

QUALITY OF SURFACE AND GROUND WATERS,

YAKIMA INDIAN RESERVATION, WASHINGTON, 1973-74

By M. O. Fretwell

U.S. Geological Survey

Open-file report 77-/28

Prepared in cooperation with the Yakima Tribal Council

U.S. Geological Survey. [Reports-Open file series]

Tacoma, Washington

1977

CONTENTS

Chart and Applied to the Control of	Page
	77
Metric conversion factors	1
Abstract	
Introduction	-
Purpose and scope of the study	5
Sequence of discussion	0
Data collection	
Surface-water sampling	7
Ground-water sampling	8
Previous investigations	-
Acknowledgments	1
Well-numbering system	12-
Description of the area	-
Location and extent	_
Principal drainage basins	10
Ahtanum Creek basin	10
Toppenish Creek basin	15
Satus Creek basin	10
Upper Klickitat River basin	14
Geology of the reservation	19
Structure and rock types	1 -
Ahtanum Creek basin	1-
Toppenish Creek basin	
Satus Creek basin	
Upper Klickitat River basin	-
Major water-yielding materials	
Climate	23

	Page
Part I. Summary of water quality	: 35
Surface-water quality	25
Percentage of ion composition	- 55
Dissolved solids	26
Silica	: 22
Common ions	20
Hardness of water	24
Suitability of water for irrigation	
Temperature	
Turbidity	
Color	30
Dissolved oxygen	_
Chlorophyll a	40
Total phosphorus	- 7 -
Nitrogen	- 77
Organic carbon	
Pesticides	-
Trace metals	
Coliform bacteria	-
Temporal variation in surface-water quality	
Ground-water quality	
Dissolved solids	
Silica	- = 7
Common ions	53
Hardness of water]	-57
Suitability for irrigation	- 5 3
Iron and manganese	6_
Temperature	
Fecal-coliform bacteria	15-
Data summary	

	Page
Part II. Surfacte-water quality, by basin	
Ahtanum Creek basin	6-1
Stream system	64
	1.5
North and South Forks Ahtanum Creek	70
Ahtanum Creek	-25
Toppenish Creek basin	70
Stream system	
Mountain streams and Main Canal	
Wanity Slough and Marion Drain	
Mud Lake Drain and lower Toppenish Creek	2.
Satus Creek basin	
Stream system	
Upper Satus, Logy, and Dry Creeks	Syr.
Lower Satus Creek and South Drain	15-
Klickitat River basin	10
Stream system	
Big Muddy Creek	
Outlet Creek	1 12
Similar streams	*
Yakima River	
Outflows and inflows	1= -
Yakima River at Parker	2-
Yakima River near Toppenish	14
Yakima River at Mahton	10
TAK THIS KIMPL ST MISHIPH THE PROPERTY OF THE	

	Page
Part III. Ground-water quality, by basin	. /3
Ahtanum Creek basin	. 137
Young valley fill	1237
Old valley fill	140
Basalt	143
Toppenish Creek basin	140
Young valley fill	126
Old valley fill	151
Shallow water	152
Deep water	156
Basalt	15.
Satus Creek basin	162
	132
Young valley fill	155
Old valley fill	160
Basalt	173
Klickitat River basin	100
Valley fill	173
Basalt	,
Deep-basalt springs	
References cited of water constituents and characteristics	1.1
Appendix 1. Parameter significance and water-quality criteria	' '
nitrate concentrations in the ground water acceed 10 milli-	
grave per liter	
2-19. Graphs showing diel variations in percent saturation .	

ILLUSTRATIONS

Manufacture to be an in-State and made September 1974

		Page .
PLATE 1.	Map of Yakima Indian Reservation showing water-quality	المال ا
		Laren
2.		
	of common ions in selected streams, drains, and canal	Da.
FIGURE 1.	Diagram showing difference in average percentage compositions	
	of water in mountain and valley streams	25
2-10.		
	sites, relationship between specific conductance and:	
	2. Dissolved solids	:6
	3. Silica	-
	4. Calcium	
	5. Magnesium	2 -
	6. Sodium	
	7. Potassium	-
	8. Bicarbonate	- "
	9. Sulfate and chloride	4 5
	10. Hardness	*
11.	Map of part of Satus Creek basin showing where nitrite-plus-	
	nitrate concentrations in the ground water exceed 10 milli-	
	grams per liter	
12-19.	Graphs showing diel variations in percent saturation	
	of dissolved oxygen in early June and late August 1974:	
	12. North and South Forks Ahtanum Creek	
	13. Ahtanum Creek	73
	14. Upper Toppenish Creek and North Fork Simcoe Creek	
	15. South Fork Simcoe Creek and Main Canal	
	16. Wanity Slough and Marion Drain	
	17. Mud Lake Drain and lower Toppenish Creek	0.
	18. Upper Satus Creek and Logy Creek	12 1
	19. Lower Satus Creek and South Drain	167

FIGURES 20-21.	Graphs showing diel variations in percent saturation of
	dissolved oxygen in early June and early September 1974:
	20. Outlet Creek
	21. Upper Klickitat River
22-23.	Graphs showing diel variations in percent saturation of
	dissolved oxygen in early June and late August 1974:
	22. Yakima River near Toppenish
	23. Yakima River at Mabton
24.	Diagram showing the chemical character of ground waters of
	Ahtanum Creek basin within or near the reservation
25.	Generalized geologic map of Toppenish Creek basin, and specific
	conductance in shallow ground water
26.	
	Toppenish Creek basin
27.	
	Creek basin
28.	Diagram showing chemical character of ground water in Klickitat
	River basin within the reservation

TABLES

TABLE 1.	Surface-water-quality characteristics sampled and sampling
	frequency at selected sites in the Yakima Indian Reservation,
	Washington 7
2.	Concentrations of selected heavy metals observed during low
	streamflow conditions at selected surface-water-quality sites in
	and near the Yakima Indian Reservation
3.	Sanitary suitability of selected surface waters for various uses,
	based on samples analyzed for coliform bacteria
4.	Physical, chemical, and biological analyses of surface water,
	November 1973-October 1974
5.	Analyses of ground water for nitrite-plus-nitrate, specific
	conductance, temperature, and fecal-coliform bacteria
6.	Chemical analyses of ground water, 1939-74 Do.

METRIC CONVERSION FACTORS

The following factors are provided for conversion of English values used in this report to metric values:

Multiply	By	To obtain
Inches	25.4	millimeters (mm)
Feet (ft)	0.3048	meters (m)
Miles	1.609	kilometers (km)
Square miles (mi ²)	2.590	square kilometers (km ²)
Acres	4047.	square meters (m ²)
Acres	.004047	square kilometers (km ²)

QUALITY OF SURFACE AND GROUND WATERS,
YAKIMA INDIAN RESERVATION, WASHINGTON, 1973-74

By M. O. Fretwell

ABSTRACT

This report describes the quality of the surface and ground waters of the Yakima Indian Reservation in south-central Washington, during the period November 1973-October 1974.

The average dissolved-solids concentrations ranged from 48 to 116 mg/L (milligrams per liter) in the mountain streams, and from 88 to 372 mg/L in the lowland streams, drains, and canal. All (classified as 0-60 mg/L hardness as Caco₃) the mountain streams contain soft water, and the lowland streams, (more than 180 mg/L hardness as Caco₃). drains, and canal contain soft to very hard water. The water is generally of suitable quality for irrigation, and neither salinity nor sodium hazards are a problem in waters from any of the streams studied.

Most of the surface waters maintain adequate concentrations of dissolved oxygen for healthy fish life, but Wanity Slough, Mud Lake Drain, and Outlet Creek exhibit a potential for inade-

/

quate dissolved-oxygen concentrations during the warm summer months.

At 13 of the 18 mountain stream sites and at all 11 of the lowland surface-water sites the total phosphorus concentrations were 0.05 mg/L or greater, indicating that phosphorus is not a limiting nutrient but is available in sufficient quantity to support abundant growth of aquatic vegetation, provided other nutrients and other physical factors are favorable. Water from all the mountain streams had average concentrations of less than the 0.3 mg/L nitrate (as N) generally considered necessary for excessive growth of aquatic vegetation. Eight of the lowland streams and drains had concentrations averaging more than 0.3 mg/L; irrigation return-flow waters are a significant portion of all these waters.

All the mountain streams studied, except Logy Creek and South Fork Simcoe Creek, were bacteriologically suitable for irrigation, recreational use and for raw source water for treated drinking-water supplies. Analyses of lowland streams, drains, and canal all indicated their potential for exceeding the criteria for either primary or secondary recreation use, and places in some instances even for irrigation use.

The specific conductance of water from the major aquifers ranged from 20 to nearly 1,500 micromhos. Ground water was most

dilute in mineral content in the Klickitat River basin and most concentrated in part of the Satus Creek basin. The ground water in the Satus Creek basin with the most concentrated mineral content also contained the highest percentage composition of sulfate, chloride, and nitrate. For drinking water, the nitrate-nitrogen concentrations exceeded the U.S. Public Health Service's recommended limit of 10 mg/L over an area of several square miles, with a maximum observed concentration of 170 mg/L.

Hardness concentrations of the ground waters from the major aquifers ranged from 8 to 480 mg/L (as CaCO₃). The ground water in the Klickitat River basin was mostly soft, and in the other three basins it ranged from soft to very hard. Most of the ground water is suitable for irrigation; it is low in sodium hazard and low to medium in salinity hazard.

All the major aquifers yield water whose average iron concentration is less than the recommended limit for drinking water, but at some locations the concentrations equal or exceed recommended limits. Average manganese concentrations are less than recommended limits for drinking water in all the major aquifers in the Klickitat River basin, but they exceed recommended limits in all the major aquifers in the Toppenish Creek basin and in the waters of one or more major aquifer in each of the other basins.

Most wells and springs were free from bacterial contamination, but eight springs and three wells had one or more fecal-coliform colonies per 100 milliliters of water. The presence of bacteria is considered to be highly localized.

This report describes the results of a study of the quality.

If surface and around enters of the Yakima Indian Reservation.

The study was made in corporation with the Yakima Tribal Council to potent water-quality information and to aid the council in mater-resources management. The specific objectives of the study of (1) evaluate the surface- and ecouncilate quality throughout the reservation, (2) determine the nature of existing or potential ater-quality problems, and (3) define the water quality in-terms of suitability for various uses. To the extent possible the data arrace-water quality for coher objectives was related to the suiture of or fish habitat.

INTRODUCTION

Purpose and Scope of the Study

This report describes the results of a study of the quality of surface and ground waters of the Yakima Indian Reservation.

The study was made in cooperation with the Yakima Tribal Council to provide general water-quality information and to aid the council in water-resources management. The specific objectives of the study are to (1) evaluate the surface- and ground-water quality throughout the reservation, (2) determine the nature of existing or potential water-quality problems, and (3) define the water quality in terms of suitability for various uses. To the extent possible the data collected on surface-water quality for other objectives are related to the suitability of the water for fish habitat.

Sequence of Discussion

To facilitate the Yakima Tribe's use of this report in future planning and management, it is divided into three parts. Part I summarizes the quality of surface and ground waters reservationwide. Parts II and III, by design, repeat much of the information in Part I, but on a basin-by-basin basis for more specific discussion of each basin; this allows greater usefulness of the report for future planning and management. Part II discusses surfacewater quality by individual streams, including one canal and four drains, and Part III discusses ground-water quality for each water-yielding unit.

The report contains a number of tabulations of data collected during the study, along with an appendix that discusses the general significance of various water-quality parameters and criteria.

Data Collection

Surface-Water Sampling

This study was of 1-year duration during the period November 1973-October 1974. Of the 29 sampling sites in the surface-water quality network (pl. 1, in pocket), 18 were on mountain streams (3 intermittent), 6 were on lowland streams, 4 on drains, and 1 on a canal. The sites were selected as representative of anticipated water-quality extremes, summations of subbasins, and major points of use. The mountain streams are in forest or rangeland where the influence of man's activities is low, and restricted mostly to cattle grazing, logging and a few dwellings or small farms. The lowland streams, drains, and one canal (hereafter all referred to as lowland streams) are located in farmland and all receive part of their flow from irrigation return waters.

Table 1 lists the sampling frequencies and the physical, chemical, and biological parameters analyzed for each surfacewater sampling site.

Ground-Water Sampling

Ground-water quality was analyzed relative to the water's occurrence areally--within the four major drainage basins--and its occurrence within the principal aguifers. Samples were collected from about 480 wells and springs throughout the reservation. Each sample was analyzed for specific conductance, nitrite-plus-nitrate concentrations, and fecal-coliform bacteria. On the basis of these preliminary analyses, about one-sixth of the samples received a more complete additional analysis for the following constituents and characteristics:

Calcium Chloride

Magnesium Fluoride

Sodium

Potassium Manganese

Bicarbonate-plus-carbonate Color

Sulfate

Plate 1 shows the locations of about 100 wells for which the more complete analyses are available, and indicates the aquifers tapped by the wells.

Previous Investigations

Other investigators have studied the geology and water resources of the reservation, but little emphasis has been placed on the study of water quality. Early investigations of the geologic features include a reconnaissance of central Washington by Russell (1893, 1897) and more detailed studies of a part of Yakima County (Smith, 1901), the Ellensburg quadrangle (Smith, 1903), most of the Columbia River Basalt Group (Newcomb, 1970), and the Simcoe Mountain area (Sheppard, 1960). A geologic and water-resources reconnaissance by Waring (1913) included much of the Ahtanum, Toppenish, and Satus Creek basins, and Foxworthy (1962) described the geology and ground-water resources of the Ahtanum Valley and included information on the ground-water quality. More recent studies of the geology and water resources of parts of the reservation include those of the Toppenish Creek basin by the U.S. Geological Survey (1975) and Gregg and Laird (1975), the upper Klickitat River basin by Cline (1976), and the Satus Creek basin by Mundorff, Mac Nish, and Cline (1977) and Molenaar (1977).

Several water-quality studies have been made in the Yakima River basin. Sylvester and others (1951) studied water pollution in the basin, Sylvester and Seabloom (1967) studied water-quality changes attributable to irrigation return flows. Boucher (1975) studied sediment yields in the reservation. Nelson and Weaver

(1971) reported on the salt balance within the Wapato Irrigation District in the reservation during 1970-71, and compared it with the salt balance during 1941-42, which was reported by Scofield (1941, 1942).

The U.S. Bureau of Reclamation has water-quality records on file in Boise, Idaho, for the Yakima River and for several of the canals and drains in the Wapato Irrigation District. The U.S. Geological Survey has water-quality records on file in Tacoma, Wash., for miscellaneous surface-water-quality sampling sites in the reservation, and also has published data (U.S. Geological Survey, 1965-75) from a few sites on the Yakima River.

Acknowledgments

The ground-water data for this study were obtained through the help of the many well owners who permitted collection of water samples from their wells. Chemical, temperature, and biological data from 6 of the 29 surface-water sites were obtained under the cooperative program supported by the State of Washington Department of Ecology and the U.S. Geological Survey.

and east are was a second and indicates the second and second and

11

Well-Numbering System

Wells discussed in this report have been assigned numbers identifying them by location, within a section, township, and range.

For example, in the symbol 9/13-2Cl, the part preceding the hyphen indicates successively the township and range (T. 9 N., R. 13 E.) north and east of the Willamette base line and meridian. Because the study area lies entirely north and east of the base line and meridian, the letters indicating the directions north and east are omitted. The first number following the hyphen indicates the section (sec. 2), and the letter "C" gives the 40-acre subdivision of the section, as shown in the figure below. The numeral "1" indicates that this well is the first one inventoried within the subdivision.

For brevity on the maps, only the latter part, 2Cl, is used to identify the well, the township and range being obvious from the location on the map. The computer-generated tabular data for this well is listed as 09/13-02C0l.

in south-central Mashington (pl. 1): The reservation is bounded

m the west by the crest of the Cascade Range, on the east by t

Ever, on the south by the crost of I bone lougistis and Horse

leaven Hills, and on the north by Tlickton Divide, Darling

buntain, and the South Fork and main stem of Ahtania Creek.

Description of the Area

Location and Extent

The Yakima Indian Reservation covers about 2,100 mi² in south-central Washington (pl. 1). The reservation is bounded on the west by the crest of the Cascade Range, on the east by the Yakima River, on the south by the crest of Simcoe Mountains and Horse Heaven Hills, and on the north by Klickton Divide, Darling Mountain, and the South Fork and main stem of Ahtanum Creek.

the South Fork lies in a steep-scalled campon between Sadge Ridge on the north and Antanum Ridge on the south. The creat descends from an altitude of nearly 6,000 feet to about 2,100 feet in the 13 miles of its length. The South Fork basin is predictionantly forest land in the upper 11 miles and rangeland below. The North Rork (butside the veservation) marges with the South Fork man the town of Implico, to form Antanum Creat. Antanum Creat them the south as the 25 miles, descending another 1,150 feet to its mouth at the Yakima River, unar the town of Union Cap. The main stem of Antanum Creak lies predominantly in farmland, with rangeland in the higher elevations. However, only about 11 miles of the farmland lies within the reservation.

The reservation is drained by four major streams. The eastern two-thirds of the reservation is drained to the Yakima River by the generally east-flowing Ahtanum, Toppenish, and Satus Creeks. The western one-third of the reservation is drained to the Columbia River by the south-flowing upper Klickitat River.

Ahtanum Creek basin. -- About 45 mi² of the Ahtanum Creek basin lies within the reservation, and all this area is on the south sides of the main stem and South Fork of Ahtanum Creek (pl. 1). The South Fork lies in a steep-walled canyon between Sedge Ridge on the north and Ahtanum Ridge on the south. The creek descends from an altitude of nearly 6,000 feet to about 2,100 feet in the 13 miles of its length. The South Fork basin is predominantly forest land in the upper 11 miles and rangeland below. The North Fork (outside the reservation) merges with the South Fork near the town of Tampico. to form Ahtanum Creek. Ahtanum Creek then flows along the northern base of Ahtanum Ridge throughout most of its 24 miles, descending another 1,150 feet to its mouth at the Yakima River, near the town of Union Gap. The main stem of Ahtanum Creek lies predominantly in farmland, with rangeland in the higher elevations. However, only about 12 mi² of the farmland lies within the reservation.

Toppenish Creek basin. -- The Toppenish Creek basin rises at

15

an altitude of about 5,000 feet in the high western plateaus, which also form the eastern divide of the Klickitat River basin. Toppenish Ridge forms the southern divide and Ahtanum Ridge forms the northern divide. From the high plateaus, the basin descends eastward. The upper slopes are predominantly forested with conifers with semiarid rangeland immediately below. Below an altitude of about 1,000 feet, the irrigated farmland begins, sloping gently eastward to the Yakima River.

The Toppenish Creek basin is by far the most populated, industrially developed, and agriculturally productive basin in the reservation. The basin covers about 627 mi² (401,000 acres) of which irrigated agricultural lands comprise about 130,000 acres, and forest land another 101,000 acres. Most of the remainder is rangeland.

Six towns located within the basin include Toppenish (pop. 5,850), Wapato (pop. 3,015), Harrah (pop. 336), White Swan (pop. 397), Parker (pop. 150), and Brownstown (pop. 112). The population figures are based on 1974 U.S. Post Office estimates.

Satus Creek basin. -- The 618 mi² Satus Creek basin is bounded on the west by the upper Klickitat River basin, on the north by Toppenish Ridge, on the south by the Simcoe Mountains and Horse Heaven Hills, and on the east by the Yakima River, to which it drains. Included in the study of the Satus Creek basin is an area of 92 mi² to the east, which

is drained to the Yakima River lowland by several unnamed intermittent streams.

Forest land in the Satus Creek basin extends down to an altitude of 2,500-3,000 feet, below which is semiarid rangeland. Farmland begins at an altitude of about 900 feet and continues eastward to the Yakima River. Satus is the only town in the basin, with a population of about 50 in 1974. Other habitation is sparse.

Upper Klickitat River basin. -- The upper, northern part of the Klickitat River basin is in the reservation and covers 749 mi². For this report, any reference to the basin implies only that part within the reservation. The Klickitat River rises on the southwestern flank of Gilbert Peak in the Goat Rocks and flows generally southward on the eastern flank of the Cascade Range. The river drops about 3,500 feet in about 55 miles within the reservation. The basin is predominantly forest land characterized by plateaus and steep to precipitous canyons. Although 12,276-foot Mount Adams, a glacier-mantled volcano, visually dominates the landscape, about 85 percent of the basin lies below the 5,000-foot altitude. Virtually all the farmland in the upper Klickitat River basin (about 5,600 irrigated acres) is in the Camas Prairie-Glenwood area in the southwestern part of the basin. This relatively flat land between 2,000 and 1,800 feet altitude covers about 50 mi². The population of Glenwood and the

immediate area was approximately 550 in 1972. Habitation elsewhere is sparse.

1918

Structure and rock types

All drainage basins in the Yakima Indian Reservation are underlain by bedrock composed of the Yakima Basalt of the Columbia River Basalt Group of Miocene age; the Yakima Basalt is herein referred to as the old basalt (relative to Quaternary age andesite and basaltic lavas in some of the higher western parts of the reservation). The Yakima Basalt layers have been folded to form the anticlinal ridges -- Ahtanum and Toppenish Ridges and Horse Heaven Hills -- and the intervening synclinal hasis of Ahtanum, Toppenish, and Satus Creeks and the upper Klickitat River that delineate the three major areas studied. Successively overlying the basalt in the lowlands of the Toppenish and Satus Creek basins, and in places interbedded with the upper basalt flows, are the consolidated deposits of the Ellensburg Formation and unconsolidated deposits of gravel, sand, silt, and clay. The lake-deposited silt and clay were named the Touchet Beds by Flint (1938). Overlying the basalt in the Klickitat River basin and western upland of the Satus Creek basin are the younger andesitic and basaltic lavas of Quaternary age referred to herein as the young basalt; these are related in age to the volcanic extrusions that formed 12,276-foot Mount Adams, a glacier-mantled strato-volcano rising along the Cascade Range crest on the western margin of the reservation. The oldest rocks in the reservation are andesitic lavas of Eocene-Oligocene age found only in the headwater parts of the Klickitat River basin.

Ahtanum Creek basin. -- The old basalt underlying the main-stem

part of the Ahtanum Creek basin is overlain successively by the Ellensburg Formation, cemented gravel and unconsolidated alluvium of gravel, sand, and clay. Near the mouth of the basin the Ellensburg Formation is more than 1,000 feet thick and is overlain by cemented gravel between 300 and 400 feet thick which is mantled by as much as 30 feet of alluvium.

Toppenish Creek basin.--High plateaus of the young basalt, overlying the old basalt (Yakima Basalt) form the western upland of the Toppenish Creek basin. Alluvial sand and gravel with interbeds of lake-deposited silt and clay fill the flat-lying lowland of the oval-shaped basin to depths of more than 1,000 feet. These unconsolidated valley-fill materials consist of gravels derived from the old and young basalts and the Ellensburg Formation, and of younger materials deposited by the glacial melt waters of the ancestral Yakima River during a time of alpine glaciation in the Cascade Range.

Satus Creek basin. -- The young basalt occurs extensively in the western, higher parts of the Satus Creek basin. The lower slopes are formed of the old basalt which in the lowland is overlain by old alluvium consisting of local basaltic materials and Ellensburg Formation. Along the southeastern edge of the valley flat, and abutting the base of the mountains, lake deposits of silt and clay, the Touchet Beds, overlie this

alluvium to depths of more than 70 feet. Young alluvium deposited by the glacial melt waters of the Yakima River are prevalent nearer the Yakima River.

Upper Klickitat River basin. -- The old basalt underlying the Klickitat River basin is overlain mostly by the young basalt extruded from the Simcoe Mountains, King Mountain, and Mount Adams. Some areas of old basalt are still exposed, particularly near Camas Prairie and from the headwaters of Diamond Fork Creek down the east side of the Klickitat River to a few miles below the mouth of Big Muddy Creek. The young basalt includes predominantly basalt, andesite and pumice. In the headwaters of the basin lava flows (mostly andesitic) even older than the old basalt extend down almost to the junction of the Klickitat River and Diamond Fork Creek.

In the Camas Prairie area of the basin alluvium and lake-deposited sands and silts overlie the young basalt.

The divides of the major stream basins are also the ground-water divides. Within the basins the ground water occurs in significant quantities in three major geologic units--the basalt (including both the old and young basalt), the old valley fill, and the woung valley fill. The basalt is capable of yielding large quantities of water in many areas. In the lowlands of the Ahtanum, Toppenish, and Satus Creek basins unconsolidated valley fill overlying the basalt include what are referred to in this report as the old valley fill and the young valley fill; both yield water to wells. The young valley fill was deposited primarily by melt-water streams from alpine glaciers of Quaternary age, but locally includes some interbedded lake deposits. Although the basalt contains the only significant aquifers in the Klickitat River basin, some water is obtained from alluvium underlying the Camas Prairie-Glenwood area, the only populated and agriculturally developed area in the basin.

The Yakima Indian Reservation has a continental climate, ranging from subhumid in the forested uplands to arid in the lowlands of the Toppenish and Satus Creek basins. Climate progressively becomes cooler and wetter with increasing altitude. The upper slopes and summit of Mount Adams are covered by

Precipitation exceeds 100 inches annually along much of the summit of the Cascade Range and rapidly decreases eastward with the decreasing altitude and increasing distance from the range crest (U.S. Weather Bureau, 1965). At the Klickitat River-Toppenish Creek divide, precipitation is about 35 to 50 inches annually, and at the Klickitat River-Satus Creek divide, it is about 25 to 35 inches annually. Precipitation continues to decrease easterly across the reservation to about 7 to 8 inches annually near the Yakima River.

Mean annual precipitation (U.S. Weather Bureau, 1950-72) at various localities on or near the reservation is approximately as follows:

Location	Mean annual precipitation (inches)
Mount Adams Ranger Station (at Trout Lake)	47
Glenwood	34
Signal Peak	32
Bickleton	14
White Swan	8
Wapato	7
Yakima	8
Prosser	8

Surface-Water Quality

Percentage of Ion Composition

In streams of such extreme differences--from mountain streams to lowland drains--there is a remarkable similarity in the percentage composition of common ions. Figure 1 illustrates that most of the waters studied differ from the overall average by less than 10-percent milliequivalence.

The two exceptions are Big Muddy Creek and South Drain, which have sulfate percentages three to five times the average. The lowland streams generally have lower percentages of bicarbonate and higher percentages of sodium and sulfate than do the mountain streams.

Dissolved Solids

Although the percentage composition of constituents in the on the reservation water, is similar, there is a large difference in dissolved-solids concentrations, as shown in plate 2 (in pocket). The average dissolved-solids concentrations ranged from 48 to 116 mg/l (milligrams per liter) in the mountain streams and from 88 to 372 mg/L in lowland streams, drains, and canal. Incoming irrigation waters in the Ahtanum, Toppenish, and Satus Creek basins averaged between 76 and 112 mg/L in dissolved solids. but irrigation return flows averaged between 136 and 372 mg/L. The dissolved-solids concentrations in the Yakima River increased from an average of about 100 mg/L at Parker to about 160 mg/L at Mabton. A large part of this increase is attributable to inflow from the reservation, but the Sulphur Creek Wasteway on the east side of the river is also a large contributor.

Figure 2 illustrates that for 23 sites there is a relatively constant relationship between specific conductance and dissolved solids. Therefore, from a specific-conductance measurement at any of these sites, a fairly accurate estimate of dissolved solids can be made. For example, Ahtanum Creek (site 3) had a specific conductance of 218 micromhos, on February 4, 1974.

The estimated dissolved-solids concentration from the graph (fig. 2) is about 150 mg/L, which compares favorably with the actual

measured value of 140 mg/L. On August 6, 1974, the specific conductance was 388 micromhos, and the estimated and measured values for dissolved solids were both 255 mg/L.

may 18 percent of the dissolved solids. The command streams are in intimate contact with the decomposed surface of the basalt rock; these surficial materials may contain significant excents of volcanic ash, which is a supplied of producing high silica concentrations in mater. As the water is diverted and used to irrigate fields it peace into contact with soils having more soluble calcium, agreesium, and sodium than silica. The met effect is a reduction in the percentage of silica in the water. Pigure 3 shows the relationship between specific conductance and silica at the 23 sites studied. The dashed line indicates streams that are predominantly in mountainous areas underlain by basalt and the remaining points indicate lowland streams in areas underlain predominantly by alluvial deposits and soils.

In the mountain streams, silica averaged 42 percent of the dissolved solids, but in the lowland streams silica averaged only 18 percent of the dissolved solids. The mountain streams are in intimate contact with the decomposed surface of the basalt rock; these surficial materials may contain significant amounts of volcanic ash, which is capable of producing high silica concentrations in water. As the water is diverted and used to irrigate fields it comes into contact with soils having more soluble calcium, magnesium, and sodium than silica. The net effect is a reduction in the percentage of silica in the water. Figure 3 shows the relationship between specific conductance and silica at the 23 sites studied. The dashed line indicates streams that are predominantly in mountainous areas underlain by basalt, and the remaining points indicate lowland streams in areas underlain predominantly by alluvial deposits and soils.

28

The specific conductance may be used for a good estimate of common-ion concentrations. Figures 4 through 9 illustrate the relationships between specific conductance and various common ions.

The relationships of the common ions to specific conductance were sufficiently good to develop a general equation which expresses the concentration of any of the common ions, except nitrate, as a function of specific conductance. The equation is

mg/L of an ion = specific conductance x equivalent weight of the ion x average ion percentage for the particular stream type x 10^{-4} .

The equivalent weights necessary for the calculations are as follows:

Calcium (Ca)--- 20 Bicarbonate
$$(HCO_3)$$
--- 61 Magnesium (Mg)- 12 Sulfate (SO_4) ----- 48 Sodium (Na)---- 23 Chloride (C1)----- 35.5 Potassium (K)-- 39

The average common-ion percentage for the streams studied are listed below:

Percent millioquivalence	a 16 mountain streams	11 lowland streams						
respective becomes	assend cation							
0.1-: (0.)	40							
Calcium (Ca)	42	41						
Magnesium (Mg)	34	30						
Sodium (Na)	20	26						
Potassium (K)	4	3						
Bicarbonate (HCO ₃)	b ₉₃	83						
Sulfate (SO ₄)	4	c ₈						
Chloride (C1)	3	6						

aCommon-ion analyses were not performed for sites 5 and 6.

^bAverage for 14 streams--site 22 and 23 not included.

^CAverage for 9 streams--sites 13 and 20 not included.

To calculate the calcium concentration in water of a lowland stream having a specific conductance of 200 micromhos, at 25 to 2

 $200x20x41x10^{-4} = 16 \text{ mg/L calcium}.$

Following is a list of calculated and measured values for a sample collected from Marion Drain on March 6, 1974. The specific conductance was 390 micromhos per centimeter at 25° C.

Ion concentration, in milligrams per liter

	Calculated	Measured		
Calcium (Ca)	32	35		
Magnesium (Mg)	14	14		
Sodium (Na)	23	22		
Potassium (K)	4.6	4.0		
Bicarbonate (HCO ₃)	197	187		
Sulfate (SO ₄)	15	17		
Chloride (C1)	8.2	7.4		
			_	

A few individual constituents are erratic in certain streams, such as sulfate in the upper Klickitat River and in Big Muddy Creek, and potassium in Ahtanum Creek. In addition, several calculations are unreliable for Mud Lake Drain, which has erratic concentrations of sodium, potassium, and sulfate, and for South Drain which has erratic concentrations of sodium, sulfate, and chloride. Nitrate concentrations show little relationship to specific conductance.

The table below summarizes the ranges of average common-ion concentrations for two groups of streams. As can be seen, the maximum common-ion concentrations for lowland streams are from two to more than eight times as much as those for mountain streams.

Constituent	Mountain streams	Lowland stream5							
	Range in concentration (mg/L)								
Calcium (Ca)	4.1-12	11-44							
Magnesium (Mg)	1.8-6.4	4.5-19							
Sodium (Na)	2.6-6.4	5.9-52							
Potassium (K)	0.7-3.1	1.5-6.2							
Bicarbonate	22-79	72-275							
Sulfate (SO ₄)	1.0-7.2	4.7-58							
Chloride (Cl)	0.6-2.0	2.9-17							

Hardness of Mater

All the mountain streams had soft water, and the lowland streams, drains, and canal had water that ranged from soft to (For hardness classification see p. 202.) very hard. Average hardness concentrations ranged from 18 to 56 mg/L (as CaCO₃) in the mountain streams and between 47 and 190 mg/L in the lowland streams, drains, and canal.

A close relationship exists between specific conductance and hardness, as illustrated in figure 10.

Suitability of Water for Irrigation

(Appendix 1 (diagram, p. 20)

The mountain streams all had C1-S1 waters, and the SAR (sodium adsorption ratio) did not exceed 0.6 for any sample, indicating negligible sodium hazard. The lowland streams had C1-S1 to C2-S1 waters, and the SAR did not exceed 2.3, indicating that sodium hazard is not a problem in waters of any of the streams studied on the reservation.

temperatures also are lower in the mountain streams. Average annual temperatures also are lower in the mountain streams than in the lowland streams, but the seasonal amplitude of variation is greater in lowland streams. Observed summertime diel temperature variations (temperature variations within 24-hr period) ranged from a min of 1.0°C to a maximum of 8.9°C. Diel temperature variations averaged ab the same for mountain and lowland streams in June, and slightly higher for the mountain streams in August. The greater diel variations in temperature from the mountain streams is probably due to the wider range of diel air temperatures in the mountains them in the lowlands.

A few of the streams in the reservation have received a more thorough temperature analysis by Collings and Higgins (1973).

Because of the many factors influencing temperature, more data are necessary than allowed by the scope and duration of this study to better delineate stream-temperature characteristics, clearly. However, it is possible to make some generalization from the data available. Observed minimum and maximum stream temperatures ranged from 0° to 25.9°C in the lowland streams, drains, and canal, and from 0.3° to 20.8°C in the mountain streams. Average annual temperatures also are lower in the mountain streams than in the lowland streams, but the seasonal amplitude of variation is greater in lowland streams. Observed summertime diel temperature variations (temperature variations within 24-hr period) ranged from a minimum of 1.0°C to a maximum of 8.9°C. Diel temperature variations averaged about the same for mountain and lowland streams in June, and slightly higher for the mountain streams in August. The greater diel variations in temperatures of mountain streams is probably due to the wider range of diel air temperatures in the mountains then in the lowlands.

A few of the streams in the reservation have received a more thorough temperature analysis by Collings and Higgins (1973).

Turbidity

Average turbidities ranged from 2 to 38 JTU (Jackson Turbidity Units), with a mean of 6 JTU for the mountain streams and 15 JTU for the lowland streams, drains, and canal. The maximum observed turbidity was 100 JTU in Mud Lake Drain on June 12, 1974.

This is well below a harmful level for fish life, but in the higher range may decrease biological productivity by reducing the light necessary for photosynthesis.

Average color values ranged from 4 to 43 units. Mountain streams averaged 14 units and lowland streams, drains, and canal averaged 23 units. The maximum color value observed was 130 units in Toppenish Creek, on November 11, 1973. Color in the higher range may decrease biological productivity by reducing the light necessary for photosynthesis.

recommended minimum yfor a well-rounded warm-water fish

38

Dissolved Oxygen

During the June diel (24-hour) study, minimum DO (dissolved oxygen) concentrations in eight mountain streams (excluding Outlet Creek) ranged from 9.2 to 10.6 mg/L. During the August diel study at the same sites minimum concentrations ranged from 6.8 to 10.0 mg/L. Percentage DO saturation averaged between 95 and 100 percent for both studies. In general, these data indicate that mountain streams (excluding Outlet Creek) are of excellent quality with respect to the DO necessary for the support of aquatic life.

During the June diel study, the lowland streams, drains, and canal had minimum DO concentrations ranging from 5.9 to 10.4 mg/L. During the August diel study of the same waters, minimum DO concentrations ranged from 5.6 to 8.2 mg/L. The range in average DO saturation was from about 73 percent to 95 percent.

All the streams averaged more than 85-percent DO saturation, except at the sites on Wanity Slough, Mud Lake Drain, and Outlet Creek, which had the lowest minimum DO concentrations--5.6, 6.0, and 5.9 mg/L, respectively. At these three sites a distinct potential exists for DO concentration decreasing to 5 mg/L or less, the recommended minimum of a well-rounded warm-water fish population (Aquatic Life Advisory Committee of Ohio River Valley Sanitation Commission, 1955) such as is found in many of the lowland streams. This could occur in various ways,

such as additional decaying organic matter,
which would reduce the average percentage DO saturation, or else
increased nutrient concentations could stimulate biologic
productivity and increase the amplitude of the diel variation,
causing nighttime concentrations to decrease to less than 5 mg/L
Other factors, such as extended periods of high temperatures, or
lower flows, also could produce DO minimums less than 5 mg/L under
the same chemical-quality conditions as present during the August study.

As shown by the June diel curves for Wanity Slough, Mud Lake Drain, and Outlet Creeks (figs. 16,17,20) percentage DO saturation began to rise before sunrise. This rise cannot be due to photosynthetic activity. This same peculiarity has been observed before by others in different studies. Gunnerson (1964) discusses it in some detail, and concludes that the most probable explanation is that the water temperature drops to some critical level where respiration slows down very markedly and the gradual rise in percentage DO saturation thereafter is due to natural stream reaeration.

11.0

Chlorophyll a concentrations in the suspended material in the stream were determined at the same frequency as the other constituents. However, from the data collected it is evident that this approach is not entirely suitable for streams. In lakes, chlorophyll a concentrations in the suspended material has historically proven to be a usable index of lake productivity. However, streams are subject to scouring which results in increased chlorophyll a in suspension, both from non-aquatic plants and from dislodged aquatic plants. The increase in chlorophyll a concentrations from these sources makes interpretation of the data extremely difficult. Fortunately, the most important part of the data is salvagable. Low flows generally occur in late summer and correspond with maximum water temperatures and maximum sunlight which produce maximum photosynthesis. During low-flow periods, scouring is at a minimum, and chlorophyll a concentrations should be a valid index of productivity. Single samples collected at each site in late August or early September are the basis of the following discussion.

Chlorophyll <u>a</u> concentrations, and by implication, stream biologic productivities, are related to nitrate concentrations. The mountain streams had nitrate (as N) concentrations ranging from 0.01 to 0.04 mg/L at the time of late-summer chlorophyll <u>a</u>

sampling. Only two of these streams (upper Satus Creek and Outlet Creek) contained chlorophyll a concentrations greater than 1.0 mg/l. These two exceptions are probably caused by higher effective nitrate concentrations than measured at the time of the chlorophyll a sampling. The concentration of nitrate (as N) in upper Satus Creek was 0.01 mg/L when the chlorophyll a sample was taken, but the mean for the year was 0.25 mg/L, and the maximum observed value was 0.93 mg/L. These are the highest mean and maximum values observed for any of the mountain streams, and probably reflect a higher effective nitrate concentration than indicated by the 0.01 mg/L of nitrate at the time of the chlorophyll a sampling. Outlet Creek had a low late-summer nitrate (as N) concentration of 0.04 mg/L, which probably is the result of nitrate depletion caused by the production of algae and other submerged plantlife in Conboy Lake and the millpond. Enough free-floating algae is carried out of the lake and millpond to cause the stream to exhibit a higher chlorophyll a concentration than the nitrate concentration in the stream would seem to warrant. when compared with other similar streams in the reservation.

Chlorophyll <u>a</u> concentrations in the lowland streams and canal were 1.8 mg/L or greater; this corresponds with higher nitrate concentrations in the lowland waters than in the mountain streams.

The mean total-phosphorus (as P) concentration of the mountain streams was 0.06 mg/L; the individual stream averages ranged from 0.02 to 0.09 mg/L. For the lowland streams, drains, and canal, the mean was 0.16 mg/L and the individual stream averages ranged from 0.09 to 0.30 mg/L. A total-phosphorus concentration of 0.05 mg/L is generally considered to be sufficient to support abundant growth of algae and other aquatic vegetation, provided other nutrients and other physical factors are favorable.

is not known.

Most total-nitrogen (as N) concentrations in the mountain streams were less than 0.6 ng/L, the concentration as which excessive algal growth any occur, even if nitrate concentrations are less than 0.3 mg/L. The exceptions were South Pork Sincoe Creek, 0.68 mg/L on May 8, 1974; upper Klicklatt River, 2.8 mg/L on May 7, 1974; and lower Klicklatt River, 1.0 mg/L on May 8, 1974.

May is a month of higher streamflow due to spring encountations. Undoubtedly, the high total-nitrogen concentrations in May were due mostly to the nitrogen-containing organic particles in suspension. Sediment samples from selected streams on the reservation collected by Soucher (1975) indicated that concentrations were higher at the collected by Soucher (1975) indicated that concentrations were higher at the collected by Soucher (1975) indicated that concentrations were higher at the collected by Soucher (1975) indicated that concentrations were higher at the collected by Soucher (1975) indicated that concentrations were higher at the concentrations were at the concentrations were higher at the concentration were higher at the conc

Of all the chemical constituents, nitrate exhibited the largest difference between mountain streams and lowland streams. Mean nitrate (as N) concentrations in mountain streams ranged from 0.01 to 0.25 mg/L and averaged 0.06 mg/L, and in lowland streams ranged from 0.20 to 1.8 mg/L and averaged 0.77 mg/L.

Only one mountain-stream sample exceeded the 0.3 mg/L-nitrate (as N) concentration generally considered necessary for excessive algal growth. This sample from site 16 on upper Satus Creek, had a concentration of 0.93 mg/L on February 5, 1974. The source of the excess nitrate is not known.

Most total-nitrogen (as N) concentrations in the mountain streams were less than 0.6 mg/L, the concentration at which excessive algal growth may occur, even if nitrate concentrations are less than 0.3 mg/L. The exceptions were South Fork Simcoe Creek, 0.68 mg/L on May 8, 1974; upper Klickitat River, 2.0 mg/L on May 7, 1974; and lower Klickitat River, 1.0 mg/L on May 8, 1974. May is a month of higher streamflow due to spring snowmelt, generally resulting in the highest suspended-sediment concentrations. Undoubtedly, the high total-nitrogen concentrations in May were due mostly to the nitrogen-containing organic particles in suspension. Sediment samples from selected streams on the reservation collected by Boucher (1975) indicated that concentrations were higher at this

time. On May 8, 1974, suspended-sediment concentrations in the South Fork Simcoe Creek were nearly three times that in the North Fork, and on May 7 the upper Klickitat River had the highest suspended-sediment concentration of any of the streams sampled in the Klickitat River basin.

Even with low nitrate (less than 0.3 mg/L) and low total-nitrogen (less than 0.6 mg/L) concentrations, excessive algal growth could still occur in many of the mountain and lowland streams which have total-phosphorus concentrations greater than 0.05 mg/L. However, chlorophyll <u>a</u> data indicate that excessive algal growth was not occurring at the time of sampling in August and September.

Organic Carbon

Organic-carbon concentrations in the mountain streams ranged from 1.0 to 12 mg/L, and averaged 5.1 mg/L. Nelson and Lysuj (1968) examined streams in uninhabited forested watersheds of California and Oregon, and found similar values, which ranged from 3.7 to 7.7 mg/L. Ott, Barker, and Growtiz (1973) examined streams in the sparsely populated Conewago Lake drainage basin in Pennsylvania and found organic-carbon concentrations ranging from 4 to 12 mg/L.

Organic-carbon concentrations in lowland streams ranged from 2.9 to 17 mg/L and averaged 7.2 mg/L, a slightly higher average than in the mountain streams, probably due to agricultural influences.

Pesticides

Whole water samples--a mixture of water and suspended sediments--were collected monthly during May through September at site 4 on the Main Canal to determine the presence of 14 varieties of pesticides (table 1). The only one noted was the herbicide 2,4-D found in a concentration of 0.07 ug/L (micrograms per liter) in the sample of May 9, 1974. In Washington this herbicide is used most heavily during the months of March and April, with most application being for grain crops.

1965-75). The total mercury concentration found at site 4 on the Main Canal was 3.3 mg/L, considerably above normal concentrations for central Washington streams. The cause of the high concentration is not known, but trace-metals data collecter from the Yakima River at Parker (site 5) during the 1975 water pear (U.S. Geological Survey, 1974) indicate that the high concentration in the Main Canal is an amonaly and not represents of normal mercury concentrations in the canal. None of the atters sampled exceeded the approximate threshold concentrations for maintenance of healthy aquatic life or for irrigation mitability. (See approximate 1975 and 1975 and

Because of the toxicity of the trace metals, a minimal assessment was considered advisable to determine their presence in the surface waters of the reservation. A single sampling at 21 surface-water sites was accomplished during a period of low streamflow when trace-metals concentrations from natural sources are generally highest. Table 2 lists the concentrations of copper, lead, mercury, and zinc found in the sample from each site. All but one of the concentrations found are quite normal for central Washington, according to sampling of other streams in central Washington by the U.S. Geological Survey (1965-75). The total mercury concentration found at site 4 on the Main Canal was 3.3 ug/L, considerably above normal concentrations for central Washington streams. The cause of the high concentration is not known, but trace-metals data collected from the Yakima River at Parker (site 5) during the 1973 water year (U.S. Geological Survey, 1974) indicate that the high concentration in the Main Canal is an anomaly and not representative of normal mercury concentrations in the canal. None of the waters sampled exceeded the approximate threshold concentrations for maintenance of healthy aquatic life or for irrigation suitability. (See Appendix p.

Coliform Bacteria

On the basis of the samples collected, all mountain streams studied except Logy Creek and South Fork Simcoe Creek were bacteriologically suitable for irrigation and recreational use and for raw-source water for treated drinking-water supplies. The lowland streams, drains, and canal all indicated the potential for exceeding the criteria for either primary or secondary recreation use, and in some instances even for irrigation.

Table 3 lists the number of times a stream exceeded, or potentially could exceed, the various criteria.

there is generally a relationship between stratefles and varietiens in pracipitation. Streamfles varies from the stratefles of intense rathfall or specially overland usnoff during periods of intense rathfall or specially to almost 100 percent ground ustes during extended, periods of little or no pracipitation. During periods of warp high streamflow, a stream is rather uniformly dilute in chemical constituents throughout its longth, whereas during extended periods of no pracipitation or securely, a stream reaches a low or base flow composed virtually of only ground-water contribution. This ground water have flow increases the stream's dissolved-solids concentrations.

may no longer be controlled by precipitation or snowed, but may be controlled according to water to 7. The dissolved-solids

In basins such as those in the Yakima Indian Reservation, where both ground and surface waters pass through the same soil and rock materials, the ground water will generally have a higher dissolved-solids concentration. This is in part because the ground water has been in intimate contact with the rocks and soils, affording more opportunity for dissolution of the minerals.

For natural streams whose flow is not controlled by man, there is generally a relationship between streamflow and variations in precipitation. Streamflow varies from predominantly overland runoff during periods of intense rainfall or snowmelt to almost 100 percent ground water during extended periods of little or no precipitation. During periods of very high streamflow, a stream is rather uniformly dilute in chemical constituents throughout its length, whereas during extended periods of no precipitation or snowmelt, a stream reaches a low or base flow composed virtually of only the ground-water contribution. This ground-water base flow increases the stream's dissolved-solids concentrations.

For streams influenced by man, the high and low flows
may no longer be controlled by precipitation or snowmelt, but
may be controlled according to water use. The dissolved-solids

concentrations may be expected to vary according to the combined influences of water use and precipitation.

The general relationship of higher dissolved-solids concentrations during low flows and lower dissolved-solids concentrations at high flows is most apparent as a seasonal fluctuation. Attempts to refine the relationship to a relation of the dissolved-solids concentrations to daily or instantaneous streamflow values generally work with widely varying degrees of success, but in any case, such an attempt is beyond the scope of this study. All but six of the streams had the highest observed dissolved-solids concentrations during late summer and fall, which coincides with seasonal low streamflows. The same streams had the lowest observed dissofived-solids concentrations in the late spring or early summer, due to the rapid snowmelt at the higher elevations producing seasonal high flows.

Although no samples were collected during the major floods of January 1974, the mountain streams probably were very dilute at that time, possibly more so than in the spring.

The six streams whose variations in dissolved-solids concentrations are apparently not due to differences in seasonal precipitation are Wanity Slough, Marion Drain, Mud Lake Drain, lower Satus Creek, South Drain, and Outlet Creek. The variations were due mainly to water-use patterns, except for Outlet

Creek, which probably is more affected by Conboy Lake through which it flows.

As can be seen from the specific conductance values, which in general are measures of dissolved solids concentrations, the two major aquifers underlying the Klickitat River basin contain the most dilute ground water in the reservation. The basalt underlying the Ahtanum Creek basin contains the second most dilute ground water in the reservation. The greatest concentrations of dissolved solids are found in the water in the old valley fill in the Satus Creek basin. The specific conductance of waters from the major aquifers ranged from 20 to per centimeter at 25°C.

nearly 1,500 microhmos/ However, water from three springs in the Klickitat River basin, and believed to originate in the deeper lava flows, have specific conductances of at least 1,500 microhmos, with a maximum of 1,800 microhmos potentimeter at 25°C.

Ground-Water Quality

Dissolved Solids

As can be seen from the specific-conductance values, which in general are measures of dissolved-solids concentrations, the two major aquifers underlying the Klickitat River basin contain the most dilute ground water in the reservation. The basalt underlying the Ahtanum Creek basin contains the second most dilute ground water in the reservation. The greatest concentrations of dissolved solids are found in the water in the old valley fill in the Satus Creek basin. The specific conductance of waters from the major aquifers ranged from 20 to per centimeter at 25°C. nearly 1,500 microhmos/ However, water from three springs in the Klickitat River basin, and believed to originate in the deeper lava flows, have specific conductances of at least 1,500 microhmos, with a maximum of 1,800 microhmos per centimeter at 25°C.

The silica concentrations in 13 ground-water samples ranged from 32 to 68 mg/L and averaged 49 mg/L.

However, insufficient data are available to differentiate silica concentrations in ground water in the different basins, and the silica concentrations showed little correlation to water specific-conductance values.

Variability in percentage composition of most of the ground waters indicated there was poor relationship between specific conductance and the common-ion concentrations except in water from the old valley fill in the Ahtanum and Satus Creek basins. In these materials the waters were sufficiently similar in cation composition to establish a fair relationship between specific conductance and the cations. This relationship is expressed by the equation,

Mg/L of a cation = specific conductance x equivalent

weight of the cation x average

cation percentage $\times 10^{-4}$.

Average cation percentages are as follows:

Constituent	Ahtanum Cre	ek Satus Creek
	Average c	ation percentage
Calcium (Ca)	47	54
Magnesium (Mg)	38	32
Sodium (Na)	12.5	12.5
Potassium (K)	2.5	1.5

Of all the basins studied, ground water in the Klickitat.

River basin contained the lowest average concentrations of
each of the common ions, whereas water from the old valley fill in
the Satus Creek basin had the highest average concentrations of
each of the common ions, with the exception of bicarbonate and
fluoride. Average bicarbonate concentrations are the highest
in water from the young valley fill in the Toppenish Creek and
Satus Creek basins. Average fluoride concentrations are
highest in water from the basalt and old valley fill of these
latter two basins.

Sulfate, chloride and nitrate concentrations are considerably higher in the water from the old valley fill in the Satus Creek than in water found in the other basins. basin The basalt and young valley fill in the basin also show for the same ions. a localized increase above normal. These local high concentrations are all near an area underlain by the silt and clay of the Touchet Beds. These fine-grained deposits may have delayed irrigation-water seepage in this area, and flushing of the much older and more chemically concentrated ground water from the old valley fill may not have been as rapid as in areas of higher permeability.

In water from the old valley fill in the Satus Creek basin, concentrations of nitrate (as N) exceeded the maximum recommended limit of 10 mg/1 for drinking water, as established by the USPHS (U.S. Public Health Service; 1962). (Hereinafter through-

out the report, any reference to drinking-water standards

refers to the USPHS classification.) Figure 11 shows generally
the part of the Satus Creek basin where nitrate (as N)

concentrations exceed 10 mg/L.

Concentrations of nitrate also exceeded the maximum recommended limit for drinking water in a few other areas. Well 12/18-8Kl, tapping the old valley fill in the Ahtanum Creek basin, had a concentration of 11 mg/L. Wells 11/16-22Gl and 11/18-17Dl, in the old valley fill in the Toppenish Creek basin, had water with concentrations of 20 and 15 mg/L, respectively. Basalt in the Satus Creek basin yielded water (well 8/22-3Kl) containing 11 mg/L nitrate (as N); this is unusual for the basalt, and probably, is due to a localized entry of water from the old valley fill.

Hardness of Water-

Hardness concentrations ranged from 8 to 480 mg/L (as CaCO₃) in water from the major aquifers. The maximum concentrations observed was 670 mg/L in water from a spring in the Klickitat River basin thought to originate in the deeper lava flows, which are not at the annual to the However, most ground water in the Klickitat River basin is soft. The basalt in the other three basins, the old valley fill in the Toppenish Creek basin, and the young valley fill in the Ahtanum Creek basin yield water that is mostly moderately hard. The old valley fill in the Ahtanum Creek basin both yield water that is mostly hard, and both the young and old valley fill in the Satus Creek basin yield water that is mostly very hard.

Suitability for Irrigation

Of the 104 samples with sufficient data to allow computation of the SAR, all but one contained waters of low sodium hazard and are classified as S1 waters (see Appendix 1, p. 2), the one exception was water from a spring (11/13-4Kls) which contained S3 water (high sodium hazard). This spring is thought to originate in the deeper lava flows in the Klickitat River hasin.

The major aquifers in the Klickitat River basin yield water of C1-S1 classification. However, three springs (6/13-4Hls, 9/13-18Pls, and 11/12-24Lls) thought to originate in deeper lava flows have C3-S1 waters.

Samples from

The remaining major aquifers sampled throughout the reservation yield C1-S1 or C2-S1 waters, except for two wells in the Toppenish Creek basin and four in the Satus Creek basin that yield C3-S1 waters.

From the foregoing, it can be stated that for irrigation the ground water in the reservation is of low sodium hazard and of low to medium salinity hazard.

Iron and Manganese

The average iron concentration in water from the major aquifers throughout the reservation does not exceed the recommended limit for drinking water. However, two very high iron concentrations were observed in water from two springs believed to orginate in deeper lava flows in the Klickitat River basin--9/13-18Pls and 11/12-24Lls contained 19,000 and 23,000 ug/L, respectively. All aquifers yield water locally that has iron or manganese concentrations that equal or exceed the recommended limits. Average manganese concentrations in water exceeds the recommended limit for drinking water in the (1) valley fill in all the basins, (2) young valley fill in the Toppenish Creek and Ahtanum Creek basins, and (3) basalt in the Toppenish Creek basin.

Ground-water temperature generally tends to increase with increasing well depth due to the temperature gradient within the earth. Average air temperatures affect ground-water temperature, particularly at shallower depths. At higher altitudes, where the average air temperature is lower, water from springs tends to be colder than at lower altitudes, other variables being the same. The lowest temperature observed (2.4°C) was at spring 12/13-27Fls, high on Darland Mountain. The highest water temperature observed (29.6°C) was at well 12/18-27Hl, whose bottom (in the old basalt) is at an altitude of 100 feet, 1,020 feet below land surface.

A country of the extending or mality data collected from he major aquifers and over the entire reservation in remains

Fecal-Coliform Bacteria

Most of the wells and springs sampled for chemical quality also were analyzed for fecal-coliform bacteria. Water from only eight springs and three wells had one or more fecal colonies per 100 millilitres; and samples from adjacent wells did not indicate widespread contamination. The most likely source of bacteria in the wells is direct local contamination from coliform-bearing surface water running down along the inside or outside of the well casing. The areas near the springs with fecal-coliform bacteria are all frequented by cattle, which often walk directly through the spring water and are probably the direct source of contamination.

Data Summary

A summary of the ground-water quality data collected from the major aquifers and over the entire reservation is presented below:

	per little Milligrams per little																
Item	Dissolut Irun (Fe)	41.444163	Dissolud Silica (Sion)	Dissolad Celcium (Ca)	Dissolued mulsvipela (pra)	Dissuland Soilium (NZ)	Potassium (K)	Bicabal	Dissolve Sulfate (504)	chloride (cl)	Dissolved Floride (F)	Vitate plus Nilvite(N)	(C), my	llenorlandiness	Patia	Specific Conductors Conductors	_
MAXIMUM	2100	7500	68	120	44	160	9,0	650	240	70	14	170	480	380	5.5	1540	29.
Mean-	180	70	49	26	11	18	3,3	143	16	7.2	0,3	3,0	110	15.	0.7	339	13.
MIHIMUN	10	0	32	2.1	26	0.8	0,6	10	0.1		00	0,00	8	0.	0,1	20	2.4
of samples	96	91	16	99	99	99	99	99	99	99	99	466	99	99	99	479	47:

Does not include waters from four springs in Klickitat River basin as they are not considered to originate in the major aquifers. The springs are 6/13-4HIs, 9/13-18Pls, 11/12-24Lls, and 11/13-4Kls.

50

Ch

Ahtanum Creek Basin

Stream System

The principal streams in the Ahtanum Creek basin include the two mountain streams, the North and South Forks Ahtanum Creek and the main stem Ahtanum Creek. The North and South Forks join near the town of Tampico and become Ahtanum Creek, which flows to the Yakima River. Ahtanum Creek water is used and reused for irrigation, and irrigation ditches interlace the valley. Much of the drainage water is returned to Ahtanum Creek.

cialize waters. The dissolved-solids descurrentions are less,

The two major concerns related to the common constituents are the hardness of water and the sultability of its use included in the state of the use included in the Cl-51 irrigation-enter classification, including the excellent for invigation.

different in the two moments are 6.4 The love to the

The North and South Forks Ahtanum Creek contain very similar waters. The dissolved-solids concentrations are low, averaging 76 and 82 mg/l, respectively. These low concentrations are due largely to the low solubility of the basalt across which they flow, and the slow weathering processes in the forest lands.

Not only are the dissolved-solids concentrations very similar, but their percentage compositions, in terms of the common constituents, also are very similar, as illustrated in plate 2. The three predominant constituents in decreasing order of percentage composition are bicarbonate, silica, and calcium. These constituents are characteristic of all the mountain streams on the reservation and reflect the similarity of the basalt across which they flow.

The two major concerns related to the common constituents are the hardness of water and the suitability of its use for irrigation. The water from both mountain streams is soft, and is of the Cl-Sl irrigation-water classification, indicating it is excellent for irrigation.

Concentrations of fecal-coliform bacteria were quite different in the two mountain streams. The North Fork Ahtanum

creek averaged 18 col/100 ml (colonies per 100 milliliters), which is slightly high for a mountain stream, but still indicates only slight contamination. The South Fork Ahtanum Creek, however, averaged 120 col/100 ml, which is abnormally high for a mountain stream. The higher concentrations are probably due to a greater number of range cattle, and to the few small farms along the South Fork Ahtanum Creek. The water from both streams, on the basis of the samples collected, appears to be bacteriologically suitable for primary recreation use. (See Appendix 1.)

DO concentrations and stream temperatures were monitored for diel variations in early June and again in late August. The results are listed below:

	1 . ,					NE I		PROF	ILE	AL	GUST	DIE	PROF	ILE
ITE INBER	Stati	on I	V = 1	me.	Szaplines		1	Dissolund Oxygen,	Temperatum	Start Start	Interval SDO		Disolud	Truper - C
/	North	For	4	Ohtonum	June 4	Inne 5	mzx	11,2	7.1	Aug 27	Aug 28	max	9.8	12.7
	Creck	4+7	5n	PICO	at	at	min	10.8	5.7	at	at	min:	8,6	12.4
	des :			at the	0920hrs	०६५५५	range	.4	1.4	0910hr	0630hva	vange	12	5,3
2	South	Fork	A	htonum	Inne 4	June 5	mzx	11,0	7.0	Aug 27	Ang Z8	məx	9.7	16.3
- 1				прісо			1	10.7	5.7	at	at	min .	8.8	12.1
				•	0935 hrs	0705 hrs	range	.3	1.3	09 20 hrs	oc 40hrs	range	:9	4.2
1			- 1				1	1.						

The Alex profiles, in percentage organism, and freintretes

in Signife 12. Both in early June and in late Super physic-

Migercent. This if concentrations again to result also are

The diel profiles, in percentage saturation, are illustrated in figure 12. Both in early June and in late August photosynthetic activity was minimal, and saturation remained near 95 percent. The DO concentrations appear to remain adequate for healthy fish populations.

Nitrate (as N) concentrations were low in the mountain streams averaging only 0.04 and 0.06 mg/L, respectively, in the North and South Forks Ahtanum Creek. Such low concentrations imply that the streams may not be very productive of aquatic vegetation or fish life--that is, growth rates are slow. The fishery fishing is predominantly for hatchery-reared fish.

The following table summarizes the data collected at the North and South Forks Ahtanum Creek:

			,	1	1		Υ		10	T	1	1. 1.	7
=te;			١	*			Dissolut	Dissidued	MIGNISHM		Potasper	(HCO)	Sulfale
= H H-1	Station	ber	Stati	on Nas	le		(4)	((0)	6112	(N2)	(TE)	Inde)	(204)
Fres !	1				{	1		8.8	4.2	(ingle) 4.5	2.3	61	2.3
	12500	600		HTONKIN	1	m>XILKE			,				
			Creek	2+ 72	MPICO	m231	35	6.8	3.2	3,6.	1.9	47	1.8
						MINIMEN	31	5.2	2,2	2.9	1.4	36	1.3
						b	1 4	1 4	14	14	1.4	1	1.4!
			•						,				
	Dissolve	Total	Tetal .	Patal:	Distolad	Hardres	78721.	Sodium ridsoption	Specific	(2.4	Trhaity		Fecal :
	Chlorde (CI)	Applica Control	Charte	(9)	(314)	(Ca, MA)	Carban Carban	Ratio	Conductive	(claff khils)	(nus)	17/11 =	California Cal/10:1
-	(-113)	12/2	(5)10)	(mg/e)	(male)	(rigle)	(A)(b)	-			20	CHOILD.	1
Marry	1.2	.40.	,07	.09	89.	39	10	.3	95	30	20	2.0	40 :
x30	:9	.24	.04	,06	76	30	66	,3	79	17.	8.	1:1	18 H
AMIMIA	7	,09	.01	.04	63	22	4.6	,3	63	7	1	4:	7
۸	14	1	4	4	4	. 4	3	4	4.	4	4	4	.41
				-									
					,			, .				*	
											0		
,,										-			
Site	1 ;					:		Disselved	Dusched	Diss And	Dasdud	Bearlust	Dissil- i
Site in the second	Station	1 .	State	Nay Nay			Siher	CHCIKM (CA)	MASKERM	Sadirm	Potasoki	(HCO3)	(5041)
(three	NYM	pher		en Nas	-	-5-5	(Since (Sion)	(HOLE)	Ching S	(M2)	Patasoning Engles	(HCO3)	(2041) (2041)
OX MES	NYM	1 .	SFA	กราหนา	^ -	т2хлчкы	(Sion) (Sion) (Sion)	(H) (H) (H)	6.4 4.4	(Na) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (M	Potasoki	(HCO2) (myle) 63	(20) 1 (20) 1 (4) 1
(three	NYM	pher	SFA	1	^ -	m2x14x4	(Since (Sion)	(HOLE)	Ching S	(M2)	Patasoning Engles	(HCO3)	(2041) (2041)
(three	NYM	pher	SFA	กราหนา	^ -	1	Silver (SiO) (MIH) 41	(H) (H) (H)	6.4 4.4	(Na) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (M	7.5 2.1	(HCO2) (myle) 63	(20) 1 (20) 1 (4) 1
(three	NYM	pher	SFA	กราหนา	^ -	mt2h	51/22 (502) (51/2) (41) 38	(h)	4.4 3.4	(Na) (hall) 3.7 3.3	2.5.	(HCO3) (male) 63	2.3 /18
(three	NYM	pher	SFA	กราหนา	^ -	mt2h	38 35	(14) (14) (14) (14) (14) (14) (14) (14)	4.4 3.4 2.4	3.7 3.3 3.0	7.5 2.1	(HCO3) Imple) 63 51	2.3 1.8
(three	NYM 1250	1600	SF A	ntanus at Tam	plco	mezh Majainaka Mandress	(Sible (Sio)) (Sio	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	4.4 3.4 2.4	3.7 3.3 3.0 4	2.5 2.1 1.7 4	(HCO3) (myle) 63 51 40 .4	1.8 1.4
(three	Non Non 1250	1600	SF. A. Creek	ntanus at Tam	Day of Land	Marciss (Ca,ma)	(Sible (SiO)) (SiO) (Sio	(14) (14) (14) (14) (14) (14) (14) (14)	4.4 3.4 2.4 4	(No.)	2.5 2.1 1.7	(HCOD) (HCOD) (MIR) (G3) 51 40 -4	1.4 Fea
on mage	Dissolution (Color of Color of	1600 1600	SF A Creek	ntanus at Tam at Tam purpus (P) (myle)	Dogo Care	Mejamahan Hardices (Cajma) (mg/e)	(Sibra (SiO2) (Sio2) (S	CHAIRA (Ca) (LA) (LA) (LA) (LA) (LA) (LA) (LA) (LA	A.A. 3.A. A.	(Alary (Alary (Alary) (Alary)	7.13.5xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	(HCOD) (HCOD) (MCD) (G3 51 40 -4 -4	1.8 1.4 1.4
general 3	Dissolution (College)	1600 1600 1500 1500 1500 1500 1500 1500	SF A Creek	ntanus at Tam	Dogo Marions (male)	Hardices (Ca, Ma) (mg/e)	38 35 4 70771 072711 072711 072711 072711 072711 07271	Codium (12) (12) (2) (2) (2) (2) (2) (2) (2) (2) (2) (4.4 3.4 2.4 4	(A) 3.7 3.3 3.0 4 (A) 1 (A) 1	7.15 2.1 1.7 4	(HCOD) (HCOD) (MIR) (G3) 51 40 -4	1.4 Fea
Canal Care	Pissolate Cally	1600 1600	SF A Creek	ntanus at Tam at Tam purpus (P) (myle)	Dx 0 male) 92 82	Mejamahan Hardices (Cajma) (mg/e)	38 35 4 70721 6760 107616 107616 107616 107616 107616	CHAIRA (Ca) (LA) (LA) (LA) (LA) (LA) (LA) (LA) (LA	A.A. 3.A. A.	(Alary (Alary (Alary) (Alary)	7.13.5xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	(HCOD) (HCOD) (MCD) (MCD	1.8 1.4 1.4
general 3	Dissolve (all)	1600 1600 1600 1500 1500 1500 1500 1500	SF A Creek	ntanus at Tam Tam Paragram (P) (myle) .06	Dogo Marions (male)	Hardices (Ca,ma) (myle) 42 33 24	38 35 4 70771 072711 072711 072711 072711 072711 07271	Codium (12) (12) (2) (2) (2) (2) (2) (2) (2) (2) (2) (4.4 3.4 2.4 4	(A) 3.7 3.3 3.0 4 (A) 1 (A) 1	7.15 2.1 1.7 4	(HCOD) (HCOD) (MCD) (MCD	18 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4
Canal Care	Pissolate Cally	1600 1600 1500 17(2) 17(2) 17(2)	SF. A. Creek	ntanus at Tam at Tam (p) (-91e) .06 ,06	Dx 0 male) 92 82	Hardices (Ca,ma) (myle) 42	38 35 4 70721 6760 107616 107616 107616 107616 107616	Sodium Ratio	4.4 3.4 2.4 4 Specific Conditions Murembris 99 86	(1) 3.7 3.3 3.0 4 (filting (cal sitt)	7.15 2.1 1.7 4	(HCOD) (HCOD) (MCOD) (M	18 1.4 18 1.4 18 1.4 190 120

4468-67

Ahtanum Creek near its mouth had an average dissolved-solids concentration of 194 mg/L, nearly 2½ times the averages of the North and South Forks Ahtanum Creek. This results from the water of Ahtanum Creek being used and reused for irrigation a number of times as it moves down the valley. In addition to irrigation return waters, ground water also enters the stream. The difference between the amount of natural increase in dissolved solids and that from irrigation has not been determined.

The predominant constituents remain the same in Ahtanum

Creek (pl. 2) as in the two mountain streams, but there
is a marked increase in the percentages of sodium and sulfate.

This increase is probably mostly because of irrigation use, although
ground water entering the stream also may contribute to the increase. Silica

also represents a smaller fraction of the predominant constituents
on page 28.
in Ahtanum Creek than in the two mountain streams for the reasons explained.

Ahtanum Creek waters average moderately hard. The irrigation classification averages C2-S1, still a good-quality irrigation water.

Concentrations of fecal-coliform bacteria in Ahtanum Creek averaged 450 col/100 ml. This increase is predominantly

due to agricultural use, the feces of cattle, horses, and other farm animals being the probable major source. On the basis of available data, it appears that Ahtanum Creek may be bacteriologically unsuitable for primary recreation a large part of the time, and for secondary recreation and irrigation some of the time. (See table $\frac{2}{2}$)

DO concentrations were monitored for diel variations in early June and in late August. The variations in DO concentrations and stream temperatures are listed below:

in early June photosynthesis and respiration activity was minimal, and naturation remained near 90 percent. In late August the water fluctuated widely in percentage 10 saturation,

probably due to an increase in the quantity of attached algae

and submerged aquatic plants during the summer months. The

SITE NIMBER	Stati	n Na	me	Sampling	NE I	1	PROF Dissolved Oxygen,	Tomperature	Sompling Start	1 .	D16 (PROF Dissolved OXYIST	
3	Ahtoni	m Cres	k st	June4	June5	m2x	10.3	10.0	Aug. 27	Ang. 28	max	10:6	22.1
	Goodm	on Roo	dat	at	at	min	9.9	8.7	at		min:	2.2	160
	Union	G=P	are (a	08 40 hrs	0620 hrs	range	0.4	1.3	0830hrs	0550hrs	vange	3.4	6.0

toncentrations in the two mountain streams. Agricultural

animal wastes are probably the major cause of

the increase. Nitrate concentrations are more than sufficient

for large growths of aquatic plants and algae.

. The following table summarizes the deta collected at Ahtarum

Treek:

In early June photosynthesis and respiration activity was minimal, and saturation remained near 90 percent. In late August the water fluctuated widely in percentage DO saturation, indicating pronounced photosynthesis and respiration activity, probably due to an increase in the quantity of attached algae and submerged aquatic plants during the summer months. The diel variations are illustrated in figure 13. Ahtanum Creek also appears to maintain adequate DO for healthy fish populations.

The nitrate (as N) concentrations in Ahtanum Creek averaged 0.60 mg/L, about a 10- to 15-fold increase over the average concentrations in the two mountain streams. Agricultural fertilizers and animal wastes are probably the major cause of the increase. Nitrate concentrations are more than sufficient for large growths of aquatic plants and algae.

The following table summarizes the data collected at Ahtanum Creek:

					-								1
												-	
21.	1/	71	21	13	21	3	21	+	21	2.1	21	+	
49	07	1	5	16	8.	3.1	18	Zb	01.	80'	OZ'	51	MIMI
09.5	.0.4	. 81	91	263	. 6.	5.3	86	191	91.	09'	24.	85	W
2600	+/	09	04	084	01	4'8	061	682	96.	17	SL'	00	MAR
1000) Feed (100)	July Zugla	(n15)	munitely)	בסי בורוב בסי באיבאיי	וומפונטוייי	(Head)	(2) (m/d)	20102 (310m)	19)	אההוץ ביוף	IAE DEST	01250472 CU)	
			21		21	,	у у у		lar	147			
CAL	4	7		7/		7	Maminia	de	5 401	un le			_
E. p	59	82	1.4	33		DI	,				• •		
13	951	7.5	. 91	11	10	Et	4224	peo		sop te			
71	239	12	60	.61	38	25	MAMIXCH	Les	2 un	12794	0670	2056/	3
(>04) (>04) (>04)		unusetaq	mylb-2 (sh)	Mysarchi (M)	(a) (b) (b)	Since Since (2012)	*	3,	nen un	445		retate main	7 2 2
Dissilad	Bustonsh	borbera	Dissitud	Dubind	Dribschild	Discolud							-

5t 6th

THE PROOF WE WILL SEE STATE OF THE PROPERTY OF STREET

sheet lefterin also ser at sold manufacts

on the sale and the back that all the sale in

Transmission of tracers properly sour Saura number of the

specifically design and the property of the same the country designs of

Toppenish Creek Basin

Stream System

The stream system within the Toppenish Creek basin is rather complex. In addition to the several natural streams, an extensive system of irrigation canals and drainage ditches interlaces the valley, and utilizes predominantly imported water from the Yakima River. The irrigation water enters the Toppenish Creek basin through the Main Canal, which diverts water from the Yakima River just south of the town of Union Gap. The water is distributed by arterial canals throughout much of the valley. In addition, waters from all of the perennial streams, North and South Forks Simcoe Creek, and upper Toppenish Creek, are used to irrigate upper valley lands and to supplement flow in the main arterial canals.

Wanity Slough and Marion Drain receive ground water and irrigation return flows from farmland underlain predominantly by the young valley fill. Wanity Slough flows into Marion Drain, which returns to the Yakima River, except for a part of the water which is diverted into the Satus Creek basin for irrigation.

Mud Lake Drain and lower Toppenish Creek receive ground water and irrigation return flow from farmland underlain predominantly by the old valley fill. Mud Lake Drain flows into Toppenish Creek, which flows to the Yakima River.

The mountain streams and the Main Canal are discussed together because of their similarities in concentrations of dissolved solids and other constituents and their classification for irrigation water. Upper Toppenish Creek and the North and South Forks Simcoe Creek are the only perennial mountain streams in the Toppenish Creek basin. Dissolved-solids concentrations averaged 88, 112, and 102 mg/L, respectively. Single samples from Agency and Mill Creeks, two intermittent mountain streams, had dissolved-solids concentrations of 90 and 116 mg/L, respectively. Dissolved-solids concentrations averaged 88 mg/L in the waters entering Toppenish Creek basin through the Main Canal, which is similar to the concentrations in the mountain streams.

As with the mountain streams of the Ahtanum Creek basin, the mountain streams and the Main Canal in the Toppenish Creek basin are very similar in percentage compositions (pl. 2). The three predominant constituents in decreasing order are bicarbonate, silica, and calcium; this is characteristic of all the mountain streams in the reservation.

The mountain streams and the Main Canal contain soft waters on the average, and the waters are of the Cl-Sl irrigation classification, indicating excellent quality for the purpose.

Concentrations of fecal-coliform bacteria were lowest in the intermittent mountain streams. Single samples from Agency and Mill Creeks contained 3 and 4 col/100 ml, respectively. Upper Toppenish Creek and North Fork Simcoe Creek also were quite low in fecal coliform, averaging 20 and 11 col/100 mL, respectively. South Fork Simcoe Creek contained considerably more fecal coliforms, averaging 94 col/100 ml. This higher concentration probably is due to range cattle, observed in the vicinity of the sampling site. The Main Canal contained higher fecal-coliform concentrations, averaging 230 col/100 ml. There are several contributors to these higher concentrations. These include the numerous municipal, agricultural, and industrial sources of bacteria in the vicinity of Yakima, such as sewage treatment plants, slaughter houses, meat-packing plants, and feedlots. Many of these wastes find their way to the Yakima River, and thence to the Main Canal.

The water from the mountain streams appears to be bacteriologically suitable as primary recreation water, on the basis of the samples collected. South Fork Simcoe Creek, however, did exhibit the potential of exceeding primary recreation criteria, as indicated by one sample containing 340 col/100 ml. Water in the Main Canal had the potential of exceeding primary and secondary recreation, and even irrigation criteria a small part of the time.

DO concentrations appear to remain adequate for healthy fish life in the mountain streams and Main Canal. The diel variations in DO concentrations and stream temperatures in June and August are listed below:

	TO LL CO		1100	JU	INE I	PIEL	PROF	ILE	AL	GUST	DIE	PROF	ILE
SITE NIMBER	Stati	on No	me	1 .	Stop		Dissolved,	Temperatur	Start	Interval		Disolad	Trafe
4	New	Reserv.	tion	June 4	Junes	m2x	10.8	9,4	Alag: 27	Rug. 28	мэх	9.8	20,
	Cana	near	1 1 1 1	1	at		10,4	8.2	1 .	1 .	min:	8,2	16.
	Pari	er	<u> </u>	0810 hrs	0600 hrs	range	0.4	1.2	0815hrs	0535hrs	vange	1.6	3.
	111	trito	3	encent	ations	is but	the is	J emple		Α,			
9	Торра	mish C	reek	June 6	June 7	Max	10.8	10.8	Dug. 29	Ang.30	max	9.2	70,
	near	Fort S	mcoc	at	at.	min	10.2	7.6	at	at	min :	8.2	16,
				1000 hrs	ocoshrs	range	0.6	3.2	0945 hrs	Obsohrs	range.	1.0	4.
	pirm. mb	y are	OOL Ves	y produ	casve o	ale right	Lic veg	etat, co	7.			•	
10	Worth F	ork Si	mcoc	June 6	June 7	mzx	11.2	11.6	Ang. 29	Ang.30	max	9.4	20:
	Creek	near i	Fort	at	at	min	9.8	6.6	at-	at.	min	8,2	15,
	Simo	05		agoshrs	0510 hrs	range	1.4	5,0	0850 hrs	0615hrs	range	1,2	4.
-		The state of	· III KIK	1 000			ag enus.		3 1 3 1 h.c.	Λ.			·
1/	South	Fork S	incoe	June 6	June 7	mzx	11.2	10.8	Aug 29	Aug.30	max	9.0	18
	Check	near	Fort	at	at	min	10.0	6,0	at	at	nin	8,2	15.
-	Sime	00		0920hrs	0530 hrs	range	12	4.8	0910hrs	0620hrs	range	0.8	3.

79 54 78

be following table summeries the data collected at

In early June photosynthetic activity was minimal, and DO saturation remained near 95 percent. In late August all the streams in this group except South Fork Simcoe Creek had noticeable, although not pronounced, photosynthetic and respiration activity, with the Main Canal exhibiting the most variation. Average saturation remained near 95 percent.

The variations are illustrated in figures 14 and 15.

Nitrate (as N) concentrations in both the perennial and intermittent mountain streams were low, averaging 0.06 mg/L or less. Such low concentrations indicate that the streams probably are not very productive of aquatic vegetation or fish life. The Main Canal had average nitrate (as N) concentrations somewhat higher, averaging 0.20 mg/L. Productivity would be expected to be somewhat higher, other factors being equal. The slightly more pronounced diel variation in percentage DO saturation indicated that the Main Canal was, in fact, slightly more productive.

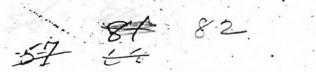
The following table summarizes the data collected at sites on each of the mountain streams and on the Main Canal:

140 S	Non	ber	Stati	on N=1	e		Dissoluted Siker (SiOS) (Mel-C)	Dissolved Colcina (0)	Pasadred Magnesum CMg2	Dissitud Sidium (Na)	Patasona Patasona (mg/2)	(HCO3) (mgle)	Sulfal (304
1 /=	2503	500	News	Peceri	otion	MZXIMEM	25.	20	8,3	/3	2.5	118	7.6
			Gast	hear f	orker	mezh	19	11	4.5	5.9.	1.5	72	4.7
			5.			minimen	14	6.0	2.2	2.6	1,0	46	2.9
						h	3	9:	9	9	3	.3	. 3

	Dissolute Chlorde (U)	(1/6)	Notal Notate Plaste Vitable	Physphane (P) (mg/l)	Soluts (Sur) (male)	Hardress (Ca, Ma) (mg/e)	(Hew)	Sodium Patro Ratio	Specific Conductors murembes	* (platinum	(JTU)	Chall Chall	Colifor
hanre	5.2	2,2	,40	.15	140	84	9.6	.6	210	20	30	6.6	1000
1680	2.9	.48	,20	.09	88	47	6.0	,4	126	9	9.	2.8.	237
KINIMEN	1.7	11	.09	.05	62	24	3,7	,2	78	2	1	1.2	11.
N	3	9	9	9	3	9	3	9	.9.	9	9.	8	. 91

HAND OF THE PERSON AND	Stater	ber	Stati	on Nav	e		Dissolved Silver (SiO2) (MeH)	Colciem (a)	Museum Museum CMg Nouna	(Na)	Dissalud Patassona (mg/2)	(HCO3) (mgle)	Diss Sul (3
9	12 50	6000	Toppen	ash Cre	ek-	MANIKEM	38	12	6,1	6.3	2.4	86	Zi
			nr Fo	+ Sim	COE -	מכאו	34	9.2	4.4	4.6	1:8	64	7.
	'		Sim	be.		miniman	27	5,4	2.4	3,0	1.3.	38	1,
						h	4	4	4	- 4	4	.4	. 4

Dissol Chlords (U)	Mitigen Mitigen Mitigen		Physical (P) (mg/l)	Dissolud Solus (Zum) (male)	Hardness (Ca, Ma) (mg/e)	(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	Sodium Piderption Ratio	Specific Conduction murambas	(PISTIMUM		אוון	Fect colfi
Manual 1.3	1,40	,04	.17	109-	55	9.3	,4	139	30	30	22	30
sen 19	1,20	,03	.08	88	41	5.2	3	112:	- 15	9.	1.2 .	2.5
WINIMED 16	1-11=	.01	.04-	60	23	- 2.0	-: 3	64	10	- 1	.7:	6
1 4	4	4	4	4	4	-4= -	- 4	4	4	4:	:4:	.4
					•							1



Site in map	Alun	ber	Stati	on N=v	e		Dissalud Sikea (SiO2) (MeH)	Dissalva Colcina (co)	Magnesum (Mg)	Dissitud S-digm (Na) (mall)	Dasahad Patassinia (mg/2)	(HCO3)	Sulf.
10	15:506	300	North F	ork Sin	coe	m>ximkem	48.	13	6,7	8,6	3.8	97	3,.
70	700		1- 1		Fort	mezh	44	11	5.3	6,4	3,1	78	2.
		i.	Sime	-		minime	38	7.3	3.1	3.7	7.4	49	2.
	L. re		200			h	4	4	1 4	4	4	.4	1

	Dissolate Colombe (CO)	Man Man		Phisphone (P) (mg/e)	Solus (Sum) (male)		(C) HOW A COLOR (C) A COLOR (C	Sadium Sidesiption Ratio	Specific Conductors murambes	(platinum	(JTU)	CHOID CHOID	Fec Colf Colj.
hooned	1.3	.3/	,05	,09	129.	60	10	15	150	20	10	3.2	2.
ncan	.8	.23	104	.08	112	49	7.3	.4	127	.14	4.	2,0	17
WINIM FW	:4	.16	.01	.07	82	31	4.7	13	84	7	2	.6:	2
n	4	4	4	4	4	4	4	4	4.	4	4	4	.5
													<u> </u>

Site in map		ber	State	on N≥r	ne.		Dissoluti Siher (SiO2) (MeH)	Dissedura Colcium (Co)	Pasadrad Magnesum (Mag)	Dissaled Sodium (Na)	Dissalud Potosonia (mg/2)	(HCO3)	Dis Su
11	12:500	330	South	Fork 5	more	MAKINARM	47	14	6.3	5,3	3.2	90	1 2
	, i		Creek	near	Fort	men	41	11:	4.9	43.	2.6	71	Z
			Simo	e	371"	minimum	30	6.1	2.5	2.8	1.8	41	2
	*					in .	.4	4	4	4	4	.4	· .

	Dissolve Chloride (U)	Total Land	Total printe	Physphone (P) (mg/l)	Solves Solves (male)	Hardress (Ca, Ma) (myle)	(C) HOND	Sodium Victorption Ratio	Specific Conduction murembes	(platimum	(JTU)	Chlory Nyll = Cuall	FE
property.	1.6	,57	.11	.14	122	61	11	.3	144	30	30	3.3	3
seen_	11	,28	.06	.08	102	48	6,3	3	120	. 22	10 .	1:4.	1
MINIMAN	8	:14	.01	.05	67	26	3,4	.2	70	20:	. 2	4:	
N	4.	4	4	4	4	4	4	4	4:	4	4	4	·.
						•							:

2000	Station	ber	Stati	on Nar	re	Dote of single simple	Dissolut Siher (SiOS) (Melt)	Drssdard Colciem (a)	Assolved Mynusum CM12		Dasahad Patasoum Kmg/2)	(HCO3)	Disside Sulfat (204)
2	12506	600	Agen	cy Cres	k			1	,	,			
,		,	nor For	+ Sim.	202	4/9/14	42	9.0	4.2	3.4.	1.8	54	1,4
4	1250	100		ek at C	-								
		= 1	Road nes		1	4/9/14	47	12	6.4	5.1	2.4	79	2.1
_		ei class	luste.										
1	Dissolar Colorde (U)	Total Kedahl Kedahl	Total North	Phisphone (P) (mg/e)	Dosofod Solves (Sum) (male)	Hardress (Ca, Ma) (myle)		Sodium Pidorptio Ratio	Specific Conductive muramher	(plstimum	(TTW)	الرما	Fec-
	1.3	.27	.02	705	90	40	4.8	,2	103	:5	2	1.0 -	3
			3614		int mir	The Res	Table 2	Staues	average			- ·	
	2.0	,26	.01	.09	116	56	4.6	3	140	7	3	1.4	.4
-													

58 82

of the difference was not determined.

Type Sport which Wenter Steen

Ground or surface waters finding their way into Marion Drain are predominantly Main Canal water modified by use for irrigation. Wanity Slough water also represents irrigation return flows, but it is further modified by industrial and municipal wastes, the degree of which was not determined in this study.

Dissolved-solids concentrations in Wanity Slough averaged 136 mg/L. Not all of the common constituents were analyzed for Marion Drain; however, an estimated average of about 200 mg/L dissolved solids may be assumed from specific conductance. This concentration is representative of the water returning to the Yakima River or being diverted into the Satus Creek basin; however, it is not representative of much of the water in Marion Drain, as the drain was sampled at site 8 below the confluence of Wanity Slough. The samples therefore represent the combined waters, and are considerably more dilute than much of the water in Marion Drain above Wanity Slough. The amount of the difference was not determined.

The difference in dissolved-solids concentrations between Wanity Slough and Marion Drain is in part attributable to the amount and type of water use, but of more importance is the soil type from which Wanity Slough and Marion Drain recover water. Wanity Slough drains an area of non-saline,

medium- to moderately coarse-textured alluvial soils underlain by very gravelly material in the upper part of its course and an area of medium— to moderately fine-textured, saline, and in places alkaline, alluvial soils in its lower part. Almost the entire length of Marion Drain is in the same saline and alkaline soil as the lower part of the area drained by Wanity Slough. The finer texture and the saline characteristics tend to cause an increase in dissolved solids, which is more strongly reflected in Marion Drain, as more of its water comes from this type of soil.

The predominant constituents remained the same in Wanity Slough and in Marion Drain as in the Main Canal (pl. 2) but there is a slight increase in percentage of nitrate with a corresponding decrease in percentage of bicarbonate. Silica also represents a smaller fraction of the dissolved solids in Wanity Slough than in the Main Canal, for the same reason as given for Ahtanum Creek.

Wanity Slough and Marion Drain waters average moderately hard. The average irrigation classification of Wanity Slough is C1-S1; of Marion Drain below Wanity Slough it is C2-S1.

Both remain good-quality water for further irrigation use.

Concentrations of fecal-coliform bacteria in Wanity

Slough averaged 1,100 col/100 ml. The presence of fecal

coliforms was not determined for Marion Drain, but total coliforms

were 7,200 col/100 mL on the average. The feces of cattle, horses, and other farm animals are the most probable source of the fecal coliform, although the upper reaches of Wanity Slough may receive considerable coliform from municipal and industrial sources. On the basis of available data, it appears that Wanity Slough and Marion Drain may be bacteriologically unsuitable for primary recreation most of the time, and for secondary recreation and even irrigation some of the time. (See p. 199-200.)

Appendix 1.)

Diel variations in DO concentrations and stream temperatures in the two drains were studied in early June and in late

August. The variations are listed below:

ité	Stati		Na		JU Sampline Stort	NE I		PROF Dissolved Oxygen,	1 LE Temperature	Sompling Sout			PROF Disolard OXIST	Temper
BER	31817	1			31011	314		m972						
7	Wani	4	5%	uela	June 5	June 6	mzx	11.4	15.5	Aug. 78	Aug. 29	max	10.8	20.
1	at Rock	1 1		1-0	1	at	1	7.1	11.4	at	at	min:	5,6	17.
- 1	near T	11			0940 hus		1	4.3		0900 hrs				
		1,0		111	1-1-		139		1011	1 1 1	in a			
3	Mari	1	Dr	in	June 5	June 5	max	9.5	15.5	Dug. 28	Arg. 29	max	10,0	20,
	has			1		at	1	8,2	1	at	1 '.	1	6.9	17.0
			O		0915 his			1.3	3.5	0840 hrs	0515 ho	range	3.1	3,8

87 (87a fols) 85 74

Wanity Slough exhibited the most pronounced photosynthetic and respiration activity of all the streams studied, both in early June and late August. Marion Drain also exhibited pronounced variation both times, but not as great as that of Wanity Slough. The differences in DO variation between the two drains are probably attributable primarily to physical factors such as water clarity, bottom material, and ratio of surface area to volume. Wanity Slough waters are more favorable for biological activity in all three factors; the watersare clearer, the bottom material is primarily cobbles rather than mud, and the stream depth is much less, which results in a more favorable ratio of surface area to volume.

sealthy warm-water fish regulation. In concentration

Cably from below 5 mg/L occursionally during the mary masses

The state of the s

The intrate was M concentrations in Maniay Mouse and

ion beain overaged 1.4 and 1.7 mg/L, respectively -shourt

even or eight-fold increase over that in the Main Const.

itultical fertilizers and animal wastes are probably the

or cause of the increase. Mitrate concentrations are more-

a sufficient for large growths of a smile plants and algor-

The following table summerizes the data collected at

on Warrity Slough and Marion Praise

870 (88 folo)

Comparing Marion Drain and Wanity Slough to the Main Canal, the differences, in diel variations in DO concentrations probably tend to be more dependent upon differences in nutrient concentrations and stream temperatures. Both are higher in the drains, and are more favorable to biological activity. The diel variations in percentage saturation, are illustrated in figure 16.

167

Marion Drain probably maintains adequate DO for healthy fish populations, but Wanity Slough had a minimum observed concentration of 5.6 mg/L, only 0.6 mg/L above the 5.0 mg/L considered to be a safe lower limit for maintaining a healthy warm-water fish population. DO concentration probably drops below 5 mg/L occasionally during the warm summer months. A combination of a very hot, dry summer may cause considerably lower DO concentrations.

The nitrate (as N) concentrations in Wanity Slough and Marion Drain averaged 1.4 and 1.7 mg/L, respectively--about a seven- or eight-fold increase over that in the Main Canal. Agricultural fertilizers and animal wastes are probably the major cause of the increase. Nitrate concentrations are more than sufficient for large growths of aquatic plants and algae.

The following table summarizes the data collected at sites on Wanity Slough and Marion Drain:

Site in Map	Station	ber	Stati	on N=v	e		Dissoluted Silver (SiOS)	Dissalud Colcium (Co)	Desided Magnesia CM12	Dissated Sadium (Na) (imple)	Patasono (raffe)	(HCO3)	Dist Sui Ci
7	12504	5480	Wanie	tu Slo	ichat	mzylmky	3.2.	26	10	12	3.1	125	1
	1000		Priky	FALK	ond	mezh	28	19	7.3	8.9	2.4	111	1
			near:	Toppen	24	Dalmingen	25	16	5.4	6.2	1.7	98	1:
				1		h	1	12	12	12	1 4	1.4	1.6

	Dissolate Chloride (CU)	Metal All	Potal Notifie Chische	Physphone (P) (-g/2)	50/105	Hardress (Ca, Ma) (mg/e)	Carbon	Sodium Patro Ratio	Specific Conductors murambes	(platinum	(JTU)	CHOLD CHOLD	FE
hanne	6.5	,53	2.9	.16	160.	110	6.8	.6.	270	30	20	43	3
mc20	4.8	.40	1,4	.12	136	80	5.6	.5	205	2	8.	7.8.	1
WIRI MIRW	3.4	125	132	.09	120	52	5.1	.3	138	3	2	Z. 1	1
n	4	12	12	12	4.	12	4	12	12.	12	12	11	ب
						٠.	:						·

Site in map	Station	ber	Stati	on Nav	e	cs, vas	Sihea Sihea (Sion)	Dissalvad Colcium (a)	Desched Magnesium CMg)	Dissalved Sadium (Na)	Dasahad Patassuum Kong (2)	(HCO3) (mg/e)	Z S
8	1250	5500	Mario	n Dra	We in	MANINEM	\\	35	14	22	5.7	192	
	runoff.	from th	near	France	er	mezh	\land	27	11	15.	3.4	147	
,	ujpen į	sh Cree	. Aver	ge. B	oil st	MINIMEN	/	21	8.4	12	2.3	113	
,	i see in					h	/ :	23	23	23	22	23	

	Chlorde Cu)	Total Lingen	Fotal Notite Sharke	Phusphone (P) (mg/e)	Elds/	Hardness (Ca, Ma) (myle)	(O) Paris	rider pt.	Specific Conductors murambes	(PETINUM	(JTU)	Chlore Cual D	7.40
proma	8.4	. 73	3,0	,43	. \/	150	7.9	8.	410	90	80	5,9	É
wen_	5.1	,44.	1.7	.17		110	6.4	,6	302	-26	15.	2.6	2
WIRIMPH	3,1	.30	,30	.12	/	85	5.0	5	210	9	4	1.0	1
N .	23	241	24	24	/	23	5	23	24	23	24	9	100
	Mir gr	rend we	LOT ON	ers lo	er Top	in tak	Took m	a Nud					-

The waters of Mud Lake Drain are a composite of ground water and irrigation return-flow water originally from arterials of the Main Canal. A small amount of water comes from the natural runoff of intermittent streams on the south slope of Ahtanum Ridge. Lower Toppenish Creek waters are a composite of water from intermittent and perennial mountain streams, irrigation return flow from the same and from arterials of the Main Canal, Mud Lake Drain water, and ground water. The overall changes in water quality were studied, but differentiation of the changes due to each type of inflow was not determined.

Dissolved-solids concentrations averaged 249 mg/L in Mud Lake Drain, and an estimated average for lower Toppenish Creek, based on specific conductance, was about 220 mg/L. The difference probably is due to the dilution by spring rumoff from the mountain streams, which slightly lowers the Toppenish Creek average. Both streams have very similar dissolved-solids concentrations during low streamflows.

Mud Lake Drain and Toppenish Creek, as previously mentioned, drain an area underlain by the old valley fill. Ground water from the old valley fill below the Main Canal arterials has the highest average dissolved-solids concentrations in the basin. This ground water enters lower Toppenish Creek and Mud

Lake drain and is in part responsible for these streams having
the highest dissolved-solids concentrations of the streams in
the basin. The amount of increased dissolved-solids concentrations
attributable to surficial irrigation return flows is not known, although
it is probably more for lower Toppenish Creek and Mud Lake
Drain than for Marion Drain or Wanity Slough. The soil
associated with lower Toppenish Creek and Mud Lake Drain is
largely silt which tends to yield drainage water containing
greater dissolved-solids concentrations than do coarser
alluvial materials.

The predominant constituents in Mud Lake Drain and lower Toppenish Creek are, in decreasing order, bicarbonate, calcium, and sodium. Bicarbonate percentages are slightly less and sulfate percentages are slightly more than in the drains in areas underlain by the young alluvium.

On the average, water in lower Toppenish Creek is moderately hard, and that in Mud Lake Drain is hard. The average irrigation classification is C2-S1, indicating good-quality water for the purpose.

Concentrations of fecal-coliform bacteria in Mud Lake Drain averaged 780 col/100 mL. The presence of fecal coliform was not determined in lower Toppenish Creek waters, but total coliform averaged 11,800 col/100 mL. These are high concentrations, compared to those in the mountain streams and the

Main Canal. The feces of cattle, horses, and other farm animals are the most probable source of the fecal coliform. On the basis of available data, it appears that Mud Lake Drain and lower Toppenish Creek are bacteriologically unsuitable for primary recreation most of the time, and for secondary recreation and even irrigation some of the time. (See ρ , 199-200.)

Diel variations in DO concentrations and stream temperatures in the drain and stream were determined in early June and late August. The variations are listed below:

OL And widedown ave sectors tember has presidented farminolish

the being the med mach rover over that the promise and the same

nt dell quit que associat blod mayer of stool a stool- viewisconer

behranting the a sold splan gangon and harmond sta

south of emergic where the bad had a smothetinged dust withhed

soi Ol sissipale sitteralm Vlanderq feerl detroquit near.

to the cittle lift by maker gradients entired sould an 10 becauses

call in which are decreased and the alternative and particular the

J'am 2 L ban J'am 88.8 Sagaraya misad sist but ban Asad.

estolishings dell tersa-mine addised tol rimil teach.

section of the increases:

一 有 一 好 并 以 本 一 等 以 人 接 经 等 的 she 20145570 on 5880 254Ex 1 04000 140080 07 3. 7.8 L.Z 2.8 121 nim 8: 11 +0 to NESA uim snies 7.7 Acm 12, 26 Aug. 27 max 5'11 70 June 4 Joppensh arek 2.6 XZW 9:01 June 3 51 2810MO535MV2180 234EN omet90 68 8% 71 ·+ on 0280 YSLASY 13.71 99 7% to 7537 · WIM T. at 1 86 ulu 4 Kem 05,24 Rug, 30 Max XEM T smil 22.5 1.81 Mud She Ihrain 22 4.9 Luck 51 DISSOLM 2517 Jempung! वेवड मनदाड gots tres SMEN NOTLETS MXXBER lonetal pringues Gradual Trupan 1001-Stal pullyace? SITE PROFILE DIET TZUZDA 371403d JUNE DIEL

Although Mud Lake Drain has warm temperatures and sufficient nutrients, the photosynthesis and respiration are only slight. This probably is because of the restricted light penetration--as indicated by the high average turbidity value of 38 JTU, which is twofold higher than that of any other surface waters studied. In addition, the mud bottom affords little opportunity for the attachment of algae or the rooting of aquatic plants, which are both so important in oxygen production. Lower Toppenish Creek had only a slight diel variation in DO in June, but quite a pronounced variation in August. The reasons are probably the same as for Ahtanum Creek--the growth of additional attached algae and submerged aquatic plants during the warm summer months. The diel variations in percentage DO saturation are illustrated in figure 17.

fig 17

Lower Toppenish Creek probably maintains adequate DO for healthy fish populations, but Mud Lake Drain appears to have the potential for dropping below the 5.0 mg/L recommended lower limit for healthy warm-water fish populations.

The nitrate (as N) concentrations in water in lower Toppenish Creek and Mud Lake Drain averaged 0.88 mg/L and 1.5 mg/L, respectively--about a four- to seven-fold increase over that in the Main Canal, and much more over that in the mountain streams. Agricultural fertilizers and animal wastes are probably the major cause of the increase. Nitrate concentrations are more

2 8.5 18 27 2 8.5 18 27 6 6 4 7 200 30 100 2 432 18 38 7 200 4 20
2 260 4 10
260 4 10
2 432 18 38 2 260 4 10

300	Station	ber.	State	on Nav	ne.		Dissolved Siher (SiOs)	Dissolved Colcina (0)	Pasadad Magnana Magnana Magnana Magnana	5-dixm	Dasalad Patassoum (mg/2)	(HCO)	SU
2.4	1250	7090	mud	Lake !	Drain	mzylmen	44.	56	25	58	6.0	392	1
,				Harra	4	me2h	32	36	15	34.	3.7	208	2
				han in		minimen	26	22	8.5	18	27	141	1
						n	4	6	6	6	4	.4	
	Chloride Chloride	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Notife :	purpuse (P) (mg/e)	Solus (Zem) (mels)	(myle)	Carpon Carpon	Ratio :	murember	(hhits)	(2LM)	CHAID CHAID	Fall
maj.	18	1.2	2.4	.55	421.	240	8,5	1.6	700	30	100	5.9	3
1	8.4	,64	1.5	.30	249	150	7.4	1.2	432	.18	38.	26.	1
n'e pa	4.7	,36	,69	,20	167	90	6,1	.9	260	4	20	1.5	-
	4	6	6	6	4	.6	3	4	6.	6	6	5	1.
					. `								1.
	gette.		iler dr	wing to	View View	Yeldan Lina Hi	COT ME	e not	and the same				

Site in Map		ber	State	on N=v	ne.		Dissolution (Sibra)	Dissalved Colcinson (a)	Pasadod Magnanam (Mag)	Dissalved Sodium (Na)	Dissalued Potossour (1)	Bestbash (HCO3) (male)	Dissil Sulf. (50,
15	1250	510	Toppe	mich C	reck	MANINEM	1/	40	20	19	9.7	283	6
	-		V U	1	2	mezh	/	27	12	22.	3:9	171	1:
		• • •				minimen	1-	18	8.6	12-	7,6	128	6.
					,	ln /		23	73	23	23	.23	. 2:

	Dissola Chlorde (U)	Total Ketali Ketali Ketali Ketali	Fotal Notife Brishe (MICH)	Phusphone (P) (mg/e)	Dosojad Salus (male)	Hardress (Co, Ma) (myle)	Total Carbon (C)	Ratio	Specific Conductive Conductives	(ptimum	(JTU)	m/11 2	Total Colfo
TREPAS.	26	1.4	2.5	.63	1	180	17	2,2	650	130	35	6.7	1591
KAN_	7.1	351	,88	.18		120	10:	- 9	350	-43	13 .	3.1.	11.8
(IN) MI FA	3.1	.33	,02	11	/	82	5.7	15	220	13	5	,3:	56
1	23	23	23	23	1	23	5	23	23.	22	23-	9	23
		:					,			• •			

Satus Creek Basin

Stream System

The Satus Creek basin has only two perennial streams--Satus Creek and Logy Creek--and two intermittent streams of importance--Dry Creek and Mule Dry Creek. Satus Creek is the main stream, and all others flow into it in the order listed above. In the eastern lowland of the basin, water from Satus Creek and Marion Drain in the Toppenish Creek basin is diverted to the lowland farms for irrigation. Downstream, lower Satus Creek and South Drain receive much of the irrigation return flow and return it to the Yakima River. Mule Dry Creek, and two smaller drains to the Yakima River were not studied.

The two tampor concerns related to the compon countriplents are the hapdness of poster and the establish; of its use for irrigation. The easer from the three according expansion education against an in or the CL-Si irrigation-water classification, indicating excellent quality for the pursuance

legs, and Dry Creeks averaged 14, 200, and 3s colfice et,

The three mountain streams studied all contain similar waters. The dissolved-solids concentrations are respectively.

Waters. The dissolved-solids concentrations are respectively.

The dissolved-solids concentrations are respectively.

Not only are the dissolved-solids concentrations very similar but their percentage compositions, in terms of the common constituents, also are very similar, as illustrated in plate 2. The three predominant constituents in decreasing order are bicarbonate, silica, and calcium. These constituents are characteristic of all the mountain streams on the reservation, reflecting the similarity of the chemical character of the basalt across which they flow.

The two major concerns related to the common constituents are the hardness of water and the suitability of its use for irrigation. The water from the three mountain streams studied is soft, and is of the Cl-Sl irrigation-water classification, indicating excellent quality for the purpose.

Concentrations of fecal-coliform bacteria in upper Satus, Logy, and Dry Creeks averaged 14, 200, and 38 col/100 mL, respectively. Satus Creek water is quite low in fecal-coliform

concentrations, being within the expected range for mountain streams. Both Dry and Logy Creeks, however, contain higher-than-normal concentrations, which probably are due to range cattle or sheep, although a marshy area on Logy Creek may receive additional fecal coliforms from wild ducks, known to be a significant source of these bacteria.

The waters of upper Satus and Dry Creeks appear to be bacteriologically suitable for primary recreation use on the basis of the samples collected. (See Appendix 1, p.19/.)

Logy Creek, however, exhibits the potential of exceeding primary recreation criteria, as indicated by one sample containing 720 col/100 ml.

DO concentrations in Logy and upper Satus Creeks appear to remain adequate for healthy fish life. The diel variations in DO concentrations and stream temperatures in June and August are listed below:

			JU	INE I	PIEL	PROF	116	AL	GUST	DIE	PROF	ILE
SITE INBER		on Name		Stop		Dissolund	Temperature	50 mpling	Interval		Dissolund	
- Dex	31611		31211	3100		mege		DIZET	Sto		#152.	
16	Satus	Creek stone	Tune 5	June 6	mzx	10,6	16,0	Aug.28	Aug. 29	max	9,6	24
	logy (veek near	at	lat.	min	1	8.8	1 '	1 1		6.8	17,
	Toppe	niey	1045hus	0535/4	range	1.4	2,2	0940 kio	ocho	vange	2,8	7.
17	logy	Geck war	June 5	June 6	max	10.6	14.0.	Aug. 28	Aug. 29	max	9.2	24
		enish	1	at	min	9.7	8.4		1	1	7.9	16.
	1.1	reference V)	1055 ho	0540hm	range	0.9	5,6	0950hm	0615/4	range.	1,3	7.
1	The state of				,							

with me average of 5.75 ogric. Promotivity and observed by

saturation.

W 100

In early June photosynthetic activity was minimal, and DO saturation remained near 95 percent. In late August Logy Creek had noticeable, although not pronounced, photosynthetic and respiration activity, and upper Satus Creek had pronounced activity. Average DO saturation remained near 95 percent. The cause of the large variation in DO saturation in upper Satus Creek probably is related to the higher-than-average nitrate concentrations and stream temperatures which may tend to increase biological productivity. The diel variations are illustrated in figure 18.

Jug 18)

Nitrate (as N) concentrations were low in Logy Creek and Dry Creek, with averages of 0.07 and 0.08 mg/L, respectively. Such low concentrations suggest that the streams probably are not very productive of aquatic vegetation. Upper Satus Creek, however, had somewhat higher nitrate concentrations, with an average of 0.25 mg/L. Productivity was somewhat higher, as indicated by the pronounced diel variation in percentage DO saturation.

The following table summarizes the data collected at sites on each of the mountain streams:

	4		Ship	en No								THE PLANT	
Jen And	State	ber	State	on Nav	e	- (Dissolud Siher (SiO)		Dusdad Magnesia CMg)	5-dixm	Dasalad Patassum (mg/2)		Dissi Sulf (24
1-D	1250	7990	Satus	Creek	above	maximum	0.	11	6.0	6.4	2.1	80	3,
2	7000		logy	- 1	near	mezh	33	9,4	4.8	5.2	1.7	65	2.
	1		11	nish		minimen	29	7,0	3.2	3.9	1.3.	48	2.
	AL I	774	Toppe			h .	4	1	1 4	1	14	1.4	
	Chloride (U)	Bother	Notate Strate	Physphone (P) (mg/l)	(male)	(Co, ma) (myle)	Carps (Carps	Ratio	Specific Conductor Murambas	(platinum (calatt khits)	(JTU)	CHAID	Fe
	1-440)	(MILE)	.93	,05	104.	52.	6.2	1	130	20	4	2.1	3
U PAN	1.4	,27	,25	.04	90	43	4.2	4	112	8	2.	1.5	1
Mks	1.1	,09	,01	,02	71	31	2.3	.3	77	4	1	1.1:	
	4	4	4	4	4	14	4	14	4.	4	1.4	14	1.
		1			:	1.							1:
		-			.,								
		1	T	T	T	1.	Investor	1 Dec Jud	Deed	Dueles	Dechud	Berbus	In.

THE THE P		ber	Stati	on Nav	e		Dissolut Sihez (SiO)	Dissolved Colorem (a)	Pusched Magnessen Change	Dissilved Sadium (Na)	Dissalud Potosoum (mg/2)	Beethast (HCO3) (mgle)	Dissil Sulfa (30)
17	1250	2950	Logy	Creek	hear.	שאוגעכאו אין אין אין	29	8,3	4.9	6.1	1.3	62	3.
		. **	Toope	nish		mezh	28	7.5	4.2	5,0.	1,2	55	2,
			10			Dajamen	26:	6.2	3.3	4.3	1.0	48	1.0
	,					n	4	4	4	4	4	.4	1

	Dissolve Chlorde (U)	Tetal 11 Ked 11	Fotal North	Phusphone (P) (mg/2)	(muz)	Hardness (Ca, Ma) (myle)	Carbon	Massiption	Specific Conducture murember	(platinum	(JTU)	Chlory by 11 2 Cual O	Fecal Colofo Colofie
Towner!	1.9	,21	.22	.06	83	40	8.2	.4	100	20:	6	3.8	720
KAN_	12	.16	.07	.05	76	36	5.4	,4	95	11	3.	2,2	20
(IXIMAN	.8	.10	.01	.03	67	29	2.7	.3	80	7	. 1	.5	1
1	4	4	4	4	4	4	4	4	4	4	4	3	4
_		: '						11					

								•				1 1	1
riev						- 16.	Dissolved	12.4	Pussofued Musuum	Diss thed Sodiem	Dosemed Patassium	(HCO)	Shifa
Map	Station	ber	State	on Nax	ne		(Sion)	Colciem (Co)	CH23	(Na)	(mg/2)	(male)	(20
4.5D				Creek	1	myximem	36.	(hale)	6.0	6.4	2.1	80	3,5
5	1250	7990		2 1			33	9,4	4.8	5.2	1.7	65	2.
			11	1	near	mezh	29		3.Z	3.9	1.3	48	2.
-			Topse	nish		helminer	4	7,0	4	4	4	.4	9
						lh ·	LT_	T					,
		741	Fotal .	Total	Dissolmy	Hardress	70721	Sadirm	Specific	(4.4	To Hadity	Chlorop	Fee
	Chloride	Kedahl	N.T.Te	Phus phone	50/105	(Ca, TKA)	CALPIN.	rasiption	Conduction	* (platinum	(JTU)	11/11	Colf
	(-49)	المالية	Chiste (C)(C)	(mg/e)	(male)	(myle)	(9/10)	Ratio	Mucrombes	(alaff)	•	CHOLO	(cd)
(href)	2.1	,27	. 93	.05	104	52	6,2	.4	130	20	4	2.1	3
m	1.4	,14	,25	.04	90	43	4.2	4	112	8	2.	1.5.	1
Mim	1.1	109	,01	,02	71	31	2.3	.3	77	4-	1	1.1:	1
	4	4	4	4	4	14	4	4	4.	4	4	4	1.4
													1:
					.,								
te in w	-41		1					Disselved	Posedied	Diss fred	Dissalved		Diss
MAP	Station	ber	Stati	on Na	le.		Siher	Calcium (Ca)	(M4)	(Na)	PATOSONN	(4003)	541
me D	Non	ber	1.	10)		ww.lkcm	(Sibra)	CHCIKM	CH13	Sodiem			541
me D	Non		Logy	Creek		משואלווו	29	(a)	(M4)	(Na)	Patasoun Graffe	(HCO3)	3
me D	Non	ber	Logy	10 >		mezh	29 28	(ACIEM (10) (14) (14) (14) (14)	4.9 4.2	(Na) (Na) (male) 6,1	1.3 1.2	(HCO3) (m/le) 62 55	3
me D	Non	ber	Logy	Creek		1	29	(a) (b) (b) (b) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	4.9	(No)	Patasous (mg/2)	(HCO3) (myle) 62	3
ine D	Non	ber	Logy	Creek		mezh	29 28	(2) (2) (3) (4) (4) (4) (4) (4) (5) (4) (4) (4) (4) (4) (4) (5) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	4.9 4.2	(Na) (Na) (male) 6,1	1.3 1.2	(HCO3) (m/le) 62 55 48	3
te must have 1	Non 1250	2950 	Logy	Greek nish	hezr	me 2 h	29 28 26 4	(A)	(M2) (-4.9) 4.9 4.2 3.3 4	(Na) (Na) (Na) (Na) (Na) (Na) (Na) (Na)	1.3 1.2 1.0	(HCO3) 1m(1e) 62 55 48 .4	5 4 5 5 1 1 1 1 Fee
7	Dissolar Chlorder	Der Des O	Toppe Toppe	Creek nish	MERY. Solus (Sum)	Hardress (Ca,ma)	Siher (Sida) 179 29 26 4	(2) (5) (5) (5) (5) (5) (6) (7) (6) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	(M2) (-4.9) 4.9 4.2 3.3 4	Sadika (Na) (Na) (Na) (Na) (Na) (Na) (Na) (Na	1.3 1.2 1.0	(HCO3) (HCO3)	Suice
7	Dissolute (U)	Total Al Federal (mg/e)	Toppe Toppe Toppe Strake (WIII)	Creek nish Physical (P) (mg/e)	Dosofod Solids (Sim) (male)	Hardress (Cana)	29 26 4 700011 700011 700011 700011 700011 700011 700011 700011	Sodium Ratio	Specific Conductor	Sadikam (Na) (Na) (Na) (Na) (Na) (Na) (Na) (Na)	1.3 1.2 1.0 4	(HCO3) 1m(1e) 62 55 48 .4 Chlory 1/11 = Chaple)	Feel Calmination
77	Dissolar Chlorder	Total Al Fredak (m/e)	Toppe Toppe Toppe Toppe Strake (WIII)	Creek mish Physical (P) (mg/e) .06	Merr Solves (male) 83	Hardress (Ca, Ma) (myle)	78 76 76 76 76 70 70 70 70 70 70 70 70 70 70	Sodium Ratio	Specific Conductor Murember	5,0 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3	1.3 1.2 1.0 4	(HCO3) 1m/12) 62 55 48 .4 Chlory Chair Chai	Feel 72
77	Dissolate (U) (-440)	10950 10151 10161 10	Toppe Toppe Toppe Toppe Strake (WIII) . 22	Creek mish Phisphone (P) (mgle) .06	Mear Solids (Sam) (male) 83	Hardness (Ca, ma) (myle) 40	78 76 76 76 76 76 76 76 76 76 76	Sodium Ratio	Specific Conductor murembers	(Na) (Na) (Na) (Na) (Na) (Na) (Na) (Na)	1.3 1.2 1.0 4	(HCO3) 1m(1e) 62 55 48 .4 Characteristics 1m(1e) 3.8 2.2	Feed 72
7	Dissolute Colonic (colonic)	Total Al Fredak (m/e)	Toppe Toppe Toppe Toppe Strake (WIII)	Creek mish Physical (P) (mg/e) .06	Merr Solves (male) 83	Hardress (Ca, Ma) (myle)	78 76 76 76 76 70 70 70 70 70 70 70 70 70 70	Sodium Ratio	Specific Conductor Murember	5,0 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3	1.3 1.2 1.0 4	(HCO3) 1m/12) 62 55 48 .4 Chlory Chair Chai	Feel Colfin 72

inop aby	-	ber	Stati	on N=v	re		Dissolut Silice (SiO) (Melle)	Dissalud Colcina (a) (hale)	Desided Mynusum CM2		Dasabad Patasonia (mg/2)		Suifate (204)
8	1250	8480	Dry	Creek	nex	myximing	40	15	8.9	7.8	2,1	110	2.4
,			Toppe	nish		mezh	36	11	6.4	5.9.	1.6	78	2.1
			1		•	minime	33	70	3.8	4.0	1.2	46	1.8
		- 11		2711117			2	2	2	2	2	. Z	2
						Lh_	~	1	1 -	-	-	1	
				divers		l.h	2						
	((1)	Total Kedahl Nitygen (m/e)	Tetal Notate District (10)(10)	Tatal Phusphone (P) (mg/l)	Dissolud Solids (Sim) (male)	Hardress (Ca,ma) (my/e)	78t>1	Sodium ridorption Ratio	Specific	Cylor (platinum	Tribdity	Chlory	Fech
KIM)	(c)	Hotogen	pitate plas	Physphone (P)	(Sem)	Hardecis (Ca, Ma)	Total Carbon	Sodium ridorptio Ratio	Specific Conductor	Cylor E(platinum Cobatt	Tribdity	Chlory	Fech
n n	(1) (-4+9)	Stines (2)	Withte Singular	(P)	(male)	Hardress (Ca, ma) (my/e)	(OH)	Sodium ridsorpt.	Specific Conductors murember	Color (platinum cobott 4 hots)	(JTU)	Chbong hyll = Chall	Fect colofori
0	(u) (-449)	33	Notifie Strate (STIC)	(P) (m)(e)	Solids (Sum) (male) /32	Hardress (Ca,ma) (myle)	Total Carbon (Carbon (Carbon 12)	Sodium rasiption Ratio	Specific Conduction murambes	(dor (platinum (abott (hots)	Tribdity (JTU)	Chborne hyll & Cual O	Feed California Callie
	2.1	,33 ,31	14	(P) (-1/2) .05	(male) /32 /04	Hardress (Ca, Ma) (myle) 74 54	12 8.8	Sodium ridurpt. Ratio	Specific Conductors murambes 167	Color (platinum (color) (photos) 5	Tribdity (JTU)	Chborg 17/11 = Challo 2.0	Fectalion A4

and the state of t

Avelora An Market

Clat in Merico Drein ...

. In South Dinan pr

- resisting greater disonly - Hot de

allovial soils.

the predominant constitutions of the second of the formation

at bercentake conha

State, and magnes rom.

Coulet Satus Creek and the

Similar constituents make we --

manage of sulfate is significant along

102/03

The waters of lower Satus Creek and South Drain are a composite of the natural water of Satus Creek, irrigation return-flow water diverted from Marion Drain in Toppenish Creek basin, and ground water. Overall changes in water quality were studied, but the differentiation of the changes due to each type of inflow was not determined.

On the basis of specific conductance, the estimated average dissolved-solids concentration in lower Satus Creek is about 160 mg/L. The average of observed dissolved-solids concentrations in South Drain was 372 mg/L. For comparison, the average dissolved-solids concentrations in waters of Logy, Dry, and upper Satus Creeks probably was about 85-95 mg/L, and that in Marion Drain was about 200 mg/L. The greater increase in dissolved solids in South Drain probably is mostly attributable to the soil, which is largely silt. This soil tends to yield waters containing greater dissolved-solids concentrations than do coarser alluvial soils.

The predominant constituents in South Drain, in decreasing order of percentage composition, are bicarbonate, sodium, calcium, and magnesium. Silica content was not determined for lower Satus Creek and, therefore, the exact order of the predominant constituents could not be determined. The percentage of sulfate is significantly higher in South Drain

water (pl. 2) than in the other streams studied in this basin.

The high percent sulfate is probably related to the soil type,
as indicated by the similar high percentage of sulfate in Mud Lake

Drain water, which crosses the same soil type.

Lower Satus Creek water averaged moderately hard, and South Drain water averaged very hard. The average irrigation classification of these streams is C2-S1, indicating good quality for this use.

The average of observed concentrations of fecal-coliform bacteria in South Drain was 800 col/100 mL. Fecal-coliform concentrations were not analyzed in lower Satus Creek, but the average of observed total coliform was 5,400 col/100 mL. These are high concentrations compared with those in the mountain streams. The feces of cattle, horses, and other farm animals are the most probable sources of fecal coliform. On the basis of available data, it appears that lower Satus Creek and South Drain are bacteriologically unsuitable for primary recreation use most of the time, and for secondary recreation and even irrigation use some of the time.

(See Appendix 1) p, 199-200)

84 106

Diel variations in DO and stream temperatures for the stream and drain were determined in early June and in late August. The variations are listed below:

SITE NIMBER		יכא מ		Sampling	NE I Introd	DIEL	PROF Dissolution	1 LE	Sompling Start	GUST Interval SDO	DIEL	PROP Dissolved CXTST!	Trop
19	Satus	Greek	ət-	June 3	June 4	mzx	9,0	18,0	Aug. 26	Aug, 27	m2X	9.8	21.
	Satu			1		min	8.2	14,0	1	,		6.9	17.
	varia	ion in	June,	0830 ho	0635 Ma	range	0.8	4.0	0855 hw	0715 ho	vange	29	3.
<i>7</i> 0	South	Drain	re pro	Junes	June 4	max	8.5	19.8	Aug. 26	Am, 27	məx	8.7	21
	near	Satus	okth	at	at	min	80	15.0	at	at	min	7.6	18
				0850hp	0645his	range	0.5	4.8	0915 has			1.1	2

The averages of observed situate (as 10 concentrations in lower Satus Erroll

Taintain edecuate IX) for healthy fish repulations.

and South Drain were 0.58 and 1.8 mg/L, respectively. This is about a fivefold increase in the Satus Creek waters endeably mostly attributable to agricultural fertilizers and amusal

that of either of its murface-water sources (Satus Crock and

Murion Drain), but the increase over that in Merion Drain is alight. Nitrate concentrations are more than sufficient

or large growths of aquatic plants and algae.

South Drain apparently has warm temperatures and sufficient nutrients, but photosynthesis and respiration are only slight. The cause for this is probably at least twofold. First, a lack of water clarity, as indicated by the June and August turbidity values of 30 JTU each, reduces the available light to aquatic plants, and photosynthesis is reduced. Second. the mud bottom affords little opportunity for the attachment of algae or the rooting of aquatic plants, which are both so important in oxygen production. Lower Satus Creek had only a slight DO variation in June, but quite a pronounced variation in August. The reasons are probably the same as for Ahtanum Creek and lower Toppenish Creek--the growth of additional attached algae and submerged aquatic plants during the warm summer months. The diel variations in percentage DO saturation are illustrated in figure 19. Lower Satus Creek and South Drain probably maintain adequate DO for healthy fish populations.

The averages of observed nitrate (as N) concentrations in lower Satus Creek and South Drain were 0.58 and 1.8 mg/L, respectively. This is about a fivefold increase in the Satus Creek waters probably mostly attributable to agricultural fertilizers and animal wastes. South Drain's average concentration is higher than that of either of its surface-water sources (Satus Creek and Marion Drain), but the increase over that in Marion Drain is slight. Nitrate concentrations are more than sufficient for large growths of aquatic plants and algae.

	follow			marizes and Sou			ected a		1000
ites o	II TOWET	Satus	CICCK	and Sou	icii Diai	.11 •			
. 31									
Mar									

Ture!	Station	ber	Station	on Nav	re		Dissolud Sihea (SiO)	Disselved Colcina (a) (hale)	Personal Magnesia (Mg)	Dissided S-digm (Na) (myle)	Dasahad Patassum (K)	(HCO3)	Suirate (104) Ymll
19	1250	3621	32T4	5 Crie	K.	mzyluku	1 ' /	29	14	25	4.7	197	16
			1	Satus	1	mezh		18	8.4	13 .	2.3	118	7.9
						hejminehm		7.2	3.9	4.8	1.1.	52	2.4
						h	/	22	22	22	22	22	22
						/							
	Dissolute Chloride (U)	Mingen Mingen	Patal Nature Charle Visite	Phisphone (P) (mg/e)	(male)	(Co, Ma) (myle)	(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	Ratio	Specific Conductive murenhes	(platinum (platinum (abatt khuts)	(JTH)	CHOID CHOID	colfor >
(shref	6.6	.58	1.3	.2/		130	-10	1.0	390	70	25	7.0	2100
30	3.5	.3/	,58	113	1	79	7.5	.6	225	34	12.	2.1.	5400
MERMIE	1.3	.16	.06	.07	1	34	4.6	.4	100	19	5	0:	240
	22	23	23	23	/	22	5	22	23.	23	23	10	23
					/								
			lat En	30		ill tag	Char						
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Station	ber	State	on N=v	e	ele No	Dissolud Siher (SiO)	Dissolved Colcina (a)	Pasadad Magnasum CMag)	Sodiem	Drasalied Potosoum (K)	CHCOD (male)	Drug- Swf31 (204)
20	12508	630	Soul	h Dra	17.	HIZKIMEH HIZKIM	41	67	29	86	9.5	386	96
-	- '	et me	near	Satu	5	mezh	36	44-	19	52.	6.2	275	58
-		•••				Minimem	32	19-	-8.1	18	2.8	120	17
	.1		THE PERSON	4.1			4	12	12	12	4		4

10	(U)	Tetal Notingen	Potal potate .	Physical (mg/e)	Solus (Sum)	Hardress (Ca, Ma) (myle)	Carpon	Ratio	Specific Conductors murambes	(telluna	(JTU)	Chhar Myll Z Chale	cal for
1	30.	2,0	2.8	132	543	290	9.8	2.3	880	20	30	7.4	500
-	1.7	.65	1.8	,23	372	190	7.9	1.6	532	10	15.	3;2	30
15	5.2	135	:50	.17	161	81	5.9	_9	240	4	2	1.2	11
-	4	12	12	12.	4	12	4	12	12:	12	12	11	12
1			.										

Klickitat River Basin

Stream System

The streams in the Klickitat River basin include the
Klickitat River and many mountain streams which enter it at
various points, plus a small irrigation network. Hellroaring
Ditch, the main source of water for the small irrigation
network, begins at Big Muddy Creek in T. 8 N., R. 12 E., and
intercepts some streamflow from Hellroaring, Couger, Dairy,
Bacon, Bird, Frazier, and Holmes Creeks before delivering
the water for irrigation on Camas Prairie. Irrigation return
water flows through Conboy Lake and a millpond before flowing
through Outlet Creek to the Klickitat River.

Big Muddy Creek

Big Muddy Creek is a glacier-fed stream rising on the east slope of Mount Adams. The average of observed dissolved-solids concentrations was 56 mg/L, only slightly less than the 60-mg/L average for the eight streams studied in the Klickitat River basin. The dissolved-solids concentrations are low because of high precipitation in the Klickitat River basin, and because of the low solubility of the predominantly basaltic and andesitic rock from which the streams drain.

Water composition in Big Muddy Creek is different from
that in all other streams studied in the basin (pl. 2).

It contains nearly seven times the sulfate percentage
(28 percent) of the average of the other streams, and about twice
the average potassium percentage (7 percent) of the other streams.

The additional sulfate may come from sulfur deposits on Mount Adams. Sulfur deposits are known to exist on the west side of the volcano and probably are also present to a lesser extent on the east side. The predominant consitutents in decreasing order of percentage composition are silica, bicarbonate, and calcium.

Big Muddy Creek waters are soft. The irrigation classification is C1-S1, indicating excellent water for that use.

No fecal-coliform bacteria were found in any samples from Big Muddy Creek.

Most concentrations were not determined for Big Muddy Creek. The stream flows through a totally uninhabited area, and logging is about the only man-induced influence on the basin. The stream tumbles down a steep, boulder-bottomed channel; aeration is so complete that presumably the water has 100 percent DO saturation at all times.

Nitrate (as N) concentrations were consistently low, with an average of 0.04 mg/ ν . Such low concentrations indicate that

the stream is not very productive of aquatic vegetation or		
fish life.		
near Glenwood man 27 4.1 1.8	3.0:	
The following table summarizes the data collected at		
Big Muddy Creek:		

			8.5		

Ett ob

to the fillebiter Miver beatm. Secame the other series;

carton, indicating excellent quality for that portes.

contrattion are bicarlonate, stilles, and calcing.

contrading to the edition of the city to the related and

personal treatest and the mor high, rea the highest phonester

pelletone with the minimum periodical postulation

" affection to rate and anticores of entertransport of percentage of

					189 49								
								2 .					
											Carlo P		
										.allies is			+
7	3	7	7	+	+	7	+	7	*	>	+	+	
1>	0.1	. 1	7	94	٤.	0.1	15	74	E0.	20.	90'	181	44/1
(>)	1:2.	. 61	17.	75	4.	1.2	81	95	50'	. 40.	80.	8'	1
T>	9:1	02	0.7.	79	7'	5.8	97	19	01'	50'	01	1.7	Land
לפרושו לי ליון לי לי לי		(MLE) 417412	164.5)	ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב	mabos Adamption offest	(1491)	(3/m))	Solas Solas (maz).	(3)-1)	. स्ट्राप्ट स्ट्राप्ट (अट्टिंग)	14649 14649 14649 14649	رداری (۱۵) الایماد الایماد	1
			124		DATA	TH 40		-14	dated.	Serve			
· 4.	7	+	+	+	+	7	ч		11	Talier			
8.4	71	6.	5'2	E'/	2.6	50	भवभाभा <u>भ</u>				100	13	T
2.7	7.7	5.1	3.0.	8.1	14	22	4274	. p000	142/5	1624			1
-16	22	2.0	3.5	2.4	6.3	32	MAMIXCHI	70017	MARK	319 1	000	60/1/	3
ربالمرز (ایمار) عادراه کاراماد	कत्यम् (भटक) (भटक)	belief	Mylb-2	Desdad Marusum Chill	Drssdwd Coloren (Coloren (Coloren	51/42 21/42 21/42 01304		. 3.	HEN WO	445	209	ratate	(13 mm

Outlet Creek drains the southwestern part of the reservation and flows northeasterly across Camas Prairie to the Klickitat River; it receives all the irrigation return flow from Camas Prairie. Natural flow into Conboy Lake and Outlet Creek is sufficiently large to dilute the irrigation effects, and the water in Outlet Creek is similar to that of other mountain streams in the basin.

It has an average dissolved-solids concentration of only 48 mg/l, the lowest of all the streams studied. However, probably most of the streams that contribute water to Hellroaring Ditch--besides Big Muddy Creek--are even more dilute.

The percentage composition is essentially the same as that in all the other streams, excluding Big Muddy Creek (pl. 2). The predominant constituents in descending order of percentage composition are bicarbonate, silica, and calcium.

The water is soft, and is of the C1-S1 irrigation classification, indicating excellent quality for that purpose.

Concentrations of fecal-coliform bacteria averaged 34 col/100 mL, which, although not high, was the highest observed in the Klickitat River basin. Because the other effects of irrigation are so masked, it is doubtful that all the

coliforms are attributable to irrigation. Conboy Lake includes a wildlife refuge, and many ducks reside there. Ducks are notable producers of fecal-coliform bacteria and may have a considerable influence on the bacterial concentrations. The water is suitable for primary recreational use, on the basis of the samples collected. (See Appendix I.)

DO concentrations and stream temperatures were monitored for diel variations in early June and early September. The variations are listed below:

JUNE PROFILE PROFILL DIEL DIEL Sampling Internal Dissolud Temperature Dissolund SITE 50 mpling Station Name Stort STOR NIMBER 21.4 Sept. 3 Sept. 4 Outlet Creek 8,3 22 The 10 Jule 11 M2X 14.3 5.9 6.6 near Glenwood 16 at min 2.3

The average of observed mitrate (as N) concentrations in the only 0.02 mg/b, far less than that necessary to produce the abundant growth of squaric algae and vegetation recessary to cause the pronounced diel varietion in DO observed in Outlet Creak. Probably larger concentrations of mitrate occur in the inflow waters to Comboy take, but the mitrate is utilized and bound up in organic material in the take. Floating algae from the lake could still produce pronounced diel variations in

The following table summarizes the data collected at

In early June and again in early September photosynthetic and respiration activity was pronounced. The diel variations in percentage DO saturation are illustrated in figure 20.

Average DO saturation was near 80 percent, indicating oxygen consumption by decaying organic matter. The DO depletion probably occurs mainly in Conboy Lake. The DO concentrations in Outlet Creek may not remain adequate for the maintenance of healthy fish populations. The lowest observed concentration was 5.9 mg/L, only slightly more than the 5 mg/L recommended lower limit.

The average of observed nitrate (as N) concentrations in Outlet Creek was only 0.02 mg/L, far less than that necessary to produce the abundant growth of aquatic algae and vegetation necessary to cause the pronounced diel variation in DO observed in Outlet Creek. Probably larger concentrations of nitrate occur in the inflow waters to Conboy Lake, but the nitrate is utilized and bound up in organic material in the lake. Floating algae from the lake could still produce pronounced diel variations in DO concentrations.

The following table summarizes the data collected at Outlet Creek:

201	Stator	ber	State	on Nav	re		Dissoluted Siher (SiOs)	Dissolvia Colciem (O)	Austral My Market		Dashed Patason (mg/2)	111-00	5 mif.
-	14110	720	Outle	+ cie	k	mzyluky	24.	4.5	3.9	3.2	1.3	33	2.
1			hear	Glenz	wood	m 2 h	21	3.9	2.2	2.7.	.9	3.0	2
1		P				hejanaba	18	3.3	1.7	2.3	,5.	23	1.
1						h	14	6	6	6	4	4	1.4
-	Chloride Chloride (U)	12 (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Potal parte Sinche	(P)	(Solids (Som) (male)	(Ca, Tr. a)	(CARON CALON	Ratio	Specific Conductor Mucrember	(platinum (cabalt (b) (s)	(DLA)	CHOID	Fec
1	(U)	At Dyca	Strake	(9)	(Sum)		COLD)	1 - 1	1 course	1. Cabalt .	(TIL)		colf
-	1.2	68	,04	.08	55.	26	16	,3	58	40	8	10	11
-	8	.38	.02	.04	48	19	7.2	,3	50	32	4 .	3,3.	3.4
-	.5	,03	101	.02	42	15	2.9	1.2	144	20	1	18.	2
-	4	6	6	6	4	6	4	6	6.	6	6	5	.6
1			1								1		
+			171	-	1	-		•	-	-			

the foregoing dissolved solids concentrations are low, and there is little variation between atresse. The englacing may result

mostly from the differences in primit of pracinitation in the

precipitation and having Nigher dissolved-solids concentrate

The percentage compositions of the stress waters

are closely similar. As with all the

Muntain streams in the receivation success Hig Mades Creek, at

predominant constituents in antronomy order are blearbonger,

dilice, and calcium,

98. 148

Similar Streams

The remaining streams studied and their average dissolved-solids concentrations are as follows, in downstream order:

Klickitat River (site 22)	56 mg/1	-
Trout Creek	57 mg/1	
Elk Creek	65 mg/1	
White Creek	74 mg/1	
Summit Creek	59 mg/L	
Klickitat River (site 29)	62 mg/1	
(just below reservation)		

The foregoing dissolved-solids concentrations are low, and there is little variation between streams. The variation may result mostly from the differences in amount of precipitation in the stream basin, the streams farthest east receiving less precipitation and having higher dissolved-solids concentrations.

The percentage compositions of the stream waters are closely similar. As with all the mountain streams in the reservation except Big Muddy Creek, the predominant constituents in decreasing order are bicarbonate, silica, and calcium.

The waters are all soft, and are of the C1-S1 irrigation classification, indicating excellent quality for the purpose.

Concentrations of fecal-coliform bacteria were all quite low, with the highest observed concentrations being 15 col/100 ml and 25 col/100 ml in upper and lower Klickitat River, respectively. The waters all appear to be bacteriologically suitable for primary recreational use, on the basis of the samples collected. (See Appendix I.)

For this group diel variations in DO concentrations and stream temperatures were determined in early June and early September only on the upper Klickitat River (site 22). The variations are listed below:

	7			-		56	PIFME	P		
RER Station Name		NE I			Temperature BC	50 mplmg Start	Interval Spp	DIE	PROF Displand	1
2 Klickstat River	June 10	Inne'11	m2×	11.8	9,1	Sept. 3	Sept. 4	мэх	10,9	10.8
below Sod> Sorings	at		min	10.6	4.8	at	at	min:	10,0	7.8
Creek Pezy Granisoso	0930 hrs	0450/1	range	1,2	4.3	0915/20	0600 hrs	vange	0,9	3,0

Nitrate (as M) concentrations were low in all the streams of

anisigroup, with 0.12 mg/l Leing the highest average concer

tration. Such low concentrations indicate that the streams are

probably not very productive of squatic vegetation or fish

The following table surportizes the data collected at sites

on each of the streams:

The diel variations in percentage DO saturation are illustrated in figure 21. In both early June and early September photosynthetic activity was minimal and DO saturation remained near 98 percent. The DO concentrations remain adequate for healthy fish populations.

Nitrate (as N) concentrations were low in all the streams of this group, with 0.12 mg/L being the highest average concentration. Such low concentrations indicate that the streams are probably not very productive of aquatic vegetation or fish life.

The following table summarizes the data collected at sites on each of the streams:

					-			•					
1 4 4 T	States	aber	Stati	on N=	me		Dissalva Silver (SiO2) (MpH)	Dissolved Colcient (a)	Pusched Magnesia CMagnesia CMagnesia	Dissitud Sadikin (Na) (Ma)	Patasoni Patasoni (mg/2)	(HCO)	Diswind Suifate (204)
2	1410	8200	Klick	Ist Ri	Ver	mzxime	129.	7.2	2.5	3.6	1.7	38	2.5
,			below	Soda:	Sonnes	mezh	26	5.1	2.0	3,1.	1.2	32	2.4
			breck	Jhear		MINIME	21	3.9	1.5	2.4	1.8	26	2.1
			Glen	broad		h	14	4	14	4	4	14	1.4
	Chloride (U)	10th 1	Porte Single	Physphon (P) (mg/l)	(male)	(myle)		Ratio	I court Level	Color (platinum (cabalt 4hits)	(JTU)	CHO CHO CHO	Fecal Californ
rej.	1.4	2.0	1.05	1.11	66	28	10	1.3	64	20	10	5,2	15
	1.1	.58	104	1.05	56	21	6.1	.3	56	9	4.	2:1	5
14	18	.09	1.01	,02	146	16	12.9	1,2	48	3	1	, 2:	<1
1	4	4	4	4	4	14	14	4	4.	4	4	4	.4
-			1			1.							
	-				l]	1					<u> </u>	<u> </u>
1 1	state	her	Stati	Nav Nav			Disselved Siher (SiQ)	Colciem	Deschied Magnesium	Seditin	Patasoni		(204)
00:	Non	ber		Nav Carl	ne		Silver	Colciem (G)	CHIZ	(Na)	Patassana Graffe	(HCOD)	(204)
00:		-	Trout	Creek		m3×1mxm	27.	(A) (Lyle) 5,9	2.4	5-dinm (Na) (mil) 3./	Patason (9)	(HCO3) (male) 41	(204) (44/L) 1.3
00:	Non	-	Trout			mezh	27. 26	(a) (b) (b) (b) (b) (b) (c) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	2.4	3.1 3.0	9.8	(HCO3) (r-1/e) 4-1 3:B	(204) (204) (44) 1.3
00:	Non	480	Trout	Creek			27.	5,9 5,4 5,0	2.4	3.1 3.0 2.9	Patason (9)	(HCOD) (male) 41 38 34	1.2 -1.1
00:	Non	480	Trout	Creek		mezh	27. 26	(a) (b) (b) (b) (b) (b) (c) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	2.4	3.1 3.0	9.8	(HCOD) (m/le) 41 3:B 34	(201) (201)
Dic	Noma	480	Trout	Creek Glenw		me 2 h	27. 26 24 2	5,9 5,4 5,0 2	2.4 2.2 2.0 2 Specific	(Na) (Na) (Ma) (Ma) (Na) (Ma) (Na) (Na) (Na) (Na) (Na) (Na) (Na) (N	Potesson . 9 . 9 . 8 . 8 . 2	(HCO3) (male) 41 38 34 2	1.2 -1.1
DOC	Nomes 14110	780	Test white	Creek Glenw	Dissolved Solves	Hardress (Co, Ma)	27. 26 24 2	5,9 5,4 5,0 2	2.4 2.2 2.0 2 Specific	3.1 3.0 2.9 2.9	Potesson . 9 . 9 . 8 . 8 . 2	(HCO3) (male) 4-1 3-8 34 2	Sulfate (104) 1.3 1.2 1.1 2 Fecal
DOC	Nome (CL)	480	Trout NEAR	Creek Glenw Glenw (P) (m)(c)	Dissolution (male)	Hardress (Ca, Ma) (mg/e)	27. 26 24 2	Sodium Ratio	2.4 2.2 2.0 2 Specific Conductions	(N2) (N3) (M3) (M3) (M3) (M3) (M3) (M3) (M3) (M	Polesson (9.8.8.2 2 12-thdify (JTU)	(HCO3) (male) 41 38 34 2	suifate (104) (1.1) 1.2 1.1 2
Die C	Nomes 14110	480 76t311 76t31 76t31 76t31 76t311 76t311 76t311 76t311 76t311 76t311 76t311 76t311 76t311 76t311 76t311 76t311 7	Trout NEAR	Creek Glenw Glenw (P) (mile)	Dissolution (male)	Hardress (Ca,ma) (mg/e) 25	27. 26 24 2 70701 0073116 (37607)	Sodium Ratio	2.4 2.2 2.0 2 Specific Conductions (maxembre) 67	(Na) (Na) (Na) (Na) (Na) (Na) (Na) (Na)	Polesson 9.8. 2. Polesson 9.8. 2. Polesson 9.8. 2. Polesson 9.8. 2. Polesson 3.8. 3.8. 3.8. 3.9.	(HCOD) (male) 4-1 3-8 34 2 (HLOD) (HALO)	1.2 1.1 2 1.1 2 4.1 3
D.C.	Nome (4110)	480 767341 767341 777961 744 .08	Trout near	Creek Glenw Glenw (P) (-10) .03	200 de la composición del composición de la comp	Hardress (Co, Ma) (mg/e) 25	27. 26 24 2 70701 0073116 (37607)	Sodiem Ratio	2.4 2.2 2.0 2 Specific Conductions (murambes) 67 62	3.0 3.0 2.9 (philippe (philip	Potesson . 9 . 9 . 8 . 8 . 2 2	(HCO3) (myle) 4-1 3-8 34 2 (Hale) (Hale) (Hale) (Hale)	1.2 1.1 2 1.1 2 1.2 1.1 2

				,				,					
The state of the s	Neve.	ber	Stati	on N≥+	e		Dissatural Sities (SiO)	Dissolved Colciem (a)	Disided Mighana Migha Mighana Mighana Mighana Mighana Mighana Mighana Migha Mighana Migha Mi	Diss tred S-dirm (No)	Patasonia (F)	(HCOD)	Sulfat (104)
5	14110	490	SIK	reckin	CZY	MZXIMEH	33	4.9	2.7	3.6	.9	39	2.1
			Alenh	lood		me2h	32	4.8	2.5	3.6.	1.9	3.9	1.4
		•••				Pajainka	3/	4.6	2.3	3.5	19.	39	.8
						b	2	2	2	2	. 2	2	. 2
	Dissolve Chloride (U)	Total his retable Notingen	Febi Norte Strike (Se)(1)	(P) (-12)	Dissolud Soluds (SEID)	Hardress (Ca, Ma) (myle)	Carpor Carpor (OLD)	Ratio	Specific Conductive murember	Color (platinum (color)	(JTU)	CHELD CHELD	Fecal Collino
hre)	1.1	.07	102	,05	65	23		.3	83	50	20	6.	1.
n	1.1	,06	.01	.04	65	22	2.3	13	73	35	12.	1.6.	1
Min	1.0	106	.00	.03	65	21		,3	62	20	5		1
	2	2	2	2	2	2	1	2.	2.	2	2	1	.2
						-	•						:
	,											-	
150 A	Station	ber	State	on Nav	e		Dissolution Silver (SiO)	Dissolved Colciem (a)	Asserved Magnesium (CH)	Dissilud Sodium (Na) (male)	Drasalied Patassania Comassa	(HCO3) (HCO3)	Dissil-
7_	19110	800	White	Creek	Mest.	MZKIMKE	1	111	6.7	7.6	1.3	85	1.1
•			Glenn	bood		mezh	24	7.7	4.4	5.2.	1.0	58	1.0
_		77.		÷.		minimum	24	4.4	2.2	2.9	, 7:	32	.9
				-		h	2	2	2	2	2	.2	.2

	Colonale (CI)	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Fotal North	Physical (P) (mg/2)	Solves (male)	Hardiess (Co, Ma) (myle)	(0) h)	Ratio	Specific Conductors murembes	(belinam	(JTU)	Chbar will	Fecal Colfor Collie
1	1.5	.16	.05	.04	96	50	11.6	.4	139	5	4	8	1
4	1.0	:14	,02	104	74	35	3.7	.4	97	. 4	2 .	1.6.	2
100	.6	.12	.00	.03	52	20	3.4	.3	55	4	0.		<1
1	2	2	2	2 -	2	-2	1	.2	2 .	-2-	2.	-/	.2
1													

L'AY	stator					,	Dissolved	Disselved	Desolud	S-dIKM	Dasahed Patassini		SHIF
10 PM		ber	Stati	on Nav	re		(5:05)	(CO)	CH12	(Na)	(mg/F)	(myle)	(20.
8	14/111	00 4	Summ	it Cie	ek	MZXIMEH	25.	6.7	14.0	3.2	1.9	49	1.
			hear	Glenz	pood	mezh	24	5.6	3.2	3.1.	,8	41	1.
	-					MINIMAN	23	4.5	2.3	3.0	.7.	33	1.:
		B F G				h	2	2	2	2	2	2.	. 2
		s Into	1200.00	ktes 51		an Ind	ALTER P		a leader				
	Dissolve	Total	Fotal .	Partol Physphase	Dissolut	Hardress (Ca, Ma)	Carpan Carpan	Sodium	Specific	Color	1	1	Fec
	(U)	Mary (7/2)	Consta	(P) (-g/e)	(male)	(myle)	(6)(0)	Ratio	COLORLEGE	(claff Khits)	(Tru)	Charo	calif
4	1,2	.20	113	106	66	33	o rimal	:,3	78	7	6	0.	1
	.9	,18	1/2	,05	59	27	3,3	,2	68	.6	6.	5.8.	7
· w	.6	,15	.12	104	52	21		,2	57	4	5		4
	2	2	2	2	2	2.	1	2	2.	2	2.	1	1.2
				The state of the s						٠.			
	-					-		-					

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Station	ber	State	on N≥v	e		Dissolution (Sibra)	Colciem (a)	Augustum Magnishum	Dissilved Sodium (Na)	Described Potosoum	(HCO3)	Dissolution (SUFate (SO4)
29	14111	500	Klick	itat k	Piver	m>XIME	31	6.1	3./	7.2	1.6	46	2.3
			below	2 Gler	wood	mezh	27	4.8	2.4	5.0.	1.3	38	1.8
-		•••				minimum	.23:	3.6	1.7	2.7:	1.0	30	1.3
1						n .	2	2	2	2	2	2	. 2

_		Kretahl Kretahl		Physphone (P)		Hardress (Ca, MA)	Carpon Carpon	Sodium Pidsuption	Specific	Color (ptolinum	(JTU)	1 1	
-	CHO (CI)	(-7/2)	(E)10)	(mg/2)	(male)	(myle)	(910)	Ratio	murember	(cobott		1/ -	Cal/10
TENNA	1.0	1.0	,05	.12	75	28	8.6	1.6	74	20	30	6.	25
K&N	1.0	.55	.05	.08	62	22	6.0	4	63	12	16.	4.8	14
(Is) MI M	1.0	.10	.05	,04	49	16	3.4	3	52	5	_2 _		2
	2	2	2	2	2	2	. 2	2	2 .	2	2	1	.2
1													:

Yakima River

Outflows and Inflows

The Yakima River adjacent to the reservation is the only reach of the river of interest to this study. Ahtanum Creek flows into the Yakima River where the river becomes a border to the reservation. Less than a mile downstream a major part of the riverflow is diverted into the Main Canal for irrigation in the Toppenish and Satus Creek basins. Downstream from the Main Canal diversion point, the river itself receives municipal, industrial, and agricultural wastes. Major inflows from the reservation include the sewage effluent from the city of Toppenish and water from Toppenish and Satus Creeks and from Marion and South Drains. Inflow from the land on the east side of the river (outside the reservation) is mainly from Sulfur Creek Wasteway (which is a major drain) and from a few small drains.

digher than those in most of the sountain stream on the deservation, but probably still insufficient for the means to be very productive of aquatic life.

Yakima River at Parker

Waters in the Main Canal (site 4) and the Yakima River at Parker (site 5) are chemically nearly the same.

However, the Main Canal is dry in the winter and, consequently, averages will not be the same. The Main Canal water was previously discussed (p. 76-8/). A few characteristics of water in the Yakima River at Parker are discussed here.

An average dissolved-solids concentration of about 100 mg/L was estimated from specific conductance of the Yakima River at Parker.

The average of observed total coliform bacteria was 3,400 col/100 mL, making the water unsuitable much of the time for primary recreation, and some of the time for secondary recreation and irrigation.

(See Appendix I.)

The average of observed nitrate (as N) concentrations was 0.25 mg/L, somewhat higher than those in most of the mountain streams on the reservation, but probably still insufficient for the waters to be very productive of aquatic life.

Yakima River near Toppenish

An average dissolved-solids concentration of about 110 mg/L was estimated from the specific-conductance values for the Yakima River near Toppenish (site 6). This is about a 10-percent increase in dissolved solids in the reach between Parker and Toppenish.

The average of observed total coliform bacteria was 2,500 col/100 mL, having decreased by about 30 percent between Parker and Toppenish. The data indicate that the water near Toppenish may be unsuitable most of the time for primary recreation and some of the time for secondary recreation and irrigation.

DO concentrations appear to remain adequate for healthy fish life. Diel variations in DO concentrations and stream temperatures were determined in early June and late August. The variations are listed below:

					JU	NE I	PIEL	PROF	ILE	AL Sompling	GUST	DIEL	PROF	ILE
SITE					Sampline	Introl		Dissolved	Temperature	Sompling	Interval		Dissolved	Temar
	Stati	on	Na	ne.	Start	Stapo.		oxygen,	1 bc	STORT	500		21152	10 C
								1					".	
6	Yaper	-	Ri	er	Tune 5	Juno 6	mzx	11,0	11.2	Aug. 28	A49,29	мах	10:0	22.
	near	Top	per	186	at	at	min	10,4	8.8	at	at	min:	2,6	17,
		1	•	,	0545 his	0645hm	range	0.6	2,4	0810hus	ocsship	vange	.2.4	5.0
	. (/		

Average DO saturation remained near 95 percent in both June and August. The diel variations in percentage DO saturation are illustrated in figure 22. The diel variations in June were small, but in August they were moderately pronounced, due to photosynthetic and respiration activity. The variation in August was somewhat greater than for the Main Canal. This probably is due in part to the slightly warmer temperatures and slightly higher nitrate concentrations, but it is due mostly to the stream channel shape, which provides more favorable conditions for biological activity.

The average of observed nitrate (as N) concentrations was 0.28 mg/l, indicating only moderate increase from the upstream station (site 5).

Yakima River at Mabton

An average dissolved-solids concentration of about 160 mg/L was estimated from the specific-conductance values of the Yakima River at Mabton (site 21). This is about a 45-percent increase in dissolved solids in the reach between Toppenish and Mabton. A large part of this increase is attributable to inflow from the reservation, but the Sulfur Creek Wasteway on the east side of the river is also a large contributor.

The percentage composition of constituents in the water of Yakima River at Mabton is similar to that in the Main Canal. Sodium and sulfate are increased slightly, as is illustrated in plate 2.

On the average, the water is moderately hard and the irrigation classification is C1-S1, indicating excellent quality for the purpose.

Concentrations of total coliform bacteria was about 8,200 col/100 mL on the average, but were as high as 41,000 col/100 mL. The average is about 330 percent higher than in the Yakima River near Toppenish, indicating a very significant change in this reach of river. The data indicate that the waters may be unsuitable for primary and secondary recreation, and for irrigation a large part of the time.

DO concentrations appear to remain adequate for healthy fish life. Diel variations in DO concentrations and stream temperatures in early June and late August are listed below:

		1		1	7.00	1. ~	116	176	4421	DIEC	PROP	1
			Sampling	Introd	-	PROF	Tomperature	Sampling	Interval		Dissolund	Tempe
Statit	n Na	me	Start			chycen,	oc.	Start	São		27152	* C
	,	1									,,	
alec	na R	ver	Time 3	June 4	MZX	9.4	16.1	Aug. 26	Aug. 27	max	8:3	21.
t.n	rabto	n	at	at	min	8.8	13.6	et	at	min:	7,6	19
			0970 his	0535 hr	range	0.6	2.5	0935 ho	0625ho	vange .	0.7	7.
		decina R	Pakeina River	Pakeina River Tune 3 t. Mabton at	Cakeina River Tune 3 June 4 timaston at at	Cakeina River Time 3 June 4 m2x	Pakeina River Time 3 June 4 M2x 9.4 timablin at at min 8.8	Pakeina River Time 3 June 4 m2x 9.4 16.1. timables at at min 8.8 13.6	Cakeina River Time 3 June 4 m2x 9.4 16.1 Aug. 26 to Mabton at at min 8.8 13.6 et	Calcina River Thine 3 June 4 m2x 9.4 16.1 Aug. 26 Aug. 27 to Mablion at at min 8.8 13.6 et at	Calcula River Time 3 June 4 m2x 9.4 16.1 Aug. 26 Aug. 27 m2x timables at at min 8.8 13.6 et at min:	Palecina River Time 3 June A M2x 9.4 16,1 Aug. 26 Aug. 27 M2x 8.3

Average DO saturation remained near 90 percent in both

June and August. The diel variations in percentage DO saturation

are illustrated in figure 23. Both the June and August diel

variations indicated little change due to photosynthetic and

respiration activity. The lesser variation when compared to

the variations for the two upstream sites is unusual, as

temperatures are comparable and the nutrient concentrations are

higher. Color and turbidity appear to be the main cause of the

decreased variations, as they decrease photosynthesis

by reducing available light.

The average of observed nitrate (as N) concentrations was 0.71 mg/ ν , more than twice that at Toppenish (site 6). This concentration is sufficient for large growths of aquatic vegetation and algae. However, the nitrate concentration apparently is not the main controlling factor, as the diel variations in DO indicated little photosynthetic or respiration activity, as would be expected with large amounts of aquatic growth.

The following table summarizes the data collected at each site on the Yakima River, and may be used to observed the downstream changes in each constituent.

							Dissolved		Durdad	Dissilved	Dosedned	Bicarberst	Dissil. Sulfa
in gon	Stater	1 1	State	on Nar	re		(SiO)	Colcient (Co)	CH123	(N2) (in/1)	Potasson W	(HCO3)	(204
191)	1250	3500	N Ma		tion	нэхичы	25.	20	8.3	13	2.5	118	7.6
	7.50		Const	near		mezh	19	11	4.5	5.9.	1.5	72	4.
			Park	er		Pajainka	14	6.0	2.2	2.6	1.0.	46	2,
						h	3	9	9	9	3.	.3	.3
	((1)	Total hi Kedahi Notryen (myle)	Fotal . Notate . Sharke . Living	Puspluse (P) (mg/e)	Dissolud Solids (Sum) (male)	Hardress (Ca, Ma) (mg/e)	(Olban (Olban (Olban (Olban (Olban)	Sodium Pidsoption Ratio	Specific Conductions	= (plstinum	(Jul)	Chbog nyll Z Cugle	Fecilos Califo
ral.	5.2	2,2	140	.15	140.	84	9.6	16	210	20	30	66	100
)	2.9	.48	.20	.09	88	47	6.0	.4	126	9	9.	2.8	23
1244	1.7	,11	.09	.05	62	24	37	.2	78	2	1	1.2	1
-17	3	9	9:	9	3	9	3	9	9.	9	9.	8	. 9
-			1									-	1:

-													
inter in hop	Station	Las	State	Na.			Dissolud Sihez (SiO)	Dissolved Colcinon (CO)	Pusched Magnishim	Dissilved Sadium (Na)	Disselved Potossium (K)	CHCO3)	Dissol. Shifa (504
5	1250	2950	Yakın	-	10.6	H12KIMKW	(mole)	(HOTE)	(mg15)	(mg/e)	(mal-e)	(mal-e)	(mg)-
	N 00.	1 . 1	at f	Parker	ver .	1045H							
		··	-14			Pajarine hay				-		- , -	
					-	ln -							

-										,			
Diss Chlor (CI (mg)	1615.	dahl ogen	Potal Potate (C)	Physical (P)	Solids Solids (Male)	Hardness (Ca, Ma) (mg/e)	(O) HOND	Sodium Pidsoption Ratio	Specific Conductions muramines	Color - c(platinum (abott hints)	(Ju)	Chlory 1911 2 CHALO	Total Califor
Sahren .			.55	19			1		230	65	40	4	16,000
en .			.25	.10	•				138	28	12.		3400
x/mag.	-		.06	.06					75	12	.3		70
1			23	23					23.	22	23		23
				, .						•			

in miles	Jake.	ber	State	en N=1			Siher	Dissolved Colcinia (Co)	Pasalvad Magnisium (Mg)	(- (4)	Dissolution Patassina (male)		(104)
Tykor ()	Num		1	-			(mgHO)	(policy	(mylio	(mile)	(tr41-6)	(mg/-e)	(4010)
6	1250	5300			VK K	MYINKE	1						-
		:.	near	Toppe	hish	mezh							
		-				MIMIMAN					-		
						b						1	1
	Desoln	Total	FeTal .	Tebl	Dissolund	Hardness	78t>1 ·	Sodium	Specific	Clar	Probaty	Chloso	Total
-	Chloride	Total ahl Nothingen	Pitate Bitate	Phus phune	(Shin)	(Ca, Ma)	Carbon	Ratio	Specific Conduction	cobalt	(Jul)	17/11	Coliform
	(-gHg)	(mg/2)	1000	(mg/e)	(male)	(mg/2)	(0) (P)	Kono		(abouts)	10	(Hall)	Col/10x
(convert		179	.68	.21			11	,	250	55	45	9.0	8200
620		.34	.28	110			8.4		146	27	12.	1.2.6.	2500
Del Maria		.09	.06	.06			60		79	13	4	,5:	36
<u> </u>		24	24	24			5		24	23	24.	10	24
													<u> -</u>
												•	
					*							*	
							,						
te inter			1	1			Dissolud	Dissolved	Dusalval	Dissilved	Desiduel	Beenhash	Dissola
h map			State	on Nan	1		Siher	(CO)	Posched Magnesum (Mg)	(Na)	Potasonh	(HCO3)	(504)
the more many	Non	ber	-	on Nan	-		Dissolud Silver (SiO)	(Co)	Charles Charles	(Na) (m/2)	Potasoun Graffe	(HCO3)	(304) (401-C)
Mary 1	Non		45k11	na Ri	ver.	нгуднакуст	Siher	CHCHHA (CO) (Hall)	CHIZ (2)	(Na) (ma/e) 20	4.3	(HCO3) (male) 154	(504) (401-C)
Mary 1	Non	ber	45k11	1	ver.	nezh	Siher	(27) 19	7.3	(Na) (ma)(1) 20	(r)	(HCO3) (male) 154 105	(504) (mel-C) 20
Mary 1	Non	8990	45k11	na Ri	ver.		Siher	(27) 19 8,9	7.3	(Na) (Ma) (Institution) 20 12. 4.0	4.3 2.4	(HCO3) (male) 154 105	(504) (404)
Mary 1	Non	8990	45k11	na Ri	ver	nezh	Siher	(27) 19	7.3	(Na) (ma)(1) 20	(r)	(HCO3) (male) 154 105	(504) (mel-C) 20
Mary 1	1250 Pissola	8990	yskin at m	na Ri labton	ver	mezh Majanaka M	Sihez (SiOz) (Sple)	(hele) 27 19 8,9 23	7.3 3.0 23	20 12 4.0 23	4.3 2.4 .9	(HCO3) (male) 154 105 51 23	(504) (404)
Mary 1	Dissola Charde	8990	Yokin af M.	labton	Dissolud Solids (Som)	Manushing Hardness (Ca,MA)	15/5/ 15	(2) (hele) 27. 19 8.9 23	7.3 3.0 23	(Na) (Na) (Na) (Na) (Na) (Na) (Na) (Na)	4.3 2.4 .9	(HCO3) (male) 154 105 51 23	(504) (401) (401) (401) (401) (401) (401) (401)
21 ·	Dissolution Chloride (CU)	8990	Yokin af M.	rabton Prospers (1-18)	ver	Hardness (Ca,Ma)	Sihez (SiO) (Melle) (Melle) (Melle) (Melle)	Colcina (Co) (hele) 27 19 8.9 23	7.3 3.0 23 Specific Conducting murembers	(Na) (Na) (Na) (Na) (Na) (Na) (Na) (Na)	12.4 2.4 2.3 2.4 2.3	(HCO3) (male) 154 105 51 23	(504) (401) (401) (401) (401) (401) (401) (401)
2/ 2/	Dissolve Chloride (Collo) 7.7	8990 Total Lingen Togle) 190	Jokin ay M. Tetal Northe Directe (EMP)	na Ri labton	Dissolud Solids (Som)	Hardness (Ca, Ma)	Total Carbon (Carbon 19,4	Colcina (Co) (hele) 27 19 8.9 23 Sodium ridorption Ratio	7.3 3.0 23 Specific Conductors murambes	(Na) (Na) (Na) (Na) (Na) (Na) (Na) (Na)	4.3 2.4 .9 23	(HCO3) (MA) (D) (MA)	(504) (404) (401) (401) (401) (401) (401) (401) (401)
21	Dissala Callo 7.7 4.3	8990 1501 1501 1501 1501 190 190	Jokin af M. Tetal Notific Constant (CO)(P) 1.1	rabton rabton rabton rabton rabton rabton rabton rabton rabton rabton	Dissolud Solids (Sam) (male)	Hardness (Ca, Ma) (myle) 110 77	Total Organic Carbon (Mallo) 9.4 8.0	Sodium Ratio	7.3 3.0 23 Specific Conducting murembers	(Na) (Na) (Na) (Na) (Na) (Na) (Na) (Na)	17.	(HCO3) (MCO3)	(504) (401) (401) (401) (401) (401) (401) (401)
2/ 2/	Pissola Chimie (crstq) 7.7 4.3	16th 18990 16th 18th 18	Jokin AT M. AT M. Postate Postate (Elle) 1.1 1.71 1.20	pa Ri Jabton (As) (124 114	Dosopul Solids (Zem) (male)	Hardness (Ca, Ma) (myle) 110 77 35	70751 (SiO2) (Maple	(2) (hele) 27. 19 8.9 23 Sodium Ratio Pt. 19 16 13	7.3 3.0 23 Specific Conductors murambes	(Na) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	17. 4	(HCO3) (Male) 154 105 51 23 Chlored Wyll 2 Challo 7.8 3.1	(504) (404) (401) (401) (401) (401) (401) (401) (401)
21 21	Dissala Callo 7.7 4.3	8990 1501 1501 1501 1501 190 190	Jokin af M. Tetal Notific Constant (CO)(P) 1.1	rabton rabton rabton rabton rabton rabton rabton rabton rabton rabton	Dissolud Solids (Sam) (male)	Hardness (Ca, Ma) (myle) 110 77	Total Organic Carbon (Mallo) 9.4 8.0	Sodium Ratio	7.3 3.0 23 Specific Conductors (murembri) 330 228	(Na) (Na) (Na) (Na) (Na) (Na) (Na) (Na)	17.	(HCO3) (MCO3)	(504) (404) (404) (404) (404) (404) (404) (405) (406)

Ahtanum Creek Basin

Young Valley Fill

Specific conductance values ranged from 98 to 610, and per centimeter at 25°C averaged 310 micromhos for water from six wells tapping the young valley fill.

As illustrated by the diagram in figure 24, the three wells tapping the young valley fill, for which complete common-ion analyses were made, contain similar water. The percentage composition tends to be somewhat different than for water from either the old valley fill or basalt in this basin.

The hardness classification of water in the young valley fill ranged from soft to moderately hard, with concentrations ranging from 49 to 120 mg/L (as CaCO₃) in three samples. The irrigation classification of water is C2-S1.

Iron concentrations ranged from 20 to 110 ug/L (micrograms per liter) in three samples. The highest value observed is considerably below the 300 ug/L recommended upper limit for drinking water.

Manganese concentrations ranged from less than 5 to 280 ug/L. Although the highest value indicates that the waters exceeded the recommended limit for drinking water in places, the other samples indicate that it is not a uniformly distributed problem.

No fecal-coliform bacteria were found in any of the waters from the young valley fill.

Concentrations of nitrate (as N) ranged from 0.01 to 1.8 mg/L in six samples. These values are well below the recommended limit of 10 mg/L for drinking water.

The water-quality data collected for the young valley fill are summarized below:

Ghesh	1/1/1/	1.	Dissolud	Dissolad	Disselvet	Dissoled Colcium	Dissoluce	Dissolad	Posseled	Bica, L
Bash	Party II		(5:02) (mg/e)	(Fe)	(rile) (49/2)	(C2) (ug/.2)	(HIG)	(H2)	Potassium (K) (m1/1)	(HOUS)
Altonum	Young Velley	MZXIMHIM	52.	110	280	24	14_	19	5,6	180
	Ent or	mean	50	50	100	19	_//	1314	4.9	138
	65 Day	minimiki	47	20	25	10	5,8	5.6	3.7	74
	6	n	3.	3	3	3	3	3	3	3

White talker fill

Dissolve Sulfate (504) (maje)	Dissolved Chloride (CI) (mg/2)	Dissolved Flooride (F) (ing/4)	Total, Nitrate Plus, Nitrate(N) (mg/e)	Horizons (Co, Ma) (mg/4)	Un orlander had- ness (mg/l)	Sodium Adsorption Ratio	Specific Conductors Conductors	Temperature °C		
8.0	11	,3	1.8	120	0	827	610	13.2		-
5.2	4.7	,2	,73	91	0	623	310	12.7		
2.4	.7	,2	.01	49	0	319	98	12.2		
3	3	3	6	3	3	3	6	3	7	

Specific-conductance values ranged from 98 to 775, and averaged 456 micromhos for water from 11 wells tapping the old valley fill

As illustrated by figure 24, the five wells tapping the old valley fill for which complete common-ion analyses were made contain waters of higher percentage calcium than does the young valley fill or basalt. Two wells (12/18-8B1 and 12/18-11E1) contain higher percentages of sulfate and chloride than the other ground waters; the causes of these high percentages are not known. Due to the scantiness of the data available, the difference could not be linked to any variations in the water yielding materials or other overlying materials.

Water in the old valley fill ranged from soft to very hard--41 to 240 mg/L hardness (as CaCO₃) for five samples. The irrigation classification was C1-S1 for all but one well, 12/18-8G1, which contains C2-S1 waters. In general, the waters are excellent to good for irrigation.

Iron concentrations ranged from 50 to 4,200 ug/l in five the upper concentrations samples, with two being above the 300 ug/l recommended for drinking water. The high values indicate local iron problems, that yielded lample. but the three wells with lower concentrations show the problem

does not occur everywhere.

Manganese concentrations ranged from 0 to 190 ug/L in waters from five wells tapping the old valley fill. Two of the five exceeded the recommended limit of 50 ug/L for drinking water. The valley fill in places yields water containing excessive manganese.

No fecal-coliform bacteria were found in any of the water from the old valley fill.

Concentrations of nitrate (as N) ranged from 0.02 to 11 mg/L in the 11 samples. Except for the 11 mg/L in a sample from well 12/18-8K1, the concentrations are all well below the 10 mg/L recommended limit for drinking water. However, water from another well, 12/18-8G1, had a concentration of nitrate (as N) of 5.8 mg/L concentration of nitrate as N of 5.8 mg/L, about six times the average of the remaining wells sampled.

The water-quality data collected from the old valley fill are summarized below:

stream	10/2	12		Dissolud	Dissolal	Disselat	Dissoled	Dissolved	Dissolad	Passeled	Bicart.
325 n	afort	y Tipe)	Silica (5:02) (mg/1)	(Fe)	(ma) (19/2)	Colorum (Ca) (ung/2)	(mg/e)	(N2) (r1/4)	Potissium (K) (mall)	CHOUS
Ahtonum	Old	telley	MZXIMHH		3404	140 a	54	26	16	5.9	308
	9777	20	mean	61	1200	909	35	18	12	4.3	188
	after	recon	minimizm		50	0	9.8-	4,0	3.5	3.2	54
	1	1	h	1	4	4	5	5	5	5	5

Dissolve Sulfate (504) (maje)	Dissolved Chloride (CI) (mall)	Dissolved Fluoride (F) (mg/L)	Total, Dit-ite Plus, NITTE(N) (mg/L)	(G,mg) (mg/L)		Sodium Adsorption Ratio	Specific Conductors	Tenyestine	-	
29	18	.3	11	240	32	15	775	17.0		
17	9.7	.3	23	160	12	.4	456	13.5		
2.3	.7	.1	0.2	41	0	12	98	10.4		
5	5	5	11	5	5	5	11	10		

21 doca not include 12/18-11KI (Fe, 4200 mg/e; Mn, 190 mg/l).

Specific conductance ranged from 102 to 194 micromhos in water from three wells tapping the basalt, indicating dissolved-solids concentrations similar to the minimums found in water from the old and young valley fill in this basin.

Figure 24 shows that the three wells tapping the basalt contain waters similar in percentage chemical composition to the water in the young valley fill in this basin. However, well 12/17-16D3 contains a higher percentage of sodium than the others.

Water in the basalt ranged from soft to moderately hard, with hardness concentrations ranging from 54 to 80 mg/L (as CaCO₃) in three samples. The irrigation classification was C1-S1 for all the wells sampled, indicating excellent quality for the purpose.

Iron concentrations ranged from 50 to 270 ug/L in three samples; all were below the 300 ug/L recommended limit for drinking water.

Manganese concentrations were determined to be less than 5 ug/L in two samples, indicating concentrations well below the 50 ug/L recommended limit for drinking water.

No fecal-coliform bacteria were found in any of the waters from the basalt.

Concentrations of nitrate (as N) ranged from 0.01 to 0.36~mg/L in four samples, indicating lower average concentrations than those found in the old and young valley fill in this basin.

The water-quality data collected from the basalt are summarized below:

Strea	m	1-1/	12.		Dissolud	Dissolad	Dissipation	Dissoled	Dissolved Magnesium	Dissolad	Pasoled	Bicarlos.
Bas	h	Afun	1/1/10		(5:02) (mg/e)	(Fe)	(mla) (49/2)	(C2) (m/2)	(mg/t)	(N2) (m1/4)	(K) (mg/d)	(HOD)
Ahta	2417	Basi	14	MZXIMHH	54	. 270	×5	16	9.7	.17	3.2	116
			1	mean	48	130	<5	14	2.2	11	2.7	105
			1	minimiki	38	50	<5	12	5.3	7,2	1.8	85
		/		n	3	3	2	3	3	3	3	3

Dissolve Sulfate (504) (male)	Dissolved Chloride (cl) (mall)	Dissolved Flooride (F) (mg/L)	Total, Notate plus, Notate(N)	Hararas (Co, Ma) (mg/L)	ste had-	Sodium Adsorption Ratio	Specific Conductors Conductors	Temperature °C.		
4.4	3.0	.5	.36	80	0	1,0	194	17.2		
3,1	2.0	.3	-11	64	0	.6	154	15.4		
0.4	1.2	,2	.01	54	0	4	102	13.4		
3	3	3	4	3.	3	3	1.4	3		

A ...

1_

Toppenish Creek Basin

Young Valley Fill

Specific conductance of water from 172 wells tapping the young valley fill ranged from 140 to 1,250 micrombos and averaged per centimeter at 25°C. in the young ralley feel 304 micromhos, The specific conductance of (1,250 micromhos per centimeter at of water from well 10/20-33L1 indicates an anomolous situation, as the water is much more mineralized than is normal for water in the young valley fill. The cause of the anomaly is not known. Only 6 of the 172 wells contained waters with specific conductance greater than 500 micromhos per centimeter at 25°C. Figure 25 shows the relationship between the geology of the basin and specific conductance of ground water in the various aquifers. As shown in the figure specific conductance does not increase uniformly from west to east--the general direction of ground-water movement in the basin. The variations in specific conductance are probably due to the following factors:

(1) The influence of agricultural practices may be different in different locations. The young valley fill contains water with per centimeter at 25°C specific conductance predominantly less than 500 micromhos, as indicated by the 500-micromho contour line near the Main Canal and the dividing line between young and old valley fill.

- (2) Variations may occur in the amount of water entering the aquifer from the surface, or from another aquifer.
- (3) Differences may exist in the particle size of the water-yielding material, which affects both the rate at which water may move and the surface area of the particles in contact with a given volume of water.

 Generally, the finer the material the slower the water movement and the more water-ontact area, which both tend to increase the dissolved-solids and specific-conductance values for a given aquifer.
- (4) The soil or rock type through which the water passes may be somewhat different.

The diagram of figure 26 illustrates the percentage composition of water from wells tapping the three major aquifers in the Toppenish Creek basin. As can be seen, water in the young valley fill averages slightly higher in percentage of calcium than does water in the basalt or old valley fill. Cation percentages are fairly consistant, but anion percentages tend to be slightly scattered.

The water in the young valley fill ranged from moderately hard to very hard, with hardness concentrations ranging from 78 to 230 mg/L (as CaCO₃) in 18 samples. The irrigation classification is C1-S1 for about 30 percent of the wells sampled, and C2-S1 for the remaining 70 percent. The single exception, well 10/20-33L1,

contains water in the C3-S1 classification. In general, the water is excellent to good for irrigation.

Iron concentrations in 18 samples ranged from 20 to 1,900 ug/L and averaged 280 ug/L. Five of these samples contained iron concentrations above the 300 ug/L recommended limit for drinking water. The high values appear not to be associated with any particular location, well depth, or elevation.

Manganese concentrations in 16 samples ranged from 0 to 1,500 µg/L and averaged 130 µg/L. Four of these samples contained manganese concentrations above the 50 µg/L recommended limit for drinking water. Two samples were associated with excessive iron and two were not. The high manganese concentrations, like the high iron concentrations, did not appear to be associated with any particular location, well depth, or elevation.

No fecal-coliform bacteria were found in any of the waters from the young valley fill.

Concentrations of nitrate (as N) in 172 samples ranged from 0.00 to 7.6 mg/L and averaged 2.1 mg/L. All samples were below the 10 mg/L recommended limit for drinking water. The water in the young valley fill contained the highest average nitrate concentration in the basin; this is predominantly attributable to agricultural practices.

In an area 2 to 3 miles south of Harrah several wells in the young valley fill reflected concentrations of nitrate much higher than average.

The water-quality data from the young valley fill are summarized below:

Stree	2	12	2/		Dissolud	Dissolad	Disselvet	Dissoled	Dissolved	Dissoland	President	Bica b.
Bas	н	Aguit	x-Type		Silica (SiOz) (mg/1)	(Fe)	(1/1/2) (1/1/2)	(C2) (ug/.?)	(mg/e)	(N2)	POTOSSIUM (K) (mg(t)	(HO)
Торре	hish	Soung	Billey	MZXIMHH	35	1900	1500	54	23	28	4.9	244
//		-FT	1/-	mean	34	280	130	32	12	15	3,4	165
		1 mil		minimien	32	20	.0	20	6.9	5.9	1.4	100
		54.4	. *	h	2	18	16	18	18	18	18	18

Dissolve Sulfate (504) (mg/2)	Dissolved Chloride (CI) (mg/2)	Dissolved Flooride (F) (mg/L)	Total, Ditate Plus, Narrie(N) (mg/e)	Harriss (Co, ma) (mg/4)	Hencorton- ote had- ress (mg/l)	HOSPOR	Specific Conduitors Concernhos	Temperature °C	4		
43	19	.5	7.6	230	29	1.0	1250	26,4			
12	5,3	.2	2.1	130	3	.6	304	13,8		•	
5.1	26	.0	.00	78	0	.3	140	9,5			
18	18-	18	172	-18	18	18	172	18			

149 +16

Water deep in the old valley fill has a distinctly lower dissolved-solids concentration than the shallower water in this aquifer. The hydraulics of the aquifer, described in a report on the water resources of the Toppenish Creek basin (U.S. Geological Survey, 1975), probably explain the reason for the difference. Prior to extensive irrigation development in the western part of the lowland area, the old valley fill received water from infiltrating precipitation and from the underlying basalt. Precipitation infiltrating through the surface soils tended to leach minerals, and resulted in more mineralized water entering the shallower parts of the old valley fill. However, the artesian pressure in the underlying basalt caused less mineralized water to move from the basalt into the lower parts of the old valley fill.

The hydraulic situation has changed, however, due to irrigation development. Two factors which contributed to changing the hydraulic situation may result in the more mineralized water moving farther downward in the aquifer. First, the additional application of water on the surface causes larger volumes of relatively more mineralized water to enter the aquifer, and second, wells pumping from the basalt have lowered the artesian pressure and caused a reversal of flow direction, and the water deep in the old valley fill now

enters the basalt. Movement of the more mineralized water downward in the aquifer probably will be gradual, taking several tens of years to significantly change the dissolved-solids content of the deeper water.

Shallow water. -- Specific conductance of water from 88 wells and springs in the upper part of the valley fill ranged from 104 to productive at 25°C.

1,540 micromhos and averaged 409 micromhos. This water is, on the average, the most mineralized ground water in the basin.

This is probably because water percolating downward through the fine-grained silt and clay that overlies much of the old valley fill tends to leach more minerals than does water percolating through the coarser alluvial soils overlying the young valley fill.

The young valley fill being coarser, permits larger volumes of water to move through per unit of time, resulting in a diluting effect. Figure 25 may be used to compare the variations in specific conductance in waters in the young valley fill, and in the upper parts of the old valley fill.

Figure 26 shows the differences in percentage composition of the waters in the three major aquifers. Although they have different dissolved-solids concentrations the shallow and deep waters in the old valley fill were found to have no significant differences in percentage compositions.

Well 10/18-21D1 (fig. 26) contains water of unusual composition, with almost 72 percent sodium, much more than any other ground water observed in the basin. The cause for this difference is unknown; the nitrate and chloride concentrations were not unusual, as would be expected if local septic-tank contamination were the source of the higher percent sodium.

The hardness of water in nine samples from the shallow parts of the old valley fill ranged from 68 to 420 mg/L (as CaCO₃), moderately hard to very hard. The irrigation classification was Cl-Sl for about 40 percent of the wells sampled, C2-Sl for about 50 percent of the wells, and C3-Sl for about 10 percent of the wells.

About 90 percent of the water is excellent to good for irrigation; the other 10 percent is acceptable for crops that are not salt sensitive.

Iron concentrations in nine samples ranged from 20 to 1,500 ug/L, but only two were greater than 100 ug/L. The recommended limit for drinking water is 300 ug/L. The high iron concentrations are randomly distributed, and are not associated with any particular well depth, or elevation.

Manganese concentrations ranged from 0 to 360 µg/L, but only one exceeded the recommended limit of 50 µg/L for drinking water.

Of more than 80 wells sampled, only one well (10/17-18H1) contained fecal-coliform bacteria, in a concentration of 1 col/100 mL. This bacterial occurrance is considered to be localized, and probably related to seepage into the well along the well casing.

Concentrations of nitrate (as N) in 88 samples ranged from 0.01 to 20 mg/L and averaged 1.4 mg/L. There is a significant area 3 to 4 miles northwest of Harrah with considerably higher-than-average concentrations in the shallow water of the old valley fill.

The water-quality data from the shallow water in the old valley fill are summarized below:

Stres	h	Popul	V Type		Dissolud Silica (SiOz) (mg/1)	Dissolut Iron (FC) (1911)	Dissilate Origina (MA) (49/2)	Dissoled Calcium (Ca) (un/2)	Dissolved Magnesium (mg/1)	Dissolad Sodion (NZ)	Potassions (K) (m)(1)	Bica, Land (HOD) (mg/4)
Toppen	ish	Old &	olley	MAXIMHH		1500	360	95	45	160	5.2	650
	•	EH		mean		260	57	44	20	51	4.4	304
		(shallo	wands	minimiki		20	0	14	7,6	6,7	3,0	102
			.,	n	0	9	9	9	9.	9	9	9

Dissolve. Sulfate (504) (maje)	Dissolved Chloride (CI) (mg/4)	Dissolved Flooride (F) (mg/l)	Total, Ditate plus, Narrie(D) (mg/L)	Harrings (Ca, Ma) (mg/4)	ote had-	Sodium Adsorption Ratio	Specific Conductors	Temperature C.	4		
190	69	1.4	20	420	6	5,5	1540	20.5			
29	16	17	1.4	190	1	1.6	409	13.7			
2.5	1.0	./	,0/	68	0	.4	104	10,8	1		
9	9	9	88	9	9	9	88	9			

from the lower fact

Deeper water. -- Specific-conductance values in nine samples ranged from 233 to 280 micromhos, and averaged 251 micromhos, at 25°C. The narrow range indicates a very uniform mineralization of the waters; the slight differences are randomly distributed.

The percentage chemical composition of the water, as discussed earlier, is virtually the same as that in the shallow waters of the old valley fill. Figure 26 shows the difference in the percentage composition of the waters in the three water-yielding materials.

The five water samples from deep in the old valley fill are moderately hard, ranging from 78 to 95 mg/L (as CaCO₃). The irrigation classification is C1-S1 for one-third of the wells, and C2-S1 for two-thirds of the wells sampled. In general, the waters are excellent to good for irrigation.

Iron concentrations in the five samples ranged from 20 to 450 ug/L, with only one greater than the 300 ug/L recommended limit for drinking water.

Manganese concentrations ranged from 0 to 680 µg/L, with three of the five samples equaling or exceeding the 50 µg/L recommended limit for drinking water. The other two samples had 0 µg/L manganese concentrations.

No fecal-coliform bacteria were found in any of the samples collected from deep in the old valley fill.

Nitrate (as N) concentrations in nine samples ranged from 0.01 to 1.1 mg/L and averaged 0.26 mg/L.

from

The water-quality data collected/deep in the old valley fill are summarized below:

			15	6	5	9	5	6	_5	S	5
			111	233	5'	0	86	10'	٤'	18	5,
1.1			191.	150	0%	-0	48	25.	5.	3.7	8.3
	٠.		930	088	77	0	56	17	1.	54	3
			Do :	Conductors)	oites	(2/bu) 5524 -pry 24e	(2/bu)	1,1-1,2 plus (u) talia (u) talia)	(F) (E) (E) (E) (E) (E)	(cl) (b)	(804) (162) (162)

									10		
9	-5	2	S	5	5	9	0	u	1		
b21	S.Z	11	7.7	61	0	30		нарници	(5/17/001)	D	
8-61	14	50	28	10	000	091	-	4874	THE CHINN		11
271	94	SE	73	50	089	OSE		MAMIXEM	SHAP10	45148	1001
(HO)	(K)	(2/5.47 (4/3)	(J/bal)	(e) (e) (e)	(8/87) (144)	(1/b/r) (25) (26)			July door	ч	SES
Bics. L	Distaled	Bulo2:10	Dissolute		1 ssdal	1x10221C	1221C		1 / 1	u	SAVE

the basalt ranged from 152 to 530 micromhos and averaged 290 micromhos. The variations in concentrations were not associated with well depth or the elevation of the well bottom, as may occurselecthere in basalt with its commonly distinct and separate water yielding zones. The water in the basalt in the Toppenish Creek basin contains more dissolved solids, on the average, than does water in the basalt in Ahtanum Creek or Klickitat River basins, but it has about the same as that in the basalt in Satus Creek basin. Less precipitation over the Toppenish and Satus Creek basins probably accounts in part for the higher concentrations.

Figure 26 shows that the basalt contains water having less percentage calcium and more percentage bicarbonate, on the average, than do the young or old valley fill in the basin.

The water in 14 samples from the basalt is moderately hard, with hardness ranging from 62 to 120 mg/L (as CaCO₃). The irrigation classification was C1-S1 for about 45 percent and C2-S1 for about 55 percent of the samples, indicating excellent to good quality for irrigation.

Iron concentrations in 13 samples ranged from 20 to 200 ug/L,

all below recommended drinking-water limits. A sample not included in this range (well 11/16-34K2) contained 2,200 µg/L of iron; the reason for this high concentration was not determined.

Manganese concentrations in 14 samples ranged from 0 to 360 µg/l; the water in 6 samples equaled or exceeded the 50 µg/l recommended limit for drinking water.

Two wells tapping the basalt contained fecal-coliform bacteria. Water from well 10/16-15Nl contained an estimated concentration of more than 500 col/100 mL, and water from well 10/18-31Nl contained 6 col/100 mL. Both wells probably are contaminated locally, by seepage along the well casing.

Concentrations of nitrate (as N) in 35 samples ranged from 0.00 to 1.5 mg/L and averaged 0.20 mg/L, very similar to that found in the deeper water in the old valley fill.

The water-quality data collected from the basalt are summarized below:

stres	n	1. /	11		Dissolud	Dissolad	Dissibut	Dissoled	Dissolved	Dissoland	Prisoled	Bicel.
325	h	Popul	The		(5:01) (mg/1)	(Fe)	(rda) (49/2)	(C2) (Un/2)	(mg/t)	(NZ)	Potissium (K) (mg/l)	(HO)
Toppe	nish	375	51+	MZXIMKH		200	340	23	16	.3.5	5.1	217
//		/		mean	-	80 %	80	19	10	21	3.8	156
				minimim		20	0	14	5,9	7.9	2.5	101
			/	n	0	13	14	14	14	14.	14	14

Dissolve Sulfate (504) (maje)	chloride (cl) (mg/2)	Dissolved Flooride (F) (mg/L)	Total, Notate Plus, Notate(N) (mg/l)	Harakess (Ca, Ma) (mg/4)	Unorton- ste had- ress (right)	Sodium Adsorption Ratio	Specific Conduitors Concernos	Temperature C			
18	11	1,2	1.5	120	0	1.8	530	29.6		-	
4.0	4.1	.6	,20	89	0	1,0	290	18.9			
,8	1.0	./	.00	62	.0	.3	152	10.3			
14	14	14	35	14	14	14	35	35			

* does not include 11/16-34KZ, Fe = 2200 ug/l.

160 /6/

Satus Creek Basin

Young Valley Fill

Specific conductance of water from 30 wells tapping the young valley fill in the Satus Creek basin ranged from 100 to 930 micromhos and averaged 468 micromhos, per certainels at 25°C.

Figure 27 illustrates the variation in percentage chemical composition of the waters from the three major aquifers in the basin. The single complete sample from the young valley fill has a composition intermediate between those of the waters of the old valley fill and the basalt.

The water of the single sample was very hard, with a hardness concentration of 200 mg/l (as CaCO₃). The irrigation classification is C1-S1 for about 10 percent of 28 samples, C2-S1 for about 75 percent, and C3-S1 for about 15 percent. The water is mostly excellent to good, except for that in the C3-S1 classification which is acceptable only for salt-tolerant crops.

Iron concentration in the single sample was 40 µg/L and manganese concentration was 0 µg/L; both of these values are well below recommended drinking-water limits.

No fecal-coliform bacteria were found in water from any of 21 wells sampled.

Nitrate (as N) concentrations in 28 samples ranged from 0.00 to 4.8 mg/L and averaged 0.92 mg/L, all well below recommended limits.

The water-quality data collected from the young valley fill are summarized below:

trah	1 17/	1, - 1		Dissolud	Dissolut	Disselye	Dissoled	Dissolved	Dissoland	Pasoled	Bical
Basn	Parit	Pe		(5:02) (mg/1)	(Fe)	(m/n) (49/2)	(C2) (47/-e)	(mg/t)	(N2) (r1/4)	Potossium (K) (mg/4)	CHOS Cmale
SATUS	Soung	11/11/	MZXIMKH								
	ET	1	mean		40	0	41	23	25	3,1	247
	agai	Jours !	minimikh								
	1		n		1	1	1	1	1))

1

-	Dissolve Skifate (804) (majo)	Dissolved Chloride (CI) (mg/2)	Dissolied Flooride (F) (mg/L)	Total, Nitrate Plus, Nitrate(N) (mg/l)	HSTRUSS (Co, ma) (mg/4)	Unorton ste had- ress (mgfl)	Sodium Adsorption Ratio	Specific Conductors (micronhos	Temperature -		
-		•	١	4.8		,		930	21,2		
	28	16	.2	,92	200	0	:8	468	14.1		
-				.00				100	8,1		
	1	1	- 1	28	1	.)	.) :	27	.28		

163 164

.--,

specific conductance of water from 38 wells and springs in the old valley fill of Satus Creek basin ranged from 310 to production at 25°C, 1,250 micromhos, and averaged more than 790 micromhos. The average concentration of dissolved solids was higher in water from old valley fill in the Satus Creek basin than in any of the other major aquifers in the reservation. The high dissolved solids concentrations probably are due to the deposits of silt and clay which overlie most of the old valley fill in the Satus Creek basin which overlie most of the old valley fill in the Satus Creek basin which overlie most of the old valley fill in the Satus

Figure 27 illustrates the strong similarity in percentage composition of cations and the contrasting variability in percentage composition of anions in the waters of the old valley fill; this may indicate that an ion-exchange process is affecting the percentage composition of cations.

The water in six samples ranged from hard to very hard, with hardnesses ranging from 130 to 480 mg/L (as CaCO₃) and averaging 360 mg/L, more than three times the average for all the reservation's ground waters. The irrigation classification of water is C2-S1 for 50 percent of 38 samples, and C3-S1 for the other 50 percent. This indicates that one-half of the water sampled was good for irrigation, and one-half was acceptable for salt-tolerant crops.

Iron concentrations in water of six samples ranged from 20 to 260 µg/L, with none exceeding recommended drinking-water standards. However, manganese in the water ranged from 0 to 650 µg/L, and exceeded the iron concentration in one sample, the only one in which manganese exceeded the recommended drinking-water standard of 50 µg/L.

No fecal-coliform bacteria were found in any of the waters from the old valley fill.

Concentrations of nitrate (as N) ranged from 0.11 to

170 mg/L, and averaged 23 mg/L, in water from 38 samples. The
recommended limit for drinking water (10 mg/L) was exceeded
in many of the samples. The problem is widespread, covering
several square miles. Figure 11 delineates the area having
water exceeding the recommended limits. The cause of the
high nitrate concentrations is not certain, but natural buildup of nitrate
is not uncommon in the soils of arid areas such as this, and may be the
recouse here. In both the Toppenish Creek and Satus Creek basins known
high nitrate concentrations occur predominantly where the soils or
aquifers are composed of lake-laid silt and clay; in this part of the
Satus Creek basin, the silt and clay beds are several tens of feet thick.

After irrigation began the nitrates which had previously built up in the soils
would begin to percolate downward. However, the silt and clay may have
delayed percolation of the nitrates in this area to the extent that the

nitrates are still observable at the present time. This implies that nitrate buildup may have occurred over a more widespread area, and that rapid percolation and dilution has removed most evidence of this except in the areas underlain by the less permeable silts and clays. There are three reasons for suspecting a natural surficial source for nitrate increase. First, there is no identifiable man-induced source for such widespread high-level nitrate contamination; second, there is no known source of high nitrate concentration within the silt and clay beds in this basin or in the other basins in the State containing these beds; and, third, the vertical permeability and head gradients are compatible with a near-surface source in this high-nitrate area.

The water-quality data collected from water in the old valley fill are summarized below:

Stream	1	/1/		Dissolud	Dissolut	Disselvet.	Dissolat	Dissolved	Dissoland	President	Bicart
Bash	Afort	The		Silica (5:02) (mg/e)	(Fe)	(rda) (rda)	(Ca) (ug/l)	(mg/E)	(N2) (rs/K)	Potossium (K) (mg/4)	(11005)
52/45	old &	Her.	MZXIMHH	62	260	650	120	44	33	6.2	Z15
	FH	()	mean	.52	80	130	90	33	27	4.4	163
			Minimike	39	20	0	33	12	18	1.5	111
		/	n	3	6	5	6	6	6	6	6

-	Dissolve Sulfate (504) (maje)	Dissolved Chloride (CI) (malle)	Dissolved Flooride (F) (mg/2)	Total, Ditate Plus, NiTrik(N) (Ma/e)	Hardress (G, Mg) (mg/4)	Unorton- ote had- ress (mg/l)	Sodium Adsorption Ratio	Specific Conductors Conscrimnos	Temperature °C			-	
	240	70	,8	170	480	380	7	1250	22.0	-			
	130	41	,5	23	360	Z30	.6	7790	15.9		1		
-	29	13	, Z	.11	130	. 41	.4	310	10.2				
	6	6	6	38	6	6	6	38	38				

167,168

Specific conductance of water in the basalt ranged from per centificat 25°C, 115 to 420 micromhos and averaged 267 micromhos excluding that of water from well 8/22-3Kl. This well water, with a specific conductance of 655 micromhos and a nitrate (as N) concentration of 11 mg/L, was excluded from the averaging as it was considered to be a localized contamination, probably by leakage around the well casing resulting in water from the old valley fill entering the basalt.

Figure 28 shows that in the Satus Creek basin the water in the basalt contains a higher percentage of sodium and bicarbonate than does the water in the young or old valley fill.

The water in five samples from the basalt had hardness ranging from 43 to 180 mg/L (as CaCO₃), from soft to hard. The irrigation classification of 20 samples was C1-S1 for about 35 percent of the samples and C2-S1 for the remaining 65 percent. The waters generally are excellent to good for irrigation.

Iron concentrations in water from four samples ranged from 20 to 230 µg/L, all less than the 300 µg/L recommended limit for drinking water.

Manganese concentrations in the four samples ranged from 0 to 50 $\mu g/L$, the high value equaling the recommended limit in drinking water.

The number of fecal-coliform bacteria found in six springs flowing from the basalt are listed below:

Spring		ies per lliliters
6/18-9B1s	>500	estimated
7/18-8Kls	21	
7/19-25Nls	199	
7/19-29Als	>500	estimated
7/20-21Jls	28	
7/21-9Q1s	9	

The fecal-coliform contamination undoubtedly originates from range cattle that often walk directly through the water.

Nitrate (as N) concentrations ranged from 0.00 to 3.0 mg/L, excluding the previously mentioned sample from well 8/22-3KL, which contained 11 mg/L. The average of 20 samples was 0.79 mg/L.

The water-quality data collected from the basalt are summarized below:

Stream Bash	Agoit	7/11	,	Dissolard Silica (SiOz) (mg/l)	Dissolute Iron (FC) (1911)	Disselved original (Ma) (49/1)	Dissoled Colcium (Co) (eg/2)	Dissolved Maginsium (mg/t)	Sodium (NZ)	Potrssium (K) (mg/4)	Chapter (HO)
SATUS	Bast	14	MZXIMHH	50	Z30	50	42	17	43	9,0	226
	(1	mon	18	100	10	26	11	24	3.6	174
			minimien	47	20	0	10	4.3	5,3	.1.5	55
		/	n	2	4	4	5	5	5	5	5

Dissolve	Disselved	Dissolved	Total,	HSTANESS	Unarhan	Sodium	Specific	Temperatu		1	1.	T
Sulfate	(cl)	Floride	plus (D)	(C), MA)	ress	Adsorption	Conductors	200				
(male)	(14/2)	(mg/e)	(mg/e)	(mg/L)	(mg/e)	Ratio	Christonhos		,	-		
17	11	.8	3.0	180	0	1.9	420	19.8		7	,	
11	6.6	.5	.79	110	0	1.0	267	12.7				
2.3	1.3	./	.00	43	0	,4	115	7.5				
5	5	5	20	5	5	5	20	19	***			

1) does not include 8/22-3KI (specific conductance = 655 micrombos nitrate plus nitrition 11 mg/4)

nitrition 11 mg/4)

at 25°C

70 172

Klickitat River Basin

Valley Fill

Specific conductance of water in four samples ranged from per certification at 25°C.

62 to 82 micromhes and averaged 72 micromhos. These values indicate that the valley fill in the Klickitat River basin contains the most dilute ground water in the reservation.

Figure 28 shows that in the Klickitat River basin the water from the valley fill is similar in percentage composition to water from the basalt.

The water is classified as soft, with hardness of water from three samples ranging from 19 to 30 mg/L (as CaCO₃). The irrigation classification is C1-S1, indicating excellent quality water for the purpose.

Iron concentrations in three samples ranged from 70 to 330 ug/L, only the highest exceeding the recommended drinking-water limit of 300 ug/L. Manganese concentrations for these three samples were all 0.0 ug/L.

No fecal-coliform bacteria were found in any of the waters from the valley fill.

Nitrate (as N) concentrations in four samples ranged from

0.04 to 1.3 mg/L. These low concentrations indicate minimal impact from the very localized agricultural development in the basin.

The water-quality data collected from water in the valley fill are summarized below:

Strea	n	10/	7		Dissolard	Dissolut	Disselvet	Dissoled	Dissoluce	Dissolad	Pasoled	Bicarl
375	h	Hyort	111		(5:02) (mg/1)	(Fe) (119/1)	(m/a) (48/2)	(Co)	(mg/t)	(H2)	(K)	(mg/d
Ylick	tat	though s	Indited	MZXIMKH		330	0	7.9.	2.7	3.2	2.2	50
		Allun	um	mean		170	0	6.9	2.5	3.1	1.9	43
		Chang	Heley	hiihinden		70	0	5,1	2,1	2,8	1,6	36
		17.7	3	'n		3	3	3	3	3	3	3
		/										
		(

Dissolve Sulfate (504) (mg/e)	chloride (cl) (rg/2)	Dissolved Flooride (F) (ing/e)	Total, Notate Plus, Notate(N) (Male)	Horates (Co,ma) (mg/L)	Unorlar- ote had- ress (mg/l)	Sodium Adsortion Ratio	Specific Conductives Conductives	Temperature °C	<	-	
2,0	1.5	1	1.3	30	0	,3	82	12.3			
1.7	1.0	,0	138	24	0	.3	72	10.8			
1.5	15	,0	,04	19	0	.3	62	9.7			
3	3	3	4	. 3.	3	3	4	4			

. .

175 173 Her Specific conductance of water in 53 samples ranged from procession of 20 to 195 micromhos and averaged 79 micromhos. The basalt in the Klickitat River basin contains water that has only slightly more dissolved solids than does water in the valley fill in that basin. Four springs flowing from the basalt were not included in the above range or average because they are believed to originate in a much deeper basalt. These springs are discussed in detail later. Figure 28 shows that, except for these springs, the percentage compositions of the waters in the basalt and the valley fill are very similar.

The water in 23 samples from the basalt ranged from soft to moderately hard, with hardness concentrations ranging from 8 to 120 mg/L (as CaCO₃); only two samples had water exceeding the soft classification.

Iron concentrations ranged from 10 to 2,100 µg/L and averaged 210 µg/L. Two springs and two wells exceeded the recommended limit of 300 µg/L for drinking water.

Manganese concentrations in 23 samples ranged from 0 to 170 ug/L and averaged 10 ug/L. The high value was the only one exceeding the 50 ug/L recommended limit for drinking water.

Fecal-coliform bacteria were present in water from two srpings flowing from the basalt. These springs
(11/13-3Els and 11/13-4K2s) both contained 3 col/100 mL.
Range cattle are the most probable source of the contamination.

Nitrate (as N) concentrations in 42 samples ranged from 0.00 to 2.0 mg/L and averaged 0.16 mg/L, the lowest average concentration in ground waters in the reservation.

The water-quality data collected from water in the basalt are summarized below:

stream	1	/ /	Dissolud	Dissolad	Disselved	Dissoled	Dissolved	Dissolad	Pissolad	Bical.
Bash	1996	1770	(Silica (Silos) (mg/l)	(Fe) (19/1)	(min)	(C2) (mg/.2)	Dissolved Maginson (mag)	(NZ)	POTISSIUMS (K)	(1003
lick tat	Basal-	+ MZXIMHH		2/00	170	33	10	8.5	4.7	124
	(mean	35	210	10	8,4	3.3	3.7	106	49
		hunuaku		10	0	2.1	16	:8	.6	10
	//	n	,	23	23	23	23.	23	23	. 23

	Dissolve Sulfate (SOA) (mg/e)	Dissolved Chloride (cl) (rg/e)	Dissolved Flooride (F) (Ing/L)	Total, Notate plus, Notate(N) (Mall)	HSERESS (CO,MA) (mg/L)	llenorton ste had- ress (mg/l)	Sodium Adsortion Ratio	Specific Conduitors (micromhos	200	٠		
	2.0	1.5	,2	2.0	120	22	.3	195	12.3	7		
۱	1.0	.8	.0.	116	35	Ì	.3	79	16.8			_
	11	.2	.0	.00	8	0	. /	20	2.4			
	z3	23	23	42	23	23	23	53	53			.,

Il does not include 6/13-4+15, 9/13-18PIS, 11/12-29LIS, or 11/13-4KIS; all unwound oprings, for which individual analyses are listed.

178

Deep-Basalt Springs

Four springs--6/13-4Hls, 9/13-18Pls, 11/12-24Lls (Soda Springs), and 11/13-4Kls--are believed to issue water that originates deep in the basalt beneath the Klickitat River basin. This is suggested by the following observations.

relatively

- 1. The water is of higher temperature, indicating greater depth due to the temperature gradient in the earth-the springs ranged from 4° to 15°C warmer than other nearby springs. Also, iron concentrations were high to extremely high in water from three of the springs. High concentrations of iron, and elevated temperatures are characteristic of thermal springs in volcanic zones. The warmer temperatures may also suggest fault zones, but such a determination is beyond the scope of this present study.
- 2. The presence of carbon dioxide gas (CO₂) bubbling from the springs indicates a release of pressure that results from a rise of the water from great depth. Soda Springs (11/12-24Lls) has long been known to release large quantities of carbon dioxide. Gas bubbles, assumed to be carbon dioxide, were observed in springs 6/13-4Hls and 11/13-4Kls. Only a few gas bubbles were observed at spring 9/13-18Pls, but a large amount of gas could have been released in the loose sands and gravels which surround the spring.

3. Another observation, although not directly an indication of depth, is supportive. The four springs all yield water containing much higher dissolved-solids concentrations than the usual springs in the basin. Also, the waters are slightly different in percentage composition, with spring 11/13-4Kls containing water materially different in percentage composition from any other ground water sampled in the reservation. Although the higher dissolved-solids contents and the differences in percentage composition (fig. 28) suggest a different source but not necessarily a different depth, it is reasonable to assume, in conjunction with the other observations, that the water is coming from considerable depth in the basalt.

The four deep-basalt springs had both the highest and the lowest observed concentrations of several of the common ions. Spring 11/12-24Lls had the highest calcium concentration, 120 mg/1. Spring 6/13-4Hls had the highest magnesium, sodium, potassium, and bicarbonate concentrations--95, 160, 16, and 1,130 mg/1, respectively. Spring 9/13-18Pls also had a potassium concentration of 16 mg/1. Spring 11/13-4Kls had the

lowest magnesium concentration, 0.4 mg/l.

The chemical and physical characteristics of water from the four springs are summarized below:

Stree	173	1	7_			Dissolut	mireday	Colcina	2572 200 -	Dissoland	Pasoled	Bical.
325	15p	ring	17/		(sioz) (mg/l)	(Fe) (1911)	(ma) (ma) (19/2)	(C2) (my/.2)	(mg/o)	(1/2)	(K)	(my/s)
	6/13	-44	15	种。如明明		2200	60	110	95	160		1130
	9/13	-188	15	TACOTT	-	23,000	760	97	86	150	16	951
	11/12	-24	4/8	mindin		19,000	370	120	78	130	2,2	806
	11/13	3-41	15	He.		70	0	2.7	.4	100	3.5	279

DISSOLVE SUIFATE (504) (maje)	Chloride (cl)	Dissolved Flooride (F) (149/4)	Total, Dit-ite Plus, Nilvite(N) (mg/L)	(Co, ma)	ste had-	Sodium Adsortion Ratio	Specific Conductors Conductors	Tempratus C.			
2.6	149	:4	.19	670	0	2.7	1660	23,8			. `
22.	92	,3	:01	600	0	2.7	1800	12.2			
2.6	150	.2	100	620	0	2.3	1500	9.5			-
1.8	1.0	.5	.10	8	0	15	440	13,8		4	

179 170

As can be seen from the specific conductance of water in the first three springs listed, the springs contain the most mineralized ground water found on the reservation. Water from the fourth spring is only about one-third as mineralized, but still far more mineralized than the waters found in the major aquifers.

The percentage composition of the waters from the first three springs is slightly different from that of nearby springs, in that they contain water of higher percentage magnesium and lower percentage calcium. Springs 9/13-18Pls and 11/12-24Lls also contain a higher percentage chloride. The fourth spring (11/13-4Kls) is very unusual, as it contains water whose chemical composition is 93 percent sodium and 99 percent bicarbonate. The cause of this difference is not known.

The water of the first three springs listed is classified as very hard, and that of the fourth spring is soft. The first three had the hardest waters observed, and the fourth had among the softest. Water from the first three springs was classified as C3-S1 for irrigation and that from the fourth spring was C2-S3. For irrigation, the first three springs indicate a salinity hazard, and the fourth spring a sodium hazard.

Iron concentrations were high in springs 9/13-18P1s and 11/12-24L1s, being 23,000 ug/L and 19,000 ug/L, respectively.

Manganese concentrations were also high in these two springs, being 760 ug/L and 370 ug/L, respectively.

No fecal-coliform bacteria were found in any of the four springs.

REFERENCES CITED

- Aquatic Life Advisory Committee of Ohio River Valley Water
 Sanitation Commission, 1955, Aquatic life water quality
 criteria. First Progress report, in Sewage and Industrial
 wastes: v. 27, p. 321-331.
- Boucher, P. R., 1975, Reconnaissance study of sediment transport by selected streams in the Yakima Indian Reservation, Washington, 1974 water year: U.S. Geol. Survey Open-File Rept. 75-67, 12 p.
- Cline, D. R., 1976, Reconnaissance of the water resources of the upper Klickitat River basin, Yakima Indian Reservation, Washington: U.S. Geol. Survey Open-File Rept. 75-518, 54 p.
- Collings, M. R., and Higgins, G. T., 1973, Stream temperatures in Washington State: U.S. Geol. Survey Hydrol. Inv. Atlas HA-385, 2 pl.
- Flint, R. F., 1938, Origin of the Cheney-Palouse scabland tract, Washington: Geol. Soc. America Bull., v. 49, no. 3, P. 461-524.

Foxworthy, B. L., 1962, Geology and ground-water resources

- of the Ahtanum Valley, Yakima County, Washington: U.S. Geol. Survey Water-Supply Paper 1598, 100 p., 3 pl.
- Gregg, D. O., and Laird, L. B., 1975, A general outline of the water resources of the Toppenish Creek basin, Yakima Indian Reservation, Washington: U.S. Geol. Survey Open-File Rept. 75-19, 37 p.
- Gumnerson, C. G., 1964, Diurnal and random variation of dissolved oxygen in surface waters: Verh. Internat. Verein. Limnol., v. 15, p. 307-321.
- Imhoff, K., 1955, The final step in sewage treatment:

 Jour. Sewage and Industrial Wastes, v. 27, no. 3, p. 332-335.
- McKee, J. E., and Wolf, H. W., 1963, Water quality criteria: California State Water Quality Control Board Pub. 3-A, 548 p.
- Molenaar, Dee, 1977, General outline of the water resources of the Satus Creek basin, Yakima Indian Reservation,
 Washington: U.S. Geol. Survey Open-File Rept. 76-808, 34P.

 (in-press).
- Mueller, W., 1953, Nitrogen content and pollution of streams: in Gesundheitsing, v. 74, p. 256.

- Mundorff, M. J., Mac Nish, R. D., and Cline, D. R., 1977, Water resources of the Satus Creek basin, Yakima Indian Reservation, Washington: U.S. Geol. Survey Open-File Rept. 76-685, P. (in-press).
- Nelson, C. E., and Weaver, W. H., 1971, Salt balance for the Wapato Project for 1970-71 compared with the salt balance for 1941-42: Washington State Univ. (Pullman) College of Agriculture, 12 p.
- Nelson, K. H., and Lysuj, Ihor, 1968, Organic content of southwest and Pacific Coast municipal waters: Environmental Science and Technology, v. 2, no. 1, p. 61-62.
- Newcomb, R. C., 1970, Tectonic structure of the main part of the basalt of the Columbia River Group, Washington, Oregon, and Idaho: U.S. Geol. Survey Misc. Geol. Inv. Map I-587, 1 pl.
- Ott, A. N., Barker, J. L., and Growtiz, D. J., 1973,

 Physical, chemical, and biological characteristics of

 Conewago Lake drainage basin, York County, Pennsylvania:

 Pennsylvania Dept. Environmental Resources Water

 Resources Bull. 8, 96 p.

- Rankama, Kalervo, and Sahama, TH. G., 1950, Geochemistry: Chicago, Illinois, Univ. Chicago Press, 911 p.
- Piper, A. M., 1953, A graphic procedure in the geochemical interpretation of water analyses: U.S. Geol. Survey Ground-Water Note 12, 14 p.
- Russell, I. C., 1893, A geological reconnaissance in southeastern Washington: U.S. Geol. Survey Bull. 108, 108 p., 12 pls.
- U.S. Geol. Survey Water-Supply Paper 4, p.
- Sawyer, C. N., 1947, Fertilization of lakes by agricultural and urban drainage: New England Water Works Assoc.

 Jour., v. 61, no. 2, p. 109-127.
- Scofield, C. S., 1941 and 1942, Reports on salt balance conditions of the Wapato Project: Mimeograph, USDA, BPI, Div. of Irr. Agr.
- Sheppard, R. A., 1960, Petrology of the Simcoe Mountains area: Baltimore, Johns Hopkins Univ., Ph. D. thesis, 153 p.
- Smith, G. O., 1901, Geology and water resources of a portion of Yakima County, Washington: U.S. Geol. Survey Water-Supply Paper 55, 68 p.

188

- ----1903, Description of the Ellensburg quadrangle, Washington: U.S. Geol. Survey Geol. Atlas, Folio 86, 7 p.
- Sylvester, R. O., Westin, M. J., Suzerki, J. T., and Dailey, M. G., 1951, An investigation of pollution in the Yakima River basin: Washington State Pollution Control Adm., 47 p.
- Sylvester, R. O., and Seabloom, R. W., 1967, A study of the character and significance of irrigation return flows in the Yakima River basin (Washington): Washington Univ. (Seattle) Dept. Civil Eng., 104 p.
- U.S. Department of Agriculture, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. Agr. Handbook 60, 156 p.
- U.S.] Federal Water Pollution Control Administration, 1968, Water quality criteria: Washington, D.C., 234 p.
- U.S. Geological Survey, 1965-75, Water resources data for Washington, pt. 2, Water quality records, 1964-74:

 Tacoma, Wash., annual tabulation for years indicated.
- ----1975, Water resources of the Toppenish Creek basin,

- Yakima Indian Reservation, Washington: U.S. Geol. Survey Water-Resources Inv. 42-74, 144 p.
- U.S. Public Health Service, 1962, Drinking water standards, 1962: U.S. Public Health Service Pub. 956, 61 p.
- U.S. Weather Bureau, 1950-72, Climatological data,
 Washington: U.S. Weather Bur., annual summaries for
 years indicated.
- ----1965, Mean annual precipitation, 1930-57, State of Washington: Portland, Oreg., U.S. Soil Conserv. Service, map M-4430.
- Washington State Department of Ecology, 1973, Water quality standards, June 19, 1973: Olympia, Wash., 17 p.
- Washington State Department of Social and Health Services, 1971, Rules and regulations of the State Board of Health regarding public water supplies: Olympia, Wash., 16 p.
- Waring, G. A., 1913, Geology and water resources of a portion of south-central Washington: U.S. Geol. Survey Water-Supply Paper 316, 46 p.

Significance of Water Constituents and Characteristics and Water-Quality Criteria

centitients and characteristers

The parameters selected for observation in this study are arranged alphabetically, and a discussion of their significance and of the various criteria is included for each, parameter.

Chlorophyll.--Chlorophyll is the green-colored matter in plants that is partly responsible for photosynthesis. A measurement of chlorophyll concentration in water provides an estimation of the amount of free-floating algae in the water. Chlorophyll <u>a</u> and chlorophyll <u>b</u> are the most common types, and only determination of chlorophyll <u>a</u> was considered necessary for this reconnaissance study.

Color.--Color is obtained from dissolved and colloidal substances in the water. The color of natural stream waters commonly results from leaching of organic debris, although it may be due to metallic substances such as iron and manganese. Color is measured on a platinum-cobalt scale and is expressed as color 'units."

U.S. Public Health Service (1962) recommends an upper limit of 15 color units for drinking water. Color is undesirable for esthetic reasons and also because it may cause staining of clothes or fixtures. Color does not seem to be hazardous

191-192

to aquatic life, except indirectly by reducing light penetration which decreases biological productivity.

Common ions.--The ions generally of most abundance in water include four positively charged ions--calcium, magnesium, sodium, and potassium--and six negatively charged ions--bicarbonate, carbonate, sulfate, chloride, nitrate, and fluoride.

The ions are significant in several ways. Calcium and magnesium are the principal causes of hardness of water, sodium affects the suitability of its use for irrigation, nitrate is a plant nutrient and at high concentration may be poisonous to animals, and fluoride is beneficial in prevention of tooth decay, but detrimental at too high a concentration. Combined, the common ions contribute most of the dissolved-solids concentration of the water, which affects suitability for uses such as for drinking and irrigation.

Dissolved oxygen.--The DO (dissolved-oxygen) concentration is potentially a major concern for some streams in the reservation, and is one indication of the suitability of the stream for the support of fish and other aquatic life. Fish and other desirable aquatic life must have water with a relatively high DO concentration at all times. A fish's respiration rate increases with increased water temperature, and its oxygen requirements may double or triple for a 10°C rise

in water temperature. Also, the higher the water temperature, the lower the solubility of oxygen. The Aquatic Life Advisory Committee of Ohio River Valley Water Sanitation Commission (1955) has recommended that the minimum permissible DO concentration for a well-rounded warm-water fish population (such as that found in many of the lowland streams and drains of the reservation), be as follows:

The dissolved-oxygen content of warm water fish habitats shall be not less than 5 mg/1 during at least 16 hours of any 24-hour period. It may be less than 5 mg/1 for a period not to exceed 8 hours within the 24-hour period, but at no time shall the oxygen content be less than 3 mg/1. To sustain a coarse fish population, the dissolved-oxygen concentration may be less than 5 mg/1 for a period of not more than 8 hours out of any 24-hour period, but at no time shall the concentration be lower than 2 mg/1."

The Washington State Department of Ecology (1973) lists the criteria for DO concentrations in lakes and streams as follows:

Tobserved measurments do not determine a stream's class, but rather determine whether a stream of a given class is in compliance or violation of State criteria. For example, the reach of the Yakima River from about 2 miles below the town of Parker the mouth of the river is designated as a class B reach. No matter how high the DO concentration becomes, the stream class does not change for that time period. But, if DO concentration becomes less than 6.5 mg/1, a violation of the class B criterion occurs.

The solubility of oxygen is mainly a function of temperature and of atmospheric pressure. As water temperatures vary throughout a 24-hour period, the DO concentration in the water will also vary in the direction of maintaining an equilibrium condition of saturation. In addition to the effects of temperature, diel variations (variations within a 24-hour period) may be caused by the photosynthetic action of algae and submersed aquatic plants giving off oxygen during daylight hours and using oxygen during respiration at night. The magnitude of the diel variations caused by this biological activity is a gross indicator of a stream's productivity.

Because it is at warmer water temperatures that oxygen levels become critical, summertime is when an assessment of DO concentration and percentage saturation is most important.

Dissolved solids.--Dissolved-solids concentration is a measure of the amount of dissolved material in the water. The sum of the major dissolved constituents in water, in milligrams per liter, approximates the weight of mineral residue in 1 liter of water evaporated to dryness. However, a correction factor (mg/L bicarbonate x 0.4917 = mg/L carbonate) must be applied to the bicarbonate, as it becomes carbonate in the residue. The factor assumes that one-half of the bicarbonate is volatilized as carbon dioxide and the remainder is converted to carbonate. Drinking water for interstate carriers should contain no more than

500 mg/L of dissolved solids unless a more suitable supply cannot be found (U.S. Public Health Service, 1962). The same limit is commonly suggested for all domestic-water supplies. For use for irrigation, water may have a considerably higher dissolved-solids concentration if proper leaching practices are used.

Fecal-coliform bacteria. -- Fecal coliforms are a very significant problem in some of the streams of the reservation. Fecal coliforms are nonpathogenic (not disease-producing) bacteria which normally inhabit the gut and feces of warmblooded animals. Normal human feces will produce, on the average, about two billion fecal-coliform bacteria per day.

The presence of fecal-coliform bacteria is not significantly a good or bad characteristic of water but it is an indicator.

A danger associated with drinking water is contamination by sewage or by human or animal excrement. Sewage and feces are known carriers of disease-producing bacteria, and serious disease may result from contact or ingestion of polluted waters. Fecal-coliform bacteria greatly outnumber disease-producing bacteria in the feces of warmblooded animals, and if fecal-coliform bacteria cannot be found in the water, it can, in general, be inferred that disease-producing bacteria also are absent. Bacteriological identification of the fecal coliforms is considerably easier and less time-consuming than individually testing for each possible disease-producing bacteria.

For many years water-quality standards were based on
the test for total coliform bacteria, which included
fecal-coliform bacteria and also more common bacteria generally
of nonfecal origin, and associated with soils and vegetables.
Because the test for total coliform bacteria is not necessarily
evidence of fecal pollution, it is gradually being replaced by
the test for fecal-coliforms as the recommended procedure for
determining the bacteriological quality of the water.
Total-coliform analysis may be used as an alternative to
fecal-coliform analysis with the realization that such data
are subject to a wide range of concentration fluctuations
of doubtful sanitary significance. The total-coliform analysis
is still widely used in evaluating finished drinking water because
it provides a more stringent index.

In general, unpolluted stream water has a low concentration of coliform bacteria, normally fewer than 100 total-coliform or 20 fecal-coliform colonies per 100 milliliters.

The following are the criteria of the U.S. Federal Water

Pollution Control Administration (1968; now the Environmental

Protection Agency) for coliform-bacteria content for various uses.

1. Drinking-water supplies

The presence of any coliform organism in a water supply suggests fecal contamination.

Raw water: Desirable - less than 100 total coliforms/100 mL less than 20 fecal coliforms/100 mL

Permissible - 10,000 total coliforms/100 mL 2,000 fecal coliforms/100 mL

 Primary recreation water (contact sports: swimming, water skiing, etc.

Only fecal-coliform data should be used. At least five samples should be taken during a 30-day period. Mean of five samples should be fewer than 200 colonies/100 ml, and no more than 10 percent of samples should exceed 400 colonies/100 ml.

3. Secondary recreation water (non-contact sports: boating, fishing, etc.)

Only fecal-coliform data should be used. At least five samples should be taken during a 30-day period. Mean of five samples should be fewer than 1,000 colonies/100 ml,

and no more than 10 percent of samples should exceed 2,000 colonies/100 ml.

4. Irrigation water

Average of at least two consecutive samples examined per month shall not exceed 5,000 total coliforms/100 mL and 1,000 fecal coliforms/100 mL.

For a single sample, concentration shall not exceed 20,000 total coliforms/100 mL and 4,000 fecal coliforms/100 mL.

The State of Washington water-quality criteria (Washington State Department of Ecology, 1973) are as follows:

	AA (extra- ordinary)	A (excellent)	B (good)	C (fair)	Lake class	
Total coliform organisms (col/100 ml)						
median values	< 50	≤ 240	≤1,000	<u>=</u> 1,000	≤240	

Fluoride.--Fluoride is one of the common ions, and is dissolved in small quantities from many rocks and soils. Fluoride in drinking water reduces the incidence of tooth decay in children. However, in excessive concentrations it may cause mottling of the teeth. According to the U.S. Public Health Service (1962), the recommended acceptable and rejection limits are dependent on the annual average of maximum daily air temperatures, as follows:

	Average f concentr	
Annual average maximum daily air temperature (°F)	Recommended upper limit (mg/L)	Rejection limit (mg/L)
50.0-53.7	1.7	2.4
53.8-58.3	1.5	2.2
58.4-63.8	1.3	2.0
63.9-70.6	1.2	1.8
70.7-79.2	1.0	1.6
79.3-90.5	. 8	1.4

The expected intake of water is higher in warmer climate; therefore a lower concentration gives the same daily fluoride intake.

Hardness.--The hardness of water is an important consideration for domestic, municipal, and industrial uses. It is related almost entirely to the presence of calcium and magnesium ions. Other constituents such as iron, manganese, and strontium also cause hardness but they are not usually present in quantities large enough to have any appreciable effect. Hardness commonly is recognized by the increased quantity of soap required to produce lather. Many industrial uses require soft water.

A commonly accepted classification for hardness of water is as follows:

Hardness range (mg/L of CaCO ₃)	Description
0-60	Soft
61-120	Moderately hard
121-180	Hard
more than 180	Very hard

Iron.--For drinking water, iron in excess of 300 µg/L (micrograms per liter) generally has unpleasant taste; it also is considered undesirable because of staining and formation of deposits and favors growth of iron bacteria. Considerably higher concentrations are not harmful to humans.

Manganese.--For drinking water, manganese in excess of 50 ug/L is generally considered undesirable because of impairment of the taste of beverages such as coffee and tea; staining also occurs. McKee and Wolf (1963) stated that concentrations not exceeding those below do not appear to be deleterious to the stated uses:

Domestic water supply	50	ug/L
Industrial water supply	50	ug/L
Irrigation	500	ug/L
Stock watering	10,000	ug/l
Fish and aquatic life	1,000	ug/1

Nitrogen. -- Nitrates are added to soil and water by microbial fixation of atmospheric nitrogen. Some nitrogen is added to the soil in rainwater. Fertilizers in recent years have become a significant source of additional nitrogen compounds in farm soils.

Nitrogen, like phosphorus, is an essential nutrient, critical to the growth of aquatic and terrestrial vegetation.

Insufficient nitrogen may limit the growth of aquatic vegetation.

Nitrogen compounds in irrigation water are generally considered beneficial. In waters used for recreation they may or may not be beneficial depending upon desired uses. Increased nitrogen compounds and other nutrients increase the aquatic

vegetation, and increase the suitability of the waters for fish life. However, increased nitrogen in the water is considered detrimental if aquatic plants become too dense and (or) interfere with the beneficial uses of water.

According to Sawyer (1947), algae growths are not trouble-some when concentrations of nitrate (as N) are less than 0.30 mg/L if phosphorus (as P) is kept less than 0.015 mg/L. Others (Imhoff, 1955; Mueller, 1953) also indicate that, in addition to the nitrate and phosphorus limits, total nitrogen (as N) must be kept less than 0.6 mg/L to prevent troublesome algal growths.

A high concentration of nitrate in drinking water may be dangerous to humans, especially to infants. For this reason, nitrate is a considerable problem in some areas of the reservation where ground water has high nitrate concentrations. The U.S. Public Health Service (1962) recommends that water with concentrations of nitrate (as N) greater than 10 mg/1 should not be used for drinking water.

Nitrogen occurs in water mainly as nitrate, nitrite, and ammonium ions, or it is bound in proteins and other organic compounds. For this study, the analytical methods give concentrations in pairs, as nitrite-plus-nitrate concentrations, or as ammonia-plus-organic concentrations. The ammonia-plus-organic nitrogen is referred to as Kjeldahl-nitrogen, after the inventor

of the analytical method. The nitrite-plus-nitrate concentration in addition to the Kjeldahl-nitrogen concentration constitute the total-nitrogen concentration.

Organic carbon. --Organic carbon may be present in waters either as part of dissolved organic compounds, or as suspended particulate matter, generally organic detritus. Organic carbon is distinguished from inorganic carbon in that inorganic carbon exists as carbon dioxide, or as bicarbonate or carbonate--the fully oxidized compounds of carbon--whereas all other forms of carbon that may be oxidized are organic. Organic-carbon concentrations in water indicate the organic content of the water. Generally, unpolluted natural waters contain low concentrations of organic carbon. High concentrations may be indicative of artificial sources and the potential for hazardous organic substances in the water.

pesticides. -- A pesticide may be defined as any substance used to kill pest organisms, and includes insecticides, herbicides, algicides, fungicides, and bacteriacides. Determination of pesticides in water is important because of their potential toxicity; however, this study indicated little problem for the one site studied. Widespread application to land, forest, and water can produce undesirable side effects such as unwanted deaths of aquatic animals or damage to plants. Contamination of surface water by pesticides can be caused by (1) direct application for the control of aquatic weeds or insects, (2) percolation or leaching by rainwater or irrigation water from treated agricultural land, or (3) drift of aerosol sprays during application.

Many pesticides are persistent in that they do not readily decompose. The most widely used persistent pesticides are the chlorinated hydrocarbons, of which the familiar DDT, Chlordane, and Dieldrin are examples. If ingested, chlorinated hydrocarbons are concentrated in fatty parts of organisms' bodies, and can accumulate to many times the concentration at which they were ingested. Because the chlorinated hydrocarbon pesticides are persistent, they can be passed from one organism to another, greatly increasing in concentration in the process.

Phosphorus.--Phosphorus in surface water occurs naturally in small amounts as inorganic phosphates as the result of weathering. Other sources are sewage, animal wastes, and fertilizers.

Because phosphorus is essential to metabolism, it is always present as a component of domestic sewage and of animal wastes. Phosphate fertilizers commonly are applied in areas where irrigation is practiced and therefore are a source of phosphate in drainage water.

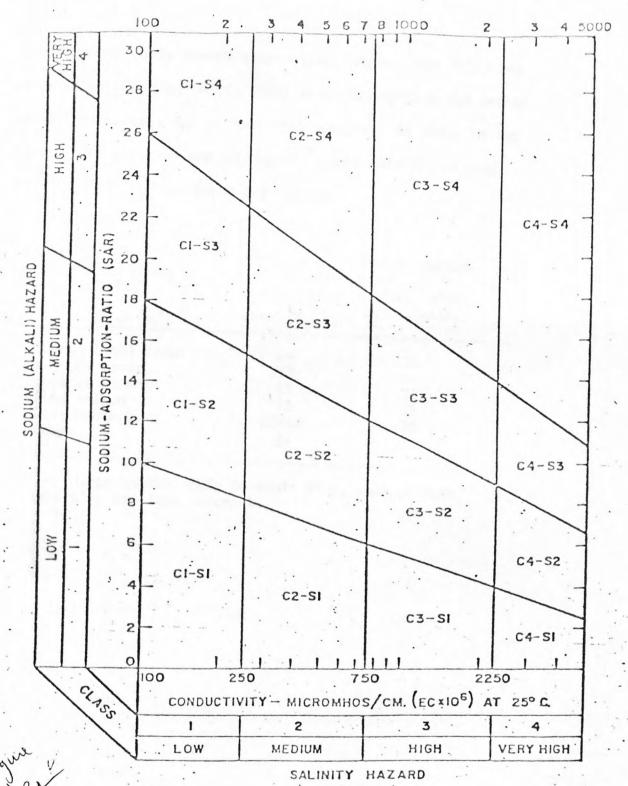
Phosphorus is critical to the growth of organisms in the aquatic environment. It is frequently a limiting factor in the growth of aquatic plants and algae. Concentrations less than 0.01 mg/L orthophosphorus (as P), or 0.05 mg/L total phosphorus (as P) are generally considered limiting, and

those greater may support abundant growths. Phosphate is not harmful to fish life and is generally considered beneficial in irrigation waters. It is harmful mainly in creating nuisance growths of algae and other aquatic vegetation which may be unsightly and which can even deplete the DO supply sufficiently to kill fish.

Silica.--Silica is dissolved in small amounts from nearly all rocks and soils. In concentrations found in natural waters, silica appears to have no adverse physiological affects.

However, it is undesirable in boiler feedwaters, as it forms hard scale.

Sodium-adsorption ratio. The suitability of water for irrigation is in part determined by the degree of mineralization and the character of the minerals dissolved. Most commonly, these important characteristics are classified according to suitability by means of specific conductance, and by means of the sodium-adsorption ratio (SAR). The SAR is a way of expressing numerically the likelihood of sodium entering into ion-exchange reactions with calcium or magnesium in the soil. This exchange process is undesirable because a buildup of sodium in the soil makes it difficult to cultivate and water does not penetrate it well. The SAR is defined as


SAR =
$$\frac{(Na^{+})}{(Ca^{+2}) + (Mg^{+2})}$$
, where

ion concentrations are expressed in milliequivalents per liter.

The U.S. Department of Agriculture (1954) has developed the diagram shown below, using specific conductance and SAR to determine the suitability of water for irrigation. As can be seen, it classifies water according to sodium hazard and salinity hazard, with Cl-Sl water being low in both specific conductance and in SAR, and the best classification. The higher the numbers, the poorer the water for irrigation, C4-S4 being the poorest classification. Waters that are both above and below these classifications assume the descriptive classification nearest them.

Specific conductance. -- Specific conductance is a measure of the capacity of water to conduct an electrical current. It is commonly used as a measure of the mineral content of the water because it is the dissolved minerals (as ions) which increase the water's current carrying capacity. Water of high specific conductance may be unsuitable for use as irrigation water, as can be seen from the diagram, or page 210

Temperature.--Temperature is one of the more important water-quality parameters. Chemical solubilities and reaction rates are a function of temperature, as are many physical properties such as dissolved-gas concentrations at saturation. Biological properties of water also are a function of temperature. Fish and other coldblooded aquatic animals exist at or near the temperature of the water, and some are able to survive and

SHOWING DIAGRAM FOR THE CLASSIFICATION OF IRRIGATION WATERS (from USDA handbook No. 60)

210

207a (208fols)

reproduce over only narrow temperature ranges. The following table (from McKee and Wolf, 1963) indicates optimum and lethal water temperatures for various fish species. As shown in the table, bass and carp are considerably more tolerant of high temperatures than are trout and salmon.

Common name of fish	Optimum preferred temperature (°C)	Lethal tempera- ture, in °C (median toler- ance limits)
Common brook trout		25
Rainbow trout	13	
Sockeye salmon	15	25
Coho salmon	20	25
Largemouth bass	22-25	36
Carp	32	36

¹Temperatures apply to adult fish; younger fish generally are less tolerant.

Drinking water with a temperature of 10°C or less is usually satisfactory. Water with temperatures of 15°C or higher is usually objectionable.

Trace metals.--Heavy metals such as copper, lead, mercury and zinc are not major constituents in most natural waters.

They are generally present in minute amounts, and through common usage are referred to as "trace metals." Through various natural and man-induced processes, the trace metals sometimes exceed the concentrations considered to be safe for human consumption or for support of healthy fish life.

The U.S. Public Health Service (1962) makes no recommendations regarding mercury concentrations in drinking water, but recommends that the concentration of copper should not exceed 1,000 µg/1 and that of zinc should not exceed 5,000 µg/1. For lead, manditory grounds for rejection as drinking water were set at 50 µg/1.

The Washington State Department of Social and Health Services (1971) has made the above limits mandatory for public water supplies.

In addition, mercury must not exceed 5 µg/1.

Copper and zinc are considerably more toxic to aquatic life and to some terrestrial plants than to man and other higher animals. The following tabulation (from McKee and Wolf, 1963) lists approximate threshold concentrations of trace metals in water used by aquatic flora and fauna and for irrigation supplies:

Metal	Threshold concentration for aquatic flora and fauna (ug/1)	Threshold concentration for irrigation water (yg/1)
Copper (Cu)	20	100
Lead (Pb)	100	
Zinc (Zn)	100	~ ~
Mercury (Hg)	4	

The threshold concentration is reached when a constituent is just strong enough to produce a response. For example, concentrations of copper less than 20 µg/L normally would not be expected to cause any measurable harm to the aquatic flora and fauna.

Concentrations of trace metals deleterious to aquatic
life, or which will be deleterious when applied in irrigation
waters, are not easy to define. The harmful concentration of
a metal is not a fixed quantity, but depends on such things as
the species of plant or animal and its size, age, state of
health, and degree of acclimation. Also, toxicity depends on
the physical and chemical characteristics of the water,
such as pH, DO, hardness, dissolved solids, and temperature.
Some metals also are synergistic; that is, their toxicity is
enhanced by the presence of another metal or other substance. The preceding
table should be considered only as approximate in view of the
above considerations.

Turbidity.--Turbidity is the term used to describe the decrease in light penetration attributable to suspended-particulate matter. The particulate matter may include organic detritus, mineral substances, or microorganisms. Turbidity is measured in Jackson Turbidity Units (JTU).

The U.S. Public Health Service (1962) recommends that drinking water not exceed 5 JTU. The Washington State Department of Social and Health Services (1971) limits unfiltered water to 5 JTU if it is to be used in a public water supply.

The Washington State Department of Ecology (1973) established the following requirements restricting man-induced increases in turbidity for various stream and lake classes:

Stream class

		AA and A (extraordinary or excellent)	(good and	Lake class
Turbidity (JTU)	increase	5 or less	10 or less	No measurable increase allowed

Turbidity determination is important because the quantity of incident light and the depth to which light penetrates in stream water are significant factors in determining the stream's biological productivity. However, the direct lethal effects of turbidity on fish life is quite low; fish life probably will not be directly harmed until turbidity is well above any turbidity levels found in streams on the reservation. According to data by McKee and Wolf (1963) rainbow trout eggs are destroyed at turbidities between 1,000-2,500 JTU.

Turbidities of 3,000 JTU are considered dangerous to fish, and turbidities less than 200 JTU are considered harmless.