(200) R295 NO. 78-199

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY ×

WATER-QUALITY INVESTIGATION NEAR THE CHICO AND HUNTERS GEOTHERMAL LEASE-APPLICATION AREAS, PARK AND SWEET GRASS COUNTIES, MONTANA

Open-File Report 78-199

Prepared for the U.S. Bureau of Land Management

Helena, Montana March 1978

EReports Open file series

Twanal

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

WATER-QUALITY INVESTIGATION NEAR THE CHICO AND HUNTERS GEOTHERMAL LEASE-APPLICATION AREAS, PARK AND SWEET GRASS COUNTIES, MONTANA By Robert B. Leonard, Ronald R. Shields, and Norman A. Midtlyng

Open-File Report 78-199

Prepared for the U.S. Bureau of Land Management

285940

Helena, Montana

March 1978

CONTENTS

 1	2	α	\mathbf{C}
	С	2	C
		0	

Factors for converting English units to metric units.					III
Abstract					1
Introduction					1
Approach					3
Streamflow conditions during the surveys					3
Concentrations of the ions					6
Chico area					10
Hunters area					10
Chemical discharge					11
Springs					12
Tributaries					12
Yellowstone River					13
Composition of geothermal fluid					14
Summary					14
Selected references					15

ILLUSTRATIONS

Figure 1-3. Maps showing locations of:

	1. Areas of investigation and streamflow stations		2
	2. Data-collection sites in the Chico area		4
	3. Data-collection sites in the Hunters area	·	5
4.	Graph showing concentration of dissolved solids and		
	percentage composition of waters in the Chico area		7
5.	Graph showing concentration of dissolved solids and		
	percentage composition of waters in the Hunters area.		8
6.	Diagram showing classification of water for irrigation		9

TABLES

Table	1.	Chemical analyses of water samples from the Chico area	. 17
	2.	Trace-constituent concentrations of water samples from	
		the Chico area	. 18
	3.	Chemical analyses of water samples from the Hunters area.	. 19
	4.	Trace-constituent concentrations of water samples from	
		the Hunters area	. 20
	5.	Summary of major-ion and trace-constituent concentrations	
		in water samples	. 21
	6.	Water and chemical discharge at data-collection sites in	
		the Chico area as percentages of corresponding	
		quantities in the Yellowstone River near Pray	. 22
	7.	Water and chemical discharge at data-collection sites in	
		the Hunters area as percentages of corresponding	
		guantities in the Yellowstone River at Springdale	. 23

FACTORS FOR CONVERTING ENGLISH UNITS TO METRIC UNITS

The following factors may be used to convert English units in this report to the International System of Units (SI).

Multiply English units	By	To obtain SI units
cubic foot per second (ft ³ /s)	28.32 .	liter per second (L/s)
foot (ft)	.3048	meter (m)
gallon per minute (gal/min)	.06309	liter per second (L/s)
mile (mi)	1.609	kilometer (km)

WATER-QUALITY INVESTIGATION NEAR THE CHICO AND

HUNTERS GEOTHERMAL LEASE-APPLICATION AREAS,

PARK AND SWEET GRASS COUNTIES, MONTANA

By

Robert B. Leonard, Ronald R. Shields, and Norman A. Midtlyng

ABSTRACT

Water quality in and adjacent to geothermal lease-application areas near Chico and Hunters Hot Springs was investigated during two surveys in October 1976 and April 1977. The resulting data were needed to evaluate the effects of proposed geothermal exploration and development on the Yellowstone River and its tributaries.

Waters from the two hot springs, the Yellowstone River, and its tributaries that drain the proposed lease areas are generally suitable for drinking, except for excessive concentrations of fluoride and hydrogen sulfide in waters from Hunters Hot Springs. The water from Chico Hot Springs is suitable for irrigation, but the water from Hunters Hot Springs presents a very high sodium and a medium salinity hazard and is generally unsatisfactory for irrigation.

The effect of the thermal waters on streamflow and chemical discharge of the Yellowstone River during the surveys was negligible and less than the accepted error of measurement. Production of higher volumes of more concentrated water can be expected to accompany testing and development of the geothermal resource.

INTRODUCTION

Degradation of water quality in receiving streams by thermal waters is the most probable hazard to the environment posed by geothermal exploration and development. In 1976 the U.S. Bureau of Land Management requested that the U.S. Geological Survey conduct a study to define baseline water quality in and adjacent to proposed geothermal lease areas near Chico and Hunters Hot Springs in southwestern Montana (fig. 1). The resulting data could then be used to evaluate the effects of proposed geothermal exploration and development on the chemical quality of the Yellowstone River and its tributaries near the lease areas.

The purpose of this report is (1) to describe the natural discharge from the hot springs and in selected tributaries near or crossing the leaseapplication areas, and (2) to describe the effect of that discharge on flow of the Yellowstone River during two surveys conducted in October 1976 and April 1977.

Base from U.S. Geological Survey State base map, 1:1,000,000, 1968

Figure 1.--Locations of areas of investigation and streamflow stations.

APPROACH

Chico and Hunters Hot Springs are the only known sources of geothermal discharge in the areas of investigation. Thus, discharge, temperature, and chemical water-quality data for water from the hot springs and streams would be adequate to describe baseline conditions.

Current-meter measurements of flow of the hot springs and streams were made at the sites shown in figures 2 and 3 for the Chico and Hunters areas, respectively. Water samples were collected at the time of each measurement using methods approved by the Geological Survey (Brown and others, 1970; Guy and Norman, 1970), with some modifications suggested for thermal spring samples by Presser and Barnes (1974). Routine field measurements included temperature, specific conductance, pH, and alkalinity. The water samples were sent for chemical analysis to the National Water Quality Laboratory of the Geological Survey in Denver, Colorado. The results of chemical analysis are given in tables 1-4.

Samples of water from the hot springs were tested for gross alpha and gross beta activities by the Montana Department of Health and Environmental Sciences (MDHES). The radioactivity levels in all samples were far below the maximum contaminant levels established by the U.S. Environmental Protection Agency (1976) for public water supplies (Larry Lloyd, MDHES, oral commun., 1977).

In July 1976, water samples were collected and thermal gradients were measured in flowing test holes drilled by the Duval Corporation in the Gallatin National Forest (fig. 2). The data resulting from chemical analysis of the water samples are included in tables 1 and 2. Subsurface temperatures of $9-10^{\circ}$ C were measured to a maximum depth of about 400 feet, below which the holes had collapsed.

STREAMFLOW CONDITIONS DURING THE SURVEYS

At the streamflow gaging station Yellowstone River at Corwin Springs, 25 river miles upstream from the Chico area (fig. 1), the average flow is about 3,140 ft³/s and the minimum is 389 ft³/s based on 70 years of record. At the station Yellowstone River near Livingston between the Chico and Hunters areas (fig. 1), the corresponding flows are about 3,790 and 590 ft³/s, respectively, based on 51 years of record. Flows were above average for 2 years preceding this investigation.

During periods of base flow the effect of geothermal effluent on the temperature and chemical quality of streamflow would be greater than during periods of higher flow when the thermal discharge would be diluted by surface runoff. Therefore, surveys were scheduled to describe baseline conditions prevailing at or near the 50-percent duration level (high base flow) and the 90-percent duration level (low base flow), during the 1977 water year.

Figure 2.--Locations of data-collection sites in the Chico area.

Figure 3.--Locations of data-collection sites in the Hunters area.

High base flow in the Yellowstone River normally occurs in the fall (September-November), and low base flow normally occurs immediately before spring runoff (February-April). Ice cover generally interferes with precise discharge measurements in tributaries from December through March, and diversions for irrigation and drainage from irrigated fields in both areas complicate hydrologic interpretation during April-September.

The first survey was made October 28-29, 1976, when streamflow of the Yellowstone River at Corwin Springs was 1,400 ft^3/s , the 50-percent duration level, and near Livingston was 2,120 ft^3/s , the 44-percent duration level.

The second survey was made April 5-6, 1977, when streamflow of the Yellowstone River at Corwin Springs was 867 ft³/s, the 84-percent duration level, and near Livingston was 1,300 ft³/s, the 80-percent duration level. Slightly lower flows had prevailed earlier, but the survey was postponed in anticipation of continued drought and lower flows unaffected by ice. A storm on March 28-30 augmented base flow, and warm temperatures April 6-8 initiated spring runoff. However, the streamflow-stage record for both Corwin Springs and Livingston was stable during the period of the survey. Flow of the Yellowstone River and at upstream sites on tributaries was lower than during the preceding survey, but Emigrant Creek and Mill Creek (fig. 2) were flowing at their mouths where they had been dry in October.

CONCENTRATIONS OF THE IONS

The concentrations of dissolved solids at nearly all sites were lower (and flow higher) during the October 1976 survey than during the April 1977 survey. The concentrations of ions in surface water normally vary inversely with the rate of water discharge as a result of dilution by snowmelt or rainfall. However, dilution does not affect the percentages of the ions in the dissolved-solids load. Figures 4 and 5 show that the concentrations (in milliequivalents per liter) of the major cations and anions, expressed as percentages of the total cations or anions, remained relatively constant from survey to survey. The percentages would change with the addition of thermal waters of different chemical composition.

The maximum and minimum concentrations of ionic constituents listed in tables 1-4 are presented in table 5 for comparison with maximum contaminant levels (MCL) for public water supplies established by the U.S. Environmental Protection Agency (1977). Results of analyses of samples from the hot springs and the river are plotted on figure 6 to show the suitability of the waters for irrigation.

Figure 4.--Concentration of dissolved solids and percentage composition of waters in the Chico area. Percentage composition is based on concentrations in milliequivalents per liter. Site descriptions are given in table 1.

EXPLANATION

Figure 5.--Concentration of dissolved solids and percentage composition of waters in the Hunters area. Percentage composition is based on concentrations in milliequivalents per liter. Site descriptions are given in table 3.

EXPLANATION

Figure 6.--Classification of water for irrigation. Diagram adapted from U.S. Salinity Laboratory Staff (1954).

Chico area

The concentration of dissolved solids and the specific conductance were higher in Chico Hot Springs (site C-7) than in the adjacent Yellowstone River or any of the tributaries (table 1). Calcium and bicarbonate were the predominant ions in all waters except during the April survey, when the percent magnesium in Sixmile Creek (site C-1) and percent sodium in the Yellowstone River at Emigrant (site C-5) slightly exceeded the percent calcium (fig. 4). The percent sodium exceeded the percent magnesium only in the hot springs and the river. Sulfate was more abundant than chloride in all but one sample (site C-6) in the Chico area. Sulfate was the predominant anion in water from the Chico LC-3 drill hole and in the east fork of Emigrant Creek. Sulfate concentration was also relatively high in the Chico No. 11 drill hole (table 1).

Strontium was the only trace constituent present in samples from the hot springs at concentrations appreciably higher than in samples from the river (table 2). The exceptionally high concentration of strontium in the samples from Sixmile Creek (360, 350 μ g/L, micrograms per liter) suggests that water similar to the hot springs enters the channel upstream from the sampling site.

Concentrations of the major ionic constituents in all samples were lower than the MCL for drinking water (table 5). The pH of the river water (8.6-8.9) exceeded the MCL of 8.5 (table 1). None of the trace-constituent concentrations determined during the study exceeded the MCL for drinking water (table 5). However, a sample of water from the hot springs collected by Mariner, Presser, and Evans (1976) contained 0.6 mg/L (milligrams per liter) hydrogen sulfide, compared to the MCL of 0.05 mg/L. Water samples collected during this study were not analyzed for hydrogen sulfide.

Tributary streamflow in the area is used extensively for irrigation. On the basis of boron concentration, water from Chico Hot Springs (50, 60 μ g/L) would be classified as excellent for irrigation, and streamflow of the Yellowstone River (330-540 μ g/L) would be good for irrigating sensitive crops and excellent for semitolerant or tolerant crops (U.S. Salinity Laboratory Staff, 1974). The sodium hazard is low and the salinity hazard is low to medium for both waters (fig. 6).

Hunters area

The concentration of dissolved solids (table 3) was higher in Hunters Hot Springs (273, 268 mg/L) than in the Yellowstone River at Springdale (174, 210 mg/L). The concentration of sodium was much higher in the hot springs (86, 85 mg/L) than in the river (18, 21 mg/L), but the concentrations of the other major cations were lower. Sodium comprises about 98 percent of the cations in Hunters Hot Springs (site H-2), but less than 30 percent in the river (site H-4), where calcium is the predominant cation (fig. 5). Bicarbonate comprises more than 65 percent of the anions in all waters sampled in the Hunters area (fig. 5). Unlike the waters sampled at most other sites during the surveys, at the hot springs the percent chloride exceeded the percent sulfate and the percent fluoride exceeded 5 percent.

The similarity in percentage composition of samples from the river and from Hunters cold spring (site H-1) may suggest a common source. However, the river water is a mixture of waters from diverse sources and the cold spring is about 200 feet above the river level; therefore, the similarity probably is coincidental.

The concentrations of individual major ions, with the exception of fluoride, were lower than the MCL for drinking water (table 5). The maximum concentration of lead in the hot springs (49 μ g/L) was near the MCL for drinking water (50 μ g/L). A sample collected by Mariner, Presser, and Evans (1976) contained 5.3 mg/L hydrogen sulfide, about 100 times the MCL.

Although the concentration of boron (table 4) in Hunters Hot Springs (720 μ g/L) exceeded the concentration in the river, (250, 350 μ g/L), the level would be tolerable for sensitive plants and good for semitolerant plants if the water were used for irrigation. Unlike Chico Hot Springs, the sodium hazard is classified as very high and the salinity hazard is medium (fig. 6).

CHEMICAL DISCHARGE

The chemical discharge (load), D, of an ionic constituent is defined by the equation:

$D = K \times Q \times C$

where K is a unit constant, Q is the measured discharge, and C is the concentration of the constituent. D is defined in terms of kiloequivalents (thousands of equivalent weights) per day (ke/d) when Q is in cubic feet per second, C is in milliequivalents per liter (me/L), and K equals 2.446 (Leonard and Morgan, 1970). If analyses are accurate, the loads of the cationic and anionic constituents should be nearly equal.

If Ds and D2 are the ionic loads at the source and the downstream site, respectively, the relative effect of each source on the stream with respect to a particular ion can be expressed as a percentage, Ds/D2 x 100. In tables 6 and 7, the water and chemical discharges of the hot springs and selected tributaries are expressed as percentages of corresponding quantities measured in the Yellowstone River. Measured flow of the hot springs represented a small percentage of the discharge of the river. At times the flow of Chico Hot Springs increases as the head is reduced by pumping to fill a swimming pool. Intermittent pumping during the October 1976 survey precluded measurement of the flow. Therefore, a discharge of $0.64 \text{ ft}^3/\text{s}$ measured in July 1976 under similar conditions was used as a basis of calculation for the October survey. However, during both surveys the natural flow from Chico Hot Springs probably did not exceed $0.30 \text{ ft}^3/\text{s}$. Using the maximum figure (0.64 for the October survey), flow of the hot springs represented only 0.04 and 0.03 percent of the discharge of the Yellowstone River near Pray (site C-10) during the October and April surveys, respectively (table 6). Most flow from the hot springs percolates into the alluvium before reaching the river. Because the chemical composition of the hot springs and the river is somewhat similar, the respective contributions of chemical discharge also were relatively small.

The discharge of Hunters Hot Springs represented only 0.07 and 0.11 percent of the measured flow of the Yellowstone River at Springdale during the October and April surveys, respectively (table 7). However, the fluoride load at the hot springs represented 0.64 and 0.80 percent, respectively, of the fluoride load of the river.

Tributaries

Changes in the chemical quality of streamflow in tributaries as a result of geothermal activity probably would precede less-apparent changes in the quality of streamflow in the Yellowstone River. A subsequent increase in chemical discharge of ions characteristic of geothermal waters would constitute evidence of release of geothermal water to the tributary. Variations in water discharge were the major causes of variations in the chemical discharge of tributaries during the surveys (tables 6 and 7).

Proposed leases in the Chico area lie along the mountain front as much as 7 miles from the Yellowstone River. As a result of ground-water interchange where tributaries cross permeable alluvial and colluvial deposits, the rate and chemical composition (and hence, chemical discharge) of streamflow at the mouth generally differed from streamflow near the mountain front.

Losses to the alluvium were observed during both surveys. During the October 1976 survey, most of the tributaries in the Chico area were dry at the mouth. The losses presumably enter the river as underflow. During the October survey, flow at the mouth of Hunters Creek (2.2 ft³/s) exceeded discharge of Hunters Hot Springs (1.6 ft³/s). In April, the discharges were equal (1.7 ft³/s). Because discharge of Hunters Creek near the mouth normally is a mixture of discharge of the hot springs plus inflow from Dog Creek (fig. 3), the equal discharges in April are evidence that part of the discharge of the springs is lost to the alluvium along Hunters Creek.

Yellowstone River

The ideal locations for data-collection sites to be established on the main stem of the Yellowstone River are at the upstream and downstream ends of the reaches that would receive surface and subsurface drainage from the proposed leases. The quantity and quality of that drainage, then, presumably could be determined by difference, using precise measurements and analyses of streamflow at successive stations.

If the water and chemical discharges at the downstream and upstream sites are Q2, Q1, D2, and D1, respectively, the net gain in the reach is Q2-Q1 for water discharge and D2-D1 for chemical discharge. Negative values (net losses) represent losses or withdrawals from the channel, changing stage, erroneous analyses, or inaccurate measurements of discharge. The difference between net gain and tributary inflow to the reach is defined as net seepage into that reach. Changes caused by geothermal activities should be more apparent in seepage or net gain than in streamflow at the downstream site, because the effects of fluctuations in the rate and chemical composition of streamflow in the main stem upstream from the drainage area of interest are minimized by the calculation.

Because no bridges spanned the river at the most desirable sites, precise measurements and integrated samples of streamflow at those sites on the main stem would have been difficult to obtain. Preliminary calculations suggest that even during periods of extreme low flow, when wading measurements might have been made, the accepted error of measurement would have exceeded natural tributary contributions plus seepage into the reaches. Because the accepted error of precise discharge measurements is about 5 percent, a net gain of less than about 10 percent of the discharge at the downstream station might be more apparent than real. Therefore, only two datacollection sites were established to determine baseline conditions on the Yellowstone River: at bridges near Pray (site C-10) for the Chico area and at Springdale (site H-4) for the Hunters area. Another site (C-5) was established on the Yellowstone River at Emigrant to determine the magnitude of net gain in the reach that would include most of the drainage from proposed lease areas in the Chico area.

The results suggest that additional sites on the main stem probably would have added little significant information, even if the discharge had been lower than measured in April. During the October survey the net loss in the Yellowstone River from Emigrant to near Pray was 90 ft³/s. In April, the net loss was only 30 ft³/s. The net losses represented only 6 and 3 percent, respectively, of the measured discharge at the downstream station (table 6)--well below the accepted error of the combined measurements; therefore, the losses may not be real. Net losses in chemical discharge were recorded for most ions, but small gains in magnesium and sulfate during the October survey suggest seepage into the channel of water relatively rich in those constituents. The measured discharge of Hunters Hot Springs represented only about 0.1 percent of the measured discharge of the Yellowstone River at Springdale during the surveys (table 7). Even if precise measurements at additional bridge sites had been available, net gains of a magnitude less than about 70 times the recorded water and chemical discharge of most ions, and 10 times the chemical discharge of fluoride by Hunters Hot Springs would fall within the confidence limits of precision of the combined measurements. Releases of greater magnitude accompanying geothermal activities probably could be detected near the source and would justify additional sites on the main stem upstream and downstream from the suspected outfall.

COMPOSITION OF GEOTHERMAL FLUID

Geothermal fluids suitable for economic development generally have a much higher temperature and contain higher concentrations of ions than are found in either of the hot springs. It is reasonable to assume that higher concentrations of the ions would be found at depth at both sites and that higher flows would be produced during testing of geothermal wells. The application of chemical geothermometers (Fournier and Truesdell, 1973, 1974) applied to the analyses of the hot springs suggests that subsurface temperatures are less than about 80°C. The waters appear to have been in chemical equilibrium with amorphous silica (Mariner and others, 1976). If discharge of the springs is a mixture of hot water in equilibrium with amorphous silica (chalcedony) at depth and of water similar to the discharge of nearby cold springs, mixing calculations (Truesdell and Fournier, 1977) suggest that the temperature of the hot-water fraction may be about 70°C for Chico and 140°C for Hunters. If the hot water were in equilibrium with quartz, the estimated temperatures would be about 120 and 190°C, respectively. Under the conditions of equilibrium with guartz, the concentration of fluoride and lead in the hot-water fraction at Hunters Hot Springs probably would be more than 17 mg/L and 150 µg/L, respectively.

On the basis of available data, estimates of the concentration, temperature, or volume of thermal water that might be released are purely speculative. However, net gains or tributary inflow containing those fluids would constitute higher percentages of the chemical discharge of characteristic ions in streamflow than were recorded during the surveys. When preliminary test data become available, the potential effect of releases of the geothermal water on streamflow in tributaries and the river can be estimated by using the methods described in this report to define departures from the baseline conditions described herein.

SUMMARY

Water quality in and adjacent to the Chico and Hunters geothermal lease-application areas was investigated during two surveys in October 1976 and April 1977, periods when high to low base flow of the Yellowstone River and its tributaries was representative of natural baseline conditions. The percentage composition of the sampled waters at each site remained relatively constant from survey to survey, although the concentrations of dissolved solids and rates of streamflow differed. The discharges of Chico Hot Springs, the Yellowstone River, and tributaries in the Chico area are generally suitable for drinking water and irrigation with respect to inorganic constituents. With the exception of fluoride and hydrogen sulfide, the major and trace chemical constituents in samples from Hunters Hot Springs and Hunters Creek do not exceed maximum contaminant levels specified for drinking water by the U.S. Environmental Protection Agency. The discharge of Hunters Hot Springs presents very high sodium and medium salinity hazards for irrigation.

The effects of the hot springs and of individual tributaries that drain the proposed lease areas on streamflow and chemical discharge of the Yellowstone River during the surveys were negligible and less than the accepted error of the measurements. Larger volumes of more concentrated thermal waters can be expected to accompany testing and development of the geothermal resource. The potential effect of releases of geothermal water on the receiving streams can be estimated from preliminary test data by using the methods described in this report to compare then-existing conditions with the baseline conditions described herein.

SELECTED REFERENCES

- Brown, Eugene, Skougstad, M. W., and Fishman, M. J., 1970, Methods for collection and analysis of water samples for dissolved minerals and gases: U.S. Geol. Survey Techniques Water-Resources Inv., book 5, chap. Al, 160 p.
- Fournier, R. O., and Truesdell, A. H., 1973, An empirical Na-K-Ca geothermometer for natural waters: Geochim. et Cosmochim. Acta., v. 37, p. 1255-1275.
- _____1974, Geochemical indicators of subsurface temperature, Part 2, Estimation of temperature and fraction of hot water mixed with cold water: U.S. Geol. Survey Jour. Research, v. 2, no. 3, p. 263-270.
- Fournier, R. O., White, D. E., and Truesdell, A. H., 1974, Geochemical indicators of subsurface temperature, Part 1, Basic assumptions: U.S. Geol. Survey Jour. Research, v. 2, no. 3, p. 259-262.
- Guy, H. P., and Norman, V. W., 1970, Field methods for measurement of fluvial sediment: U.S. Geol. Survey Techniques Water-Resources Inv., book 3, chap. C2, 59 p.
- Leonard, R. B., and Morgan, C. O., 1970, Application of computer techniques to seepage-salinity surveys in Kansas: Kansas Geol. Survey Spec. Distrib. Pub. 47, 44 p.
- Mariner, R. H., Presser, T. S., and Evans, W. C., 1976, Chemical characteristics of the major thermal springs of Montana: U.S. Geol. Survey Open-File Rept. 76-480, 31 p.

- Presser, T. S., and Barnes, Ivan, 1974, Special techniques for determining chemical properties of geothermal water: U.S. Geol. Survey Water-Resources Inv. 22-74, 11 p.
- Truesdell, A. H., and Fournier, R. O., 1977, Procedure for estimating the temperature of a hot-water component in a mixed water by using a plot of dissolved silica versus enthalpy: U.S. Geol. Survey Jour. Research, v. 5, no. 1, p. 49-52.
- U.S. Environmental Protection Agency, 1975, National interim primary drinking water regulations: Maximum contaminant levels for inorganic chemicals: Federal Register, v. 40, no. 248, December, p. 59570.

1976, Interim primary drinking water regulations: Promulgation of regulations on radionuclides: Federal Register, v. 41, no. 133, chap. 1, July 9, p. 28401-28405.

_____1977, National secondary drinking water regulations: Federal Register, v. 42, no. 62, March 31, p. 1746-1747.

U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. Agriculture Handb. 60, 160 p.

Table 1.--Chemical analyses of water samples from the Chico area [Constituents are dissolved and in milligrams per liter, except as indicated.]

Sample loca- tion number (fig. 2)	Source	L Lati- tude	ocation Longi- tude	Date of collec- tion	Time (hrs)	Depth (ft)	Instan- taneous dis- charge (ft ³ /s)	Flow rate (gal/min)	Spe- cific con- duct- ance (micro- mhos/cm)	Field pH (units)	Temper- ature (deg C)	Hard- ness as CaCO ₃ (Ca,Mg)	Non- car- bonate hard- ness	Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na)	Percent	Sodium ad- sorp- tion ratio	Po- tas- sium (K)	Bicar- bonate (HCO ₃)	Car- bonate (CO ₂)	Alka- linity, total as CaCO ₃	Carbon dioxide (CO ₂)	Sul- fate (SO ₄)	Chlo- ride (Cl)	Fluo- ride Sil (F) (Si	Di sol (su lica con 10 ₂) tuo	s- ved ids m of sti- ents)	Dis- solved s solids s (tons (per ac-ft)	Dis- olved olids l tons per t day) to	Nitrite plus nitrate, ptal as N	Nitrite F plus F nitrate (N)	thos- On phor-phors phore (P) (rtho C hos- p lorus p P) (Drtho phos- phate (PO ₄)
C-1	Sixmile Creek nr Daily Lake	45 16 09	110 46 28	10/28/76 4/05/77	1510 1430		14 8.8		(2) 227	8.1 8.1	4.0	96 110	0 6	20 22	11 14	3.8	8 8	0.2	1.6 2.1	124 130	0	102 107	1.6 1.5	12 15	0.8	0.1	10	.21 34	0.16 .18	4.70 3.18		0.09	.00		
C-3	Emigrant Creek at Old Chico	45 18 59	110 41 58	10/28/76 4/05/77	1400 1530		12 8.9		(2) 169	7.5	3.5 7.5	67 76	6 14	19 21	4.7	3.0 3.3	9	.2 .2	.7	75 75	0 0	62 62	3.4 1.7	16 19	.4	.2	11 10	93 98	.13 .13	3.09 2.36		.08 .03	.00		
C-4	Emigrant Creek nr mouth	45 19 51	110 45 10	4/05/77	1345		2.2		166	7.6	10.5	75	13	21	5.4	3.6	9	.2	.8	75	0	62	2.7	20	.5	.1	10	99	.13	.59		.08	.00		
C-5	Yellowstone River at Emigrant	45 22 05	110 43 29	10/28/76	1545 1610		1,690		260 302	8.9	7.0	72 85	0	19 22	5.8	19 26	35 38	1.0	4.2	93 98	0 3	76 85	.2 .3	27 43	13 15	.8 1.1	23 29	158 201	.21 2	721 592	-	-	.00.	-	
C-6	Eightmile Creek	45 24 31	110 41 51	10/28/76	1245 1300		17		(2)	7.7	5.6	24	0	6.7	1.8	2.6	17 16	.2	2.6	43 32	0	35 26	1.2	1.1 4.2	2.9	.1 .1	29 36	68 70	.09 .10	3.19 2.72	Ξ	.03 .01	.14		
C-7	Chico Hot Springs	45 20 13	110 41 27	10/28/76	1745		³ .64		518 438	7.2	42.5	130	0	37 36	8.0	31 34	34 36	1.2	6.6	172 170	0	141 140	15 14	42 47	12 10	.9 1.0	31 34	255 263	.35 .36	.69 .14	-	.26 .21	.00		
C-8	Mill Cr upstream fr Diversion Sta 4	45 21 03	110 36 30	10/28/76 4/05/77	1030 1050		40 36		191 210	8.1 8.2	17.5	81 99	0	21 25	6.9	4.0	10 10	.2	1.3	107 120	0	88 98	1.4 1.2	8.2 12	1.4 2.0	.2 .2	14 14	110 129	.15 .18	11.9 12.8	Ξ	.01 .05	.03		-
0-9	Mill Creek nr mouth	45 24 49	110 38 49	. 4/05/77	1150		8.6		213	8.5	7.8	100	1	26	8.7	5.1	10	.2	1.4	120	1	100	.6	10	1.1	.1	13	126	.17	2.95		.04	.00		
C-10	Yellowstone River near Pray	45 25 10	110 38 28	10/28/76	1110 1245		1,600		242	8.7	6.0	71 84	32	18 22	6.2	19 25	35 37	1.0	4.3	82 100	0	67 82	.3	31 42	10 15	.7 1.1	22 28	152 196	.21 .27	657 561	0.03		.01		-
C-11	Chico Cold Springs1	45 19 55	110 41 08	7/09/76	1030				200	8.1	9.5	78	0	25	3.6	6.4	15	.3	.6	105	0	86	1.2	5.0	1.5	.4	15	110	.15			.11	.01		
C-12	Yellowstone Fish Hatchery	45 21 41	110 43 17	10/28/76	1700		1.0		(2)	7.6	9.0	120	13	34	9.1	8.4	13	.3	2.6	134	0	110	5.4	33	2.2	.2	18	175	.24	.48		.34			
C-13	Chico LC-3 flowing drill hole ¹	45 19 09	110 39 37	7/08/76	1600	400		4.5	297	7.2	9.2	130	67	36	8.6	9.5	14	.4	2.0	72	0	59	7.3	88	1.2	.5	33	218	.30	.01		.01	.00		-
C-14	East Fork Emigrant Creek ¹	45 15 17	110 39 37	7/08/76	1325		20		73	7.7	8.0	21	10	6.4	1.1	1.8	16	.2	.5	13	0	11	.4	14	.5	.1	12	43	.06	2.32		.07	.00		
C-15	Chico No. 11 drill hole ¹	45 15 24	110 39 37	7/23/76	1300			20	556	-	10.0	270	98	77	18	21	15	.6	1.1	208	-	171	-	120	.8	.8	30	375	.51	-		.01		.03	.09

¹Site sampled during reconnaissance. ²Probable instrument malfunction. ³Estimated on the basis of measurement July 9, 1976, under similar conditions.

.

.

Sample loca	-	Lc	ocation	Date		Instan- taneous		P1		6-1												
number (fig. 2	2) Source	Lati- tude	- Longi- tude	collec- tion	Time (hrs)	charge (ft ³ /s)	Arsenic (As)	lium (Be)	Boron (B)	mium (Cd)	Copper (Cu)	Iron (Fe)	Lead (Pb)	Lithium (Li)	Man- ganese (Mn)	Mercury (Hg)	Molyb- denum (Mo)	Nickel (Ni)	Sele- nium (Se)	Stron- tium (Sr)	Vana- dium (V)	Zinc (Zn)
C-1	Sixmile Creek nr Daily Lake	45 16 09	110 46 28	10/28/76 4/05/77	1510 1430	14 8.8	0	0	5 2	0	0 	60 160	2	0 10	0 10	0.0	2	6 	0 	360 350	0.9	0
C-3	Emigrant Creek at Old Chico	45 18 59	110 41 58	10/28/76	1400	12	0	0	7.	1	2	140	18	. 0	0	.0	3	6	0	190	.9	10
C-4	Emigrant Creek nr mouth	45 19 51	110 45 10	4/05/77	1345	2.2	0	0	2	0	1	. 40	2	0	. 10	.0	2	4	0,	180	.0	0
C-5	Yellowstone River at Emigrant	45 22 05	110 43 29	10/28/76 4/05/77	1545 1610	1,690 1,090	25 12	0 0	340 540	0 2	2 3	30 60	1 4	100 140	0 10	.0	2 2	2 4	0 0	150 170	1.0 .9	0 0
C-6	Eightmile Creek near Chicory	45 24 31	110 41 51	10/28/76 4/05/77	1245 1300	17 14	0	0	7 4	2	0	100 . 190	18 	0 0	0 0	.0	0 	6	0	60 40	3.7	0
C-7	Chico Hot Springs	45 20 13	110 41 27	10/28/76 4/05/77	1745 1700	² .64 .29	17	0	50 60	 0		90 50	0	30 30	0 10	.0	.0	 6	0	380 360	3.7	0
C-8	Mill Cr upstream fr Diversion Sta 4	45 21 03	110 36 30	10/28/76 4/05/77	1030 1050	40 36	0 	0 	7 7	0 	0 	70 130	1	0 10	10 0	.0	1	7	0	170 200	1.0	0
C-9	Mill Creek nr mouth	45 24 49	110 38 49	4/05/77	1150	8.6	0	0	. 7	1	1	40	15	0	10	.0	0	6	0	180	.7	10
C-10	Yellowstone River near Pray	45 25 10	110 38 28	10/28/76 4/05/77	1110 1245	1,600 1,060	10 12	0	330 510	0 1	1 4	40 60	2 5	90 140	0 10	.0 .0	1 2	0 1	0 0	150 160	.0 .8	10 10
C-11	Chico Cold Springs	¹ 45 19 55	110 41 08	7/09/76	1030				8			30		0						210		
C-12	Yellowstone Fish Hatchery	45 21 41	110 43 17	10/28/76	1700	1.0			9			90		0	0					240		
C-13	Chico LC-3 flowing drill hole ¹	g 45 15 09	110 39 37	7/08/76	1600				6			3,100		10						330		-
C-14	East Fork Emigrant Creek ¹	t 45 15 17	110 39 37	7/08/76	1325	20			6			210		0						70		
C-15	Chico No. 11 dril: hole ¹	1 45 15 24	110 39 37	7/23/76	1300				4			1,200		50	70					2,000		
														-								

¹Site sampled during reconnaissance. ²Estimated on the basis of measurement July 9, 1976, under similar conditions.

. .

. . . .

Sample loca- tion		Loca	tion	Date of		Instan- taneous dis-	Flow	Spec- cific con- duct- ance	Field	Temper-	Hard- ness	Non- car- bonate	Cal-	Mag- ne-	
number (fig. 3)	Source	Lati- tude	Longi- tude	collec- tion	Time (hrs)	charge (ft ³ /s)	rate (gal/min)	(micro- mhos/cm)	pH (units)	ature (deg C)	as CaCO ₃ (Ca,Mg)	hard- ness	cium (Ca)	sium (Mg)	(Na)
H-1	Hunters cold spring	45 45 35	110 15 05	4/06/77	1145		0.50	706	7.6	8.0	230	0	61	18	47
H-2	Hunters Hot Springs composite	45 45 26	110 15 26	10/29/76 4/06/77	1100 1000	1.6	710 776	441 430	8.9 8.5	53.9 56.5	3 3	0 0	1.0 1.0	.2 .0	86 85
Н-3	Hunters Creek near mouth	45 44 39	110 13 19	10/29/76 4/06/77	0900 0835	2.2 1.7		518 463	8.4 8.4	17.5 16.0	87 68	0 0	25 19	5.8 4.9	78 80
H-4	Yellowstone River at Springdale	45 44 35	110 13 15	10/29/76 4/06/77	1000 1100	2,360 1,540	-	287 324	8.2 8.5	5.5 9.5	99 120	5 1	26 31	8.1 9.2	18 21

Table 3.--Chemical analyses of water samples from the Hunters area [Constituents are dissolved and in milligrams per liter, except as indicated.]

Table 3.--Chemical analyses of water samples from the Hunters area--continued

Sample loca- tion number (fig. 3)	Date of collec- tion	Percent sodium	Sodium ad- sorp- tion ratio	Po- tas- sium (K)	Bicar- bonate (HCO ₃)	Car- bonate (CO ₃)	Alka- linit total as CaCO ₃	y, Carbon dioxide (CO ₂)	Sulfate (SO ₄)	Chlo- ride (Cl)	Fluo- ride (F)	Silica (SiO ₂)	Dis- solved solids (sum of consti- tuents)	Dis- solved solids (tons per ac-ft)	Dis- solved solids (tons per day)	Nitrite plus nitrate, total as N	Nitrite plus nitrate (N)	Phos- phor- rus (P)
H-1	4/06/77	31	1.4	0.3	280	0	230	10	84	13	0.3	10	375				0.44	
н-2	10/29/76 4/06/77	98 98	21 23	.6 1.4	125 ,150	22 4	139 130	.3 .7	16 19	17 14	5.8 5.8	59 63	273 268	0.37	1.16		.01 .04	0.00
Н-3	10/29/76 4/06/77	66 72	3.7 4.2	.9 1.1	226 180	0 6	185 160	1.4 1.1	39 36	18 16	4.0 4.9	45 50	329 308	.45	1.95		.26 .14	.01
Н-4	10/29/76 4/06/77	28 27	.8 .9	3.9 4.6	114 140	0 0	94 110	1.2 .7	35 43	8.0 11	.6 .8	18 20	174 210	.24 .29	1,110 873	.00 .12	=	.00

Sample loca- tion				Loc	atio	n		Date		Instan- taneous dis-	Flow		Beryl	-	Cad-
number (fig. 3) Source		Lat	ti- de	L	ong	i-	collec- tion	Time (hrs)	$\frac{\text{charge}}{(\text{ft}^3/\text{s})}$	rate (gal/min)	Arsenic (As)	lium (Be)	Boron (B)	mium (Cd)
H-1	Hunters cold spring	45	45	35	110	15	05	4/06/77	1145		0.50			50	
Н-2	Hunters Hot Springs composite	45	45	26	110	15	26	10/29/76 4/06/77	1100 1000	1.6 1.7	710 776	0 	0	720 720	5
H-3	Hunters Creek near mouth	45	44	39	110	13	19	10/29/76 4/06/77	0900 0835	2.2 1.7		0 0	0 0	530 590	4 1
н-4	Yellowstone River at Springdale	45	44	35	110	13	15	10/29/76 4/06/77	1000 1100	2,360 1,540		18 18	0 0	250 350	0 1

.

Table 4.--Trace-constituént concentrations of water samples from the Hunters area [Constituents are dissolved and in micrograms per liter.]

Table 4.--Trace-constituent concentrations of water samples from the Hunters area--continued

Sample loca- tion number (fig. 3)	Date of collec- tion	Copper (Cu)	Iron (Fe)	Lead (Pb)	Lithium (Li)	Man- ganese (Mn)	Mercury (Hg)	Molyb- denum (Mo)	Nickel (Ni)	Sele- nium (Se)	Stron- tium (Sr)	Vana- dium (V)	Zinc (Zn)
H-1	4/06/77		130		20	0					1,600		
H-2	10/29/76 4/06/77	21	70 40	49	40 40	10 0	0.0	8	7	0 	60 10	0.7	10
H-3	10/29/76 4/06/77	1 1	100 60	37 7	30 30	10 0	.0 .0	8 6	7 6	0 0	310 220	1.2	0 0
н-4	10/29/76 4/06/77	0 3	20 30	1 2	70 100	0 20	.0 .0	0 2	2 1	0 0	210 230	.4 1.0	10 10

Table	5Summary	of	major	-j.c	on and	trace-constituent
	concent	rat	ions	in	water	samples

	Concentration							
Constituent	Maximum (mg/L)	Minimum (mg/L)	EPA drinking water standard (mg/L)					
	Chico	Hot Springs area						
Bicarbonate	208	13						
Calcium	77	5.9						
Chloride	15	.4	¹ 250					
Fluoride	1.1	.1	² , ³ 2.0					
Magnesium	18	1.1						
Potassium	6.9	.5	'					
Sodium	34	1.8						
Sulfate	120	1.1	¹ 250					
	Hunter	rs Hot Springs area						
Bicarbonate	280	114						
Calcium	61	1.0						
Chloride	18	8.0	¹ 250					
Fluoride	5.8	.3	² , ³ 2.0					
Magnesium	18	.0	/					
Potassium	4.6	.3						
Sodium	86	18						
Sulfate	84	16	¹ 250					

A. Major Constituents

B. Trace Constituents

			Concentration				
Constituent	Number of analyses	Number of non-zero values	Maximum (µg/L) ⁴	EPA drinking water standard ³ (ug/L) ⁴			
		Chico Hot Springs	area				
Arsenic	. 11	5	25	50			
Boron	20	20	540	⁵ <1,000			
Cadmium	11	5	2	10			
Copper	11	7	4	1,000			
Lead	11	10	18	50			
Mercury	11	0	0	2			
Selenium	11	0	0	10			
Zinc	11	4	10	5,000			
		Hunters Hot Springs	s area				
Arsenic	5	2	18	50			
Boron	7	7	720	⁵ <1,000			
Cadmium	5	4	5	10			
Copper	5	4	21	1,000			
Lead	5	5	49	50			
Mercury	5	0	0	2			
Selenium	5	0	0	10			
Zinc	5	3	10	5,000			

U.S. Environmental Protection Agency (1977).
 Based on annual average of maximum daily air temperature in study area.
 U.S. Environmental Protection Agency (1975).
 Micrograms per liter.
 Satisfactory for irrigation of sensitive crops.

Location	Site number (fig.2)	Date	Flow	Calcium (Ca)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Bicarbonate (HCO ₃)	Sulfate (SO4)	Chloride (C1)	Fluoride (F)
Sixmile Creek nr Daily Lake	C-1	10/28/76 4/05/77	0.88	0.99	1.6 1.6	0.18	0.33	1.4 1.1	0.34	0.07	0.14
Sixmile Creek nr mouth	C-2	10/28/76 4/05/77	1.00 1.00	.00	.00	.00	.00	.00	.00 .00	.00	.00
Emigrant Creek at Old Chico	C-3	10/28/76 4/05/77	.75	.80 .80	.58	.12 .11	.12 .14	.70	.39 .38	.03 .03	.23 .09
Emigrant Creek nr mouth	C-4	10/28/76 4/05/77	¹ .00 .21	.00	.00	.00	.00 .03	.00	.00 .10	.00 .01	.00
Yellowstone Fish Hatchery	C-12	10/28/76	.06	.12	.09	.03	.04	.10	.06	.01	.02
Yellowstone River at Emigrant	C-5	10/28/76 4/05/77	106 103	111 103	98 104	105 107	103 106	119 101	92 105	136 103	122 103
Eightmile Creek near Chicory	C-6	10/28/76 4/05/77	1.1 1.3	.40	.31 .38	.15 .13	.66	.56	.04 .13	.31 .07	.17 .14
Chico Hot Springs	C-7	10/28/76 4/05/77	.04	.08 .04	.05	.06	.06	.08 .04	.05	.05	.05
Mill Creek upstream from Diversion Sta 4	C-8	10/28/76 4/05/77	2.5 3.4	2.9 4.0	2.8 4.4	.52	.77 .94	3.2 4.2	.66 .99	.35 .46	.74
Mill Creek near mouth	C-9 ′	10/28/76 4/05/77	¹ .00 .82	.00 .98	.00 1.0	.00	.00 .21	.00	.00 .19	.00	.00
Yellowstone River nr Pray	C-10	10/28/76 4/05/77	100 100	100 100	100 100	100 100	100 100	100 100	100 100	100 100	100 100
Net Gain (Loss) in Yellowstone River between Pray and Emigrant (sites C-10 and C-5)	C-10 minus C-5	10/28/76 4/05/77	(-6) (-3)	(-11) (-3)	2 (-4)	(-5) (-7)	(-3) (-6)	(-19) (-1)	8 (-5)	(-36) (-3)	(-22) (-3)

.

¹No flow in stream.

. . . .

.

Location	Site number (fig. 3)	Date	Flow	Calcíum (Ca)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Bicarbonate (HCO ₃)	Sulfate (SO4)	Chloride (C1)	Fluoríde (F)
Hunters cold spring	H-1	4/06/77	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hunters Hot Springs	Н-2	10/29/76 4/06/77	.07	.00	.00	.32 .45	.01 .03	.07	.03	.14 .13	.64 .80
Hunters Creek near mouth	Н-3	10/29/76 4/06/77	.09	.09	.06 .06	.40 .42	.02 .03	.18 .14	.10 .09	.21 .15	.61
Yellowstone River at Springdale	H-4	10/29/76 4/06/77	100 100	100 100	100 100	100 100	100 100	100 100	100 100	100 100	100 100

Table 7.--Water and chemical discharge at data-collection sites in the Hunters area as percentages of corresponding quantities in the Yellowstone River at Springdale

*