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HOT SPRINGS OF THE CENTRAL SIERRA NEVADA, CALIFORNIA

By R. H, Mariner, T. S. Presser, and W. C. Evans

ABSTRACT

Thermal springs of the central Sierra Nevada issue dilute to
slightly saline sodium chloride, sodium bicarbonate, or sodium mixed-
anion waters ranging in pH from 6.4 to 9.3. The solubility of
chalcedony appears to control the silica concentration in most of the
spring waters. Fales Hot Springs may be associated with a higher
temperature aquifer, 150° Celsius or more, in which quartz is controlling
the silica concentration.

Carbon dioxide is the predominant gas escaping from Fales Hot
Springs, the unnamed hot spring on the south side of Mono Lake, and the
two thermal springs near Bridgeport. Most of the other thermal springs
issue small amounts of gas consisting principally of nitrogen. Methane
is the major component of the gas escaping from the unnamed spring on
Pacha Island in Mono Lake.

The 6D and 6180 composition of most of the thermal waters are those
expected for local meteoric water which has undergone minor water-rock
reaction. The only exceptions are the hot spring on Paoha Island in
Mono Lake and perhaps the unnamed warm spring (south side of Mono Lake)
which issue mixtures of thermal water and saline lake water.



INTRODUCTION

Most hot springs in the central Sierra Nevada issue along the
eastern side of the range in the transitional area between the Sierra
Nevada and Basin and Range provinces. Long Valley, which is included
in this area, has potential as a source of geothermal energy but has
been discussed in other reports.(Werner and others, 1967; Mariner and
Willey, 1976). Waring (1965) lists 18 thermal springs in this part of
the Sierra Nevada; however, the thermal springs issuing on the north
and south sides of Mono Lake are not included in his listing. Fourteen
of these thermal springs were sampled to determine chemical, isotopic
(8D and §180), and gas composition.

Concentrations of silica, sodium, potassium, and calcium in thermal
waters have been shown to have a quantitative relationship to the
temperature at which the water was last in equilibrium with rock in the
thermal reservoir. Fournier and Rowe (1966) demonstrated the usefulness
of silica concentrations in estimating reservoir temperatures.

Arndérsson (1975) has shown that chalcedony usually controls the silica
concentration in systems at temperatures of less than 110°C (Celsius).
The proportions of sodium, potassium, and calcium were related to
reservoir temperature in Fournier and Truesdell (1973).

The composition of gases escaping from thermal springs has a
qualitative relationship to the temperature of the thermal aquifer
(Ellis, 1970). Relationships between deuterium and oxygen-18 are useful
in demonstrating mixing and determining the source water (Giggenbach,
1971). Chemical and isotope analyses of six cold waters from springs,
streams, or lakes are included to establish background data.

Wildcat geothermal wells have been drilled in the vicinity of Fales
Hot Springs, Travertine Hot Springs, and the unnamed hot springs north
and south of Mono Lake. These wells are relatively shallow and gener-
ally have bottom-hole temperatures that are less than the temperatures
of thermal springs near them. "Fales 1" near Fales Hot Springs was
126 m (meters) deep and had a bottom-hole temperature of 38°C.
"Bridgeport 1" near Travertine Hot Springs was 299 m deep and had a
bottom-hole temperature of 51°C. A 1,253-m well, "State PRC 4397.1"
no. 1, drilled near the warm spring at the south side of Mono Lake had
a reported temperature of 54°C. A 542-m well, "State PRC 4572.1" no.
23-1, near the hot spring at the north side of Mono Lake, had a reported
temperature of 58°C (Axtell, 1972; Koenig, 1970).

The primary consideration in the development of a geothermal system
is the temperature and type of thermal reservoir. The chemical composi-
tion of a thermal water provides the only indirect means of quantitatively
estimating the temperature of the thermal reservoir and determining the
type of thermal system. Except for Long Valley, which has recently been



studied by the U.S. Geological Survey (Mariner and Willey, 1976),
chemical data for thermal waters along the eastern side of the Sierra
Nevada are generally unavailable or of questionable quality. The data
and information in this report allow an initial estimate of tempera-
tures expected in thermal aquifers associated with these hot springs.

METHODS AND PROCEDURES

Water collected in a 4-liter stainless-steel pressure vessel at
points as close to the orifice of the springs or wells as possible was
immediately pressure-filtered through a 0.1 ym (micrometer) membrane
filter using compressed nitrogen as the pressure source. Filtered
water samples were stored in plastic bottles which had been acid-washed
to remove contaminants prior to use. Samples for heavy-metal analyses
were immediately acidified with concentrated nitric acid to pH 2 or
less to insure that the metals would remain in solution. Samples
collected for Group II metals were acidified with concentrated hydro-
chloric acid to pH 2. Ten ml (milliliters) of filtered sample was
diluted to 100 ml with distilled, deionized water to slow the poly-
merization of silica. Three samples of unfiltered water were collected
in 125-ml glass bottles with polyseal caps for analysis of deutérium
and oxygen-18. Samples of gases escaping from the springs were collected
in gas-tight glass syringes which were placed in a bottle of the native
water for transport to the laboratory.

Field determinations were made of water temperhture,.pﬁ, alkalinity,
ammonia, and sulfide. Extraction of aluminum and preservation of
mercury were also performed in the field. Detailed descriptions of our
sampling techniques are given by Presser and Barnes (1974). Water
temperatures were determined with a thermistor probe and a maximum-reading
mercury-in-glass thermometer. The pH was measured directly in the spring
using the method of Barnes (1964). An alkalinity titration was performed
immediately after the sample was withdrawn from the spring. Sulfide was
precipitated as zinc sulfide from the hot sample and titrated by the
iodometric method described by Brown, Skougstad, and Fishman (1970).
Mercury was stabilized for analysis in the laboratory by additiom of
2:1 H,S0,:HNO3, S-percent KMnO4(W/V), and 5-percent K2520g(W/V) .
Ammonia was determined by allowing the sample to cool to ambient temp-
erature, adding sodium hydroxide to raise the pH to approximately 12,
and measuring the dissolved ammonia with an ammonia specific-ion
electrode. Water samples for aluminum determination were complexed with
8-hydroxyquinoline, buffered at pH 8.3, and extracted with methyl
isobutyl ketone in the field as described by Barnmes (1975).

Silica, sodium, potassium, lithium, rubidium, cesium, calcium,
magnesium, cadmium, cobalt, copper, iron, nickel, lead, manganese, and
zinc were determined by direct aspiration on a double beam atomic



absorption spectrophotometer. Detection limits in micrograms per liter
(ug/L) for the heavy metals are: cadmium (10), cobalt (10), iron (20),
lead (100), manganese (20), nickel (20), copper (10), and zinc (10).
Boron, depending on the concentration range, was determined by either
the Dianthrimide or the Carmine method (Brown and others, 1970).
Fluoride was determined by specific-ion electrode using the method of

R. B. Barnes (U.S. Geological Survey, written commun., 1973). The
colorimetric Ferric Thiocyanate method (ASTM. 1974) was used for samples
containing less than 10 mg/L chloride. Higher chloride concentrations
were titrated by the Mohr method (Brown and others, 1970). Sulfate was
titrated by the Thorin method (Brown and others, 1970). Mercury was
determined by a flameless atomic absorption technique (U.S. Environmental
Protection Agency, 1971). The organic extract containing the aluminum
complex was analyzed by atomic absorption.

The CO,-equilibration method of Cohn and Urey (1938) and the uranium
technique o% Bigeleisen, Perlman, and Prosser (1952) were used in the
analysis for oxygen and hydrogen isotope ratios. Isotopic ratios of
180/160 and D/H in the water samples were measured on a modified Nier
double-collecting 6-inch 60° sector mass spectrometer.

Gases were analyzed by gas chromatography as soon as possible )
after returning to the laR?ratory, always within two weeks of collectiom.
Linde Molecular Sieve 13X~/ was used to separate and quantify (02 + Ar),

Np, and CH4, while Porapak Q was used for CH4; and COj. The gas-—chromatography
columns were operated at room temperature with helium as the carrier gas.
Gases were detected by thermal conductivity.

LOCATION OF SAMPLE SITES

The locations of the sampled thermal springs are shown on figure 1
and listed in table 1. A brief description of the spring, including an
estimate of the flow rate, is included in the table. Discharge from
Grovers and Keough hot springs is utilized in swimming pools. Although
not commercially utilized, Mono, Reds Meadow, Fales, and Brockway Springs,
and the unnamed springs on the north side of Mono Lake have also been
modified to supply baths, showers, or swimming pools. During the summer
and late fall of 1974 attempts were made to sample all the thermal
springs in the central Sierra Nevada which issue at temperatures of more
than 40°C. The unnamed warm spring at the south side of Mono Lake issues
at 33°C but was sampled because of its high rate of gas discharge. Fish
Creek Hot Springs, southeast of Devils Postpile National Monument, was
not sampled because of the inaccessible location, low flow rate, and
temperature reported in Waring (1965).

1/ The use of the brand name in this report is for identification
purposes only and does not imply endorsement by the U.S. Geological Survey.
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GEOLOGIC SEITING

The Sierra Nevada is a large, westward-tilted block of the earth's
crust which has a steep faulted escarpment on the east side. Sediments
of the Great Valley sequence overlap the range to the west and volcanic
flows bury the northern end of the range. The central Sierra Nevada is
principally Mesozoic granitic rock with capping remnants of upper
Tertiary to Quaternary volcanics extruded along faults of the eastern
escarpment (Bateman and Wahrhaftig, 1966). Generally, the hot springs
issue along faults in or near the volcanic rocks. References to
geologic mapping of the area around each hot spring are included in
table 2 along with the age and bedrock type.

Mono, Blayney Meadows, and Keough hot springs issue from granitic
rocks. However, young basalt flows in the vicinity of these springs
may be associated with the heat source. Basaltic flows of variable
thickness overlie granitic rock at Brockway, Buckeye, and Fales hot
springs. Travertine Hot Springs, The Hot Springs, and the unnamed thermal
springs at the north side of Mono Lake are associated with basaltic rock.
The unnamed hot springs on Paoha Island in Mono Lake are associated with
rhyolite and rhyodacite. Reds Meadow Hot Springs issue in an area under-
lain by rhyolite and basalt. Grovers Hot Springs issue from a fault
separating granite and andesite. Benton Hot Springs and the unnamed
hot springs on the south shore of Mono Lake issue from rhyolitic tuffs.

WATER COMPOSITION

Waters from the 14 hot springs display a large range in chemical
composition (table 3). The waters range from neutral to alkaline
(pH 6.4 to 9.3). Sodium is the major cation in all of the thermal
waters. The spring waters include Na-Cl, Na-HCO3, and Na-mixed anion
types ranging from fresh to very saline. By the classification of
Robinove, Langford, and Brookhart (1958) waters containing less than
1,000 mg/L (milligrams per liter) dissolved solids are fresh waters;
slightly saline waters range from 1,000 to 3,000 mg/L; moderately saline
waters range from 3,000 to 10,000 mg/L; very saline waters range from
10,000 to 35,000 mg/L; and briny waters contain more than 35,000 mg/L.
As the dissolved solids of the springs increase from 319 to 2,500 mg/L,
the pH decreases from 9.3 to 6.4. At higher concentrations of dissolved
solids, 4,000 to 26,000 mg/L, the pH increases from 6.7 to 9.3. The
unnamed spring on Paoha Island in Mono Lake, which has the highest
salinity and pH, issues a mixture of thermal and lake water. Several
of the more dilute, high—pH waters are unusual in that almost half of
the alkalinity is noncarbonate alkalinity. Benton, Keough, and
Brockway hot springs have pH values of 9.32, 8.80, and 8.73, respectively;
the percentage of noncarbonate alkalinity decreases in a similar manner,
51 percent, 41 percent, and 36 percent. The major noncarbonate
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constituents contributing to the total alkalinity in these waters is
the silica species, H35104 .

Trace—-constituent concentrations (table 4), are noteworthy only
for the high mercury concentration in water from the thermal spring on
Paoha Island (0.024 mg/L). Thermodynamic calculations using the computer
program SOLMNEQ (Kharaka and Barnes, 1973) indicate that most of the
mercury is complexed and unavailable for reaction with sulfide. The
only detectable ammonia occurs in the thermal springs issuing on Paoha
Island and on the north side of Mono Lake. Concentrations of aluminum
are relatively high in the most dilute thermal springs, Benton Hot
Springs (0.036 mg/L) and Keough (0.014 mg/L). Cadmium, cobalt, and
lead were not detected in any of the samples.

Major—constituent chemical analyses of six waters from cold springs,
streams, or lakes are given in table 5 to establish background data.
Chloride concentrations in Lake Tahoe, Senger Creek, Buck Creek, and an
unnamed creek east of Reds Meadow Hot Springs are all very low (<2.4 mg/L).
The creek near Reds Meadow Hot Springs and the cold spring on the south-
east shore of Mono Lake are exceptionally high in silica, 69 and 90 mg/L,
respectively. The remaining creeks and lakes have silica contents ranging
from 12 to 24 mg/L. Mono Lake, a briny Na-HCO3-C1-SO4 water, may be
mixing with the thermal springs which issue in the basin. The lack of
mixing between the lake water and the cold spring which issues on the
southeast side of the lake (<1 part per 1,000 based on chloride concen-
tration) may have resulted from self-sealing. Water from the high-
calcium cold spring may have reacted with the high-carbonate lake water
producing calcite and sealing the conduit.

Carbonate-rich springs such as Fales Hot Springs, the unnamed hot
spring on the south shore of Mono Lake, The Hot Springs, Travertine Hot
Springs, Buckeye Hot Spring, and Reds Meadow Hot Springs have high B/Cl
ratios (table 6) which are characteristic of springs issuing from
volcanic rocks. Reds Meadow Hot Springs, issuing from rhyolitic rock,
has the highest F/Cl ratio (1.3/1), whereas the other five springs have
the lowest F/Cl ratios and are probably associated with basaltic rocks.
The high Mg/Ca ratios at Travertine Hot Springs, The Hot Springs,

Buckeye Hot Spring, Fales Hot Springs, and the unnamed hot springs on

the north and south sides of Mono Lake probably also indicate association
with mafic rocks. The low Mg/Ca ratios for Keough, Benton, and Blayney
Meadows hot springs indicate association with granitic rocks which contain
almost no magnesium. Ratios of K/Na and Li/Na are very similar for these
springs. However, the K/Na ratio is several times larger than the Li/Na
ratio for The Hot Springs, Travertine, Fales, and the unnamed hot springs
at the north side of Mono Lake. Chloride is high relative to sulfate or
bicarbonate in springs issuing from granitic or rhyolitic rocks, but low
in springs associated with mafic rocks. Also the lower the dissolved
solids of the thermal waters, the higher the (vCa)/Na ratios. In the

10
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Sierra Nevada, changes in the (/Ca)/Na ratio may be a function of the
dissolved solids rather than the temperature of the aquifer.

GAS COMPOSITION

The composition of gases escaping from hot springs may give a
qualitative indication of the subsurface temperature. Springs associated
with high-temperature systems discharge carbon dioxide (Ellis, 1970)
whereas springs associated with low-temperature systems discharge
nitrogen (Bodvarsson, 1961). The springs which release nitrogen gener-
ally have a slow, sporadic rate of gas discharge whereas springs which
release a high proportion of carbon dioxide (80 percent or more) virtu-
ally effervesce.

Eleven of the 14 springs release sufficient gas to make sampling
feasible. Mono, Blayney Meadows, Benton, Buckeye, and Brockway hot
springs release principally nitrogen (table 7). Fales Hot Springs,
Travertine Hot Springs, The Hot Springs, and the unnamed hot springs on
the south shore of Mono Lake release principally carbon dioxide. Methane
is the major component of the gas from the unnamed springs on Paoha
Island; Brockway Hot Springs at the north end of Lake Tahoe release both
nitrogen (90 percent) and methane (8.1 percent). Grovers Hot Springs
release a mixture of nitrogen (62 percent) and carbon dioxide (36 percent).

SOLUTION-MINERAL EQUILIBRIUM

Consideration of solution-mineral equilibrium is important in
determining the validity of geothermal calculations. The composition
of thermal waters moving from a reservoir at depth to the surface may be
changed by precipitation or solution of minerals. These compositional
changes can have a pronounced effect on the estimated temperature from
the cation and silica geothermometers. Waters which are theoretically
in equilibrium with respect to calcite, aragonite, or amorphous silica
at the temperature of the spring are particularly suspect.

Results of thermodynamic calculations using the computer program
SOLMNEQ (Kharaka and Barnes, 1973) to determine the states of reaction
of the aqueous solution with respect to calcite, aragonite, chalcedony,
alpha~cristobalite, amorphous silica (opal), and fluorite are given in
table 8. Positive values calculated for the Gibbs free energy of
formation (AG) indicate that the water is supersaturated with respect to
the mineral, and that the mineral may precipitate. Equilibrium between
a mineral and water is theoretically possible whenever the free energy
of formation is zero (arbitrarily #0.2 kcal/mole for this discussion).

A negative free energy of formation indicates that the water is unsatur-
ated with respect to that mineral and the mineral would dissolve in
water.

14



Table 7.--Composition of gases issuing from the thermal springs

Percent by volume

Spring
02+Ar N2 CH4 C2H6 CO2
Alpine County
Grovers Hot Springs 1.4 62 0.3 <0.1 36

Fresno County

Mono Hot Springsil

a)-- ———— 1.7 95 1 <.1 2.7
(8) 1.9 95 <.1 <.1 2.2
Blayney Meadows Hot Springs 1.8 97 <.1 <.1 <0.1
Mono Couanty
Benton Hot Springs-- 2.1 95 <.1 <.1 .2
The Hot Springs -— 1.1 3 <.1 <.1 85
Travertine Hot Springs : 0.4 1.1 <.1 <.1l 93
Buckeye Hot Spring -~ 3.9 91 <.1 <.1 4.3
Unnamed hot springs (Paoha Island, 1.3 25 70 2.8 .3
Mono Lake)
Unnamed hot spring (S. Shore,Mono Lake)--- .5 1.3 <.1 <.1 97
Fales Hot Springs 1.1 5.8 <.l <.1 92
Placer County
Brockway Hot Springs 1.9 90 8.1 <.1 .2

é/(A)From spring on west end of complex. (B)From concrete tank near road at east
side of complex.

15



Table 8.--States of reactions with respect to calcite, aragonite, chalcedony, alpha-cristobalite and fluorit

[Magnitude of AG indicates degree of departure from equilibrium in kilocalories; plus values indicate supe

saturation, minus values indicate unsaturation.]

Gibbs free energy of formation. AG (kcal)

Spring
Alpha- 1
Calcite Aragonite Chalcedony cristobalite Fluorite~

Alpine County

Grovers Hot Springs -0,16 -0.26 +0.59 +0,29 =0.46
Fresno County

Mono Hot Springs -.26 -.32 +.52 +.25 -.23

Blayney Meadows Hot Springs———------ -.17 -.24 +¢39 +.12 -.43

Inyo County

Keough Hot Springa -.19 - .26 +,02 ~-.26 -.17
Madera County

Reds Meadow Hot Springs +.62 +,55 +1.06 +.79 +.14
Mono County

Benton Hot Springs ———— -.20 -.29 -.17 -.46 -1.60

The Hot Springs +,56 +,50 +.62 +.35 +.,26

Travertine Hot Springs +.45 +.35 +.53 +.24 -1

Buckeye Hot Spring -.03 -.06 +.44 +.15 +,12

Unnamed hot springs (Pacha Island, -.50 -.63 +.03 -.28 -1,66

Mono Lake)

Unnamed hot spring (S. Shore ,Mono Lake) -.04 -.10 +1.12 +.86 -1,91

Unnamed hot springs (N. Shore ,Mono Lake) +.40 +.30 +.36 +,06 -.65

Fales Hot Springs -.27 -.36 +.72 +.43 -.33
Placer County

Brockway Hot Springs +.02 -.05 +,23 -.03 -1.32

1/ Fluorite values based on 10

=10.57

at 25° (Ksp) given by Smyshlyaev and Edeleva (1962).
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Equilibrium with calcite or aragonite is possible at Brockway Hot
Springs, the unnamed hot springs on the south shore of Mono Lake, Grovers
Hot Springs, and Buckeye Hot Spring. Supersaturation with respect to
calcite and aragonite occurs at Reds Meadow Hot Springs, The Hot Springs,
Travertine Hot Springs, and the unnamed hot spring on the north side of
Mono Lake. Loss of calcium is possible from these springs; however,
only The Hot Springs and Travertine Hot Springs have travertine deposits.
Buckeye, Reds Meadow, and Keough hot springs are theoretically in
equilibrium or supersaturated with both calcite and fluorite.

Equilibrium between spring water and chalcedony is possible at
Keough Hot Springs, Benton Hot Springs, and the unnamed spring on Paoha
Island. Reds Meadow Hot Springs and the unnamed hot spring at the
south shore of Mono Lake are supersaturated with respect to amorphous
silica at the spring temperature. However, none of the springs issue
through silica deposits similar to the travertine deposits.

ISOTOPES

The isotopic compositions of the hot spring waters are given in
table 9. The data are expressed in the S-notation,

R - R
5 = |—2—5td1 103 Ghere R = (D/H) or (*20/2%0)  of the
X Rstd X X x

sample and RS d is the corresponding ratio for Standard Mean Ocean Water
(SMOW). The fsotopic relationship of these waters to the meteoric water
line defined by Craig (1961), 6D = 85180 + 10, is shown on figure 2.

Data for most of the thermal waters plot very close to the meteoric

water line. Shifts to more positive 6180 values are attributed to oxygen
exchange with the isotopically heavier country rock (Craig and others,
1956) .

All of the thermal springs except the unnamed hot spring on Paoha
Island have deuterium compositions similar to fresh water in the same
area (table 10). Thé spring on Paoha Island probably issues a mixture
of water from Mono Lake and water similar to that issuing from the
unnamed hot spring on the north side of the lake. Another possibility
is that a cold water similar in composition to the cold spring at the
south side of the lake mixes with lake water before it circulates
through the thermal reservoir. The other thermal spring in the Momno
Basin has a small shift in 8D and 6180 relative to the cold spring which
issues near it. Its composition could result from mixing of lake and
cold spring water, or less likely, a slightly different source water.
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Table 9.--Deuterium and 6xygen-18 composition of thermal waters;/

[Delta values are reported relative to SMOW]

Spring name

Parts per mil

Oxygen/

&D 6180  snife2
Alpine County
Grovers Hot Springs-- ~115.4 -15.62  +0.06
Fresno County
Mono Hot Springs -118.4 -16.05 0
Blayney Meadows Hot Springs—- -121.3 -16.21 +.20
Inyo Coﬁnty
Keough Hot Springs-- -137.4 -17.85 +.58
Madera County
Reds Meadow Hot Springs—— -—- =111.2 -15.18 -.03
Mono County
Benton Hot Springs -135.5 ~-17.46 +.73
The Hot Springs -137.3 ~16.29 +2.12
Travertine Hot Springs—- -139.3 ~16.64 +2.02
Buckeye Hot Springs -137.9 -17.66 +.83
Unnamed hot springs (Paoha Island, ~-99.5 -10.44 +3.25
Mono Lake) o
Unnamed hot spring (S. Shore, Mono Lake)---- -126.0 -16.91 +.09
Unnamed hot springs (N. Shore, Mono Lake)--- -126.9 -15.69 +1.42
Fales Hot Springs -132.8 ~17.46 +.39
Placer County
Brockway Hot Springs -96.3 -11.50 +1.79

1/ ' .
~ Analyses by L. Adami and S. Grigg, U.S. Geological Survey.

2/ 18

= Shift in 670 relative to meteoric water,based on the equation

5D=856180+10.
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8D (%)

L L] T L T T T T T
-40p 4
Mono Lake
-50pF -
Lake Tahoe
-60F ° / -
By de] % -
-80p -
-90} -
.Brockway Hot Springs
/
-100fF ® Unnamed hot springs (Paoha Island) -
-l1or Reds Meadow Hot Springs 7
Grovers Hot Springs
/
l”ono Hot Springs
-120F / -
’ Blayney'Meadows Hot Springs
/
nnamed hot springs (S.side Mono L.ake)
&Unnamed hot springs (N.side MonoL ake)
-130l Cold spring (S. side Mono Lake) A
o Fales Hot Springs
.Bonton Hot Springs
Buckeye s° e The Hot Springs
-140F Kea Hot ® Travertine Hot Springs -1
Springs
(1 [ i L 2 I A A Y
-18 -6 -14 -12 -10 18 -8 -6 -4 -2
. 6§ 0 (%)

Figure 2.~-Plot of 6D versus 6180 in thermal and selected nonthermal waters from the Sierra Nevada. The "tie lines" connecting
the compositions of cold and thermal waters around Mono Lake with the composition of water from the lake indicate that the
thermal springs on Pacha Island issue a mixture of water of undetermined source and saline water from Mono Lake.
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Table 10.--Isotopic compositions of selected
nonthermal waters in the Sierra Nevada

[Delta values are reported relative to SMOW]

Parts per mil

Source Location
8D st8o

Cold spring-----—--  Southeast shore of Mono Lake, -128.3 -17.34
E4sec. 16, T. 1N., R. 27E.

Mono Lake-—==——m— SE%sec. 17, T. 1IN., R. 27E. -47.5 -1.4

Lake Tahoe~———=——- Stateline Point, -59.3 -5.49
NE%sec. 30, T. 16N., R. 18E.

Buck Creek——-—————- Creek near Grover Hot Springs, -112.8 -15.38
NW4sec. 24, T. 10N., R. 19E.

Unnamed creek-———-- Creek east of Reds Meadow Hot Springs, -110.3 -15.07
37°37'N. by 119°4'W. '

Unnamed creek-----  Creek near Mono Hot Springs, - =-114.7 -15.42

37°20'N. by 119°1'W.
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The other hot spring where extensive mixing could be expected 1s
Brockway Hot Springs which issues in the edge of Lake Tahoe. Fresh
waters in the Tahoe Basin range in 6D from -90 to -105 (L. D. White,
U.S. Geological Survey, unpub. data, 1976). The isotopic composition
of the hot spring (6D = -96.3 and 6180 = -11.50) and local fresh

waters are approximately the same; thus large scale mixing with water
from Lake Tahoe (8D = -59.3 and 6180 = -5.49) does not appear plausible.
Other springs could also issue mixed waters hut the fresh-water compon-
ent must have approximately the same 6D as the thermal spring water.

GEOTHERMOMETRY

Five basic assumptions must be fulfilled before the silica and
Na~K-Ca geothermometers can be used to estimate quantitatively the
temperature in the associated thermal aquifer (Fournier and others, 1974).
These assumptions are listed below.

1. Temperature dependent reactions at depth.

2. An adequate supply of the constituents used for geothermometry.
3. Water-rock equilibrium at depth.

4. Negligible reequilibration as the water flows to the surface.

5. No dilution or mixing of hot or cold waters.

The last two assumptions are violated in some of the sampled springs.
Mixing, which is possible for many of the thermal springs, leads to low
aquifer-temperature estimates from the silica geothermometer. Isotope-
chloride relationships indicate that several springs in Mono Basin issue
mixtures of thermal and surface waters. Reequilibration of water with
its environment probably affects the Na-K-Ca geothermometer more often
than the silica geothermometer. Loss of calcium due to precipitation
of calcium carbonate is probably the major cause of excessively high
temperature estimates from the Na-K-Ca geothermometer. Another problem
is encountered with the Na-K-Ca geothermometer when magnesium makes up
a significant part of the cation composition. An excessively high
temperature is indicated by the Na-K-Ca geothermometer because it was
derived assuming that variations in magnesium concentrations do not
affect the proportions of sodium, potassium, and calcium.

The cation (Na-K-Ca) and silica geothermometers indicate that Mono,
Blayney Meadows, Keough, Reds Meadow, and Benton hot springs are
associated with low-temperature (<90°C) thermal systems (table 11).
Dilution of Mono Hot Springs water with a surface water of high silica
concentration, such as the creek above Mono Hot Springs (table 5), may
explain the low surface temperature but high silica content of the
spring. The creek apparently derives some of its water from warm seeps
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which issue uphill from the main Mono Hot Springs area. The low flow
rate of Reds Meadow Hot Springs makes interpretation of the geothermo-
meters difficult. Equilibrium with amorphous silica (opal) at the
spring temperature (66°C) may be the reason for the high silica content
of the water. The Na-K-Ca geothermometer also has a low value (64°C).
If dissociation of silica with pH is considered at Benton Hot Springs
(pH 9.3) an aquifer temperature of 45°C can be calculated based on
equilibrium with chalcedony. This is less than the spring temperature,
and may indicate mixing of thermal water originally in equilibrium with
chalcedony and a fresh water of low silica concentration. Blayney
Meadows Hot Springs issue water which may be in equilibrium with alpha-
cristobalite at 52°C or chalcedony at 70°C; the cation geothermometer
indicates an aquifer temperature of 57°C.

Brockway Hot Springs is difficult to interpret because of the low
flow rate and the possible equilibrium with alpha-cristobalite and
calcite. The Na-K-Ca geothermometer indicates temperatures of less than
100°C, as does the chalcedony geothermometer. The low flow rates of
Buckeye Hot Spring, Travertine Hot Springs, and The Hot Springs make
the geothermometers only qualitative indicators of temperature. All
three issue water which is saturated with respect to calcite; however,
only Travertine Hot Springs and The Hot Springs issue from a tufa
deposit. Travertine Hot Springs and The Hot Springs also contain
appreciable magnesium (18 mg/L) which may interfere with the Na-K-Ca
geothermometer. These springs may be associated with a reservoir which
contains water at a temperature of 90-110°C. The low flow rates may
have resulted in conductive cooling to moderate temperatures (40-70°C).
Grovers Hot Springs may be a similar case where water of 110°C comes
from a low-temperature reservoir and cools by conduction to the spring
temperature.

Fales Hot Springs and the unnamed warm spring on the south shore of
Mono Lake probably issue mixed waters; temperatures of 150°C or more may
be reasonable for the thermal aquifer feeding Fales Hot Springs. Both
springs release such large quantities of carbon dioxide that the water
surfaces appear to effervesce. The Na-K-Ca geothermometer must be
considered unreliable because of the large magnesium concentrations
(10 and 61 mg/L, respectively). The warm spring on the south side of
Mono Lake may be a mixture of calcium-rich water, similar to that issuing
from nearby tufa mounds, with carbonate-rich lake waters. Mixing of
these waters would result in precipitation of calcium carbonate and some
heating of the water due to the spontaneous reaction. Minor variations
in the cation and anion ratios relative to the mixture of lake and cold
spring waters could be due to the effects of membrane filtration of the
lake water prior to mixing. The unnamed hot spring on the north side of
Mono Lake is saturated with respect to calcite and is relatively dilute.
It does not appear to be a mixture and therefore is probably associated
with a low-temperature aquifer. The unnamed hot spring on Paoha Island
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may be associated with a high temperature system, 186°C or more, assuming
equilibrium with quartz. However, the possible equilibrium with chalce-
dony at the spring temperature (83°C), and the methane-rich gas escaping
from the spring make a lower temperature system seem more probable. The
Na-K-Ca geothermometer was not calculated for the hot spring on Paoha
Island because of the large negative value for log YCa/Na.

Pafes (1975) suggested that the Na-K-Ca geothermometer should be
corrected for the pressure of carbon dioxide (Pgg,) in hot spring waters
which issue at temperatures of less than 75°C and have Pcg, of more than
10~4 atm. Taking this correction into considerationm, aqui%er tempera-
tures estimated for 10 of the 11 hot springs, which have a temperature
and Pco2 within the suggested range, are 9° to 38°C below the measured
spring temperatures. Although one spring had an estimated aquifer
temperature 27°C hotter than the measured water temperature, the
"COg-corrected Na-K-Ca geothermometer" did not produce viable results
with our data. A previous chemical analysis of Grovers Hot Spring was
part of the data used to establish the original correction factor. The
"COg-corrected Na-K-Ca geothermometer" calculated from our data indicated
an aquifer temperature 32°C less than the measured temperature of the
spring water.

SUMMARY

The 14 thermal springs sampled for chemical and isotopic analyses
are located in the central Sierra Nevada between Lake Tahoe and Mt.
Whitney. They issue waters ranging from near neutral to alkaline
(pH 6.4 to 9.3) at temperatures from 33° to 83°C. These thermal waters
are Na-Cl, Na-HCOj, or Na-mixed anion in character and range from fresh
(319 mg/L) to very saline (26,342 mg/L). Silica concentrations range
from 44 to 220 mg/L. Thermal springs with high bicarbonate concentrations
have the highest Mg/Ca, K/Na, and B/Cl ratios but the lowest /Ca/Na and
Cl1/HCO3 ratios. They are generally saturated with respect to calcite but
not fluorite. Reds Meadow, Buckeye, and Keough are the only hot springs
theoretically saturated with respect to both calcite and fluorite.

Carbon dioxide is the major gas escaping from Fales Hot Springs,
the unnamed hot spring on the south side of Mono Lake, Travertine Hot
Springs, and The Hot Springs. Gas discharges at relatively constant
high rates from Fales Hot Springs and the unnamed hot spring at the
south side of Mono Lake, whereas the discharge rate at Travertine Hot
Springs and The Hot Springs is low and sporadic. Grovers Hot Springs
sporadically discharge a 2 to 1 mixture of nitrogen and carbon dioxide
at a very low rate. The springs on Paoha Island discharge a mixture of
methane (70 percent) and nitrogen (25 percent). All other springs with
collectable quantities of gas sporadically discharge nitrogen at low rates.

Keough, Blayney Meadows, Mono, Benton, Reds Meadow, and Brockway
hot springs are probably associated with low-temperature systems (less
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than 90°C). Chalcedony is apparently controlling the silica concentra-
tion in these low-temperature systems except at Reds Meadows Hot Springs
where amorphous silica (opal) may be the controlling silica phase.
Grovers Hot Springs, The Hot Springs, Travertine Hot Springs, Buckeye
Hot Springs, and the unnamed hot springs on the north and south sides

of Mono Lake have a large disparity between the aquifer temperatures
estimated from the chalcedony and Na-K-Ca geothermometers. These
springs are probably associated with low-temperature aquifers (less

than 110°C) in which the silica concentration is being controlled by the
solubility of chalcedony. The Na-K-Ca geothcrmometer is of questionable
value for these springs because the waters are in equilibrium or super-
saturated with respect to calcium carbonate at the spring temperature.
Fales Hot Springs may be a mixed water from a high-temperature aquifer
(150°C or more) because it has a large rate of flow, releases a large
volume of carbon dioxide, and has aquifer temperatures estimated from
the Na—K-Ca and quartz geothermometers which are well above the spring
temperature.

Mixing is also suggested for the unnamed hot spring on Paoha Island
in Mono Lake and at the south shore of Mono Lake where lake water and
thermal or "fresh" water apparently mix before the fluid comes to the
surface. :
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