 Ll 12
(s x?

e~
w

From Cohen (1959). Reproduced, with permission, in Miesch (1967v).
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The method of Cohen is strictly valid only where the population
frequency distribution of X is normally distributed, but has been
found to be satisfactory wherever the sample distribution is approxi-
mately symmetrical., If the sample distribution is highly asymmetrical,
as are the highly positively-skewed distributions commonly encountered
in geochemistry, the use of Cohen's method may require a transformation
of the data beforehand--such as transformation to logarithms. Equations
(27) and (28) can then be used to estimate the mean logarithm and the
variance of the logarithms, The antilog of the mean logarithm will
then give the geometric mean 6G/1>and the antilog of the square root
of the variance of the logarithms will give the geometric deviation GGC?.
With these values, the method of Sichel, described previously, can be
used to obtain an estimate of the arithmetic mean (geochemical abundance),
if needed.

Figure 8A shows the sample distribution of uranium values (ppm)
for a granite body sampled by Hubaux and Smiriga-Snoeck (1964)., The
distribution is positively skewed as is typical for sample distributions
of minor element values. The frequency distribution of the logs (base 10)
of the values is shown in figure 8B and is considerably more symmetrical.
The arithmetic mean and standard deviation (eqs. 10 and 13), estimated
from the entire sample distribution (11=1353 in figure 8A were found

to be 4,53 ppm and 2,15 ppm, respectively, The distribution was



Fig. 8
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artificially censored at Z°= 2.6 ppm and ¥ = 4,0 ppm, and Cohen's
method was used to estimate the population mean and standard deviation
from the sample values greater than %oonly. The complete results
were as follows:

%, Detection Estimated Estimated

ratio mean std, dev,
None 185:185 4,53 ppm 2,15 ppm
2,6 ppm  162:185 4,89 2,04
4.0 105:185 5.78 2.03

A similar experiment was carried out after tramnsforming all data to
logarithms (base 10)., The results were as follows:

Detection Estimated Estimated Estimated Estimated Estime

ratio mean log std. dev, GM - GO arithn

%o /°3 %o of logs mear
None - 185:185 0.612 0.199 4,1 ppm 1.58 4,54
2.6 ppm 0.415  162:185 .621 81 4.2 1.52 4,55
4,0 .602 105:185 «620 .181 4,2 1.52 4,54
5.1 .708 50: 185 571 «220 3.7 1.66 4,24

Other examples are given in Miesch (1967b)., The example above shows

1) that Cohen's method was reasonably successful in estimating the means
and standard deviations from sample distributions censored by as much
as 73 percent, and 2) the method gave better results after the data had
been transformed to logarithms so that the central part of the sample

distribution was more symmetrical than that of the original ppm values,
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h) Measures of skewness and kurtosise

The skewness and kurtosis of a frequency distribution curve are,
respectively, measures of the asymmetry and peakedness of the curve
and have been of interest to sedimentary petrologists for many years.
Measures of skewness and kurtosis are made in various ways, including
both mathematical and graphical procedures. All of the conventional
methods for measuring skewness yield a value of zero for a distribution
that is symmetrical about its mean value, a positive value for a
distribution that has a tail extended towards the higher values, and
a negative value for a distribution with a tail extended towards the
lower values, Some commonly used methods for measuring kurtosis yield
a value greater than three for a distribution that is more peaked than
a normal distribution curve and a value less than three for a
distribution that is less peaked. The preferred methods for measuring
skewness and kurtosis are based on the é-statistics of R, A, Fisher
(See Bennett and Franklin, 1954, p. 81). The first two A-statistics
are the arithmetic mean and the variance (equivalent to % and Af of
eqs, 10 and 13, respectively). The third and fourth k-statisties are:

n*S, - 3n5,5, +as>

n(n-1)(n-2)

'{3
(n3+n2) Sy =9(n*+1)5,55, - 3(n*=n)5, +12n55, -45,”
n(n-1)(n-2)(a-3) |

where ~n is the number of values and 5’,,_is:

é

]

¥

s, =S«
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The third and fourth‘é-statistics, like the variance, have the
property of additivity, That is, l3 and éf for the sum of two or
more independent variables are equal to the sums of é5 and t?‘ for
the individual variables,
The measure of skewness (3,) is given by:

9= 'é3 / "4‘3
where.d? is the cube of the standard deviation (eq. 13). The
kurtosis (32) is measured by:

92 = ,é.//,a,'/
and is equal to zero for a normal distribution curve, to a positive
value for a distribution more peaked than the normal curve, and to a
negative value for a distribution less peaked than the normal curve.
The maximum absolute values of 9 and the limits for 9z to be expected
95 and 99 percent of éhe time if the population distribution is truly
normal are given in table 4 from R. C. Geary and E. S. Pearson (See

Bennett and Franklin, 1954, p. 95).
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TABLE 4 5% AND 17 PoINTs FOR g; AND g£,°
& &3
Sizeof |} wer and Upper Lower Upper
Sample ppe ppe
5% 1% 1% 5% 5% 1%
50 0.550 0.812 — —_— —_— —_—
75 0.454 0.664 -_— -— _— -_—
100 0.395 0.576 —-0.80 | —0.62 0.87 1.53
125 0.354 0.514 —0.74 —0.57 0.78 1.34
150 0.324 0.469 —0.69 —0.53 0.71 1.22
175 0.301 0.434 —0.66 | —0.50 0.66 L1
200 0.282 0.406 —0.62 | —047 0.62 1.04
250 0.253 0.362 -0.57 | —0.44 0.55 0.91
300 0.231 0.331 —0.53 | —0.40 0.50 0.82
350 0.214 0.306 -049 | -0.37 0.47 0.75
400 0.201 0.286 —048 | —0.35 0.43 0.69
450 0.189 0.270 —0.44 | —0.33 0.40 0.65
500 0.180 0.256 —-042 | =032 0.38 0.62
550 0.171 0.244 —-041 | -0.30 0.37 0.59
600 0.163 0.234 -0.39 —0.29 0.35 0.55
650 0.157 0.225 -0.38 | —0.28 0.35 0.53
700 0.151 0.215 -0.37 .| =027 0.32 0.51
750 0.146 0.208 -035 | ~0.26 0.31 0.49
800 0.142 0.202 -0.34 | —0.25 0.30 0.47
850 0.138 0.196 -0.33 —0.25 0.29 0.46
900 0.134 0.190 —-033 | —0.24 0.29 0.44
950 0.130 0.185 —-0.32 | -0.23 0.28 0.43
1000 0.127 0.180 -0.31 | =023 0.27 0.42

* From Bennett and Franklin (1954, p. 95)

49



i) Measures of correlation among variables.

Measures of correlation among geochemical variables are frequently
needed for interpretations of geochemical coherence (Rankama and
Sahama, 1950, p. 48) and geochemical behavior. An understanding of
correlation is also a necessary prerequisite to discussions of
geochemical errors that follow in later parts of this syllabus. The
most common measure of correlation is the simple linear correlation

coefficient, The population correlation coefficient, /a s,1s estimated
'

by: 4
s = o’
“d (30)
where }E"J is the estimated correlation for variables .« and a‘.’ A and

,4,4_ are the estimated standard deviations of variables . andd; (eq. 13),

and A is the estimated covariance from:

4

0. = 2O -F)
~¢ -1 (31)

where id;and 7'20'_ are the means of the J; and JLJ: variables and 2 is the
number of pairs of variables., The value of /‘b_,;"_ is +1.0 where the
plotted points fall on a straight line with positive slope, =1.,0

if the slope is negative, and zero if the plotted points show no

linear relation whatsoever,
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The statistical significance of an estimated simple linear
correlation coefficient may be determined from standard tables if
the bivariate frequency distribution is at least approximately normal.
This condition is commonly not present for geochemical data as percent
or ppm values. In many situations, the logarithms of the geochemical
values as plotted on an x-y graph do appear to follow the bivariate
normal form. Thus, it is commonly possible to determine the statis-
tical significance of a correlation among the log values but not of
the correlation among the original geochemical values, Another reason
for estimating correlations for log values is that correlations among
the original values are commonly obscure and govermed almost entirely
by the upper parts of the bivariate distribution. Both of these
points are illustrated in figure 9, The correlation between the ppm
values (fig. 94) is determined almost entirely by the six pairs of
higher values; the relationship among the four pairs of lower values
has little influence on the estimated correlation. The correlation
between the log ppm values (fig., 9B), however, is affected by the
lower four pairs of wvalues about as much as it is affected by the
other six pairs., Also, the total relationship between the variables
is somewhat more clear when observed by way of logarithms, In
addition, the bivariate distribution of the logs is at least con-
ceivably the result of a bivariate normal population, whereas that
of the ppm values is not., The correlation between the logs could

be tested for statistical significance,
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Censored values occur in almost all geochemical data sets and,
if correlations are to be estimated, a decision must be made regarding
the treatment of the "less than'" and '"greater than" values, If the
correlations are ta be estimated for the ppm values, the '"less than"
values can usually be treated as zeros without serious bias. The
correlation for the bivariate distribution in figure 9A, for example,
would be essentially the same if points representing less than 20 ppm
of constituent "a" and less than 800 ppm of constituent "b" were all
moved to the point 0,0. If the correlation is to be computed for the
logarithmic data, however, and if a matrix of log correlatioms is to
be studied by means of R-mode factor analysis, there is probably little
one can do other than treat all "less than" values as some arbitrary
value immediately below the lower limit of analytical determination
for the respective constituent, (Some workers conventionally treat
"less than" values as seven-tenths of the lower analytical limit,)
This will probably not bias the results a grecat deal if the detection
ratios for the two constituents are both high (say, 0.8 Sr higher).
However, if factor analysis is not intended, the correlation can be
estimated from the upper part of the bivariate distributiom onmnly.
This is illustrated in figure 10 where the estimated correlation for
all pairs is 0.940, If the correlation is estimated from only the
points above Zo(a) and z.(b), it is 0.926, and if estimated from only
the points to the right of 2;(a), it is 0.907. Correlations est;mated

from the upper parts of censored bivariate distributions have unknown
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frequency distributions and cannot be tested for statistical
significance; they should be regarded only as indices of geochemical
correlation or geocheﬁical coherence, Matrices of such correlations
do not have the Gramian properties required for factor analysis; that
is, the derived principal components matrices cannot be used to
reproduce the original correlation matrix,

Chayes (1960, 1962) has shown that correlations among compositional
variables do not necessarily reflect genetic relations because such
variables sum to a value that is constant for all observations (samples),
While the sum of the logarithms of the variables is not constant
among observations, Chayes' argument still holds in principle, although
not in mathematical detail, Extreme caution must be exercised in the
interpretation of correlations among compositional variables, or their
logs, in terms of geologic or geochemical ﬁrocesses. A test of the
statistical significance of correlaﬁzons among compositional variables,
proposed by Chayes and Kruskal (1966), has been judged invalid (Miesch,
1969), Genetic associations might be examined more effectively by
estimating correlations among the ratios of each constituent to some

reference constituent, such as Si0_, but this by no means completely

2’
avoids the problems pointed out by Chayes (Miesch and others, 1966).
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II. Nature and effects of geochemical errors,

1) Definition and classification of errors

The importance of considering the nature of the errors in geochemical
data is apparent when we consider the fact that the presence of error
is the only reason that statistical procedures are used in the analysis
and interpretation of the data, Each geochemical value is intended to
represent the concentration of a given chemical constituent in some
volume of material larger than the sample itself, It would be only a
coincidence if the value were perfectly correct., First, the laboratory
analysis of the sample is always wrong by at least some small increment,
and second, the sample is never perfectly representative of the sampling
locality from which it was taken, Each data value, therefore, contains
bog? an analytical error and a sampling error., If neither of these
types of error were present, there would be no need for statistical
analysis,

Analytical error will be defined as the difference between the
concentration reported by the analyst and ﬁhe true concentration in
the sample submitted to him for amalysis. Sampling error will be
defined as the difference between the true concentration in a sample,
or the average true concentration for a group of samples, and the
_true concentration in the volume of material that the samples, or

group of samples, is intended to represent.
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It will be obvious from this definition of sampling error that
the errors in sampling arise partly from the nature of the rock or
soil unit being sampled, If the unit were perfectly homogeneous in
composition, no sampling error would occur no matter what sampling
procedure was used, If, on the other hand, the unit were highly
variable in composition, large sampling errors may be difficult
to avoid and would be present through no fault of the sampler whatsoever.
If the samples are intended to represent a sampling locality, much will
depend on how the locality was defined., In other words, the degree of
sampling error may depend partly on the ambitions of the sampler; a
sample from a hillside may contain little sampling error if the sample
is intended to represent only the hillside, but may contain larger
error if intended to represent the entire mountain, depending on the
nature of the variation within the mountain. Regardless of the
magnitude of the errors due to either analysis or sampling, laboratory
and sampling procedures should be conducted in such a way that the
errors are susceptible to analysis by statistical methods, Certain
properties of errors can invalidate certain statistical procedures,

They can also invalidate non-statistical procedures as well,

Two of the fundamental properties of errors are bias gnd imprecision,
Bias and imprecision are functions of the average of the errors and
their variability, respectively, If the average error is zero, the
method that led to the errors is unbiased, If all of the errors are
identical, the method is perfectly precise., A geochemical value is
unbiased if it was produced by an unbiased method, A value is precise
if it was produced by a precise method, Bias and imprecision are

completely independent properties, A method can be biased and imprecise,
biased but precise, unbiased but imprecise, or unbiased and precise,
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Bias can arise in the laboratory if the analytical procedure is
inherently incorrect, if the sample material becomes contaminated
in some way, or if the aliqout taken for analysis from the sample
submitted by the geologist is not representative., Bias can occur
in field sampling where the population available for sampling differs
from the target population, or where the available population is not
sampled by some objec?ive procedure, '

Some degree of imprecision is associated with all laboratory
procedures, but is commonly appreciable where the procedures are of
the rapid and low-cost variety generally used in geochemical surveys.
Imprecision in field sampling is appreciable when the sampling localities
to be represented by the samples are highly variable in composition,
but it can always be reduced by increasing the numysr of samples from
each locality,

2) Effects of errors

Although some degree of imprecision is to be expected in all
measurement data, including geochemical values, variable precision
can lead to difficulties in statistical analysis, For example, the
degree of analytical precision can vary from one specimen to another,
and commonly does, because analytical imprecision increases directly
with increasing amounts of the constituent in the sample., The
imprecision among sampling errors can vary from one sampling locality to
another because of different degrees of variability within localities.
In most situations, the variability within localities is related

directly to the locality means,
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The relationship of imprecision in sampling and(or) analysis to
mean concentration is illustrated in figure 1lA wherein the mean
and variance of PZOS are plotted for ten sampling localities, The
ons data are for sandstones of Cambrian age. The ten localities are
distributed over most of the western U,S.; 32 samples were selected
from each locality by procedures that involved formal randomization
(data from A, T, Miesch and J, J. Connor, unpublished). The plot in
figure 11 shows not only that the variance is greatly different from
one locality to the next, but that the variances are at least
approximately proportional to the means. If analysis of variance
procedures (including the popular t test) were to be used to judge
the significance of differences among the locality means, it would be
necessary to assume that the population variances within localities
were all at Lgast approximately equal, Figure 1lA gives the strong
impression that the assumption would be grossly invalid for these
data, For situations wherein the mean and variance appear to be
related, Bartlett (1947) has recommended the logarithmic transformation
before proceeding to analysis of variance methods. Log (base {0)
transformation of the PZOS data leads to the relation shown in figure 11B,
The means and variances of the log data show no apparent correlation,
and the variances for the ten localities are a great deal more similar
than were the variances for the original percentage data, Analysis of
variance procedures could be applied to the log data without much

concern for the effects of inhomogeneous variance,
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Bias in sampling and analysis as well as imprecision can be
variable from one sample to another or from one sampling locality
to another, but the effects are a great deal more severe and almost
impossible to correct prior to analysis of variance or any other
" statistical treatment., Variable bias can occur in the laboratory when
different analytical methods with different bilases are used or when
different analysts cause different biases thfbughout the analytical
program, Variable bias can occur in field sampling when localities
are sampled by different geologists and samples are selected according
to different criteria or different operatiomal procedures,

It will be apparent that bias that is variable in any nontrivial
way will render the data'from the geochemical program useless regardless
of the methods employed in attempts at data interpretation, For
example, 1f geochemical values from any restricted part of the sampled
region were biased, due to either sampling or analysis, in a way that
differed from the bias in data from the remainder of the region, the
difference in the bias would distort the interpretation of the regional
geochemical variability whether the interpretation was based on either
elaborate statistical or conventional procedures, No amount of
statistical treatment or computer processing would help. Any appreciable
amount of variable bias would also invalidate analysis of variance
procedures because the additive property of the variance would be
destroyed. In statistical terminology, the experimental errors would

not be independent.
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The foregoing assertion is so important that it deserves expanded
discussion and explanation, Variable bias is the one property of
geochemical errors that can totally invalidate any attempt at
interpretation, statistical, or otherwise, and its effect on the
additivity of variances is only an example. For purposes of illustration,

suppose that the geochemical sampling model is of the form in equation (5):

X, =Mt -r/a;oc- (32)
The term /( in this model is the true grand mean concentration of the
constituent in all potential samples from the region, the term o(_;_is
the difference between /u. and the true mean for all samples in the clh
sampling locality, and the temﬂ"-j is the difference between/us‘ o
and the analytical value for the J th sample from the <& locality.
In other words, u + o, is the true value for the (&4 sampling locality
and ﬂ"g is the error due to both sampling and laboratory analysis,
Suppose further that three samples are collected from each of two
sampling localities by unbiased procedures and that the laboratory
methods were also without bias. The data and their underlying components
may tend to have the properties of the following:

Y P

Locality, Sample, j o ,}U'!X.A ﬂ":‘

| 4

1 1 12 10 +2
1 2 10 10 0
1 3 8 10 -2 (33)
2 1 22 20 +2
2 2 20 20 0
2 3 18 20 -2

Mean ® o o * ® L] ® 15 15 o

Variance . « + + o« 27.667 25 2,667

62



Note that the mean of the error is the same (zero) for both localities,
that the correlation coefficient for the quantities /H-o&; and /5_;‘ J
would be zero, and that the variance of %;: is equal to the sum of the
variances of the two components,

On the other hand, suppose that the samples from both localities
were collected by a biased procedure or that they were analyzed by a
biased laboratory method., The data and the underlying components might

have properties that tend to be as follows:

Locality,4  Sample, i %. M+,  Bi;
T 7 7

7 ad
1 1 13 10 +3
1 2 11 10 +1
1 3 9 10 -1 (34)
2 1 23 20 +3
2 2 21 20 +1
2 3 19 20 -1
Mean . « ¢ o o o 16 15 +1
Variance , , « « 27.667 25 2,667

The mean error (+1) is nonzero, but is the same for both localities,
the errors are uncorrelated with the true locality means, and the variance

of the two components of variation in the data are still additive even
though bias is present in the data, Suppose now that bias is present
in only the data from ome of the two localities, due to a difference

between either the sampling procedures or the analytical methods. The

data and underlying components may tend to be as follows:

t ,A‘ S 1 . . %o. +a . «
Locality amp e% =y /‘( e, ,44*_.

o+
1 1 12 10 +2
1 2 10 10 0
1 3 8 10 -2
2 1 23 20 +3 (33)
2 2 21 20 +1
2 3 19 20 -1
Mean , , + « « o« 15,5 15 +0.5
Variance ,  + « 32,917 25 2,917
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Note that the mean error for locality 1 is zero whereas that for
locality 2 is +1 and that the values of /1-}&; andﬂ;j are correlated

(t= 0.29). Because of the variable bias, resulting in correlation
of the components that make up the data (X;:), the variances are not
additive,and any attempt to use analysis of variance methods would be
invalid. However, analysis and interpretation of the data by any
other method would also be misleading.

In order to emphasize the fact that it is the variable bias alone

t;hat destroys the property of additivity, we may form another set of
data and underlying components wherein variable imprecision is present

and the frequency distributions of the errors are asymmetrical, Also,

bias will be introduced but will be set equal for both sampling localities.

Locality,4 Sample,i %ai A+ ﬂd" ! Mean Variance
U L4 7 7

1 1 15 10 +5

1 2 12 10 +2 +2.667 2.889

1 3 11 10 +1

2 1 24 20 +4 } (36)

2 2 23 20 +3 +2,667 1.555

2 3 21 20 +1
Mean . . . . 17.667 15 +2,667 +2,667 2,222
Variance ., . 27.222 25 2,222 w==- —————

Thus, neither imprecision, variable imprecision, skewness, nor constant

bias cause the property of additivity to be destroyed. This is not
to say that variable imprecision and skewness do not cause some
difficulties in analysis of variance methods., Where the imprecision
is variable, the estimated error variance is only an average of the
variances for the various localities, (See variance of pﬂ\ in the

example above.) and probability tests will be inexact, Skewness in
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the errors will also cause probability tests to be inexact and, if
severe, can invalidate them to an unknown degree. The tests are based
on the assumption that the population frequency distributions of the
errors are normal, It will be shown in a later section of the syllabus
that the presence of both variable imprecision and skewmess in the
errors can lead to variable bias which, as we have seen, can destroy
analysis of variance methods entirely.
3) Avoiding variable bias

Variable bias has been shown to invalidate analysis of variance
procedures, which are based on the variance's property of additivity,
and it is obvious that if the bias is highly variable, it will invalidate
any method for interpretation of the data, Attempts have been made to
correct the data for the effects of variable bias, but they are rarely,
if ever, successful, The obvious question, then, is how to avoid
introducing variable bias into the geochemical experiment, The best
way, of course, is to avoid bias altogether., To be practical, however,
we must recognize the fact that this is generally impossible,
Analytical methods and analysts do change throughout the course of any
large geochemical program; also, it is commonly necessary to employ
more than one geologist or party of geologists to do the sampling in
such programs., All geologists, or any other samplers for‘that matter,
have biases regarding what should be sampled and how the sample should
be taken or treated in the field, and the biases can vary a great deal.
There are two practices that can help. The first is to establish
definite operational procedures (Krumbein, 1960) to be followed in both

laboratory analysis and selection of samples in the field, These
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procedures in the field will require careful defiﬁition of the available
population and rigid adherence of the rules of the procedure by all
field parties, They will also require that all field parties be in
agreement as to how the population is recognized, how samples are
selected from it,how they are actually collected (i.e., stainless

steel spade, paper carton, hammer, hammer and chisel, etc.), and how
they are treated in the field if field treatment is involved (e.g.,
separation of heavy minerals, acidification of water samples, etc.).

The second practice that will help in avoiding variable bias is to

employ formal randomization in both the laboratory and the field.

Before submitting samples for analysis, all samples should be
placed and numbered in a sequence that is randomized with respect to
the localities from which they were taken. The samples should then be
analyzed in the randomized sequence. This will insure that the effegts
of any periodic or progressive changes in the laboratory procedure
(e.g., changes in instruments, electrical supply to the instruments,
or personnel) will be distributed randomly among the samples. That
is, geochemical values for samples from within the same localities
will be independently derived and will be independent measures of the
geochemical nature of the locality. This would not be the case if the
values were obtained in succession in the laboratory by analysis of
the samples in the order by which they were collected in the field.
Analysis of the samples by field order can, and frequently does, lead
to artificial anomalies on geochemical maps, resulting from periﬁds
wherein the laboratory, for various reasons, may be reporting biased

q

analytical results., Randomization of samples for laboratory analysis
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can easily be accomplished using tables of permuted random numbers
(fig. 12). The process of randomization may be impractical for
extremely large geochemical programs because it is necessary to collect
all of the samples before any of them are submitted to the laboratories,
In this situation, the only recourse may be to randomize each group

~of samples and to have the laboratory analyze selected standard samples
periodically. Results from analysis of the standards can then be
plotted with respect to the sequence of analysis in search of biases
that change periodically or systematically. This approach is only
second best, however, and complete randomization should be used if at
all possible, Certainly any geochemical values used to estimate the
analytical precision should be derived independently, and not by
successive analysis of one or more selected samples,

Randomization procedures are also necessary in the field in order
to insure that the collected samples are independent, The procedures
begin with identification of all potential samples that meet the
criteria used to define the population to be sampled, and this requires
more field work than may otherwise be conducted, It is easier to
collect a few typical samples of limestone from an outcrop, for example,
than it is to thoroughly examine the outcrop and identify all potential
samples of limestone that may be available, Once all potential samples
have been identified, any method can be used that gives each potential

sample an equal chanee of being selected, For this purpose, it is

67



Fig. 12
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8 5% 14 4 83 85 17 10 49 57 73 96 75 47 36 69 61 99 33 32
39 38 6 22 16 94 66 19 83 27 84 95 28 82 38 64 31 36 12 70
1 56 90 13 98 97 93 92 138 30 65 756 40 3 59 2 43 72 12 58
24 52 41 71 86 23 44 76 87 54 57 68 39 11 79 60 91 42 35 29

63 78 20 16 957 7 71 46 13 57 54 5 11 35 45 33 44 37 &1 10
53 42 32 * 88 69 55 25 64 93 18 52 9 95 24 90 98 63 31 8
66 60 28 15 29 75 40 33 47 79 43 14 92 81 2 41 19 €% 57 83
30 12 67 51 87 27 49 48 T4 91 72 56 21 6 99 62 65 17 75 58
35 76 1 50 36 34 73 17 86 22 82 94 26 80 4 84 23 96 3 39

7 34 34 21 90 30 64 61 47 41 39 82 91 57 8 52 & 18 3: 11
93 17 37 12 33 75 68 40 9 83 59 94 4 2 98 92 87 69 TI 89
S 86 35 71 43 88 79 73 14 23 63 46 29 76 22 51 45 60 22 19
99 # 13 26 42 77 96 81 62 56 67 58 27 1 70 10 24 54 2 4%
30 29 44 5 97 16 53 3 49 28 15 G5 32 95 48 31 74 50 35 18

* Represents 1C0

From L. E. Moses and R. V. QOakford, 1963, Stanford Univ. Press



convenient to use a table of uniform random numbers (fig. 13).

Numbers can be selected from the table to provide X-Y coordinates,

for example, and the sample taken at the indicated coordinates. Or,
the numbers can be taken to indicate stratigraphic position above or
below some stratigraphic horizon. Procedures such as this will
commonly lead to a general vicinity from which the sample can be taken,
and other procedures can be used to select the exact sampling point
within the vicinity, It will generally be found that rock samples,

in particular, can be taken from only a few places within the vicinity
with the sampling tools that are commonly available (i.e.,, a geologic
pick and hammer, or perhaps a chisel)., In this situation, the
potential samples can be numbered and samples taken from those places
which are chosen at random from the table of uniform random numbers,
The need to employ formal randomization procedures in geochemical
sampling becomes apparent when we consider the result of purely
subjective sampling. If the gampling locality consisted mostly of
alternating red and brown sandstone, for example, and if the two types
of sandstone tended to be of different composition, the variance for the
sampling locality would depend on whether we chose to coliect, say,
all red sandstone, all brown sandstone, or some of each, With random
sampling, the collected samples would tend to be in proportion to the
various kinds of rock types present whether these types are visibly
recognizable or not, Subjective sampling can lead to biased estimates
of variance and, frequently, to negative estimates of variance

components from analysis of variance.
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The use of randomization procedures in field sampling can serve
to avoid bias in sampling the available population, but more important,
they help to avoid bias that is variable among the sampling localities,
If the available population is substantially different from the target
population,however, bias cannot be avoided by any field procedure,
and if the available sampling localities differ from the locality
populations in different ways and(or) to different degrees, it will
be impossible to avoid variable sampling bias., The sampling program
might just as well not be undertaken.

4) Bias from compﬁtational procedures,

Bias can result from improper statistical treatment of the
analytical data as well as from incorrect laboratory procedures or
prejudices in sampling., For example, if a single rock or soil sample
is thoroughly homogenized in the laboratory and aliquots of the
homogenized sample are analyzed repeatedly, a frequency distribution
of geochemical values will be obtained. A question then arises regarding
the best estimate of the true concentration of the constituent in the
original sample, assuming that the method of analysis is imprecise but
totally unbiased. Three choices of the best estimate are immediately
apparent: 1) the arithmetic mean, 2) the median, and 3) the mode.

If the frequency distribution is asymmetrical, these estimates will
all differ and can differ significamtly if the asymmetry is pronounced.
There is some justification for choosing the mean in that this is the
center of gravity for the frequency distribution, However, if the

arithmetic mean is the correct value for the sample, and the frequency
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distribution of repeated analyses is asymmetrical, it follows that
numbers of positive and negative analytical errors are unequal., This
would seem improbable for an unbiased method. There is also some
justification for accepting the mode of the distribution as the best
estimate of the true value in that the mode is the most commonly
occurring analytical value among all values derived in the repeated
analysis of the sample, If the distribution is asymmetrical, however,
the mode, like the arithmetic mean, as the correct value necessitates
that the numbers of positive and negative analytical errors are
unequal., It is suggested that the median is probably the best estimate
of the true value for the sample, If the median is taken as the true
value, it follows that the numbers of positive and negative values are
equal, even though, if the distribution is asymmetrical, the magnitudes
of the positive and negative errors will not be the same, There is
good reason to believe that this is actually the situation for all

but the dominant chemical constituents in rocks and soils (chiefly
Sioz) because analytical values cannot be negative and so negative
errors are restricted in ﬁagnitude whereas positive errors are almost
unrestricted in this regard, The smaller magnitude of negative errors
is to be expected wherever the analytical method is based on observation
or measurement of densities or intensities that vary as the logarithm

of the concentration.
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If the observed frequency distribution of errors is syémetrical,
the estimated median and arithmetic mean are the same; if the
distribution is normal, the median, mean, and moae are all equal,
If the distribution is asymmetrical, the median can be estimated as
the detransformed equi&alent of the arithmetic mean computed for
some transformation that is symmetrically distributed., If the
distribution is lognormal, the median can be estimated by the
geometric mean (GM); that is, the antilog of the mean logarithm,
These relations are important because analysis of variance methods,
as well as most other statistical procedures, are based on the premise
that the arithmetic mean is the best estimator of the correct value
when applied to error distributions, If the distributions are
asymmetrical, the statistical methods can induce at least a small bias
in the final answers.

The frequency distribution shown in figure 144 was derived from
100 replicate analyses of the same sample for PZOS. The sample was
of sandstone from the Sawatch Quartzite, of Cambrian age, in central
Colorado., About 30 pounds of the sandstone were collected by J. J.
Connor and the writer and then thoroughly homogenized in a rotating
drum for about 10 hours, The homogenized sample was then split into
100 equal parts with a Jones-type splitter constructed of aluminum,
These 100 samples were then randomly interspersed with 400 other
randomly ordered samples of sandstone and submitted for analysis.
The variability demonstrated by the frequency distribution (fig, 14)
is due entirely to analytical imprecision, including the procedures

of sample preparation and the extraction of aliquots for actual analysis,
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The population median was estimated to be 0,37 percent P205, as
shown in figure 14B. Analysis of variance procedures would be based
on the assumption that the best estimate of the true concentration
is the arithmetic mean. If the analysis of variance were directed
at the original percentage data, the arithmetic mean would be taken
as 0.40 percent PZO5 (fig. 144), This value differs from the median
because the frequency distribution is asymmetrical (3! = 1.47)., If
the analysis of variance is directed at the logarithms of the
percentage data, the arithmetic mean.is taken as -0,4158, The antilog
of this value is the geometric mean, 0.38, and is closer to the median
because the distribution of the logarithms is more symmetrical
(9, = -0.22) than that of the original data (fig. 11C). Thus, an
analysis of the variance in the iogarithmic data would be based on
the assumption that the best estimate of the true value for the sample

is 0,38 percent PZO If it is agreed that the median of the distribution

5°
is the best estimate of the true value, a log transformation of the
data prior to the analysis of variance and prior to other statistical
treatment would reduce the bias resulting from the computations,

The considerations above might be trivial if one could be certain
that biases introduced by failure to transform were more or less
constant across all sampling localities and across all saﬁples.
However, if the distribution is asymmetrical, the degree of bias can
vary wi;ﬁ the amount of the constitutent in the samples or in the
sampling localities, If the population distribution is lognormal,

for example, the bias is:

Bias = Arithmetic mean - Median
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and from table 1:

Bias = exp(n rS/)- exp§u) or

Bias = exp (1) (exp (6/z) -1)
If the variances of the logarithms (a?) are homogeneous across all
samples and all sampling localities, the bias is proportiomnal to
the median, Because examination of the variability among medians
(estimated true values) is the very purpose of most investigations,
variable bias from failure to transform the data should be expected.
III. Analysis of variance and methods of computation.

The purpose of analysis of variance in geochemical sampling is
to estimate the magnitudes of the various sources of variation in
the data. For example, if the major source of variation is the
laboratory procedure the true compositional variations among the
samples may be almost completely masked,and descriptions of the
true variations may require either a more precise laboratory method
or numerous replicate analyses of each sample. Similarly, if the
major source of variation is found to be within sampling localities,
the variations among localities might be described only by collecting
more samples within localities. In some situations, the variation
among localities might be so small that efforts to describe the
variations among them might be totally futile,

It was shown in the previous section of the syllabus, in the
discussion of analytical errors, that the components of variance are
additive if variable biases are absent, The purpose here is to show

that 1if variable biases are absent, the components of variance can
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be recovered from the data., First, however, a mathematical
explanation will be given of why variances are not additive if
variable bias is present in the data, This is important because
analysis of variance methods are based on the variance's additive
property. Suppose, for example, that we have collected np samples
by some randomization procedure from n,( sampling localities. Our

sampling model is as given in equation (5):

Ky =Py (37)

If we move the term A to the left side of the equation and square
both sides, we obtain:

(%_;0-\-—/)2 o(f-: +,G,.:7,J + 2“.;/%‘!‘_ . (38)
The term/q in equation (38) is defined as the true average for the
entire region of investigation plus the average bias in selecting
sampling localities plus the average bias in selecting samples and
in laboratory analysis., It follows then that the terms O(A'_. andpd;d:
have means of zero across all samples, although not necessarily for
any specific sampling locality. The next step is critical., If
variable bias in sampling and laboratory treatment is absent, the
terms & andp.;a" are uncorrelated, and the final term in equation: (38)
will tend toward zero when the equation is summed across 'all n'anP

samples. When the nonzero sums are divided through by ﬂ-.'l‘)c‘l/)5 , we

have: 2
- - 7- 2
n n I8
z > = (39
ot a; = 0“‘( + 0/;
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Thus, the variance of xgd is equal to the sum of the variance among
sampling localities plus the variance among geochemical values from
from within localities. The relationship holds only where o . and
;&i are uncorrelated. The same type of relationship can be shown
for sampling models more complex than that in equation (37). All
cross-product terms that appear on squaring the equation must tend
toward zero as the relations are summed across samples, In other
words, variable bias (or correlations among the errors) must be
absent,

If the sampling model is as given in equation (37), it is the
variances of &« and %Qﬁ} that are of prime interest. These variances
indicate, respectively, (1) the amount of variation among sampling
localities and (2) the amount due to sampling the localities plus

laboratory treatment. However, we can never know the individual

quantities of & and/@z}; we see only the values 355? Nevertheless,

the quantities 0‘; and o'; determined the value of d';_' and,.because

of the experimental design used, can be estimated from the data, Zi£.
Only to illustrate that this is true, let us suppose that the data

are the values of given in expression (36) and that the data

x:
F
comprise the entire population; these data are the values of 15, 12,
and 11 from one sampling locality and the values of 24, 23, and 21
from the other. The variance of the first three values is 2,8889

and that of the second three is 1.5555; the average of these variances

2
within the two sampling localities is 2,2222 and is equal to d;a as given
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previously, The two sampling locality means are 12,6666 and 22,6666;
am
the variance @&f,the means is 25, equal to o given previously, Thus,

=<
the two variance components contained in the total variance, a;_, can
be estimated from the geochemical data and knowledge of the sampling
design followed in collection of the data.

The computational procedure followed above is correct only in
the rare (a2lmost non-existent) situations where the entire population
has been sampled., Where less than the total population has been
sampled, these procedures are incorrect for two reasoms: (1) they do
not take into account the degrees of freedom available for estimation
of the variance (see previous discussion), and (2) they do not include
the necessary correction of the between locality variagce for the
effect of variance within localities, If the same data are regarded
as a fraction of the total population, conventional computational
procedures for hierarchical (nested or multi-stage) analysis of variance

designs are used. The procedures, applied to the same data, are as

follows:

L ¢ % Exi =y

1 1 15

1 2 12 38

1 3 11

106

2 1 24

2 2 23 68

2 3 21

2,036 6,068 11,236 (Sums of squared
values)
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(2]

[#2]
4

]

(6,068/3) = (11,236/6) = 150

[%2]
w0
]

(2,036/1) - (6,068/3) = 13.3333

<
i

150/1 = 150

<
[}

13.3333/4 = 3,3333

&, = (150 - 3.3333)/3 = 48,8889

4;5 = 3,3333
The values $§; and 832 are the "sums of squares'; the denominator
values within parentheses are the numbers of ae%}values contained
in the sums that were squared to form the respective numerators. The
values V, and V2 are the '""mean squares'; the denominators (1l and 4,
respectively) are the numbers of degrees of freedom available for
estimating each mean square. One degree of freedom is available
for estimating vy because there are two sampling localities (tld:-l)
and A'degrees of freedom are available for estimating V2 because there
are two sampling localities with two degrees of freedom available from °
each (n“(/h —/)) . The values ,:*and,a.; are the estimated components
of variance between and within sampling localities, respectively.
It will be noted that they are quite different from the values ccmpgted
when the data were regarded as comprising the entire geochemical
population (25 and 2.2222, respectively).

The procedures followed in the computations above are defined in
detail, for the general case, in figure 15 from Krumbein and Slack
(1956) . They apply equally well to hierarchical models containing
any number of terms so long as the numbers of samples (i.e., R s

, etc,) are equal across all categories at each level of the model,

"a
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Fig. 15

XN
2

m'i?nl Xijum * 2 *@i * Bij* ijx* Qijkm
b I8 miles |
ANALYSIS OF VARIANCE
SOURCE SUM OF SQUARES O e |  cacaRe
BETWEEN SUPERTOWNSHIPS| gg » zi(zlgfc“dxii*m)z_ (fgic";"ﬁ“"")z a-1 V, s §°-_§I!
] o, D T | (51 [y, S5
i Towntmrs | 55,+ e BBkowl’ | ap(c-1) |y, » S22
PENTHIN MiNeS | SSu T ERR | g (d-1) [y, 1250
TOTAL X~ %;;ﬁg_*ﬂf abed-|

ESTIMATION OF VARIANCE COMPONENTS

LEVELS DIFFERENCE | Sg¥RE CoMONGE
SUPERTOWNSHIPS V, -V, bed 52 » o2
TOWNSHIPS V, -V, cd 3. 2
MINES Vs - V, d s3 . e
SAMPLES A ! s? = V,

EXPLANATION OF SYMBOLS:

Xijwm = @ single observation.

M4 ® grond meon.
a; * comp. due to supert

Bij

within supertwp. i.

dijum= comp. due to sample m,within mine k,

within twp. j within

wp. i.

s camp. due fo twp. j,within supertwp i.
Fiik = comp.due to mine k, within twp. j,

supertwp. i.

'ﬂ’uﬂij» 3‘“,‘ & 9,um 0re independent with

Meon O ond variances Sg,S3,Sy & S

respectively.

From Krumbein and Slack (1956, p.

80

i varies from | to a

j varies from | to b

k varies from | to ¢

m varies from | to d

where
a = number of supertwps.
b = number of twps./supertwp.
¢ = number of mines/twp,
d = number of samples/mine
n = abcd = total samples
- callected.

T54)



They would not be applicable, for example, if we had collected three
samples from one of the localities and only two from the other,
Sampling designs such as this are said to be unbalanced and different
computational procedures are required, Analysis of variance
procedures for unbalanced sampling designs are given by Anderson

and Bancroft (1952, p, 327-330) and have been used extensively in
geochemical investigations by the U,S, Geological Survey (USGS STATPAC
computer program D0038),

S

Even though the computed values of 4 and.af in the previous

® s

example are non-zero (suggesting that neither the sampling localities
nor the samples within localities are compositionally homogeneous),
they are only estimates and so it is possible that the corresponding
population values, ci_ and<§; , are{ in fact equal to zero, Tests
for the likelihood of this possibility are available and can be
important, For example, it would be futile to attempt to map the
variation among sampling localities 1f there is a good likelihood
that no variation actually exists, The convention test used is based
on the F-statistic, which is a ratio of mean squares, For the
preceding example:

% T
F o= Vy/T =4y 33&3/"‘;9 =ks (39a)

Note that as 4€L goes to zero, the computed F goes to unity, Tables
of critical values of F for various levels of probability are widely
available; the critical values also vary with the degrees of freedom
available for estimating the numerator, Vl’ and the denominator, Vz.
For the example above, these numbers of degrees of freedom are 1

and 4, respectively, and the critical value of F for the 0,01 level
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of probability (denoted by Fo 01(1,4)) is 21.2, Thus, the computed

value of F in equation (39a) is significant at the 0,01 level; an
2

estimate of A., = 48,8889 would be expected less than 1 time out of

ol
z
100 if Oy Were actually zero. The critical value F 1(1,4),

0.00
however, is 74.1; that is, computed values of F would be expected
to be as large as 74,1 about 1 time in 1,000 if di‘were actually
equal to zero. The probability that the computed value of F = 45
arose by chance rather than from real compositional variability
among sampling localities is somewhere between 0.01 and 0,001,

IV, Conventional sampling designs.

A number of conventional sampling designs are described by
Cochran (1963) and Mendenhall, Ott, and Scheaffer (1971) who give
equations for estimating the population means, variances, and
confidence intervals about the means, The more widely Qsed designs
are illustrated in figure 16, Simple random sampling (fig, 16A) of

a region in geochemistry consists of selecting /2 sampling points

by picking 71 sets of X~Y coordinates from a table of uniform random

numbers (fig., 13). This is the most straightforward type of sampling

that could be performed, and the subsequent estimatiom of the
population parameters is the least complicated, Stratif;ed random
sampling (fig. 16B) can improve efficiené& wherever the population
can be divided into subpopulations that are uniform with respect
to the variable being studied compared with the variability among
them, More efficient sampling implies that the confidence interval

about the mean will be smaller for the same number of samples.
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Fig. 16
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Stratified random sampling is conducted by taking a simple random
sample from each (all) of the subpopulations. At the worst,
stratified random sampling can be no less efficient than simple
random sampling. Thus, if appropriate subpopulations could not

be recognized, nothing would be lost by subdividing the population
arbitrarily--as in subdividing by some sort of geographic coordinates,
as in figure 16C. Doing this would serve to spread the sampling
points out more evenly over the region than might be the situation
with simple random sampling., A more even spread might offer
advantages in examinations of regional variability., If the sub-
p;pulations are randomly selected for sampling (i.e., not all of

them are sampled) the sampling is according to a two-stage ot two-

level design (fig. 16D), That is, subpopulations are selected at
random, and then samples are randomly selected from each., Again, the
subpopulations may be defined according to geographic coordinates, as
in figure 16E, It is also possible to divide the subpopulations
into sub-subpopulations, in which case the design would be referred
to as three-stage (fig., 16F). In geochemistry, these multi-stage
designs are commonly referred to as nested or hierarchical designs
with two or more levels.

Systematic sampling (fig. 16G) consists of taking saﬁples at
regular intervals determined by the intersections of a square or
rectangular grid, The first sampling point is chosen by a random-

ization procedure, but then all subsequent points are fixed,

84



Systematic sampling is commonly used in soil sampling and in drilling
programs, but is generally impossible where the population is not
completely available for sampling due to poor outcrops, or
discontinuities in the outline of an ore body. Systematic sampling
could lead to bias if any sort of periodic spatial variation were
present in the population,

Cluster sampling (fig, 16H) consists of identifying subpopulations
and selecting a number of them at random, but differs from two-stage
sampling in that the entire subpopulation is sampled. This method
is commonly used in survey sampling of people, for example, House-
holds are chosen at random and visited; once at the household, it
is almost as easy to get information from all of the individuals who
live there as it is to get the information from one of them (a simple
random sample) or to sample the individuals randomly (a two-stage
sample). If all of the individuals are questioned (or measured),
the procedure seems perfectly analogous to procedures used in
drilling exploration in situations where the drill hole sites are
selected at random or by some procedure that leads to an approximate
random selection. If the entire drill core is assayed by dividing

v
it into equal increments, the drill hole may be regarded as a cluster,
and the estimation procedures given by Cochran (1963) and by Mendenhall,
ott, and Scheaffer seem perfectly applicable. The consequences of
spacing the drill hole sites at equal or otherwise regular intervals,

as is commonly done, are not known,
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A great deal of geologic and geochemical sampling is not designed
at all, especially in geochemical exploration, No reason can be
given for this, but it is unfortunate because geochemical exploration
is an expensive endeavor and every precaution should be taken to
acquire data that are subject to rigorous evaluation.

The sampling associated with drilling exploration is always
carefully planned, but the designs used are generally not thought of
as belonging to one or more of the conventional types referred to
above, If the drill holes are unequally spaced over the ore body,
various schemes are used to derive weightiﬁg factors for estimating
weighted means, as pointed out in an early section of the syllabus,
If the holes are equally spaced, as on a rectangular-grid patternm,
such weightiﬁg is unnecessary.

V. The problem of independence of samples.

The importance of using randomization procedures in field sampling
and laboratory analysis has been stressed in earlier parts of the
syllabus, Unless randomization procedures are used, the geochemical
values cannot be regarded as independent with any comfortable
assurance, and one can never be certain of the degrees of freedom
available for the estimation of variances and confidence intervals
about the estimated means, In fact, there are some reséarchers who

are not independent even
maintain that geologic samples/where randomization procedures were
used (See remarks of David and Dagbert, 1974, p. 167, concerning the
work of Krumbein and Slack, 1956)., This attitude is based on the fact

that geochemical or assay values are continuous variables and are
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spatially ordered., That is, values from samples that were separated
in space by less than a certain distance are correlated rather than °
independent, and only samples from points beyond this range of
distance provide independent geochemical values, These{researchers
seem unaware of the fact that randomly selected samples from an
ordered population are, nevertheless, random, just as systematic
samples from a randomly ordered population are also random (Cochran,
1963, p. 214), It is possible that the source of confusion is in

the interpretation of what is meant by independent samples (observations).
Observations are independent when they are unrelated. Correlation
among qbservations arises whep the samples are collected in groups or
clusters, as when samples are'taken close together from more widely
separated drill holes., If the samples from one drill hole are high

in the measured attribute (e.g., assay value) and those from the other
drill hole are comparatively lew, the observations ﬁill be correlated
according to the definition given by Cochran (1963, p. 242). 1In this
situation, the variance estimated from equation (13) will be biased,
as will the variance of the mean estimated from equation (19)., The
reason is that although we 'may have 2, drill holes with n/@ samples
from each, we do not have /zilg‘/%’ independent observations even
though the drill hole sites and the samples were selected by randomiza-
tion procedures, If these selections were random, however, analysis
of variance procedures could be used to obtain unbiased estimates of
the variances within and between drill holes, and equation (23) would

give an unbiased estimate of the variance of the grand mean (i.e., the
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average grade of the deposit). Ordered populations, analogous
to the continuous variables of '"'geostatistics," are nothing new to
conventional statistics,

The question of independence of observations arises in problems
other than those of estimating the variance or the confidence
intervals about a mean, For example, the probability tests associated
with multivariate procedures, for example, require knowledge of the
number of degrees of freedom and, consequently, of the number of
independent observations, If the samples had been collected according
to any procedure other than simple random sampling, especially if they
had been collected in any kind of clusters (including drill'holes),
and if the population is ordered in any way, not all of the samples
will be independent, According to the principles of geostatistics
(Matheron, 1963), two or more samples are independent only if they
were taken from points separated by distances equal to or greater than
the geostatistical range. Estimation of this range is based on the
fact that samples from a rock body tend to be increasingly different
with increasing distance between the points from which they were
collected~-~up to some limiting distance beyond which the relationship
disappears. This limiting distance 1s the geostatistical range and
is estimated from a variogram such as that shown in figure 17,
Variograms can be estimated from the variance components estimated
on the basis of hierarchical sampling designs as well as from the
techniques of geostatistics (Miesch, 1975). Knowledge of this range

can be useful in determining how sample values can be averaged in
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order to arrive at independent observations. For example, if a
multi-level sampling design had been used, wherein each level was
determined by the spacing between sampling units, the range would
indicate the minimum dimensions of the units that could be averaged
in order to obtain average values that could be regarded as
independent.

VI. Fundamental properties of geochemical maps.

Two properties of geochemical maps that must be considered
before deciding on the sampling design and procedures are resolution
and stability. The resolution of the map pertains to the amount of
detail--specifically, the distances between adjacent sampling localities,
If the localities are closely spaced, small-scale features of the
geochemical pattern over a region can be identified, but if they are
widely Spaced,'only the gross features of the pattern may be described.
The stability of the geochemical map pertains to its reproducibility--
that is, the similarity that would exist among maps derived from
subsequent repetitions of the entire experiment, including both
sampling and laboratory analysis.
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