UNITED STATES

PRELIMINARY CATALOG OF EARTHQUAKES
IN NORTHERN IMPERIAL VALLEY, CALIFORNIA
JULY 1977 - SEPTEMBER 1977

By

Open File Report 77-869

This report is preliminary and has not been edited or reviewed for conformity with Geological Survey standards and nomenclature.

PRELIMINARY CATALOG OF EARTHQUAKES

IN NORTHERN IMPERIAL VALLEY, CALIFORNIA
JULY 1, 1977 - SEPTEMBER 30, 1977

CONTENTS
Page
Introduction 1
Area Covered and Instrumentation 1
Data Analysis 2
Discussion 4
References 7
ILLUSTRATIONS
Figure 1. Base Map of Southern California 8
Figures 2. - 7. CEDAR Subarrays 9-14
Figure 8. Earthquake Epicenters and Seismograph Stations 15
Table 1. Station Data 16
Table 2. Preliminary Hypocenter Solutions(for earthquakes July 1, 1977 - September 30, 1977)18

INTRODUCTION

The northern section of the Imperial Valley region in southern California is an area of known geothermal resources and an area of high seismicity. To study in detail the relationship between geothermal areas and earthquakes, the U.S. Geological Survey has been monitoring seismicity in the Imperial Valley with a 16 - station network since 1973. Six new stations were added to the network in November 1976. This catalog contains a description of the network and a list of preliminary data on earthquakes recorded by the network from July 1977 through September 1977.

AREA COVERED AND INSTRUMENTATION

Eartnquakes reported in this catalog are located in the area indicated in Figure 1. Major faults are shown. Locations of most of the seismographic stations used in locating earthquakes reported here are shown on Figure 8 and are listed in Table 1.

The telemetered seismographic network in the Imperial Valley employs the same type oE instrumentation developed by the U.S. Geological Survey for use in the central California network (see Wesson and others, 1973). Seismometers are vertical-component L-4C Mark Products ${ }^{1 /}$ seismometers $\left(T_{\text {seis }}=1 \mathrm{sec}.\right)$. Signals from these instruments are filtered in the field $\left(T_{\text {filter }}=0.1 \mathrm{sec}\right)$ and telemetered to the California Institute of Technology in Pasadena, California, where they are recorded on 16 mm films along with a WWVB time code in Develocorders ${ }^{1 /}\left(T_{g a l v o}=0.06 \mathrm{sec}\right)$. Peak magnification

[^0]ranges from 10^{5} to about 10^{8} and occurs at $T_{\text {peak }}=0.06 \mathrm{sec}$ (or 14 hz). (Refer to Wesson and others, 1973, or Hill and others, 1975, for a somewhat more detailed description of this instrumentation.) In addition to film recordings, digital recordings are made by the Caltech Earthquake Detection and Recording System (CEDAR) (Johnson, 1977). An earthquake detection algorithm is used in CEDAR, and only "detected" earthquakes are saved. CEDAR is described more fully below.

DATA ANALYSIS
During this quarter, a transition has been made from analysis based on film recordings (see, e.g., Jenkins and Fuis, 1977) to analysis based on digital recordings by CEDAR. The new data reduction procedure is as follows:

1) On-1ine processing. "On-1ine" processing refers to computer manipulation of signals at the time they are received. Signals from all stations aze digitized continuously at 50 bits per second. The signal amplitude at each station is averaged in a 40 -second interval of time which moves continuously keeping its leading edge at the present time. In addition, an average of amplitudes in the leading 5 seconds of this interval is made. Whenever the 5 second average exceeds the 40 -second average by 50 percent for a given station, that station is considered to be triggered. Whenever 4 stations in a subarray of stations are simultaneously triggered, a "detection" is considered to be made. When a detection is made, digitigized signals from all stations in southern California are transferred from a magnetic disc, which is being continuously erased, to a magnetic tape, from which they can be played back and examined by a data analyst at a later time. The subarrays of stations used for the detection of earthquakes in the Imperial Valley are indicated in Figures 2-7.
2) Off-line processing. "Off-1ine" processing refers to interactive computer-human manipulation of signals from detected events at some time after they have been saved and stored on magnetic tape by the on-line system. (Separate computers are used for on-line processing (Data General Eclipse $\mathrm{S} / 230$ with 32 K core) and off-line processing (Data General Nova 820 with 32 K core); but their roles can be interchanged.) All events detected in a day by the on-line system are played back the following day on the off-line system; hard copies of the seismograms from each triggered station are made for each event. A data analyst reviews these seismograms to determine which events are noise events and which are earthquakes. Earthquakes are then played back a second time onto a cathode ray tube viewer (CRT) equipped with movable vertical and horizontal cross-hairs. The data are played back in 2 stages. First, seismograms from all stations in southern California are displayed on the screen, 32 at a time. During this stage the data anaiyst selects stations to be reviewed for timing during the second stage. During the second stage, seismograms from individual stations are played back onto the $C R T$, and P and S wave arrivals are timed. During this stage it is possible to amplify or attenuate the signals for visual inspection so that optimun picks can be made.
3) At the completion of timing of a day's worth of earthquakes, arrival time data are processed using a version of the computer program HYPO71 (Lee and Lahr, 1972) that has been abbreviated and modified to be accommodated by the off-line computer (Johnson, C.E., personal communication). During this step, a simple velocity structure is used in the location of all events in southern California (see Kanamori and Hadley, 1975); no station delays are used. The preliminary epicenters that result from this step determine in
which geographic areas the events fall and hence which velocity structures and associated station delays should be used for subsequent refinement of the locations.
4) Signal durations are measured according to Lee and others (1972a) from Develocorder films for all events in the Imperial Valley. CEDAR recordings have not yet been calibrated for determining magnitudes from signal durations.
5) All events in Imperial Valley are reprocessed using the computer program HYPOTl and an appropriate velocity structure with associated station delays (see Discussion). Epicentral parameters determined during this step are listed in this catalog in Table 2; and the epicenters are plotted on a map (Figure 8).

DISCUSSION

Earthquake locations are strongly dependent on the velocity model used in the location program. Epicentral determinations are less strongly dependent on the model than depth determinations, unless the earthquake occurs outside of the perimeter of the station group used in the location. The velocity model used for the earthquake locations in this catalog is based on a seismic refraction study of the Imperial Valley by Biehler and others (1964):

VELOCITY	DEPTH TO
$(\mathrm{km} / \mathrm{sec})$	TOP OF LAYER (km)
2.0	0.0
2.6	1.0
3.6	2.0
4.7	3.0
6.1	6.0
8.0	20.0

The P-wave delay times assigned to each station (Table 1) were established from a calibration blast detonated by the U.S. Geological Survey on March 23, 1976, at $33^{\circ} 05.30^{\prime}$ N. Latitude and $115^{\circ} 37.87^{\prime}$ W. Longitude, 5 kilometers north of Westmorland. This calibration shot is very near the epicenters of most of the earthquakes of the November 1976 earthquake swarm. Our studies indicate that, in this area, epicentral locations are probably as accurate as $\pm 0.5 \mathrm{~km}$; hypocentral locations (depths) are probably accurate only to $\pm 2 \mathrm{~km}$. The hypocentral locations of these earthquakes relative to one another is probably more accurate, however.

Magnitudes reported in this catalog are based on the method of signal duration described by Lee and others (1972a). The magnitude of a given earthquake is the average at several stations of magnitudes determined by

$$
M=-0.87+2.00 \log (\tau)+0.0035 \Delta
$$

where
Δ is epicentral distance in km , and τ is signal duration in seconds.

Signal duration is the time interval in seconds from the onset of the P wave arrival to a point where the trace amplitude (peak-to-peak) falls below 1 cm as it is seen on the Geotech film viewer. A 0.0 magnitude (Table 2) indicates that the magnitude was not calculated. In some cases an earthquake signal is truncated by the onset of a larger event or extended by the onset of smaller events. In these cases the method of determining magnitude using signal duration can not be used.

The hypocentral parameters listed in Table 2 are the following:

1) Y, year of occurrence
2) M, month of occurrence
3) D, day of occurrence
$\left.\begin{array}{l}\text { 4) } \mathrm{H} \text {, hour of occurrence } \\ \text { 5) M, minute of occurrence } \\ \text { 6) SEC, second of occurrence }\end{array}\right\}$ GCT
4) LAT, north latitude of epicenter, in degrees
5) LONG, west longitude of epicenter, in degrees
6) DEP, depth of hypocenter, in kilometers
7) MAG, magnitude
8) N, number of P arrivals used in locating the earthquake
9) GAP, maximum azimuthal gap, in degrees, between stations contributing P-arrivals
10) $D M$, distance from epicenter to nearest station used in locating the earthquake
11) RMS, root mean square of travel time residuals, R_{i}, in seconds

$$
R M S=\sqrt{\sum_{i=1}^{N} R_{i} / N}
$$

15) ERH, standard error of the epicenter, in kilometers
16) ERZ, standard error of the focal depth, in kilometers
17) Q, solution quality of the hypocenter
18) M, model used in location. $M=1$ throughout this
preliminary catalog

A filter is applied to the events in this catalog to eliminate very bad hypocenter solutions. A solution was not listed or plotted unless RMS ≤ 0.50 seconds.

REFERENCES CITED

Biehler, S., R. L. Kovach and C. R. Allen, 1964, Geophysical framework of the northern end of the Gulf of California structural province, in Marine Geology of the Gulf of California (T. J. van Andel and G. G. Shor, Jr., eds.): Am. Assoc. Pet. Geol. Memoir, 3, p. 126-156. Hill, D. P., P. Mowincke1 and K. M. Lahr, 1975, Catalog of earthquakes in the Imperial Valley, California, June 1973-May 1974: U.S. Geol. Survey, Open-file Rept. 75-401, 25p.

Jenkins, D. J. and G. S. Fuis, 1977, Preliminary catalog of earthquakes in northern Imperial Valley, California, April 1977 - June 1977: U.S. Geol. Survey, Open-file Rept. 77-694, 15 p.

Johnson, C. E., 1977, Caltech earthquake detection and recording system: (to be submitted to BSSA).

Kanamori, H. and D. M. Hadley, 1975, Crustal structure and temporal velocity change in southern California: Pure App1. Geophys., v. 113, pp. 257-280. Lee, W. H. K. and J. C. Lahr, 1975, HYPO71 (Revised): A computer program for determining hypocenter, magnitude, and first-motion pattern of local earthquakes: U.S. Geol. Survey, Open-file Rept. $75-311$, 113 p.

Lee, W. H. K., R. E. Bennett and K. L. Meagher, 1972a, A method of estimating magnitude of local earthquakes from signal duration: U.S. Geol. Survey, Open-file Rept., 48 p.

Lee, W. H. K., J. C. Roller, P. G. Bauer and J. D. Johnson, 1972b, Catalog of earthquakes along the $S a n$ Andreas fault system in central California for the year 1967: U.S. Geol. Survey, Open-file Rept., 48 p.

Wesson, R. L., K. M. Meagher, and F. W. Lester, 1973, Catalog of earthquakes along the San Andreas fault system in central California, July-September, 1972: U.S. Geol. Survey, Open-file Rept., 49 p.

Figure 1. Base map of southern California region with major faults. Area of Figure 8 is shown.

ARRAY \#16

ARRAY \#2Ø

Figure 3. Locations of earthquake epicenters in the Imperial Valley with respect to major faults for the period July 1, 1977 through September 30, 1977. Solid triangles are seismograph stations in the Imperial Valley network installed in 1973 (see Figure 1 and Table 1). Solid circles are the seismograph stations installed in November 1976.

NO,	STATION	LATITUDE	LONGITUDE		ELEV DELAY	
		DEG MIN	DEG	MIN	FEET	SEC
1	RUGR 33	2.73 N	115	34.10 W	-47	-0.02
2	VERD 33	7.07 N	115	33.76 W	-61	0.02
3	EPIC 33	5.28 N	115	36.28 W	-61	0.0
4	BANG 33	5.29 N	115	37.84	-62	0.0
5	ELR 33	8.84 N	115.	49.95 H	-63	-0.55
6	NHR 33	$6.10 N$	115	41.01 W	-69	-0.64
7	WIS 33	16.56 N	115	35.58 W	-68	-0.91
8	WML 33	0.91 N	115	37.35 h	-44	-0.29
9	CLI 33	8.45 N	115	31.64 H	-59	-0.20
10	FNK 33	22.98 N	115	38.26 W	12	-1.13
11	Cor 33	21.84 N	116	18.63 W	210	-1.58
12	HOT 33	18.84 N	116	34.85 W	1975	-1.39
13	SMO 33	32.15 N	116	27.70 H	0	-1.34
14	PLT 32	43.87 N	114	43.764	61	-1.52
15	SLU 32	30.10 N	114	45.64 H	42	-0.97
16	AHS 33	8.4 EN	115	15.25 h	140	-1.13
37	COA 32	51.81 N	115	7.36 W	-35	0.0
18 \%	BSC 32	43.4 SN	115	2.64 W	43	0.0
19 *	BLU 34	24.40 N	117	43.61 W	1830	0.0
21	CPE 32	52.80 N	117	$6.00{ }^{-1}$	213	-0.65
21	GLA 33	3.10 N	114	49.60 W	627	-1.05
22	IKP 32	38.93 N	116	$6.48{ }^{\circ}$	957	-1.17
23	TPC 34	6.35 N	116	2.92 W	761	-0.77
24	PLit 33	21.20 N	116	51.70w	1692	-0.59
25	BC2 33	$39.42 N$	115	27.67 H	1185	-1.05
26	CPM 34	9.24 N	116	11.80\%	937	-0.61
27	CO2 33	50.82 N	115	20.58W	276	-1.10
28	INS 33	56.14 N	116	11.66 W	1700	-1.35
29	LTC 33	29.34 N	115	4.20 W	458	-1.21
30	LTM 33	64.5 SN	114	55.10 n	744	-0.66
31	PNM 33	58.64 N	115	48.05\%	1147	-0.75
32	StiH 34	11.26 N	115	39.27 m	1122	-3.66
33	KEE 33	$38.30 N$	116	39.19W	1366	-0.92
34	VGR 33°	50.25 N	$11 t$	48.53 W	1500	-0.71
35	HWR 33	59.51 N	116	39.36	702	-0.53
35	BON 32	41.67 N	115	15.11 W	14	-0.22
37	CCM 33	25.75 N	115	27.88 W	488	-1.30
38	COK 32	50.55 N	115	43.61 W	-15	-0.40
39	CRR 32	53.18 N	115	59.10 W		-1.07
40	DAH32	44.07 N	115	33.47 h	-6	0.20
41	HSP 32	44.81 N	115	33.71 h	-6	0.13
42	ING 32	59.3 CN	115	18.61 h		-0.0.37
43	KBY 33	2.42 N	115	42.06 W	-51	-0.27
44	OBS 33	10.04 N	115	38.20 W	-61	-0.62
45	RSE 32	55.53 N	115	29.95W	-41	-0.22
2.6	RUN 32	58.33 iv	114	58.63 h	152	-1.01
47	SGL 32	38.95 N	115	43.52 W	110	-1.08
48	Sive 32	51.71 N	115	26.21 k	-30	-0.32
49	SUP 32	$57 . \Xi 1 \mathrm{~N}$	115	49.43 W	219	-1.07

Table 1. (Cont'd.)

NO.	LATITUDE		LONGITUDE		ELEV DELAY
	DEG	MIN	DEG	MI	FEET. SEC
50	LK 33	$3 . C 8 N$		29.44 w	48-0.11
51	FTM 32	33.2 SN	114	20.01 h	263-1.68
52	PIC 32	54.85 N	114	38.54 W	263-0.95
53	YMD 32	33.28 N	114	32.68 W	$76-0.48$
54	EAII 33	46.44 N	115	35.83 W	$786-1.13$
55	HA10 33	42.80 N	115	34.90 W	536-0.59
50	GRO9 33	37.05 N	115	35.50 d	555-0.79
57	CHO8 33	30.25 N	115	35.68 W	634-1.14
58	CHO7 33	27-2̈1N	115	35.50 W	535-1.14
59	COA5 33	22.2 CN	115	36.10 h	$18-1.16$
60	HIL4 33	20.37 N	115	35.73 W	$-40-1.06$
61	SAL2 33	15.82 N	115	35.25 W	-69-0.83
62	MUDI 33	13.21 N	115	35.16 H	$-70-0.71$
63	ROCX 33	10.58 N		36.29 m	-69-0.74
64	YNGX 33	7.98 N	115	36.61%	$-64-0.08$

18.

Table 2.
Preliminary hypocenter solutions for earthquakes in southern California

July 1, 1977 through September 30, 1977

	Y	＊	H	M	E．C	AT	LONG	CEP	MA．E	N	；AP	O4	MS	F2H	ER．Z	6
	77	72	21	12		2				8	$1 \equiv 0$		0.16		1.7	E
2	77	74	1	32	14.37	$33-1.07$	115－45．18	2.13	1.45	7	129	7.0	0.14	0.8	1.3	E
	77	74	5	S	6． 60	33－2．04	115－35．31	7.01	1.08	11	83	8	0.22	1.0	2.	f
	77	74	19	41	21.88	32－58．54	$15-31.29$	8.15	0.87	10	155	8.7	0.25	1.6	2.1	c
	77	74	21	Es	23.58	33－17．97	15－37．32	2.07	． 57	3	107	28.	0.09	0.6	1.5	8
	77	710	10	55	20.10	33－4．24	$115-34.42$	7.85	1． C 6	11	$1 \equiv 1$	$2 t .3$	0.16	c． 9	2.	C
7	77	710	20	42	21.33	33－5．61	115－35．59	5.41	1.50	25	77	8.1	0.14	0.3	0.	B
8	77	712	11	51	39．95	$32-54.05$	115－46．93	4.71	0．t4	－	116	7.1	0.17	1.1	0.7	B
4	77	713	19	25	4.31	32－51．81	115－28．35	10.48	0．t1		$1 \in 3$	3.3	0.31	4.0	4	C
10	77	715	17	53	34.20	32－46．30	115－24．15	5.00	00	27	122	10	0.21	0.6	0.	
11	77	715	15	15	45.35	35－C． 75	115－27．00	5.61	Cl	5	202	20.	0.37	3.0	16.6	
12	77	719	3	33	25.49	32－47．30	$15-2 t$	3.22	1.09	9	142	30.8	0． 18	0.6	1.3	
13	77	719	8	3 c	41.57	$32-47.42$	115－26．53	9.33	1.38	14	131	7.9	0.14	0.7	1.7	
14	77	722	4	ここ	32.31	E2＝4t．28	155－26．28	6.17	1.18	－	125	18.0	0.12	0.7	56.4	
15	77	725	5	45	52.90	33－3．98	115－33．36	7.34	2．C1	28	53	6.2	0.23	0.6	1.1	B
16	77	726	15	$1 \equiv$	32.72	$32-59.06$	115－31．60	4.24	0.73	7	154		0.17	． 5	．	c
17	77	727	18	5	t． 81	3こ－7．00	115－34	1.95	2.14	22	47	5.7	0.39	0.7	0.8	c
18	77	728	\bigcirc	ϵ	25.8 ？	32－53．19	15	0．36	1.20	13	155	5.9	0.23	1.1	0.8	
19	77	$7 \geq 0$	3	$2 t$	23.50	22－48． 50	$115-28.05$	6.33	1.46	17	107	23.0	0.13	0.5	1.1	
20	77	730	3	こう	34．20	$3 \overline{2}-51.6{ }^{\text {c }}$	$115-27.481$	12.8 C	C．$c^{\text {c }} 1$	c	150	2.0	0.33	5.3	1.1	C
11	77	730	3	34	34.00	E2－48．65	115－27．30	7.76	1.72	17	136	6.	0.17	0.7	1.2	c
22	77	730	3	4.	7.23	22－49．27	115－28． 22	8.		22	105	5.5	0.20	0．t	． 1	
23	77	$7 ミ 0$	3	50	22.	－4¢． 21	115－25．28	11.	0.52	10	181	5.6	0.20	6	． 2	［
［4	77	$7=0$	10	25	3．5＇	－51．90	115－44．4	9.		21	31	2.	0.19	0.7	0.7	B
25	77	$7: 0$	23	12	54.75	ここ－50．15	$115-43.48$	2.48	C． 85		215	16.2	0.05			
： 6	77	7ミC	23	15	55.42	32－51．45	11， 1 －45．2＋	5.00	0.89	3	169	2.7	$0 . \mathrm{Cl}$			
i	77	$7 \geq 1$	11	36	こ1．14	22－ 5 ¢ 70	115－25．25	$5.1 t$	1.15	10	191	．	0.05	0.4	．	c
	77	$7 ミ 1$	12	25	5．ć．	32	$115-25.55$	8．2C	1． 20	12	141	t． 3	0.2	． 0	．	c
	77		，			5＇4	115－31．75	6.5	2.05	35	77	10.5	0.32	． 7	1.7	
30	77		18	5	45.07	－2．5c	115－32．57	6.	1． 82	13	84	5	0.	0.6	9	
	77	83	22	2		$35-17.50$	115－4．1．41	7.5	2.53	21	62	1 i .2	0.17	0.6	． 0	
：2	77	\＆10	14	三0	－ヒ． 4	$32-30.30$	115－27．45	1.90	1.21	8	176	11．5	0.11	0.9	0.6	
3	77	810	15	20	55.02	32－46．40	115－27．78	5.00	C． 54	8	156	20.2	0.12	C． 8	1.5	B
	？ 7	810	13	ह	7．こ？	3？－4c．is	115－27．73	7.43	1.37	t	13.4	21.1	0.08	C． 8	46.5	
：5	77	811	17	31	40.87	32－58．33	115－51．9？	10.91	0.94	6	159	4.4	0.08	1.2	1.1	
16	77	813	15	5？	4.7 .84	32－51．33	$115-4.3$	8.4	2.23	3 C	$t t$	C． 7	0.19	c． 5	0.6	8
17	77	814	22	9	44.58	3こ－4t． 23	115－25．98	5.00	1.30	10	150	2t． 7	0．c8	0.4	－． 1	
？ 8	77	814	こ2	it	＋5．ご	－2－46．5	115－25．51	t． 03	1． 84	13	176°	17．3	0.20	1.0	2.0	
39	77	815	5	22	53.08	3j－3．39	115－33．79	4.67	1.13	28	81	t． 8	0.17	0.4	0.3	
40	77	817	17	57	54.77	22－55．04	115－29．90	9.11	1.11	13	83	8.4	0.32	1.1	3.3	B
	77	818	1	55	25.53	3こ－50．49	115－24．54	4.4	2.75	34	93	．	0.26	0.7	0.7	B
	77	821	4	48	30.67	32－46．8．5	115－26．7	10.0	1.29	31	121	9.0	0.41	1.0	1.2	C
－	77	821	t	58	49.12	$32-47 \cdot 27$	115－2t． 22	5.00	1.13	13	193	40.7	0.30	1.4	2.2	
15	77	821	14	三4	24.45	$32-47.42$	115－26．58	c． 84	1.12	8	14.4	3 C .3	0.18	C． 9	31.8	
45	77	822		26	34.71	33－7．76	115－36．48	5.60	1． 31	15	60	5.0	0.20	0.8	0.7	B
	77	823	13	52	52.57	33－ 0.15	115－31．61	3.60	2.11	27	93	9.1	0.24	0.6	0.9	B
47	77	823	17	15	10.15	32－5c．83	－15－31．14	3.34	0．tt	1ϵ	55	6.6	0． 0°	0.4	0.5	
	77	825	19	15	1 t	33－0．33	115－32． 27	7.15	35	13	92	6.7	0.33	1.5	3.9	
	77	823	19	1		32－5c．93	115－31．27			14	54		，	1.5	，	

[^0]: 1/ Any use of trade names and trademarks in this publication is for descriptive purposes only and does not constitute endorsement by the U.S. Geological Survey.

