UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

WATER RESOURCES IN WESTERN CORTLAND COUNTY, NEW YORK:
HYDROLOGIC DATA FOR 1972-75 AND PROGRESS REPORT

by Harold L. Shindel, William Buller, and William H. Johnston

Open-File Report 77-525

Prepared in cooperation with

Cortland County Planning Department

Ithaca, New York
September 1977

CONTENTS

		1	Page
Abstract Introdu Ack Cortlan Str Wat Gridley Bac Str Wat	ction mowle d Cou- eamfl er qu Cree kgrou eamfl er qu	actors and abbreviations	iv 1 2 2 2 2 2 3 5 5 6 6
		ILLUSTRATIONS	
Figure	1. 2-4.	Map showing Cortland County streams and location of areas depicted in figures 2-4	24
		 Virgil and Gridley Creeks Dry Creek, Blue Creek, and Otter Creek; West Branch Tioughnioga River, and 	25
		Tioughnioga River	26 27
	5.		28
	6-9.	Graphs showing water levels for well C-19, Cortland County for:	
		6. Calendar year 1972	29 30 31 32
	10.	Relief map of Gridley Creek basin, Cortland County, showing location of U.S. Geological Survey ground-water and surface-water measurement sites	33

ILLUSTRATIONS (Continued)

		I	Page
Figure 1	11.	Log of well site 1, Gridley Creek basin	34
1	12.	Log of well site 2, Gridley Creek basin	35
1		Graph showing measured discharges on Gridley Creek at 90-, 50-, and 35-percent duration	36
		TABLES	
Tables 1	1-4.	Surface-water data for seepage investigations:	
		1. West Branch Tioughnioga River	8 9 10 11
5-	-10.	Data for gaging stations:	
		5. West Branch Tioughnioga River at Homer - water year 19736. West Branch Tioughnioga River at Homer - water	12
		year 1974	13
		year 1975	14 15 16 17
11-1	13.	Data on water-quality observations:	
		 West Branch Tioughnioga River at Homer	18 19 20
1		Data for gaging station Gridley Creek above East Virgil, water year 1974-1975	21
1	15.	Data on seepage investigations for Gridley Creek	22
1		Data on water-quality observations for Gridley Creek at gage	22
1		Data on water-quality observations for Gridley Creek above and below East Virgil	23

FACTORS FOR CONVERTING ENGLISH UNITS TO INTERNATIONAL SYSTEM (SI) UNITS

Multiply English units	<u>By</u>	To obtain SI units
inches (in)	25.4	millimeters (mm)
feet (ft)	.3048	meters (m)
miles (mi)	1.609	kilometers (km)
square miles (mi ²)	2.590	square kilometers (km²)
cubic feet (ft ³)	.02832	cubic meters (m ³)
cubic feet per second (ft3/s)	28.32	liters per second (L/s)
gallons per minute (gal/min)	.06309	liters per second (L/s)
parts per million (ppm)	1.0	milligrams per liter (mg/L)

ABBREVIATIONS USED ON COMPUTER-PRINTOUT TABLES

Cubic feet per second (CFS)

Cubic foot per second Gage Height (G.H.)

Per square mile (CFSM)

Water year (WTR YR)

Calendar year (CAL YR)

Maximum (Max)

Minimum (Min)

Gage Height (G.H.)

Teek (G.H.)

Creek (Crk)

WATER RESOURCES IN WESTERN CORTLAND COUNTY, NEW YORK:

HYDROLOGIC DATA FOR 1972-75 AND PROGRESS REPORT

by

Harold L. Shindel, William Buller, and William H. Johnston

ABSTRACT

Basic data on the surface water, ground water, and water quality of Cortland County are presented with a short explanatory text. Seepage investigations showed that during periods of base flow, the surface-water regime cannot be predicted on the basis of flow-duration figures alone. The investigations also indicate that the streambeds are permeable for extended reaches throughout the areas studied. Inconsistent data on gain or loss for a given reach are assumed to be indicative of the change in rate of ground-water recharge or discharge.

Analysis of surface-water quality since 1972 showed high nitrate (as NO₃) concentrations (4 to 18 mg/L) in the Cortland area and in Factory Brook. The nitrate source seems to be from human activities. Although the ground water in the Gridley Creek basin is moderately hard (34 to 140 mg/L CaCO₃), it generally meets standards of the New York State Department of Health.

INTRODUCTION

Some areas in Cortland County, New York, are expected to undergo a substantial increase in population during the next 30 years. In order to plan for future development, it is necessary to survey and evaluate the region's major resources. As part of a cooperative program with the Cortland County Planning Department to evaluate the hydrology of the region, the U.S. Geological Survey collected surface-water, groundwater, and water-quality data from 1972 to 1975 in the Gridley Creek basin and streamflow and water-quality data on other major stream basins in Cortland County. These data are valuable in selection of well-site and gaging-station locations and as basic input for hydrologic modeling and for water management.

This report contains two major sections. The first presents basic surface-water and water-quality data for major streams outside Gridley Creek basin, together with brief discussions of streamflow and water quality of Otter Creek, Dry Creek, Virgil Creek, and West Branch Tioughnioga River. Maps are included to show the location of streams, sampling sites, and wells. Tables and graphs present surface-water data from seepage runs and gaging-station records.

The second part of the report presents basic data on surface water, ground-water levels, and water quality of Gridley Creek basin, with a short discussion and analysis of the streamflow. Well logs and tables of water-quality data are also included.

Acknowledgment

Information on the headwaters of Virgil Creek was obtained through cooperation with Cornell University, College of Agriculture, Ithaca, N.Y.

CORTLAND COUNTY STREAMS EXCLUSIVE OF GRIDLEY CREEK

Streamflow

The streams studied were Otter Creek, Virgil Creek, Dry Creek, Factory Brook, Cold Brook, West Branch Tioughnioga River, and Tioughnioga River. Locations of measurement sites are shown in figures 1-4.

Basic surface-water data were obtained during seepage runs (measure-ments of streamflow at predetermined sites along the length of a stream and its tributaries to determine variations in rates of flow) and are presented as tables 1 to 4. These seepage runs were made during periods of base flow (periods having no overland runoff for the preceding 48 to 72 hours).

Flow-duration points (a statistical means of describing the percentage of time during which specified discharges were equaled or exceeded in a given period) for each seepage run were taken from records for station 01509000 Tioughnioga River at Cortland, for 1939 through 1967. The flow-duration curve for this station is presented as figure 5.

Comparison of data from the several seepage runs revealed some anomalous discharges. The Otter Creek and Dry Creek seepage investigations of August 17, 1972 and June 13, 1974, both made at 60-percent duration, gave substantially different results. Several factors could have had a bearing on this. First, the duration figure used was that of Tioughnioga River at Cortland, the closest full-time gaging station with adequate record from which to develop a duration curve. However, because it has a much larger drainage area than the two smaller, "flashier" streams, they could easily have been at different duration points. The difference in ground-water level on the two dates was also undoubtedly a factor, as were the difference in soil moisture and rate of evapotranspiration on those two dates. Any one of these factors or a combination thereof may have been the reason for the varying results. Differences of a lesser magnitude also appear in the seepage-investigation data for West Branch Tioughnioga River and its tributaries on the same dates.

Anomalous results of a different study on Virgil Creek may show the effects of surface-water/ground-water interaction. The Virgil Creek seepage investigations made on June 4, 1974 and May 20, 1975 indicate that Virgil Creek Tributary 5 (042336565), with a drainage area of 0.39 mi², contributes a considerably greater discharge than Virgil Creek below Virgil (042336563), with a drainage area of 4.56 mi². This anomaly may be explained by infiltration if water from the main stream channel flows through permeable soil to the adjacent tributary stream channel at a lower elevation. The seepage investigations as a whole suggest high permeability of the soils in the basin.

Daily discharges for the streams studied are presented in tables 5-10. These tables are reprinted from the annual U.S. Geological Survey report, "Water Resources Data for New York," (1973, 1974, and 1975 issues).

Figures 6-9 show water levels for 1972-75 at well C-19 at the Cortland Water Works.

Water Quality

Water-quality data have been collected periodically by the Geological Survey at West Branch Tioughnioga River (hereafter referred to as West Branch) at Homer and at Factory Brook at Homer since 1972 (tables 11, 12) and also at sites on Dry and Blue Creeks and at five wells since 1974 (table 13).

The data indicate that concentrations of dissolved chemical constituents are quite uniform during low flows on Factory Brook and West Branch. Dissolved-solids concentrations generally range from 170 to 220 mg/L at low flows for West Branch, and from 140 to 190 mg/L at low flows for Factory Brook. Calcium and bicarbonate are the major dissolved solids in both streams. Data for higher flows indicate a dilution effect: for example, concentrations at a flow of nearly 1,700 ft³/s on the West Branch were about one-third as high as the low-flow concentrations. exception was potassium, which had a higher concentration at high flow; this suggests that there may be a surface source of potassium, perhaps from fertilizer. Concentration of nitrate was more variable than those of most other constituents. Sources of nitrate are mostly from fertilizers and human and animal wastes rather than rock materials. Nitrate (as NO₃) concentrations in Factory Brook and West Branch ranged from 4 to 18 mg/L, which is considerably higher than in most New York streams. where nitrate concentrations are generally less than 5 mg/L (U.S. Geological Survey, 1972a).

Bacterial data show a wide range in population counts and poor correlation with stream discharge. Bacteria readily attach to sediments, and high bacteria counts often correlate with the high sediment concentrations that occur at higher flows. However, peak sediment concentrations are usually of much shorter duration than the therefore, a good correlation between bacteria counts and peak discharge based on random samples is unusual.

The ratio of fecal coliform to fecal streptococcus may be used to determine whether pollution is from human or animal wastes (Millipore Corporation, 1973). A high ratio (greater than 4) is evidence of pollution from human wastes, and a low ratio (less than 1) is evidence of animal wastes. Variable die-off rates affect the fecal-coliform/fecal-streptococcus ratio, and this ratio becomes less reliable as the distance between source material and sampling site increases. Data from random monthly samples that do not indicate the proximity of source material cannot be considered reliable indicators of whether the pollution is from human or animal wastes.

Data from well-water samples (table 13) indicate that ground water in the county is high in calcium bicarbonate, but the samples showed considerable variability in concentration and a dissolved-solids concentration of near 300 mg/L, and, as is generally the case, these concentrations were higher than those of neighboring surface waters. Well 5 had a very low dissolved-solids concentration (73 mg/L) but a high iron concentration (6.4 mg/L) and a lower calcium/magnesium ratio than surface water from other wells. This indicates that, locally, strata may vary considerably and yield different chemical types of ground water. The apparent anomaly of low dissolved-solids concentration for well 5 may be explained by direct recharge through infiltration of precipitation into material of low solubility,

such as a sand or gravel lens. The upper part of the saturated zone in such a case may yield water of very low mineral content. Water from well 1 is indicative of the ground-water problem in the Cortland area; the high nitrate concentration (34 mg/L as NO3) and rather high fecal streptococcus count (28 colonies/100 mL) indicate an animal source of pollution.

Available water-quality data do not seem to show any definite trends. Most of the higher nitrate concentrations in surface water occurred during the winter months. This may be due to seasonable variables such as lower nitrogen consumption by plants during the winter months and more effective solution of surface sources of nitrogen by snowmelt. The high nitrate concentration in surface waters and ground waters in the Cortland area, as compared to other areas, indicate a pollution source related to agriculture and animal and human wastes.

GRIDLEY CREEK BASIN

Background

The watershed of the Gridley Creek basin (fig. 10) is of special interest to Cortland County because of increasing local interest in developing the land into a four-season recreational area. Figure 10 shows the topography of the Gridley Creek basin. This development would result in a large increase in population and the number of permanent dwellings and businesses in the area. Cortland County, in planning to accommodate its present and future population, is committed to the precept that overdevelopment should not take place (T. E. Zollendeck, Planning Director, Cortland County Planning Board, oral commun., 1975). One of the prime limiting factors in the development of the Gridley Creek basin could be the supply of potable water. An inadequate water supply may require the importation of water as well as construction of improved sewage-treatment facilities. Environmental damage, such as depletion of dissolved oxygen and an undesirable increase in bacteriological contamination, may also result.

The water-resources investigations are being conducted in four phases: analysis of the flow of Gridley Creek, monitoring of water quality of Gridley Creek, investigation of the ground-water/surface-water relationships, and evaluation of the storage capacity of the aquifer.

Two multiple-depth observation wells have been drilled in the Gridley Creek basin. The well logs are presented as figures 11 and 12.

Streamflow

The flow of Gridley Creek has been continuously monitored at gaging station 01509150 Gridley Creek above East Virgil since July 1974. Table 14 depicts the available mean daily discharge record for this station through September 1975, as published in U.S. Geological Survey annual report, "Water Resources Data for New York." The record is insufficient at this time to reliably compute statistical estimates such as 7-day, 2-year, and 7-day, 10-year low flows for the gaging station.

For a thorough investigation of a given stream and its flow patterns, it would be necessary to maintain several recording gages on several reaches of the stream. The scope of this project, however, does not warrant that type of coverage. Instead, several seepage runs were made during base-flow periods and at selected flow-duration points to identify areas requiring more detailed study. The flow-duration points were based on the long-term record for station 01509000 Tioughnioga River at Cortland. At the time of this writing (1976), only three seepage runs had been obtained, which is inadequate to serve as a reliable basis for statistical analysis. Table 15 presents the data obtained during the seepage runs.

Figure 13 shows graphically the discharges on the main stem, in downstream order, for the three seepage runs. Care should be exercised, however, when using the graphical representation because the contribution from tributaries has been ignored. Figures of gain and loss, as tabulated in table 15, more closely represent base-flow conditions at the time the individual seepage runs were made. The variation in number of sites measured during each seepage run listed in table 15 shows the evolution of a seepage-run program. Data gained from the first runs were used as a basis for refinement of sites selected for later runs.

A high ground-water contribution is indicated on all three runs in the reach just upstream from the present recording-gage site (station 01509150). This trend extends upstream to the preceding site on the main stem (station 01508135) at the higher duration points. The apparent inconsistency in the figures of gain or loss for the reach just upstream from Page Green Road (station 01509120) is assumed to be indicative of variations that may be expected in the rate of ground-water recharge from stream infiltration or variations in ground-water discharge to the stream.

Water Quality

The water-quality data for the Gridley Creek basin include analysis of samples collected monthly at the gaging station beginning in December 1974 and a series of samples collected at miscellaneous sites during a seepage investigation of May 20, 1975. The gaging-station samples were collected at random but covered a range of flow from low to moderately high. The samples at miscellaneous sites were collected during moderately low flow conditions. Water-quality data are given in tables 16 and 17.

The data in tables 16 and 17 indicate that surface water in Gridley Creek basin is of adequate quality (New York State Department of Health, 1971). Sample concentrations of dissolved solids were low (10 to 154 mg/L); chloride and nitrate concentrations were also low, ranging from 4.8 to 12 mg/L and 1.3 to 4.4 mg/L, respectively. With the exception of iron, all constituents determined were well within the recommended limits for drinking water (New York State Department of Health, 1971). Coliform and fecal streptococcus counts were not excessively high but indicate some pollution. Dissolved-oxygen concentrations were near saturation and did not indicate a serious problem.

Samples obtained on May 20, 1975 during the seepage investigation indicate that the water quality is nearly uniform throughout the basin; dissolved-solids concentrations increased moderately downstream. Fecal streptococcus counts were higher upstream from the sewage-treatment plant than downstream from it, but only a single set of samples was obtained and, therefore, may not be representative.

The quality of ground water in the Gridley Creek basin is measured by analysis of base-flow (periods when the surface flow in streams is derived almost entirely from ground-water sources) samples of surface waters. The ground water, aside from being moderately hard (34 to 140 mg/L as CaCO₃), generally is of adequate quality (New York State Department of Health, 1971). Iron concentrations may be as high as 1,110 μ g/L, and such water may require treatment.

SELECTED REFERENCES

- Hewlett-Packard Co., 1975, Applications programs HP-25: Cupertino, Ca., Hewlett-Packard Co., 161 p.
- Millipore Corporation, 1973, Biological analysis of water and wastewater, application manual AM-302: Bedford, Mass., Millipore Corp., 84 p.
- New York State Department of Health, 1971, Part 170, Subchapter C--Water supply sources of Chapter III, Title 10, (Health): in Official compilation of codes, rules, and regulations of the State of New York.
- U.S. Geological Survey, 1973, Water resources data for New York, 1973, part 1, surface-water records: U.S. Geol. Survey open-file rept., 316 p.
- 1974, Water resources data for New York, 1974, part 1, surface-water records: U.S. Geol. Survey open-file rept., 328 p.
- 1974a, Water resources data for New York, 1974, part 2, water-quality records: U.S. Geol. Survey open-file rept., 360 p.
- Geol. Survey water-data rept. NY-75-1, 735 p.

Table 1. -- Surface-Mater data for West Branch Tioughnioga River seepage investigations

Discharge measurements were made on West Branch Tioughnioge River and its tributaries to study channel gains and losses. The reach is 8.4 mi (13.5 im) in length and extends from continuence with East Branch Tioughnioge River (15.9 3) b. Duration Gigures are based on recorded for the gading station on Tioughnioge River at continuence with East Branch Tioughnioge River (15.9 3) b. Duration Gigures are based on recorded for the gading station on Tioughnioge River at upstream stations. Tributary Liow was considered a contribution and not a gain. Indicated gains or losses in relation to records of nearest upstream stations may be substantially in error as affected by small inaccuracies in open-channel measurements.

Data are listed in downstream order; tributaries are indented and are listed in the order in which they enter the main stream.

					Measured	discharge	and gain or lo	duo ni , se	Measured discharge and gain or loss , in cubic feet per second	pu		ļ
	Distance upstream		Aug. 17.	1972	Sept. 17, 1972	, 1972	Aug. 31, 1973	1973	June 13-14, 1974	1, 1974	May 20,	1975
	from mouth	Drainage	60% duration	ton	704 dura	tion	904 dura	tion	60% duration	tion	354 dura	tion
/ moltace but madeur cols	of river	area (mi2)	Discharge	Gain or	Discharge	Gain or	Discharge	Gain or loss	Discharge	Gain or	Gain or Discharge loss	Gain or loss
orre number sing accounts at												
01508650	11.8	23.7	22.6	:	11.0	:	9. . 9	:	27.9	:	44.2	:
01508652	10.8	24.8	27.7	+5.1	13.5	+2.5	7.34	+ 58	32.0	7:7	43.7	ė,
01408665	7.7	34.3	31.8	~: ¥	:		*		:		:	
0150010	7.7	15.4	5.9	:	:		7	:	•		:	
2015020	7.3	50.0	;		22.0	+8.5	10.7	+3.27	49.3	+17.3	75.1	+31.4
000000000000000000000000000000000000000	6.4	15.8	7.8	:	5.7	:	3.8	:	11.2	:	18.8	;
01508802	3.9	16.1	7.4	-0.4	3.9	-1.8	3,01	+.01	11.5	£.4	19.9	+1. 1
01508803	3.4	71.5	62.6	+17.5	38.7	+12.8	20.4	•6. 69	63.8	+3.0	100.2	+5.2

West Branch Houghnings Biver at Preble
West Branch Houghnings River near Preble
West Branch Houghnings River at Little York
Cold Brook at Little York (partial-record sits - sites where measurements are made on an irregular schedule)
West Branch Houghnings River near Homer
West Branch Houghnings River near Homer
Factory Brook at State Highway 281, Homer (recording stream-gaging station)
Factory Brook at State Highway 11, Homer
West Branch Hioughnings River at Homer (recording stream-gaging station)

Note..-Data from "Mater Resources Data for New York, Part 1, Surface Water Records" (1974 and 1975 issues).

Table 2. -- Surface-Mater data for Dry Creek seepage investigations

Seven series of discharge measurements were mae between August 1972 and June 1975 on Dry Creek and its major tributary, Blue Creek, to study channel gains and losses. The reach is 3.1 mi (5.0 km) in langth and extends from a point just downstream from a small pond and unnamed tributary northeast of Kinney Gulf Road and 0.2 mi (0.3 km) upstream from Sweeney Road, to the mouth, 1st 42-36/55°, long 76/30/55°. Duration figures are based on records for the gaging station of Youghmiong River at Cortiand (0159000). Tributary flow was considered a contribution and not a gain. Indicated gains or losses may be substantially in error as affected by small inaccuracies in open-channel measurements. Refer to figure 3.

Data listed in downstream order along the main stream, and sites on tributaries are listed between stations on the main stem.

							Measured dis	charge and	gain or loss	s, in cubi	Measured discharge and gain or loss, in cubic feet per second	pood				
	Distance		Aug. 17	7, 1972	Sept. 17	. 1972	2/Har. 26, 1973	1973	2/Apr. 16, 1973	1973	Sept. 1, 1973	1973	June 13, 1974	1974	May 20, 1975	975
	from mouth	Drainage	P 009	21	70% duration	ation	81 dur	84 duration	15% duration	tion	90% duration	ation	60% duration	tion	354 dura	tion
Site number and location 1/	of river	area (mi ²)	Discharge	Gain or loss	Discharge	Gain or loss	Discharge	Gain or loss	Gain or Discharge loss	Gain or loss	Discharge	Gain or loss	Discharge	Gain or loss	Discharge	Gain or loss
01508902	3.1	2.75	:		:		14.1	:	:		:				:	
01508905	2.9	3.20	0.98	:	0.66				7.6	:	0.21		0.27	:	3.65	:
01508910	3.7	3.53	:		:		26.6	:	5.6	,	97.	:	.8.	:	2.45	:
01508911	3.0	3.99	:		:		:		9.9	-1.0	:		:		:	
01508913	2.5	4.30	:		:		:		8.1	+1.5	.22	+.12	1.78	+.97	2.80	+0.35
015089132	2.3	4.32	:		:		:		:		:		:		2.21	•.59
01508914	2.2	4.33	:		:		24.7	-1.9	10.4	+2.3	.02	-,20	06.	88	2.99	+.78
01508915	2.1	8.19	1.13	+.15	.32	34	:		18.3	÷.3	π.	03	2.67	+1.50	69.9	•.05
01508918	1.3	8.42	1.69	+. 56	.55	+.23	46.7	47.9	17.1	-1.2	.29	÷.08	3.20	+.53	7.10	1.41
01508925	9	8.66	.63	-1.06	•	55	41.2	-5.5	14.8	-2.3	0	29	1.42	-1.78	5.84	-1.26

Dry Creak eff Kinney Guif Road near Cortland above Sweeny Road
Dry Creak near Cortland at Sweeny Road
Blue Creak near Cortland at Commos Road
Blue Creak near Cortland at Commos Road
Blue Creak at Riue Creak near Cortland
Blue Creak at Cortland at Kinney Guif Road
Blue Creak below Kinney Guif Road at Cortland
Blue Creak below Kinney Guif Road at Cortland
Dry Creak bove Cortland at State Highway 281
Dry Creak above Cortland at State Highway 281
Dry Creek at Hamlin Street at Cortland

2/ Not at base flow

Note. ... Data from "Mater Resoutcae Data for New York, Part 1, Surfaca Mater Records 1975."

Table 3. -- Surface-Water data for Otter Creek seepage investigations

Five series of discharge measurements were made between August 1972 and June 1974 on Otter Creek and its tributaries, to study channel gains and losses. The reach is 4.1 mi (6.6 km) in length and extends from McLean Road, 1.1 mi (1.8 km) southwest of Cortland, to Main Street in Cortland, 0.2 mi (0.3 km) upstream from the mouth, lat 4.2%137", long 76°10'15". Durstlon figures are based on records for the gaing seation fitognhaloga News at Cortland (0.1409000). Tributary flow was considered a contribution and not a gain. Indicated gains or losses in relation to records of neatresm stations may be substantially in error as affected by small inaccuracies in open-channel measurements. Refer to figure 3.

Data are listed in downstream order; tributaries are indented and inserted in the order in which they enter the main stream.

Measured discharge and gain or loss, in cubic feet per second

	Di stance											
	upstream		Aug. 17,	1972	Sept. 17	7, 1972		1973	June 13,	1974	May 20, 1	576
	from mouth	Drainage	60% duration	tion	70% dura	ıtion	90% duration	tion	60% durat	tion	354 durat	ation
	of river	area		Gain or		Gain or	•	Gain or		Gain or		Gain or
Site number and location 1/	(mi)	(mi ²)	Discharge	loss	Discharge loss	loss	Discharge	loss	Discharge loss	loss	Discharge	loss
	3.1	8.98		;	0	;	0	:	3,45	•	7.42	:
01508960	4.1	2.58	.14	:	•	;	0	;	. 39	•	98.	:
01508945	3.2	3.18		14	•	0	0	•	۶.	19	.46	40
0750655	2.1	13.52	2.48	•.76	0	0	0	0	2.86	79	9.91	+2.03
01508951	۰.	14.05	1.41	-1.07	6 0.	÷.03	6.	÷.03	3.75	+.89	10.16	+.25
01508955	7.	14.26	1.37	٠. و	٥	£0	0	03	5.57	+1.82	10,52	÷.36
200000									The second name of the last of	The Person named in column 2 is not the owner, where the owner, which is the owner, which is the owner, where the owner, which is t		

1/ Ogter Creek near Cortiand at McLean Road
Offer Creek tributary near Cortiand at Sears Road
Offer Creek tributary near Cortiand at Fairview Drive
Ofter Creek above Cortiand at State Highway 281
Ofter Creek above Cortiand at State Highway 281
Ofter Creek at State Highway 222 at Cortiand
Ofter Creek at Cortiand at N. Main Street

Note. .- Data from "Mater Resources Data for New York, Part 1, Surface Water Records" (1974 and 1975 issues).

Table 4.--Surface-Water data for Virgil Creek seepage investigations

Two series of discharge measurements were made during 1974 on Virgil Creek and its tributaries, to study channel gains and losses in the vicinity of the town of Virgil, N.Y. The reach is 2.9 mi (4.7 km) in length and extends from a point 1.9 mi (3.1 km) north to a point 0.5 mi (0.8 km) south of Virgil. Gaging station Virgil Creek at Freeville, N.Y. (04233700) is 11.8 mi (19.0 km) downstream from the reach. The measurements were made during periods of constant base flow of the streams. Duration figures are based on records for Fall Creek near Ithaca, N.Y. (04234000). Tributary flow was considered a contribution and not a gain. Indicated gains or losses in relation to records of nearest upstream stations my ba substantially in error as affected by small inaccuracies in open-channel measurements. Refer to figure 2.

Data are listed in downstream order. Tributaries are indented and inserted in the order in which they enter the Main stream.

							and gain er per second	loss,
	Site number and location	Distance upstream from mouth of river (mi)	Distance and direction from Virgil (main intersection)	Drainage area (mi ²)	June 4, 504 dura Discharge		May 20, 35% dura	
042336540	Virgil Creek near Virgil	14.8	2.1 mi north	0,63	0.09		0.44	
42336551	Virgil Creek above Virgil	13,1	.3 mi north	2.35	.82	+.73	2.49	+2.05 O
42336553	Virgil Creek at Virgil	12.7	.l mi east	2.50	0	~,82	2.08	-0.41
42336557	Virgil Crk trib to trib 4 at Virgil	13.3	.9 mi northeast	.23	.06		.25	
42336559	Virgil Creek trib 4 at N.Y. 90, Virgil	12.6	.5 mi east	.96	.02	~.04	. 52	+.27
42336560	Virgil Creek trib 4 at Shultz Road, Virgil	12.4	.3 mi southeast	1.48	0	02	.45	07
42336563	Virgil Craek below Virgil	11.8	.5 mi south	4.56	.18	+.18	.19	-2.34
42336565	Virgil Creek trib 5 et Virgil	11.9	.5 mi south	. 39	.80		3.43	
		19.6	# -1		1/ 00		1/2 62	

1/ Sum of discharge of Virgil Creek balow town of Virgil and Virgil Creek tributary 5 at Virgil

Note. -- Data from "Water Resources Data for New York-Part 1., Surface Water Records" (1974 and 1975 issues).

LOCATION. -- Lat 42°38'13", long 76°10'37", Cortland County, on left bank at downstream side of bridge on Wall Street at Homer and 3.4 mi (5.5 km) upstream from confluence with East Branch.

DRAIMAGE AREA. -- 71.5 m13 (185 km2).

PERIOD OF RECORD. -- November 1966 to September 1968, October 1972 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 1,114.81 ft (339.794 m) above mean see level. Prior to Oct. 1, 1968, water-stage recorder at bridge on Water Street 500 ft (152 m) upstream at same datum.

EXTREMES. -- Current year: Maximum discharge, 1,530 ft³/s (43.3 m²/s) Sept. 26 (gage height, 6.76 ft or 2.060 m); minimum, 19 ft³/s (0.54 m³/s) Aug. 21, 23-24 (gage height, 1.28 ft or 0.390 m).

Period of record: Maximum discharge, 1,770 ft³/s (50.1 m³/s) Apr. 4, 1974 (gage height, 7.22 ft or 2.201 m), minimum discherge, 9.6 ft³/s (0.27 m³/s) Nov. 22, 1966 (gage height, 1.98 ft or 0.604 m) at site then in use; minimum gage height, 1.14 ft (0.347 m) Sept. 3, Oct. 27, 28, 1973.

Flood of June 23, 1972, reached a stage of 7.46 ft (2.274 m) (8.05 ft or 2.454 m at Water Steet site), from floodmarks; discharge, about 1,900 cfs (53.8 m³/s); flood of Mar. 5, 1964 was considerably higher (discharge not determined).

REMARKS. -- Records good except those for winter periods, which are fair and those for periods of no gage-height record, which are poor.

A constant 2.8 ft³/s (0.079 m³/s) is diverted for manufacturing purposes from Gate House Fond upstream from station into Onondaga Creek basin (St. Lawrence River basin).

REVISIONS .-- WRD N.Y. 1974: 1973 (P).

NOTE .-- No gage height record May 3-June 17.

		DISCH	AKGE+ IN C	UBIC FEET	PER SECO	ND. WATER An values	YEAR UCT	BER 1972	TO SEPTE	MBEH 1973		
DAY	001	NOV	DEC	JAN	FEB	MAH	APR	MAY	JUN	JUL	AUG	SEP
1	64	46	160	740	110	76	206	125	100	47	رد	20
2	52	87	140	520	170	80	347	124	97	45	33	19
3	49	141	130	440	545	96	490	131	91	43	35	iá
. •	48	99	120	350	326	234	409	129	89	43	36	50
. 2	46	95	120	300	564	251	615	125	56	42	33	50
6	47	85	450	250	220	226	499	116	89	36	J 1	29
7	68	79	800	510	206	215	477	107	76	40	30	26
8	72	157	500	190	196	552	389	103	7 N	40	27	30
9	63	328	480	180	170	196	337	196	75	41	30	30
10	60	246	420	170	140	1/3	335	107	72	37	37	29
11	54	194	380	160	130	166	331	120	94	35	32	29
12	54	174	329	1>0	150	165	240	126	69	34	30	29
17	54	148	318	140	150	195	260	130	71	34	28	29
1.	51	189	283	140	119	225	235	115	65	34	31	34
15	55	200	535	136	123	278	214	115	66	37	33	46
16	52	171	550	131-	110	248	199	110	68	35	29	35
17	50	146	190	158	100	394	185	106	69	35	50	35
10	49	152	550	141	100	421	175	116	86	33	26	37
19	◆8	148	510	156	100	118	166	115	78	32	29	34
20	46	160	500	173	101	279	157	125	70	35	₹6	31
21	44	150	190	125	100	250	151	178	64	34	24	30
22	43	130	260	159	99	223	141	171	68	34	28	28
23	49	150	250	253	45	20€	161	151	67	33	27	30
26	56	110	530	191	86	140	141	140	64	31	26	28
25	50	100	240	155	86	205	129	124	65	31	25	28
56	47	180	260	1 >6	84	268	123	120	59	34	25	27
27	45	280	250	154	78	226	125	119	57	47	24	27
20	44	210	530	169	74	193	168	113	56	38	24	27
29	50	190	550	140		176	154	114	59	40	22	26
30	54	170	200	150		167	136	109	51	34	19	25
31	48		400	110		160	*	105		. 33	20	
TOTAL	1610	4705	8692	6525	4179	6655	7737	3746	2169	1144	884	#53
MEAN	51 <u>.</u> 9	157	280	510	149	215	258	155	72.3	36.9	28.5	28.4
MAA	72	328	800	740	545	421	612	179	100	47	37	46
MIN	43	4 6	150	110	74	76	123	103	51	31	19	18
CF5M	.73	2.20	3,92	2.94	2.08	3.01	3.61	1.71	1.01	•52	•40	•40
IN.	.84	2.45	4,52	3.34	2.1/	3,46	4.03	1.9/	1.13	.60	.46	• 44.

Peak discharge (base, 480 cubic feet per second)

800

CF5# 1.87

IN 25.47

18

Date	Hour	Gage height	Discharge	Date	Hour	Gage height	Di	scharge
12-7 12-23 1-1	Unknown 1115 Unknown	Unknown 5.27 Unknown	2/ 1,200 900 2/ 1,000	2-3 3-18	0515 0230	4.87 4.84		771 762

 $[\]underline{1}/$ Deta from U.S. Geological Survey, 1973, Surface Water Records, Part 1, p. 157.; $\overline{2}/$ About.

WTR YH 1973 TOTAL 48949 MEAN 134

Note. -- No gage-height record Hov. 20 to Dec. 11

Table 6.--Data for gaging station 01508803 West Branch Tioughnioga River at Homer, N.Y., 1974

LOCATION. -- Lat 42°38'13", long 76°10'37", Cortland County, on left bank at downstream aide of bridge on Wall Street at Homer and 3.4 mi (5.5 km) upstream from confluence with East Branch.

DRAINAGE AREA. -- 71.5 mi2 (185 km2).

PERIOD OF RECORD. -- November 1966 to September 1968, October 1972 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 1,114.81 ft (339.794 m) above mean mea level. Prior to Oct. 1, 1968, water-stage recorder at bridge on Water Street 500 ft (152 m) upstream at same datum.

EXTREMES. -- Current year: Maximum discharge, 1,770 ft³/s (50.1 m³/s) Apr. 4 (gage height, 7.22 ft or 2.201 m); minimum, 14 ft³/s (0.40 m³/s) Oct. 27, 28 (gage height, 1.14 ft or 0.347 m).

Period of record: Maximum discharge, 1,770 ft³/s (50.1 m³/s) Apr. 4, 1974 (gage height, 7.22 ft or 2.201 m), minimum discharge, 9.6 ft³/s (0.27 m³/s) Nov. 22, 1966 (gage height, 1.98 ft or 0.604 m) at site then in use; minimum gage height, 1.14 ft (0.347 m) Sept. 3, Oct. 27, 28, 1973.

Flood of June 23, 1972, reached a stage of 7.46 ft (2.274 m) (8.05 ft or 2.454 m at Water Steet site), from floodmarks; discharge, about 1,900 cfs (53.8 m³/s); flood of Mar. 5, 1964 was considerably higher (discharge not determined).

REMARKS. -- Records good except those for winter periods, which are fair. A constant 2.8 ft³/s (0.079 m³/s) is diverted for manufacturing purposes from Gate House Pond upstream from station into Onondaga Creek basin (St. Laurence River basin).

REVISIONS. -- The figures of peak discharge for water year 1973 have been revised as shown in the following table. They supersede figures published in WRD N.Y. 1973.

REVISED PEAK DISCHARGE.--1973: Dec. 7 (unknown) about 1,200 cfs (unknown); Dec. 23 (1115) 900 cfs (5.27 ft); Jan. 1 (unknown) about 1,000 cfs (unknown); Feb. 3 (0515) 771 cfs (4.87 ft); Mar. 18 (0145) 540 cfs (4.10 ft); Apr. 5 (0230) 762 cfs (4.84 ft).

		DISCHAME	E. IN	UBIC FEET	PEP SEC	OND. WATER	YEAR OCTO	0ER 1973	TO SEPTE	BER 1974		
DAY	OCT	NOA	DEC	JAN	FEH	HAM	APR	MAY	JUN	JUL	AUG	SEP
1	23	28	61	212	189		139	157	116	54	47	44
3	•0	32	55	174	171		172	139	100	52	44	41
3	70	30	52	165	157	149	274	133	92	91	44	87
4	53	28	52	153	140	265	1 - 160	130	67	113	48	97
5	25	28	75	120	130	376	1.210	120	79	111	52	69
6	25	26	117	120	120		750	120	72	103	48	61
7	42	26	85	120	110	282	561	121	71	95	45	56
	23	26	75	110	110	251	513	113	7ŏ	90	43	51
9	22	25	123	100	110	228	440	ižš	69	78	41	48
10	36	25	160	100	100	225	383	156	69	73	39	. 44
11	34	25	117	98	100	196	362	139	84	48	36	40
12	32	25	100	96	107	179	408	177	79	61	35	38
13	30	24	90	94	105	153	390	349	71	56	ĴŠ	58
14	30	24	9.	90	100	144	393	246	66	53	35	72
15	20	25	80	96	90		591	208	59	51	33	50
16	19	30	70	96	90	154	428	181	63	49	31	44
17	17	29	62	91	80	166	365	248	64	48	33	62
19	19	28 -	60	86	88	149	323	222	68	47	35	41
19	55	28	60	90	86	149	292	108	59	48	33	39
20	24	27	70	86	42		259	170	61	48	31	38
21	25	26	160	93	90	139	236	156	67	46	30	46
55	25	28	120	114	173	135	525	145	70	46	29	56
53	20	27	120	147	208	132	558	147	62	45	28	48
24	17	30	100	178	140	138	212	142	56	57	58	64
25	16	55	86	142	130	126	194	135	57	57	27	42
26	15	60	250	131	120	122	177	123	67	52	27	64
27	14	55	574	253	120	119	104	120	70	50	31	42
28	14	66	434	274	130	116	154	114	68	48	45	40
29	16	72	330	213	*****	· iii	150	127	59	47	51	48
30	29	66	103	535	*****	izi	144	123	57	50	56	
31	26	•	346	515	•••••	148		113		50 48	48	56
TOTAL	631	1.024	4.382	4.346	3.370	>• 366	11-314	4. Que	2.126	1.035		
MEAN	26.8	34.1	141	140	120	173		4.885	2.120	1.935	1.190	1.526
MAX	70	34.1 72	574	274			377	158	70.7	62.4	38.4	50.9
MIN	14				500	376	1.510	349	118	113	58	97
CFSM	.37	24	52	86	80	111	139	113	57	45	27	38
		•48	1.97	1.96	1.68	2.42	5.27	5.51	.99	.87	.54	.71
IN.	.43	.53	2.68	5.50	1.75	2.79	5.89	2.54	1.10	1.01	.62	.79
	1973 TOT	AL 40-179	MEAN	110 HAX	740	MIN 14	CFSM 1.54	IN 20.9	0			

WTR YR 1974 TUTAL 42.289 MEAN 116 MAX 1.210 MIN 14 CFSM 1.62 IN 22.00

Peak discharge (base, 480 cubic feet per second)

Date	Time	height	Discharge	Date	Time	Gage height	Discharge
12-27 4-04	1145 2145	4.66 7.22	708 1,770	4-15	0430	4.82	756

^{1/} Data from U.S. Geological Survey, 1974, Surface Water Records, Part 1, p. 147

Table 7.-Data for gaging station 01508803 West Branch Tioughnioga River at Homer, N.Y., 1975

LOCATION.--Lat 42°38'13", long 76°10'37", Cortland County, on left bank at downstream side of bridge on Wall Street at Homer and 3.4 mi (5.5 km) upstream from confluence with East Branch.

DRAINAGE AREA. -- 71.5 mi2 (185 km2).

PERIOD OF RECORD. -- November 1966 to September 1968, October 1972 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 1,114.81 ft (339.794 m) above mean sea level. Prior to Oct. 1, 1968, water-stage recorder at bridge on Water Street 500 ft (152 m) upstream at same datum.

EXTREMES. -- Current year: Maximum discharge, 1,530 ft³/s (43.3 m³/s) Smpt. 26 (gage height, 6.76 ft or 2.060 m); minimum, 19 ft³/s (0.54 m³/s) Aug. 21, 23-24 (gage height, 1.28 ft or 0.390 m).

Period of record: Maximum discharge, 1,770 ft³/s (50.1 m³/s) Apr. 4, 1974 (gage height, 7.22 ft or 2.201 m), minimum discharge, 9.6 ft³/s (0.27 m³/s) Nov. 22, 1966 (gage height, 1.98 ft or 0.604 m) at site then in use; minimum gage height, 1.14 ft (0.347 m)

Sept. 3, Oct. 27, 28, 1973.

Flood of June 23, 1972, reached a stage of 7.46 ft (2.274 m) (8.05 ft or 2.454 m at Water Steet site), from floodmarks; discharge, about 1,900 cfs (53.8 m³/s); flood of Mar. 5, 1964 was considerably higher (discharge not determined).

REMARKS.—Records good except those for winter periods, which are fair and those for periods of no gage-height record, which are poor.

A constant 2.8 ft³/s (0.079 m³/s) is diverted for manufacturing purposes from Gate House Pond upstream from station into Onondaga Creek basin (St. Lawrence River basin).

REVISIONS. -- WRD N.Y. 1974: 1973 (P).

		115CHARGE .	IN CURI	C FFET PE			R YFAR OCTOB	FP 1974 T	O SEPTEM	4FR 1975		
	•					MFAN VALUE	: •					,
DAY	OCT	NOV	DEC	JAN	FFA	~43	APQ	MAY	JUN	JUL	ĄŲG	SED
1	49	46	160	100	180	260	150	140	200	44	34	36
2	57	44	157	98	150	210	270	250	140	47	33	32
3	76	42	150	94	140	180	350	260	150	47	31	59
4	74	52	120	96	120		450	250	150	41	30	27
5	71	142	120	94	150	150	350	370	150	39	34	26
6	63	153	110	96	120	140	330	350	300	39	33	27
7	59	117	110	98	110		310	540	300	79	33	26
8	56	103	342	94	110		540	450	190	77	30	25
9	52	43	575	110	Ч н	140	560	360	150	38	54	23
10	49	86	372	130	94	140	250	300	140	38	24	27
11	48	81	311	324	46	120	250	250	110	37	26	21
12	47	#1	211	62B	44	140	250	220	120	74	26	88
13	47	247	255	586	as	1 30	230	230	130	119	26	64
14	45	174	234	550	44	110	550	500	110	SA	56	49
15	54	154	510	3 3 0	42	110	270	180	90	57	26	39
16	68	136	198	170	H4	100	300	240	44	49	27	41
17	61	124	204	150	H H	144	400	190	84	48	26	55
18	57	120	187	140	100		470	170	80	47	25	47
19	50	116	172	140	121	476	560	150	84	41	53	44
≥0	50	20A	160	150	110	400	600	140	83	44	51	39
21	49	290	150	100	104	130	500	130	71	42	20	36
22	47	220	142	100	111	300	350	150	62	19	21	33
23	49	187	135	100	232		300	120	5 A	37	20	32
24	47	749	130	100	942		350	110	55	46	30	39
25	48	270	150	124	802	340	400	110	53	107	27	183
26	49	210	110	185	498		210	100	49	63	27	957
27	45	190	110	137	389	200	200	150	48	51	36	660
28	44	180	110	120	327		190	100	48	46	30	388
29	43	170	110	190			190	98	48	4 }	28	27A
30	42	170	109	408			1 40	94	46	39	74	551
31	43		103	249		150	***	150		36	44	***
TOTAL	1648	4453	5793	4953	5585		9430	5562	3323	1467	465	1582
MFAN	53.2	149	1 47	160	500		314	515	111	47.3	29.8	119
MAX	76	290	575	424	442		600	540	300	119	74	957
MIN	42	42	103	94	H2		150	94	46	34	50	21
CF 5M	.74	2.07	5.65	2.24	2.40		4.39	2.97	1.55	•66	.42	1.66
1N•	•86	5.35	3.01	2.58	2.91	3.34	4.91	3.41	1.73	.76	.48	1.86
CAL YR			MEAN 1	31 4AX	1210	MIN 27	CF54 1.83	IN 24.45				
WTR YM	1975 TO	TAL 54145	MEAN 1	4A VAX	957	WIN SJ	CF54 2.07	IN 24.17				

Peak discharge (base, 480 cubic feet per second)

Date	Time	Gage height	Discharge	Date	Time	Gage height	Discharge
12-08	2400	4.86	768	3-19	Unknown	4.20	570
01-11	2330	4.39	627	4-20	Unknown	Unknown	2/ 700
01-30	0130	4.26	588	5-07	Unknown	Unknowa	2/ 600
02-24	1300	6.01	1.180	9-26	1730	6.76	1,530

Note .-- No gage height record May 3 to June 17.

^{1/} Data from U.S. Geological Survey, 1975, Surface Water Records, Part 1, p. 174. . 2/ About.

Table 8.--Data for gaging station 01509000 Tioughnioga River at Cortland, N.Y. 1973

LOCATION. -- Lat 42°36'10", long 76°09'35", Cortland County, on right bank at east end of Elm Street at Cortland, 0.4 mi (0.6 km) downstream from confluence of East and West Branches.

DRAINACE AREA. --292 mi² (756 km²) (including 14.0 mi² (36.3 km²), the flow from which may be diverted into Be Ruyter Reservoir in Gawego River basin).

PERIOD OF RECORD .-- May 1938 to current year.

GAGE, --Water-stage recorder. Datum of gage is 1,084.92 ft (330.683 m) above mean sea level. Prior to Oct. 1, 1939, water-stage recorder at datum 4.00 ft (1.219 m) higher; Oct. 1, 1939 to Sept. 30, 1963, water-stage recorder at datum 3.00 ft (0.914 m) higher.

AVERAGE DISCHARGE.--35 years, 486 ft 3 /s (13.76 m 3 /s) (22.60 in/yr or 574.0 mm/yr).

EXTREMES. --Current year: Maximum discharge, 5,030 ft³/s (142 m³/s) Dec. 7 (gage height, 8.69 ft or 2.649 m); minimum 54 ft³/s (1.53 m³/s)Sept. 12-14 (gage height, 2.65 ft or 0.808 m).

Period of record: Maximum discharge, 13,000 ft³/s (368 m³/s) Mar. 5, 1964 (gage height, 12.49 ft or 3.807 m); minimum 9.8 ft³/s (0.28 m³/s) Sept. 20, 1939, Sept. 29, 1959; minimum daily, 17 ft³/s (0.48 m³/s) Sept. 26, 27, 1959.

REMARKS. -- Records good. Diurnal fluctuation at low and medium flow caused by powerplante in mills on West Branch. Slight diversion from East Branch for operation of Erie (Barge) Canal. A constant 2.8 ft³/s (0.079 m³/s) is diverted for manufacturing purposes from Cate House Pond on West Branch upstream from station into Onondaga Creek basin (St. Lawrence River besin).

REVISIONS. -- WRD N.Y. 1968: Drsinage area.

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTUBER 1472 TO SEPTEMBER 1473
NEAN VALUES

DAY	OCT	NOV	DEC	MAL	FEd	PAM	APH	YAY	JUN	JUL	AUG	SEP	
l.	221	182	711	3950	540	330	833	521	445	249	111	1 50	
3 5	201	268	667	3150	600	340	1730	510	477	225	111	58	
3	185	724	637	1950	5910	420	2470	543	425	217	100	58	
4	178	549	613	1500	1960	1026	2150	643	360	233	108	58	
>	164	466	625	1300	1300	1150	3080	565	337	253	105	\$8	
•	154.	430	2490	960	444	1050	2658	521	314	221	49	71	
7	197	600	4610	760	688	0404	2310	466	292	209	60	76	
8	257	642	2630	700	#3#	1250	1850	435	279	201	66	64	
¥	253	1886	2590	668	680	1140	1410	440	253	185	76	58	
10	551	1400	5308	650	580	930	1350	486	237	174	02	58	
11	197	1140	1870	600	560	567	1480	536	233	164	92	58	
15	185	429	1350	568	500	458	1230	560	264	154	76	56	
13	185	/57	1 300	540	498	1000	1050	961	265	144	71	54	
16	182	667	1180	580	460	1070	915	560	233	141	68	58	
15	185	999	1010	490	485	1600	867	532	533	138	66	90	
10	205	835	908	6/0	450	1320	822	687	533	132	99	•3	
17	193	718	660	+60	. 440	1500	744	521	233	132	80	76	
18	182	637	740	520	450	2200	685	565	561	159	66	70	
19	175	517	703	608	430	1600	669	711	276	126	85	¥3	
50	164	648	762	654	451	12/0	607	631	554	153	90	86	
21	157	485	728	560	417	1060	571	1130	225	123	76	73	
22	150	589	1100	680	-10	960	538	1300	229	120	68	71	
S)	168	53A	1330	1760	398	840	625	985	221	117	60	66	
24	213	510	1190	1310	370	#36	554	815	241	114	62	66	
25	197	699	1110	919	360	837	494	718	224	iii	. 60	64	
26	185	915	1210	815	357	1170	672	631	225	108	58	62	
27	175	1440	1200	766	320	1050	466	595	221	117	58	62	
26	168	1040	1050	767	320	471	661	560	224	123	60	60	
29	171	676	689	699		752	692	556	335	128	50	60	
90	205	146	654	560		702	587	516	585	117	56	60	
11	201		1630	540		673	•••	505	•••	iie	56		
TOTAL	5674	23502	40519	304/0	18975	31696	36514	19327	6311	6036	2409	1997	0
MEAN	189	783	1307	983	678	1022	1151	623	277	156	77.7	66.6	
MAK	251	1900	6410	3950	5910	2200	3080	1300	677	253	iii	93	
MIN	150	182	613	650	320	330	466	635	221	109	56	54	
CFSM	.65	€.68	4.48	3.37	2.32	3.50	3.94	2.13	.95	.53	.27	.23	
IN.	.75	2.99	5.16	3.00	2.42	4.04	4.40	2.40	1.80	.62	.31	•25	

CAL YR 1972 TOTAL 246298 MEAN 810 MAX 7020 MIN V6 CFSM 2.77 IN 37.75 BTR YR 1973 TOTAL 222631 MEAN 609 MAX 6610 MIN 56 CFSM 2.09 IN 28.36

Peak discharge (base, 4,400 cubic feet per second)

Date	Time	Gage height	Discharge
12-7	0815	5,030	

^{1/} Data from U.S. Geological Survey, 1973, Surface Water Records, Part 1, p. 158.

Table 9.--Data for gaging station 01509000 Tioughnioga River at Cortland, N.Y., 1974

LOCATION. -- Lat 42°36°10", long 76°09'35", Cortland County, on right bank at east end of Elm Street at Cortland, 0.4 mi (0.6 km) downstream from confluence of East and West Branches.

DRAINAGE AREA. -- 292 mi² (756 km²) (including 14.0 mi² (36.3 km²), the flow from which may be diverted into De Ruyter Reservoir in Oswego River basin).

PERIOD OF RECORD .-- May 1938 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,084.92 ft (330.683 m) above mean sea level. Prior to Oct. 1, 1939, water-stage recorder at datum 4.00 ft (1.219 m) higher; Oct. 1, 1939 to Sept. 30, 1963, water-stage recorder at datum 3.00 ft (0.914 m) higher.

AVERAGE DISCHARGE. -- 36 years, 487 ft 3/s (13.79 m3/s) (22.65 in/yr or 575.3 mm/yr).

EXTREMES. -- Current year: Maximum discharge, 9,100 ft³/s (258 m³/s) Apr. 5 (gage height, 11.11 ft or 3.386 m); minimum, 56 ft³/s (1.59 m³/s) Oct. 6, 16-18; minimum gage height, 2.64 ft (0.805 m) Oct. 16-18.

Period of record: Maximum discharge, 13,000 ft³/s (368 m³/s) Mar. 5, 1964 (gage height, 12.49 ft or 3.807 m); minimum, 9.8 ft³/s (0.28 m³/s) Sept. 20, 1939, Sept. 29, 1959; minimum daily, 17 ft³/s (0.48 m³/s) Sept. 26, 27, 1959.

REMARKS. -- Records good. Diurnal fluctuation at low and medium flow caused by powerplants in mills on West Branch. Slight diversion from East Branch for operation of Erie (Barge) Canal. A constant 2.8 ft³/s (0.079 m³/s) is diverted for manufacturing purposes from Gate House Pond on West Branch upstream from station into Onondaga Creek basin. (St. Lawrence River basin).

REVISIONS. -- WRD N.Y. 1968: Drainage area. Revised figures of discharge, in cubic those published in WRD N.Y. 1973, are given herewith:

DISCHARGE IN CUBIC FEET PER SECOND, 1973

	Date	Discharge		ite	Discharge		ate	Discharge	Date		charge	
	Aug. 7	80	Aug	3. 12	76	Aug	g. 17	80	Aug.		68	
	8	64		13	71		18	68		23	66	
	9	76		14	68		19	85		24	62	
	10	82		15	68		20	90		25	60	
	11	82		16	99	•	21	76				
			Month	cfs-day	s Mean	Max	x 1 mum	Minimum	cfsm	Inche	8	
		7	lugust 1973	2.40	9 77.	7	111	56	0.27	0.31		
		_	WTR YR 1973	222,43	1 609	4,4	410	54	2.09	28.34		
		DISCHA	RGE. IN CU	BIC FEET	PER SECON	O. WATER	YFAR OC	TOBER 1973	TO SEPTE			
DAY	007	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JIIL	AUG	SEP
1	60	78	293	900	580	605	560	509	361	171	144	151
3 2 3	66	99	257	680	720	593	703		329	154	132	129
- ī	96	94	226	674	620	613	1.590		292	717	117	301
4	86	91	213	560	520	1.390	5.310		270	2.040	126	730
5	60	áŝ	307	460	440	2.350	7.670		237	1.290	166	420
		•••	30		• • •							
6	56	76	1.160	460	446	2,570	4.180		209	749	136	275
7	66	76	742	440	440	1.790	2.620	412	197	533	120	213
•	60	73	523	360	420	1,460	2.160	375	190	431	111	175
9	58	73	747	320	380	1 • 190	1.790	397	179	361	105	157
10	62	71	1.680	310	360	1.070	1.470	684	179	315	102	141
11	66	69	1.090	300	350	884	1.400	640	229	279	99	129
iż	73	69	735	300	340	760	1.790		245	245	44	126
į 3	64	69	587	280	340	560	1.810		193	213	94	338
14	64	71	575	280	340	520	1.830		175	186	91	578
15	62	71.	494	314	280	500	2.720		171	171	86	338
16	58	83	360	300	260	566	2.120	728	186	157	80	245
17	56	132	290	280	560	736	1.490		221	148	66	205
18	56	126	200	560	260	489	1.200		205	141	91	190
19	60	119	190	260	250	480	1.020		168	135	68	175
20	66	115	400	240	270	480	877		161	132	83	164
			•							-		
21	71	109	1.100	260	270	480	783		164	126	78	190
22	66	108	1.270	484	600	. 460	723		266	120	76	347
23	62	108	1.100	609	1.500	460	791		237	117	73	270
24	60	109	934	966	900	450	734		175	151	73	213
25	60	215	812	679	700	440	671	520	161	197	69	193
. 56	60	303	1.850	567	560	446	587		201	154	69	213
27	58	238	3.710	1.220	540	436	533		270	138	60	193
28	58	278	3.260	1.760	520	398	492	405	213	129	123	175
29	58	324	2.020	1.550		376	466	457	182	123	168	193
30	64	327	1.510	1.230		423	452		193	229	270	301
31	83		1.110	1.040		572				197	551	
TOTAL	1.995	3.857	29.745	18.343	13.760	24.547	50.532	20,407	6.459	10.249	3.455	7.468
MEAN	64.4	129	960	592	491	792	1.684		215	331	111	249
MAR	96	327	3.710	1.768	1.500	2.570	7.670		361	2.040	270	730
MIN	56	69	190	240	250	376	452		161	117	69	126
CFSM	•55	.44	3.29	2.03	1.68	2.71	5.77		.74	1.13	.36	.85
IN.	•25	49	3.79	2.34	1.75	3.13	6.44		.82	1.31	.44	.95

CAL YH 1973 TOTAL 188-133 MEAN 515 MAX 3-950 MIN 54 CFSM 1-76 IN 23-97 WTH YH 1974 TOTAL 190-817 MEAN 523 MAX 7-670 MIN 56 CFSM 1-79 IN 24-31

Peak discharge (base, 4,400 cubic feet per second)

Date	Time	Gage height	Discharge
04-5	0400	11.11	9,100

^{1/} Data from U.S. Geological Survey, 1974, Surface Water Records, Part 1, p. 148.

Table 10.-Data for gaging station 01509000 Tioughnioga River at Cortland, N.Y. 19751

LOCATION. -- Lat 42°36'10", long 76°09'35", Cortland County, on right bank at east end of Elm Street at Cortland, 0.4 mi (0.6 km) downstream from confluence of East and West Branches.

DRAINAGE AREA. -- 292 mi² (756 km²) (including 14.0 mi² (36.3 km²), the flow from which may be diverted into De Ruyter Reservoir in Oswego River basin).

PERIOD OF RECORD .-- May 1938 to current year.

GAGE. --Water-stage recorder. Datum of gage is 1,084.92 ft (330.683 m) above mean sea level. Prior to Oct. 1, 1939, water-stage recorder at datum 4.00 ft (1.219 m) higher; Oct. 1, 1939 to Sept. 30, 1963, water-stage recorder at datum 3.00 ft (0.914 m) higher.

AVERAGE DISCHARGE. -- 37 years, 490 ft 3/s (13.88 m3/s) (22.79 in/yr or 578.9 mm/yr).

EXTREMES. -- Current year: Maximum discharge, 6,750 ft³/s (191 m³/s) Feb 25 (gage height, 9.94 ft or 3.030 m); minimum, 64 ft³/s (1.81 m³/s) Sept. 9-11 (gage height, 2.70 ft or 0.823 m).

Period of record: Maximum discharge, 13,000 ft³/s (368 m³/s) Mar. 5, 1964 (gage height, 12.49 ft or 3.807 m); minimum, 9.8 ft³/s (0.28 m³/s) Sept. 20, 1939, Sept. 29, 1959; minimum daily, 17 ft³/s (0.48 m³/s) Sept. 26, 27, 1959.

REMARKS. -- Records good. Diurnal fluctuation at low and medium flow caused by powerplants in mills on West Branch. Slight diversion from East Branch for operation of Erie (Barge) Canal. A constant 2.8 ft³/s (0.079 m³/s) is diverted for manufacturing purposes from Gate House Pond on West Branch upstream from station into Onondaga Creek basin (St. Lawrence River basin).

REVISIONS .-- WRD N.Y. 1968: Drainage area. WRD N.Y. 1974: 1973.

DISCHARGE. IN CUHIC FEET PER SECOND. WATER YEAR OCTOBER 1974 TO SEPTEMBER 1975 MEAN VALUES

					.44	-14 0-601.	•					
DAY	oct	NOV	DEC	MAL	FEH	PAP	APR	MAY	JUN	JHIL	AUG	SEP
1	229	154	590	370	840	1100	780	490	571	120	132	105
ž	261	147	583	350	640	863	626	670	385	114	129	95
3	329	141	577	320	540	755	1150	693	329	iii	126	96
4	319	201	500	340	440	640	1540	670	329	108	126	88
5	292	692	420	330	460	400	1030	1060	410	103	129	88
		_	420					1			••	•
6	253	1080	430	280	480	560	938	961	863	95	129	85
7	225	770	400	310	440	540	885	1960	849	95	132	85
8	213	607	1730	300	390	760	800	1460	653	93	129	85
9	197	516	3740	450	390	560	717	1020	532	100	120	76
10	185	455	2480	685	350	520	687	794	440	156	, 117	64
11	178	420	1520	1640	370	500	699	675	380	114	117	64
iż	171	400	1190	2670	360	450	693	604	400	98	114	189
13	164	1390	1070	1660	320	SAZ	637	642	415	195	iii	209
14	171	-1240	985	1006	310	560	609	571	351	123	iii	135
15	225	957	840	920	324	670	748	505	297	108	iii	. 104
_							•			100	• • • •	
16	319	776	780	720	314	630	821	659	275	111	111	93
17	265	661	861	640	300	660	1180	549	275	114	111	, 9A
18	155	589	776	580	370	510	1410	465	266	108	108) 90
19	197	567	585	500	494	908	1960	420	25#	103	105	96
20	189	936	619	500	466	2490	2210	390	595	111	103	2.95
21	185	1540	540	400	400	2440	1470	360	200	132	103	98
55	145	1140	53A	410	395	1700	1000	342	177	144	103	93
23	182	882	490	400	730	1490	A35	333	165	135	100	65
24	178	1100	470	400	3070	1330	965	306	156	147	iii	96
25	174	1320	460	472	6120	1760	1000	275	150	270	100	587
26	185	1080	430	848	3740	1860	794	262	144	213	98	3090
27	171	960	410	600	2060	1510	675	420	141	164	100	4610
28	164	802	420	500	1450	1000	609	333	136	156	100	2370
29	157	724	400	920	1730	960	549	266	135		98	
30	154	655	395	1990	•••	880	500			147		1230 794
31	150		370	1100	***	748	200	250	129	138	162	
74	150		370	1100		/70		405	•••	135	129	•••
TOTAL	6484	2281A	25669	27475	26563	29884	28547	18810	10084	4032	3575	15879
ME AN	500	761	828	725	949	966	952	607	336	130	115	529
MAX	328	1540	3740	2670	6150	2690	5510	1960	463	270	165	4610
MIN	150	161	370	280	300	430	500	251	159	93	98	64
CFSM	.72	2.61	2.84	2.48	3.25	3.30	3.24	2.0A	1.15	. 45	.39	1.81
IN.	.AJ	2.91	3.27	2.86	3.3P	3.41	3.64	7.40	1.28	.51	.46	2.07

CAL YP 1974 TOTAL 210191 MEAN 576 MAX 7670 MIN 49 CFSM 1.97 IN 26.78 WTH YR 1975 TOTAL 214824 MEAN 589 MAX 6120 MIN 44 CFSM 2.02 IN 27.37

Peak discharge (base, 4,400 cubic feet per second)

Date	Time	Gage height	Discharge	Date	Time	Gage height	Discharge
2-25	0945	9.94	6,750	9~26	1645	8.88	5,260

^{1/} Data from U.S. Geological Survey, 1975, Surface Water Records, Part 1, p. 175.

Table 11 .-- Water Quality data for gaging station 01508803 West Branch Thoughnioga River at Homer, N.Y.

Date	Magnesium (mg/l)	Calcium (mg/1)	Sodium (mg/l)	Potassium (mg/l)	Hardness (mg/l)	Bicarbonate (mg/l)	Carbonate (mg/1)	Sulfate (mg/l)	Chloride (mg/l)
7-28-72	14	51	7.7	0.8	185	186	0	18	16
8-21-72	14	50	7.7	.8	182	168	5	18	16
9-18-72	14	51	9.6	1.1	185	177	0	20	19
10-24-72	8.9	44	5.6	1.3	147	149	0	18	13
11-17-72	10	46	6.5	1.1	156	151	0	17	12
12-14-72	9.3	47	6.5	1.0	156	143	0	17	14
1-17-73	13	57	7.6	1.0	196	187	0	20	18
2-14-73	13	61	7.3	1.0	206	193	0	20	15
3-22-73	io	45	6.8	.8	154	141	0	17	15
4-11-73	9	44	7.0	.9	147	143	0	18	13
5-15-73	12	46	7.2	1.0	164	162	0	18	14
6-19-73	13	44	8.1	.8	163	167	0	16	15
7-16-73	14	45	10	.9	170	174	0	16	20
11-19-73	13	49	9.5	1.3	176	184	0	21	17
2-13-74	12	49	7.8	1.1	172	170	0	19	17
4-04-74	4	18	3.5	2.0	61	59	0	13	7.2
6-13-74	13	45	8.3	.9	165	175	0	17	19
9-30-74	10	40	7.5	1.4	141	147	0	12	29
12-16-74	9.6	40	7.2	.8	140	146	0	16	12
3-21-75	8.8	36	6.4	1.1	130	122	0	19	14

Date	Nitrate as NO ₃ (mg/l)	Stream discharge (ft ³ /s)	p₩	Specific conductance (micromhos)	Total dissolved solids (mg/l)	Ratio Fecal coli/ Fecal strep	Fecal coli (colo	Fecal strep nies/100	Total coli
7-28-72	5.75	65	8.1	379	208	1.0	220	220	720
8-21-72	6.19	46	8.5	364	204	1.8	450	250	6900
9-18-72	3.98	45	8.3	408	208	.80	380	480	5000
10-24-72	4.42	51.2	8.2	304	173	.66	720	1100	2500
11-17-72	6.63	149	8.1	315	178	1.7	134	78	380
12-14-72	6,63	281	7.7	310	176	2.1	67	32	190
1-17-73	10.61	132	8.0	386	223	.3	10	29	150
2-14-73	11.05	126	8.2	391	227	2.0	28	14	110
3-22-73	7.5	228	7.6	313	175	2.0	32	16	1400
4-11-73	7.08	326	7.8	303	166	.75	15	20	230
5-15-73	6.6	107	7.4	346	188	1.3	47	37	1600
6-19-73	5.2	79	7.8	342	188	2.6	680	260	2000
7-16-73	5.3	35 '	7.9	371	201	2.5	560	220	6200
11-19-73	6.6	27	7.5	420	208				
2-13-74	8.8	96	7.8	420	199				
4-04-74	5.3	1670	6.9	149	82				
6-13-74	6.2	79	7.7	420	196	11	460	41	11000
9-30-74	4.4	56	7.3	370	177	3.4	7100	2100	24000
12-16-74	4.0	196	7.8		162	4.0	170	43	440
3-21-75	6.6	317	7.4	211	149	. 60	78	130	750

Table 12.--Water Quality data for gaging station 01508800 Factory Brook at Homer, N.Y.

Date ·	Magnesium (mg/l)	Calcium (mg/l)	Sodium (mg/l)	Potassium (mg/l)	Hardness (mg/l)	Bicarbonate (mg/l)	Carbonate (mg/l)	Sulfate (mg/l)	Chloride (mg/l)
6-15-72	8.9	46	3.6	0.9	151	147	0	17	7
7-28-72	10.0	51	3.3	.7	169	159	2	16	6.5
8-21-72	10.0	51	3:2	1.2	169	149	11	16	6.2
9-18-72	10.0	52	3.4	1.0	171	149	11	16	6.5
11-09-72	4.0	24	2.3	1.6	76	60	0	16	4.5
11-17-72	8.4	42	3.6	1.0	139	127	0	17	6.5
12-14-72	7.9	43	3.4	.8	140	120	0	17	6.3
1-17-73	9.7	51	3.5	.8	167	152	0	17	7.4
2-14-73	9.3	47	3.4	.7	156	145	0	17	7.5
3-23-73	7.6	38	3.4	.8	126	109	0	16	8.0
4-11-73	6.8	36	4.3	.8	118	107	0	16	8.0
5-15-73	8,3	40	3.4	.8	134	126	0	16	6.0
6-19-73	9.4	44	3.6	.9	149	144	0	14	13
7-16-73	10.0	47	3.3	1.0	159	162	0	14	6
9-17-73	10.0	44	3.6	1.0	151	158	1	17	5.7
8-31-73	10.0	40	3.4	1.1	141	141	0	15	5.5
1-16-74	10	46	4.6	1.0	156	148	0	16 •	8.3
3-18-74	8.4	40	3.2	.9	138	135	0	15	8
6-13-74	9.8	44	3.5	1.0	150	155	0	15	7.5
11-04-74	10	39	3.5	1.2	139	142	0	28	11
12-16-74	8.5	39	3.5	.8	130	126	o	16	8.3
1-20-75	9.8	45	3.9	.8	150	147	0	17	6.8
3-21- 75	5.6	27	3.3	1.0	90	77	0	14	7.8

Date	Nitrate as NO3 (mg/l)	Stream Discharge (ft ³ /s)	pH	Specific conductance (micromhos)	Total dissolved solids (mg/l)	Ratio Fecal coli/ Fecal strep	Fecal coli (col	Fecal strep onies/10	Total coli 0 ml)
6-15-72	13	19	8.2	308	172				
7-28-72	17	10	8.4	334	189	2.04	490	240	1800
s-21 -72	15	6	8.7	328	192	2.42	2900	1200	4100
9-18-72	16	5.7	8.8	324	194	. 52	410	780	800
11-09-72	7.5	87	7.6	161	94				
11-17-72	15	33	8.2	284	161	2.82	172	61	270·
12-14-72	16	52	7.6	275	158	6.03	290	48	310
1-17-73	17	21	8.3	316	185	1.0	20	21	10
2-14-73	18	22	8.0	305	178	4.0	4	1	33
3-23-73	13	48	7.9	254	144	1.0	15	16	290
4-11-73	13	57	7.8	249	129	1.0	17	18	20
5-15-73	12	25	7.7	272	153	1.4	76	54	210
6-19-73	12	13	8.3	290	172	2.06	890	430	5100
7-16-73	12	64	8.3	318	179	3.6	15000	2400	26000
9-17-73	13	4	8.4	321	179	5.9	1300	220	1500
8-31-73	11	3	7.8	282	158				
1-16-74	17		8.0	321	163	.47	520	1100	1200
3-18-74		25	7.9	269	146		80		53
6-13-74			8.1	295		11.7	2100	180	8000
11-04-74	12	12	7.2	350	178	6.0	7200	1200	8700
12-16-74	16	40	8.1	380	143	2.8	200	71	230
1-20-75	17	22	8.0	365	160	1.4	22	16	430
3-21-75	10	70	7.4	155	100	3.2	210	66	680

Table 13. --Water-quality data for selected sites on Dry and Blue Creeks and Wells 1 to 5.

,														Total	_==			
Date	Magnestum (mg/1)	Calcium (mg/l)	Sodium (mg/1)	Potassium (mg/l)	Hardness (mg/1)	Bicarbonate (mg/l)	Carbonate (mg/l)	Sulfate (mg/l)	Chloride (mg/l)	Nitrate as NO ₃ (mg/l)	Stream discharge (ft ³ /s)	Вď	Specific conductance (micromhos)	dissolved solids (mg/l)	Ratio Fecal coli/ Fecal strep	Fecal coli (colon	scal Fecal	Total coli ml)
						01 508905	01508905 Dry Creek at Cortland at Sweeney Road	at Cortlan	nd at Sween	ey Road								
6/13/74	5.4	¥	3.8	1.0	101	106	•	14	6.9	7.5	.30	7.6	275	124	3.2	1200	380	0066
						0150891	01508915 Dry Creek below Blue Creek at Cortland	below Blue	e Creek at (Cortland								
6/13/74	5.4	34	4.0	1:1	101	101	٥	14	8.8	5.3	2.7	6.9	270	122	1.2	300	250	1900
						01508918		above Cort	Dry Creek above Cortland at Route 281	ute 281								
6/13/74	5.4	36	4.1	1:1	1112	101	0	71	7.6	9.9	3.2	7.8	260	125	6.9	4	2	5200
						01 50892	01508925 Dry Creek at Cortland at Hamlin Street	at Cortlan	nd at Hamlis	n Street								
6/13/74	5.4	33	4.0	1.0	102	102	0	3	7.8	9.9	1.4	7.8	255	121	2.1	9	290	4200
						01508910	O Blue Creek near Cortland	c near Cort	tland									
6/13/74	5.2	28	4.3	1.0	16	86	0	13	7.7	1.2	908.	7.2	230	106	4.6	1300	280	1700
						01508913		c at Cortle	Blue Creek at Cortland at Kinney Gulf Rd.	ey Gulf Rd.								
6/13/74	5.2	30	3.6	1.0	*	100	o	ដ	6.1	5.6	1.8	7.2	250	110	:		;	1
						Well 1,	Well 1, Clark Road at Slab City	at Slab Cit	<u> </u>									
8/21/14	22	72	13	6.	270	228	٥	. 22	21	3 6	;	7.4	089	318	.04	-	28	320
						Well 2,	2, at Pratt Corners	rners								 		
8/21/14	6.2	32	7.1	9.	105	101	0	77	11	8.9	1	7.3	310	130	. 18	~	7	450
						Well 3,	3, White Bridge Road near Pratt Corners	e Road neas	r Pratt Core	ners								
8/21/14	6.5	39	2.3	s.	124	118	0	14	3.7	2.7	1	7.7	260	127	.33	m	6	100
						Well 4,	Well 4, Route Il nes	near Pratt Corners	orners									
8/27/74	11	t	16	9.6	292	128	•	91	95	22	:	7.4	730	272	80.	-	77	210
	•			•		Well 5, at	at Homer											
6/13/74	5.1	11	3.7	1.4	48	32	0	21	8.8	0	:	8.7	152	73.	1	20	1	75

LOCATION.--Lat 42°30°04", long 76°07'38", Cortland County, on right bank 100 ft (30 m) downstream from bridge on Tone Road, 250 ft (75 m); aouth of State Highway 90, 1.6 mi (2.6 km) northwest of East Virgil, 3.2 mi (5.1 km) northwest of Messengerville, and 3.5 mi (5.6 km) upstream from mouth.

DRAINAGE AREA. -- 10.4 mi2 (26.9 km2).

PERIOD OF RECORD. -- Discharge measurements, seepage investigation, water year 1974, July 1974 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 1,270.00 ft (387.096 m) above mean ses level.

EXTREMES. -- July to September 1974: Maximum discharge during period, about 30 ft³/s (0.85 m³/s) Sept. 29; minimum, 1.4 ft³/s (0.040 m³/s) Aug. 15 (gage height, 4.90 ft or 1.494 m).

Water year 1975: Maximum discharge, 2,530 ft³/s (71.6 m³/s) Sept. 26 (gage height, 7.77 ft or 2.368 m); minimum, 0.9 ft³/s (0.025 m³/s) Aug. 8 (gage height, 4.78 ft or 1.445 m).

REMARKS. -- Records poor.

				DIS	CHARGE, IN	CUBIC FEE	T PER SECONE	, JULY TO S	EPTEMBER 197					
DAY	JULY	AUG	SEPT			DAY	JULY AUG	S EPT		DAY	JULY	AUG	SEPT	
1	6.0	2.0	2.4			11	3.0 1.9			21	2.0	2.5	5.8	
2	4.6	2.0	3.1			12	2.9 1.8			22	2.0	2.3	6.6	
3	4.3	2.0	10			13	2.9 1.8			23	2.0	2.3	6.2	
4	4.6	2.3	6.0			14	2.7 1.8			24	4.5	3.2	4.4	
5	4.4	2.2 2.1	4.4			15 16	2.7 1.9 2.6 2.0			25 26	2.6 2.4	3.1 2.9	4.4 5.0	
6 7	4.0 3.8	2.0	3.8			17	2.4 2.3			27	2.2	2.7	4.6	
8	3.6	1.9	3.6			18	2.4 2.2			28	2.0	2.6	4.1	
ğ	3.4	2.0	3.5			19	2.2 2.1			29	2.7	2.7	8.6	
10	3.2	2.1	3.4			20	2.0 2.0			30	2.7	2.9	9.4	
										31	.2.2	2.6	-	
TOTAL,											95.0	70.2	147.5	
MEAN											3.06	2.26	4.92	
MAX											6.0	3.2	10	
MIN CFSM											2.0	1.8	2.4	
TM											. 29	0.22	.47	
• • • • • • • • • • • • • • • • • • • •	• •										. 33	.25	.53	
			DISCHA	RGE. IN C	CUBIC FEE		COND. WATE MFAN VALUE		TORER 1974	TO SEPTEM	PER 1975			
DAY		007	NOV	DEC	JAN	FEH	MAR	APR	MAY	JUN	JUL	AUG	SEP	•
,			10	14	7.6	14	20	21	28	8.2	2.0	1.5	2.1	•
1 2		H-0	10	15	7.2	12	16	19	42	7.5	2.0 1.9	1.5 1.5	5.3 5.1	
3		H.4	10	14	7.0	10	14	98	24	7.3	1.9	1.5	5.5	
		7.6	33	ii	9.0	9.0	16	34	106	7.6	1.9	1.5	1.4	•
5		7.2	97	9.8	7.8	30	9.9	39	9)	21	1.0	1.4	1.7	
6		7.0	56	9.7	7.2	12	9.3	32	142	49	1.9	1.6	1.8	
ĭ		7.0	40	າກົ	7.6	9.0	13	29	97	24	j.á	1.5	1.7	
ė		7.2	32	277	7.8	7.8	20	26	60	19	1.0	1.4	4.4	
9		7.4	26	104	47	9.0	19	23	25	14	2.4	1.4	5.6	
10		7.2	55	50	32	6.4	13	24	21	11	5.0	1.4	2.7	
1.8		7.0	20	42	221	6.4	14	26	19	9.2	2.0	1.4	2.3	
iż		7.0	32	36	A9	6.6	14	25	36	18	1.9	1.3	51	
13		7.6	91	34	42	6.8	27	20	34	13	1.9	1.4	18	
14		7.0	36	29	29	6.9	17	25	20	9.5	1.9	1.4	10	
15		9.4	29	•24	55	7.0	15	31	32	7.8	1.9	1.3	7.4	
16	1	.0	24	53	19	7.1	14	44	60	6.9	1.9	1.5	5.A	
17		8.4	55	23	· 15	7.A	14	49	25	5.9	1.4	1.4	5.7	
18		7.6	19	≥0	13	15	.30	52	23	4.9	1.8	1.3	6.0	
19		7.0	17	17	16	19	100	79	55	6.3	5.1	1.2	14	
20		H.O	62	15	12	13	170	55	21	5.3	5.1	1.5	10	
21		7.6	52	14	9.0	11	70	37	50	4.0	1.9	1.2	9.4	
55		7.4	35	15	9.4	16	45	32	17	3.6	1.8	1.2	6.6	
23		4.0	28	11	10	68	34	29	15	3.2	3.4	1.5	7.9	
24 25		9.0 l	43 37	11	11 28	150 560	57 84	56 35	13	3.0	4.7	H.9	17 307	
				11					13	2.9	6.9	5.3		
26	1		27	10	33	67	45	29	10	2.7	3.0	1.9	621	
27		2	23	10	17	29	40	24	23	5.6	2.1	1.6	500	
29 28	,		77 19	9.7	15 59	23	31 32	21 18	15	2.5	2.0	1.5	80 50	
30	1		16	9.4 9.7	36		30	16	9.6 9.9	5•1 5•3	1.0	12 2•1	37	
31	i			8.3	20	•••	22	•-•	8.7		1.6	15.3		
TOTAL	27	1.0	985	904.6	864.6	769.1	1055.0	1052	1059.2	283.3	68.5	65.3	1492.4	
MEAN		.74	32.A	29.2	27.9	27.5	34.1	35.1	74.2	9.44	5.51	5.11	49.A	
MAX		14	97	277	155	260	170	98	142	49	6.0	15	159	
MIM		7.0	10	8.3	7.0	6.4	9.1	14	6.7	2.1	1.5	1.2	1.7	
CF SM		, n 4	3.15	2.81	2.68	2.64	3.28	3.38	3.29	.91	.21	.20	4.79	
IN.		.97	3.52	3.24	3.09	2.75	3.78	3,76	3,79	1.01	.24	.23	5.34	
WTH Y	₽ 1975	TOTAL	A871.4	MEAN	24,3	MAX	621 414	1.2 CF	54 2.34	IN 31.73				

Peak discharge (base, 500 cubic feet per second)

Date	Time	Gage height	Discharge	Date	Time	Gage height	Discharge
12-8	1445	6.96	586	5-06	1815	6.70	525
1-11	17 30	6.92	565 •	9-26	0745	7.77	2,530

Note .-- Date from "Water Resources Data for New York, Part 1, Surface Water Records 1975."

Table 15. -- Surface-Water data for Gridley Creek seepage investigations

Three series of discharge measurements were made 1973 - 1975 on Gridley Creek and tributaries to study channel gains and losses. The reach is 6.2 mi (10.0 km) in length and extends from a point 1.1 mi (1.8 km) east of Virgil, New York, and 0.4 mi (0.6 km) east of the north-south drainage divide between the Susquehanna River and Lake Ontario basins, to the mouth, lat 42°29°25", long 76°04°24". The measurements were made during periods of constant base flow of the streams. Tributary flow was considered a contribution and not a gain. Indicated gains or losses in relation to records of nearest upstream stations may be substantially in error as affected by small inaccuracies in open-channel measurements. Refer to figure 2.

Measurements are listed in downstream order, and each tributary is inserted in the order in which it enters the main stream.

	Station number and name	Distance upstream from mouth of river (mi)	Drainage area (mi ²)	Measured d Oct. 23 901 dur. Discharge	, 1973 ation Gain or	June 4, 5 50% dura Discharge	1974	May 20, 35% dura Discharge	1975
01509104	Gridley Creek at Page Green Road nr Blodgett Mills	7.6	1.63	- +				1.77	
01509108	Gridley Creek near Blodgett Mills	6.7	2,96	- +				2.77	+1.00
01509110	Gridley Creek above Page Green Road nr Virgil	5.8	3.46	-+		0.82		4.10	+1.33
01509115	Gridley Creek trib 3 nr Virgil	6.2	.35	- +		.01		. 43	
01509116	Gridley Crk trib to trib 3 nr Virgil	6.2	.10	- +		.15		. 47	
01509118	Gridley Creek trib 3 at mouth nr Virgil	5.8	.53	-+		.73	+0.57	2.22	+1.32
01509120	Gridley Creek at Page Green Road nr Virgil	5.6	4.26	0		2.12	+.57	6.29	-0.03
01509125	Gridley Creek at State Highway 90 nr Virgil	5.2	4.67	0	0	2.47	+.35	7.16	+.87
01509127	Gridley Creek trib nr Virgil at State Highway 90	5.1	2.56	.17		. 92		3.25	
01509135	Gridley Creek at Greek Peak nr Virgil	4.4	7.74	.10	-0.07	3.48	+.09	14.30	+3.89
01509145	Gridley Creek trib 2 nr East Virgil	3.9	1.87	.01		1.02		2.85	
01509150	Gridley Creek above East Virgil 1/	3.6	10.36	1.42	+1.31	5.76	+1.26	18.84	+1.69
01509190	Gridley Creek at State Highway 90 nr Virgil	2.0	12.31	1.6	+.19	8.38	+2.62	23.22	+4.38
01509198	Gridley Creek nr Messengerville	1.6	12.49	1.7¢	+.09	 ·			
	Gridley Creek at Messengerville	.1	16.1	2.19	+.49	11.70	+3.32	27.47	+4.25

^{1/} Recording stream-gaging station since July 1974.

Note. -- Data from "Water Resources Data for New York-Part 1., Surface Water Records" (1974 and 1975 issues).

Table 16. -- Water-quality data for Gridley Creek above East Virgil, N.Y.

Sampling Date	Time	Magnesium (mg/l)	Calcium (mg/l)	Sodium (mg/l)	Potassium (mg/l)	Hardness as CaCO3 (mg/l)	Bicarbonate (mg/l)	Carbonate (mg/l)	Sulfate (mg/l)	Chloride (mg/l)	Nitrate as NO ₃ (mg/1)	Nitrite as NO ₂ (mg/l)	Fluoride (mg/l)
12-16-74	1030	3.7	17	3.7	0.5	58	45	o	13	5.9	3.5	0	0.1
1-20-75	1100	4.2	21	4.2	.7	70	60	o	14	5.6	4.4	0	.1
2-19-75	0930	3.6	18	6.5	1.1	60	45	a	12	12	3.6	0	.1
3-21-75	1400	2.1	10	2.8	.7	34	21	o	11	4.9	2.5	0	.1
4-23-75	0900	2.9	14	3.0	.6	47	38	d	18	7.1	2.3	0	.2
5-16-75	1100	2.0	13	3.3	.5	41	36	a	10	6.0	1.3	0	.2
5-20-75	1015	2.5	18	3.8	1.0	55	56	a	11	5.6	1.6		.3
6-19-75	1330	5.1	26	4.8	1.0	86	88	o	15	8.3	2.4	0	.0
8-01-75	0900	8.1	41	6.5	1.0	140	142	a	13	9.6	2.6	0	.0
9-18-75	09 00	7.0	30	5.8	1.0	100	106	a	19	12	1.8	0	.1
10-07-75	0930	4.8	22	7.3	1.1	75	68	a	13	7.9	2.0	0	.2
11-21-75	0900	3.0	18	3.5	1.0	57	50	d	14	6.3	1.9	0	.1
12-18-75	1000	3.7	16	6.6	.7	55	49	a	15	5.4	2.5	0	.1
2-19-76	1030	2.0	8.5	3.4	.7	29	20	a	11	4.8	2.7	; O	.1

Sampling Date	Time	Iron (mg/l)	Manganese (ug/l)	Silica (mg/l)	Dissolvad oxygen (mg/l)	Dissolved oxygen percent saturation	Total dissolved solids (mg/l)	p₩	Specific conductance (micromhos)	Stream temp	Fecal coli (colo	Fecal strep nies/100	Total coli ml)	Stream discharge (ft /s)
12-16-74	1030	320	60	4.5	13.8	97	70	7.4	140	1.0	44	11	1300	22
1-20-75	1100	70	0	4.7	13.9	95	84	7.4	177	0	14 .	14	400	12
2-19-75	0930	210	10	4.2	13.1	90	80	7.4	163	0	330	310	1400	21
3-21-75	1400	380	20	4.0	10.6	80	46	6.8	75	4	18	86	320	56
4-23-75	0900	90	10	4.0	13.5	100	68	7.1	111	3	42	5	490	28
5-16-75	1100	340	20	4.2	9.2	86	57	7.6	109	13	180	62	1200	45
5-20-75	1015	150	10	4.2			74	8.4	143	12	43	21	460	19
6-19-75	1330	260	10	4.1	8.3	86	108	7.6	220	17	110	81	520	7.6
8-01-75	0900	530	20	4.4	7.8	82	154	7.8	308	15	25	430	370	1.6
9-18-75	0900	130	10	4.4	10.0	93	132	7.8	234	12	53	74	1600	4.7
10-07-75	0930	230	20	5.3	9.4	83	95	7.7	179	10	54	140	230	14
11-21-75	0900	340	30	4.1	9.2	80	75	7.5	140	9	130	390	270	21
12-18-75	1000	140	0	4.6	12.6	92	76	7.6	148	1	130	210	310	17
2-19-76	1030	1110	30	3.9	13.4	94	44	7.7	95	1	73	89	1110	123

Note. -- Data through September 19, 1975 from "Water Resources Data for New York Water Year 1975", Section 2, Water-Quality Records.

Table 17. -- Water-quality data for Gridley Creek above and below East Virgil

Station	Date	Time	Magnesium (mg/l)	Calcium (mg/l)	Sodium (mg/l)	Potassium (mg/l)	Hardness as C4CO ₃ (mg/1)	Bicarbonate (mg/l)	Carbonate (mg/1)	Sulfate (mg/1)	Chloride (mg/l)	Nitrate as NO3 (mg/1)	Nitrite as NO ₂ (mg/1)
01509104	5-20-75	1400	2,2	11	3.4	1.0	37	24	0	13	6.2	4.0	0
01509108	Do.	1525	2.3	11	3.6	0.9	37	34	0	10	4.5	. 3.0	0
01509110	Do.	1555	2.3	12	3.9	1.0	39	29	0	12	5.4	2.3	0
01509115	Do.	1340	2.0	8.4	3.1	1.2	29	23	0	12	5.5	.8	0
01509116	Do.	1335	5.3	32	3.7	.9	100	89 '	0	13	7.0	5.8	0
01509118	Do.	1555	5.4	29	3.9	1.4	95	97	0	14	7.1	6.2	0
/ 01509120	Do.	1535	3.2	19	3.6	1.1	61	56	0	. 13	7.1	3.4	0
01509125	Do.	1440	3.4	18	4.9	1.2	59	56	0	13	8.2	3.1	0
01509127	Do.	1320	1.9	8.7	1.9	.7	30	22	0	12	1.1	.0	0
01509135	Do.	1230	3.4	18	3.8	.9	59	54	0	12	5.8	2.1	0
01509145	Do.	1125	1.8	7.9	1.5	.8	27	19	0	13	1.1	.0	٥
01509150	Do.	1015	2.5	18	3.8	1.0	55	56	0	11	5.6	1.6	o
01509190	Do.	0920	3.2	18	3.5	.8	58	. 55	0	12	5.8	1.5	0
91509200	·Do.	0810	3.0	16	3.4	.8	52	56	0	12	5.9	1.5	o

Station	Date	Time	Fluoride (mg/l)	Iron (ug/l)	Manganese (ug/l)	Silica (mg/l)	Total dissolved solids (mg/l)	Hq	Specific conductance (micromhos)	Stream temp	Fecal coli (colo	Fecal strep onies/100	Total coli ml)	Stream discharge (ft ³ /s)
01509104	5-20-75	1400	0.1	160	10	4.9	54	6.8	100	18				1.8
01509108	Do.	1525	.2	200	10	4.5	54	6.9	106	21		• •		2.8
01509110	Do.	1555	.2	140	10	4.0	55	8.0	100	24				4.1
01509115	Do.	1340	.2	190	.0	5.1	49	7.0	94	22	- -			.43
01509116	Do.	1335	.2	240	20	3.6	110	7.1	248	22				.47
01509118	Do.	1555	.2	280	40	4.1	113	7.3	232	19				2.2
01509120	Do.	1535	,2	190	20	3.9	79	7.4	153	21				6.3
01509125	Do.	1440	.2	240	20	3.6	80	7.7	173	21				7.2
01509127	Do.	1320	.1	50	10	4.7	42	6.9	80	18				3.2
01509135	Do.	1230	.1	150	10	4.0	75	8.5	143	16	36	105	126	14
01509145	Do.	1125	.1	60	10	5.2	41	7.4	64	14				2.8
01509150	Do.	1015	.3	150	10	4.2	74	8.4	143	13	43	21	460	19
01509190	Do.	0920	.2	90	10	4.0	75	7.6	140	12				23
01509200	Do.	0810	2	110	10	3.9	73	7.3	142	12	76	12	730	28

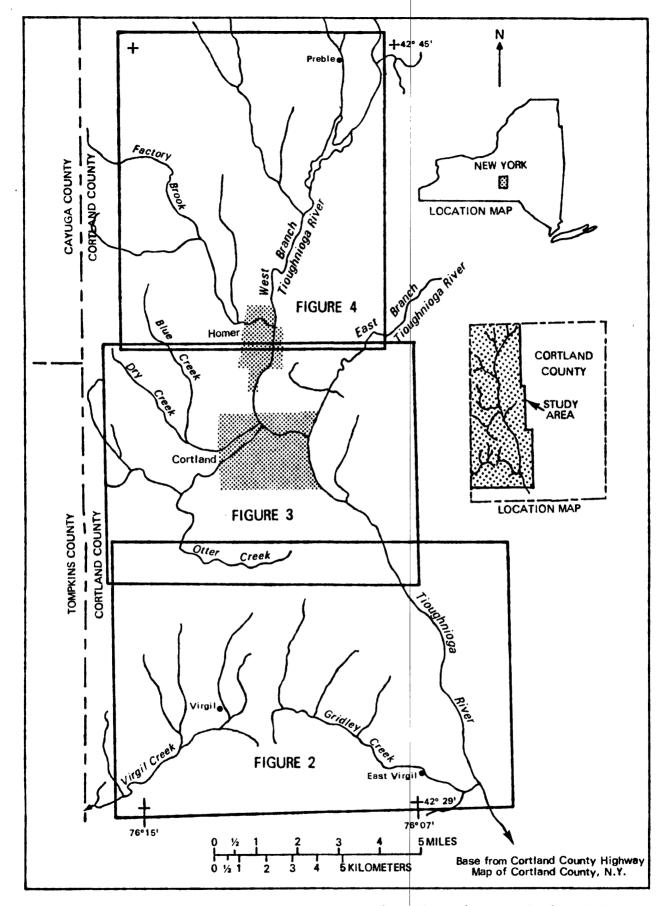


Figure 1.--Cortland County streams and location of areas depicted in figures 2-4.

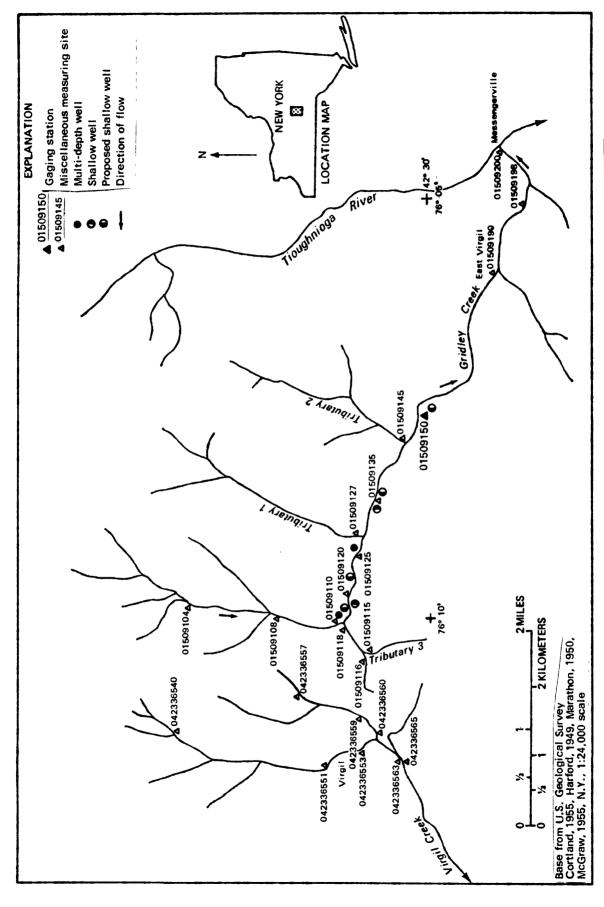


Figure 2. -- Location of U.S. Geological Survey ground-water and surfacewater measurement sites on Virgil and Gridley Creeks.

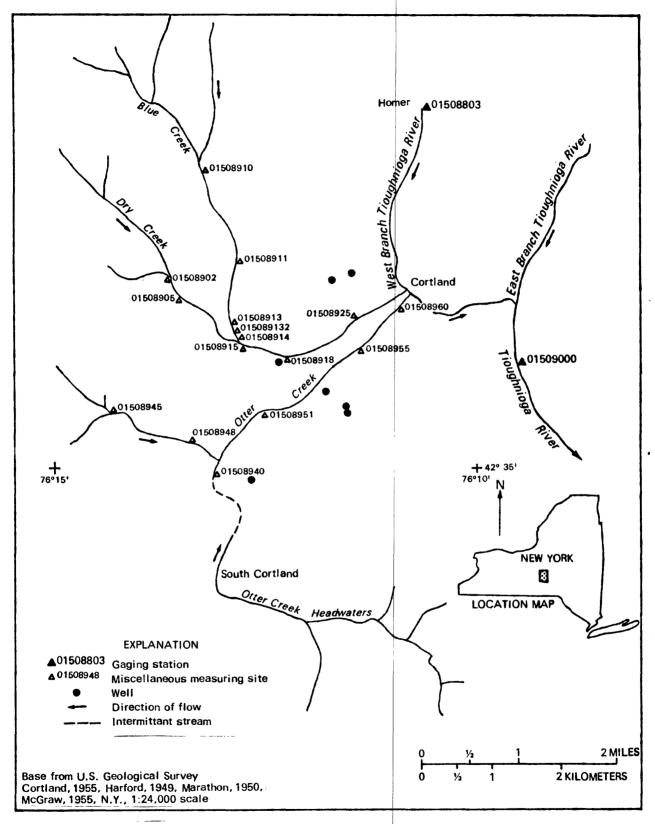


Figure 3.--Location of U.S. Geological Survey ground-water and surfacewater measurement sites on Dry Creek, Blue Creek, Otter Creek, West Branch Tioughnioga River, and Tioughnioga River.

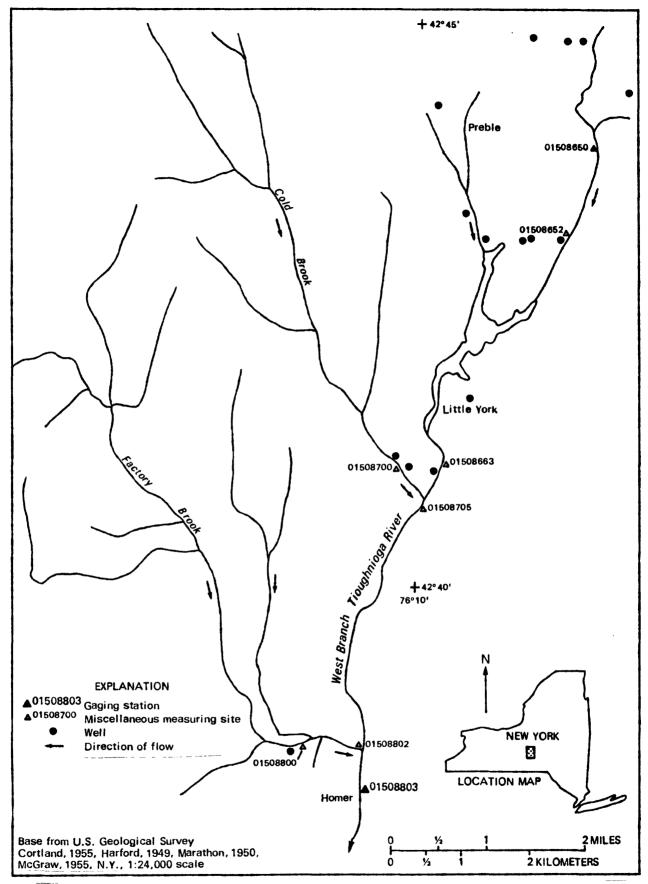


Figure 4.--Location of U.S. Geological Survey ground-water and surfacewater measurement sites on Cold Brook, Factory Brook, and West Branch Tioughnioga River.

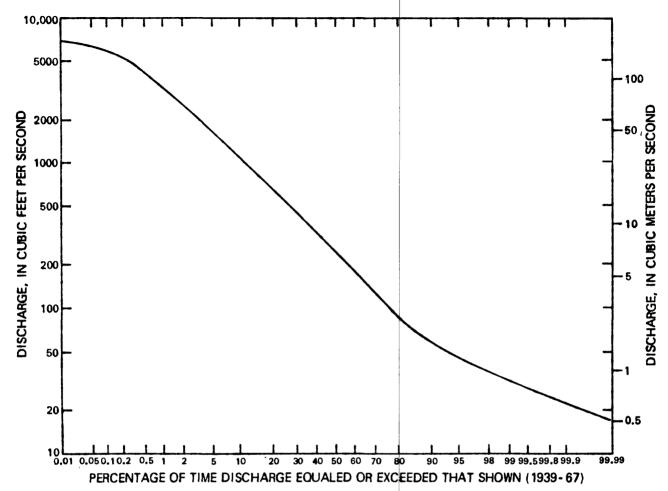
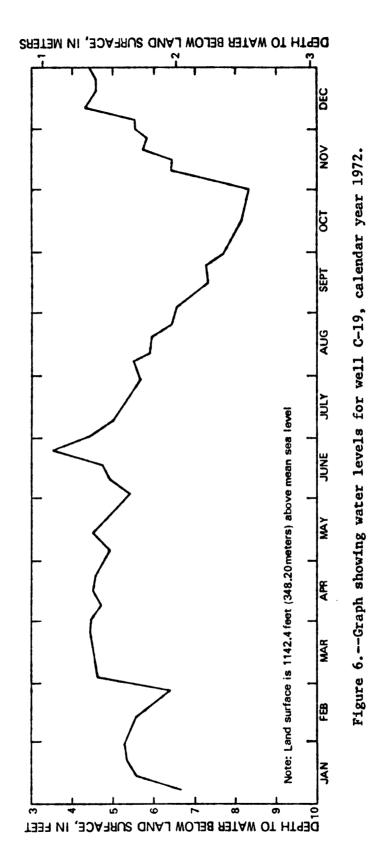
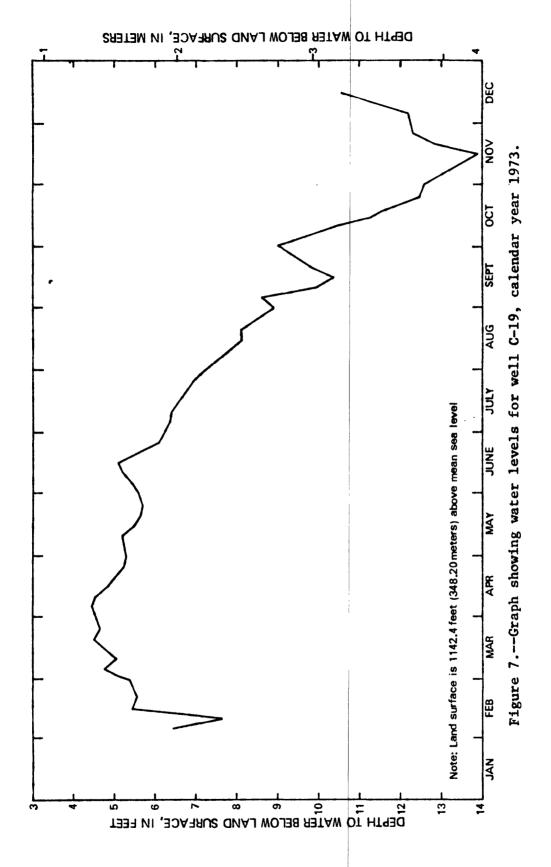
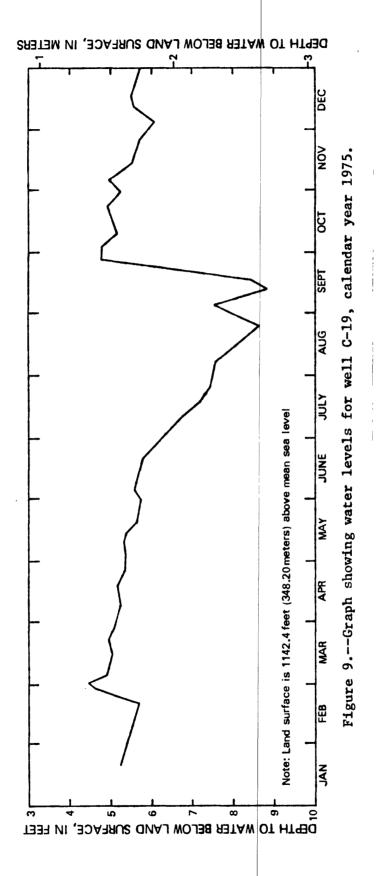





Figure 5.--Duration curve of daily mean flows, station 01509000 Tioughnioga River at Cortland (1939-1967).

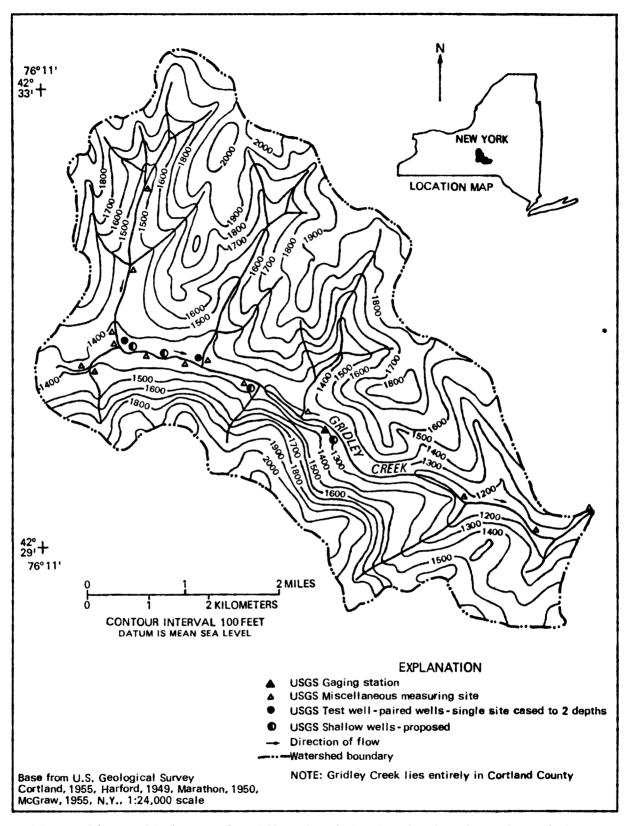


Figure 10.--Relief map of Gridley Creek basin showing location of U.S. Geological Survey ground-water and surface-water measurement sites.

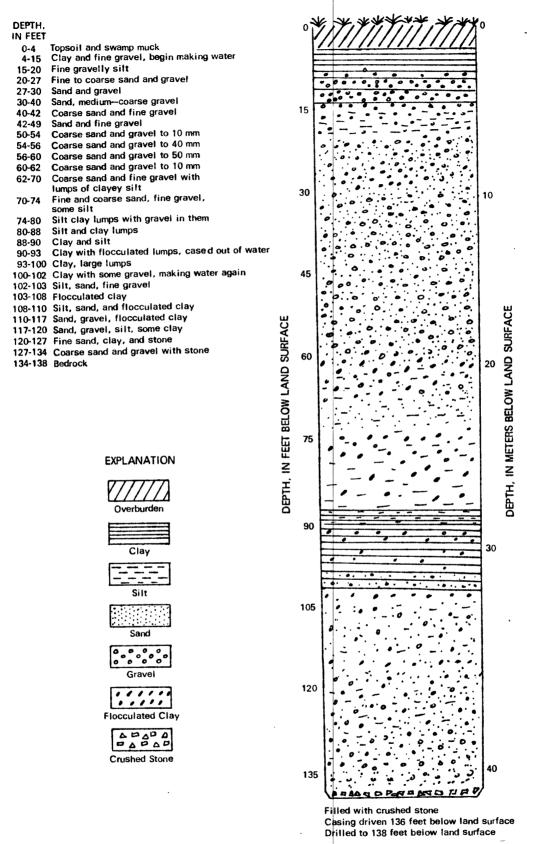


Figure 11.--Log of well site 1, Gridley Creek basin.

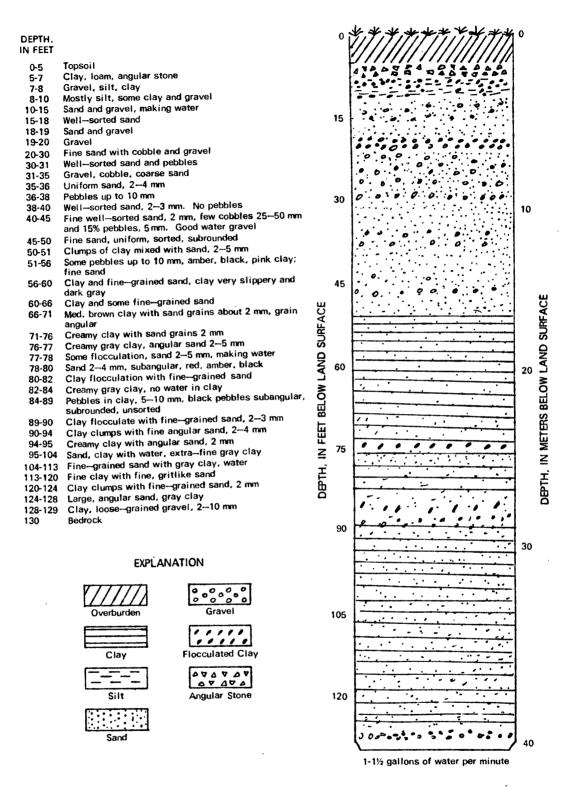


Figure 12.--Log of well site 2, Gridley Creek basin.

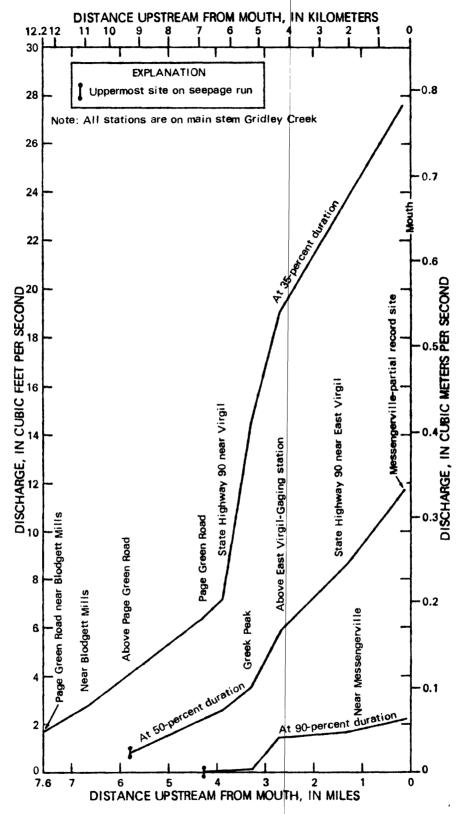


Figure 13.--Measured discharges on Gridley Creek at 90-, 50-, and 35- percent duration.