

200)
R298
10, 78-99

UNITED STATES
DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY

Open-file Report 78-99
Prepared in Cooperation with the Geology Division,
Michigan Department of Natural Resources
JANUARY 1978

(200)
R290
no. 78-99

USGS LIBRARY RESTON

3 1818 00014394 9

UNITED STATES
DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY

[Reports - Open file
series]

MODEL ANALYSIS OF THE IMPACT ON GROUND-WATER

CONDITIONS OF THE MUSKEGON COUNTY WASTEWATER DISPOSAL SYSTEM, MICHIGAN

By Michael G. McDonald and William B. Fleck

Open File Report 78-99

no TM
UTWards
Kew

Prepared in cooperation with the Geology Division,
Michigan Department of Natural Resources

Okemos, Michigan

283593

January 1978

CONTENTS

	Page
Abstract	1
Introduction	1
Cooperation.	1
Acknowledgments.	3
Description of wastewater disposal system.	3
Geology.	3
Glacial deposits.	3
Bedrock deposits.	4
Hydrology.	7
Water-table aquifer	7
Artesian aquifer.	9
Confining unit.	9
Model description.	9
Basic ground-water flow model	11
Drainage analysis	12
The Muskegon model.	13
Data base	15
Calibration	16
Initial model applications	20
Effects of the system through 1975.	20
Predictive simulations.	20
Summary.	27
References cited	29
Appendix	30
Model program	30
Data preparation.	54
Basic data deck instructions	54
Group I: Title, simulation options and pro- blem dimensions	54
Group II: Scalar parameters.	56
Group III: Array data.	58
Group IV: Parameters that change with the recharge period	60
Recharge file instructions	62
River data deck.	62
Drainage tile deck	62

ILLUSTRATIONS

	Page
Figure 1-2. Maps showing:	
1. Location of study area	2
2. Muskegon County wastewater disposal system .	4
3. Cross-section of study area showing geologic formations	5
4-5. Maps showing:	
4. Subcrop formations, thickness, and potentiometric surface of Marshall Formation . . .	6
5. Transmissivity of the water-table aquifer. .	8
6. Diagram showing grid spacing used in model . . .	13
7. Map showing steady-state water table	17
8. Hydrographs showing water levels in selected wells during 1975.	18
9. Map showing altitude of water table during July 1975.	19
10. Hydrograph showing baseflow from field measurements and from model calculations.	20
11-17. Maps showing:	
11. Change in water level caused by operation of the wastewater system	21
12. Steady-state water table with 1.5 in per week irrigation	22
13. Steady-state water table with 3 in per week irrigation	23
14. Predicted rise in ground-water levels if irrigation is increased from 1.5 in per week to 3 in per week	24
15. Predicted rise in ground-water levels when seepage into drainage tile is reduced by 75 percent	25

ILLUSTRATIONS (Continued)

	Page
16. Predicted rise in ground-water levels when natural recharge is increased from 8 in/yr to 12 in/yr	26
17. Predicted decline in ground-water levels if the bottom of the lagoons become sealed	27

TABLE

	Page
Table 1. Monthly precipitation, ground-water discharge to streams, change in ground water in storage and ground-water recharge.	10

FACTORS FOR CONVERTING ENGLISH UNITS TO INTERNATIONAL

SYSTEM (SI) UNITS

<u>Multiply English Units</u>	<u>By</u>	<u>To Obtain SI Units</u>
inches (in)	2.54	centimeters (cm)
feet (ft)	0.3048	meters (m)
miles (mi)	1.609	kilometers (km)
acres	0.4047	hectares (ha)
square miles (mi^2)	2.590	square kilometers (km^2)
cubic feet per second	.02832	cubic meters per second (m^3/s)
gallons per day per square foot ((gal/d)/ ft^2)	0.0407	meters per day (m/d)
square feet per day (ft^2/d)	0.0929	square meters per day (m^2/d)

Glossary

Aquifer.--A formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Artesian water.--Ground water that is under sufficient pressure to rise above the level at which it is encountered by a well, but which does not necessarily rise to or above the surface of the ground.

Base flow.--The discharge entering stream channels as effluent from the ground-water or other delayed sources; sustained or fair weather flow of streams.

Bedrock.--In this report, designates the consolidated rock underlying the glacial deposits.

Confining bed.--A body of relatively impermeable material stratigraphically adjacent to one or more aquifers.

Evapotranspiration.--Water withdrawn from a land area by direct evaporation from water surfaces and moist soil and by plant transpiration, no attempt being made to distinguish between the two.

Head.--The height of the water surface in a cased well at a point in an aquifer. Also called static head.

Hydraulic conductivity.--Ability of a porous medium to transmit water.

Hydrograph.--A graph showing stage, flow, levels or other property of water with respect to time.

Potentiometric surface.--A surface which represents the levels to which water will rise in tightly cased wells.

Recharge.--Comprises the processes by which water is absorbed and is added to the zone of saturation. Also, the quantity of water added to the zone of saturation.

Specific yield.--The ratio of the volume of water which the saturated medium will yield by gravity to the volume of the porous medium.

Transmissivity.--The ability of aquifer material to transmit water. It is equal to the product of hydraulic conductivity and thickness.

Water table.--The upper surface of the zone of saturation, except where the surface is formed by an impermeable body.

Water-table aquifer.--One in which the upper surface of the body of water is a water table.

MODEL ANALYSIS OF THE IMPACT ON GROUND-WATER CONDITIONS OF THE
MUSKEGON COUNTY WASTEWATER DISPOSAL SYSTEM, MICHIGAN

By

Michael G. McDonald and William B. Fleck

Okemos, Michigan

ABSTRACT

A digital model was developed to study the impact on ground-water conditions of the Muskegon County wastewater disposal system. At the disposal site, wastewater is stored in two 850-acre (344-ha) lagoons and then spray-irrigated on crop land. About 70 miles (105 km) of drainage tile, which underlies the irrigated land, has caused the water table to be lowered substantially. The decline in water levels has been partially offset by irrigation and leakage from the lagoons; at some places the water table is higher than it was prior to construction. Predictive simulations by the model were used to study the effects of varying tile drainage, amount of irrigation water applied, lagoon leakage, and natural ground-water recharge. If the effectiveness of the tile to collect drainage is reduced by 75 percent, large areas within the wastewater site would become waterlogged. However, the effect outside of the wastewater site would be negligible.

INTRODUCTION

This report summarizes the results of an investigation of ground-water conditions from 1974 to 1976 at the Muskegon County, Michigan spray-irrigation wastewater disposal facility. The principle purpose of the investigation was to develop a mathematical model that, when used on a digital computer, would simulate the hydrologic system. Figure 1 shows the location and boundaries of the modeled area and the location of the wastewater facility. Geologic data for development and calibration of the model were obtained during the course of the study from a network of observation wells in and surrounding the treatment facility.

As additional information becomes available through the operation of the system, and as data on ground-water fluctuations accumulates, an improvement in the predictive capability of the model will be possible.

COOPERATION

The investigation was undertaken in cooperation with the Geology Division, Michigan Department of Natural Resources. In addition to sharing in the cost of the study, the Geology Division made available well records and other data from their files and provided assistance in field work at the treatment site.

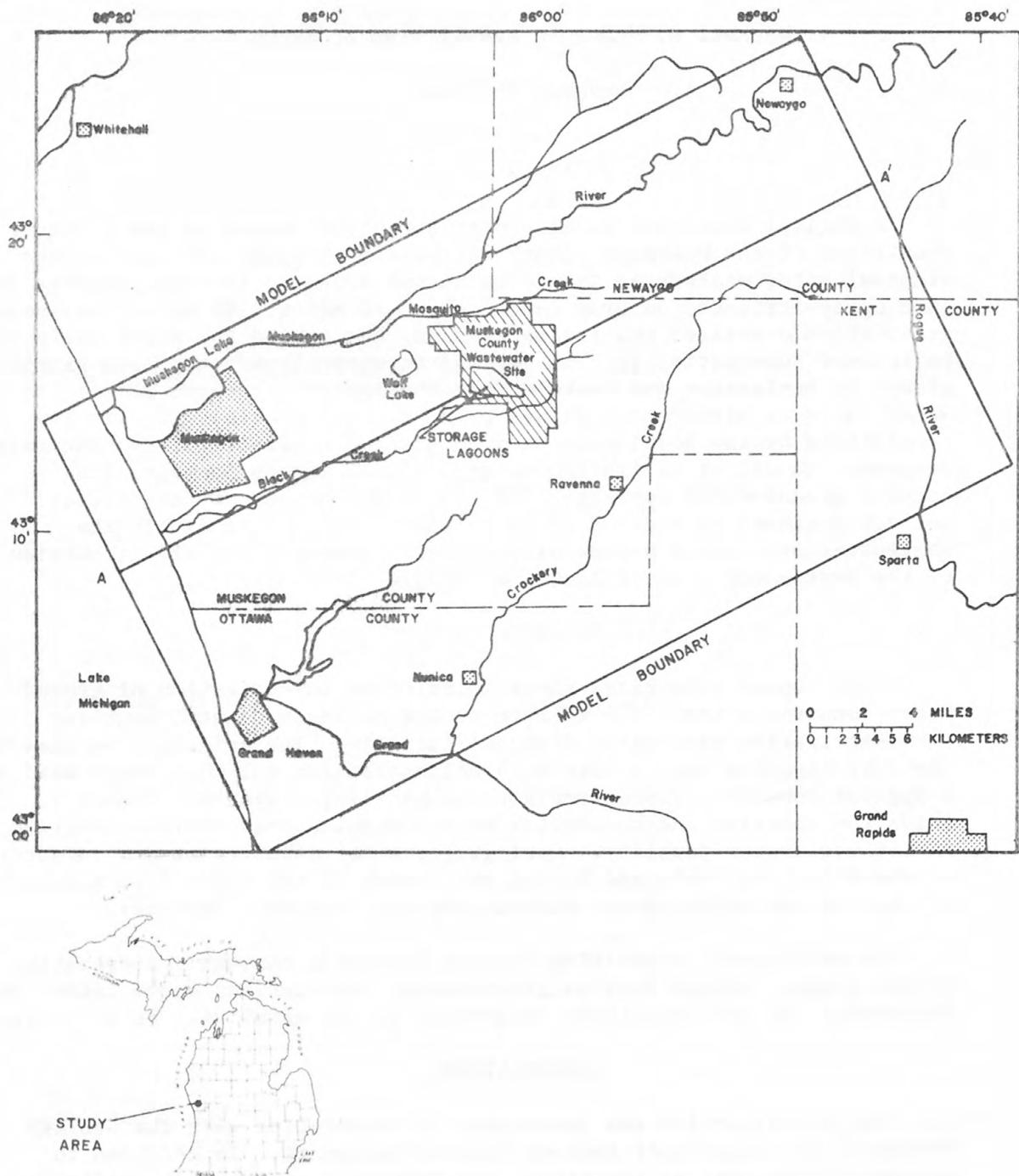


Figure 1. Location of study area. Line A-A' is cross section shown in figure 3.

ACKNOWLEDGEMENTS

The authors are indebted to all individuals who provided assistance in the course of this study, and are especially indebted to Dr. Y. A. Demirjian, Director of the Muskegon County Wastewater Management System, and Gordon D. Bennett, Hydrologist, U.S. Geological Survey. Their cooperation and personal assistance facilitated work at all stages of model development.

DESCRIPTION OF WASTEWATER DISPOSAL SYSTEM

The wastewater system has a design capacity of 42 M gal/d (1.8 m³/s) (Bauer Engineering, Inc., 1973). Five municipalities and two industries currently pipe 29 M gal/d (1.3 m³/s) to the site. Wastewater is aerated, chlorinated, and then used to irrigate corn. The treated water is sprayed on the land for 8 months; during the winter it is stored in two large lagoons, each having a surface area of 850 acres (344 ha). The bottoms of the lagoons are about 10 ft (3 m) above the preconstruction altitude of the water table. Leakage from the lagoons is intercepted by ditches that surround about 90 percent of the perimeter of lagoon area. Water in these seepage ditches is either pumped back to the lagoons or to adjacent streams. From the lagoons, water is pumped to center pivot rigs capable of irrigating crops at a rate of 3.5 in (8 cm) per week. There are 54 circles irrigating an area of 5400 acres (2200 ha) (fig. 2). Most circles are drained by corrugated polyethylene tiles having diameters of 6 to 10 in (15 to 25 cm). The tile is perforated with 0.06- by 1.5-in (0.2- by 3.8-cm) slots and is encased in a 0.02 in (0.5 mm) mesh fiberglass fabric. Drainage tile lines are generally set 5 to 8 feet (1.5 to 2.5 m) below land surface and are spaced at 500 ft (150 m) intervals. They are generally just below the water table, except in the northwest corner of the site, where the tile lines are few and above the water. Total length of the tile lines is 70 mi (105 km). Drainage tiles are connected to concrete collector tiles (fig. 2) that discharge to drainage ditches. In addition to tile, there are 30 wells (designated as pumped wells on fig. 2) that are used to control ground-water levels. Seven of the wells along the northwest edge of the lagoons are pumped to reduce ground-water mounding caused by lagoon leakage. The rest of the wells are used to control mounding caused by irrigation. This system of tiles, discharge wells, seepage ditches, and drainage ditches, was designed to lower ground-water levels in the project area.

GEOLOGY

Glacial Deposits

The western half of the modeled area (fig. 1) is underlain by sediments deposited in Pleistocene lakes (fig. 3) (Martin, 1955). The composition of the sediments varies from tight clay to fine gravel. Generally, the upper 20 to 80 ft (6 to 24 m) is well-sorted stratified sand, interlayered with fine gravel and silt. Underlying the sand and gravel are beds of relatively impermeable silt and clay. Topography in the western half is flat and poorly drained; recharge to the ground-water body is high.

EXPLANATION

- 5 Irrigation circle and identification number.
- O Pumped well.
- Q Observation well; letter and number identify well for which hydrographs are shown on figure 8.
- A Stream gaging station.
- Collector tile; drainage tile not shown.
- Open drain.

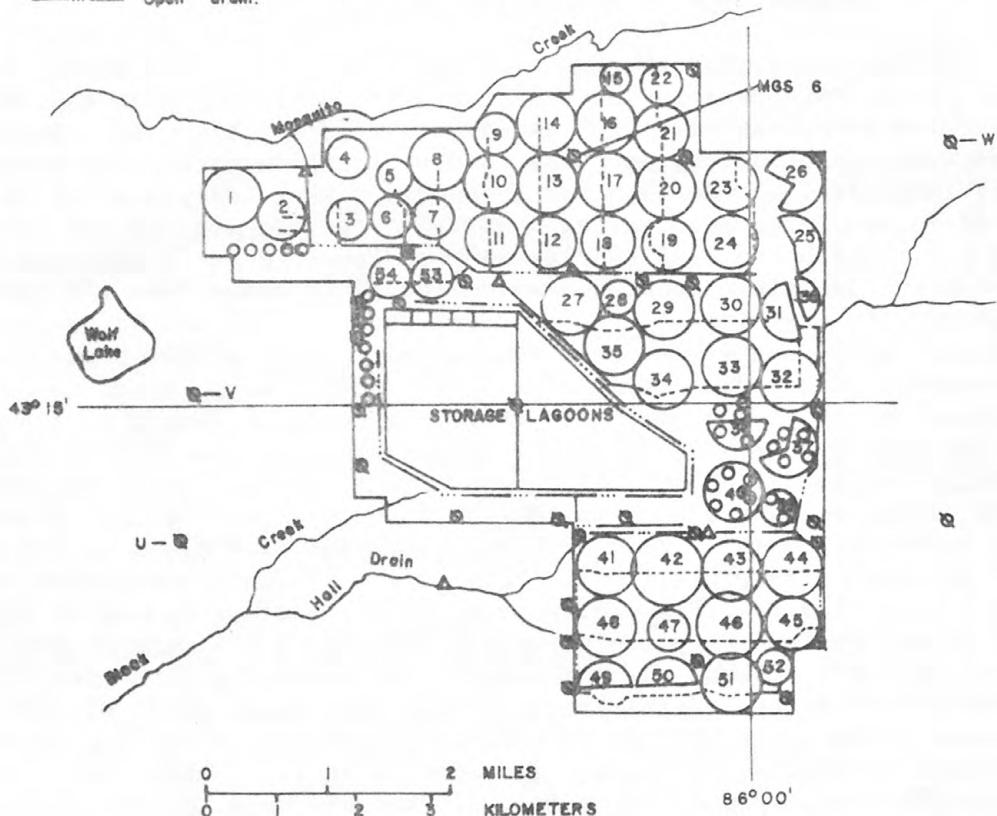


Figure 2. Muskegon County wastewater disposal system.

Most of the eastern part of the area is underlain by morainic deposits, poorly sorted silt and clay containing lenses of sand and gravel. Thin sand and gravel beds occur along some stream valleys. The thickness of the unconsolidated deposits ranges from 100 to 500 ft (30 to 165 m). Under the wastewater site these deposits are approximately 275 ft (85 m) thick. Undulating topography, more extensive stream development, and low recharge to the ground-water body characterize the eastern part.

Bedrock Deposits

Underlying the Pleistocene deposits are consolidated sedimentary rocks of Mississippian age (figs. 3, 4). They include the Bayport Limestone, Michigan Formation, Marshall Formation, and Coldwater Shale (Martin, 1936). The Bayport Limestone is predominantly limestone,

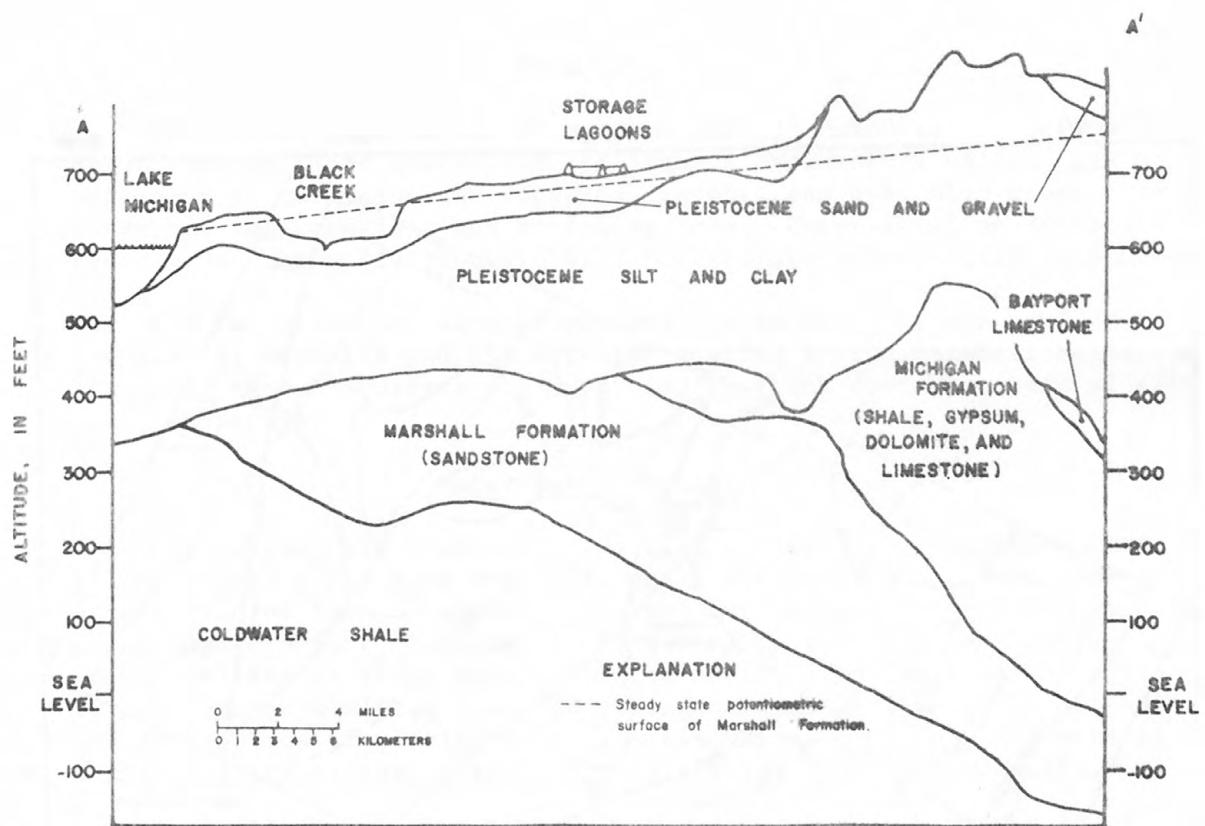


Figure 3. Cross section of study area showing geologic formations.
Location of section A-A' shown in figure 1.

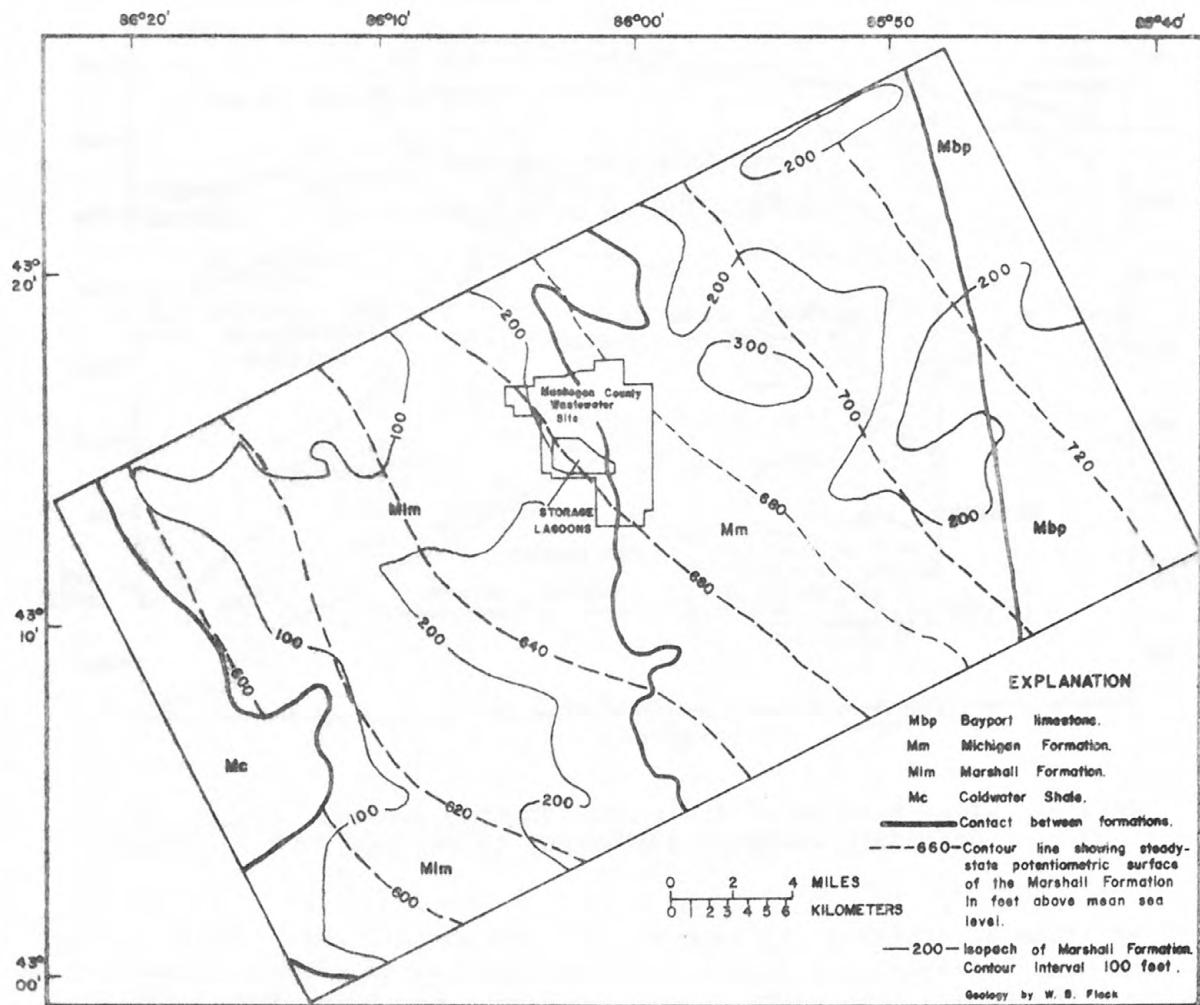


Figure 4. Subcrop formations, thickness, and potentiometric surface of Marshall Formation.

sandstone, and shale. The Michigan Formation is composed of relatively impermeable shale, gypsum, dolomite, and limestone. These two formations and the overlying silt and clay beds range in thickness from 80 ft (24 m) on the west to about 800 ft (245 m) on the east; they form a confining layer over the Marshall Formation. The Marshall is composed of highly permeable gray, pink, and red sandstones (deWitt, 1960, Dorr and Eschman, 1970). This formation ranges in thickness from 0 in the western part of the study area to as much as 300 ft (90 m) in the eastern part. The Coldwater Shale, a thick impermeable shale sequence, underlies and confines the Marshall Formation.

HYDROLOGY

The region studied has an area of 625 mi² (1620 km²). Logs of water wells drilled since 1969 and logs of exploratory oil and gas wells were used to determine the location, extent, and hydraulic properties of water-bearing materials and confining beds. Water-level measurements recorded on the well logs were used to estimate steady-state conditions.

The two principal aquifer systems are the water-table aquifer in the glacial deposits and the artesian aquifer in the Marshall Formation (fig. 3). These aquifers are separated by thick confining beds of silt, clay, and shale.

Water-table Aquifer

The water-table aquifer in the glacial deposits is composed principally of sand containing some silt and gravel. The thickness of the aquifer ranges from 0, where it pinches out against the morainic deposits in the eastern part, to about 80 ft (24 m) in the west. Hydraulic conductivities of these materials were assigned on the basis of well-performance data within the study area and a general knowledge of the characteristics of glacial materials elsewhere. Initial estimates of transmissivity of the aquifer were determined from logs of wells.

Initial transmissivity values were later modified during model calibration. In the model, the water-table aquifer is represented by two layers; values contoured in figure 5 were the sum of the transmissivity values for the two layers.

The regional gradient of the water table is toward Lake Michigan. Water levels range from 820 ft (250 m) above mean sea level on the east side of the study area to 580 ft (177 m) along the shore of Lake Michigan. Water discharges from the aquifer regionally to Lake Michigan and locally to streams. Along the north edge of the wastewater facility, the water table slopes downward about 80 ft/mi (15 m/km) northward toward Mosquito Creek.

Recharge to the water-table aquifer was calculated to be 8 in/yr (20 cm/yr), based on long-term precipitation, streamflow, and ground-water levels. This value agrees well with those of Allen, Miller, and Wood (1972) and Walton (1970) for similar geohydrologic conditions in

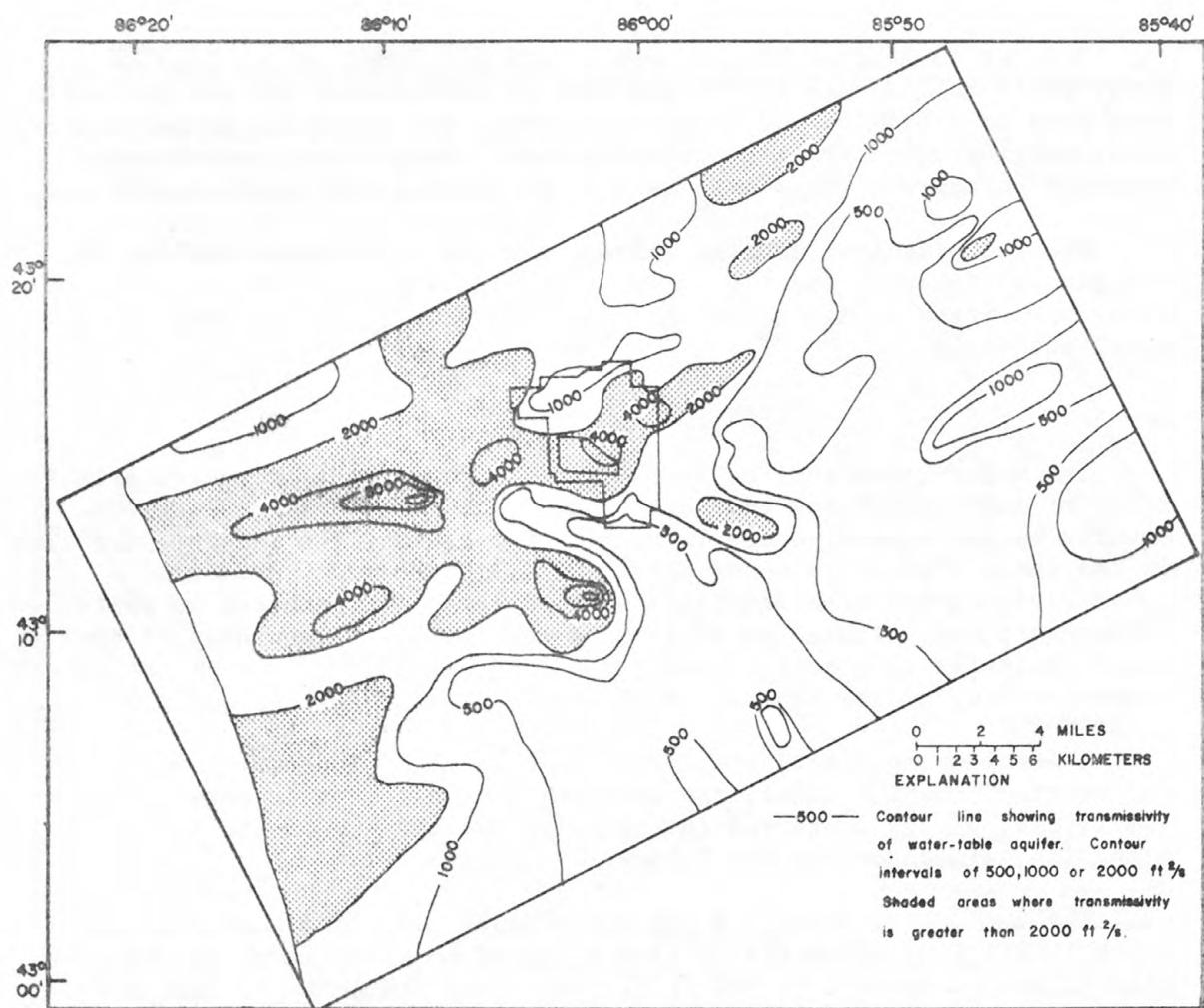


Figure 5. Transmissivity of the water-table aquifer.

southwestern Michigan and Illinois. Precipitation at the wastewater site, and recharge for 1974-75, are shown on table 1. Recharge rates were higher than average in 1974 and 1975 because of intensive storms.

Artesian Aquifer

The Marshall Formation is an artesian aquifer. Hydraulic conductivity values, determined from 7 pumping tests and 33 specific-capacity analyses (Brown and others, 1963, Walton, 1962), ranged from 200 to 20,000 (gal/d)/ft² (8 to 800 m/d); the median value was approximately 2000 (gal/d)/ft² (80 m/d). The thickness of the Marshall Formation was determined from 750 oil and gas logs. In the eastern half of the study area, where the formation underlies the Michigan Formation, the thickness ranges from 60 to 300 ft (100 m); the average thickness is about 240 ft (73 m). In the western half, the thickness gradually decreases westward from about 230 to 0 (70 m to 0) along the contact with the Coldwater Shale (fig. 3). Transmissivity of the Marshall Formation, determined by multiplying the formation thickness by the median hydraulic conductivity, ranges from 0 along the west border of the study area, where the Coldwater Shale is present, to 86,000 ft²/d (8000 m²/d) just east of the wastewater site.

In most of the study area and to the east, the Marshall Formation is recharged by downward flow from the water-table aquifer. Water levels in the artesian aquifer are lower than the overlying water table; at the east edge of the study area, this difference is as much as 100 ft (30 m). Flow within the Marshall Formation is to the west. The slope of the potentiometric surface is 4 to 10 ft/mi (0.8 to 1.9 m/km) (fig. 4). At the shore of Lake Michigan, the potentiometric head of the Marshall Formation is about 590 ft (180 m) above sea level; whereas, the lake level is 580 ft (177 m) above sea level. The vertical flow pattern here changes from downward recharge to upward discharge toward the lake.

Confining Unit

The confining beds of silt, clay, and shale that separate the water-table and artesian aquifers range in thickness from 80 ft (24 m) in the west to about 800 ft (245 m) in the east. Vertical hydraulic conductivity of confining beds, 0.10 (gal/d)/ft² (0.004 m/d), was estimated from previous investigations of similar materials in southern Michigan (Allen, Fleck, and Hanson, 1972) and in Ohio (Norris, 1963).

MODEL DESCRIPTION

A ground-water model is a mathematical description of the movement of water in a geologic environment. When converted to a form that permits computer solution of equations containing hydrologic and hydraulic parameters, the response of the ground-water system to stress may be predicted.

Table 1. Monthly precipitation, ground-water discharge to streams, change in ground water in storage and ground-water recharge in inches, in the model area.

Negative values of change in ground water in storage indicate declining water levels. Negative values of ground-water recharge result from losses due to evapotranspiration.

	Precipitation ^{1/}		Ground-water discharge to streams ^{2/}		Change in ground-water storage ^{3/}		Ground-water recharge ^{4/}	
	1974	1975	1974	1975	1974	1975	1974	1975
January	3.5	2.0	0.9	0.8	2.0	1.2	2.9	2.0
February	1.4	2.0	0.9	0.7	-0.5	1.2	0.4	1.9
March	4.3	2.2	1.4	1.1	0.8	1.0	2.2	2.1
April	2.7	2.0	1.6	1.2	1.2	0	2.8	1.2
May	5.8	2.0	1.5	0.9	-0.5	-1.9	1.0	-1.0
June	3.4	4.7	1.0	0.8	-2.5	-0.2	-1.5	0.6
July	1.1	1.6	0.6	0.6	-2.5	-2.2	-1.9	-1.6
August	3.6	9.3	0.5	0.5	-0.2	1.4	0.3	1.9
September	0.5	1.0	0.4	1.2	-0.8	1.2	-0.4	2.4
October	1.2	0.8	0.6	0.8	0.5	-0.2	1.1	0.6
November	2.6	3.6	0.7	1.0	1.5	0.7	2.2	1.7
December	1.3	2.5	0.7	1.4	0.2	1.1	0.9	2.5
TOTAL	31.4	33.7	10.8	11.0	-0.8	3.3	10.0	14.3

^{1/} Data from rain gage at wastewater disposal site.

^{2/} Average values calculated from streamflow hydrographs.

^{3/} Average from seven observation wells using specific yield of 0.2.

^{4/} Sum of ground-water discharge and change in ground-water storage.

Basic ground-water flow model

The differential equation describing flow in a porous saturated medium is

$$\frac{\partial}{\partial x} K_x \frac{\partial h}{\partial x} + \frac{\partial}{\partial y} K_y \frac{\partial h}{\partial y} + \frac{\partial}{\partial z} K_z \frac{\partial h}{\partial z} = S_s \frac{\partial h}{\partial t} + w(x, y, z, t), \quad (1)$$

where h is the head at time t .

K_x , K_y , and K_z are principal components of the hydraulic conductivity

tensor aligned with the coordinate axes,

S_s is the specific storage.

and w is a source term for inflow or withdrawal per unit volume of an aquifer. In most cases equation 1 cannot be solved analytically. However, it can be replaced with an approximating finite difference equation and thus solved numerically.

The area being modeled is divided into discrete cells by a rectilinear grid. The hydraulic properties of the material in each cell are assumed to be homogeneous, and the potentiometric head is calculated for a node at the center of each cell.

The computer program incorporating the techniques used to approximate a solution to equation 4 was developed by Trescott (1975). Modifications were made by Larson (written commun., March 1976) to simulate tile drainage and river leakage. A typical nonequilibrium simulation with this program will consist of several recharge periods, during each of which recharge to the top layer remains constant. The recharge periods are subdivided into time steps. The length of the time step (Δt in equation 5) affects the accuracy of the approximation to equation 3. As the time steps get shorter, the accuracy of approximation improves, but computation time increases. Similarly, as the cell dimensions become smaller, the accuracy of approximation improves, but again the computation time increases. Thus, the length of the time step and size of the cells must be selected to give acceptable results in a reasonable processing time.

A listing of the computer program with instructions for setting up the data deck is contained in the appendix. More complete documentation is contained in the user's manual by Trescott (1975). The program was written in Fortran for use on IBM 360/370 computer.¹ For this application approximately 600,000 bytes of core storage were required.

¹ The use of the brand name in this report is for identification purposes only and does not imply endorsement by the U.S. Geological Survey.

Drainage Analysis

A separate analysis was made to determine the effects of the drainage tiles. In this analysis, a cross-sectional model, based on simulation techniques described by Prickett and Lonnquist (1971), was utilized. The model simulated flow in a vertical plane perpendicular to a single drainage tile. The vertical depth of the cross section was assumed to be 33 ft (10 m), which is representative of the thickness of the water-table aquifer; the width was taken as half the drain spacing or 250 ft (75 m). To represent the drainage tile, a single node at one side of the mesh was held at a head equal to its elevation. This node was a square, 0.5 ft (0.15 m) on a side; inflow was permitted through one side and through the bottom. The simulation represented half of the flow field to a drain. The hydraulic conductivity of the drain node was reduced to a fraction of that elsewhere to represent the hydraulic resistance of the drain pipe and the surrounding fiberglass net. Also, modifications were made in the model to allow the water-table boundary to move.

During each simulation, the model was set to represent a full saturated rectangular cross section, and recharge was applied to the uppermost node. A nonequilibrium simulation was conducted until steady-state conditions were achieved. As the nodes became dewatered during the simulation process, they were removed from the system by lowering the water-table boundary, and calculations were repeated to achieve a solution corresponding to the new boundary position. Except for the drain node and the recharge nodes, all boundaries were treated as zero-flow boundaries.

Model runs were made using values of lateral hydraulic conductivity that are in the range found at the Muskegon site. Also, several different ratios of lateral to vertical hydraulic conductivity were used. Results showed that the flow into both halves of the drainage tile could be expressed approximately as a function of hydraulic conductivity and average head above the drain by the relation

$$Q = K_L (h - V) G \text{ when } h > V, \quad (2)$$

where Q is the flow into a unit length of drainage tile,
 h is the average water-table elevation in the area drained by the tile,
 V is the elevation of the tile,
 K_L is the lateral hydraulic conductivity,
and G is a factor that varies with the anisotropy and with the hydraulic conductivity of the drain node.

When a vertical hydraulic conductivity equal to one-tenth the lateral hydraulic conductivity was used and when the conductivity in the drain node was set at one-tenth of the lateral conductivity elsewhere, G was found to be approximately 0.1. By varying the anisotropy and the conductivity of the drain node, values of G from 0.05 to 0.40 were obtained. These values were subsequently used in checking the sensitivity of the three-dimensional model under various drainage conditions.

The Muskegon Model

The simulated area was divided by a rectilinear grid into 3 water-bearing layers each having 44 rows and 48 columns, as shown in figure 6. Layer 1, the lowermost layer, represents the Marshall Formation. Layer 2 represents all the water-table aquifer except the upper 20 ft (6 m); layer 3 represents the upper 20 ft (6 m). The water-table aquifer was divided into two layers so that drains and streams could be simulated in the uppermost layer as being shallow, rather than deep and affecting the full thickness of the aquifer. The confining unit between the Marshall Formation and the water-table aquifer was not treated as a separate layer; its effect was incorporated into the vertical hydraulic conductivities of layers 1 and 2.

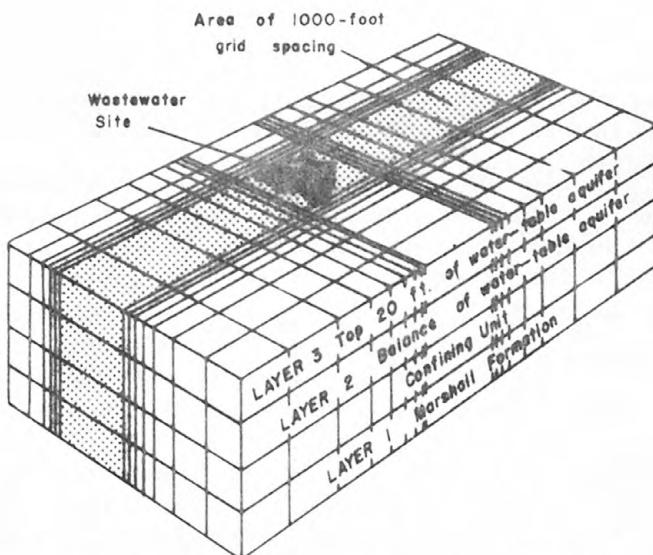


Figure 6. Grid spacing used in finite-difference model. Horizontal spacing ranges from 1,000 ft (305 m) at wastewater site to 15,000 ft (4500 m) at edge of model.

The horizontal grid was designed so that the smallest cells (1000 ft (300 m) on a side) represented the wastewater site (shaded area in figure 6). The grid spacing increased by a factor of 1.5 to the boundaries of the model. Moving the boundaries far beyond the simulated wastewater site greatly diminishes the sensitivity of the model at that site to the effects of the boundaries. All boundaries were treated as being the constant-flow type except the western boundary of the top layer, which was assumed to have a constant head equal to the elevation of Lake Michigan.

Storage effects were simulated only for the uppermost layer. Compressive storage in the unconfined aquifer below the water table was not simulated, nor was artesian storage in the Marshall Sandstone. Compressive storage in the confining unit above the Marshall was also neglected. It was assumed that these compressive effects would be negligible in comparison to the water-table storage in the uppermost layer. Thus, the model grid below the uppermost layer was purely transmissive in character.

The effects of streams on the ground-water system were simulated by the method described by Prickett and Lonnquist (1971, p. 33). The method is based on assumptions that a streambed layer separates the stream from the aquifer and that seepage from the stream to the aquifer becomes constant when the water level in the aquifer falls below the bottom of the streambed. Under these assumptions, the rate of flow through the streambed is expressed by the equation.

$$Q_r = K' A (M-p)/b \quad (3)$$

where Q_r is the flow between the stream and the aquifer (it is positive when the flow is from the stream to the aquifer),
 K' is the hydraulic conductivity,
 b is the thickness of the streambed layer,
 A is the area of streambed within the model cell,
 M is the elevation of the stream surface,
 p is the head in the top layer or the elevation of the bottom of the streambed layer, whichever is greater.

In the Muskegon model, K' was taken as one-tenth of the local lateral hydraulic conductivity in layer 3 of the model, and b was taken as 5 ft (1.5 m). Other values of these parameters were also tried during calibration.

Recharge to the water-table aquifer from the lagoons was treated as an evenly distributed constant seepage. In the initial calibrations, the seepage rate through the bottom of the lagoons was assumed to be 21 ft³/s (0.50 m³/s). This estimate was based on pumpage records from the seepage ditches around the lagoons. Approximately 23 ft³/s (0.66 m³/s) is pumped from these ditches, and it was assumed that 80 percent of this, or 19 ft³/s (0.53 m³/s), represents seepage from the lagoons. The balance represents drainage from other sources--that is, from surrounding irrigation circles or from regional ground-water flow. Also, because the seepage ditches do not completely enclose the lagoons, it was assumed that only 90 percent of the seepage from the lagoons was intercepted by the ditches. A total seepage of 21 ft³/s (0.58 m³/s) was, therefore, used.

If this estimate of lagoon seepage is accurate, it implies that the vertical hydraulic conductivity beneath the lagoons is considerably lower than that of the streambed or that of the water-table zone. This may reflect the effect of organic matter deposited in the lagoons, even though the system has been operated only since 1974.

The seepage ditches around the lagoons were simulated as streams, using equation 3; the streambed conductivity was assumed to be one-tenth of the local lateral hydraulic conductivity, and the streambed layer thickness was assumed to be 5 ft (1.5 m). Seepage into the ditches in computer simulations was found to be in close agreement with field data.

Data Base

Data required for the model included hydraulic properties of the hydrogeologic units, hydraulic properties of rivers and drainage tiles, and constant recharge and discharge sources. Heads and baseflow calculated by the model were compared with measured water levels and streamflow for calibration.

Initial estimates of the transmissivity of each cell in layers 1 and 2, and horizontal hydraulic conductivity of each cell in layer 3 were estimated from lithologic data. Specific yield of layer 3 was set to 0.2. Storage coefficient for layers 1 and 2 was set to 0. The vertical hydraulic conductivity between the bottom two layers at each horizontal grid location was assumed to be equal to the vertical hydraulic conductivity of the confining unit divided by the thickness of the confining unit at the grid location. The vertical hydraulic conductivity between the top two layers at each grid location was initially assumed to be equal to one-tenth of the horizontal hydraulic conductivity of the cell in the top layer at that grid location.

Engineering blueprints were used to estimate length and average elevation of drainage tiles. For each cell, the length and average elevations of all tiles in the cell were used.

The width, length, and elevation of rivers in each cell of the upper layer were determined from topographic maps. Thickness of the streambed layer, as noted previously, was assumed to be 5 ft (1.5 m). The vertical hydraulic conductivity of the streambed in each cell was initially assumed to be one-tenth of the horizontal hydraulic conductivity of the cell. A stream leakage factor was calculated independently of the model program from width, length, hydraulic conductivity, and streambed thickness. The leakage factor and the stream elevation were used in model computations.

In calculating irrigation rates, the design capacities and number of hours of operating time of the irrigation rigs were considered. Total recharge for each cell in the model area was calculated from lagoon leakage, amount of irrigation, and natural recharge.

Water level data from two sources were available. A long-term average water table map was derived from levels reported in driller's well records. Well hydrographs were drawn from records of water levels, which were measured twice a month in 90 observation wells during the study period.

All available geologic and hydrologic data were used. When field data were not available, regional estimates were made, as explained earlier. As more data became available they can be used to refine the model.

Calibration

A model is calibrated by repetitively running the computer program using available hydraulic data. The results of each simulation are then used to refine estimates of hydraulic parameters for subsequent simulations. Developing the Muskegon model involved a steady state calibration and a transient calibration. In each of these calibrations, it was observed that head differences between the upper and middle layers of the grid were negligible - that is, that heads in the upper 20 ft (6 m) of the water-table aquifer were essentially equal to those in the lower part of the aquifer. In presenting each simulation result, therefore, a single map of head in the water-table aquifer or changes in head has been utilized, rather than presenting separate maps for the two model layers representing the unconfined aquifer. Results are not shown for the artesian aquifer, inasmuch as changes in the potentiometric surface were small in all simulations.

During the steady-state calibration a specific yield of 0 was set in all cells of the uppermost layer, thereby eliminating the time dependence in equation 1. The purpose of steady-state calibration was to match the long-term average water table before construction of the wastewater facility with the water table calculated by the model. A uniform recharge of 8 in/yr (20 cm/yr) was used in computations.

A series of steady-state simulations was made to determine the sensitivity of the model to variations in the hydraulic parameters. The simulations indicated that the model was insensitive to changes in vertical hydraulic conductivity or stream leakage. It was, however, very sensitive to changes in horizontal hydraulic conductivity and transmissivity. Best results were obtained when these parameters were reduced to half their initial values. The comparison between computed and measured water-table positions after steady state calibration is shown in figure 7. Along the north edge of the area, steep ground-water gradients caused difficulty in matching water levels.

Transient calibration was used to test assumptions regarding the specific yield and the hydraulic characteristics of the wastewater facility and to further refine other parameters. The period January 1974 to December 1975 was used for transient calibration. This period included the first growing season during which the facility operated at full capacity, as well as some earlier period of operation at part capacity. Twenty-four monthly recharge periods were simulated. Initial heads used in the transient calibration were those calculated in the steady state model.

EXPLANATION

— 660 — Contour showing steady-state ground-water levels based on field data, in feet above mean sea level.

— 660 — Contour showing steady-state ground-water levels based on model calculations, in feet above mean sea level.

Contour Interval 10 feet and 20 feet.



Figure 7. Steady-state water table from field measurements and from model calculations.

Only minor changes were made in hydraulic conductivity and transmissivity during transient calibration. The model was not particularly sensitive to changes in specific yield, and the original value of 0.2 was ultimately retained because it gave the best results. Stream location and stream surface elevation proved to be important factors. For this reason an effort was made to include all streams regardless of size and to establish stream surface elevation as accurately as possible.

Figure 8 shows four representative hydrographs after transient calibration, illustrating the final match between computed and observed water-level trends. Figure 9 compares measured water levels in the water-table aquifer during July 1975 with those calculated by the model during transient calibration. Figure 10 shows the comparison between the amount of observed and computed baseflow from the vicinity of the wastewater site during the period of transient calibration.

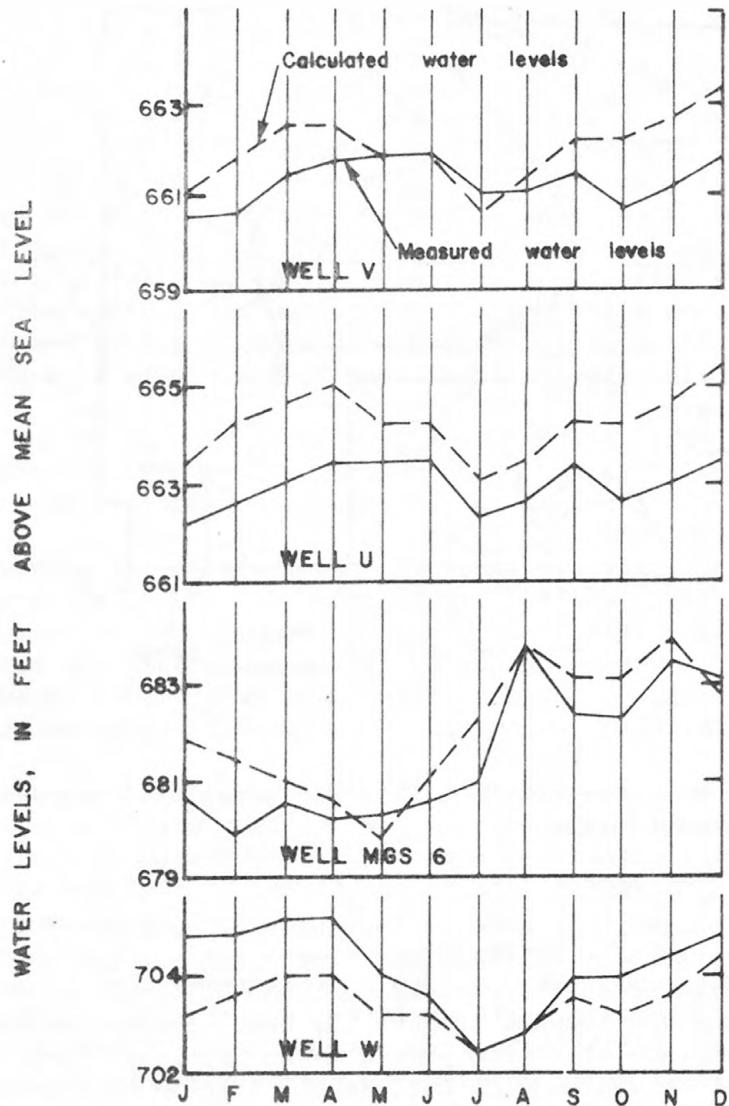


Figure 8. Hydrographs of water levels in selected wells during 1975 (from field measurements and from model calculations). Location of wells shown in figure 2.

EXPLANATION

—680— Contour showing ground-water level calculated by the model, in feet above mean sea level.

Q Observation well showing water levels, in feet above mean sea level.

Contour interval 10 feet.

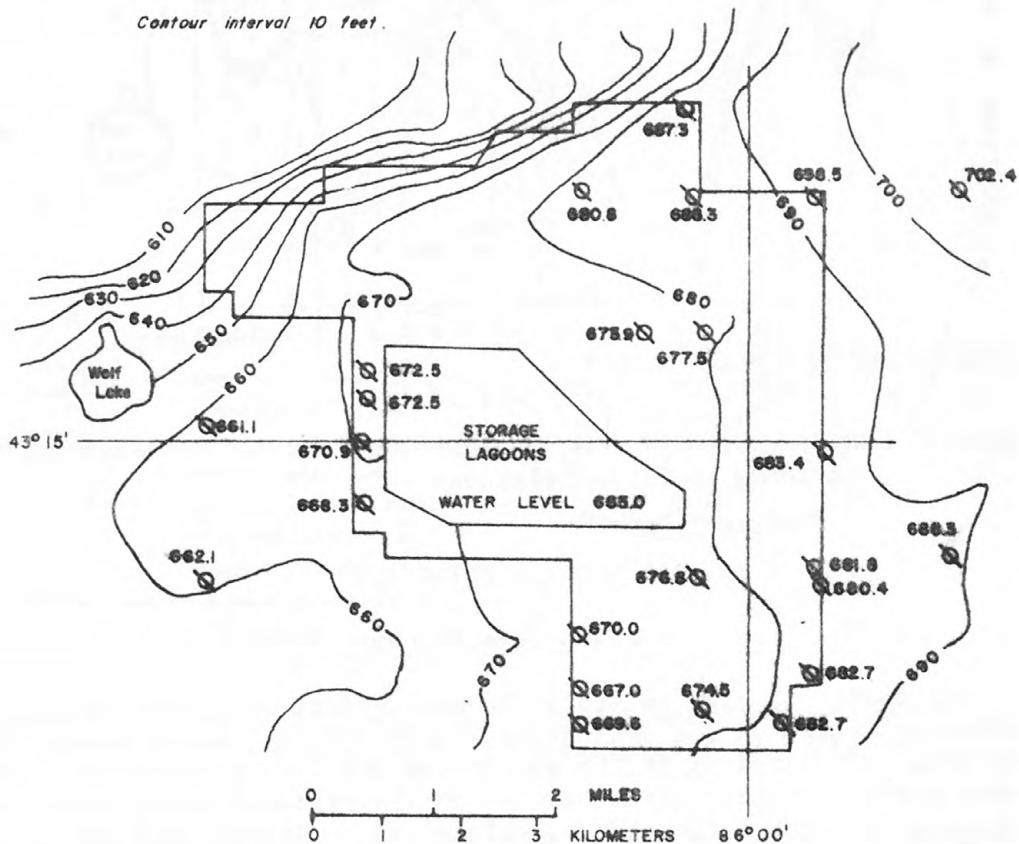


Figure 9. Altitude of water table during July 1975 from field measurements and from model calculations.

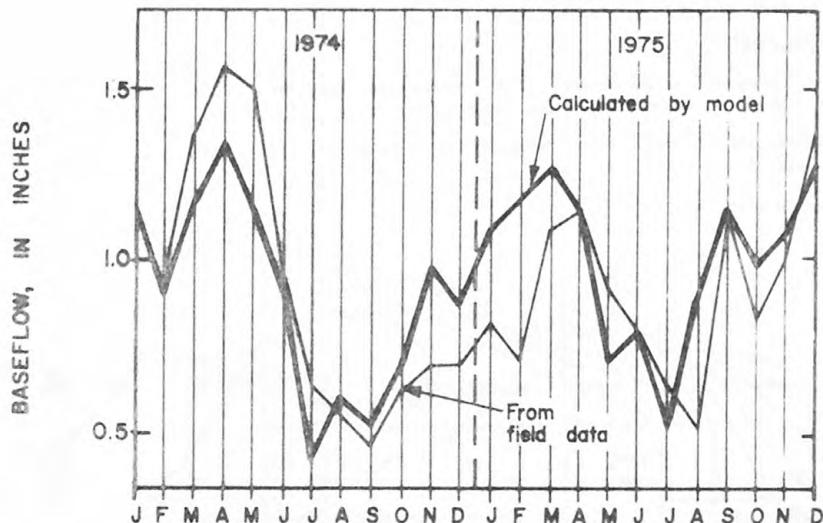


Figure 10. Hydrographs of monthly baseflow from field measurements and from model calculations.

INITIAL MODEL APPLICATIONS

Effects of the System through 1975

The model was used to study the past effect of operating the wastewater system on regional ground-water levels. Water levels for 1975 were calculated as if the system had not been constructed. The impact the wastewater system has had on the regional water table was determined by subtracting the calculated water levels from the actual levels. Figure 11 shows this impact. In most of the site, the effect of the facility has been to lower ground-water levels. However, water levels have risen in the northwestern part of the area, where there are relatively few drains.

Predictive Simulations

Several predictive simulations were made assuming a variety of operational conditions. In the first simulation, it was assumed that irrigation would be maintained at a uniform rate of 1.5 in (4 cm) per week (the average rate for 1975) in all irrigation circles, that lagoons would leak steadily at a rate of 21 ft³/s (0.58 m³/s), and that drainage-tile performance would again be described by equation 8, with G taken as 0.1. In this and in all subsequent predictive simulations, the December 1975 water-level configuration was used as the starting surface. Steady state was usually attained after 3 or 4 years of operation. The simulations were nevertheless carried for several additional years. The results for 10 years of operation are presented in each case as the steady-state condition.

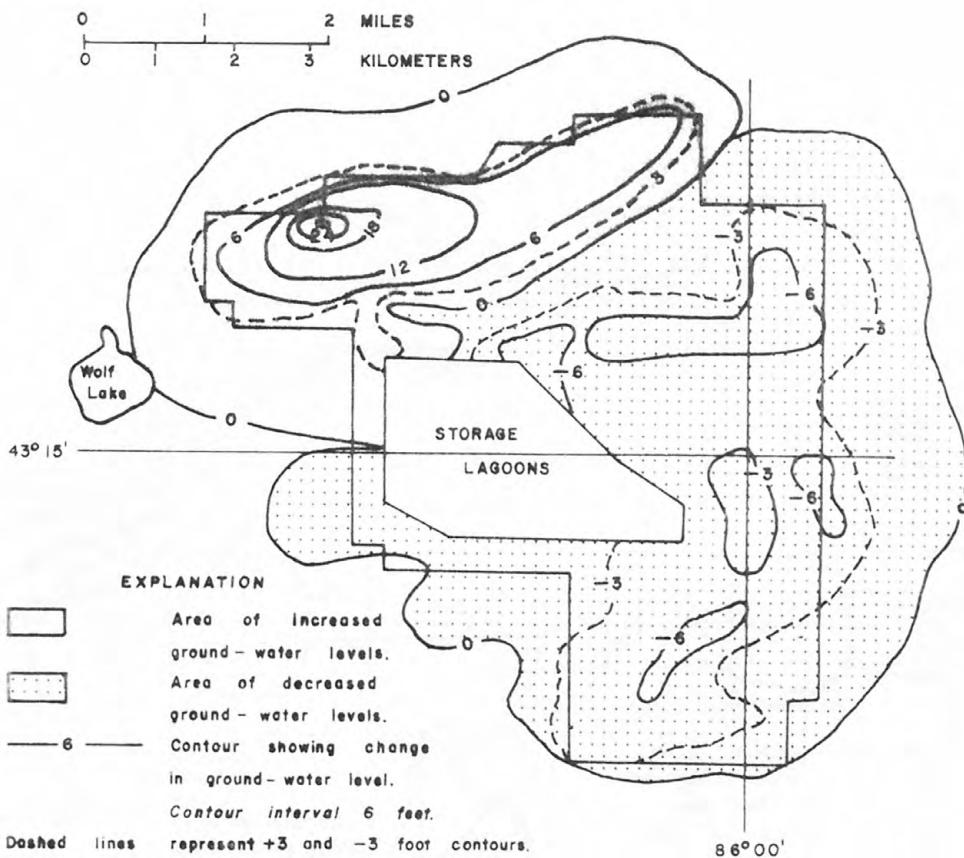


Figure 11. Changes in water level in the water-table aquifer caused by operation of the wastewater system, July 1975.

The results of the initial predictive simulation are shown in figure 12. The effects are primarily at the wastewater site. For a few areas within the site, the computed water levels are above land surface. These areas are shown on figure 12 as being waterlogged; that is, the water table in these areas is approximately at land surface.

The results shown in figure 12 do not imply that waterlogging is a necessary consequence of the waste disposal operation, but, rather, that irrigation at a rate of 1.5 in (4 cm) per week over the entire area would probably cause such problems. In practice, irrigation rates will vary from one part of the system to another and will be managed so as to avoid waterlogging, or alternatively, the number of drainage tiles could be increased to avoid waterlogging.

A second predictive simulation was made in which the irrigation rate was maintained at a uniform rate of 3 in (8 cm) per week (the design irrigation rate). Performance of drainage tiles and the lagoon seepage were the same as in the first predictive simulation. The 1975 water-level surface was again taken as the initial condition, and the

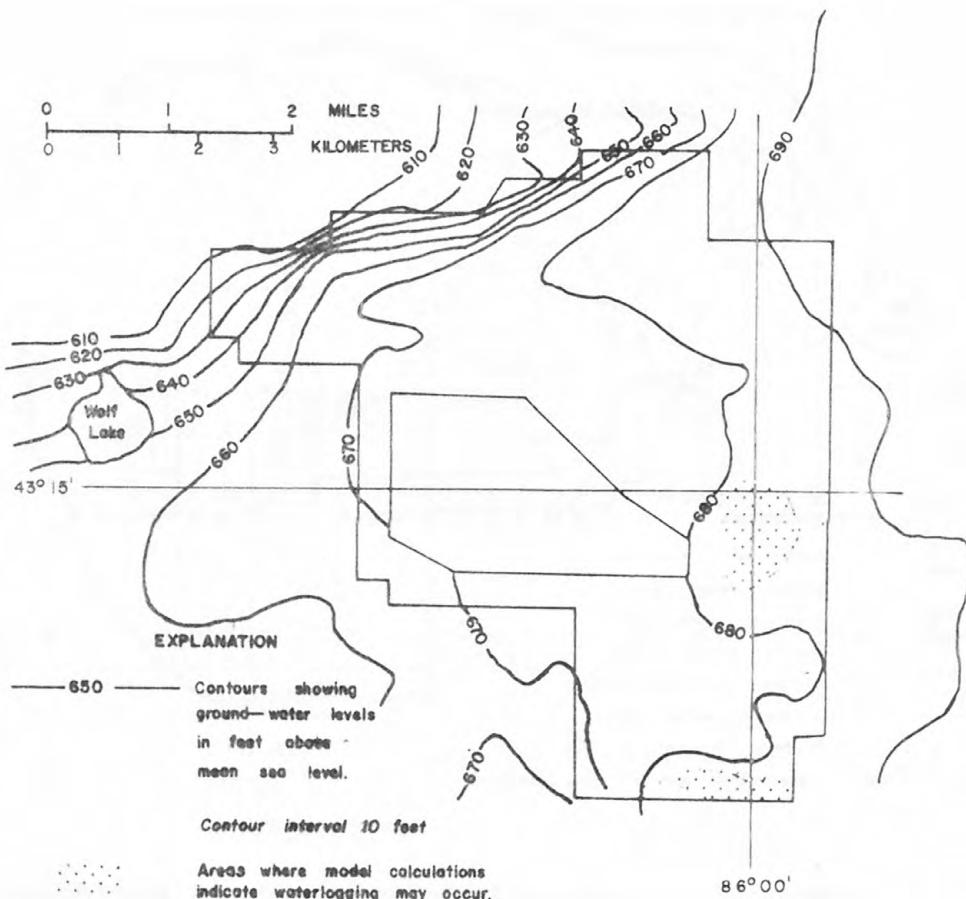


Figure 12. Steady-state water table from model calculations with 1.5 in (4 cm) per week irrigation, normal lagoon leakage, and tile seepage.

simulation was continued to steady state. Figure 13 shows contours of the water-table elevation after steady state was reached. The increase in the irrigation rate from 1.5 to 3.0 in (4 to 8 cm) per week caused the waterlogged area to increase from 350 acres to 1000 acres (150 ha to 400 ha). Figure 14 shows the rise in water level that may be expected with an increase in irrigation rate from 1.5 in (4 cm) per week to 3.0 in (8 cm) per week. The figure shows the difference between water level elevations in figures 12 and 13.

A third predictive simulation assumed that the irrigation rate would be maintained at 3.0 in (8 cm) per week and that lagoon leakage would continue at $21 \text{ ft}^3/\text{s}$ ($0.58 \text{ m}^3/\text{s}$), but that the efficiency of the drainage tiles would be severely reduced by clogging. In the model, the factor G in equation 8 was reduced from 0.1 to 0.025, and thus the flow to the drains, for a given head differential, would be only 25 percent of that in earlier simulations. The 1975 water-table surface was again

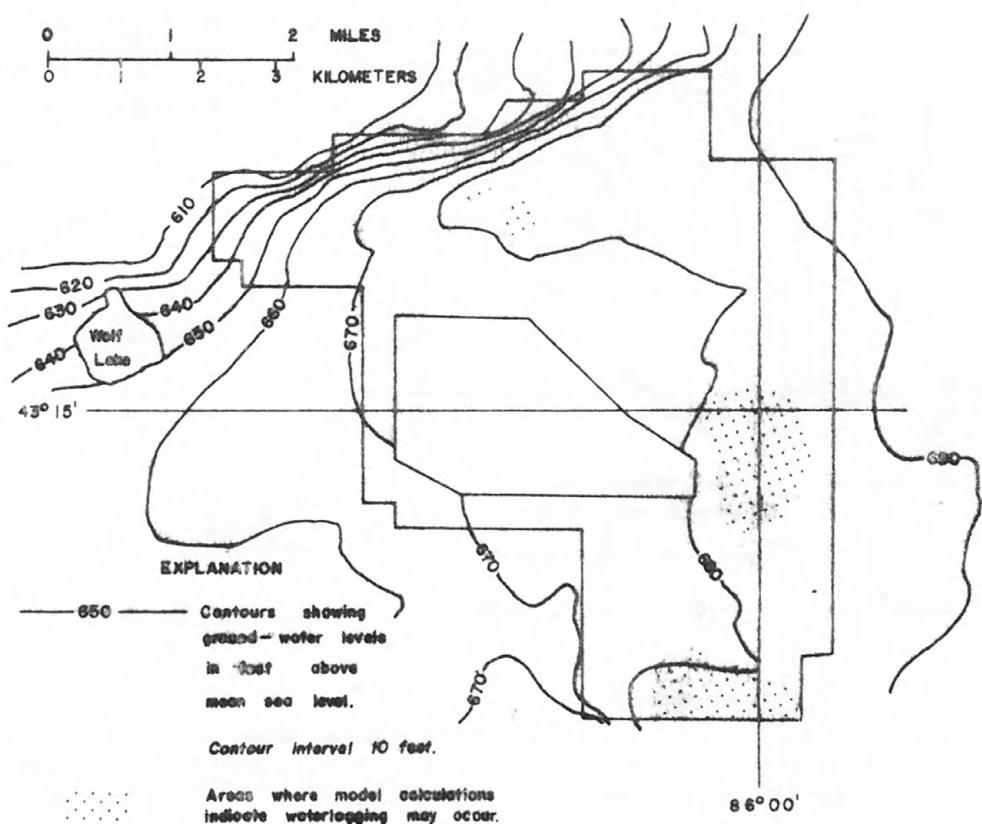


Figure 13. Steady-state water table from model calculations with 3 in (8 cm) per week irrigation, normal lagoon leakage, and tile seepage.

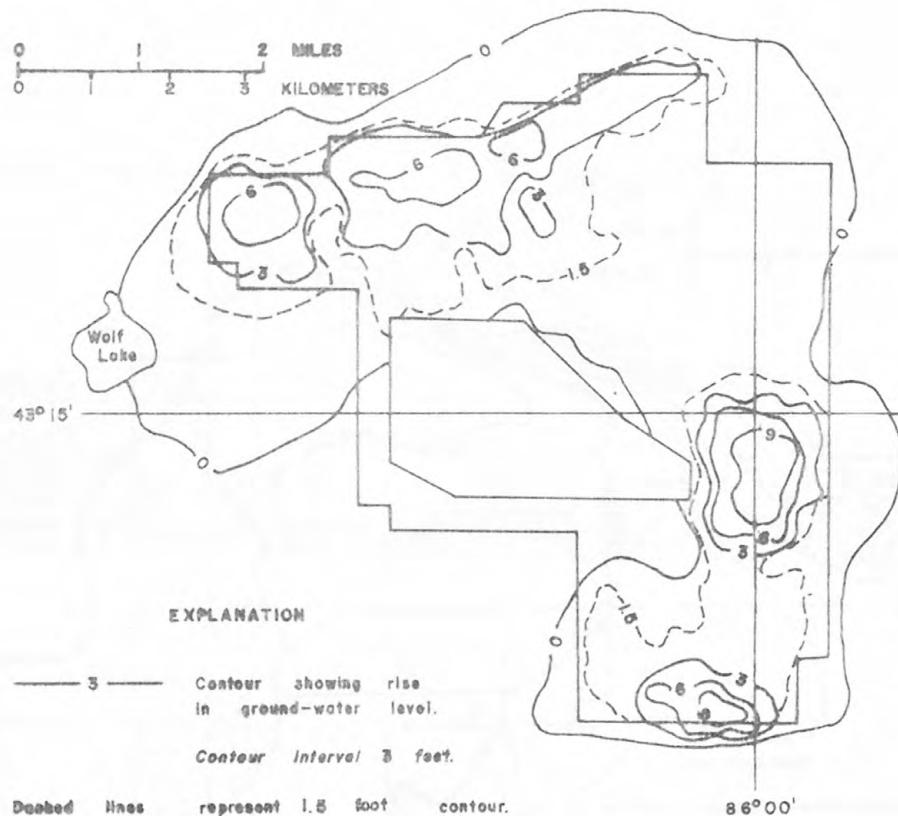


Figure 14. Predicted rise in water level in the water-table aquifer, if irrigation is increased from 1.5 in (4 cm) per week to 3 in (8 cm) per week. In the southern part of the site, the 1.5-in (4-cm)-per-week increase in irrigation rate causes a rise of as much as 9 ft (3 m).

taken as the starting condition, and calculations were continued until steady state was achieved. Figure 15 shows contours of the change in water level that would result from clogging of the drains. The contours represent the rise in water level, above the levels shown in figure 13, that would result if drainage efficiency were reduced but other factors remained as in the previous simulation. Nearly half the irrigated area becomes waterlogged. However, long before waterlogging became extensive, irrigation practices or drainage tiles could be modified.

A fourth predictive simulation was made keeping the rates of lagoon leakage, tile seepage, and irrigation the same as the second predictive simulation. However, the natural recharge was increased from 8 in/yr (20 cm/yr) to 12 in/yr (30 cm/yr). At the end of 10 years this simulation had not achieved steady state. Figure 16 shows the rise in water levels above the levels shown in figure 13 that would result from the increased recharge. The rise is negligible in most of the wastewater site, but as much as 6 ft (2 m) outside the site.

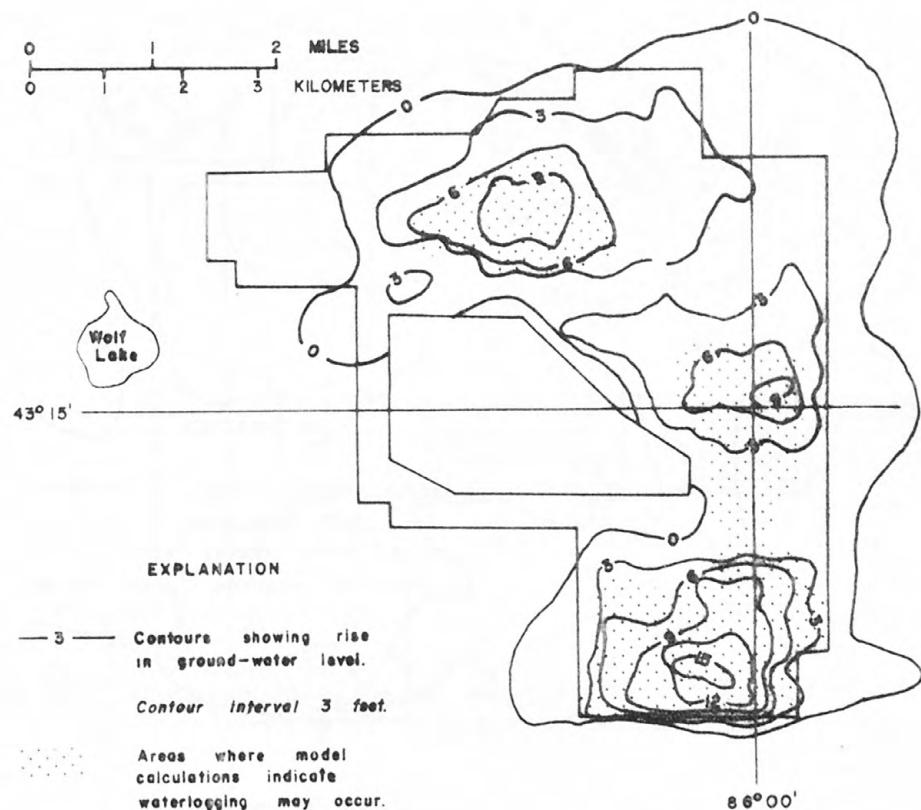


Figure 15. Predicted rise in water level in the water-table aquifer when seepage into drainage tile is reduced by 75 percent.

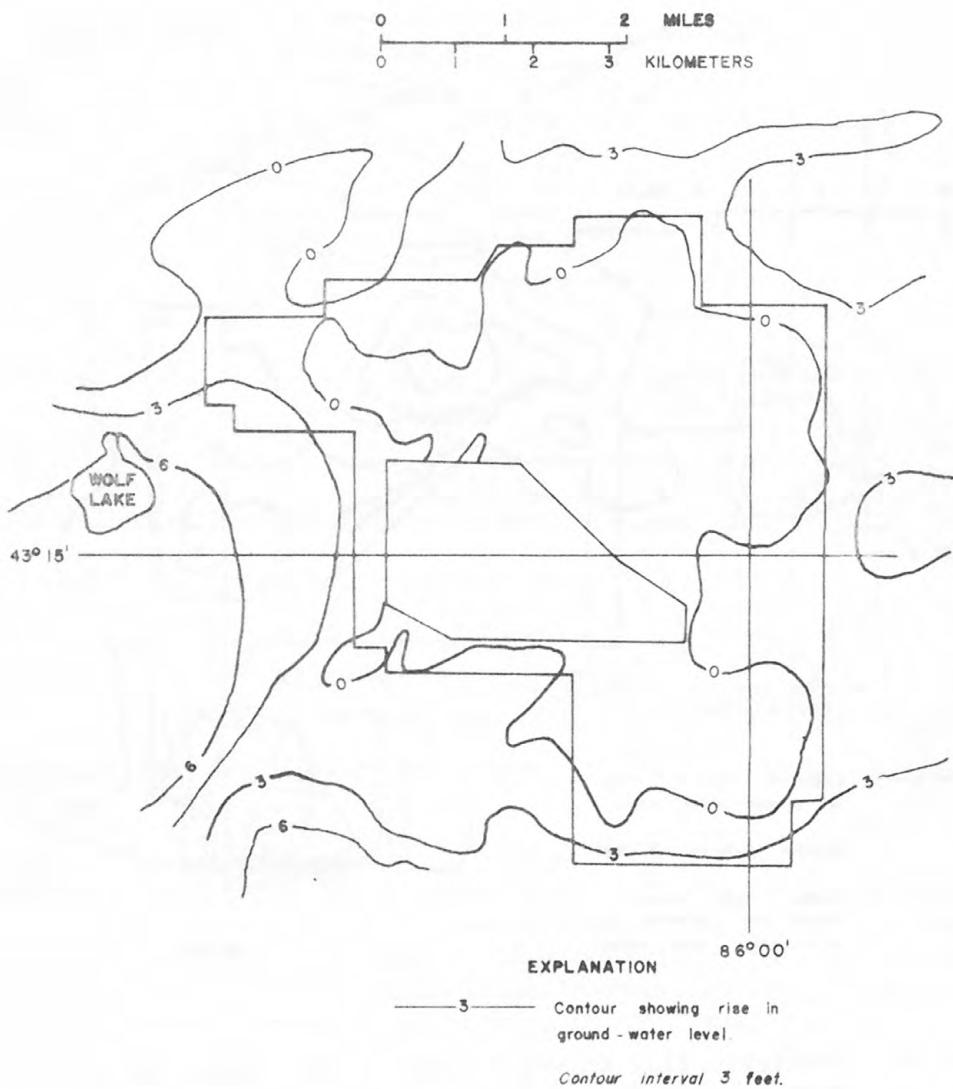


Figure 16. Predicted rise in water level in the water-table aquifer when natural recharge is increased from 8 in/yr (20 cm) to 12 in/yr (30 cm).

In the final predictive simulation, seepage from the lagoons was reduced to zero while the other factors remained unchanged. The purpose of this simulation was to determine the effect on water levels if the bottoms of the lagoons became effectively sealed with organic matter. The 1975 water-table was again taken as the starting condition, and the simulation was continued to steady state. Figure 17 shows contours of the changes in water level that would result from sealing the lagoons; that is, the changes caused by eliminating lagoon seepage while all other factors were maintained as in the second simulation. The changes in water level are relatively minor and are restricted to the immediate vicinity of the lagoons and a small area to the west that extends almost to Wolf Lake. There is virtually no reduction in the waterlogged areas from those shown in figure 13.

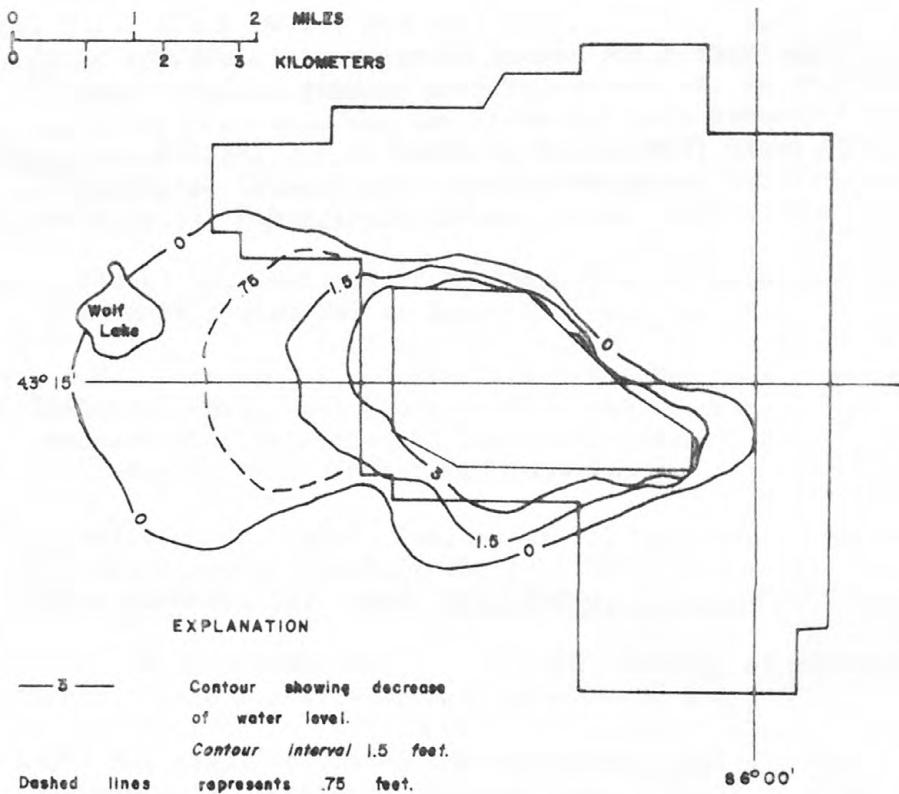


Figure 17. Predicted decline in water level in the water-table aquifer if the bottom of the storage lagoons become sealed.

SUMMARY

The ground-water system at the Muskegon wastewater site was simulated with a three-dimensional finite difference model. The model was calibrated from water-level records from 90 observation wells and from regional estimates of specific yield, recharge, and base flow. Data for simulating the necessary physical aspects of the wastewater system were taken from available engineering blueprints.

The calibrated model showed that, in general, the tile lines are effective in draining ground water from the site and that ground-water levels are lower than they would be under natural conditions. However, in the northwest part of the wastewater site, where tile lines are few and above the water table, water levels are as much as 24 ft (8 m) higher than they are at other locations within the site. Outside the site to the northwest, water levels are as much as 3 ft (1 m) higher than they would be under natural conditions.

Predictive simulations were made to determine the effects that varying operating conditions would have on the ground-water system. The simulations show, for example, that if the drainage tiles lost 75 percent

of their effectiveness the impact of disposal operations on ground-water levels outside of the wastewater site would be small. Also, if irrigation were increased from 1.5 in (4 cm) per week to 3 in (8 cm) per week, almost 1,000 acres (400 ha) of cropland would become waterlogged. Outside the site, the increase in water levels would be negligible, except to the northwest, where levels would rise about 3 ft (1 m).

REFERENCES CITED

Allen, W.B., Fleck, W.B., and Hanson, J.D., 1972, Geologic and hydrologic studies of three areas in southeast Michigan: U.S. Geol. Survey open-file report, 31 p.

Allen, W.B., Miller, J.B., and Wood, W.W., 1972, Availability of water in Kalamazoo County, Southwestern Michigan: U.S. Geol. Survey Water-Supply Paper 1973, 129 p., 9 pls.

Bauer Engineering, Inc., 1973, Muskegon County, Michigan, wastewater management system No. 1; Bauer Engineering, Inc., 16 p.

Brown, R.H., Ferris, J.G., Jacob, C.E., Knowles, D.B., Meyer, R.R., Skibitzke, H.E., and Theis, C.V., 1963, Methods of determining permeability, transmissibility and drawdown: U.S. Geol. Survey Water-Supply Paper 1536-I, p. 243-341.

deWitt, Wallace, Jr., 1960, Geology of the Michigan basin with reference to subsurface disposal of radioactive wastes: U.S. Geol. Survey Trace Elements Inv. Rept. 771, 100 p.

Dorr, J.A., Jr., and Eschman, D.F., 1970, Geology of Michigan: Ann Arbor, The University of Michigan Press, 476 p.

Martin, H.M., compiler, 1936, The centennial geologic map of the southern peninsula of Michigan: Michigan Dept. Nat. Resources, Geol. Survey Div. Pub. 39, Geol. Ser. 33.

— 1955, Map of the surface formations of the southern peninsula of Michigan: Michigan Dept. Nat. Resources, Geol. Survey Div. Pub. 49.

Norris, S.E., 1963, Permeability of glacial till: U.S. Geol. Survey Prof. Paper 450-E, p. 150-151.

Prickett, T.A., and Lonnquist, C.G., 1971, Selected digital computer techniques for ground-water resource evaluation: Illinois State Water Survey Bull. 55, 62 p.

Stone, H.L., 1968, Iterative solution of implicit approximations of multi-dimensional partial differential equations: Jour. Numerical Analysis, v. 5, no. 3, p. 530-557.

Trescott, P.C., 1975, Documentation of finite-difference model for simulation of three-dimensional ground-water flow: U.S. Geol. Survey open-file report 75-438, 103 p.

Walton, W.C., 1962, Selected analytical methods for well and aquifer evaluation: Illinois State Water Survey Bull. 49, 81 p.

— 1970, Groundwater resource evaluation: New York, McGraw-Hill, 664 p.

APPENDIX

Model Program

```

C -----MAN0010
C FINITE-DIFFERENCE MODEL FOR SIMULATION OF GROUND-WATER FLOW IN MAN0020
C THREE DIMENSIONS, SEPTEMBER, 1975 BY P.C. TRECOTT, U. S. G. S. MAN0030
C WITH CONTRIBUTIONS TO MAIN, DATA1 AND SOLVE BY S.P. LARSON MAN0040
C -----MAN0050
C MAN0060
C SPECIFICATIONS: MAN0070
C REAL *8YSTR MAN0080
C MAN0090
C COMMON/FILS/ IFIL(14) MAN0110
C COMMON/IDOC/ IDD(80) MAN0120
C DIMENSION Y(106000), L(32), HEADNG(33), NAME(42), INFT(2,2), IOFT( MAN0130
C 19,4), DUM(3) MAN0140
C EQUIVALENCE (YSTR,Y(1)) MAN0150
C COMMON /INTEGR/ IO,J0,K0,I1,J1,K1,I,J,K,NPER,KTH,ITMAX,LENGTH,KP,NMAN0160
C 1WEL,NUMT,IFINAL,IT,KT,IHEAD,IDRAW,IFLO,IERR,I2,J2,K2,IMAX,ITMX1,NCMAN0160
C 2H,IK1,IK2,IWATER,IGRE,IP,JP,IQ,JQ,IK,JK,K5,IPU1,IPU2,ITK MAN0170
C COMMON /SPARAM/ TMAX,CDLT,DELT,ERR,TEST,SUM,SUMP,QR MAN0180
C COMMON /RESMUN/ RESMO
C COMMON /SARRAY/ ICHK(13),LEVEL1(9),LEVEL2(9) MAN0190
C MAN0200
C DATA NAME/2*4H ,4H S,4HTART,4HING ,4HHEAD,4H ,4H ST0,4HRAGMAN0210
C 1E,4H COE,4HFFIC,4HIENT,2*4H ,4H TR,4HANSM,4HISSI,4HVITY,5*4H MAN0220
C 2 ,4H TK,4H HY,4HDRAU,4HLIC ,4HCOND,4HUCTI,4HVITY,2*4H ,4HBOTMAN0230
C 3T,4HOM E,4HLEVA,4HTION,2*4H ,4H R,4HECHA,4HRGE ,4HRATE/ MAN0240
C DATA INFT/4H(20F,4H4.0),4H(BF1,4H0.4)/ MAN0250
C DATA IOFT/4H(1H0,4H,I2,,4H2X,2,4H0F6.,4H1/(5,4HX,20,4HF6.1,4H)) ,MAN0260
C 14H ,4H(1H0,4H,I5,,4H14F9,4H.5/(,4H1H ,4H5X,1,4H4F9.,4H5)) ,4H MAN0270
C 2 ,4H(1H0,4H,I5,,4H10E1,4H2.5,,4H(1H ,4H,5X,,4H10E1,4H2.5),4H) MAN0280
C 3,4H(1H0,4H,I5,,4H10E1,4H1.3,,4H(1H ,4H,5X,,4H10E1,4H1.3),4H) / MAN0290
C MAN0300
C DEFINE FILE 2(14,2112,U,KKK) MAN0320
C ***** MAN0330
C ---READ TITLE, PROGRAM SIZE AND OPTIONS--- MAN0340
C READ (5,200) HEADNG MAN0350
C WRITE (6,190) HEADNG MAN0360
C READ(5,197)(IFIL(IRX),IRX=1,14)
197 FORMAT(14I4) MAN0370
C READ (5,198)(IDD(IBEX),IBEX=1,80)
198 FORMAT(80I1)
C READ (5,497) RESMO
497 FORMAT (F10.0)
C WRITE(6,498) RESMO
498 FORMAT ('0RESMO ',F10.3)
C WRITE(6,191)
191 FORMAT('0VERSION G 1400 SEP 02 1976')
C READ (5,160) IO,J0,K0,ITMAX,NCH,ND,NRIV
C WRITE (6,180) IO,J0,K0,ITMAX,NCH,ND,NRIV
C READ (5,210) IDRAW,IHEAD,IFLO,IK1,IK2,IWATER,IGRE,IPU1,IPU2,ITK MAN0390
C WRITE (6,220) IDRAW,IHEAD,IFLO,IK1,IK2,IWATER,IGRE,IPU1,IPU2,ITKMAN0400
C IERR=0 MAN0410
C MAN0420
C ---COMPUTE DIMENSIONS FOR ARRAYS--- MAN0430
C J1=J0-1 MAN0440
C I1=I0-1 MAN0450
C K1=K0-1 MAN0460
C I2=I0-2 MAN0470

```

```

J2=J0-2                                MAN0480
K2=K0-2                                MAN0490
IMAX=MAX0(I0,J0)                         MAN0500
NCD=MAX0(1,NCH)                          MAN0510
ITMX1=ITMAX+1                            MAN0520
ISIZ=I0*K0                               MAN0530
IK1=I0*K0                               MAN0540
IK2=MAX0(IK1*K1+1)                      MAN0550
ISUM=2*ISIZ+1                            MAN0560
L(1)=1                                   MAN0570
DO 30 I=2,14                             MAN0580
IF (I.NE.8) GO TO 20                      MAN0590
L(8)=ISUM                                MAN0600
ISUM=ISUM+IK2                            MAN0610
IF (IK2.EQ.1) GO TO 10                      MAN0620
IK=I0                                   MAN0630
JK=J0                                   MAN0640
KS=K1                                   MAN0650
GO TO 30                                MAN0660
10 IK=1                                   MAN0670
JK=1                                   MAN0680
KS=1                                   MAN0690
GO TO 30                                MAN0700
20 L(I)=ISUM                            MAN0710
ISUM=ISUM+ISIZ                           MAN0720
30 CONTINUE                               MAN0730
L(15)=ISUM                            MAN0740
ISUM=ISUM+J0                            MAN0750
L(16)=ISUM                            MAN0760
ISUM=ISUM+I0                            MAN0770
L(17)=ISUM                            MAN0780
ISUM=ISUM+K0                            MAN0790
L(18)=ISUM                            MAN0800
ISUM=ISUM+IMAX                           MAN0810
L(19)=ISUM                            MAN0820
ISUM=ISUM+K0*3                           MAN0830
L(20)=ISUM                            MAN0840
ISUM=ISUM+ITMX1                           MAN0850
L(21)=ISUM                            MAN0860
ISUM=ISUM+3*NCD                           MAN0870
L(22)=ISUM                            MAN0880
ISUM=ISUM+NCD                           MAN0890
L(23)=ISUM                            MAN0900
IF (IWATER.NE.ICHK(6)) GO TO 40          MAN0910
ISUM=ISUM+IK1                            MAN0920
L(24)=ISUM                            MAN0930
ISUM=ISUM+IK1                            MAN0940
IP=I0                                   MAN0950
JP=J0                                   MAN0960
GO TO 50                                MAN0970
40 ISUM=ISUM+1                           MAN0980
L(24)=ISUM                            MAN0990
ISUM=ISUM+1                           MAN1000
IP=1                                   MAN1010
JP=1                                   MAN1020
50 L(25)=ISUM                            MAN1030
IF (IQRF.NE.ICHK(7)) GO TO 60          MAN1040
ISUM=ISUM+IK1                            MAN1050
IQ=I0                                   MAN1060
JQ=J0                                   MAN1070

```

```

60      GO TO 70
60  ISUM=ISUM+1
  IQ=1
  JQ=1
70  IF(ND.EQ.0) GO TO 75
  L(26)=ISUM
  ISUM=ISUM+IK1
  L(27)=ISUM
  ISUM=ISUM+ND
  L(28)=ISUM
  ISUM=ISUM+ND
  GO TO 76
75  L(26)=ISUM
  ISUM=ISUM+1
  L(27)=ISUM
  ISUM=ISUM+1
  L(28)=ISUM
  ISUM=ISUM+1
76  IF(NRIV.EQ.0) GO TO 77
  L(29)=ISUM
  ISUM=ISUM+IK1
  L(30)=ISUM
  ISUM=ISUM+NRIV
  L(31)=ISUM
  ISUM=ISUM+NRIV
  L(32)=ISUM
  ISUM=ISUM+NRIV
  GO TO 78
77  L(29)=ISUM
  L(30)=ISUM+1
  L(31)=ISUM+2
  L(32)=ISUM+3
  ISUM=ISUM+4
78  WRITE(6,170) ISUM
C
C      ---PASS INITIAL ADDRESSES OF ARRAYS TO SUBROUTINES---      MAN1140
C      CALL DATAI(Y(L(1)),Y(L(2)),Y(L(3)),Y(L(4)),Y(L(5)),Y(L(6)),Y(L(7)),MAN1150
1,Y(L(8)),Y(L(9)),Y(L(15)),Y(L(16)),Y(L(17)),Y(L(19)),Y(L(23)),Y(L(MAN1160
224)),Y(L(25)),Y(L(26)),Y(L(27)),Y(L(28)),Y(L(29)),Y(L(30)),
3 Y(L(31)),Y(L(32)))
C      CALL STEP(Y(L(1)),Y(L(2)),Y(L(3)),Y(L(4)),Y(L(5)),Y(L(6)),Y(L(7)),MAN1180
1Y(L(8)),Y(L(9)),Y(L(15)),Y(L(16)),Y(L(17)),Y(L(19)),Y(L(18)),Y(L(2MAN1190
20)))
C      CALL SOLVE(Y(L(1)),Y(L(2)),Y(L(3)),Y(L(4)),Y(L(5)),Y(L(6)),Y(L(7)),MAN1210
1+Y(L(8)),Y(L(9)),Y(L(15)),Y(L(16)),Y(L(17)),Y(L(19)),Y(L(10)),Y(L(MAN1220
21)),Y(L(12)),Y(L(13)),Y(L(14)),Y(L(20)),Y(L(25)),Y(L(23)),
3 Y(L(26)),Y(L(27)),Y(L(28)),Y(L(29)),Y(L(30)),Y(L(31)),Y(L(32)),
4 ND,NRIV)
C      CALL COEF(Y(L(1)),Y(L(2)),Y(L(3)),Y(L(4)),Y(L(5)),Y(L(6)),Y(L(7)),MAN1240
1Y(L(8)),Y(L(9)),Y(L(15)),Y(L(16)),Y(L(17)),Y(L(19)),Y(L(23)),Y(L(2MAN1250
24)),Y(L(25)))
C      CALL CHECKI(Y(L(1)),Y(L(2)),Y(L(3)),Y(L(4)),Y(L(5)),Y(L(6)),Y(L(7))MAN1270
1+Y(L(8)),Y(L(9)),Y(L(15)),Y(L(16)),Y(L(17)),Y(L(19)),Y(L(21)),Y(L(MAN1280
2(22)),Y(L(25)),
3 Y(L(26)),Y(L(27)),Y(L(28)),Y(L(29)),Y(L(30)),Y(L(31)),Y(L(32)),
4 ND,NRIV)
C      CALL PRNTAI(Y(L(1)),Y(L(2)),Y(L(4)),Y(L(5)),Y(L(9)),Y(L(15)),Y(L(16)))      MAN1300
MAN1310
MAN1320
MAN1330
C      ---START COMPUTATIONS---

```

```

C *****
C ---READ AND WRITE DATA FOR GROUPS II AND III---
C CALL DATAIN
C IRN=1
C NIJ=I0*J0
C DO 80 K=1,K0
C LOC=L(2)+(K-1)*NIJ
C 80 CALL ARRAY(Y(LOC),INFT(1,2),IOFT(1,1),NAME(1),IRN,DUM)
C DO 90 K=1,K0
C LOC=L(5)+(K-1)*NIJ
C 90 CALL ARRAY(Y(LOC),INFT(1,1),IOFT(1,2),NAME(7),IRN,DUM)
C DO 100 K=1,K0
C LOC=L(4)+(K-1)*NIJ
C L1=L(19)+K-1
C L2=L(19)+K0+K-1
C L3=L(19)+2*K0+K-1
C CALL ARRAY(Y(LOC),INFT(1,1),IOFT(1,2),NAME(13),IRN,DUM)
C Y(L1)=DUM(1)
C Y(L2)=DUM(2)
C Y(L3)=DUM(3)
C 100 WRITE (6,230) K,Y(L1),Y(L2),Y(L3)
C IF (ITK.NE.ICHK(10)) GO TO 120
C DO 110 K=1,K1
C LOC=L(8)+(K-1)*NIJ
C 110 CALL ARRAY(Y(LOC),INFT(1,1),IOFT(1,3),NAME(19),IRN,DUM)
C 120 K=K0
C IF (IWATER.NE.ICHK(6)) GO TO 130
C CALL ARRAY(Y(L(23)),INFT(1,1),IOFT(1,4),NAME(25),IRN,DUM)
C CALL ARRAY(Y(L(24)),INFT(1,1),IOFT(1,1),NAME(31),IRN,DUM)
C 130 IF (IQRF.EQ.ICHK(7)) CALL ARRAY(Y(L(25)),INFT(1,1),IOFT(1,4),NAME(137),IRN,DUM)
C CALL MDAT
C IF (ND.NE.0) CALL DDAT(ND)
C IF (NRIV.NE.0) CALL DDAT2(NRIV)
C
C ---COMPUTE TRANSMISSIVITY FOR UNCONFINED LAYER---
C IF (IWATER.EQ.ICHK(6)) CALL TRANS(1)
C
C ---COMPUTE T COEFFICIENTS---
C CALL TCOF
C
C ---COMPUTE ITERATION PARAMETERS---
C CALL ITER
C
C ---READ TIME PARAMETERS AND PUMPING DATA FOR A NEW PUMPING PERIOD---
C 140 CALL NEWPER
C
C KT=0
C TFINAL=0
C
C ---START NEW TIME STEP COMPUTATIONS---
C 150 CALL NEWSTP
C
C ---START NEW ITERATION IF MAXIMUM NO. ITERATIONS NOT EXCEEDED---
C CALL NEWITA
C
C ---PRINT OUTPUT AT DESIGNATED TIME STEPS---
C CALL OUTPUT
C
C ---LAST TIME STEP IN PUMPING PERIOD ?---

```

```

C IF (IFINAL.NE.1) GO TO 150 MAN1910
C ---CHECK FOR NEW PUMPING PERIOD--- MAN1920
C IF (KP.LT.NPER) GO TO 140 MAN1930
C STOP MAN1940
C ---FORMATS--- MAN1950
C
C
C 160 FORMAT (8I10) MAN1960
C 170 FORMAT (10I5,54X,'WORDS OF VECTOR Y USED =',I7) MAN1970
C 180 FORMAT (10I5,62X,'NUMBER OF ROWS =',I5/60X,'NUMBER OF COLUMNS =',I5) MAN1980
C 1/61X,'NUMBER OF LAYERS =',I5//39X,'MAXIMUM PERMITTED NUMBER OF ITEMAN2040
C 2RATIONS =',I5//48X,'NUMBER OF CONSTANT HEAD NODES =',I5, MAN2000
C 3 /,56X,'NUMBER OF DRAIN NODES =',I5, MAN2010
C 4 /,56X,'NUMBER OF RIVER NODES =',I5)
C 190 FORMAT (1I1,33A4) MAN2070
C 200 FORMAT (20A4) MAN2080
C 210 FORMAT (16(A4,1X)) MAN2090
C 220 FORMAT (1I0,44X,'SIMULATION OPTIONS: ',11(A4,4X)) MAN2100
C 230 FORMAT (1I0,44X,'DIRECTIONAL TRANSMISSIVITY MULTIPLICATION FACTORS MAN2110
C 1 FOR LAYER',I3,/,76X,'X =',G15.7/76X,'Y =',G15.7/76X,'Z =',G15.7) MAN2120
C 2 END MAN2130-
C SUBROUTINE DATA1(PHI,STRT,OLD,T,S,TR,TC,TK,WELL,DELX,DELY,DELZ,FACDAT0010
C IT,PERM,BOTTOM,QRE,ID,LD,ELD,IDL,RH,RC,RB)
C -----DAT0030
C READ AND WRITE DATA DAT0040
C -----DAT0050
C
C SPECIFICATIONS: DAT0060
C REAL *8PHI DAT0070
C REAL *8XLABEL,YLABEL,TITLE,XN1,MESUR DAT0080
C REAL*4 LD DAT0090
C
C DIMENSION PHI(I0,J0,K0), STRT(I0,J0,K0), OLD(I0,J0,K0), T(I0,J0,K0) DAT0110
C 1, S(I0,J0,K0), TR(I0,J0,K0), TC(I0,J0,K0), TK(IK,JK,K5), WELL(I0,DAT0120
C 2J0,K0), DELX(J0), DELY(I0), DELZ(K0), FACT(K0,3), PERM(IP,JP), BOTDAT0130
C 3TOM(IP,JP), QRE(IQ,JQ), TF(3), A(I0,J0), IN(6), IOFT(9), INFT(2) DAT0140
C 4 ,ID(I0,J0),LD(1),ELD(1) ,IDL(I0+J0),RH(1),RC(1),RB(1) DAT0150
C
C COMMON/FILS/ IFIL(14) DAT0160
C COMMON /INTEGR/ I0,J0,K0,I1,J1,K1,I,J,K,NPER,KTH,ITMAX,LENGTH,KP,NDAT0170
C 1WEL,NUMT,IFINAL,IT,KT,IHEAD,IDRAW,IFLO,IERR,I2,J2,K2,IMAX,ITMX1,NCDAT0170
C 2H,IDL1,IDL2,IWATER,IGRE,IP,JP,IQ,JQ,IK,JK,K5,IPU1,IPU2,ITK DAT0180
C COMMON /SPARAM/ TMAX,CDLT,DELT,ERR,TEST,SUM,SUMP,QR DAT0190
C COMMON /SARRAY/ ICHK(13),LEVEL1(9),LEVEL2(9) DAT0200
C COMMON /CK/ EFLXT,STORT,QRET,CHST,CHDT,FLUXT,PUMPT,CFLUXT,FLXNT DAT0210
C COMMON /PR/ XLABEL(3),YLABEL(6),TITLE(6),XN1,MESUR,PRNT(122),BLANKDAT0220
C 1(60),DIGIT(122),VF1(6),VF2(6),VF3(7),XSCALE,DINCH,SYM(17),XN(100),DAT0230
C 2YN(13),NA(4),N1,N2,N3,YSCALE,FACT1,FACT2 DAT0240
C RETURN DAT0250
C **** DAT0260
C **** DAT0270
C ENTRY DATAIN DAT0280
C **** DAT0290
C
C ---READ AND WRITE SCALAR PARAMETERS--- DAT0300
C READ (5,330) NPER,KTH,ERR,LENGTH DAT0310
C DAT0320

```

```

      WRITE (6,340) NPER,KTH,ERR                               DAT0330
      READ (5,460) XSCALE,YSCALE,DINCH,FACT1,(LEVEL1(I),I=1,9),FACT2,(LEVEL2(I),I=1,9),MESUR   DAT0340
      IF (XSCALE.NE.0.) WRITE (6,470) XSCALE,YSCALE,MESUR,MESUR,DINCH,FACT1,LEVEL1,FACT2,LEVEL2   DAT0350
      DAT0360
      DAT0370
      DAT0380
      DAT0390
      DAT0400
      DAT0410
      DAT0420
      DAT0430
      DAT0440
      DAT0450
      DAT0460
      DAT0470
      DAT0480
      DAT0490
      DAT0500
      DAT0510
      DAT0520
      DAT0530
      DAT0540
      DAT0550
      DAT0560
      DAT0570
      DAT0580
      DAT0590
      DAT0600
      DAT0610
      DAT0620
      DAT0630
      DAT0640
      DAT0650
      DAT0660
      DAT0670
      DAT0680
      DAT0690
      DAT0700
      DAT0710
      DAT0720
      DAT0730
      DAT0740
      DAT0750
      DAT0760
      DAT0770
      DAT0780
      DAT0790
      DAT0800
      DAT0810
      DAT0820
      DAT0830
      DAT0840
      DAT0850
      DAT0860
      DAT0870
      DAT0880
      DAT0890
      DAT0900
      DAT0910

```

C ---READ CUMULATIVE MASS BALANCE PARAMETERS---
 C READ (5,450) SUM,SUMP,PUMPT,CFLUXT,QRET,CHST,CHDT,FLUXT,STORT,ETFL,FLXNT
 C 1XT,FLXNT
 C IF (IDK1.EQ.1) GO TO 20
 C IF (IPU1.NE.1) GO TO 50
 C ---READ INITIAL HEAD VALUES FROM CARDS---
 C DO 10 K=1,K0
 C DO 10 I=1,IO
 10 READ (5,360) (PHI(I,J,K),J=1,JO)
 C GO TO 30
 C ---READ INITIAL HEAD AND MASS BALANCE PARAMETERS FROM DISK---
 20 READ (4) PHI,SUM,SUMP,PUMPT,CFLUXT,QRET,CHST,CHDT,FLUXT,STORT,ETFL,FLXNT
 C 1XT,FLXNT
 C REWIND 4
 30 WRITE (6,430) SUM
 C DO 40 K=1,K0
 C WRITE (6,440) K
 C DO 40 I=1,IO
 40 WRITE (6,350) I,(PHI(I,J,K),J=1,JO)
 C 50 DO 60 K=1,K0
 C DO 60 I=1,IO
 C DO 60 J=1,JO
 C WELL(I,J,K)=0.
 C TR(I,J,K)=0.
 C TC(I,J,K)=0.
 C IF (K.NE.K0) TK(I,J,K)=0.
 60 CONTINUE
 C RETURN
 C ****
 C ENTRY ARRAY(A,INFT,IOFT,IN,IRN,TF)
 C ****
 C READ (5,330) FAC,IVAR,IPRN,TF,IRECS,IRECD
 C IRLX=IFIL(IRN)
 C IC=4*IRECS+2*IVAR+IPRN+1
 C GO TO (70,70,90,90,120,120), IC
 70 DO 80 I=1,IO
 C DO 80 J=1,JO
 80 A(I,J)=FAC
 C WRITE (6,280) IN,FAC,K
 C GO TO 140
 90 IF (IC.EQ.3) WRITE (6,290) IN,K
 C DO 110 I=1,IO
 C READ(IRLX,INFT) (A(I,J),J=1,JO)
 C DO 100 J=1,JO
 100 A(I,J)=A(I,J)*FAC
 110 IF (IC.EQ.3) WRITE (6,IOFT) I,(A(I,J),J=1,JO)
 C GO TO 140
 120 READ (2*IRN) A
 C IF (IC.EQ.6) GO TO 140
 C WRITE (6,290) IN,K
 C DO 130 I=1,IO

```

130 WRITE (6,IOFT) I,(A(I,J),J=1,JO) DAT0920
140 IF (IRECD.EQ.1) WRITE (2,IRN) A DAT0930
    IRN=IRN+1 DAT0940
    WRITE (13) A
    RETURN DAT0950
C ***** ENTRY MDAT DAT0960
C *****
C DO 150 K=1,K0 DAT0970
C DO 150 I=1,IO DAT0980
C DO 150 J=1,JO DAT0990
C IF (I.EQ.1.OR.I.EQ.I0.OR.J.EQ.1.OR.J.EQ.J0) T(I,J,K)=0. DAT1000
C IF (IDK1.NE.ICHK(4).AND.IPU1.NE.ICHK(8)) PHI(I,J,K)=STRT(I,J,K) DAT1010
C IF (K.NE.K0.OR.IWATER.NE.ICHK(6)) GO TO 150 DAT1020
C IF (I.EQ.1.OR.I.EQ.I0.OR.J.EQ.1.OR.J.EQ.J0) PERM(I,J)=0. DAT1030
150 CONTINUE DAT1040
C ***** READ (5,330) FAC,IVAR,IPRN DAT1050
C IF (IVAR.EQ.1) READ (5,330) (DELX(J),J=1,JO) DAT1060
C DO 170 J=1,JO DAT1070
C IF (IVAR.NE.1) GO TO 160 DAT1080
C DELX(J)=DELX(J)*FAC DAT1090
C GO TO 170 DAT1100
160 DELX(J)=FAC DAT1110
170 CONTINUE DAT1120
C IF (IVAR.EQ.1.AND.IPRN.NE.1) WRITE (6,370) (DELX(J),J=1,JO) DAT1130
C IF (IVAR.EQ.0) WRITE (6,300) FAC DAT1140
C ***** READ (5,330) FAC,IVAR,IPRN DAT1150
C IF (IVAR.EQ.1) READ (5,330) (DELY(I),I=1,IO) DAT1160
C DO 190 I=1,IO DAT1170
C IF (IVAR.NE.1) GO TO 180 DAT1180
C DELY(I)=DELY(I)*FAC DAT1190
C GO TO 190 DAT1200
180 DELY(I)=FAC DAT1210
190 CONTINUE DAT1220
C IF (IVAR.EQ.1.AND.IPRN.NE.1) WRITE (6,380) (DELY(I),I=1,IO) DAT1230
C IF (IVAR.EQ.0) WRITE (6,310) FAC DAT1240
C ***** READ (5,330) FAC,IVAR,IPRN DAT1250
C IF (IVAR.EQ.1) READ (5,330) (DELZ(K),K=1,K0) DAT1260
C DO 210 K=1,K0 DAT1270
C IF (IVAR.NE.1) GO TO 200 DAT1280
C DELZ(K)=DELZ(K)*FAC DAT1290
C GO TO 210 DAT1300
200 DELZ(K)=FAC DAT1310
210 CONTINUE DAT1320
C IF (IVAR.EQ.1.AND.IPRN.NE.1) WRITE (6,390) (DELZ(K),K=1,K0) DAT1330
C IF (IVAR.EQ.0) WRITE (6,320) FAC DAT1340
C ***INITIALIZE VARIABLES*** DAT1350
C B=0. DAT1360
C D=0. DAT1370
C F=0. DAT1380
C H=0. DAT1390
C SU=0. DAT1400
C Z=0. DAT1410
C IF (XSCALE.NE.0.) CALL MAP DAT1420
C RETURN DAT1430
C ENTRY DDAT(ND) DAT1440

```

```

      NK=1
      DO 500 I=1,IO
      READ(11,510)(ID(I,J),J=1,JO)
 510  FORMAT (80I1)
      DO 500 J=1,JO
      IF(ID(I,J).EQ.0) GO TO 500
      ID(I,J)=NK
      NK=NK+1
 500  CONTINUE
      NK=NK-1
      IF(NK.EQ.ND) GO TO 520
      PRINT 515,NK,ND
 515  FORMAT ('  ERROR***NK.NE.ND      NK='I5,5X,'ND='I5)
      STOP
 520  READ(11,330)FAC
      READ(11,530)(LD(I),I=1,ND)
 530  FORMAT(40F2.0)
      PRINT 540,(LD(I),I=1,ND)
 540  FORMAT(/,20(1X,F5.0))
      DO 550 I=1,IO
      DO 550 J=1,JO
      K=ID(I,J)
      IF(K.EQ.0) GO TO 550
      LD(K)=LD(K)*FAC*T(I,J,K0)/(DELX(J)*DELY(I))
 550  CONTINUE
      READ(11,330)FAC
      READ(11,560)(ELD(I),I=1,ND)
      PRINT 540,(ELD(I),I=1,ND)
 560  FORMAT (20F4.0)
      DO 570 I=1,ND
 570  ELD(I)=FLD(I)*FAC
      RETURN
      ENTRY ODAT2(NRIV)
      NK=1
      DO 580 I=1,IO
      READ(12,510)(IDR(I,J),J=1,JO)
      DO 580 J=1,JO
      IF(IDR(I,J).EQ.0) GO TO 580
      IDR(I,J)=NK
      NK=NK+1
 580  CONTINUE
      NK=NK-1
      IF(NK.EQ.NRIV) GO TO 600
      PRINT 585,NK,NRIV
 585  FORMAT('  ERROR***NK.NE.NRIV      NK='I5,5X,'NRIV='I5)
      STOP
 600  READ(12,330)FAC
      READ(12,560)(RH(I),I=1,NRIV)
      PRINT 540,(RH(I),I=1,NRIV)
      DO 610 I=1,NRIV
 610  RH(I)=RH(I)*FAC
      READ(12,330)FAC
      READ(12,560)(RB(I),I=1,NRIV)
      PRINT 540,(RB(I),I=1,NRIV)
      DO 620 I=1,NRIV
 620  RB(I)=RB(I)*FAC
      READ(12,330)FAC
      READ(12,625)(RC(I),I=1,NRIV)
 625  FORMAT(10F8.0)
      PRINT 635,(RC(I),I=1,NRIV)

```

```

DO 630 I=1,NRIV
630 RC(I)=RC(I)*FAC
635 FORMAT(14(1X,F8.0)))
RETURN
C ***** DAT1500
C ---READ TIME PARAMETERS AND PUMPING DATA FOR A NEW PUMPING PERIOD-DAT1510
C ***** DAT1520
C ENTRY NEWPER DAT1530
C ***** DAT1540
C ***** DAT1550
C
READ (5,330) KP,KPM1,NWEL,TMAX,NUMT,CDLT,DELT,IRECH
IF (IRECH.EQ.1) READ(3) QRE
C DAT1570
C ---COMPUTE ACTUAL DELT AND NUMT---
DT=DELT/24.
TM=0.0
DO 220 I=1,NUMT
DT=CDLT*DT
TM=TM+DT
IF (TM.GE.TMAX) GO TO 230
220 CONTINUE
GO TO 240
230 DELT=TMAX/TM*DELT
NUMT=I
240 WRITE (6,400) KP,TMAX,NUMT,DELT,CDLT
DELT=DELT*3600.
TMAX=TMAX*86400.
SUMP=0.0
C DAT1680
C ---READ AND WRITE WELL PUMPING RATES---
WRITE (6,410) NWEL
IF (NWEL.EQ.0) GO TO 260
DO 250 JT=1,NWEL
READ (5,330) K,I,J,WELL(I,J,K)
WRITE (6,420) K,I,J,WELL(I,J,K)
250 WELL(I,J,K)=WELL(I,J,K)/(DELX(J)*DELY(I))
260 RETURN
C DAT1730
C ---FORMATS---
C DAT1820
C DAT1830
C DAT1840
C DAT1850
C DAT1860
C
280 FORMAT (1H0,52X,6A4,1 =',G15.7,1 FOR LAYER',I3) DAT1870
290 FORMAT (1H1,45X,6A4,1 MATRIX, LAYER',I3/46X,41('-')) DAT1880
300 FORMAT (10*,72X,1DELX =',G15.7) DAT1890
310 FORMAT (10*,72X,1DELY =',G15.7) DAT1900
320 FORMAT (10*,72X,1DELZ =',G15.7) DAT1910
330 FORMAT (RG10.0) DAT1920
340 FORMAT (10*,51X,1NUMBER OF PUMPING PERIODS =',I5/49X,1TIME STEPS BDAT1930
1ETWEFN PRINTOUTS =',I5//51X,1ERROR CRITERIA FOR CLOSURE =',G15.7/) DAT1940
350 FORMAT (10*,I2,2X,20F6.1/(5X,20F6.1)) DAT1950
360 FORMAT (RF10.4) DAT1960
370 FORMAT (1H1,45X,40HGRID SPACING IN PROTOTYPE IN X DIRECTION/47X,40DAT1970
1('-')/(10*,12F10.0)) DAT1980
380 FORMAT (1H-,46X,40HGRID SPACING IN PROTOTYPE IN Y DIRECTION/47X,40DAT1990
1('-')/(10*,12F10.0)) DAT2000
390 FORMAT (1H-,46X,40HGRID SPACING IN PROTOTYPE IN Z DIRECTION/47X,40DAT2010
1('-')/(10*,12F10.0)) DAT2020
400 FORMAT (1-1,50X,1PUMPING PERIOD NO.',I4,':',F10.2,1 DAYS',/51X,38('DAT2030
1-1)/53X,1NUMBER OF TIME STEPS=',I6//59X,1DELT IN HOURS =',F10.3//DAT2040

```

```

253X*!MULTIPLTER FOR DELT =!F10.3) DAT2050
410 FORMAT (1-1,63X,I4*! WFLLS!//65X,9(!-1)//50X,!K!*9X,!I!,9X,!J PUDAT2060
  IMPING RATE!/) DAT2070
420 FORMAT (41X,3110,2F13.2) DAT2080
430 FORMAT (1-1,40X,! CONTINUATION - HEAD AFTER !,G20.7,! SEC PUMPING DAT2090
  1!/42X,5K(!-1)) DAT2100
440 FORMAT (1-1,50X,!INITIAL HEAD MATRIX, LAYER!,I3/56X,30(!-1)) DAT2110
450 FORMAT (4G20.10) DAT2120
460 FORMAT (3G10.0,2(G10.0,9I1,1X),A8) DAT2130
470 FORMAT (*0*,30X,!UN ALPHAMERIC MAP:!*40X,!MULTIPLICATION FACTOR FODAT2140
  1R X DIMENSTON =!,G15.7/40X,!MULTIPLICATION FACTOR FOR Y DIMENSION DAT2150
  2=!,G15.7/54X,!MAP SCALE IN UNITS OF !,A11/50X,!NUMBFR OF !,A8,! PDAT2160
  3FR INCH =!,G15.7/43X,!MULTIPLICATION FACTOR FOR DRAWDOWN =!,G15.7,DAT2170
  4! PRINTED FOR LAYERS!,9I2/47X,!MULTIPLICATION FACTOR FOR HEAD =!,GDAT2180
  515.7,! PRINTED FOR LAYERS!,9I2) DAT2190
  END DAT2200-
  SUBROUTINE CHECK1(PHI,STRT,OLD,T,S,TR,TC,TK,WELL,DELX,DELY,DELZ,FACHK 10
  ICT,JFL0,FL0,QR,IN,FLD,FLD,IDR,RH,RC,RB,IDRAIN,IRIV)

C-----CHK 30
C-----COMPUTE A VOLUMETRIC BALANCE CHK 40
C-----CHK 50
C-----CHK 60
C-----CHK 70
C-----SPECIFICATIONS: CHK 80
  REAL *8PHI CHK 90
C-----DIMENSION PHT(I0,J0,K0), STRT(I0,J0,K0), OLD(I0,J0,K0), T(I0,J0,K0)CHK 100
  1, S(I0,J0,K0), TR(I0,J0,K0), TC(I0,J0,K0), TK(IK,JK,K5), WELL(I0,CHK 110
  2J0,K0), DELX(J0), DELY(I0)+ DELZ(K0), FACT(K0,3), JFL0(NCH,3), FLOCHK 120
  3W(NCH), QR(E(I0,J0)) CHK 130
  4, ID(I0,J0),FLD(1),FLD(1),IDR(I0,J0),RH(1),RC(1),RB(1) CHK 140
C-----COMMON /INTEGR/ I0,J0,K0,I1,J1,K1,I,J,K,NPER,KTH,ITMAX,LENGTH,KP,NCHK 150
  1WEL,NUMT,IFINAL,IT,KT,IHEAD,IDRAW,IFLO,IERR,I2,J2,K2,IMAX,ITMX1,NCCHK 160
  2H,IDK1,IDK2,IWATER,IGRF,IP,JP,IQ,JQ,IK,JK,K5,IPU1,IPU2,ITK CHK 170
  COMMON /SPARAM/ TMAX,CDLT,DELT,ERR,TEST,SUM,SUMP,QR CHK 180
  COMMON /SARRAY/ ICHK(13),LEVEL1(9),LEVEL2(9) CHK 190
  COMMON /CK/ ETFLXT,STORT,QRET,CHST,CHDT,FLUXT,PUMPT,CFLUXT,FLXNT CHK 200
  RETURN CHK 210
C-----CHK 220
C-----***** CHK 230
C-----ENTRY CHECK CHK 240
C-----***** CHK 250
C--------INITIALIZE VARIABLES--- CHK 260
  PUMP=0. CHK 270
  STOR=0. CHK 280
  FLUXS=0.0 CHK 290
  CHD1=0.0 CHK 300
  CHD2=0.0 CHK 310
  QREFLX=0. CHK 320
  CFLUX=0. CHK 330
  FLUX=0. CHK 340
  ETFLUX=0. CHK 350
  FLXN=0.0 CHK 360
  II=0 CHK 370
C-----CHK 380
C-----***** CHK 390
C--------COMPUTE RATES,STORAGE AND PUMPAGE FOR THIS STEP--- CHK 400
  DO 220 K=1,K0 CHK 410
  DO 220 I=2,I1 CHK 420
  DO 220 J=2,J1 CHK 430

```

```

IF (T(I,J,K).EQ.0.) GO TO 220                                CHK 440
AREA=DELX(J)*DELY(I)                                         CHK 450
IF (S(I,J,K).GE.0.) GO TO 180                                CHK 460
C
C   ---COMPUTE FLOW RATES TO AND FROM CONSTANT HEAD BOUNDARIES---
II=II+1
FLOW(II)=0.
JFLO(II,1)=K
JFLO(II,2)=I
JFLO(II,3)=J
IF (S(I,J-1,K).LT.0..OR.T(I,J-1,K).EQ.0.) GO TO 30      CHK 470
X=(PHI(I,J,K)-PHI(I,J-1,K))*TR(I,J-1,K)*DELY(I)        CHK 480
FLOW(II)=FLOW(II)+X                                         CHK 490
IF (X) 10,30,20                                            CHK 500
10 CHD1=CHD1+X                                              CHK 510
GO TO 30                                                    CHK 520
20 CHD2=CHD2+X                                              CHK 530
30 IF (S(I,J+1,K).LT.0..OR.T(I,J+1,K).EQ.0.) GO TO 60      CHK 540
X=(PHI(I,J,K)-PHI(I,J+1,K))*DELY(I)*TR(I,J,K)           CHK 550
FLOW(II)=FLOW(II)+X                                         CHK 560
IF (X) 40,60,50                                            CHK 570
40 CHD1=CHD1+X                                              CHK 580
GO TO 60                                                    CHK 590
50 CHD2=CHD2+X                                              CHK 600
60 IF (K.EQ.1) GO TO 90                                      CHK 610
IF (S(I,J,K-1).LT.0..OR.T(I,J,K-1).EQ.0.) GO TO 90        CHK 620
X=(PHI(I,J,K)-PHI(I,J,K-1))*TK(I,J,K-1)*AREA*2./(DELZ(K)+DELZ(K-1)) CHK 630
1)
FLOW(II)=FLOW(II)+X                                         CHK 640
IF (X) 70,90,80                                            CHK 650
70 CHD1=CHD1+X                                              CHK 660
GO TO 90                                                    CHK 670
80 CHD2=CHD2+X                                              CHK 680
90 IF (K.EQ.K0) GO TO 120                                     CHK 690
IF (S(I,J,K+1).LT.0..OR.T(I,J,K+1).EQ.0.) GO TO 120        CHK 700
X=(PHI(I,J,K)-PHI(I,J,K+1))*TK(I,J,K)*AREA*2./(DELZ(K)+DELZ(K+1)) CHK 710
FLOW(II)=FLOW(II)+X                                         CHK 720
IF (X) 100,120,110                                           CHK 730
100 CHD1=CHD1+X                                             CHK 740
GO TO 120                                                    CHK 750
110 CHD2=CHD2+X                                             CHK 760
120 IF (S(I-1,J,K).LT.0..OR.T(I-1,J,K).EQ.0.) GO TO 150      CHK 770
X=(PHI(I,J,K)-PHI(I-1,J,K))*TC(I-1,J,K)*DELX(J)           CHK 780
FLOW(II)=FLOW(II)+X                                         CHK 790
IF (X) 130,150,140                                           CHK 800
130 CHD1=CHD1+X                                             CHK 810
GO TO 150                                                    CHK 820
140 CHD2=CHD2+X                                             CHK 830
150 IF (S(I+1,J,K).LT.0..OR.T(I+1,J,K).EQ.0.) GO TO 220      CHK 840
X=(PHI(I,J,K)-PHI(I+1,J,K))*TC(I,J,K)*DELX(J)           CHK 850
FLOW(II)=FLOW(II)+X                                         CHK 860
IF (X) 160,220,170                                           CHK 870
160 CHD1=CHD1+X                                             CHK 880
GO TO 220                                                    CHK 890
170 CHD2=CHD2+X                                             CHK 900
GO TO 220                                                    CHK 910
C
C   ---RECHARGE AND WELLS---
180 IF (K.EQ.K0.AND.IQRE.EQ.1) QREFLX=QREFLX+QRE(I,J)*AREA  CHK1000
IF (WELL(I,J,K)) 190,210,200                                CHK1010
                                                CHK1020
                                                CHK1030

```

```

190 PUMP=PUMP+WELL(I,J,K)*AREA
      GO TO 210
200 CFLUX=CFLUX+WELL(I,J,K)*AREA
C
C      ---COMPUTE VOLUME FROM STORAGE---
210 STOR=STOR+S(I,J,K)*(OLD(I,J,K)-PHI(I,J,K))*AREA
      IF(K.NE.K0.OR.IRIV.LE.0) GO TO 212
C      COMPUTE LEAKAGE TO RIVER
      ND=IDR(I,J)
      IF(ND.EQ.0) GO TO 212
      IF(PHI(I,J,K).GT.RB(ND)) GO TO 211
      ETFLUX=RC(ND)*(RH(ND)-RB(ND))*AREA+ETFLUX
      GO TO 212
211 ETFLUX=RC(ND)*(RH(ND)-PHI(I,J,K))*AREA+ETFLUX
212 IF(K.NE.K0.OR.IDRAIN.LE.0) GO TO 220
C      COMPUTE LEAKAGE TO DRAIN
      ND=ID(I,J)
      IF(ND.EQ.0) GO TO 220
      IF(ELD(ND).GT.PHI(I,J,K)) GO TO 220
      FLUX=FLUX+FLD(ND)*AREA*(ELD(ND)-STRT(I,J,K))
      FLXN=FLXN+FLD(ND)*AREA*(ELD(ND)-PHI(I,J,K))
      FLUXS=FLXN
220 CONTINUE
C
C      -----
C      ---COMPUTE CUMULATIVE VOLUMES, TOTALS, AND DIFFERENCES---
      FLXPT=0.0
      FLXNT=FLXNT-FLXN*DELT
      ETFLXT=ETFLXT-ETFLUX*DELT
      STORT=STORT+STOR
      STOR=STOR/DELT
      QRET=QRET+QREFLX*DELT
      CHDT=CHDT-CHD1*DELT
      CHST=CHST+CHD2*DELT
      PUMPT=PUMPT-PUMP*DELT
      TOTL1=STORT+QRET+CFLUXT+CHST+FLXPT
      CFLUXT=CFLUXT+CFLUX*DELT
      TOTL2=CHDT+PUMPT+ETFLXT+FLXNT
      SUMR=QREFLX+CFLUX+CHD2+CHD1+PUMP+ETFLUX+FLUXS+STOR
      DIFF=TOTL2-TOTL1
      PERCNT=0.0
      IF (TOTL2.EQ.0.) GO TO 230
      PERCNT=DIFF/TOTL2*100.
230 RETURN
C
C      -----
C      ---PRINT RESULTS---
C      ****
      ENTRY CWRITE
C      ****
      WRITE (6,260) STOR,QREFLX,STORT,CFLUX,QRET,PUMP,CFLUXT,ETFLUX,CHST
      1,FLXPT,CHD2,TOTL1,CHD1,FLUX,FLUXS,ETFLXT,CHDT,SUMR,PUMPT,FLXNT,TOTL2
      2,DIFF,PERCNT
      IF (NCH.EQ.0) GO TO 240
      WRITE (6,270)
      WRITE (6,280) ((JFLO(I,J),J=1,3),FLOW(I),I=1,NCH)
C
C      ---COMPUTE VERTICAL FLOW---
240 X=0.

```



```

C     ---PRINT MAPS---
353 IF (XSCALE.EQ.0.) GO TO 70                                STP 760
IF (IDD(KP).EQ.0) GO TO 70                                     STP 770
IF (FACT1.FQ.0.) GO TO 50                                     STP 780
DO 40 IA=1,9                                                 STP 790
II=LEVEL1(IA)
IF (II.EQ.0) GO TO 50                                     STP 800
40 CALL PRNTA(1,II)                                         STP 810
50 IF (FACT2.EQ.0.) GO TO 70                                     STP 820
DO 60 IA=1,9                                                 STP 830
II=LEVEL2(IA)
IF (II.EQ.0) GO TO 70                                     STP 840
60 CALL PRNTA(2,II)                                         STP 850
70 IF (IDRAW.NE.ICHK(1)) GO TO 100                           STP 860
C
C     ---PRINT DRAWDOWN---
DO 90 K=1,K0                                                 STP 870
WRITE (6,200) K                                         STP 880
DO 90 I=1,I0                                                 STP 890
DO 80 J=1,J0                                                 STP 900
80 DDN(J)=STRT(I,J,K)-PHI(I,J,K)                         STP 910
90 WRITE (6,170) I,(DDN(J),J=1,J0)                         STP 920
100 CONTINUE
DO 103 K=1,K0
103 WRITE (15) ((PHI(I,J,K),J=1,J0),I=1,I0)
IF (IMHEAD.NE.ICHK(2)) GO TO 120
C
C     ---PRINT HEAD MATRIX---
IF (IDD(KP).EQ.0) GO TO 120
NNDKL=4-IDD(KP)
DO 110 K=NNDKL,K0
WRITE (6,190) K
DO 110 I=1,I0
110 WRITE (6,170) I,(PHI(I,J,K),J=1,J0)
C
C     ---WRITE ON DISK---
120 IF (IERR.EQ.2) GO TO 130
IF (KP.LT.NPER.OR.IFINAL.NE.1) RETURN
IF (IDK2.EQ.ICHK(5)) WRITE (44) PHI,SUM,SUMP,PUMPT,CFLUXT,QRET,CHS
IT,CHDT,FLUXT,STORT,ETFLXT,FLXNT
C
C     ---PUNCHFD OUTPUT---
130 IF (IPU2.NE.ICHK(9)) GO TO 160
IF (IERR.EQ.2) GO TO 140
WRITE (7,230) SUM,SUMP,PUMPT,CFLUXT,QRET,CHST,CHDT,FLUXT,STORT,ETF
1LXT,FLXNT
140 DO 150 K=1,K0
DO 150 I=1,I0
150 WRITE (7,220) (PHI(I,J,K),J=1,J0)
160 IF (IERR.EQ.2) STOP
RETURN
C
C     ---FORMATS---
C
C
C
170 FORMAT (10,14,1AF7.2/(5X,1BF7.2))                      STP1100
180 FORMAT (10MAXIMUM HEAD CHANGE FOR EACH ITERATION10,1,39(1-1)/100STP1110
1,10F12.4)                                              STP1120
190 FORMAT (10,55X,1HEAD MATRIX, LAYER1,13/56X,21(1-1))      STP1130

```

```

200 FORMAT (10F8.0) DRAWDOWN, LAYER1, L3/59X, 18(0-0) STP1200
210 FORMAT (1H1, 44X, 57(0-0)/45X, 010, 14X, 01 TIME STEP NUMBER =', I9, 14X, 01 STP1300
10/45X, 57(0-0)/50X, 25H SIZE OF TIME STEP IN SECONDS =', F14.2//55X, 01 T0STP1310
2TAL SIMULATION TIME IN SECONDS =', F14.2/80X, 8H MINUTES =', F14.2/82X, 6H STP1320
3HOURS =', F14.2/83X, 5H DAYS =', F14.2/82X, 1YEARS =', F14.2//45X, 1DURATION STP1330
4OF CURRENT PUMPING PERIOD IN DAYS =', F14.2/82X, 1YEARS =', F14.2//) STP1340
220 FORMAT (10F8.2) STP1350
230 FORMAT (4G20.10) STP1360
240 FORMAT (0TIME STEP 10, 40I3) STP1370
250 FORMAT (0ITFRATIONS: 0, 40I3) STP1380
260 FORMAT (0 0, 1U(0-0)) STP1390
FND
SUBROUTINE SOLVE(PHI, STRT, OLD, T, S, TR, TC, TK, WELL, DELX, DELY, DELZ, FACSP3 10
1T, EL, FL, GL, V, XI, TEST3, QRE, PERM, ID, FLD, ELD, IDR, RH, RC, RB, IDRRAIN,
2 IRIV)
C ----- SP3 30
C SOLUTION BY THE STRONGLY IMPLICIT PROCEDURE SP3 40
C ----- SP3 50
C SP3 60
C SPECIFICATIONS: SP3 70
REAL *8 PHI, RHO, B, D, F, H, Z, SU, RHOP, W, WMIN, RHO1, RHO2, RHO3, XPART, YPARTSP3 80
REAL *8 UX, UXR
1, ZPART, DMIN1, WMAX, XT, YT, ZT, DABS, DMAX1, DEN, TXM, TYM, TZM SP3 90
REAL *8 E, AL, RL, CL, A, C, G, WU, TU, U, DL, RES, SUPH, GLXI, ZPHI SP3 100
C SP3 110
DIMENSION PHI(1), STRT(1), OLD(1), T(1), S(1), TR(1), TC(1), TK(1) SP3 120
1, WELL(1), DELX(1), DELY(1), DELZ(1), FACT(K0,3), RHOP(20), TEST3(SP3 130
21), EL(1), FL(1), GL(1), V(1), XI(1), QRE(1) SP3 140
3, ID(1), FLD(1), ELD(1), PERM(1), IDR(1), RH(1), RC(1), RB(1) SP3 150
C SP3 160
COMMON /INTEGR/ I0, J0, K0, I1, J1, K1, I, J, K, NPER, KTH, ITMAX, LENGTH, KP, NSP3
1WEL, NUMT, IFINAL, IT, KT, IHHEAD, IDRAW, IFLO, IERR, I2, J2, K2, IMAX, ITMX1, NCSP3 170
2H, IDK1, IDK2, IWATER, IQRE, IP, JP, IQ, JQ, IK, JK, K5, IPU1, IPU2, ITK SP3 180
COMMON /SPARAM/ TMAX, CDLT, DELT, ERR, TEST, SUM, SUMP, QR SP3 190
COMMON /RESMUN/ RESMO
COMMON /SARRAY/ ICHK(13), LEVEL1(9), LEVEL2(9) SP3 200
RETURN SP3 210
C ***** SP3 220
C ***** SP3 230
ENTRY ITER SP3 240
C ***** SP3 250
C ---COMPUTE AND PRINT ITERATION PARAMETERS--- SP3 260
WRITE (6, 240) SP3 270
P2=LENGTH-1 SP3 280
NT=I0*J0*K0 SP3 290
NIJ=I0*J0 SP3 300
PJ=-1. SP3 310
READ(5, 250) WMAX SP3 320
250 FORMAT(F10.0) SP3 330
DO 50 I=1, LENGTH SP3 340
PJ=PJ+1. SP3 350
50 RHOP(I)=1.0-(1.00-WMAX)**(PJ/P2) SP3 360
WRITE (6, 230) LENGTH, (RHOP(J), J=1, LENGTH) SP3 370
RETURN SP3 380
C ***** SP3 390
C ***** SP3 400
C ---INITIALIZE DATA FOR A NEW ITERATION--- SP3 410
60 IT=IT+1 SP3 420
IF (IT.LE. ITMAX) GO TO 70 SP3 430
WRITE (6, 220) SP3 440

```

```

CALL OUTPUT
70 IF (MOD(IT,LENGTH)) 80,80,90
*****  

C NTH=0
ENTRY NEWITA
*****  

90 NTH=NTH+1
W=RHOP(NTH)
TEST3(IT+1)=0.
TEST=0.0
BIG=0.
DO 100 I=1,NT
EL(I)=0.
FL(I)=0.
GL(I)=0.
G=CL*FL(NJB)
WU=CL*GL(NJB)
U=BL*GL(NIB)
IF (K.EQ.1) GO TO 140
AL=Z/(1.+W*(EL(NKB)+FL(NKB)))
A=AL*EL(NKB)
TU=AL*FL(NKB)
DL=E+W*(A+C+G+WU+TU+U)-CL*EL(NJB)-BL*FL(NIB)-AL*GL(NKB)
EL(N)=(F-W*(A+C))/DL
FL(N)=(H-W*(G+TU))/DL
GL(N)=(SIJ-W*(WU+UJ))/DL
SUPH=0.D0
IF (K.NE.K0) SUPH=SU*PHI(NKA)
RES=-B*PHI(NIB)-D*PHI(NJR)-E*PHI(N)-F*PHI(NJA)-H*PHI(NIA)-SUPH-Z*PSP31620
1HI(NKB)-WELL(N)-RHO*OLD(N)-QR
RES=RES*RESMO
V(N)=(RES-AL*V(NKB)-BL*V(NIB)-CL*V(NJB))/DL
GO TO 150
140 DL=E+W*(C+G+WU+U)-CL*EL(NJB)-BL*FL(NIB)
EL(N)=(F-W*C)/DL
FL(N)=(H-W*G)/DL
GL(N)=(SIJ-W*(WU+U))/DL
SUPH=0.D0
IF (K.NE.K0) SUPH=SU*PHI(NKA)
RES=-B*PHI(NIB)-D*PHI(NJB)-E*PHI(N)-F*PHI(NJA)-H*PHI(NIA)-SUPH-WELSP31720
1L(N)-RHO*OLD(N)-QR
RES=RES*RESMO
V(N)=(RES-RL*V(NIB)-CL*V(NJB))/DL
150 CONTINUE
C
C ---BACK SUBSTITUTE FOR VECTOR XI---
DO 160 K=1,K0
K3=K0-K+1
DO 160 I=1,I2
I3=I0-I
DO 160 J=1,J2
J3=J0-J
N=I3+(J3-1)*I0+(K3-1)*NIJ+I-I
IF (T(N).EQ.0..OR.S(N).LT.0.) GO TO 160
GLXI=0.D0
IF (K3.NF.K0) GLXI=GL(N)*XI(N+NIJ)
XI(N)=V(N)-EL(N)*XI(N+I0)-FL(N)*XI(N+1)-GLXI
C
C ---COMPARE MAGNITUDE OF CHANGE WITH CLOSURE CRITERIA---
TCHK=ABS(XI(N))

```

```

        IF (TCHK.GT.RIG) HIG=TCHK
        PHI(N)=PHI(N)+XI(N)
160  CONTINUE
        IF (RIG.GT.EPH) TEST=1.
        TEST3(IT+1)=HIG
        IF (TEST.EQ.0.) RETURN
        GO TO 60
C
C
170  DO 200 KK=1,K0
        K=K0-KK+1
        DO 200 II=1,I<
        I=I0-II
        DO 200 J=2,J1
        N=I+(J-1)*I0+(K-1)*NIJ
        NIA=N+1
        NIB=N-1
        NJA=N+I0
        NJB=N-I0
        NKA=N+NIJ
        NKB=N-NIJ
C
C
        ---SKIP COMPUTATIONS IF NODE OUTSIDE AQUIFER---
        IF (T(N).EQ.0..OR.S(N).LT.0.) GO TO 200
C
C
        ---COMPUTE COEFFICIENTS---
        D=TR(NJR)/DEIX(J)
        F=TR(N)/DEIX(J)
        R=TC(NIB)/DELY(I)
        H=TC(N)/DELY(I)
        SU=0.D0
        Z=0.D0
        IF (K.NE.1) Z=TK(NKB)/DELZ(K)
        IF (K.NE.K0) SU=TK(N)/DELZ(K)
        RHO=S(N)/DFLT
        QR=0.
        UXR=0.
        IIX=0.
        IF (K.NE.K0) GO TO 180
        IF (IQRF.EQ.1CHK(7)) QR=QRE(I+(J-1)*I0)
        IF (IPRIV.LE.0) GO TO 175
        ND=IDR(I+(J-1)*I0)
        IF (ND.EQ.0) GO TO 175
        IF (PHI(N).GT.RB(ND)) GO TO 174
        OR=QR+RC(ND)*(RH(ND)-RB(ND))
        GO TO 175
174  UXR=RC(ND)
        QR=QR+RC(ND)*RH(ND)
175  IF (IDRAIN.LE.0) GO TO 180
        ND=ID(I+(J-1)*I0)
        IF (ND.EQ.0) GO TO 180
        IF (FLD(ND).GT.PHI(N)) GO TO 180
        UX=FLD(ND)
        QR=QR+FLD(ND)*ELD(ND)
C
C
        ---STP REVERSE ALGORITHM---
C
        ---FORWARD SUBSTITUTE, COMPUTING INTERMEDIATE VECTOR V---
180  E=-R-H-D-F-SU-Z-RHO-UX-UXR
        RL=H/(1.+W*(EL(NIA)+GL(NIA)))
        CL=D/(1.+W*(FL(NJR)+GL(NJB)))
        C=BL*EL(NIA)

```

```

G=CL*FL (NJR)
WU=CL*GL (NJB)
U=BL*GL (NIA)
IF (K.EQ.K0) GO TO 190
AL=SU/(1.+W*(EL (NKA)+FL (NKA)))
A=AL*EL (NKA)
TU=AL*FL (NKA)
DL=F+W*(C+G+A+WU+TU+U)-AL*GL (NKA)-BL*FL (NIA)-CL*EL (NJB)
FL (N)=(F-W*(C+A))/DL
FL (N)=(B-W*(G+TU))/DL
GL (N)=(Z-W*(WU+U))/DL
ZPHI=0.00
IF (K.NE.1) ZPHI=Z*PHI (NKB)
RES=-B*PHI (NIB)-D*PHI (NJR)-E*PHI (N)-F*PHI (NJA)-H*PHI (NIA)-SU*PHI (N
1KA)-ZPHI-WELL (N)-RHO*OLD (N)-QR
RES=PES*RESMO
V (N)=(RES-AL*V (NKA)-BL*V (NIA)-CL*V (NJB))/DL
GO TO 200
190 DL=E+W*(C+G+WU+U)-BL*FL (NIA)-CL*EL (NJB)
FL (N)=(F-W*C)/DL
FL (N)=(B-W*G)/DL
GL (N)=(Z-W*(WU+U))/DL
ZPHI=0.00
IF (K.NE.1) ZPHI=Z*PHI (NKB)
RES=-B*PHI (NIB)-D*PHI (NJR)-E*PHI (N)-F*PHI (NJA)-H*PHI (NIA)-ZPHI-WELSP
1L (N)-RHO*OLD (N)-QR
RES=RES*RESMO
V (N)=(RES-AL*V (NIA)-CL*V (NJB))/DL
200 CONTINUE
C
C      ---RACK SUBSTITUTE FOR VECTOR XI---
DO 210 K=1,K0
DO 210 I=2,II
DO 210 J=1,J2
J3=J0-J
N=I+(J3-1)*I0+(K-1)*NIJ
IF (T(N).EQ.0.0.OR.S(N).LT.0.0) GO TO 210
GLXI=0.00
IF (K.NE.1) GLXI=GL (N)*XI (N-NI.J)
XI (N)=V (N)-EL (N)*XI (N+I0)-FL (N)*XI (N-1)-GLXI
C
C      ---COMPARE MAGNITUDE OF CHANGE WITH CLOSURE CRITERIA---
TCHK=ABS(XI (N))
IF (TCHK.GT.BIG) BIG=TCHK
PHI (N)=PHI (N)+XI (N)
210 CONTINUE
IF (RIG.GT.ERR) TEST=1.
TEST3(IT+1)=RIG
IF (TEST.EQ.0.0) RETURN
GO TO 60
*****
C
C      ---FORMATS---
C
C
220 FORMAT ('0EXCEEDED PERMITTED NUMBER OF ITERATIONS! ',39(999)) SP32900
230 FORMAT ('//1H0,I5,22H ITERATION PARAMETERS:,6E15.7/(28X,6E15.7/)') SP32910
240 FORMAT ('-1,44X,'SOLUTION BY THE STRONGLY IMPLICIT PROCEDURE'/45X,SP32920
143(999)) SP32930

```

FND SP32940-
 SUBROUTINE COEF (PHI, STRT, OLD, T, S, TR, TC, TK, WELL, DELX, DELY, DELZ, FACTCOF 100
 1, PERM, BOTTOM, QRE)
 COF 200
 COF 300
 COF 400
 COF 500
 COF 600
 COF 700
 COF 800
 COF 900
 COF 1000
 COF 1100
 COF 1200
 COF 1300
 COF 1400
 COF 1500
 COF 1600
 COF 1700
 COF 1800
 COF 1900
 COF 2000
 COF 2100
 COF 2200
 COF 2300
 COF 2400
 COF 2500
 COF 2600
 COF 2700
 COF 2800
 COF 2900
 COF 3000
 COF 3100
 COF 3200
 COF 3300
 COF 3400
 COF 3500
 COF 3600
 COF 3700
 COF 3800
 COF 3900
 COF 4000
 COF 4100
 COF 4200
 COF 4300
 COF 4400
 COF 4500
 COF 4600
 COF 4700
 COF 4800
 COF 4900
 COF 5000
 COF 5100
 COF 5200
 COF 5300
 COF 5400
 COF 5500
 COF 5600
 COF 5700
 C
 C COMPUTE COEFFICIENTS
 C
 C SPECIFICATIONS:
 C REAL *8PHI
 C
 C DIMENSION PHI(I0,J0,K0), STRT(I0,J0,K0), OLD(I0,J0,K0), T(I0,J0,K0), COF 100
 1, S(I0,J0,K0), TR(I0,J0,K0), TC(I0,J0,K0), TK(TK,JK,K5), WELL(I0,COF 110
 2J0,K0), DELX(J0), DELY(I0), DFLZ(K0), FACT(K0,3), PERM(IP,JP), BOTCOF 120
 3TOM(TP,JP), QRE(TQ,JG)
 C
 C COMMON /TNTFGR/ I0,J0,K0,I1,J1,K1,I,J,K,NPER,KTH,ITMAX,LENGTH,KP,NCOF 150
 1WEL,NUMT,IFINAL,IT,KT,IHEAD,IDRAW,IFLO,IFRR,I2,J2,K2,IMAX,ITMX1,NCCOF 160
 2H,IK1,INDK1,IWATFR,IGRF,IP,JP,I0,JQ,IK,JK,K5,IPU1,IPU2,ITK
 C COMMON /SPARAM/ TMAX,CDLT,DELT,EPR,TEST,SUM,SUMP,QR
 C COMMON /SAPR/ TCHK(13),LEVEL1(9),LEVFL2(9)
 C RETURN
 C
 C *****
 C ---COMPUTE TRANSMISSIVITY FOR UPPER HYDROLOGIC UNIT WHEN
 C IT IS UNCONFNTED---
 C *****
 C FNTRY TRANS(N3)
 C *****
 C DO 10 I=2,I1
 C DO 10 J=2,J1
 C IF (PERM(I,J).EQ.0.) GO TO 10
 C T(I,J,K0)=PERM(I,J)*(PHI(I,J,K0)-BOTTOM(I,J))
 C IF (T(I,J,K0).GT.0.) GO TO 10
 C IF (WELL(I,J,K0).LT.0.) WRITE (6,60) I,J,K0
 C IF (WELL(I,J,K0).GE.0.) WRITE (6,70) I,J,K0
 C WRITE (6,180) KT,PERM(I,J),PHI(I,J,K0),BOTTOM(I,J)
 C 180 FORMAT ('-',T5,E15.5,E15.7,E15.7)
 C PERM(I,J)=0.
 C T(I,J,K0)=0.
 C TR(I,J-1,K0)=0.
 C TR(I,J,K0)=0.
 C TC(I,J,K0)=0.
 C TC(I-1,J,K0)=0.
 C IF (K0.NE.1) TK(I,J,K1)=0.
 C PHI(I,J,K0)=1.030
 C 10 CONTINUE
 C IF (N3.EQ.1) RETURN
 C N1=K0
 C N2=K0
 C N4=K1
 C GO TO 20
 C
 C ---COMPUTE T COEFFICIENTS---
 C *****
 C FNTRY TCOF
 C *****
 C N1=1
 C N2=K0
 C N4=1
 C 20 DO 40 K=N1,N2
 C DO 40 I=1,I1
 C DO 40 J=1,J1

```

      IF (T(I,J,K).EQ.0.) GO TO 40                      COF 580
      IF (T(I,J+1,K).EQ.0.) GO TO 30                      COF 590
      TR(I,J,K)=(2.*T(I,J+1,K)*T(I,J,K))/(T(I,J,K)*DELX(J+1)+T(I,J+1,K)*COF 600
      1DELX(J))*FACT(K,1)                                COF 610
      30 IF (T(I+1,J,K).EQ.0.) GO TO 40                  COF 620
      TC(I,J,K)=(2.*T(I+1,J,K)*T(I,J,K))/(T(I,J,K)*DELY(I+1)+T(I+1,J,K)*COF 630
      1DELY(I))*FACT(K,2)                                COF 640
      40 CONTINUE                                         COF 650
      IF (K0.EQ.1.OR.ITK.EQ.ICHK(10)) RETURN           COF 660
      DO 50 K=N4,K1                                      COF 670
      DO 50 I=2,I1                                      COF 680
      DO 50 J=2,J1                                      COF 690
      IF (T(I,J,K+1).EQ.0.) GO TO 50                  COF 700
      T1=T(I,J,K)*FACT(K,3)                            COF 710
      T2=T(I,J,K+1)*FACT(K+1,3)                        COF 720
      TK(I,J,K)=(2.*T2*T1)/(T1*DELZ(K+1)+T2*DELZ(K)) COF 730
      50 CONTINUE                                         COF 740
      RETURN                                             COF 750
C
C
      60 FORMAT ('--',20('*'),'WELL',2I3,' IN LAYER',I3,' GOES DRY',20('*')) COF 780
      70 FORMAT ('--',20('*'),'NODE',2I3,' IN LAYER',I3,' GOES DRY',20('*')) COF 790
      END
      SUBROUTINE PRNTAI(PHI,STRT,T,S,WELL,DELX,DELY)      PRN 10
C-----PRN 20
      PRINT MAPS OF DRAWDOWN AND HYDRAULIC HEAD          PRN 30
C-----PRN 40
C
C
      SPECIFICATIONS:                                     PRN 50
      REAL *8PHI,Z,XLABEL,YLABEL,TITLE,XN1,MESUR          PRN 60
      REAL *4K                                            PRN 70
      PRN 80
      PRN 90
      DIMENSION PHI(I0,J0,K0), STRT(I0,J0,K0), S(I0,J0,K0), WELL(I0,J0,K0) PRN 100
      10, DELX(J0), DELY(I0), T(I0,J0,K0)                PRN 110
      DIMENSION SYM2(10)                                 PRN 120
C
      COMMON /INTEGR/ I0,J0,K0,I1,J1,K1,I,J,K,NPER,KTH,ITMAX,LENGTH,KP,NPRN 130
      1WEL,NUMT,IFINAL,IT,KT,IHEAD,IDRAW,IFLO,IERR,I2,J2,K2,IMAX,ITMX1,NCPRN 140
      2H,IK1,IK2,IWATER,IGRE,IP,JP,IQ,JQ,IK,JK,K5,IPU1,IPU2,ITK          PRN 150
      COMMON /PR/ XLABFL(3),YLABEL(6),TITLE(6),XN1,MESUR,PRNT(122),BLANKPRN 160
      1(60),DIGIT(122),VF1(6),VF2(6),VF3(7),XSCALE,DINCH,SYM(17),XN(100),PRN 170
      2YN(13),NA(4),N1,N2,N3,YSCALE,FACT1,FACT2          PRN 180
      DATA SYM2/'A','B','C','D','E','F','G','H','I','J'/
      RETURN                                              PRN 190
C
C
      *****PRN 200
      C
      ---INITIALIZE VARIABLES FOR PLOT---                PRN 210
      *****PRN 220
      ENTRY MAP                                         PRN 230
      *****PRN 240
      YDIM=0.                                            PRN 250
      WIDTH=0.                                           PRN 260
      DO 10 J=2,J1                                      PRN 270
      10 WIDTH=WIDTH+DELX(J)                            PRN 280
      DO 20 I=2,I1                                      PRN 290
      20 YDIM=YDIM+DELY(I)                            PRN 300
      30 XSF=DINCH*XSCALE                            PRN 310
      YSF=DINCH*YSCALE                                PRN 320
      NYD=YDIM/YSF                                     PRN 330
      IF (NYD*YSF.LE.YDIM-DELY(I1)/2.) NYD=NYD+1      PRN 340
      PRN 350

```

```

IF (NYD.LE.12) GO TO 40 PRN 300
DINCH=YD1M/(12.*YSCALE) PRN 370
WRITE (6,330) DINCH PRN 380
IF (YSCALE.LT.1.0) WRITE (6,340) PRN 390
GO TO 30 PRN 400
40 NXD=WIDTH/XSF PRN 410
IF (NXD*XSF.LE.WIDTH-DELX(J1)/2.) NXD=NXD+1 PRN 420
N4=NXD*N1+1 PRN 430
N5=NXD+1 PRN 440
N6=NYD+1 PRN 450
N8=N2+NYD+1 PRN 460
NA(1)=N4/2-1 PRN 470
NA(2)=N4/2 PRN 480
NA(3)=N4/2+3 PRN 490
NC=(N3-N8-10)/2 PRN 500
ND=NC+NE PRN 510
NE=MAX0(N5,N6) PRN 520
VF1(3)=DIGIT(ND) PRN 530
VF2(3)=DIGIT(ND) PRN 540
VF3(3)=DIGIT(ND) PRN 550
XLABEL(3)=MESUR PRN 560
YLABEL(6)=MESUR PRN 570
DO 60 I=1,NE PRN 580
NNX=N5-I PRN 590
NNY=I-1 PRN 600
IF (NNY.GE.N6) GO TO 50 PRN 610
YN(I)=YSF*NNY/YSCALE PRN 620
50 IF (NNX.LT.0) GO TO 60 PRN 630
XN(I)=XSF*NNX/YSCALE PRN 640
60 CONTINUE PRN 650
RETURN PRN 660
C ..... PRN 670
C **** PRN 680
C ENTRY PRNTA(NG,LA) PRN 690
C **** PRN 700
C ---VARIABLES INITIALIZED EACH TIME A PLOT IS REQUESTED--- PRN 710
DIST=WIDTH-DELX(J1)/2. PRN 720
JJ=J1 PRN 730
LL=1 PRN 740
Z=NXD*XSF PRN 750
IF (NG.EQ.1) WRITE (6,300) (TITLE(I),I=1,3),LA PRN 760
IF (NG.EQ.2) WRITE (6,300) (TITLE(I),I=4,6),LA PRN 770
DO 290 I=1,N4 PRN 780
C
C ---LOCATE X AXES--- PRN 790
IF (I.EQ.1.OR.I.EQ.N4) GO TO 70 PRN 800
PRNT(1)=SYM(12) PRN 810
PRNT(N8)=SYM(12) PRN 820
IF ((I-1)/N1*N1.NE.I-1) GO TO 90 PRN 830
PRNT(1)=SYM(14) PRN 840
PRNT(N8)=SYM(14) PRN 850
GO TO 90 PRN 860
C
C ---LOCATE Y AXES--- PRN 870
70 DO 80 J=1,N8 PRN 880
IF ((J-1)/N2*N2.EQ.J-1) PRNT(J)=SYM(14) PRN 890
80 IF ((J-1)/N2*N2.NE.J-1) PRNT(J)=SYM(13) PRN 900
C
C ---COMPUTE LOCATION OF NODES AND DETERMINE APPROPRIATE SYMBOL--- PRN 910

```

```

90 IF (DIST.LT.0..OR.DIST.LT.Z-XN1*XSF) GO TO 240
YLEN=DELY(2)/2.
DO 220 L=2,I1
J=YLFN*N2/YSF+1.5
IF (T(L,JJ,LA).EQ.0.) GO TO 160
IF (S(L,JJ,LA).LT.0.) GO TO 210
INDX3=0
GO TO (100,110), NG
100 K=(STRT(L,JJ,LA)-PHI(L,JJ,LA))*FACT1
C -TO CYCLE SYMBOLS FOR DRAWDOWN, REMOVE C FROM COL. 1 OF NEXT CARD-PRN1050
C K=AMOD(K,10.)
GO TO 120
110 K=PHI(L,JJ,LA)*FACT2
120 IF (K) 130,160,140
130 N==K
N=MOD(N,10)+1
PRNT(J)=SYM2(N)
GO TO 220
140 N=N
N=MOD(N,10)+1
PRNT(J)=SYM(N)
GO TO 220
160 PRNT(J)=SYM(15)
IF (T(L,JJ,LA).EQ.0.) PRNT(J)=SYM(14)
GO TO 220
210 IF (S(L,JJ,LA).LT.0.) PRNT(J)=SYM(16)
220 YLEN=YLEN+(DELY(L)+DELY(L+1))/2.
230 DIST=DIST-(DFLX(JJ)+DELX(JJ-1))/2.
JJ=JJ-1
IF (JJ.EQ.0) GO TO 240
IF (DIST.GT.Z-XN1*XSF) GO TO 230
240 CONTINUE
C ---PRINT AXES, LABELS, AND SYMBOLS---
IF (I-NA(LL).EQ.0) GO TO 260
IF ((I-1)/N1*N1-(I-1)) 270,250,270
250 WRITE (6,VF1) (BLANK(J),J=1,NC),(PRNT(J),J=1,N8),XN(1+(I-1)/6)
GO TO 280
260 WRITE (6,VF2) (BLANK(J),J=1,NC),(PRNT(J),J=1,N8),XLABEL(LL)
LL=LL+1
GO TO 280
270 WRITE (6,VF2) (BLANK(J),J=1,NC),(PRNT(J),J=1,N8)
C ---COMPUTE NEW VALUE FOR Z AND INITIALIZE PRNT---
280 Z=Z-2.*XN1*XSF
DO 290 J=1,N8
290 PRNT(J)=SYM(15)
C ---NUMBER AND LABEL Y AXIS AND PRINT LEGEND---
WRITE (6,VF3) (BLANK(J),J=1,NC),(YN(I),I=1,N6)
WRITE (6,320) (YLABEL(I),I=1,6)
IF (NG.EQ.1) WRITE (6,310) FACT1
IF (NG.EQ.2) WRITE (6,310) FACT2
RETURN
C ---FORMATS---
C -----
C

```


Data Preparation

Basic model operation requires four input files.

1. The basic data deck describes the finite difference grid, input and output options, the hydraulic properties of the aquifers, initial conditions and pumpage rates.
2. The recharge file contains recharge rates for each node in the top layer of the model for each recharge period. This file is read at the beginning of each recharge period for which there is a "1" punched in column 80 of the recharge period card.
3. The river data deck contains arrays indicating the nodes on the top layer which have rivers and specifying the leakage factor, elevation of streambed and elevation of the bottom of the streambed layer.
4. The drainage tile deck contains arrays indicating the nodes in the top layer which have drainage tiles and specifying the length and elevation of tile in each node.

Basic Data Deck Instructions

These instructions have been copied, with minor modifications from model documentation by Trescott (1975).

Group I: Title, Simulation Options and Problem Dimensions.--This group of cards, which is read by the main program, contains data required to dimension the model. To specify an option on card 7 punch the characters underlined in the definition. For an option not used, that section of the card 7 can be left blank.

Note: Default typing of variables applies for all data input.

<u>CARD</u>	<u>COLUMNS</u>	<u>FORMAT</u>	<u>VARIABLE</u>	<u>DEFINITION</u>
1	1-80	20A4	HEADING	Any title the user wishes to print on one line at the start of output.
2	1-52	13A4	"	
3	1-56	14I4	IFIL	Symbolic unit numbers of file from which arrays normally part of the Basic Data file are to be read. Normally set to 5.
4	1-80	80I1	IDD	Number of layers (starting from the top) for which the potentiometric heads are to

<u>CARD</u>	<u>COLUMNS</u>	<u>FORMAT</u>	<u>VARIABLE</u>	<u>DEFINITION</u>
				be printed. The column number in which the number is punched corresponds to the recharge period for which heads will be printed.
5	1-10	F10.0	RESMO	Multiplier for "RES" field in subroutine SOLVE.
6	1-10	I10	IO	Number of rows
	11-20	I10	JO	Number of columns
	21-30	I10	K0	Number of layers
	31-40	I10	ITMAX	Maximum number of iterations per time step
	41-50	I10	NCH	Number of constant head nodes
	51-60	I10	ND	Number of nodes containing a drain
	61-70	I10	NRIV	Number of nodes containing a river
7	1-4	A4	IDRAW	<u>DRAW</u> to print drawdown
	6-9	A4	IHEAD	<u>HEAD</u> to print hydraulic head
	11-14	A4	IFLOW	<u>MASS</u> to compute a mass balance
	16-18	A3	IDK1	<u>DK1</u> to read initial head, elapsed time, and mass balance parameters from unit 4 on disk
	21-23	A3	IDK2	<u>DK2</u> to write computed head, elapsed time, and mass balance parameters on unit 44 (disk)
	26-29	A4	IWATER	<u>WATE</u> if the upper hydrologic unit is unconfined
	31-34	A4	IQRE	<u>RECH</u> for a constant recharge that may be a function of space
	36-39	A4	IPU1	<u>PUN1</u> to read initial head, elapsed time, and mass balance parameters from cards

<u>CARD</u>	<u>COLUMNS</u>	<u>FORMAT</u>	<u>VARIABLE</u>	<u>DEFINITION</u>
	41-44	A4	IPU2	<u>PUN2</u> to punch computed head, elapsed time, and mass balance parameters on cards
	46-49	A4	ITK	<u>ITKR</u> to read the value of TK(I,J,K) for simulations in which confining layers are not represented by layers of nodes (TK (I,J,K)) = K_{zz}/b

Group II: Scalar parameters.--The parameters required in every problem are underlined. The other parameters are required as noted; when not required, their location on the card can be left blank. The G format is used to read E, F and I format data. Minimize mistakes by always right-justifying data in the field. If F format data do not contain significant figures to the right of the decimal point, the decimal point can be omitted.

<u>CARD</u>	<u>COLUMNS</u>	<u>FORMAT</u>	<u>VARIABLE</u>	<u>DEFINITION</u>
1	1-10	G10.0	<u>NPER</u>	Number of recharge periods for the simulation
	11-20	G10.0	<u>KTH</u>	Number of time steps between printouts
	21-30	G10.0	<u>ERR</u>	Error criteria for closure (L)

Note: To print only the results for the final time step in a pumping period, make KTH greater than the expected number of time steps. The program always prints the results for the final time step.

31-40	G10.0	<u>LENGTH</u>	Number of iteration parameters
1-10	G10.0	XSCALE	Factor to convert model length unit to unit in X direction on maps (e.g. to convert from feet to miles, XSCALE - 5280).

For no maps, card 2 is blank

CARD	COLUMN	FORMAT	VARIABLE	DEFINITION
	11-20	G10.0	YSCALE	Factor to convert model length unit to unit used in Y direction on maps.
	21-30	G10.0	DINCH	Number of map units per inch
	31-40	G10.0	FACT1	Factor to adjust value of drawdown printed*
	41-49	9I1	LEVEL(I)	Layers for which drawdown maps are to be printed. List the layers starting in column 41; the first zero entry terminates the printing of drawdown maps.
2	51-60	G10.0	FACT2	Factor to adjust value of head printed*
	61-69	9I1	LEVEL2(I)	Layers for which head maps are to be printed. List layers starting in column 61; the first zero entry terminates the printing of head maps.
	71-78	A8	MESUR	Name of map length unit.
3	1-20	G20.10	SUM	
	21-40	G20.10	SUMP	
	41-60	G20.10	PUMPT	Parameters in which elapsed times and cumulative volumes for mass balance are stored. For the start of a simulation insert three blank cards. <u>For continuation</u> of a previous run using cards as input, replace the three blank cards with the first three cards of punched output from the previous run.
	61-80	G20.10	CFLUXT	Using data from disk for input, leave the three blank cards in the data deck.
4	1-20	G20.10	QRET	
	21-40	G20.10	CHST	
	41-60	G20.10	CHDT	
	61-80	G20.10	FLUXT	
5	1-20	G20.10	STORT	
	21-40	G20.10	ETFLXT	
	41-60	G20.10	FLXNT	

*Value of drawdown or head	FACT 1 or Printed FACT 2 value	
	0.01	1
52.57	0.1	5
	1.0	53
	10.0	526
	100.0	***

Group III: Array Data.--Each of the following data sets (except data set 1) consists of a parameter card and, if the data set contains variable data, a set of data cards for each layer in the model. Each parameter card contains at least five variables:

<u>CARD</u>	<u>COLUMNS</u>	<u>FORMAT</u>	<u>VARIABLE</u>	<u>DEFINITION</u>
Every Parameter Card	1-10	G10.0	FAC	If IVAR = 0, FAC is the value assigned to every element of the matrix for this layer.
				If IVAR = 1, FAC is the multiplication factor for the following set of data cards for this layer.
	11-20	G10.0	IVAR	= 0 if no data cards are to be read for this year.
				= 1 if data cards for this layer follow.
	21-30	G10.0	IPRN	= 0 if input data for this layer are to be printed;
				= 1 if input data for the layer are <u>not</u> to be printed.

Trans-				
missivity				
Parameter cards also have these Variables	31-40	G10.0	FACT(K,1)	multiplication factor for transmissivity in x direction
	41-50	G10.0	FACT(K,2)	multiplication factor for transmissivity in the y direction

<u>CARD</u>	<u>COLUMNS</u>	<u>FORMAT</u>	<u>VARIABLE</u>	<u>DEFINITION</u>
	51-60	G10.0	FACT(K,3)	multiplication factor for hydraulic conductivity in the z direction. (Not used when confining bed nodes are eliminated and TK values are read)
Every Parameter Card	61-70	G10.0	IRECS	= 0 if the matrix is being read from cards or if each element is being set equal to FAC. = 1 if the matrix is to be read from disk (unit 2)
	71-80	G10.0	IRECD	= 0 if the matrix is <u>not</u> to be stored on disk. = 1 if the matrix being read from cards or set equal to FAC <u>is</u> to be stored on disk (unit 2) for later retrieval.

<u>DATA SET</u>	<u>COLUMNS</u>	<u>FORMAT</u>	<u>VARIABLE</u>	<u>DEFINITION</u>
1	1-80	8F 10.4	PHI(I,J,K)	Head values for continuation of a previous run (L)
2	1-80	8F 10.4	STRT(I,J,K)	Starting head matrix (L)
3	1-80	20F 4.0	S (I,J,K)	Storage coefficient (dimensionless)

Note: This matrix is also used to locate constant head boundaries by coding a negative number at constant head nodes. At these nodes T must be greater than zero.

4 1-80 20F 4.0 T(I,J,K) Transmissivity (L^2/t)

Note 1) Zero values are required around the perimeter of the T matrix for each layer for reasons inherent in the computational scheme. This is done automatically by the program.

2) See the previous page for the additional requirements on the parameter cards for this data set.

<u>DATA SET</u>	<u>COLUMNS</u>	<u>FORMAT</u>	<u>VARIABLE</u>	<u>DEFINITION</u>
Note 3) If the upper active layer is unconfined and PERM and BOTTOM are to be read for this layer, insert a parameter card for this layer with only the values for FACT on it.				
5	1-80	20F 4.0	TK(I,J,K)	K_{zz}/b
Note: This data set is read only if specified in the options. The number of layers of TK values = K'=1. See the discussion of the treatment of confining layers.				
6	1-80	20F 4.0	PERM(I,J)	Hydraulic conductivity (L/T) (see note 1 for data set 4)
7	1-80	20F 4.0	BOTTOM(I,J)	Elevation of bottom of water-table unit (L)
Note: Data sets 6 and 7 are required only for simulating unconfined conditions in the upper hydrologic unit.				
8	1-80	20F 4.0	QRE(I,J)	Recharge rate (L/T) If recharge rate is read for each recharge period then this card is ignored and recharge rate is read from the Recharge File
Note: Omit if not used.				
9	1-80	8G10.0	DELX(J)	Grid spacing in x direction (L)
10	1-80	8G10.0	DELY(I)	Grid spacing in y direction (L)
11	1-80	8G10.0	DELZ(K)	Grid spacing in z direction (L)

Group IV: Parameters that change with the recharge period.--The Program has two options for the simulation period:

1. To simulate a given number of time steps, set TMAX to a value larger than the expected simulation period. The program will use NUMT, CDLT, and DELT as coded.

2. To simulate a given recharge period, set NUMT larger than the number required for the simulation period (for example, 100). The program will compute the exact DELT (which will be \leq DELT coded) and NUMT to arrive exactly at TMAX on the last time step.

<u>CARD</u>	<u>COLUMNS</u>	<u>FORMAT</u>	<u>VARIABLE</u>	<u>DEFINITION</u>
1	1-10	G10.0	<u>KP</u>	Number of the recharge period
	11-20	G10.0	<u>KPML</u>	Number of the previous recharge period
				Note: KPML is currently not used.
	21-30	G10.0	<u>NWEL</u>	Number of wells for this recharge period
	31-40	G10.0	<u>TMAX</u>	Number of days in this recharge period
	41-50	G10.0	<u>NUMT</u>	Number of time steps
	51-60	G10.0	<u>CDLT</u>	Multiplying factor for DELT
				Note: 1.5 is commonly used
	61-70	G10.0	<u>DELT</u>	Initial time step in hours
	71-80	G10.0		Flag to indicate that recharge to the top layer is to be read from recharge file for each recharge period.

If NWEL: 0 the following set of cards is omitted

<u>DATA SET 1</u>		(NEWL cards)	
<u>COLUMNS</u>	<u>FORMAT</u>	<u>VARIABLE</u>	<u>DEFINITION</u>
1-10	G10.0	K	Layer in which well is located
11-20	G10.0	I	Row location of well
21-30	G10.0	J	Column location of well
31-40	G10.0	WELL(I,J,K)	Pumping rate (L^3/t), negative for a pumping well.

For each recharge period only wells pumping at a different rate than the previous recharge period need to be entered.

Recharge File Instructions

The recharge file contains one record for each recharge period in the simulation. Each record contains a recharge rate per unit area for each node in the top layer of the grid. The values are in internal floating point notation in column major order.

River Data Deck

The river data deck consists of four arrays and three parameter cards.

<u>ARRAY</u>	<u>COLUMNS</u>	<u>FORMAT</u>	<u>DEFINITION</u>
IDR(I,J)	1-80	80I1	Indicator array for cells containing a river, 1 for river 0 for no river.
RH(NRIV)	1-80	20F4.0	River water level for each of the NRIV cells containing a river. Entered in row major order.
RB(NRIV)	1-80	20F4.0	Bottom of streambed layer in each of the NRIV cells containing a river. Entered in row major order.
RC(NRIV)	1-80	10F8.0	Leakage factor for each of the NRIV cells containing a river. The factor for each cell is the percent area of the cell occupied by the hydraulic conductivity of the river bed and directed by the thickness of the river bed.

The RH, RB and RC arrays must each be preceded by a parameter card similar to those described for array data in the basic data deck.

Drainage Tile Deck

This file consists of three arrays and two parameter cards.

<u>ARRAY</u>	<u>COLUMNS</u>	<u>FORMAT</u>	<u>DEFINITION</u>
ID(I,J)	1-80	80I1	Indicator array for cells containing drainage tile, 1 for tile, 0 for no tile.

<u>ARRAY</u>	<u>COLUMNS</u>	<u>FORMAT</u>	<u>DEFINITION</u>
LD(ND)	1-80	40F2.0	Length of drainage tile (in hundreds of feet) in the ND cells containing tile. Entered in row major order.

The LD and ELD arrays must each be preceded by a parameter card similar to those described for array data in the basic data deck.

Several additional files are available for data input. They are described in detail in the model program documentation (Trescott 1975).

3 1818 00014394 9