(200) R290 No.77-862

UNITED STATES (DEPARTMENT OF THE INTERIOR)

GEOLOGICAL SURVEY. [Reports Open the series]

Preliminary geologic map and physical properties for the Englewood quadrangle,

Denver, Arapahoe, and Adams Counties, Colorado

Tunal

By Ralph R. Shroba

Open-file report 77-862

This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey standards and nomenclature.

22200

CORRELATION OF MAP UNITS

DESCRIPTION OF MAP UNITS [Surficial deposits not mapped where <1 m thick]

- af ARTIFICIAL FILL (UPPER HOLOCENE) -- Manmade deposits composed of varying amounts of earth, rock fragments, and refuse. Includes embankments, dams, and other engineered fills placed at optimum moisture and maximum density, compacted landfills, and uncompacted dump fill and spoil banks along Only mapped where visible in the irrigation ditches. field or recognizable on aerial photographs from 1949, 1963, or 1971. Thin, discontinuous fills that cover much of downtown Denver, Lowry Air Force Base, and low-lying areas along the South Platte River and Cherry Creek are not shown. The large areas of artificial fill on the west side of the South Platte River and along the north side of Cherry Creek are the sites of mined-out sand and gravel pits that were reclaimed for commercial, industrial, and recreational uses. Poorly compacted fills are susceptible to differential settlement and slow consolidation with time and are unsuitable sites for most structures. Landfills are potential sources of ground-water pollution when placed in permeable material. Unvented landfills may contain small amounts of methane and other gases that are produced by the decomposition of organic substances. Thickness generally <3 m; some embankments and earth dams >6 m
- Qc COLLUVIUM (HOLOCENE TO PLEISTOCENE) -- Light-brown to yellowish-brown, slightly calcareous, pebbly to cobbly clayey sandy silt to silty sand. Usually occurs on slopes steeper than about 4 percent in the southern part of the quadrangle. Grades upslope into loess and downslope into Piney Creek Alluvium; overlies the Denver Formation. Produces low to moderate swelling pressures when wetted. Thickness <3 m; frequently <1.5 m
- Qes EOLIAN SAND (UPPER HOLOCENE TO UPPER PLEISTOCENE)--Light-yellowish brown to yellowish-brown, silty very fine to very coarse sand. Grain size decreases from northwest to southeast. The upper 0.3-0.6 m is slightly finer grained than the lower part. Noncalcareous in the upper 1.2 m and very slightly calcareous to a depth of >4.5 m. Covers large areas on the east sides of major streams. Partially buries old barbed wire fences in the area south of Windsor Lake. Sand dunes and deflation basins are vegetated and have a northwest-southeast orientation. Low to high consolidation and very low shear strength; nonexpansive. Thickness usually <6 m; locally >9 m
- Q1 LOESS (PLEISTOCENE)--Yellowish-brown, nonstratified, clayey sandy silt. Slightly more clayey and noncalcareous in the

upper 0.6 m. Contains numerous small carbonate nodules and veinlets to a depth of 1.2 m and slightly calcareous to a depth of >3 m. Covers extensive areas in the eastern two-thirds of the quadrangle. Locally may include deposits of younger sandy silt in areas adjacent to eolian sand. Moderate to high shear strength when dry and low to very high consolidation when wet. Produces low to moderate swelling pressures when wetted. Thickness <7.5 m; frequently <4.5 m

- Qpu UNDIFFERENTIATED ALLUVIUM (UPPER HOLOCENE)--Deposits of post-Piney Creek and Piney Creek Alluviums along Cherry Creek, west of Glendale, where units are too extensively modified by urban development to permit mapping. Includes large areas of artificial fill along Cherry Creek
- Qpp POST-PINEY CREEK ALLUVIUM (UPPER HOLOCENE)--Light-gray to light-brown, noncalcareous, clean to slightly silty pebbly sand interbedded with sandy silt. Forms channel, flood plain, and low terraces <5 m above the South Platte River and <3 m above Cherry Creek. Subject to periodic flooding. Thickness about 1.5-3 m
- PINEY CREEK ALLUVIUM (UPPER HOLOCENE) -- Light-gray to dark Qp grayish-brown, humic, slightly calcareous, sandy silt and clay overlying noncalcareous, clean to silty pebbly sand interbedded with sandy silt along major streams and sandy clay to silty sand along intermittent streams. The upper 1-1.5 m of the alluvium along major streams is finer grained and darker colored than the lower part. terraces about 6-8 m above the South Platte River, 3-5 m above Cherry Creek, and <3 m above Little Dry Creek. Includes thin deposits of post-Piney Creek alluvium along intermittent streams and small alluvial fans composed of clean very fine to very coarse sand along the east side of Cherry Creek near Iliff Avenue. Generally not subject to flooding along major streams but locally covered by periodic floods in tributary drainages. 1.5-4.5 m along the South Platte River and <4.5 m along Cherry Creek and Little Dry Creek
- Qb BROADWAY ALLUVIUM (PLEISTOCENE)--Light-brown, noncalcareous, clean to slightly silty pebbly sand interbedded with sandy silt to silty sand along the South Platte River and silty pebbly sand interbedded with sandy silt along Cherry Creek. Slightly finer grained in the upper meter. Forms terraces about 12-14 m above the South Platte River, 6 m above Cherry Creek, and 5 m above Little Dry Creek. Partially buried by eolian sand in places along the South Platte River and Cherry Creek and completely buried by eolian sand along Little Dry Creek. Thickness 6-9 m along

the South Platte River in Denver's central business district and probably <9 m along Cherry Creek and Little Dry Creek

- Qlo
 LOUVIERS ALLUVIUM (PLEISTOCENE)--Light-brown, clean pebbly sand interbedded with clayey silt to silty sand and pebble to cobble gravel along the South Platte River and clean pebbly sand interbedded with sandy silt to silty sand along Cherry Creek. Forms terraces approximately 11-14 m above Cherry Creek. Buried beneath younger alluvium and eolian deposits. Exposed along Leetsdale Drive between South Monaco and South Quebec Streets. Maximum thickness about 4.5 m in terraces along Cherry Creek, and 15 m in the valleys of the South Platte River and Cherry Creek
- Qs SLOCUM ALLUVIUM (PLEISTOCENE)—Light-brown to light reddish-brown, clean pebbly sand interbedded with sandy silt to silty sand and pebble to cobble gravel. The upper half of the deposit is a pebbly sandy silt that is strongly impregnated by calcium carbonate. Biotite-bearing granitic clasts are weathered. South of Sullivan, forms two terrace or pediment remnants about 23 and 34 m above Cherry Creek. The lower alluvium and portions of the upper alluvium are concealed beneath about 1.5-3 m of loess. Thickness about 3-5 m
- Qv VERDOS ALLUVIUM (PLEISTOCENE)--Reddish-brown, silty pebbly sand interbedded with pebble to cobble gravel. Caps small hill about 45 m above Cherry Creek near the intersection of East Hampden Avenue and South Yosemite Street. In places buried by as much as 5 m of loess. Thickness about 1.5-5 m
- TKd DENVER FORMATION (PALEOCENE AND UPPER CRETACEOUS)--Olive-gray to light-gray, silty claystone and sandy siltstone interbedded with thin, lenticular beds of olive-yellow to light-brown, tuffaceous sandstone and andesitic pebble conglomerate. Occurs within 1.5-3 m of the surface in most of the southeastern part of the quadrangle. Sandstones and finer grained units contain varying amounts of montmorillonitic clays that produce low to very high swelling pressures when wetted. Thickness ranges from about 90 m in downtown Denver to about 300 m in the southeast corner of the quadrangle (Romero, 1976)

	CONTACTContacts in the area bounded by South Broadway on the east and East Evans Avenue on the south are approximately located
	BURIED TERRACE SCARPEastern margin of the Broadway Alluvium along the South Platte River, Cherry Creek, and Little Dry Creek where buried by eolian sand. Position determined on the basis of topographic expression and subsurface data
	BURIED VALLEYApproximate location of inferred post-Slocum- pre-Louviers course of Cherry Creek. As much as 26 m of clean pebbly sand beneath 1.5-6 m of eolian material. Delineated on the basis of well logs and test hole data
5	CRESTS OF SAND DUNES
0	DEFLATION BASINSShallow closed depressions formed by wind erosion
▲ ¹⁵	LOCATION OF ABBREVIATED COLUMNAR SECTIONS—Grain—size distribution and thickness, in meters, of surficial materials and lithology of bedrock in test holes and water wells described in Table 3

INDEX MAP--Showing location of
 the Englewood quadrangle and
 recently published U.S. Geol.
 Survey geologic maps

GRAIN-SIZE DISTRIBUTION

(Wentworth system, modified from Schwochow and others, 1974)

SILT			SAND						
AND		VERY FINE AND FINE	MEDIUM	COARSE AND VERY COARSE	GRANULE	PEBBLE	COBBLE	BOULDER	
0	0.002	5 0.0	098 0.0	020 0.	 078 0. 	 156 	2.5	10	Inches
0	0.062	5 0.	25 0 	.5	2	 	64 	256	Millimeters
	230) 6	0] 35 1	0	5	2 ¹ 2		U.S. Sieve No.

ENGLISH EQUIVALENTS

$$1 m = 3.28 ft$$

$$1 \text{ kg/m}^3 = 0.062 \text{ lb/ft}^3$$

$$1 \text{ kN/m}^2 = 20.88 \text{ 1b/ft}^2$$

METRIC EQUIVALENTS

$$1 \text{ lb/ft}^3 = 16.02 \text{ kg/m}^3$$

$$1 \text{ lb/ft}^2 = 0.048 \text{ kN/m}^2$$

Table 1.--Crain-size distribution, plasticity characteristics, and Unitied Soil Glassification of Surficial and Soutors under

[NA, not applicable; . ., no data; NP, nonplastic]

	MAP UNITS	DRAINAGE BASIN	OF TESTED	STATISTICAL MEASURES			GR	AIN-SIZE D		ON			OF TESTED	СН	PLASTICITY ARACTERISTIC	s	SOURCE	DIL VIION
			NUMBER OF SAFTLES TE		SILT	VERY FINE	SAND MEDIUM	COARSE AND VERY	GRANULE	CRAVEL PEBBLE	COBBLE	SOURCE OF DATA1/	NUMBER OF SAMPLES TO	LIQUID	PLASTIC	PLASTICITA	DATA	UNIFIED SOIL
1		SOUTH	1	NA	CLAY 40	FINE 44	11	COARSE	1	0	0	CDH	1	29	18	11	CDH	sc
Qpp	POST-PINEY CREEK	PLATTE				,	9	36	20	8		RRS	1		NP		RRS	SW
	ALLUVIUN	CREEK	1	NA		,		30	1.0		<u> </u>	Id.5					1777	
	*	SOUTH PLATTE RIVER	1	NA	58	20	6	8	3	5	0	CDH	1	43	18	25	CDH	CL
				RANGE	7-32	7-56	7-20	11-34	1-21	0-24	0				14.7			SH,SC
Qp PINEY CREE	PINEY CREEK	CHERRY	*	MEAN STANDARD DEVIATION	20 11.2	30 21.0	5.4	10.6	9.1	11.0	0	DSD	0	::		. ;	DSD	SH NA
	ALLUVIUM			RANGE	54-82	12-32	2-9	2-9	0-3	0	0			36-47	17-23	18-27		CL
		GOLDSMITH GULCH	6	MEAN STANDARD DEVIATION	68	6,9	2.8	2.6	1.2	0	0	CDH .	6	6.6	20	8.9	CDH	CL NA
				RANGE	3-48	19-46	10-44	4-56	0-5	0-1	0	CDII		20-39	NP-26	NP-23	CDH	SP,SM,
Qes	EOLIAN SAND	NA	37	MEAN STANDARD DEVIATION	23 13.6	33 9.3	9.7	9.4	1 1,5	0.2	0	CGS DSD	25	26 4.7	NP NA	NA NA	DCPWD	SM NA
	ſ	SOUTH		RANGE	31-52	14-39	8-14	6-22	1-10	1-8	0			22-41	NP-23	NP-18		SM,SC.
Qb	BROADUAY ALLUVILLE COVESE CALINE CALI	PLATTE RIVER	6	· MEAN STANDARD DEVIATION	43 8.5	28 8.5	2.3	6.1	3.5	2.9	0	DSD	5	7.2	4.6	4.3	DSD	SC NA
		SOUTH		RANGE	2-11	4-20	5-33	26-1-1	. 10-36	2-36	0				NP			SP,SM
		PLATTE RIVER	16	MEAN STANDARD DEVIATION	2.1	4.4	7.5	38 6.8	8.3	13	0	DSD	16		NP NA	::	DSD	SP NA
Qc	COLLUVIUM	NA	2	RANGE	70-72	12-22	4-6	3-7	1-3	0	0	ACPD CDH	4	45-49	18-27	21-28	ACPD CCSD CDH	CL
	*			RANGE	52-85	9-34	1-10	1-15	0-5	0-2	0			22-56	NP-30	NP-35	СОН	CL,CH
d1	LOESS	HA	22	MEAN STANDARD DEVIATION	9.9	6.0	2.4	3.6	1.7	0.5	0	DSD	41	9.3	3.7	7.9	DSD	CL NA
Qlo	LOUVIERS	SOUTH PLATIE RIVER	1	NA.	2	4	7	22	11	50	4	CDH	1		HР		СОН	CP
	ALLUVIUM	CHERRY CREEK	1	NA.	4	7	7	43	21.	~ 18	. 0	CDH	1	18	NP	NA	СОН	sw
Qs	SLOCUM ALLUVIUM	CHERRY	1	NA		9	11	46	24	10	0	RRS	1		NP		RRS	sw
d.	VERDOS ALLUVIUM	CHERRY	1	NA .	14	12	8	52	13	1	0	CDH	1	37	22	15	СОН	SC
		,		RANGE	87-100	0-11	0-3	0-2	0	0	0			49-99	23-40	24-59	ACPD	CL,CH
	CLAYSTONE	NA	15	MEAN	95	4	1	0	0	0	0	СОН	17	64	4.5	37 8.9	CON	CH NA
	KOLL			STANDARD DEVIATION	5.8	4.6	1.1	0.7	0	0	0			12.6		9-31		CL,CH
TKd	ORKY			RANGE	58-82	14-34	3-8	1-13	0	0	0	СДН	5	32-53 45	21-26	22	CDH	CL
TKA	BENVER TO BENVER	NA	6	MEAN STANDARD DEVIATION	10.0	7.1	2.7	6.1	0	0	o	DSD		8.2	1.9	8.2	DSD	NA
	S. D. Was 1			RANGE	11-22	14-49	8-30	18-32	1-26	0-2	0	1000	2	35 NA	NP-29 NA	NP-7 NA	CDH	SH SH
	SANDSTONE	NA		MEAN STANDARD	18	30 14.6	9.3	6.6	13.0	1.0	0	CDH	•	NA.	NA.	NA		NA

^{1/} Abbreviations explained in table 4.

Table 2 .- - Dry density, moisture content, volume change, swelling pressure, and shear strength of selected surficial and bedrock units [NA, not applicable; . ., no data]

	MA	AP UNITS	120	STATISTICAL	E	DRY		HOISTURE		VOLUME	CHANGE		SWE	LLING	SOURCE	-8 -		SHEAR STR	ENGTH													
	-		SAPPLES TESTED	MEASURES	SAMPLE DEPT (METERS)	DENSITY		CONTENT (PERCENT)		ONSOLIDATIO		SWELL	PRE	ESSURE	OF DATAS/	BER PLES STED	SAMPLE DEPTH (METERS)		FINED RESSI VE ENGTH	SOUR OF DAT												
			SAM		SAM	kg/m ³	1b/ft3		INITIAL (PERCENT)	FINAL (PERCENT)	TOTAL (PERCENT)	(PERCENT)	kN/m²	1b/ft ²				kH/m²	1b/ft ²													
			1	RANGE	0.9-2.7	1,586-1,826	99-114	5-22	0.1-2.5	0-1.8	0.2-2.5	0	0	0	CCSD	11	1.2	30-45	600-900													
Qes	2	EOLIAN SAND	23	MEAN	1.2	1,698	106	12	0.7	0.5	1.2	0	0	0	ccs	3	1.2	35	700	DS												
				STANDARD DEVIATION	0.6	117	7.3	6.4	0.5	0.5	0.7	0	0	0	DSD		0	10	200													
				RANGE	0.6-2.7	1,458-1,714	91-107	7-23	0.3-1.4	0	0.3-1.4	0-4.0	0-190	0-4,000	ACPD																	
Qc		COLLUVIUM	8	MEAN	1.2	1,602	100	15	0.7	0	0.7	1.5	60	1,300	CCSD	0																
				STANDARD DEVIATION	0.7	79	4.9	4.4	0.4	0	0.4	1.1	70	1,500	CGS DSD		• •		• •													
				RANGE	0.9-2.7	1,346-1,842	84-115	1/6-27	0.1-1.8	0-4.5	0.2-5.3	0-3.8	0-170	0-3,500	ACPD		0.9-5.5	1/80-720	1/1,700-15,000	CCSD												
Q1	LOESS		48	MEAN	1.8	1,618	101	15	0.7	0.4	1.1	0.9	25	500	CCSD	26	1.8	310	6,500	DSD												
				STANDARD DEVIATION	0.8	144	. 9.0"	- 5.0	0.4	0.9	1.0	1.2	40	900	LAFS		1.1	185	3,900	LATS												
										-						RANGE	0.9=4.3	1,474-1,842	92-115	14-26	0.2-1.3	0	0.2-1.3	1.3-10.1	140-930	2,900-19,500	ACPD		1.8-18.0	2-3/160-1,550	2.3/3,300-32,300	ACPD
		CLAYSTONE	18	MEAN	2.1	1,682	105	20	0.7	0	0.7	4.0	310	6,500	CCSD	38	8.2	615	12,800	CCSD												
	HOI			STANDARD DEVIATION	0.9	90	5.6	3.3	0.4	0	0.4	2.2	240	5,100	ccs		3.4	370	7,700	CDH RTD												
	RMAT TON			RANGE	1.8-7.0	1,378-1,874	86-117	12-30	0.1-1.8	0-0.3	0.1-2.0	0-3.1	0-120	0-2,500	ACPD		2.7-16.5	2.4/440-1,090	24/9,200-22,700													
TK4	FUR	SILTSTONE	11	MEAN	4.0	1,570	98	24	0.5	0.03	o.s	1.0	45	900	CCSD	11	7.7	735	15,300	DSD												
	DENVER			STANDARD DEVIATION	2.0	130	8.1	5.1	0.4	0.07	0.4	0.9	50	1,100	CCS DSD		4.0	235	4,900	RTD												
	ā			RANGE	1.8-2.1	1,570-1,794	98-112	4-15	0.3-0.8	0-0.4	0.3-0.9	0-0.8	0-30	0-600	ACPD		4.3-7.3	140-345	2,900-7,200													
		SANDSTONE	3	HEAN	1.8	1,714	107	11	0.5	0.1	0.6	0.5	15	300	DSD	2	NA	NA	NA .	RTD												
				STANDARD DEVIATION	0.2	120	7.5	6.4	0.3	0.3	0.3	0.4	20	400			NA	, NA	KA	1												

M There is a strong inverse relationship between moisture content and the unconfined compressive strength of losss. M Tests performed on samples described as firm to hard.

¹⁷ One sample of highly weathered claystone collected at a depth of 1.8 m had an unconfined compressive strength of 185 km/s² (3,900 lb/ft²).

18 Two samples of highly weathered slitatone collected at different sites at depths of 2.4 and 5.5 m had an unconfined compressive strength of 115 and 135 kN/m2 (2,400 and 2,800 lb/ft2), respectively.

^{2/}Abbreviations explained in table 4.

TERMS USED IN TABLES 1 AND 2

- Dry Density: Oven-dry weight per unit volume of sample.
- Final Consolidation: Additional percent decrease in volume, after initial consolidation, that occurs when material loaded at 24 to $48 \ kN/m^2$ is wetted.
- Initial Consolidation: Percent decrease in volume that occurs when undisturbed material at natural moisture content is loaded at 24 to $48~{\rm kN/m^2}$ for 24 hours.
- Liquid Limit: Percent water content at which the sample passes from the plastic state to the liquid state.
- Moisture Content: Amount of water in an undisturbed sample expressed as a ratio of the weight of the water to the weight of the oven-dry sample.
- Plastic Limit: Percent water content at which the sample passes from the solid state to the plastic state.
- Plasticity Index: Numerical difference between the liquid limit and the plastic limit.
- Standard Deviation: Measure of the spread of the data around the mean.

 Of the samples tested, 68.3 percent should have values that fall within plus and minus one standard deviation of the mean.
- Swell: Percent increase in volume due to expansion, that occurs after final consolidation when material with free access to water is loaded at 24 to $48~\rm{kN/m^2}$ for 24 hours.
- Swelling Pressure: Additional weight per unit area required to return the expanded material to its original volume.
- Total Consolidation: Sum of initial consolidation plus final consolidation.
- Unconfined Compressive Strength: Maximum axial load required to deform or to break a sample when lateral pressure is equal to atmospheric pressure.
- Unified Soil Classification: System that groups unconsolidated materials according to their engineering properties. The first letter indicates grain size and inorganic or organic character of the material: G is gravel, S is sand, M is silt (nonplastic fines), C is clay (plastic fines), O is organic silt or clay, and Pt is peat or other highly organic material. The second letter indicates gradation (engineering sense) and plasticity of the material: W is well graded, P is poorly graded, M is silty, C is clayey, L is low liquid limit, and H is high liquid limit. Material that falls on or near the boundary between two classes is given a dual classification, such as SM-SC (U.S. Bureau of Reclamation, 1974).

Table 3.--Estimated grain-size distribution and thickness, in meters, of surficial materials and lithology of the underlying bedrock

[The estimated grain-size distribution is designated by a two-letter symbol. The first letter corresponds to the dominant size fraction followed by a second letter that denotes the next most abundant size fraction: G, gravel; S, sand; M, silt; and C, clay. Letters in parentheses indicate surficial map units. In test holes that do not extend into bedrock, the thickness of the lowest surficial unit represents the amount of material penetrated and does not necessarily indicate total thickness. Bedrock units in the Denver Formation are: TKdc--claystone and siltsone; TKds--sandstone; TKdcs--claystone, siltstone, and sandstone; and TKd--undifferentiated]

Section locality number	1	Loca	atio	on	Abbreviated columnar section	Source of data	
	Section	1/4 sec.	1/4-1/4 sec.				
				Tow	nship 3 South, Range 67 West		
1 2 3 4	31 31 31 32	d d d a		a c c	3.7 CM/1.8 SG/0.6 CM/11.9 SG 0.6 (af)/2.4 CS/1.2 SC/10.4 SG/TKdcs 4.0 CS/0.3 SC/1.2 SG 4.3 CS/0.3 S	CDS DSD CDS CDS	
5 6 7	32 33 34		100	c	4.6 MC/1.5 S/3.7 SG/4.9 S 3.7 CS 2.4 MS/1.8 CS/0.6 SC/TKdc	CDS CDS CDS	
				Tow	nship 3 South, Range 68 West		
8 9 10 11 12	33 33 34 34 34	d	a	b d d b	1.5 (af)/1.2 CS/3.1 SG/TKdc 2.7 (af)/2.1 S/5.5 C/0.3 S/0.3 G/TKdc 0.9 (af)/1.2 S/5.2 SG/TKdc 2.4 (af)/2.4 SG/1.5 CM/2.4 CS/TKdc 0.6 (af)/4.6 SG/0.6 MS/2.1 SG/0.3 CS 2.7 SG/TKdc	CDS CDS CDS CDS	
13 14 15 16 17	34 34 34 34 34	c c c		a b b a d	1.5 (af)/5.2 SG/0.3 G/TKdc 3.1 (af)/4.0 SG/3.4 SC/TKdc 0.3 (af)/2.1 SG/1.2 CS/1.8 SG/TKdc 2.7 (af)/1.5 SG/1.2 CM/6.1 SG/TKdc 5.2 SM/0.6 CS/2.7 SM/4.3 SG/1.8	CDS CDS CDS CDS	
					MS/3.7 SG/TKdc	CDS	

Section locality number	1	Loca	atio	on	Abbreviated columnar section	Source of data
18	Section	H 1/4 sec.		i 1/4-1/4-1/4 sec.	3 South, Range 68 Westcontinued	
18 19	34 34		c c	b d	4.0 SC/1.5 SG/5.2 SC/7.9 SG/TKdc 0.3 (af)/2.7 SM/4.9 SG/3.7 SC/1.2 CS/0.6	CDS
20 21	35 35		c c	c c	SC/0.9 CS/1.2 G/2.1 CS/0.6 S 3.7 (af)/0.6 CS/TKdcs 7.9 SM/6.7 G/TKdcs	CDS CDS MCBM
22 23 24 25 26	35 35 36 36 36	c d b	a c d	b a a	0.3 (af)/2.7 SM/3.1 CS/1.5 SG/0.6 CS/TKdcs 1.5 CS/1.2 SM/0.6 CS/TKdcs 2.1 MS/0.6 CS/0.6 MS/2.7 S 1.2 (af)/0.6 MC/2.1 CS/TKdcs 1.2 CM/2.4 MC/2.4 CS/1.5 SC/6.1 S	
27 28	36 36		a c	c b	0.9 CS/3.4 MS/TKdc 6.4 CS/0.6 SG/TKdc	MCBM CDS
				Tow	nship 4 South, Range 67 West	
29 30 31 32 33	3 4 4 4	b c a a d	а	a a	1.5 M/4.9 SM/TKdc 4.9 CS/TKdc 3.1 C/4.6 SC/TKd 4.6 C/1.5 M/TKdc 1.5 CS/1.2 SM/1.2 CS/TKdc	DCPWD LAFB CDS DCPWD LAFB
34 35 36 37 38	4 5 5 5 5	d a a b c	d c d a b	b c b c	0.3 (af)/3.1 CS/1.5 SC/1.8 SG/TKdc 5.2 CS/0.6 SG 3.1 CS/1.2 S 4.6 CS/1.5 SG 0.9 CS/0.6 MS/2.7 CS/TKds	LAFB CDS CDS CDS CDS
39 40 41 42 43	.5 5 5 6	c c d	c d	a b b b	4.6 C 3.7 C/6.1 G/TKdc 4.0 CS/1.5 S 3.4 CS/1.5 S 4.3 CS	CDS WRD CDS CDS CDS
44 45 46 47 48	6 6 6 6	b c c d	d b b a a	b a c b	3.1 CS/TKdc 2.1 MS/TKdcs 0.6 (af)/4.3 CS/TKdc 3.4 C/0.9 SG/TKdc 2.7 CS/TKdcs	CDS CDS CDS CDS CDS

Section locality number	1	Loca	atio	on ,	Abbreviated columnar section	Source of data
	Section		1/4-1/4 sec.	1/4-1/4-1/4 sec.		
		To	wns	ship	4 South, Range 67 Westcontinued	
49 50 51 52 53	6 7 7 7	d a b b	b a b d	d d d c	2.7 CS/TKds 4.6 C 2.1 SM/1.5 CS/TKdcs 1.2 SM/TKdc 3.1 SM/0.6 SC/1.5 CS/TKdc	CDS CDS DSD CDS CDS
54 55 56 57 58	7 7 7 7	c d d		d c a a c	5.8 SM 2.1 C/5.2 G/3.4 S/1.5 C/1.5 G/TKdcs 1.8 MS/0.6 CS/TKdc 2.1 SM/TKdc 3.4 SM/TKdc	CDS MCBM DSD CDS CDS
59 60 61 62 63	7 8 8 8 8	d a a b c	d b c b	c b d c	1.2 SC/TKdc 4.0 SC/0.3 S 4.9 CS/5.5 SG/TKdc 1.8 S/1.2 CS 4.6 S	CDS CDS DSD CDS CDS
64 65 66 67 68	8 8 8 9	d d d b	b c c b a	d b c a a	0.9 CS/0.9 SM/3.4 CS/25.9 SG/TKdc 1.8 C/20.1 SG/1.2 C/0.9 G/1.5 S/TKdcs 12.2 G/0.9 C/14.6 G/TKds 6.1 MS/5.8 GC/3.7 MS 0.3 SM/4.9 CS/0.6 SM/1.2 CS/1.5 S/1.2 CS/1.8 SC/TKdc	LAFB MCBM CDS LAFB
69 70 71 72 73	10 16 16 17 17	b a c a b	b a c c	a d d a a	2.1 CS/TKdcs 0.3 SC/1.8 SM/3.1 CS/TKdc 13.1 S/TKdc 4.0 SM/2.4 CS/7.9 SG 2.7 S/1.8 SC/1.5 SG/TKdc	LAFB LAFB WRD DSD DSD
74 75 76 77 78	17 17 17 18 18	c d d a a	c b d a c	c b c c	3.4 M/2.1 SM/TKdcs 4.6 SG/TKdc 1.8 SC/1.2 C/7.3 S/0.9 C/4.6 S/TKdc 0.9 SM/0.3 SG/0.9 CS/4.9 SG/TKdc 1.5 M/0.6 MS/8.8 SG/TKdc	DSD MCBM WRD MCBM MCBM
79 80	18 18	a a	c c	c c	3.7 MS/15.2 SG/TKdc 3.1 SM/1.5 C/8.5 G/TKdc	MCBM MCBM
					14	

Section locality number	I	Loca	atio	on	Abbreviated columnar section	Source of data
81	Section		1/4-1/4 sec.	i 1/4-1/4-1/4 sec.	4 South, Range 67 Westcontinued	
81	18	c	a	a	1.8 SM/5.5 SG/2.1 C/4.0 SG/2.7 C/1.8	
0.0					G/TKdc	MCBM
82	18	C	a	C	0.9 SM/3.1 MS/1.5 SG/1.5 SM/1.5 SG/TKdc	MCBM
83 84	18 19	d b	a c	d a	0.9 SM/6.4 SG 2.1 CS/TKdcs	DSD CDS
85	19	ь	d	а	1.5 CM/1.5 CS/TKdcs	CDS
86	19	c	a		0.9 CM/2.4 CS/TKdc	DSD
87	19	c	d	d	1.5 CS/TKdcs	CDS
88	20	a	a	c	2.1 C/2.1 SG/0.6 C/11.6 SG/TKdcs	MCBM
89	20	ь	d	b	3.7 SM/TKdc	CDS
90	20	c	d	d	0.6 (af)/3.4 CS/TKdcs	мсвм
91	20	d			13.7 SM/0.3 SG/TKdc	DSD
92	20	d			0.9 C/6.4 SG/3.4 C/3.1 SG/TKdc	MCBM
93	21	a	d	d	8.2 S/TKdc	WRD
94	21	b	a	b	3.4 S/TKdc	MCBM
95	21	Ъ	c	d	1.5 C/12.2 G/TKdcs	MCBM
96	21	d	a	a	3.4 SM/0.6 CS/TKdc	CGS
97	22	Ъ	a	c	9.8 S/TKdc	WRD
98	22	Ъ	b	a	9.1 S/3.7 CS/TKdcs	WRD
99	22	b	b	b	10.7 S/1.5 C/TKdc	CDS
100	22	b	Ъ	c	19.5 S/0.6 C/TKdc	WRD
101	22	c	c	a	4.3 SC/TKdcs	CGS
102	27	b	a	a	5.5 S/1.2 CS/TKdc	WRD
103	27	c	b	a	1.8 S/4.9 C/6.1 SG/TKdc	WRD
104	28	a	c	c	13.1 SG/TKdc	CDS
105	28	a	c	d	1.5 C/13.1 SG/TKdc	WRD
106	28	a	d	a	0.9 SM/1.8 MS/3.4 SM/TKdc	MCBM
107	28	a	d	С	4.9 MS/0.9 SG/0.9 CS/14.3 SG/0.3 C/7.3 SG/TKdc	мсвм
108	20	L	_	L	1.2 MS/3.1 SM/9.8 SG/TKdc	
108	28 28	b	a d	b	11.9 S/3.7 CS/0.6 G/TKdc	MCBM MCBM
110	28	C		b	9.1 C/6.1 SG/4.6 CS/TKdc	WRD
111	28	c	a		2.4 MS/2.7 SG/TKdc	MCBM
TII	20	C	a	C	2.4 FIS/2./ SG/INGC	FICHI

Section locality number	1	Loca	atio	on	n i	Abbreviated columnar section	Source of data
	Section	H 1/4 sec.		i 1/4-1/4-1/4 sec.	4 Sou	ith, Range 67 Westcontinued	
112	28	С	С	а	0.6	CS/TKdc	MCBM
113	28	c	d	a	6.7	MC/1.5 MS/1.5 MG/0.9 SG/TKdc	MCBM
114	29	a	b	a	2.7	C/5.5 S/TKdc	MCBM
115	29	b	a	d		S/1.2 C/TKdcs	WRD
116	30	а	a	c	4.6	C/TKdc	WRD
117	30	a	d	a	2.1	C/0.3 CS/TKdc	CDS
118	30		a			CS/TKdc	MCBM
119	30	c	c			CS/1.8 SC/TKdcs	CDS
120	30	c	d	С	4.0	CS/TKdc	CDS
121	30	c	d	c	0.9	(af)/TKdc	CDS
122	30	d	С	С	0.9	MS/1.5 CS/TKdc	CDS
123	31		b	b		MS/1.2 CM/TKdcs	CDS
124	31	c	b	Ъ	6.7	CS/TKdc	CDS
125	31	c	c	b	2.1	MS/1.5 CS/TKdc	CDS
126	31	c	d	d	3.1	CS/0.3 S/TKdc	CDS
127	31	d	a	d	1.2	CS/TKdc	CDS
128	32	b	a	b	2.4	(af)/1.2 CS/TKdc	CCSD
129	32	c	b	b		C/0.6 CS/TKdc	WRD
130	32	c	c	b	1.2	(af)/TKdc	CDS
131	32	c	a	d	1.5	CS/TKdc	CCSD
132	33	a	b	c	2.7	MS/TKds	RRS
133	33	a	c	c	2.4	C/4.0 SG/TKdc	WRD
134	33	b	Ъ	b	1.8	MS $(Q1)/1.8$ MS $(Qs)/2.1$ SG $(Qs)/TKdcs$	RRS
135	33	С	a	a	1.5	MS/TKds	RRS
136	33	c	d	a	1.2	MS/TKdcs	RRS
137	33	d	b	a	4.0	MS/TKds	RRS
138	33	d	b	d	0.9	(af)/1.8 CS/TKdcs	DSD
				Tow	nship	4 South, Range 68 West	
139	1	а	a	a	3.1	CM/1.8 CS/TKdc	CDS
140	1	a	a	b		(af)/0.9 CS/4.3 CM/0.6 CS/TKdc	CDS
141	1	a	a	d		CS/TKdcs	DSD
142	1	b	ь	a		CM/2.1 CS/1.2 SM/1.2 CS/1.5 C/TKdc	CDS
143	1	c	c	d	2.1	MS/3.1 CS/0.6 SC/TKds	CDS

Section locality number	I	Loca	atio	n	Abbreviated columnar section	Source of data
	Section	1/4 sec.	1/4-1/4 sec.	1/4-1/4-1/4 sec.		
		To	wns	hip	4 South, Range 68 Westcontinued	
144 145 146 147 148	2 2 3 3 3	a b a b	b c b a b	c b a d a	0.9 C/3.4 MS/3.1 CS 2.4 (af)/4.0 SM/TKds 29.9 SG/TKdc 1.2 (af)/5.2 SG/3.4 SC/3.1 CS/1.8 G/4.9 CS 1.5 SG/1.2 MS/1.2 CM/0.6 SG/1.2 G/TKdc	CDS CDS MCBM CDS CDS
149 150 151	3 3 3	b c c	c b c	c d b	2.1 (af)/1.2 SM/8.2 SG 3.1 (af)/1.2 SG/1.8 CM/9.5 SG/TKdc 0.9 (af)/3.1 S/3.1 SG/3.7 S/2.4 SG/1.2 CS/4.3 SC/TKdc	DSD MCBM DSD
152	3	С	d	b	0.9 SM/3.1 SG/0.6 GM/0.6 SG/0.9 SM/1.8 SG/TKdc	мсвм
153 154 155 156 157	3 3 3 3	c d d d	b	c d c a d	3.1 (af)/3.7 SG/0.3 CS/0.6 SG/TKdc 6.1 SM/1.2 SC/4.9 SG 0.9 (af)/0.9 SM/1.2 SC/0.3 SG/TKdc 3.7 S/3.4 SG/0.9 C/0.9 S/TKds 2.4 (af)/2.1 S/3.1 SG/TKds	CDS CDS CDS MCBM CDS
158 159 160 161 162	4 4 9 9	a a d d a		b c c c	1.2 (af)/1.2 SC/2.1 S/10.1 SG 0.9 MS/0.6 SM/7.3 SG 4.0 SM/TKdc 3.1 (af)/8.2 SG/TKdc 2.4 (af)/0.9 SM/1.5 S/7.3 SG/TKdc	DSD DSD CDS CDH CDS
163 164	10 10	b b	b c	b b	1.5 SM/0.6 MS/0.9 SM/3.1 S/0.9 SG/4.6 SC 0.9 (af)/3.7 S/0.9 SM/2.4 SG/10.4 SM/3.4 SG/TKdc	DSD DSD
165 166	10 11	c a	b c	d	0.9 C/10.4 SG/TKdc 9.1 S/1.5 G/TKdc	CDS WRD
167 168 169 170	11 11 11 11 11	b d d d a	d a b c	c a a a c	3.1 SM/5.8 G/TKdc 9.5 S/1.2 C/0.9 G/TKdc 2.4 SM/13.4 G/TKdc 2.1 (Qpp)/TKdcs 10.7 S/7.6 SG/TKdc	MCBM WRD MCBM RRS MCBM
172 173	12 12	b b	b c	c c	7.9 SM/5.2 SC/2.1 SG/TKdc 1.8 MS/1.5 SC/4.0 S/7.0 SG/TKdc	DSD CDS

Section					9	Source
locality	1	Loca	atio	on	Abbreviated columnar section	of
number						data
				1/4-1/4-1/4 sec.		
				Ø		
			ec	14		
	ď	e)	·+	Ţ		
	tol	Se	1/	1/1		
	Section	4	4-	4-		
	Se	1/	1	1/		
		To	wns	hip	4 South, Range 68 Westcontinued	
174	12	С	Ъ	a	5.2 (af)/8.8 SG/TKdc	CDS
175	12	c	b	c	0.3 C/3.4 S/1.2 C/9.8 SG/TKdc	MCBM
176	12	c	C	c		MCBM
177	13	a	d	d	8.8 S/0.3 C/5.2 S/TKds	MCBM
178	13	a	d	d	1.8 (af)/1.2 SC/2.4 CS/TKd	CDS
179	13	Ъ	C	c	2.7 SM/0.6 SC/TKdc	CDS
180	13	d	a	b	1.2 SC/2.4 S/0.6 CS	CDS
181	14	b	a	b	0.9 SM/1.5 MS/1.8 SM/1.2 MS/TKdc	MCBM
182	14	b	d	a	9.1 S/0.3 C/1.5 S/TKdc	CDS
183	15	a	a	Ъ	2.4 S/1.2 SG	CDS
184	15	a	b	d	0.9 MS/14.0 SG/TKdcs	MCBM
185	15	b	С	b	11.3 SG/TKdc	CDS
186	15	b	d	a	6.7 SG/TKdc	CDS
187 188	15 15	Ь	d d	c	1.5 CS/1.2 S/TKdc 2.4 SG/0.9 CM/0.3 SG/TKdc	CDS CDS
		c		c		
189	15	d	С	ь	1.2 (af)/2.4 S/4.9 SG/1.5 C/2.7 SG/TKdc	MCBM
190 191	16 16	a d	a	a b	3.7 SG/TKdc 1.2 SM/6.7 SG/0.6 C/2.1 SG/TKdcs	CDS MCBM
192	16	d	d	a	0.9 SM/6.7 SG/1.2 C/1.2 SG/TKdc	MCBM
193	22	a	a	ь	2.1 S/8.5 SG/TKdc	CDS
194	22	a	a	d	1.5 SM/1.5 S/5.8 SG	CDS
195	22	b	b	a	1.8 S/1.8 G/9.8 SG/TKdc	MCBM
196	22	b	d	b	3.1 SG/2.1 C/TKdcs	MCBM
197	22	d	a	b	4.0 S	CDS
198	22	d	d	a	1.5 SM/2.1 S/1.5 CS/0.6 SM/9.1 SG/0.6	
					CS/1.2 SG	DSD
199	23	a	С	а	1.8 SC/1.5 CS/TKdcs	DSD
200	23	b	a	С	1.8 S/7.3 CS/TKdc	CDS
201	23	b	c	c	1.2 SM/3.1 S/2.1 CS/0.9 SG	CDS
202	23	b	c	d	2.1 SM/0.6 S/TKdc	CDS
203	23	Ъ	d	С	1.8 SM/1.8 S/4.0 CS/TKdc	CDS
204	23	b	d	d	2.4 SM/1.2 S/TKdcs	CDS
205	23	d	b	Ъ	2.1 SM/1.5 SG/TKdc	CDS

Section locality number	L	ocat	ion	Abbreviated columnar section	Source of data
	Section	1/4 sec.	1/4-1/4 sec. 1/4-1/4-1/4 sec.		
		Tow	nship	4 South, Range 68 Westcontinued	
206 207 208 209 210	23 23 24 24 24	d d a a c	b c c a a d c c b b	>4.6 S 7.3 (af)/TKdc 3.1 CM/TKdc 5.5 MS 2.4 MS/TKdc	RRS CDS CDS CDS RRS
211 212 213 214 215	24 24 24 24 25	c d d d	d a b a c b d b d	0.6 SM/2.1 CS/TKdc 0.6 CS/1.2 MS/0.9 CS/TKdcs 0.9 SC/2.7 CS/TKdc 2.7 S/0.9 SC/1.5 C/TKdc 2.4 MS/1.8 CS/TKdc	CDS DSD CDS CDS CDS
216 217 218 219 220	25 25 26 26 26	b c c c	c c a a c b c b	2.4 (af)/2.4 CS/TKds 1.8 SC/TKdc 6.1 (af)/1.8 SM/TKdc 0.9 S/2.7 C/4.9 S/TKdcs 3.1 SM/TKdc	CDS CDS CDS MCBM CDS
221 222 223 224 225	26 27 27 27 27	d a b c d	d a b b c a b b c a	4.6 C 1.5 S/>0.3 SG 1.2 (af)/3.1 SG/1.5 CS/0.9 SG/TKdc 1.2 C/0.3 SG/TKds 2.7 SG/1.5 SM/0.9 CG/0.6 SG/0.6 CG/3.4 C/1.8 G/1.2 CG/TKdc	CDS RRS CDH CDS
226 227 228 229 230	27 28 28 33 34	d a d a a	c b a d a c d d c c	6.4 S/4.0 SG/TKdc 4.3 (af)/4.9 S/0.6 G/TKdc 1.2 SC/9.5 G/TKds 2.1 (af)/1.5 S/5.2 MS/4.3 SG/TKdc 6.4 SG/1.5 G/TKdc	MCBM MCBM CDS MCBM MCBM
231 232	34 34	c c	c d d a	1.2 MC/0.9 MS/4.0 SG 0.3 (af)/0.9 SM/0.9 CS/0.6 SC/0.6	CDS
233 234	34 35	d c	a a d d	CS/4.0 SG 0.6 (af)/1.8 SC/1.2 CS/4.9 SG/TKds 0.3 (af)/0.9 SM/>0.3 MS	CDS MCBM RRS
235 236 237 238	36 36 36 36	b b c d	a d c d c b d c	0.9 SM/>0.6 MS 0.9 CS/1.2 MS/2.4 CS/TKdcs 3.1 CS/TKdcs 4.3 CS/TKdc	RRS DSD CDS MCBM

Section locality number	Location				3	Abbreviated columnar section	Source of data		
	Section	1/4 sec.	1/4-1/4 sec.	M 1/4-1/4-1/4 sec.	nship	5 South, Range 67 West			
239	3	ь	a	b	4.0	CS/0.9 CG/0.9 SG	CCSD		
240	3	Ъ	ь	d	5.5	CS/5.2 SG/TKdc	MCBM		
241	3	c	c	c	4.3	MC/1.2 SG/TKdc	CDH		
242	4	a	ь	d		MS/TKds	RRS		
243	4	d	ь	d	2.4	CS/TKdcs	DSD		
244	5	a	С	ь	2.1	CS/TKdcs	DSD		
245	5	Ъ	c	c	2.1	MS/0.6 CS/TKdcs	DSD		
246	5	c	d	c	2.4	CS/TKdc	CDS		
247	5	d	a	c	1.5	MS/TKdc	RRS		
248	6	b	a	d	1.8	CS/TKdcs	MCBM		
249	6	b	b	c		CS/2.4 MS/TKdc	CDS		
250	6	b	d	a		MS/0.9 CS/TKdc	CDS		
251	6	d	c	C		CS/TKdc	CDS		
252	7	a	Ь	d		CS/TKdc	WRD		
253	7	d	d	Ъ	0.9	SM/TKdc	RRS		
254	8	a	a	d		CM/TKdc	CDH		
255	8	b	ь	a		CS/TKdc	CDS		
256	9	a	a	a		CS/TKdc	CDH		
257	9	a	b	C		CM/1.2 CS/0.9 SC/TKdcs	CDH		
258	9	a	d	d	1.5	MS/TKdc	RRS		
259	9	c	a	b	3.4	C/1.2 G/TKdc	WRD		
260	9	d	c	a		GM/TKdc	RRS		
261	10	c	a	b		CS/TKdcs	CCSD		
262	10	C	a	d		CS/TKdcs	CCSD		
263	10	C	C	b		MS/TKds	RRS		
264	10	c	d	a	2.7	CS/TKdcs	CCSD		

Section locality number	Location				Abbreviated columnar section	Source of data
	Section	1/4 sec.	1/4-1/4 sec.	of 1/4-1/4-1/4 sec.	nship 5 South, Range 68 West	
265	1	c	c	d	2.7 SM/2.7 SC/TKdc	CDS
266	1	d	b	ь	2.7 CS/TKds	WRD
267 268	1	d d	c d	c a	4.6 CS/TKdc 2.4 MS/TKdc	CDS RRS
269	2	b	b	c	7.6 SC/4.6 CS/TKdc	WRD
270	2	ь	c	Ъ	1.5 SM (Qes)/>0.6 SG (Qb)	RRS
271	2	b	c	b	4.3 SM/TKds	RRS
272	2	c	c	a	10.7 SM/TKdc	MCBM
273 274	2 2	c	d	a d	4.6 C/3.1 CS/TKdc 3.1 C/0.3 S/0.6 C/TKdc	WRD CDS
275	2	d	b	С	3.1 CS/0.6 S/1.2 C/3.4 SG/TKds	мсвм
276	3	a	b	a	0.9 SM (Qes)/>0.6 SG (Qb)	RRS
277	3	b	a	b	3.7 S/4.9 C/4.9 SG/2.1 C/1.5 G	MCBM
278	10	b	b	a	6.1 S/TKdc	WRD
279	10	С	С	С	>2.4 SM	RRS
280	10	d	b	C	3.4 SM/0.9 SC/1.8 CS/TKdc	CDS
281 282	11 11	a b	c	a c	2.7 CS/3.7 S/6.1 CS/TKdcs 5.5 CS/8.2 S/1.5 SG/TKdc	WRD WRD
283	11	ь	d	d	7.9 CS/3.7 SG/TKdc	CDS
284	11	c	b	b	3.7 CS/1.5 S/TKdcs	WRD
285	11	d	ь	c	2.7 CS/11.9 S/TKdc	CDS
286	11	d	d	a	7.0 SM/0.3 G/TKdc	CDS
287	12	а	b	a	2.7 SM/2.4 CS/TKdc	CDS
288 289	12 12	a b	b b	d b	5.2 MS/3.1 C/TKds 7.6 SC/4.6 SG	MCBM MCBM
290	12	b	ь	С	1.5 SC/4.6 SG/TKdc	мсвм
291	12	b	d	b	3.7 CS/TKdcs	MCBM
292	12	d	a	c	0.9 MS/TKds	RRS

INDEX MAP SHOWING SECTION LINES, SECTION-LINE ROADS, INTERSTATE HIGH-WAYS, AND MAJOR STREAMS ON THE ENGLEWOOD QUADRANGLE

LOCATION OF SUBSURFACE DATA

Abbreviated columnar sections are arranged numerically according to the section, township, and range in which they occur. Within the section, locations are listed by quarter section, quarter-quarter section, and quarter-quarter-quarter section. Quarter sections are lettered a, b, c, d, counterclockwise, beginning with the northeast quarter. Quarter-quarter sections and quarter-quarter-quarter sections are lettered in a similar manner.

b	a	b a c d a	а		
c	đ	c	d		
b	a	b	a		
c	d	c	d		

10 a b d

Table 4.--Source of subsurface and analytical data

\$ 1	Source	Sub	surf data		Analytical data					
		Test holes	Water wells	Excavations, hand auger holes, and outcrops	Grain size	Atterberg limits and plasticity index	Dry unit density and moisture content	Consolidation-swell	Unconfined compressive strength	
ACPD	Arapahoe County Planning									
	Department	x			x	х	x	x	x	
CCSD	Cherry Creek School District	x				x	x	x	x	
CDH	Colorado Division of Highways	x			x	x			x	
CDS	Committee on Denver Subsoils							1		
	(Judd and others, 1954)	x	x							
CGS	Colorado Geological Survey	x			x	х	х	x		
DCPWD	Denver County Public Works									
	Department	x				х				
DSD	Denver School District No. 1	x			x	х	х	x	x	
LAFB	Lowry Air Force Base									
	Engineering Department	x					х	x		
MCBM	McConaghy and others (1964)	x	х							
RRS	Author			x	х	х				
RTD	Regional Transportation									
	District							Į.	x	
WRD	Water Resources Division,									
	U.S. GeologicalSurvey		х							

REFERENCES

- Hunt, C. B., 1954, Pleistocene and Recent deposits in the Denver area, Colorado: U.S. Geol. Survey Bull., 996-C, p. 91-140.
- Judd, W. R., Esmiol, E. E., Gould, J. P., Lowrie, C. R., Resler, P., Sherard, J. L., and Van Horn, Richard, 1954, Borehole data and engineering applications in the Denver area: Denver, Colo., Hotchkiss Mapping Co. and Amer. Soc. Civil Eng., 62 p.
- Larsen, L. S., and Brown, J. B., 1971, Soil survey of Arapahoe County, Colorado: U.S. Dept. Agri., Soil Cons. Serv., 78 p.
- McConaghy, J. A., Chase, G. H., Boettcher, A. J., and Major, T. J., 1964, Hydrogeologic data of the Denver Basin, Colorado: Colorado Water Conserv. Board Basic-Data Rept. no. 15, 224 p.
- Romero, J. C., 1976, Ground water resources of the bedrock aquifers of the Denver basin, Colorado: Colorado Dept. Nat. Res., Div. Water Res., 109 p.
- Schwochow, S. D., Shroba, R. R., and Wicklein, P. C., 1974, Sand, gravel, and quarry aggregate resources, Colorado Front Range Counties: Colorado Geol. Survey Spec. Pub. 5-A, 43 p.
- U.S. Bureau of Reclamation, 1974, Earth manual: Washington, U.S. Govt. Printing Office, 810 p. (second ed.).

