DARTED STATES (DEPARTMENT OF THE INTERIOR)

A SEISMIC REFRACTION EXPERIMENT
PERFORMED IN THE MELONES RESERVOIR REGION OF THE METAMORPHIC BELT, CENTRAL CALIFORNIA
by
James N. Murdock
and
John C. Roller 1926 -

Open-File Report 78-131 April 1978

This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey standards.

ABSTRACT
A seismic refraction experiment was conducted in the metamorphic belt of central California during May 1972. Seven charges were fired during the experiment. Three seismic refraction lines, 75 to 125 km long, were made in the belt. Also, data were gathered for regional travel-time calibrations. The experimental data are presented. They include P-wave travel times, station locations, shot locations, and shot origin times.

INTRODUCTION

A seismic refraction experiment was conducted by the U. S. Geological Survey (USGS) in the western foothills of the Sierra Nevada Mountains of central California during May 1972. The region (Figure 1) is called the metamorphic belt. The purpose of the experiment was to provide a P-wave travel-time calibration for this area of complex geology, and to provide seismic data for modeling the upper crust. To achieve these objectives, the experiment was conducted to produce data both for seismic refraction line and time-term analyses. Three seismic refraction lines were made (lines 1, 2, and 3, Figure 1). The lines ranged from 75 to 125 km in length. The P-wave paths for the regional travel-time studies cross an area approximately $3000 \mathrm{~km}^{2}$. Due to the renewed interest in the region, data obtained from the experiment are presented here.

EXPLANATION

SEDIMENTARY AND EXTRUSIVE ROCKS
\square CENOZOIC SEDIMENTARY DEPOSITS
\square PRE-CRETACEOUS METAVOLCANIC METASEDIMENTARY AND SEDIMENTARY ROCKS

INTRUSIVE ROCKS

\square

[^0]
$120^{\circ} 00^{\prime}$

Figure 1. Map showing the shots, fixed stations (three-1etter names), and arrays (one-1etter names) superimposed on an abstract of the geologic maps (from Rogers, 1966). Not shown is T on line $3,22 \mathrm{~km}$ southeast of BMR. PAC is 170 km east of San Francisco.

ACQUISITION OF THE DATA

Seven charges were fired during the experiment. Their sites are given in Table 1. Five of the shots (LGR, WLR, GSR, NHR, BMR) were one-ton charges detonated and timed by USGS personnel. The times are thought to be correct to within 0.02 sec . The other two (PAC and CCM) were quarry explosions; hence, their origin times are known only approximately. The origin time given for PAC is its arrival time at a station 230 m from the shot, and the origin time given for CCM is its arrival time at CGR, 870 m from the shot. The time reference to these stations has been made so that the true origin times can be estimated when the P -wave velocities at the sites are known.

The seismic data produced by the shots were recorded by two different types of stations: (1) seismic stations deployed at fixed locations throughout the experiment, and (2) four- or six-element seismic arrays, maximum aperature 2.5 km , deployed sequentially on the three different lines shown on Figure 1. Arrays are given one-letter names and the fixed stations are given three-letter names. A fixed station was sited within 300 m of each of the USGS shots; therefore, each of the pairs was given a common name. A1so, an array was sited at each of the USGS shots.

Locations of the stations and arrays are presented on Figure 1 and in Table 2 and 3. These locations were determined from the positions of the sites plotted by the field crews on maps of scale $1: 24,000$. The positions are thought to be within 200 m of their true map locations.

Coordinates of positions where charges were fired and the origin times of the charges

STA	Lat N	Lon W	Elev (M)	May 1972	Hr Min Universal Time
BMR	$37^{\circ} 46.50^{\prime}$	$120^{\circ} 03.57^{\prime}$	838	24	$08: 00: 02.102$
CCM	$38^{\circ} 06.35^{\prime}$	$120^{\circ} 24.76^{\prime}$	646	23	$23: 02: 01.25$
GSR	$37^{\circ} 42.27^{\prime}$	$120^{\circ} 15.84^{\prime}$	335	25	$08: 35: 00.57$
LGR	$37^{\circ} 38.92^{\prime}$	$120^{\circ} 24.48^{\prime}$	146	23	$08: 30: 00.26$
NHR	$38^{\circ} 08.10^{\prime}$	$120^{\circ} 47.13^{\prime}$	213	25	$08: 05: 01.07$
PAC	$37^{\circ} 56.30^{\prime}$	$120^{\circ} 32.76^{\prime}$	286	26	$23: 21: 50.25$
WLR	$38^{\circ} 08.76^{\prime}$	$120^{\circ} 56.51^{\prime}$	101	23	$08: 00: 01.07$

Coordinates of fixed stations

STA	$\begin{gathered} \text { Lat } \\ \mathrm{N} \end{gathered}$	$\underset{\mathrm{W}}{\mathrm{Lon}}$	Elev (M)
AFR	$37^{\circ} 29.33^{\prime}$	$120^{\circ} 01.04^{\prime}$	610
BMR	$37^{\circ} 46.54{ }^{\prime}$	$120^{\circ} 03.69^{\prime}$	823
BRO	$33^{\circ} 00.50^{\prime}$	$120^{\circ} 24.95^{\prime}$	387
BVR	$37^{\circ} 33.66^{\prime}$	$120^{\circ} 06.72^{\prime}$	610
CGR	$38^{\circ} 06.81^{\prime}$	$120^{\circ} 24.63^{\prime}$	585
CNS	$37^{\circ} 56.31{ }^{\prime}$	$120^{\circ} 31.76^{\prime}$	373
COP	$37^{\circ} 58.38{ }^{\prime}$	$120^{\circ} 37.11^{\prime}$	336
CRH	$38^{\circ} 01.11^{\prime}$	$120^{\circ} 30.59^{\prime}$	475
CSR	$38^{\circ} 12.92^{\prime}$	$120^{\circ} 51.75^{\prime}$	128
DHR	$38^{\circ} 22.31^{\prime}$	$120^{\circ} 59.80^{\prime}$	113
FWL	$38^{\circ} 01.14{ }^{\prime}$	$120^{\circ} 35.00^{\prime}$	880
GSR	$37^{\circ} 42.31{ }^{\prime}$	$120^{\circ} 15.84^{\prime}$	335
JAS	$37^{\circ} 56.80^{\prime}$	$120^{\circ} 26.30^{\prime}$	457
JVR	$38^{\circ} 18.09^{\prime}$	$120^{\circ} 56.98^{\prime}$	85
KFR	$37^{\circ} 47.60{ }^{\prime}$	$120^{\circ} 37.90^{\prime}$	171
LGR	$37^{\circ} 38.95{ }^{\prime}$	$120^{\circ} 24.34^{\prime}$	152
LVR	$38^{\circ} 13.24{ }^{\prime}$	$120^{\circ} 19.48^{\prime}$	1219
MCM	$37^{\circ} 53.16^{\prime}$	$120^{\circ} 30.43{ }^{\prime}$	362
NHR	$38^{\circ} 08.20^{\prime}$	$120^{\circ} 47.08^{\prime}$	219
OBF	$37^{\circ} 53.99^{\prime}$	$120^{\circ} 34.07{ }^{\prime}$	176
ODR	$37^{\circ} 47.04^{\prime}$	$120^{\circ} 43.80^{\prime}$	79
SGR	$37^{\circ} 37.95{ }^{\prime}$	$120^{\circ} 09.23^{\prime}$	480
STN	$37^{\circ} 54.24^{\prime}$	$120^{\circ} 24.36{ }^{\prime}$	366
WLR	$38^{\circ} 08.80^{\prime}$	$120^{\circ} 56.41^{\prime}$	107

TABLE 3
Coordinates of array stations
Line 1

STA	Lat	Lon W	Elev (M)
H 1	$38^{\circ} 05.25^{\prime}$	$120^{\circ} 52.37{ }^{\text {\% }}$	67
H 4	$38^{\circ} 04.46^{\prime}$	$120^{\circ} 52.12^{\prime}$	79
H 5	$38^{\circ} 04.25^{\prime}$	$120^{\circ} 51.92^{\prime}$	107
H 6	$38^{\circ} 04.06^{\prime}$	$120^{\circ} 51.89^{\prime}$	110
I 4	$37^{\circ} 50.86^{\prime}$	$120^{\circ} 37.97{ }^{\prime}$	183
I 6	$37^{\circ} 50.36{ }^{\prime}$	$120^{\circ} 37.52^{\prime}$	165
J 1	$37^{\circ} 57.26^{\prime}$	$120^{\circ} 41.05^{\prime}$	268
J 3	$37^{\circ} 56.71{ }^{\prime}$	$120^{\circ} 40.67^{\prime}$	256
K 6	$38^{\circ} 00.31{ }^{\prime}$	$120^{\circ} 51.02{ }^{\prime}$	75
P 1	$38^{\circ} 08.29^{\prime}$	$120^{\circ} 56.19^{\prime}$	88
P 2	$38^{\circ} 08.52^{\prime}$	$120^{\circ} 56.34{ }^{\prime}$	91
P 3	$38^{\circ} 08.83{ }^{\prime}$	$120^{\circ} 56.56{ }^{\prime}$	98
Q 6	$37^{\circ} 46.58{ }^{\prime}$	$120^{\circ} 33.11^{\prime}$	140
R 4	$37^{\circ} 41.74{ }^{\prime}$	$120^{\circ} 28.12^{\prime}$	152
R 5	$37^{\circ} 41.28^{\prime}$	$120^{\circ} 28.13^{\prime}$	128
R 6	$37^{\circ} 41.03^{\prime}$	$120^{\circ} 28.11^{\prime}$	128
T 3	$37^{\circ} 45.93$ '	$120^{\circ} 28.05^{\prime}$	310

Coordinates of array stations
Line 2

STA
Lat
N
$38^{\circ} 00.58^{\prime}$
$38^{\circ} 00.38^{\prime}$
$38^{\circ} 00.21^{\prime}$
$37^{\circ} 59.98^{\prime}$
$37^{\circ} 59.77^{\prime}$
$37^{\circ} 59.53^{\prime}$
$38^{\circ} 03.03^{\prime}$
$38^{\circ} 02.66^{\prime}$
$38^{\circ} 02.36^{\prime}$
$37^{\circ} 53.30^{\prime}$
$37^{\circ} 52.90^{\prime}$
$37^{\circ} 52.84^{\prime}$
$37^{\circ} 52.73^{\prime}$
$38^{\circ} 06.39^{\prime}$
$38^{\circ} 06.14^{\prime}$
$38^{\circ} 05.91^{\prime}$
$38^{\circ} 05.50^{\prime}$
$38^{\circ} 05.19^{\prime}$
$38^{\circ} 07.55^{\prime}$
$38^{\circ} 07.81^{\prime}$
$38^{\circ} 08.07^{\prime}$
$37^{\circ} 56.54^{\prime}$
$37^{\circ} 56.78^{\prime}$
$37^{\circ} 56.94^{\prime}$
$37^{\circ} 57.12^{\prime}$
$37^{\circ} 45.85^{\prime}$
$37^{\circ} 45.68^{\prime}$
$37^{\circ} 45.37^{\prime}$
$37^{\circ} 45.20^{\prime}$
$37^{\circ} 45.02^{\prime}$

Lon
W
Elev (M)
$120^{\circ} 40.12^{\prime}$ 329 $120^{\circ} 39.90^{\prime}$ 341 $120^{\circ} 39.75^{\prime}$ 341 $120^{\circ} 39.58^{\prime}$ 335
$120^{\circ} 39.24^{\prime}$ 329
$120^{\circ} 39.04^{\prime}$ 329
$120^{\circ} 40.27^{\prime}$ 518
$120^{\circ} 39.98^{\prime}$ 548
$120^{\circ} 39.70^{\prime}$ 573
$120^{\circ} 29.11^{\prime}$ 366
$120^{\circ} 28.66^{\prime}$ 396
$120^{\circ} 28.32^{\prime}$ 396
$120^{\circ} 27.62^{\prime}$ 366
$120^{\circ} 45.21^{\prime}$ 341
$120^{\circ} 45.06^{\prime}$ 354
$120^{\circ} 44.89^{\prime} \quad 366$
$120^{\circ} 44.45^{\prime}$ 390
$120^{\circ} 44.29^{\prime}$ 384
$120^{\circ} 47.0^{\prime} \quad 226$
$120^{\circ} 47.12^{\prime} \quad 226$
$120^{\circ} 47.06^{\prime} \quad 217$
$120^{\circ} 35.66^{\prime} \quad 293$
$120^{\circ} 35.81^{\prime} \quad 280$
$120^{\circ} 35.96^{\prime} \quad 286$
$120^{\circ} 36.22^{\prime} \quad 293$
$120^{\circ} 19.61^{\prime} \quad 411$
$120^{\circ} 19.65^{\prime} \quad 381$
$120^{\circ} 19.44^{\prime} \quad 351$
$120^{\circ} 19.65^{\prime} \quad 305$
$120^{\circ} 19.64^{\prime} \quad 274$

S 1	$37^{\circ} 42.36^{\prime}$	$120^{\circ} 15.90^{\prime}$	354
S 2	$37^{\circ} 42.05^{\prime}$	$120^{\circ} 15.59^{\prime}$	293
S 3	$37^{\circ} 42.21^{\prime}$	$120^{\circ} 15.82^{\prime}$	335
T 1	$37^{\circ} 47.63^{\prime}$	$120^{\circ} 25.31^{\prime}$	305
T 2	$37^{\circ} 47.54^{\prime}$	$120^{\circ} 25.18^{\prime}$	305
T 3	$37^{\circ} 47.37^{\prime}$	$120^{\circ} 24.92^{\prime}$	305
T 4	$37^{\circ} 47.21^{\prime}$	$120^{\circ} 24.67^{\prime}$	305
T 5	$37^{\circ} 46.95^{\prime}$	$120^{\circ} 24.53^{\prime}$	305

Coordinates of array stations
Line 3

STA	$\begin{gathered} \text { Lat } \\ \mathrm{N} \end{gathered}$	$\begin{gathered} \text { Lon } \\ \mathrm{W} \end{gathered}$	Elev (M0
H 1	$37^{\circ} 56.74{ }^{\prime}$	$120^{\circ} 16.42^{\prime}$	823
I 3	$38^{\circ} 10.59^{\prime}$	$120^{\circ} 28.61^{\prime}$	634
J 1	$38^{\circ} 00.74{ }^{\prime}$	$120^{\circ} 17.08^{\prime}$	793
K 3	$38^{\circ} 03.17^{\prime}$	$120^{\circ} 21.27^{\prime}$	1000
P 1	$38^{\circ} 14.34{ }^{\prime}$	$120^{\circ} 35.45^{\prime}$	610
Q 1	$37^{\circ} 51.06{ }^{\prime}$	$120^{\circ} 08.73$,	899
Q 2	$37^{\circ} 51.06^{\prime}$	$120^{\circ} 09.07$ '	899
Q 3	$37^{\circ} 50.98^{\prime}$	$120^{\circ} 09.30^{\prime}$	899
Q 4	$37^{\circ} 51.03^{\prime}$	$120^{\circ} 09.72^{\prime}$	914
R 1	$37^{\circ} 48.79^{\prime}$	$120^{\circ} 07.30^{\prime}$	930
R 4	$37^{\circ} 48.15^{\prime}$	$120^{\circ} 07.27^{\prime}$	930
R 5	$37^{\circ} 47.79^{\prime}$	$120^{\circ} 07.38^{\prime}$	945
R 6	$37^{\circ} 47.55^{\prime}$	$120^{\circ} 07.25^{\prime}$	960
S 1	$37^{\circ} 47.06^{\prime}$	$120^{\circ} 03.82^{\prime}$	838
S 2	$37^{\circ} 46.82^{\prime}$	$120^{\circ} 03.70^{\prime}$	838
T 1	$37^{\circ} 36.37^{\prime}$	$119^{\circ} 55.60{ }^{\prime}$	1067
T 4	$37^{\circ} 35.98^{\prime}$	$119^{\circ} 55.09$ '	1082

The P-wave travel times are given in Table 4. All readings were made twice. All of the first P waves recorded at the fixed stations were timed. Also, for $0<\Delta<20 \mathrm{~km}$, normally all of the first P-wave arrivals at the arrays were read. For $\Delta>20 \mathrm{~km}$, normally only the first P wave with the clearest onset was read at each array; not all of the P waves were timed because the uncertainties in many of the arrival times are a significant fraction of the travel times across the small (2.5 km or less) arrays.

P waves with well defined onsets are given an I quality and examples of them are shown in Figure 2. Their onsets are measurable with a repeatability of about 0.03 sec . Arrivals with poorly defined onsets are given an E quality (Q). The travel times for P waves of E quality are upper bound values. P waves are clearly present at the time read. Some well defined secondary phases were read with a repeatability of about 0.05 sec . They are designated by J.

Two unusual features were noted on some of the seismograms of refraction line 2: (1) in two instances, weak precursors to the main arrivals were found and seen in Figure 3, and (2) in one instance, a signal of 7 to $8 \mathrm{~km} / \mathrm{sec}$ arrived first, and a strong coherent arrival followed it with a velocity of 6 to $7 \mathrm{~km} / \mathrm{sec}$, see Figure 4 .

TABLE 4. The travel time information

Shot				oordinat		
BMR			37		${ }^{W}$	3.57
Sta	$\underset{\mathrm{M}}{\mathrm{El}}$	$\begin{aligned} & \text { Azi } \\ & \text { deg } \end{aligned}$	$\begin{gathered} \text { Dist } \\ \text { km } \end{gathered}$	$\begin{gathered} \text { Trv Tm } \\ \text { sec } \end{gathered}$	Q	
$B M R$	823	113	0.19	0.03	I	
S 2	838	162	0.62	0.14	I	
S 1	838	160	1.10	0.24	I	
R 6	960	110	5.74	1.06	I	
R 5	945	113	6.08	1.12	I	
R 4	930	119	6.23	1.14	I	
R 1	930	128	6.92	1.28	I	
Q 1	899	138	11.34	2.06	I	
Q 2	899	136	11.68	2.09	I	
Q 3	899	135	11.81	2.11	I	
Q 4	914	133	12.32	2.35	I	
SGR	480	28	17.87	3.24	I	
T 1	1067	328	22.10	4.06	I	
T 4	1082	327	23.11	4.22	I	
BVR	610	11	24.20	4.33	I	
H 1	823	135	26.72	4.57	I	
AFR	610	353	31.98	5.58	I	
J 1	792	143	32.96	5.61	I	
LGR	152	65	33.57	5.84	I	
STN	366	115	33.69	5.68	I	
K 3	1000	140	40.30	6.80	I	
BRO	387	130	40.66	6.84	I	
CRH	475	124	47.95	7.93	,	
KFR	171	92	50.44	8.73	E	
FWL	884	120	53.45	8.85	E	
LVR	1219	155	54.68	9.45	E	
13	634	141	57.71	9.40	I	
ODR	79	91	59.08	10.27	I	
P 1	610	138	69.50	11.34	I	
NHR	219	122	75.32	12.24	1	
CSR	128	125	85.81	14.00	E	

ShotCCM	$\begin{gathered} \text { Elev } \\ \text { M } \\ 646 \end{gathered}$		Coordinates					
			Coordinat 38 N 38.35 1					
				24.76				
Sta	Elev	Azi			Dist	Trv Tm		
	M	deg	km	sec				
CGR	585	193	0.87	0.00				
BRO	387	1	10.83	1.74				
CRH	475	41	12.91	2.17				
LVR	1219	211	14.90	2.63				
JAS	457	7	17.81	3.08				
FWL	884	57	17.81	3.08				
STN	366	359	22.41	3.65				
COP	335	51	23.32	3.99				
NHR	219	96	32.80	5.44				
CSR	128	107	41.26	6.93				
GSR	335	344	46.35	7.41				
WLR	107	96	46.48	8.13				
LGR	152	359	50.69	8.44				
SGR	480	337	57.26	9.15				

Shot	Elev		Coordinates		
	M	N		W	
GSR	335	37	42.27	120	15.34

Sta	Elev M	$\begin{aligned} & \text { Azi } \\ & \text { deg } \end{aligned}$	$\begin{gathered} \text { Dist } \\ \text { km } \end{gathered}$	$\begin{gathered} \text { Trv Tm } \\ \text { sec } \end{gathered}$	Q
S 3	335	345	0.11	0.03	I
S 1	354	152	0.19	0.06	I
S 2	293	318	0.55	0.10	I
R 6	274	132	7.55	1.27	I
R 5	305	134	7.79	1.30	I
R 4	351	137	7.30	1.30	I
R 2	381	138	8.43	1.42	I
R 1	411	140	8.63	1.45	I
SGR	480	309	12.58	2.09	I
LGR	152	64	13.93	2.51	I
T 5	305	124	15.42	2.57	I
T 4	305	125	15.87	2.64	I
T 3	305	125	16.34	2.73	I
T 2	305	125	16.83	2.81	I
BMR	823	246	19.52	3.46	I
BVR	610	320	20.83	3.35	I
STN	366	151	25.43	4.26	I
K 6	366	138	25.95	4.19	I
K 6	366	138	25.95	4.40	J
K 5	390	138	26.37	4.29	E
K 4	396	137	26.80	4.30	I
K 3	396	136	27.22	4.37	I
K 3	396	136	27.22	4.59	J
K 1	366	136	28.21	4.50	I
K 1	366	136	28.21	4.74	J
MCM	363	133	29.40	4.76	E
AFR	610	318	32.37	5.30	I
KFR	171	107	33.87	5.87	I
CNS	373	138	34.93	5.81	I
BRO	387	158	36.27	6.07	I
Q 3	293	132	39.28	6.36	E
Q 3	293	132	39.28	6.52	J
Q 4	286	132	39.74	6.44	I
Q 5	280	133	40.10	6.60	J
Q 6	268	133	40.61	6.68	J
CRH	475	148	41.02	6.83	I
ODR	79	102	42.01	7.36	I
FNL	884	141	44.81	7.58	E
I 1	329	134	49.15	7.95	I
J 5	573	137	51.04	8.23	I
LVR	1219	175	57.54	9.60	I
P 1	226	136	65.38	10.73	E
NH:R	219	136	66.31	10.77	E
WLR	107	130	77.09	12.95	E
CSR	128	7	77	12.77	E

Shot	Elev		Coordinates		
	M		N	W	
LGR	146	37	38.92	120^{2}	24.48

Sta	Elev		
M			Azi
:---:			
deg	\quad	Dist	
:---:			
km		Trv Tm	
:---:			
Sec	\quad Q		

LGR	152	255	0.21	0.06	I
R 6	128	126	6.61	1.20	I
R 5	128	129	6.92	1.25	I
R 4	152	134	7.47	1.35	I
GSR	335	244	14.17	2.53	I
Q 6	140	138	19.02	3.34	I
SGR	480	275	22.51	3.94	I
KFR	171	129	25.43	4.52	I
MCM	363	162	27.75	4.87	I
BVR	610	290	27.89	4.80	I
STN	366	180	28.34	5.07	I
I 6	165	138	28.54	4.85	I
OBF	177	153	31.23	5.37	I
ODR	79	118	32.12	5.72	I
BMR	823	245	33.65	5.90	I
AFR	610	297	38.81	6.63	I
BRO	387	179	39.93	6.96	I
COP	335	153	40.49	6.85	I
J 1	268	144	41.74	6.87	I
CRH	475	168	42.02	7.39	E
FWL	884	159	43.91	7.54	E
K 6	75	135	55.52	9.38	I
NHR	219	149	63.49	10.47	E
WLR	107	140	72.43	12.07	E
CSR	128	148	74.52	12.24	E
DHR	113	147	95.48	15.78	E

Shot	Elev	Coordinates			
	M	N		W	
PAC	286	37	56.30	120^{3}	32.76

Sta	Elev		
M			Azi
:---:			
deg	Dist	Trv Tm	
:---:			
kn			

CNS	373	269	1.47	0.25	I

MCM	363	330	6.74	1.13	I

COP	335	121	7.44	1.23	I

CRH	475	200	9.45	1.79	I

JAS	457	264	9.51	1.82

FNL	884	160	9.53	1.68	I

STN	366	287	12.89	2.29	I

BRO	387	236	13.83	2.58	I

KFR	171	25	17.77	3.19	I

ODR	79	43	23.57	4.37	I

NHR	219	136	30.39	4.89	I

GSR	335	316	35.86	5.68	E

LVR	1219	212	36.87	6.37	I

$B M R$	823	293	46.30	7.62	I

DHR	113	141	62.25	10.53	E

Shot	$\begin{gathered} \text { Elev } \\ \text { M } \\ 101 \end{gathered}$		Coordinates					
			$\begin{array}{ll} \\ 38 & \mathrm{~N} \\ 8.76\end{array}$		W			
WLR				56.51				
Sta	$\underset{\mathrm{M}}{\mathrm{Elev}}$	$\begin{aligned} & \mathrm{Azi} \\ & \text { deg } \end{aligned}$			Dist km	Trv Tm sec	Q	
P 3	98	151	0.15	0.08	I			
WLR	107	243	0.16	0.11	I			
P 2	91	331	0.51	0.33	I			
P 1	88	332	0.99	0.57	I			
H 1	67	317	8.88	1.81	I			
H 4	79	321	10.22	2.03	I			
CSR	128	222	10.37	2.05	I			
H 5	107	321	10.71	2.13	I			
H 6	110	322	11.01	2.16	I			
NHR	219	274	13.82	2.78	I			
JVR	85	178	17.27	3.17	I			
DHR	113	169	25.52	4.49	I			
J 1	268	313	31.05	5.48	I			
J 3	256	314	32.16	5.66	I			
CRH	475	290	40.46	7.34	I			
OBF	177	310	42.72	7.55	E			
I 4	183	321	42.82	7.41	E			
KFR	171	325	47.70	8.23	I			
BRO	387	288	48.62	8.67	I			
Q 6	140	320	53.46	9.04	E			
T 3	310	315	59.33	9.96	E			
R 4	152	320	65.03	10.93	E			

Figure 2. Examples of seismograms showing I quality P-wave onsets.

Figure 3. Seismograms of 1ine 2 that show precursors (dots) to the primary arrivals (arrows).

Figure 4. Seismogram that shows an initial arrival of high P-wave velocity of 7 to $8 \mathrm{~km} / \mathrm{sec}$ followed by one of lower velocity (6 to $7 \mathrm{~km} / \mathrm{sec}$).

Rogers, T. H. (1966). Geologic map of California, Olaf P. Jenkins edition, San Jose sheet, Calif. Div. Mines and Geoz., San Francisco.

[^0]: ULTRABASIC ROCKS

