(200) R290 NO.77-869

> UNITED STATES DEPARTMENT OF THE INTERIOR

> > Reports- Open file serves]

PRELIMINARY CATALOG OF EARTHQUAKES IN NORTHERN IMPERIAL VALLEY, CALIFORNIA JULY 1977 - SEPTEMBER 1977

By

G. S. Fuis, C. E. Johnson, and D. J. Jenkins 345 Middlefield Road Menlo Park, CA 94025

Open File Report 77-869

GEOLOGICAL SUI DEC 9

TM Ene Twowals

This report is preliminary and has not been edited or reviewed for conformity with Geological Survey standards and nomenclature.

PRELIMINARY CATALOG OF EARTHQUAKES IN NORTHERN IMPERIAL VALLEY, CALIFORNIA JULY 1, 1977 - SEPTEMBER 30, 1977

•

CONTENTS

																									P	age	
Intr	oductio	n	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	
Area	Cover	ed a	and	1 :	Ins	sti	rur	nei	nta	ati	io	n	•	•	•	•	•	•	•	•	•	•	•	•	•	1	
Data	Analy	sis	•	•	•					•	•	•		•	•	•	•	•	•	•	•	•	•		•	2	
Disc	ussion		•	•		•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4	
Refe	rences																									7	

ILLUSTRATIONS

Figure 1.	Base Map of Southern California	8
Figures 2.	• - 7. CEDAR Subarrays • • • • • • • • • • 9 -	14
Figure 8.	Earthquake Epicenters and Seismograph Stations .	15
Table 1.	Station Data	16
Table 2.	Preliminary Hypocenter Solutions	

(for earthquakes July 1, 1977 - September 30, 1977)18

INTRODUCTION

The northern section of the Imperial Valley region in southern California is an area of known geothermal resources and an area of high seismicity. To study in detail the relationship between geothermal areas and earthquakes, the U.S. Geological Survey has been monitoring seismicity in the Imperial Valley with a 16 - station network since 1973. Six new stations were added to the network in November 1976. This catalog contains a description of the network and a list of preliminary data on earthquakes recorded by the network from July 1977 through September 1977.

AREA COVERED AND INSTRUMENTATION

Earthquakes reported in this catalog are located in the area indicated in Figure 1. Major faults are shown. Locations of most of the seismographic stations used in locating earthquakes reported here are shown on Figure 8 and are listed in Table 1.

The telemetered seismographic network in the Imperial Valley employs the same type of instrumentation developed by the U.S. Geological Survey for use in the central California network (see Wesson and others, 1973). Seismometers are vertical-component L-4C Mark Products $\frac{1}{}$ seismometers ($T_{seis} = 1 \text{ sec.}$). Signals from these instruments are filtered in the field ($T_{filter} = 0.1 \text{ sec.}$) and telemetered to the California Institute of Technology in Pasadena, California, where they are recorded on 16 mm films along with a WWVB time code in Develocorders $\frac{1}{}$ ($T_{galvo} = 0.06 \text{ sec}$). Peak magnification

 $[\]frac{1}{1}$ Any use of trade names and trademarks in this publication is for descriptive purposes only and does not constitute endorsement by the U.S. Geological Survey.

ranges from 10^5 to about 10^8 and occurs at $T_{peak} = 0.06$ sec (or 14 hz). (Refer to Wesson and others, 1973, or Hill and others, 1975, for a somewhat more detailed description of this instrumentation.) In addition to film recordings, digital recordings are made by the Caltech Earthquake Detection and Recording System (CEDAR) (Johnson, 1977). An earthquake detection algorithm is used in CEDAR, and only "detected" earthquakes are saved. CEDAR is described more fully below.

DATA ANALYSIS

During this quarter, a transition has been made from analysis based on film recordings (see, e.g., Jenkins and Fuis, 1977) to analysis based on digital recordings by CEDAR. The new data reduction procedure is as follows:

1) On-line processing. "On-line" processing refers to computer manipulation of signals at the time they are received. Signals from all stations are digitized continuously at 50 bits per second. The signal amplitude at each station is averaged in a 40-second interval of time which moves continuously keeping its leading edge at the present time. In addition, an average of amplitudes in the leading 5 seconds of this interval is made. Whenever the 5 second average exceeds the 40-second average by 50 percent for a given station, that station is considered to be triggered. Whenever 4 stations in a subarray of stations are simultaneously triggered, a "detection" is considered to be made. When a detection is made, digitigized signals from all stations in southern California are transferred from a magnetic disc, which is being continuously erased, to a magnetic tape, from which they can be played back and examined by a data analyst at a later time. The subarrays of stations used for the detection of earthquakes in the Imperial Valley are indicated in Figures 2 - 7.

2) Off-line processing. "Off-line" processing refers to interactive computer-human manipulation of signals from detected events at some time after they have been saved and stored on magnetic tape by the on-line system. (Separate computers are used for on-line processing (Data General Eclipse S/230 with 32K core) and off-line processing (Data General Nova 820 with 32K core); but their roles can be interchanged.) All events detected in a day by the on-line system are played back the following day on the off-line system; hard copies of the seismograms from each triggered station are made for each event. A data analyst reviews these seismograms to determine which events are noise events and which are earthquakes. Earthquakes are then played back a second time onto a cathode ray tube viewer (CRT) equipped with movable vertical and horizontal cross-hairs. The data are played back in 2 stages. First, seismograms from all stations in southern California are displayed on the screen, 32 at a time. During this stage the data analyst selects stations to be reviewed for timing during the second stage. During the second stage, seismograms from individual stations are played back onto the CRT, and P and S wave arrivals are timed. During this stage it is possible to amplify or attenuate the signals for visual inspection so that optimum picks can be made.

3) At the completion of timing of a day's worth of earthquakes, arrival time data are processed using a version of the computer program HYPO71 (Lee and Lahr, 1972) that has been abbreviated and modified to be accommodated by the off-line computer (Johnson, C.E., personal communication). During this step, a simple velocity structure is used in the location of all events in southern California (see Kanamori and Hadley, 1975); no station delays are used. The preliminary epicenters that result from this step determine in

which geographic areas the events fall and hence which velocity structures and associated station delays should be used for subsequent refinement of the locations.

4) Signal durations are measured according to Lee and others (1972a) from Develocorder films for all events in the Imperial Valley. CEDAR recordings have not yet been calibrated for determining magnitudes from signal durations.

5) All events in Imperial Valley are reprocessed using the computer program HYPO71 and an appropriate velocity structure with associated station delays (see Discussion). Epicentral parameters determined during this step are listed in this catalog in Table 2; and the epicenters are plotted on a map (Figure 8).

DISCUSSION

Earthquake locations are strongly dependent on the velocity model used in the location program. Epicentral determinations are less strongly dependent on the model than depth determinations, unless the earthquake occurs outside of the perimeter of the station group used in the location. The velocity model used for the earthquake locations in this catalog is based on a seismic refraction study of the Imperial Valley by Biehler and others (1964):

VELOCITY (km/sec)	DEPTH TO TOP OF LAYER (km)
2.0	0.0
2.6	1.0
3.6	2.0
4.7	3.0
6.1	6.0
8.0	20.0

The P-wave delay times assigned to each station (Table 1) were established from a calibration blast detonated by the U.S. Geological Survey on March 23, 1976, at 33° 05.30' N. Latitude and 115° 37.87' W. Longitude, 5 kilometers north of Westmorland. This calibration shot is very near the epicenters of most of the earthquakes of the November 1976 earthquake swarm. Our studies indicate that, in this area, epicentral locations are probably as accurate as \pm 0.5 km; hypocentral locations (depths) are probably accurate only to \pm 2 km. The hypocentral locations of these earthquakes relative to one another is probably more accurate, however.

Magnitudes reported in this catalog are based on the method of signal duration described by Lee and others (1972a). The magnitude of a given earthquake is the average at several stations of magnitudes determined by

 $M = -0.87 + 2.00 \log(\tau) + 0.0035 \Delta$

where

 \triangle is epicentral distance in km, and

T is signal duration in seconds.

Signal duration is the time interval in seconds from the onset of the P wave arrival to a point where the trace amplitude (peak-to-peak) falls below 1 cm as it is seen on the Geotech film viewer. A 0.0 magnitude (Table 2) indicates that the magnitude was not calculated. In some cases an earthquake signal is truncated by the onset of a larger event or extended by the onset of smaller events. In these cases the method of determining magnitude using signal duration can not be used.

The hypocentral parameters listed in Table 2 are the following:

1)	Υ,	year of occurrence	7	
2)	м,	month of occurrence	}	GCT
3)	D,	day of occurrence	J	

- 4) H, hour of occurrence
- 5) M, minute of occurrence
- 6) SEC, second of occurrence
- 7) LAT, north latitude of epicenter, in degrees
- 8) LONG, west longitude of epicenter, in degrees
- 9) DEP, depth of hypocenter, in kilometers
- 10) MAG, magnitude
- 11) N, number of P arrivals used in locating the earthquake

GCT

- 12) GAP, maximum azimuthal gap, in degrees, between stations contributing P-arrivals
- 13) DM, distance from epicenter to nearest station used in locating the earthquake
- 14) RMS, root mean square of travel time residuals, R_i, in seconds

$$RMS = \sqrt{\sum_{i=1}^{N} R_i / N}$$

- 15) ERH, standard error of the epicenter, in kilometers
- 16) ERZ, standard error of the focal depth, in kilometers
- 17) Q, solution quality of the hypocenter
- 18) M, model used in location. M = 1 throughout this preliminary catalog

A filter is applied to the events in this catalog to eliminate very bad hypocenter solutions. A solution was not listed or plotted unless RMS \leq 0.50 seconds.

REFERENCES CITED

- Biehler, S., R. L. Kovach and C. R. Allen, 1964, Geophysical framework of the northern end of the Gulf of California structural province, <u>in Marine Geology of the Gulf of California (T. J. van Andel and G. G. Shor, Jr., eds.): Am. Assoc. Pet. Geol. Memoir, 3, p. 126-156.</u>
- Hill, D. P., P. Mowinckel and K. M. Lahr, 1975, Catalog of earthquakes in the Imperial Valley, California, June 1973 - May 1974: <u>U.S. Geol.</u> <u>Survey, Open-file Rept. 75-401</u>, 25p.
- Jenkins, D. J. and G. S. Fuis, 1977, Preliminary catalog of earthquakes in northern Imperial Valley, California, April 1977 - June 1977: <u>U.S. Geol.</u> <u>Survey, Open-file Rept. 77-694</u>, 15 p.
- Johnson, C. E., 1977, Caltech earthquake detection and recording system: (to be submitted to BSSA).
- Kanamori, H. and D. M. Hadley, 1975, Crustal structure and temporal velocity change in southern California: Pure Appl. Geophys., v. 113, pp. 257-280.
- Lee, W. H. K. and J. C. Lahr, 1975, HYPO71 (Revised): A computer program for determining hypocenter, magnitude, and first-motion pattern of local earthquakes: <u>U.S. Geol. Survey</u>, <u>Open-file Rept. 75-311</u>, 113 p.
- Lee, W. H. K., R. E. Bennett and K. L. Meagher, 1972a, A method of estimating magnitude of local earthquakes from signal duration: <u>U.S. Geol. Survey</u>, <u>Open-file Rept.</u>, 48 p.
- Lee, W. H. K., J. C. Roller, P. G. Bauer and J. D. Johnson, 1972b, Catalog of earthquakes along the San Andreas fault system in central California for the year 1969: <u>U.S. Geol. Survey</u>, <u>Open-file Rept.</u>, 48 p.
- Wesson, R. L., K. M. Meagher, and F. W. Lester, 1973, Catalog of earthquakes along the San Andreas fault system in central California, July-September, 1972: U.S. Geol. Survey, Open-file Rept., 49 p.

Figure 1. Base map of southern California region with major faults. Area of Figure 8 is shown.

Figure 3.

33*30

1

33° 15

Figure 8. Locations of earthquake epicenters in the Imperial Valley with respect to major faults for the period July 1, 1977 through September 30, 1977. Solid triangles are seismograph stations in the Imperial Valley network installed in 1973 (see Figure 1 and Table 1). Solid circles are the seismograph stations installed in November 1976.

NO.	STATION	LATITUDE	LON	GITUDE	ELEV	DELAY
	D	EG MIN	DEG	MIN	FEET	SEC
1	RUGR 33	2.73N	115	34-104	-47	-0.02
2	VERD 33	7.07N	115	33.76W	-61	0.02
3	EPIC 33	5-28N	115	36.284	-61	0.0
	BANG 33	5-29N	115	37 844	-62	0.0
5	FIR 33	8-84N	115	49.95%	-63	-0.55
6	NWR 33	6.10N	115	41.01W	-69	-0.64
7	WIS 33	16-56N	115	35.58W	-68	-0.91
8	WMI 33	0.91N	115	37.354	-44	-0.29
9	CLI 33	8-45N	115	31.644	-59	-0.20
10	ENK 33	22-98N	115	38-26W	12	-1,13
11	COY 33	21.84N	116	18.634	210	-1.58
12	HOT 33	18-84N	116	34 89W	1975	-1.39
13	SMD 33	32-15N	116	27.704	0	-1-34
14	PIT 32	43-87N	114	43 76L	61	-1.52
15	5111 32	30-10N	114	46.64W	41	-0.97
16	AMS 33	8-4EN	115	15.25%	140	-1.13
17	¥ COA 32	51-81N	115	7.364	-35	0.0
18	* BSC 32	43.49N	115	2.644	43	0.0
19	* BI.11 34	24-40N	117	43.61W	1830	0.0
20	CPE 32	52-80N	117	6-004	213	-0.65
21	GIA 33	3-10N	114	49.604	627	-1.05
22	IKP 32	38-93N	116	6.48%	957	-1.17
23	TPC 34	6-35N	116	2.924	761	-0.77
- 24	PIN 33	21.20N	116	51 704	1692	-0.59
25	BC2 33	39.42N	115	27 674	1185	-1.05
- 26	CPN 34	9.24N	116	11 804	.037	-0.61
27	CD2 33	50 - 83N	115	20.58W	276	-1.10
-28	INS 33	56-14N	116	11.664	1700	-1.35
29	I TC 33	29-34N	115	4.204	458	-1-21
30	1 TM 33	54- SCN	114	55.104	744	-0.66
31	PNM 33	58-64N	115	48.054	1147	-0.75
- 32	SHH 34	11-26N	115	39.274	1122	-0.66
33	KEE 33	38.30N	116	39.194	1366	-0.92
34	VGR 33	50-25N	116	48.534	1500	-0.71
35	WWR 33	59-51N	116	39.36%	702	-0.53
35	BON 32	41.67N	115	15-114	14	-0.22
37	CCM 33	25-75N	115	27.888	488	-1.30
36	COK 32	50- 55N	115	43.614	-15	-0.40
30	CRR 32	53-18N	115	58-104	98	-1.07
40	DAH 32	44-07N	115	33.47h	-6	0.20
41	HSP 37	44-81N	115	33.716	-6	0.13
42	ING 32	59.3CN	115	18.614	2	-0.37
43	KRY 33	2.41N	115	42.06W	-51	-0.27
44	088 33	10-04N	115	38-204	-61	-0.62
45	85E 32	55.53N	115	29.95W	-41	-0.22
1.6	RUN 32	58.33N	114	58.634	152	-1.01
47	SGI 32	38.95N	115	43.52W	110	-1.08
48	SNR 32	51.71N	115	26.216	-30	-0.32
49	SUP 32	57.31N	115	49.434	. 219	-1.07
				a		

Table 1. (Cont'd.)

NO. STATION LATITUDE LONGITUDE ELEV DELAY

-		DE	G MIN	DEG	MIN .	FEET. SEC	
50	HLK	33	3.08N	115.	29.44%	48 -0.11	
51	FTM	32	33.25N	114	20.01%	263 -1.68	
52	PIC	32	54.85N	114	38.59W	263 -0.95	
53	YMD	32	33-28N	114	32.68W	76 -0.48	
54	EALL	33	46.44N	115	35.83W	780 -1.13	
55	HA10	33	42.80N	115	34.904	536 -0.59	
.56	OR09	33	37.05N	115	35.50%	555 -0.79	
57	CH08	33	30.25N	115	35.68W	634 -1.14	
58	CHO7	33	27.21N	115	35.50%	585 -1.14	
59	COA5	33	22.2CN	115	36.10%	18 -1.16	
60 .	HIL4	33	20.37N	115	35.73W	-40 -1.06	
61	SAL2	33	15.82N	115	35.25W	-69 -0.83	
62	MUD1	33	13.21N	115	35.16%	-70 -0.71	
63	ROCX	33	10.58N	115	36.29%	-69 -0.74	
64	YNGX	33	7.98N	115	36.614	-64 -0.08	

Table 2.

Preliminary hypocenter solutions for earthquakes in southern California

July 1, 1977 through September 30, 1977

L.															19	
ħ	Ϋ́.	мD	н	м	SEC	LAT	LUNG .	DEP	MAG	Ν	GAP	DM	RMS	ERH	ERZ	6
1	77	7 2	21	12	12.80	32-49.36	115-41.05	8.05	1.11	8	130	4.5	0.16	1.3	1.7	B
2	77	74	1	33	14.37	33- 1.07	115-49.18	2.13	1.45	7	129	7.0	0.14	0.8	1.3	B
3	77	74	5	9	6.56	33- 2.04	115-35.31	7.01	1.08	11	83	3.8	0.22	1.0	2.7	P
4	77	74	19	41	21.88	32-58.54	115-31.29	8.15	0.87	10	155	8.7	0.25	1.6	2.1	C
5	11	1 4	21	55	23.58	33-11.91	115-39.82	2.01	1.51	3	109	28.9	0.09	0.6	1.5	8
07	11	710	10	22	20.10	33- 4.24	115-34.42	1.85	1.60	11	1:1	20.3	0.10	0.9	2.1	C
8	77	712	11	51	30.05	32-54.05	115-46.03	4 71	0 64	20	116	7 1	0.14	1 1	0.5	B
4	77	713	19	29	4.31	32-51-81	115-28.35	10.48	0.61	Q	163	3.3	0.31	4.0	1.4	C
10	77	715	14	53	34.20	32-46.30	115-24.19	5.00	2.00	27	122	10.5	0.21	0.6	0.6	c
11	77	715	15	15	45.35	33- 0.75	115-37.00	5.61	1.01	5	202	20.4	0.37	73.0	16.6	C
12	77	719	8	33	25.49	32-47.30	115-26.82	3.22	1.09	9	142	30.8	0.08	0.6	1.3	B
13	77	719	8	39	41.57	32-47.42	115-26.53	9.33	1.38	14	131	7.9	0.14	0.7	1.7	С
14	77	722	4	32	32.81	32-46.28	115-26.28	6.17	1.18		125	18.0	0.12	0.7	56.4	5
15	77	725	5	45	52.90	33- 3.48	115-33.36	7.34	2.01	28	53	6.2	0.23	0.6	1.1	В
16	77	726	15	13	33.72	32-59.06	115-31.69	4.24	0.73	7	154	9.4	0.17	1.5	1.8	С
17	77	727	18	5	6.81	33- 7.00	115-34.85	1.99	2.14	22	47	5.7	0.39	C.7	0.8	С
18	77	728	З	£	29.89	32-53.19	115-29.56	10.86	1.20	13	155	5.9	0.23	1.1	0.8	С
19	77	730	3	26	28.50	32-48.58	115-28.05	6.33	1.46	17	107	23.0	0.13	0.5	1.1	B
20	77	730	3	33	34.29	32-51.81	115-27.43	12.80	C. 51	5	150	2.0	0.33	5.3	1.1	D
21	71	130	3	34	34.00	32-48.65	115-27.90	1.16	1.72	17	136	6.2	0.17	0.1	1.2	C
22	11	130	3	42	1.20	22-49-21	115-28.22	8.52	1.30	22	105	5.5	0.20	0.6	1.1	B
13	11	720	10	20	22.41	32-45.21	115-28.28.	0.02	0.51	10	101	2.0	0.20	2.0	1.2	L
24	11	720	10	20	5. 70	32-51.99	115-49.40	7.92	2.40	21	215	16 2	0.04	0.1	0.1	D
14	77	720	53	10	55 41	32-51.46	115-45 24	5 00	0.29	2	169	2.7	0.03	i inter a		C
:7	77	721	11	24	31,14	22-45.70	115-25.25	5.11	1.15	10	191	4.0	0.05	0.4	0.2	C
28	77	731	17	25	5.94	32-40.33	115-25.95	8.20	1.20	12	141	6.3	0.24	1.0	1.2	č
29	77	8 3	1	2	45.02	32-54.94	115-31.75	6.59	2.05	35	77	10.5	0.32	0.7	1.7	C
30	77	8 6	18	56	45.07	33- 2.59	115-32.57	6.27	1.82	13	84	5.0	0.14	0.6	0.9	4
31	77	8 8	22	21	¢.73	33-17.50	115-41.41	7.55	2.53	21	62	11.2	0.17	C.6	1.0	В
32	77	810	14	30	56.43	32-50.30	115-27.45	1.90	1.21	8	176	31.5	0.11	0.9	0.6	В
23	77	810	16	20	55.02	32-45.40	115-27.78	5.00	0.94	8	156	30.2	0.12	C.8	1.5	В
34	77	810	18	3	7.32	32-49.19	115-27.73	7.43	1.37	6	134	21.1	0.08	C.8	46.5	С
35	77	811	17	31	40.87	32-58.33	115-51.971	10.91	0.94	6	159	4.4	0.08	1.2	1.1	С
36	77	813	15	57	47.84	32-51.33	115-43.62	8.48	2.23	30	66	C. 7	0.19	C.5	0.6	8
:1	77	814	22	9	44.58	32-46.28	115-25.98	5.00	1.30	10	150	26.7	80.0	0.4	1.1	B
:0	11	814	44	16	45.23	22-46.53	115-25.51	6.03	1.84	13	176	11.3	0.20	1.0	2.0	C
39	11	815	5	22	53.08	35- 3.39	115-33.79	4.01	1.13	28	81	C. 8	0.17	0.4	0.3	E D
40	11	817	11	51	24.11	32-35.04	115-29.90	5.11	1.11	13	55	8.4	0.32	1.1	3.3	D
11	77	610	1	22	20.50	32-50.49	115-24.54	4.45	1 20	21	121	0 0	0.41	1.0	1 2	D T
42	77	021	4	50	40 12	32-47.27	115-26.22	5.00	1.13	12	193	40.7	0.30	1.4	2.2	c
44	77	821	14	= 4	24.40	32-47.42	115-26.58	6.84	1.12	8	164	30.8	0.18	0.9	31.8	c
45	77	822	4	26	34.71	33- 7.76	115-36.48	5.60	1. 31	15	60	5.0	0.20	0.8	0.7	B
46	77	823	13	53	52.97	33- U.15	115-31.61	8.60	2.11	27	93	9.1	0.24	0.6	0.9	B
47	77	823	19	15	10.15	32-59.83	115-31.14	3.34	0.66	16	55	6.6	0.09	0.4	0.5	в
48	77	823	19	15	10.10	33- 0.33	115-32.27	7.15	1.35	13	92	6.7	0.33	1.5	3.9	С
49	77	823	19	15	30.03	32-59.93	115-31.27	4.00	1.94	14	94	6.5	0.12	0.5	0.5	В
50	77	824	0	14	8.00	33- 0.0	115-31.33	8.56	1.29	20	94	6.4	0.24	0.8	0.9	B

	. · · L	н	14	55C	LAT	LUNG	DEP	MAG	Ν	G∴P	C4	2MS	EP.H	ERZ	Ç	
77	828	15	4	36.17	32-55.63	115-46.55	4.95	-0.81	7	123	5.5	0.06	0.9	0.9	R	1
77	9 1	20	11	15.66	33- 4.14	115-34.88	6.03	0.97	11	128	7.1	6.15	0.8	2.7	C	1
77	9 2	20	7	9.81	33- 5.59	115-35-18	5.70	1.79	25	77	7.5	0.21	0.5	0.6	B	1
77	c z	2	29	30.23	32-57.22	115-33.10	1.55	1.30	6	125	12.2	0 25	27	2 5	C	1
77	5 6	7	55	54.59	32-57.41	115-30.79	4.52	0.71	c	104	10.7	0.10	0.6	0.5	R	1
77	5 6	14	36	36.73	22-54.22	115-47.92	7. 47	0.92	6	120	6 2	0.03	0.0	0.0	C	1
77	G G	14	37	20.53	32-54.95	115-46.42	C GE	1 61	16	124	6 4	0.0.5	0.4	0.5	D	1
17	97	11	40	5.01	32-58.20	115-53.41	0.23	0.81	20	100	6 4	0 16	1 1	2.0	D	-1-
17	910	7	25	14.31	32-59.27	115-33.33	1.34	1.04	7	100	6.0	0.10	0 4	2.0	D	1
17	G10	13	17	38.05	22-14.27	115-50 24	2 21	1 52	7	115	22 5	0.00	0.4	0.0	D	1
7	910	16	13	48.33	22-51.05	115-35 41	6 03	0 21	4	272	24.7	0.07	2 7	1.9 0	D	1
7	910	16	14	1.22	32-50.79	115-34 00	6.30	0 62	6	274	24.1	0 13	2 1	40.0	D	1
	012	10	27	27 72	32-55 01	115-20.02	2 77	1 00	1.6	214	20.1	0.15	2.1	50.9	0	1
	C12	. 7	- · ·	27 71	22-57 75	115-25 12	7 20	1.00	16	02	14.9	0.30	1.0	1.1	C	1
- 1	012	7	27	5 84	32-54.66	115-34 30	5 6 5	1.00	20	92	12.5	0.30	0.9	4.0	C	1
	012	22	21	5 17	22-59.66	115-33 14	1 16	1 52	10	63	6.0	0.39	0.0	1.1	D	1
	012		42	5 23	32- 3 36	115-34 13	5 10.	1.22	10	20	7 4	0.20	0.4	0.5	D	1
	012	1	42	9 50	33- 3 50	115-22 25	7 40	0.67	5	100	6 2	0.10	2 4	7 2	D	1
	112	-	47	2 08	37- 2.57	115-33 54	2 04	1 69	21	100	6 5	0.17	C 0	1.3	c	1
	12	11	51	2.65	33-21 14	115-41 201	2 08	1.26	15	120	6.5	0.34	1.0	1.1	D	1
	12	11	52	4.00	33-21.14	115-42.00	10 24	1 54	11	120	6.0	0.10	1.0	1.2	D	1
	12	10	2	12 27	33-0.14	115-47 80	4 40	2 24	15	97	C.O	0.19	0.9	1.9	D	1
	14		2	50 7.	32-14 41	115-36 //	4.70	1 1.6	16	120	2.3	0.00	0.5	2 1	D	1
	15	-	27	53 17	22-56 20	115-22 75	7 75	0 03	11	127	4.L	0.25	1.4	5 0	C	1
		110		27 63	22-19.90	115-26 30	6 55	1 25	11	114	7 1	0.55	1.0	5.0	0	1
	- 1	1 1 1	24	21+72	22-47 27	115-26.50	7 75	1 24	10	119	0 7	0.14	0.5	1.0	D	1
		1 1 2	21	22.1.2	22-41-21	115-26.61	0 72	1 01	10	122	0.2	0.20	1.0	1 5	5	1
		115	20	10.00	72-16 40	115-41 02	0 1 5	1.54	1 2	100	9.1	0.30	1.0	1.0	c	1
		10	5. 5		22-44 40	115-26 30	C 2C	1 60	12	122	C • 4	0.55	1.1	4.0	c	-
		1 4	1.5	72.12	12-51 40	115-34 21	1. 63	1 20	0	125	6. 2	0.34	1 0	1 •1	5	1
		11	10	21.01	21-51 21	115-28 48	9.76	0 67	10	122	3 5	0 21	1.9	1 2	0 0	1
		12	41	A 3-	32-51.01	115-31 43	8.15	0.91	16	221	101	0 22	0.0	1 4	B	1.
		15	C	2 03	32-54 34	115-48 75	20.2	C 70	7	170	5 7	0 04	0 3	0.5	0	1
		17	50	47 -5	22-14.33	115-35 48	2 10	1 03	c	C6	12 0	0.20	1 2	2 4	0	1
		R	52	76 33	32-49.11	115-36 76	7 30	1 33	22	60	14 0	0 41	1.2	2.0	c	1
		4		20.34	32-15 65	115-58 72	1 36	1 18	5	227	32 0	0.01	0.5	0.3	č	1
		2	1.1	20.10	32-53 40	115-30.64	5.00	0.0	14	103	7 6	0.01	1 4	1 7	c	1
			10	4 41	33- 6 20	115-36 20	2 8C	0.53	7	185	7 5	0 34	23 3	30 6	.0	-1
			22	0.51	22- 6 22	115-38 30	5 20	1 15	19	100	1 2	0 43	1 7	0.00	c	-
			1 = 1	10.5%	33- 8 60	115-27 76	2.00	1.16	13	83	2 2	0.15	0.5	0.0	P	1
			22	40 00	33- 8 00	115-38 20	5.00	1.81	20	74	1 0	0.30	0.9	0.4	DQ	1
			26	30 21	23- 7 72	115-27 22	4 13	0 88	10	74	1.7	0. 49	1 2	1 1	G	1
			10	J7.21	1.10	110-01.00	7.12	0.00	17	10	4.2	0.40	1.2	1.1	C	1

÷. . .

