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Introduction

On 1 - 3 December 1977, a Conference on '"Fault Mechanics and
Its Relation to Earthquake Prediction'" was held at Stanford
University, Stanford, California. This Conference was the third
in a continuing series of Conferences to be held under the auspices
of the Earthquake Hazards Reduction Program.

These Conferences and publication of their proceedings are a
vital part of the EHRP, as they are intended to be state-of-knowledge
Conferences and documents. They are intended to provide intellectual
stimulus both to participants and to recipients of the proceedings..

Participants in the EHRP are encouraged to suggest topics for
future Conferences. The subject should be of comparatively narrow
focus, should be based on active participation of all attendees,
all of whom must be conducting research appropriate to the Con-

ference theme. Total attendance is restricted to 25 or 30.
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SUMMARY
by

Amos Nur and William Stuart

Discussion of theoretical mechanical models for deformation associated
with faulting fell into five overlapping categories: (1) 1large scale quasi-
static fault models, (2) fault instability (earthquakes), (3) dynamic
rupture propagation, (4) wuse of seismic radiation to infer source parameters,
and (5) heterogeneity of fault constitutive properties. Each category was
distinguished not only by the topic discussed, but also by the mathematical
and conceptual approaches commonly used. In each category recent work was
described and discussed and main outstanding problems identified; in most
the current state of knowledge was reviewed. We summarize here the scientific
results receiving general acceptance, and identify promising areas of future

work emerging from the conference.

Current Results

Consititutive (stress-deformation) properties, especially those of fault
zones seemed to be the dominant recurrent subject. In particular, hetero-
geneity or spacial variation of constutive behavior was considered to be a
major factor to be considered in realistic models of both quasi-static and
dynamic faulting.

In large scale quasi-static plate models the lithosphere is adequately

described by elasticity, but the deeper asthenosphere is better approximated



by an inelastic law such as viscous, visco-elastic, or plastic. Geodetic
observations are too scarce and impreéisg to distinguish the finer points
of models at present, however.

Earthquake precursor and instabilty models require either a post-peak
strain (slip) or strain rate (velocity) weakening fault zone to produce in-
stability. Models also postulate that the fault zone properties vary with
position. In models growing pre-instability deformtion rates arise from two
sources: (1) the above mentioned fault weakening on a time scale determined
by remote forcing, (2) temporary pore fluid stabilization due to Biot type
or dilatant hardening on a diffusion controlled time scale.

Strong evidence from diverse observations indicates that faults are
often very heterogeneous. This is refiected in the frequency - magnitude
relation, random ground motion, and strongly non uniform fault offsets often
observed following sizeable earthquakes. These heterogeneities are respon-
sible for uncertainties in using seismic moment for stress estimates. Several
~ analyses of the seismic radiation field indicate that the stress state along
faults may be highly dirregular, both in space and time. Furthermore, earth-
quake rupture often appears to be a complex succession of smaller ruptures
leading to multiple events. Inspection of seismically produced fractures in
mines and at the surface also suggests faulting complexity.

Consequently, one problem in fault modelling is to understand how
faults remain heterogeneous with time. It appears that spatially nonuniform
fracture energy may account for the maintenance of heterogeneity, as well
as irregular fupture velocity and irregular slip.

Laboratory measurements of frictional slippage show increasing rates
prior to stick-slip events. Transiently higher rates also accur without

stick-slip. Several theoretical models show similar phenomena. Such



accelerated fault slip before earthquakes may cause observable precursory
deformation fields. A key problem which remains unresolved, however, is
the conditions for rupture initiation. Although the point of initiation
appears central for earthquake prediction, it is unclear yhat the initiation
process actually is. Much work is needed, particularly in observing seismicity
patterns before the main event in and around the epicentral region.

The state of crustal shear stress is unclear: Some seismic and crustal
deformation data as well as laboratory results suggest high stress, whereas

the lack of heat flow anomalies imply low stress.

Future Work

It now seems possible to formulate and solve analytically or numerically
a wide variety of boundary value problem representations of quasi-static
and dynamic faulting. The principal uncertainties are the form and spacial
variation of fault constitutive laws and physical properties. Non-linear
rate dependent and independent weakening as well as healing laws need
elaboration. Relevant laboratory data, either from homogeneously deformed
samples or from scaled simulations is scarce, and the connection between lab-
oratory and natural condition remains unclear. To a lesser extent, geometric
and boundary conditions are poorly known. Field observations such as surface
deformation, pore pressure, and deviation stress state are too sparce to test
theoretical models in detail.

One prodedure is to construct a quasi-static numerical (e.g. finite
element) model of a portion of an active fault like the San Andreas. Geo-
detic, seismic, and other data might then be inverted to estimate the stress
and strain near the fault. Though resolution is likely to.be poor, one might

be able .to infer the fault consitutive law form and coefficient values, as



well as eleatic and friction heterogeneities nearby.

Perhpas the clearest conclusion is that heterogeneities are important,
and perhaps essential feature of the earthquake mechanism, and must be
included in future modelling work.

The determination of the state of crustal shear stress - at present
unclear - must be accomplished in order to understand the process of faulting.
In conclusion, it is clear that earthquake studies are shifting from

geometrical or kinematic source modesl to mechanical and dynamic médels.
The nature of the faulting instability, the fundamental link between rupture
velocity and rise time, slip and stress will receive much more attention than
in the past, leading eventually to a source model of self generating and

propagating rupture which can also stop on its own.
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" Abstract

This paper outlines a framework for combining available
data from plate tectonics, geodetic, seismic, and laboratory
measurements for the purpose of estimating stress in a seismic
region. Applying a new earthquake source model containing
a fault plane with unbroken barriers to major earthquakes,
we find the importance of distinguishing between tectonic
stress and self stress, as pointed out by Andrews [1978].
The self stress is due to irregular slip function along fault
plane and may show great variation in the fault zone after a
major earthquake. The stress may drop to a low value on
the slipped segment of fault, but may be elevated cohsiderably
near the unbroken barriers. Because of the resistance by
unbroken barriers, the stress drop for the whole fault zone
as seen from outside by geodetic methods is only a small
fraction of the initial stress. This implies an ambient
.tectonic stress much higher than tne range from 10 to 100
bars and adds support to the argument of Hanks [1977] of the
importance of traction at the base of a plate as a cause of:
tectonic stress. Methods for determining the basal traction
by downward continuation of stress from observations on the
surface as well as a preliminary quantification of self stress

in the fault zone are discussed
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Introduction

Since the stress in the earth isrbelieved to be the
cause of an earthquake, it is desirable to know its space-
time distribution accurately and in detail for the purpose
of earthquake prediction.

There are three distinct approaches to estimating
stress in a seismic region. One is to use the seismic waves
radiated from an earthquake. This gives the stress drop
which occurred along the fault plane during the earthquake.
Another approach is to measure the deformation of the earth's
surface. This gives the secular change in strain, which may
be related to stress change. The third method uses artificial
perturbations of the stress field in the earth by hydraulic
fracturing or some other mechanical operation and, in principle,
gives the absolute value of existing stress.

Various observations have been used in estimating the
stress change associated with earthquakes. Large-scale geo-
detic measurements, such as the leveling and triangulation
surveys in the epicentral areas of major shallow earthquakes,
usually indicate the strain change in the immediate vicinity
of the epicenters in the range 2 x 10“5 to 2 x 10—4, as
summarized by Rikitake [1976]. Even if these strains are
entirely elastic, the above range of strain corresponds to the
range of stress drop from 6 to 60 bars, assuming a crustal
rigidity of 3 x 101! dgyne cm™2.

Similar low values of stress drop have been obtained

from seismic observations for major earthquakes. If the



seismic moment (measured from long period waves) and the
fault area (estimated from aftershock area,‘Tsunami source
area, geodetic data, seismic wave-form, and spectrum, etc.)
are combined and interpreted in terms of a simple crack model,
the result usually gives the stress drop in the range from

10 to 100 bars as summarized by Aki [1972] and Kanémori and

Anderson [1975].

Revaluation of stress drop on the basis of the barrier model

Recently, Das and Aki [1977] made numerical experiments
on the rupture propagation over a fault plane with distri-
buted barriers, to explain a variety of seismic observations
on the complexity of earthquake source such as the so-called
multiple events.

Aki et al. [1978] further proposed that major earth-
quakes may be modeled by a rupture over a fault plane with
distributed barriers, some of which will remain unbroken
after the earthquake. One important consequence of this
new model is that if this model applies to major earthquakes,
the stress drop estimated by assuming a simple crack (without
barriers) may be an order of magnitude too small.

The new model is supported by some geologists' obser-
vations on the slip distribution along the fault. Wallace
[1968] discovered in the Carrizo Plain in central California
streams with no apparent offset lying along fault segments
on which 10 meters of offset had occurred during the great

earthquake of 1857. For the maximum slip of 10 meters over
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a fault segment of estimated length 8 km, the corresponding
stress drop is nearly 1 kilobar.

Such a segmentation of a fault appears to be rule
rather than an exception. The maps published by the U.S.
Geological Survey of recently active breaks along the San
Andreas and related faults show that the pattern of surface
faulting is not a single continuous fracture but consists
of multiple breaks. The longest individual segment is about
10 to 18 km. Earthquakes with greater fault lengths must
then be multiple fractures.

The segmentation of faults is not restricted to the San
Andreas fault. Tchalenko and Berberian [1975] studied the
fault slip of the Dasht-e Bayaz earthquake of 1968 and found
clear evidence for a segmented fault. Similar evidence is
found by Matsuda [1972, 1974, 1976] and Matsuda and Yamashina
[1974] from detailed studies of the Nobi (1891), Tango (1927),
Izu-Hanto-Oki (1974), and Kita-Izu (1930) earthquakes. It
appears that the fault slip distribution is always irregular
whenever a detailed observation is made. This irregularity
may be due to complication by soft surface material, but
some features can only be explained by the real segmentation
of the fault at depth. One such example is the Parkfield
earthquake of 1966. Not only the fault trace jumps from
the northeast to the southwest rim of the fault-zone valley,
but also the initial linear trend of the aftershock zone is
terminated at the point of fault trace jump, and a new segment

is started along a line about 1 km apart from the initial
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trend [Eaton et al., 1970].  Since these aftershocks are
located down to 15 km deep and believed to define the fault
plane of the San Andreas fault, the segmentation of fault.
cannot be due to secondary effects of the surficial layer.

High stress drop has been reported for some major
earthquakes. For example, the stress drop in the area of
nucleation of rupture in the San Fernando earthquake is
estimated as high as 500 bars [Hanks, 1974; Bouchon, 1978].

Bouchon [1978] found a kinematic similarity between
the uniform dislocation model widely used in earthquake
seismology and the crack model over a fault plane with
distributed unbroken barriers. The two models are roughly
equivalent in seismic radiation, if the rise time of the
uniform dislocation model is equated to the barrier interval
divided by the rﬁpture velocity. Using this approximate
equivalence relation, one can obtain the barrier interval
for earthquakes for which the rise time and rupture velocity
'is known.

Figure 1 shows the summary of relations between the
barrier interval and maximum slip determined by the geological
and seismic methods (reproduced from Aki et al., 1978). The
stress drop associated with an individual fault segment can be
estimated from the barrier interval and the maximum slip.
They lie in the range between 100 and 1 kilo bars, an order
of magnitude higher than the range obtained by the use of a

simple crack model.
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Large-scale tectonic stress versus stress in the fault zone

From the above discussion, we must conclude that the
local stress drop over a fault segment can be an order of
magnitude higher than the large-scale stress release esti-
mated from geodetic data. Accompanying this large stress drop
in the slipped segment of the fault, the stress near the
unbroken barrier will be increased after the earthquake.
Thus, the stress will vary strongly along the fault plane
after the earthquake.

At this point, it is convenient to separate the stress
in the fault zone into two terms, tectonic stress and self
stress, following Andrews [1978]. The tectonic stress is
due to distant causes and should be smoothly varying along
the fault plane. The self stress is due to irregular slip
function and varies strongly along the fault plane.

Andrews [1978] pointed out, from a consideration of
energetics, that the stationary occurrence of a large number
of small earthquakes cannot be explained by the load of
smoothly varying tectonic stress alone, but requires a
generation of short wavelength self stress by a large earth-
quake, unless fault creep, varying in amplitude at all length
scales prepares the fault for small earthquakes. Our barrier
model offers a physical mechanism for such a roughening of
self stress in the fault zone after a major earthquake.

The strong spatial variation of self stress after a
major earthquake becomes smoother with time through the
occurrence of aftershocks, creep, and other stress relaxation

mechanisms. On the other hand, the tectonic stress in the
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fault zone drops only by a small amount. This drop is
recoveréd slowly by the time of the next major earthquake.
By that time, the self stress in the fault_zone is probably
diminished by healing and stress relaxation. Within the
framework of our barrier model, the initial stress before
the major earthquake must be at least as high as the stress
drop in the fault zone. Then, it follows that the absolute
value of tectonic stress must be an order of magnitude
greater than its drop during an earthquake (observed as a
large scale stress change by geodetic means). The stress
may drop to a low value on the slipped segment of the fault,
but it will be elevated conside;ably near the unbroken
barriers. Because of the resistance by unbroken barriers,
the stress drop for the whole fault zone as seen from outside
by geodetic methods is only a small fraction of the initial

stress.

Absolute value of tectonic stress

Brune et al. [1969] argued for a low ambient tectonic
stress along the San Andreas fault on the basis of lack of
local heat flow anomaly near the fault. They obtained the
upper limit of 200V250 bars if the fault slip occurs primarily
by earthquakes. If our barrier model is applicable to the
San Andreas fault, the stress drop in the fault zone may
amount to 1 kilobar as discussed above. However, since the
- lack of heat flow anomaly only contrains the dynamic friction
on the fault to about 100 bars over a fault depth of 20 km,

the initial stress can be as high as 1.1 kilobar, for a
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kilobar stress drop, without contradicting the heat flow
observations.

Evidence of a very high (n1 kilobar) tectonic stress
has been presented by Hanks [1971] for the plate near the
Kuril trench from the high apparent stress drop in shallow
earthquakes and the bulge of the ocean floor seaward of
the trench axis which was interpreted as due to flexure
of elastic plates [Walcott, 1970]. Watts and Talwani [1974]
obtained a similar result for other trenches in the Pacific
using gravity data in addition to topography.

Another evidence for high stress comes from rock
mechanics laboratories. It is now well established that a
single simple law exists relating frictional strength to
normal stress irrespective of mineralogy, pressure, tempera-
ture to about 600°C, and a wide range of displacement rates.
Unless pore pressure is unusually high in the fault zone,
the frictional strength must be higher than 1 kilobar at
the depth of foci even for the shallow earthquakes of a
transform fault.

Hanks [1977] argues that if the frictional strength
df transform faults is higher than a kilobar, the boundary
forces such as gravitational pull by descending slabs or the
push from mid-ocean ridges cannot drive the plate motions.
Traction at the base of a plate exerted by convection current
in the asthenosphere is needed to overcome the resistance at
the transform fault. Our results from seismic studies of

earthquake faulting processes give additional support to
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the high ambient stress. It supports Hanks' argument which
opposes the idea advocated by Forsyth and Uyeda [1975] and
Solomon et al. [1975] that the boundary forces are the main
driving forces and the asthenosphere is only passively
exerting weak drag on the plates. It also suggests the
importance of traction at the base of the plates as a source

of tectonic stress.

Downward continuation of tectonic stress

If the traction at the base of a plate is an important
cause of tectonic stress, it is worthwhile to attempt a down-
ward continuation of stress from observations at the surface
in a manner similar to the density determination from gravity
observed on the surface.

Our problem is not well posed. The uniqueness theorem
for elastic fields states that if the body force inside an
elastic body V and the displacement or traction is known on
the surface enclosing V, then the displacement inside the body
is uniquely determined. Our problem is ill-posed, because
we know the displacement and traction on the free surface
but neither the displacement nor the traction is known at the
base or side of the volume of plate under consideration.
Furthermore, non-elastic strain or stress-free strain [Eshelby,
1957; Backus and Mulcahy, 1976] such as dilatancy, seismic
and aseismic slip, etc. will contribute in general as unknown
body forces distributed in the body. These difficulties,

however, may not prevent a geophysicist from working on the
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problem, because though many geophysical problems are of
this nature, a solution may be found under some reasonable
assumptions, giving better insight to the phenomena than the
mere accumulation of data.

Our problem can be approached by several different
methods. If we can assume a vertically heterogeneous earth
model, then the Fourier transformation with respect to the
two horizontal coordinates (x,y) and the propagator method,
such as used by Brown [1975], can be applied to find a
solution in z with the boundary condition that the displace-
ment is known and traction vanishes at z = 0. This approach
was attempted by Aki (1953, unpublished) for the three
components of displacement data for the Tokyo earthquake
of 1923 using a half-space model. The result was unpublished
because of the undue amplification of short-wave length with
increasing depth. Recent advances in inversion techniques,
such as the stochastic inversion [Franklin, 1970], can be
used to obtain an optimal solution by taking into account
the signal-to-noise ratio at each wave length.

The finite element method would be more versatile.
Dividing the plate into appropriate elements, we shall dis-
tinguish elements in which non-elastic processes such as
seismic slip, aseismic slip, or dilatancy is occurring from
purely elastic elements. Non-elastic processes will be
modeled by assigning the stress-free strain to each non-
elastic element.

Putting the nodal displacement vector U, the nodal load

17
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vector R, and the stiffness matrix K, the usual finite-element

formulation can be written as

(1)

Il
o)

KU

where R contains the contributions from the stress-free strain
(or initial strain in the terminology of finite-element method)
and elastic strain.

In our problem, U is measurable for the nodes on thé
frée surface by geodetic survey. Since traction is free on
the free surface, R is partially known there. The part of R
due to stress—free strain may be known from independent measure;'
ments. If not, they must be considered as unknown. Plate
tectonics may constrain the value of U for the nodes on the
outside boundary. On the other hand, the upper bound of
absolute value of R at the nodes on the bottom surface may
be constrained from laboratory measurements on stress relaxa-
tion mechanisms for rocks under appropriate pressure and
temperature.

Then, equation (1) will present a linear inverse problem
for unknown parts of U and R. The equation is most likely
singular, and the solution will be non-unique. We can,
however, determine the range of possible solutions. The
method of linear programming would be useful for finding the
range of possible solutions. If the result is meaninglessly
arbitrary, then it would at least suggest what new observations

can be made in order to reduce the non-uniqueness.
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Fault zone stress

The self stress in the fault zone can be calculated
if the slip function is known [Andrews, 1974]. In principle,
the slip function for seismic slips may be determined by
seismic methods. For example, the distribution of self stress
after the mainshock may be inferred from the waveform of the
mainshock. Then, the occurrence of aftershocks, which are
relaxation of self stress, may be related with the waveform
of the mainshock. In fact, Tsujiura (1977, personal commu-
nication) showssome correlation between the envelope shape
of P waves from large earthquakes and the frequency of their
aftershocks. Earthquakes with P waves of gradually rising
envelope, suggesting more complex rupture propagation, are
accqmpanied by a large number of aftershocks. On the other
hand, very few aftershocks follow a mainshock that shows a
P wave form with shorter duration and presumably has a
smoother fault plane.

As described earlier, our earthquake model suggests
the rougher stress distribution after the mainshock. Then,
the distribution of fault zone stress may be smoother during
the period of foreshock occurrence. Then, we anticipate
more abundant small earthquakes relative to larger ones in
the former than in the latter, in accordance with observations
that the b-value for foreshocks is sometimes lower than that
for aftershocks. Our model may give a physical basis for the
difference in magnitude distribution between foreshocks and

aftershocks found by Kagan and Knopoff [1976], who analyzed
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several earthquake catalogues as a branching point process.

An adequate starting point for developing the fault
zone stress model is the study of aftershock phenomena because
a large amount of data is available from seismic, geodetic,
and geologic observations.

Here, I shall make a preliminary attempt to construct
a quantitative stress model for a fault zone during an after-
shock sequence.

Immediately after the mainshock the self stress generated
by irregular slip function shows the roughest distribution.
The stress will be elevated at unbroken barriers and drop
at slipped segments of the fault. We shall introduce a single
parameter S(t) as a function of time to describe the level
of elevated stress. Then, we shall make the following assump-
tions. (1) When an aftershock occurs, the fault-zone stress
S(t) is decreased by a certain amount AS. Following Kostrov
[1974], we shall assume that an earthquake with seismic moment
Mg will introduce a strain change spread over a "volume of
seismic region." The corresponding stress change may be

estimated simply as MO/V, where V is the volume of seismic

region, or
AS = M_/V (2)
We may consider equation (2) as defining the fault-zone stress

S in terms of volume of seismic region V, or vice versa.

(2) According to Mogi [1962], the probability of occurrence
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of fracture in a rock sample increases exponentially with the
applied stress S. When a constant stress is applied at t = 0,
he found that the probability of occurrence of fracture between
t and t + dt is independent of t and given by

eBSdt

H(t)dt = g (3)

where B is determined as 0.37 par~L.

This formula has been used by Mogi [1962], Scholtz [1968],
and Utsu [1962, 1970] in the discussion of aftershock phenomena.
Hagiwara [1974] applied this formula to the statistical
distribution of "ultimate strain" obtained by geodetic measure-

ments and obtained the value of B to be 0.3 bar_l.

BAS

Since e Vv 1+ BAS for a small increase of stress AS,

the probability of earthquake occurrence is increased by a fraction
BAS. For example, for a stress increase by 1 bar, the proba-
bility is increased by 30-37%.

Denoting a cumulative moment of aftershocks as

I

Q(t) = M, (4)

the fault zone stress S(t) at time t can be written as (assuming
no supply from the causes of tectonic stress during the after-

shock period),

S(t) = S(to) - Q(t)/Vv £5)
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where to is the time immediately after the occurrence of the

main shock. Then, from equation (3), we have
u(t) = u_ exp {BS(t ) - BQ(t)/V} (6)
Assuming that the fracture rate M (t) is independent of magnitude

of the aftershock, we can estimate the corresponding rate of

total moment increase. The result can be written in the form

gt = R(t)) exp(- BQ(t)/V) (7).

where R(to) is independent of t. The solution of the above

differential equation is given by

R(t_)
(1n (——V—O—

Q(t) = ) + 1n t) (8)

<

This logarithmic time dependence of cumulative moment
was actually observed by Eaton et al. [1970] for the aftershocks
of the Parkfield earthquake of 1966. Their results show that
the value of (ln 10)V/B, slope of the Q vs. log t relation,
is 13 x 1023 dyne-cm. Using the value of B obtained by Mogi
[1962] and Hagiwara [1974], we find that the volume of after-
shock zone of the Parkfield earthquake is V = 1.5 x 1016 cm3.
Using the fault area estimated by Eaton et al. [1970], the

fault zone thickness d is given by
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16 3

= 2:5M x 10 _cm__ 5 905 % 10% em
12 2
3. x 10%% en

or 70 to 200 meters. The narrow width of aftershock zone is
consistent with the planar distribution of aftershock hypo-
centers determined by Eaton et al.

Using the above value of V, we can estimate the drop
of fault-zone stress S by a given earthquake in the case of
the Parkfield aftershocks. For example, an earthquake with
magnitude 4 and moment 1023dyne—cm, S drops by'Mo/V = 2.57
bars.

The period of observation covered by the work of Eaton
et al. is from 3 to 80 days from the time of the main shock.
During this period the total seismic moment is increased by
1.5v3.5 % lO23 dyne-cm. This corresponds to the drop of
fault-zone stress by about 10 bars during this period.

According to McEvilly et al. [1967], there were three
aftershocks with M > 4 in the first three days and the total
moment due to these events in roughly 4 x 1024. This corres-

ponds to the drop of fault-zone stress by 1007300 bars during

the first three days.

Conclusion

The barrier model of Das and Aki [1977] developed from
numerical experiments on rupture propagation over a fault

plane with distributed barriers has been shown to explain

various observations on major earthgquakes. In the model

with unbroken barriers, the stress may drop to a low value
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on the slipped segment of the fault, may be elevated
considerably near the unbroken barriers. Because of the
resistance by unbroken barriers, the stress drop for the
whole fault zone as seen from outside by geodetic methods

is only a small fraction of the initial stress. On the
other hand, the stress in the fault zone varies strongly

in time and space. The fault zone stress will become
smoother with time through aftershocks, creep, and other
stress relaxation mechanisms. Thus, the large scale tectonic
stress and the stress in the fault zone show quite different
behavior during a cycle of earthquake recurrance. We need
different strategies for developing quantitative models for
them. The strategy for smoothly varying tectonic stress

was outlined by dual approaches. One is based on the down-
ward continuation of stress by the propagator method, and the
other is a generalized inverse or linear programming solution
of observational equations for surface displacements formulated
by the finite element method. For the fault zone stress,
a preliminary analysis was made on the stress in the fault
zone of the Parkfield earthquake of 1966 during the aftershock
period.

Finally, we emphasize that the determination of stress
is quite a non-unique problem and the testing of stress models
by deep-drilling into the fault zone is essential. A deep
hole or holes can be used to monitor the stress by the

hydraulic fracturing method or the seismic velocity method.
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Figure Caption

Figure 1. Relation between the barrier interval and the
maximum slip obtained by various methods. The lines
correspond to constant stress drop assuming a circular

crack with the diameter equal to the barrier interval.

Reproduced from Aki et al. [1978].
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ABSTRACT

Determination of a rupture or seismic source from
initial conditions is, in general, a nonlinear problem.
However, a special class of rupture models, in which sliding
takes place at constant stress after slip is initiated, may
be approximated as a mixed boundary value problem. For
prescribed motion of the rupture front such a problem is
linear. The velocity of the rupture front is determined by
the energy absorbed within the nonlinear rupture front
region. This nonlinear region must be considered to
establish the magnitude of the energy absorbed and its
scaling law in going from laboratory experiments to
earthquakes. CQCutstanding problems dependent on the
nonlinear rupture front include mixed-mode rupture
propagation and the determination of the thickness of the

zone that is heated by nonelastic energy loss.

34



OVERVIEW

I would like to start this discussion of rupture
propagation with some philosophical perspectives. Most of
the work done in geophysics quite properly consists of
natural science, with the researchers being observers of
nature. The observers may at times use rather complex
mathematics to interpret their data but are still basically
interested in perceiving the earth in all its complexity.
The rest of geophysics consists of applied physical science,
in which the goal of the researchers is to construct models,
supposedly representing some idealized version of the earth,
that works according to the principles of physics. Both the
observers and the modelers may make heavy use of applied
mathematiecs; that is not the basis of the distinction I am
making. The observers want to perceive the world, and the
modelers want to understand some of its essential mechanisms
in terms of physics.

T am speaking today as a modeler, to seek to
understand rupture propagation as a physical process
determined by initial conditions and material properties in
the medium. Still it is necessary to be aware, as a natural
scientist would quite naturally be aware, that the initial
conditions and material properties in the earth may be quite
heterogeneous. I will return to this point at the end of the

talk.

A rupture, such as an earhquake, is an inelastic
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process that takes place in a solid continuum that to a good
approximation is linearly elastic outside the rupture.
Tndeed, a rupture is a source of elastic stress and
displacement fields in the medium.

Elasticity has been compared to other linear field
theories and worked out as an example of a tensor field by
Morse and Feshbach (1953). It is curious that in Morse and
Feshbach and in many other standard texts elasticity is
treated as a field theory without a source. What is the
source of elastic fields? What is the analogue of electric
charge?

The answer is that the source of an elastic field is
the deviation of the medium from linear elastic behavior
(Eshelby, 1956, 1957; Backus and Mulcahy, 1976a, 1976b). If
an element of the medium follows é stress-strain curve that
deviates from Hooke's Law, then that deviation ("stress-free
strain", a second order tensor): through the effect of
strain incompatibility with neighboring elements, is the
source density of the resulting elastic field. When
multiplied by the elastic constant tensor, this source
density is the "moment tensor density", and its volume
integral is the séismic moment tensor. The tensor divergence
of this source density is the more familiar, though less
physically meaningful, "equivalent body force". A volume
distribution of stress-free strain that is concentrated to

become a delta function on 2 surface represents a
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displacement discontinuity, as on a crack or fault.

Rupture propagation, then, is concerned with the
question of the development in time of a space-time
distribution of stress-free strain, a breakdown of
elasticity. An analogue is dielectric breakdown and the
propagation of a lightning stroke.

In this talk I want to classify modeling efforts into
four conceptual levels. Level I consists of the
determination of the displacement and stress fields arising
from a prescribed source distribution, for instance slip on
a fault prescribed as a function of space and time. The
electromagnetic analogy would be the determination of the
electric and magnetic fields from a prescribed charge and
current distribution. 1In the elastic case Level T modeling
can lead to quite complicated mathematics, for compressional
and shear waves are coupled together at any interface or
heterogeneity.

If the source distribution is described in terms of an
assumed functional form characterized by a small number of
parameters, then Level I modeling can indicate to the
modeler how observed field variables are related to those
parameters. More generally, linear inverse theory can be
used to infer from observed field variables the seismic
moment tensor, and, with limited resolution, the space- time
distribution of the moment tensor density. A unique inverse

does not exist from far-field data alone, regardless of the
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completeness of azimuthal coverage or accuracy of the data
(Aki, personal communication; Kostrov, 1975).

From the point of view of a pure natural scientist, an
observer, inverse Level T modeling is entirely sufficient to
study seismic sources. However, a modeler will not be
satisfied and will want a model based on physical principles
of continuum mechanics that is consistent with laboratory
observations of rock properties. Laboratory rock mechanics
experiments have not yet been done with fast enough time
resolution to record motion from a dynamically propagating
rupture. Therefore the modeling effort must be largely
theoretical.

The term "rupture" is taken to mean a more or less
abrupt drop in stress accompanied by an increase in
stress-free strain that might be concentrated on a ‘surface
as a displacement discontinuity. It can be either fracture
of virgin rock or unstable frictional sliding on a
pre-existing fault.

I define as Level IT those models in which stress is
assumed to drop abruptly at the rupture front and then
remains at a prescribed level as stress-free strain or slip
develops. An example is Archambeau's (1968) model in which
stress is prescribed on an expanding surface and the
nonelastic source develops within the enclosed volume. If
the source volume is collapsed onto a surface then we have a

crack model, which is a mixed boundary value problem. Beyond
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the edge of the crack displacement discontinuity is zero and
on the crack surface inside the edge stress is prescribed.
For prescribed motion of the crack edge this is a linear
boundary value problem, and it is possible to attack such
problems with analytic methods.

I want to jump ahead now to define Level III mo%sling.
This is true physical modeling in which both the source
(stress-free strain or slip) and the dynamic elastic field
are determined by initial conditions. The stress-free
strain at each point in space-time is consistent with the
stress history of theée particulat material element through a
nonelastic constitutive relation. At the same time the
stress and displacement fields are consistent with elastic
field equations with stress-free strain included as a source
density. This is analogous to an antenna problem in
electromagnetism, in which source and radiated field must be
self-consistent. The dynamic development of rupture is
determined by assumed initial stress and material
constitutive relations that may depend on position. In order
to have an instability, such as spontaneous rupture
nucleation and propagation, it is necessary that the
constitutive relation allow for decreasing elastic strain
energy as stress-free strain increases. A Level III model
is, by definition, nonlinear, and cannot in general be

attacked by analytic methods.

The importance of Level JI modeling, the mixed boundary
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value problem, is that if a physical criterion is provided
to determine the propagation of the crack tip then Level TI
models comprise a special subgroup of Level III models. For
a sharp-tipped crack propagating at less than a limiting
velocity, inverse square root singularities of stress and
particle velocity exist at the crack tip, at the juncture of
the different types of boundary condition, up to a critical
crack velocity. The tip of a prpopagating crack is an energy
sink. The partition of released strain energy between
absorption at the crack tip and radiation is a function of
crack velocity. If the energy absorbed at the crack tip were
known, either as a material constant or as determined by
dynamic processes within the crack tip, then the propagation
of the crack would be determined. Tn this way analytic
solution techniques have come close to the solution of an
essentially nonlinear problem. All the nonlinearity is
éoncentrated at a singularity, the crack tip.

More generally, we may consider some constitutive model
in which some arbitrary nonelastic breakdown process occurs
followed by sliding at constant stress. Then the region in
which the stress drops is no longer a singularity, the crack
tip, but is spread out into a rupture front, analogous to a
boundary layer in fluid mechaniecs. The inner solution in the
rupture front must be matched to the large scale outer
solution, which to a good approximation may be taken to be a

sharp tipped crack solution. The important parameter in the
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matching is the energy lost in the rupture front. In this
way analytic Level TIT solutions can be generalized to a
special class of Level III problems.

An outstanding difficulty in Level IITI modeling is that
the constitutive law governing the failure process is hot
known. Conventional rock mechanics experiments provide only
gross information about the initial and final states.
Dynamic measurements with very fast time resolution that can
reveal the structure of the rupture front are needed.

So far the initial conditions determining an event have
been dicussed as if they were arbitrary choices. Here we
reach the conceptual limitation of Level IJIT modeling.
Initial stress and material properties cannot be uniform if
a rupture is to stop. Furthermore, the detailed variation of
stress and material properties from point to point within
the earth is essentially unknowable. The initial conditions
are determined, of course, by the past history of faulting
and tectonic loading. Statistical mechanical modeling of
these initial conditions I define as Level IV modeling.
Virtually nothing has been done at this level of modeling.
This is what is required, however, if physical modelers are
to contribute anything toward understanding the questions of
seismicity statistics, foreshocks, aftershocks, and the high
frequency spectrum of ground motion.

SELF-STMILAR SHARP-TIPPED CRACK

Let us return now to Level II, the mixed boundary value
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problem, and consider rupture propagation in the case of a
uniform initial stress field and a uniform elastic medium
with no reflecting boundaries. 1In this case if a rupture
initiates it will not stop, but this case might provide an
approximation to the initial growth of an actual rupture.

The prescription of the problem is that on an elliptical
area expanding at a constant velocity shear stress drops to
a prescribed constant level. This problem has a
self-similar solution, and if the propagation velocity of
all points of the crack edge is less than the Rayleigh wave
velocity then the slip function plotted as a function of
position on the crack surface is an ellipsoid (Kostrov 196U,
Burridge and Willis 1969, Dahlen 1974, Richards, 1976). A
cross section through the solution is shown schematically in
Figure 1. Ahead of the crack edge stress rises from the
initial value and has an inverse-square-root singularity as
fhe crack edge approaches. Inside the crack edge stress is
at a constant level lower than the initial value. What is
plotted is the stress change; the zero level of absolute
stress would presumably lie somewhere below the sliding
stress level. The slip function has a square root dependence
near the crack edge, which means that the particle velocity
has an inverse-square-root singularity. On the crack plahe
itself the particle velocity singularity does not overlap
the stress singularity.

The dynamic solution for a crack growing self-similarly
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is qualitatively the same as a static solution. If the
dynamic solution is compared at some instant of time with a
static crack of the same size and equal stress drop, it is
seen that the amplitude of both the slip function and the
stress singularity ahead of the crack are smaller in the
dynamic case. The dependence of these amplitudes on rupture
velocity is shown in figure 2. The quantity Q is the
amplitude of the slip function of a dynamic circular crack
relative to that of a static crack of the same size and
stress drop. It is a smooth curve that falls off about 20
percent as rupture velocity increases from zero to the
Rayleigh wave velocity. The intensity of the singularity in
particle velocity is this function times the rupture
velocity itself.
The stress intensity factor may vary around the edge of

the elliptical crack. For the sake of definiteness let the
y axis of a Cartesian coordinate system be normal to the
crack plane and let the slip be in the x direction. It is
the shear stress component sxy that is prescribed to drop
inside the crack edge, and it is the amplitude of the
singularity of this component that is called the stress
intensity factor. Locate the origin of the coordinate system
at the center of the ellipse. The solution on the x axis
as the crack edge is approached is a two-dimensional plane
strain configuration (mode II crack). The stress intensity

factor at this point relative to that of a static crack of
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the same size and stress drop is labeled ki[ in the
figure. It decreases smoothly as a function of the
propagation velocity of this point of the crack edge and
crosses zero At thé Rayleigh wave velocity. On the 2z axis
near the crack edge the solution approaches a two -
dimensional antiplane strain configuration (mode III crack).
The stress intensity factor at this point (labeled ijE in
the figure) falls smoothly as a function of rupture velocity
down to zero at the shear wave velocity.

The singular crack edge is a sink for energy. To see
this, consider the energy flux through the surface of a tube
of radius r surrounding the crack edge. Energy flux is
stress times particle velocity. Although the peaks of
particle velocity and stress do not overlap on the crack
plane, they do overlap on the tubular surface and each is
proportional to r-'vh . Their product, proportional to

1/r , times the surface area of the tube is independent of

r . Therefore the energy flowing through the tubular
surface is independent of the radius of the tube, and the
crack edge is an energy sink. Since the tube is moving
through the material, one must also consider the flux of
kinetic and internal energy by material transport, but there
is no net contribution from this source (Freund 1972). The
energy flux to the crack edge is proportional to the product

of the Q@ and k factors shown in Figure 2, which is a

function of rupture velocity alone, and is also proportional
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to the distance the crack has propagated in the self-similar
solution.

If the elastic material inside a tube of some
particular radius were replaced by a region in which
nonelastic deformation takes place, then the elastic
solution outside the tube could still hold to a good
approximation if the energy flowing through the tube matches
the energy absorbed by nonelastic deformation inside the
tube. In this way the mixed boundary value problem can be
generalized to a case where the crack tip is smeared out
over a rupture front region in which nonelastic deformation
occurs. The relevant parameter in matching an inner solution
to the outer solution is the energy absorption in the
rupture front. The outer solution is a mixed boundary value
oroblem and can be approached analytically. Assuming a
value for fracture surface energy obviates the need for an
inner solution. However, this assumption needs to be
examined, and the energy absorption is determined by the
inner solution in the rupture front region, which is a
nonlinear problem.

The nonlinear inner solution can be found from
numerical calculations, if a constitutive relation is
specified to determine the development of stress-free strain
in the early stage of rupture before sliding takes place at
constant stress. One may expect in general that nonelastic

deformation will take place in a volume with finite

45



14

thickness. However, T will first show some results for an
artificial model in which all nonelastic deformation is
confined to the crack plane.

SLIP-WEAKENING MODEL

In the slip-weakening model shown in Figure 3 the
stress level at which sliding takes place is a function of
the amount of slip at each point on the crack plane. Slip
does not occur until shear stress reaches the limiting
stress, analogous to a plastic yield stress. As slip
increases the limiting stress decreases to the sliding
friction level, and then further slip takes place at
constant stress. The shaded area in the Figure is the
energy absorbed on the crack plane in excess of the energy
that would be absorbed if stress were constant at the
sliding friction level (assuming that there is no singular
energy sink). Palmer and Rice (1973) have shown that it is
the energy represented by the shaded area that is relevant
to rupture propagation; the absolute level of stress is
relevant only to the heat produced on the fault. Tn this
artificial constitutive model the fracture surface energy is
constant and is independent of the dynamic solution.

The ratio of fracture surface energv to energy released
per unit volume by the stress drop determines a critical
crack length. A critical crack solution for a slip weakening
model is shown in Figure 4. The crack tips are not singular,

but are spread over a significant fraction of the crack
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length. The solution shown is a two dimensional plane strain
case. This numerical solution, which was found by trial, is
slightly beyond the verge of instability.

Rupture propagation in the dynamic solution developing
from this nearly critical solution is shown in Figure 5,
where the location of the rupture front in space-time is
shown by the shaded region. The rupturé front is initially
fairly wide, and the rate of growth is quite slow. By the
time the crack has doubled its length the rupture velocity
is a significant fraction of the Rayleigh wave velocity, and
it approaches the Rayleigh velocity asymptotically.

Tda (1972) has examined rupture propagation with
slip-weakening models in antiplane strain semi-analytically.
He finds that the length of the rupture front varies
inversely with the length the crack has propagated. The
same tightening up of the rupture front is seen in this
numerical calculation in plane strain.

A snapshot of the solution is shown in Figure 6 at the
instant of time when the rupture has propagated to 5.5 times
the critical half length. The length interval in which
stress drops is much shorter than for the critical crack.
The stress peak at the rupture front is propagating at
slightly less than the Rayleigh velocity. There is another
stress peak ahead of the rupture front propagating at the
shear wave velocity, which leads to another story (Andrews

1976b) that I will not go into now.
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As the crack grows, the ratio of fracture surface
energy to energy released per unit advance of the rupture
front decreases. The slip function becomes more singular as
the size of the rupture front decreases, and the rupture
velocity approaches the Rayleigh velocity, which is the
velocity at which a plane strain crack with zero fracture
energy will oropagate.'As the crack length becomes much
longer than the critical length the solution approaches the
solution for a cohesionless crack.

The motivation for using the slip-weakening model was
to examine a simple rupture model in which stress is finite.
The shear stress component sxy 1is indeed finite and is
given by the slip weakening law. However, as the crack gets
longer, the rupture front gets shorter, the derivative of
the slip function gets larger, and strain components other
.than exy get larger. Any finite elastic stress limit will
be exceeded for a sufficiently large crack length.

Typical values of fracture surface energy measured in
laboratory experiments are 0.5eR erg/cml'for single crystals
and 0.5e5 er'g/cm1 for polycrystralline rocks. These values,
together with assumed stress drops ranging from 100 bars to
1 kilobar, give critical crack lengths ranging from microns
to centimeters. Clearly we are dealing with much larger
length scales in earthquakes. IJf fracture surface energy is
constant at a laboratory value, then it is negligible at the

length scale of an earthquake, and the dynamic solution
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approaches that for a cohesionless crack.

For either a cohesionless crack or a crack with
constant fracture surface energy that has propagated a
distance much larger than the critical length shear stress
components other than sxy will exceed any finite elastiec
limit in some volume around the rupture front. In the
cohesionless case a singularity in sxy is avoided by the
crack propagating at the limiting velocity, the Rayleigh
velocity in plane strain or the shear velocity in antiplane
strain. But other components of shear stress are singular at
any rupture velocity due to the slip function having a
singular derivative.

These singular stress components will produce
microcracks at orientations different from the main crack,
as shown in Figure 7. In antiplane strain the microcracks
will be perpendicular to the main crack, and in plane strain
they will be at U5 degrees to it. Slip on the microcracks is
in opposite directions on opposite sides of the main crack,
so that they do not contribute to the distant solution. The
significance of the microcracks is that additional energy is
absorbed in a larger rupture front volume. Even in the case
of stick-slip friction, there will be an effective fracture
surface energy due to microcracking at the rupture front.
The basic assumption underlying this discussion is that if
any solid material is strained at a sufficiently high stress

it will absorb energy.
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STRAIN-WEAKENING MODFL
To test the idea that inelastic energy loss will
increase as the crack lengthens a numerical calculation was
done with a strain-weakening constitutive law, rather than
the slip-weakening law used before (Andrews 1976a).

Nonelastic deformation takes place in a volume of finite
thickness. In this calculation rupture takes place in a
continuous uniform medium, and the prospective fault plane
has no special properties. Fracture energy absorbed per unit
area of rupture is not a material constant, but is
proportional to the thickness of the rupture front, which is
determined as part of the dynamic solution. In Figure 8 the
shaded region shows where plastic strain exists at an
instant of time in the dynamic solution. Near the origin the
plastic zone is only one finite element thick. Farther out
the plastic zone thickness increases linearly with rupture
'1ength. The eolution grows self-similarly in time. The
energy absorbed at the rupture front is a constant fraction
of the energy released by the stress drop, so the fracture
energy pef unit area on the fault plane increases with crack
length. |
SCALING

The result that fracture surface energy is proportional
to the distance rupture has propagated will hold in general
if the constitutive law does not determine a length scale.

This will be true if plastic strain is determined by the
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past stress-strain path but is independent of strain rate,
and if layer dimensions, gravity, and heat conduction are
not important. Tn that case if length, time, and
displacement are multiplied by the same scale factor another
valid dynamic solution is obtained in which stress and
strain at scaled space-time points are unchanged. If in
addition the initial state is uniform then the dynamic
solution will be self similar.

Clearly scaling is important in applying laboratory
results to the field. The scaling laws that apply depend on
the rate dependence of the constitutive law and upon whether
the failure process is confined to a surface or takes place
through a volume. For instance, the slip-weakening and the
strain-weakening models discussed here scale differently.
Also Rurridge has pointed out that if stress on a crack
surface is a function of slip velocity a self similar
solution is to be expected, in contrast to the
rate-independent slip-weakening model discussed here.

MIXED-MODE RUPTURE

The limiting rupture propagation velocity of a pure
antiplane shear crack is the shear wave velocity and of a
pure plane strain shear crack is the Rayleigh velocity. What
is to be expected for a mixed mode shear crack? This is
still an outstanding problem. What is the solution if a
crack propagates between the Rayleigh velocity and the shear

wave velocity?
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In his excellent review of self similar elliptical
shear cracks Richards (1976) was concerned that the energy
absorbed at the crack edge could be embarassingly larger.
than laboratory values of fracture energy. He proposed that
the solution for sub-Rayleigh rupture velocity be applied
above the Rayleigh velocity where the plane strain stress
intensity factor is negative. Then the plane strain
component could generate energy at the crack edge while the
antiplane component absorbs energy. Then the rupture
velocity could be adjusted until the generation and
absorption of energy nearly cancel.

Freund and Clifton (1974) have shown that a solution in
which energy is generated at the crack edge is not uniaque,
and Burridge (1972) has found a different plane strain
solution for rupture velocity between the Rayleigh and shear
wave velocities. Still, Richards' proposal can not be
disproved from within the context of mixed boundary value
problems.

To examine the reasonableness of Richards' proposal we
must ask whether his singular solution is the limit of a
class of nonsingular solutions satisfyihg physically
realistic constitutive relations. If Richards' solution is
convolved with a function that has the effect of smearing it
out slightly on the crack plane then the solution to some
slip-weakening law is obtained. What are the properties of

such a slip-weakening model? Associated with the antiplane
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component of slip is a component of traction in the opposite
direction, but the plane strain component of slip is
associated with a traction in the same direction in the
rupture front region. At a rupture velocity with no net
energy absorption the traction vector will be perpendicular
to the slip velocity vector on the average within the
rupture front. This is not a physically realistic model.

If you want to talk about nonelastic yielding in a
volume instead of on a surface, you must consider whether a
plastic flow rule could allow energy to be transferred from
plane strain to antiplane strain deformation. In principal
stress space a plastic strain increment vector need not be
exactly parallel to the stress vector, but it seems unlikely
that they could be at right angles. Therefore Richards'
proposal is not physically reasonable. A solution for
mixed-mode rupture propagation between the Rayleigh and
shear velocities that is consistent with a physically
realistic constitutive law inside the rupture front has yet
to be found. The nonlinear inner solution is essential to
the question.

STOPPING

So far my discussion has been limited to a uniform
medium with uniform stress. In such a case a rupture will
not stop. The important question of the size of an
earthquake is determined by nonuniformities of stress and

material properties.
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Burridge and Halliday (1971) have obtained an analytiec
solution that stops for a cohesionless frictional sliding
model in which the difference between the friction level and
the initial stress level varies as a function of position.
Rupture begins in a region where initial stress is above the
sliding friction level. As the rupture propagates out into a
region where there is no longer a net stress drop, slip
slows down and stops. In this model the rupture must
penetrate into a region where the final stress is larger
than the initial stress.

Husseini et al. (1975) have proposed that rupture is
stopped by a barrier, a large inﬁrease in fracture surface
energy. The result of their analysis is that the total
fracture energy required to stop a rupture for a given
stress drop amounts to a certain fraction of the total
elastic strain energy released. Dividing the total fracture
energy by the fault area ruptured gives an average fracture
surface energy proportional to crack length. Husseini et
al. interpreted their results in terms of fracture surface
energy being a material property. Then for a barrier of
given fracture energy to stop earthquakes of different sizes
average stress drop of an earthquake would have to be
inversely proportional to the square root of length of
rupture.

From the point of view that fracture surface energy is

not a méterial property but is determined by the dynamic
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solution itself, one cannot escape the conclusion that the
difference between stress and sliding friction must vary on
the fault surface. This difference must vary at all length
scales to explain earthquakes of different sizes.
Furthermore, the heterogeneity must be reproduced after a
cycle of earthquakes of all sizes.
ENERGY BUDGET

The energy budget of an earthquake is indicated
schematically in Figure 9, which is a plot of stress vs.
slip for a typical point on a fault plane. Area on this plot
represents energy per unit fault surface, so the plot must
be imagined to be integrated over the fault surface to get
the total energy budget. Of course, initial stress, sliding
friction, final stress, and final slip vary over the fault
surface. The dashed line connecting the initial and final
states is a hypothetical quasistatic process, and the
trapezoidal area under this line is the difference between
the elastic strain energy of the initial and final static
states. The rectangular area under the sliding friction
level is energy lost to frictional heating on the fault.
The difference between the trapezoidal and rectangular
areas, indicated by the diagonal hatching, is available
energy, which may be partitioned between fracture energy and
radiation of elastic waves. The ratio of the hatched area to
the trapezoidal area is conventionally defined to be the

seismic efficiency.
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If the rupture is a smooth event, with most of the
slipping area in communication witﬁ itself while slip
proceeds, such as the case calculated by Rurridge and
Halliday, the final static stress is below the sliding
friction stress. If, on the other hand, a patech slips and
then locks while slip still continues farther down the
fault, then the final static stress is larger than the
sliding friction stress. In this case more energy can be
radiated for a given static stress drop.

The total energy absorbed in nonelastic deformation is
represented by the area under the stress-strain curve that
rises to the upper yield stress and then falls to and
follows the sliding friction stress. In addition to the
frictional heating, fracture energy, represented by the
black area, is included. This energy loss, due to focusing
of energy at the rupture front, is quite schematic in the
diagram; it includes work done against other components of
stress-free strain on microcracks.

The energy that is radiated is the energy available,
the haiched area, minus the fracture energy, the black area.
Husseini (1977) defines radiaﬁion efficiency to be the ratio
of radiated energy to available energy. Radiation efficiency
determines rupture velocity, so it may be inferred from
seismic observations. On the other hand, the dynamic motion
is independent'of the seismic efficiency, so the absolute

stress level cannot be inferred from ground motion.
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A possible contribution that modelers might make to the
question of the absolute stress level concerns thermal
effects on the fault. Heating from nonelastic deformation
could change the mechanical properties of the medium and
reduce the friction level as slip increases. If melting
occurs or if fluid pressure rises sufficiently, stress drop
may be nearly complete. The essential variable that is not
known in such considerations is the thickness of the zone in
which heat from nonelastic deformation is deposited. So far
theoretical modeling has contributed virtually nothing to
this question.

In conclusion it should be noﬁed that this discussion
has been restricted to generalizations of the mixed boundary
value problem, in which sliding is assumed to take place at
constant stress after an initial breakdown process is
completed. This is an assumption that needs to be
questioned. There has been much discussion at this meeting
of the irregularity of faulting. Theoretical treatments of
heterogeneous conditions may have to be statistical in
nature in general. Some interesting conclusions about
radiated waveforms have been reached by Das and Aki (1977)
from a simple deterministic model in which a rupture jumps

barriers that do not break.
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FIGURE CAPTIONS
Slip and stress as a function of position on crack

plane for a static or sub-Rayleigh dynamic crack.

Dynamic intensity factors relative to static values for

slip, Q, antiplane stress, kﬂf , and plane strain
stress,lﬁr, shown schematically as a function of
rupture velocity.

Slip-weakening model.

Critical crack. Solid curve is slip function, dashed
curve is stress change.

Space-time plot of rupture front.

Dynamic crack.

Orientation of microcracks. Top, antiplane strain;
bottom, plane strain.

Snapshot of rupture calculated with strain-weakening
model. Stress-free strain exists in shaded region.
Contours show particle velocity, which is nonsingular.
Energy budget illustrated on plot of stress vs. slip

for a typical point on fault.
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BASED ON PREMONITORY PHENOMENA

James N. Brune
Scripps Institute of Oceanography
University of California
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One approach to earthquake prediction is to think up earthquake
models for which prediction will work, and test to determine if these models
correspond to nature. /Ar associated task might be to think up earthquake
models for which prediction won't work and test them. One risk of the
first approach is that one might go on indefinitely discarding models
and not hit on one that corresponds to nature. On the other hand, in the
second approach you might find that your model corresbonds to nature and
thus save some money and effort to apply to other means of earthquake
hazard reduction. Since there have been a number of optimistic models pro-
posed which have not been verified, this paper attempts to define a reasonable
model for which earthquake prediction based on premonitory phenomena won't
work and see if it can be refuted. The model discussed here is called the
triggering rupture propagation model (Brune, 1974). The model is suggested

by the following observations:

1. Many large earthquakes appear to be made of a series of
multiple events successively triggered, the initial
event, or hypocenter often being at the edge of the

region of energy release.

2. Some earthquakes appear to have triggered small anounts
of motion considerably outside the region of main energy

release (Allen et al., 1968; Allen, et al., 1972).

3. Earthquake mechanism studies, particularly studies of
earthquake spectra, suggest that earthquakes can be

modeled as ruptures that start at a point and grow
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initially outward from this point and then continue either bi-
laterally or unilaterally. Theretis often continued

slower slip after the wain slip.

4. Spectral studies of small earthquakes suggest a complex

small-scale stress field.

These facts suggest that a fault may rest in a state of stress
considerably below that necessary to initiate slip, and yet be triggered
and caused to slip by nearby earthquakes or by a propagating rup-
ture. Thus, in order to predict slip on a particular fault section,
one must predict when nearby parts of that fault or adjacent faults
will s1lip and whether or not they will trigger motion or cause
a rupture to propagate into the section. However, the same reasoning can
be applied to these adjacent parts or faults, and so on back to the
"{nitial event". The "initial event" or initial rupture presumably occurs
where the state of stress is high enough to spontaneously initiate rupture,
or high enough to allow triggering by much weaker strain sources such as
tides, atmospheric loading or gradual or episodic tectonic strain bui]& up.
This is the region where one might expect premonitory phenomena such as
dilatancy, microfraéturing, etc., and associated anomalous behavior.

In tnis model, to predict large earthquakes, we must predict rup-
ture initiations. However, presumably every small earthquake begins as a
rupture initiation. Thus, one must either predict every small eartnquake
and determine which of these will in fact grow into a large earthquake,
or know in some way that only a small subset of rupture initiations (hope-

fully one) can grow into a large earthquake, and be able to predict this one.
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To be more precise in defining this model, we define the following stress
parameters: Tps the stress necessary for rupture propagation (of, the sliding
frictional stress, is presumably close to o, [Andrews, 1976]); Op the
stress necessary for premonitory phenomena to be produced; oj» the stress
necessary for rupture initiation, and o, the actual ambient stress
(a function of both time and42951t1on). Note that the definition
of 9, is not precise since it depends on the nature of the ‘
rupture, - a rupture can propagate to some extent into a zone where the
stress resists rupture propagation (o < °r) but the actual extent depends

on which direction the rupture comes from and how 1long of a rupture has

preceded.

A odei for Hon-Predictable Earthquakes

Earthquake prediction using premonitory phenomena will not be

possible in the state defined by the following conditions:

1. At any point along the fault the material stress parameters
are ordered as follows: (a) of = Ops (b) op < 043 (c)

Op < O3 (d) o; can either be greater than or less than Op

2. A11 but a small (perhaps zero) volume of the medium is under
too Tow a stress to be associated with premonitory phenomena

(o < op).

3. A certain section of the fault in this volume is under high
enough strain so that a rupture can propagate through it
releasing enough energy to cause an earthquake, i.e., the
stress is sufficiently above the dynamic sliding friction,
Tes to allow rupture and energy reiease if triggered from
outside (o > gu/-

r
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4. At some point a small volume, Vi’ somewhere in the region
is stressed high enough to initiate spontaneous slip
(0= 01) and is located where it can grow, by rupture pro-
pagation or triggering, and release the ehergy stored up

on the larger fault area.

General Models

We can imagine that after a large eartiiquake has occurred and its
aftershocks have subsided, the actual stress level is low and no section of the
fault shows premonitory phenomena, i.e., o < op. As the general tectonic stress
level increases, it may remain erratic along the fault, but at some points
the rupture initiation stress is exceeded, causing small earthquakes, or
creep, redistributing the stress, so that stress concentrations
or stress spikes occur within a generally erratic stress pattern. As the
general stress Tevel increases, several interesting conditions can occur,
illustrated by diagrams A through H, Figure 1.

A. Premonitory effects occur without an earthquake (false
alarm). An earthquake might occur later as stress builds
up or creep may relieve the stress so that no earthquake

occurs,

B. A small earthquake occurs, preceded by premonitory

effects.

C. A small earthquake occurs with no premonitory effects.

D. A Targe earthquake occurs along L triggered off by initial

slip at D which was preceded by localized premonitory effects.
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E. A large earthquake occurs along L triggered off by initial slip at E
with no premonitory effects (the non-predictable earthquake

described above).

F. - I. Potentially predictable earthquakes, preceded by widespread
premonitory phenomena.

In case E prediction using premonitory effects is impossible because
there are none. In case D prediction using premonitory effects is difficult
because the zone of premonitory effects is very small and difficult to detect.
It is also difficult to know if the event will grow or not, i.e., it is
difficult to distinquish D from B, without knowing the details of the stress

distribution around the zone of premonitory effects.

In case F, a predictable earthquake, rupture over an extensive region
is initiated by rupture at F, and the prior stress level over a large regibn
around F (approximately the same area as the rupture zone) is high enough
to cause premonitory effects.

Although it seems probable that Oy > Ops this is not known for sure
and we should consider the opposite case. Earthquake prediction will be po-.
tentially effective if ¢ is relatively smoothly varying and Gy > % at all
points (G in Figure 1), i.e., if in order to reach the stress required for
rupture propagation every section of the fault must first pass through qp and
thus demonstrate observable premonitory phénomena. This situatidn
does not eliminate the possibility of false alarms because a large
region could reach o without reaching o; Or o.. A-case where
earthquake prediction without false alarms is possible is when ¢ is rela-

tively smoothly varying and O35 ©

v and o are all nearly equal, with oF

infinitesimally higher than O However, in this case the lead time for
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prediction will be very small. A more realistic case where prediction with-
out false alarms would be possible is when cp S o and o is relatively
smoothly varying along the fault, and increasing at a known constant rate so
that o can be predicted to reach oy at a certain time after % is observed to
have been reached; thus the approximate length of rupture can also be
estimated. Another model for which eérthquake prediction might be successful
is the dilatancy-fluid flow model, which has been widely discussed (Nur, 1972;

Scholz et al., 1973; Anderson and Whitcomb, 1973).

Reid's Model

The simplest model where prediction will work is when o, and o, are
known at every point of the fault and o is known aﬁd predictable, i.e.,
when tectonic strain build-up as well as rock properties are known.
This corresponds to the method for earthquake prediction suggested by
Reid (1910, 1969) as a result of his studies of the San Francisco earth-
quake of 1906. In this method, prediction is not dependent on observation
of premonitory phenomena. The method will probably remain quite
urreliable for the near future because the required information cannot
be obtained with sufficient accuracy. However, it may ultimately be the
only workable model of earthquake prediction if no reliable premonitory

phenomena are established.

can We Refute tne Mode] for Non-Predictable Earthquakes?

The critiéa] condition in the model for non-predictable earthquakes
is that a large section of the fault can exist in a state of stress such

that g, <0< op, i.e., the stress is greater than the stress necessary to
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allow triggering or rupture propagation through the area, but less than

the stress necessary to cause premonitory effects. In this state a large
section of the fault can be triggered off by a small event occurring within
the section or near its edge.

Unfortunately, neither o, nor °p is accurately known. Laboratory
results suggest that dilatancy, one of the mechanisms associated with
premonitory effects requires stress of the order of a kilobar or greater at
depths corresponding to shallow earthquake strain energy release (5 - 15 km).
un the other hand, o might be identified with stress drop which is the
order of a hundred bars, perhaps less than the stress required to cause
dilatancy at depth. Because of these possibilities, it does not appear
that we can reject the triggering-rupture propagation model without further
study, and thus we have to accept the possibility that in many cases pre-

diction of earthquakes may be difficult or impossible.

Two-and Three-Dimensional Rupture Zones

For simplicity, the foregoing description has been done in one
dimension, along the strike of the fault zone. Of course, actual fault
planes are approximately two-dimensional or in complex cases even three-
dimensional. However, the basic reasoning remains the same. In the case
of a simple planar fault we would describe the various stress levels by
contour Tines on the fault plane. In three dimensions, the stress distri-

butions could be described by surfaces of constant stress.
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Statistical Considerations

It will be noted that one of the critical differences between the
case of a predictable earthquake and the case of a non-predictable one is
the smoothness of the stress distributions. In case F the stress was relatively
smoothly distributed so that when point F reached the stress required for
rupture initiation it was surrounded by a large zone of relatively constant
high stress, sufficient to cause observable premonitory phenomena, whereas in
case E there was a sharp spike of stress sufficient to cause rupture initiation, -
but no contiguious large zone demonstrating premonitory phenomena. This

suggests that the reliability of earthquake prediction might be estimated
if the scale and amplitude (statistical properties) of stress variations were

known.

Experimental Tests

Stress Values

The most crucial evidence necessary to test the implications of

the above model is of course experimental values for Tpes dp, oF and o.
The values for o, are not well known for real rocks. Although values

of o necessary to cause dilatancy, perhaps related to O are known from
1aborato}y experiments to be some considerable fraction of the breaking
strength (30-50%) it is not known for certain what values are appropriate
to the Tow strain rates and other <in situ conditions in the earth.
Similarly, values of o; can be estimated from rupture strength of rocks

in the laboratory, but it is not known whether these values are appropriate
for large faults with highly developed gouge zones. Levels of the

actual <n gitu stress o are not known. Debate still continues between

those who feel absolute shear stresses are comparable to stress drops

(~ 100 bars) or more like fracture strengths in the laboratories (kilobars).
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It will be of prime importance to estimate the above parameters in
the next few years if we are to advance our understanding of earthquake

mechanism. At present we can only speculate on their values.

Evidence from Earthquake Spectra and Time Functions

As mentioned above, studies of earthquake spectra and time functions
have supported the idea that earthquakes are propagating ruptures and can be
complex multiple ruptures in many cases. This suggests large variability
for the varicus stress parameters discussed above. Similarly,
evidence from the large variation in stress drops observed for small earth-
quakes suggests that stress parameters may be extremely complex in a given
region. However, the evidence for variations in stress drop for small
earthquakes is not as reliable as that from larger earthquakes in which
actual fault offsets can be measured, and needs to be further studied.
Kanamori and Anderson (7975) have suggested that the variation in stress
drop for large earthquakes is considerably less (range 10-30 bars). This
has led Kanamori(1977 - Oral communication at meeting of the John Muir
Geophysical Society, Yosemite Valley, Ca.) to suggest that the large range
in stress drops for small earthquakes as contrasted to the smaller range for
large earthquakes, might be evidence for statistical variations in stress
and strength, e.g., asperities, along the fault.

If small earthquakes can give reliable information about variations
in stress along faults the information would be very yseful in testing some
of the ideas presented in this paper. Therefore, it seems important to carrv

out more careful experiments using lTarge numbers of broad band digital recorders.
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ABSTRACT

Recent results concerning the relationship of S-wave far-field
corner frequencies to stress drop are discussed. It is suggested that
the corner frequency as picked by Madariaga (1977) from his theoretical
spectra is not consistent with the way in which corner frequencies were
picked by Tucker and Brune (1973, 1977). When the difference is taken
into account, the stress drops inferred from the Madariaga relationship
and his method of picking corner frequencies are roughly the same as inferred
using the Brune (1971) relationship and the Tucker and Brune method of
picking corner frequencies (for those relatively few experimental spectra
which are similar in shape to the Madariaga theoretical spectra).

Far-fie]d spectra for a number of new finite element models of
fault ruptures in a half-space are presented, and for these data, new
values for the relationship between source dimension and corner frequency
are obtained. Fault models used include semi-circular faults with rup-
ture initiation at the surface and at depth, and rectangular faults with
unilateral and bilateral rupture propagation. The results indicate that
there is a considerable variation in corner frequency with respect to type
of rupture and position around the rupture. Because of the variation it
is not possible to conclude, without more calculations, what the "best"
average relationship between corner frequency and source dimension is;
however, a value for K about 1/3 is reasonable where K = fcr/B (fc =

corner frequency, r = radius and g = shear wave velocity).

Dahlen (1974) speculated that the corner frequencies picked experi-
mentally could be significantly altered by scattering. For the San
Fernando aftershocks, it is possible to make a case that this is not

so. Many of the San Fernando aftershocks show very simple pulse shapes,
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with a pulse duration consistent with the spectral corner frequency and
little later arriving energy - a direct indication that scattering is not

radically affecting the results.
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INTRODUCTION

Studies of far-field spectra and pulse shapes of earthquakes offer
the possibility of estimating the level and variability of tectonic stress.
This possibility is especially attractive if small earthquakes can be
used, since they occur so frequently. However, tb test the reliability
and usefulness of such studies will require more experimental and
theoretical work. We need reliable near-field recordings at a large number
of observation points on the focal sphere of earthquakes to obtain accurate
information about source parameters such as dimension, rupture velocity
and stress drop. For comparison with theory, we need to examine more fault
models to determine the effects of stress drop, friction, and rupture
velocity on spectra and pulse shapes. In this paper we present some further
discussion of the experimental digital data obtained from aftershocks of
the San Fernando earthquake, and theoretical data obtained from finite-

element numerical models of earthquake rupture.

SAIN FERNANDO AFTERSHOCK DATA

The main experimental data discussed in this paper is the data
obtained by Tucker and Brune (1973, 1977) from aftershocks of the San
Fernando eafthquake. In those studies high-dynamic range, broad-band
digital data were used to determine near source earthquake spectra. These
were then interpreted to infer seismic moment, source dimension and stress
drop using formulas given by Brune (1970, 1971). The results suggested
a wide range in stress drops, with an upper linit of about 200 bars, and
many cases of stress drop less than 1 bar. A number of the larger events

(M = 3.5 - 4) apparently had two corner frequencies, one between .1 and
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1 Hz, below which the spectra were approximately constant and another
between 3 and 10 Hz above which spectra were proportional to about m—z to
w-3. ‘It was suggested that for these larger events with two corner fre-
quencies, a two stage rupture process may have occurred, an initial sharp
high stress drop followed by a more slowly growing rupture. Similar |
results were found by Hartzell and Brune (1977) for earthquakes occurring
in the Brawley swarm of January, 1975. We will not discuss these results
further in this paper, but will use the experimental data to investigate the
method of determining corner frequencies and the relationship of corner
frequency to source dimension and hence stress drop, A1l the experimental
seismograms and spectra are taken from Tucker and Brune (1973) using their
numbering. The horizontal arrow under each seismogram indicates the time

window for the Fourier transform used to obtain the spectra (Figures 2-7).

MADARIAGA'S THEORETICAL MODEL RESULTS

Madariaga (1976, 1977) used a numerical finite-difference method
to compute the dislocation rate on a growing circular fault which stopped
at a certain radius r (in a full space). With the dislocation rate and
the far-field representation integral, Madariaga computed the far-field
spectra at different azimuths. From these results he obtained an average
spectrum at an angle of 60° from the normal to the fault (Figure 1). For
this spectrum, he drew a low frequency asymptote and a higher frequency
asymptote to determine the corner frequency fC (indicated by M in Figure 1).
From fc he determined K = fcr/s = .21, where r is the fault radius and g the
shear wave velocity. This value of K is considerably Tower than the value

of K for the Brune model, K = .37. Since the formula for determining stress
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drop from corner frequency depends on the 3rd power of corner frequency,
Madariaga's relationship implies a stress drop 5.47 times nigner than Brune's.
This would mean that for the San Fernando aftershocks the estimated upper
bound on stress drops would be closer to 1 kb than to 200 bars as inferred

by Tucker and Brune. Since the values of stress drop determined from
earthquakes have played a considerable role in recent discussions about
earthquake source mechanisms, this uncertainty is important, and hence we

wish to investigate further the interpretation of earthquake corner
frequencies.

In a second paper, Madariaga (1977) also calculated a high fre-
quency asymptote which if used to infer corner frequency, gave a value for
K of .40 (indicated by B in Figure 1). If this value of K were used, nearly
the same values of stress drop as found by Tucker and Brune would be .
obtained.

It appears that the method of picking corner frequencies and, in
particular, the weight put on high frequencies, is important. This is
particularly true in the case of numerical modelling since it is difficult
and costly to adequately represent frequencies much above a factor of 2
or 3 times the corner frequency. This is why Madariaga had to use other
techniques to estimate the higher frequency asymptote. At this point
it is necessary to decide whether the method of picking corner frequencies

used by Madariaga is consistent with that used by Tucker and Brune.
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COMPARISON OF THE TUCKER AND BRUNE EXPERIMENTAL SPECTRA WITH THE MADARIAGA
THEORETICAL SPECTRA

In order to compare the theoretical and experimental spectra,
we have plotted the Madariaga spectrum and a number of Tucker
and Brune spectra on the same scale (Figure 2). Comparison with the
more than 100 spectra presented by Tucker and Brune shows that one of the
characteristics of the Madariaga spectrum is a more flattened corner
than observed for most of the Tucker and Brune spectra. Figure 2 was
purposely selected to show examples of some of the Tucker and Brune spectra
which have this character, i.e,, a flattened corner or missing energy near
the corner frequency (top three spectra in Figure 2). Most of the Tucker
and Brune spectra have sharper corners, like the bottom two examples in Figure
2, and hence there is little uncertainty in determining a corner frequency.
Because of the difference in shape between the Madariaga spectrum and most
of the Tucker and Brune spectra, there is some doubt about the growing
and stopping circular crack as a model for the San Fernando aftershocks.

The dashed lines in Figure 2 show the asymptotes used to infer
corner frequencies by Tucker and Brune, and these can be compared with the
asymptotes used by Madariaga to interpret the theoretical spectra as shown
in the upper part of Figure 2. It is immediately obvious that the corner
frequency picked by Madariaga, indicated by an M in the upper theoretical
spectrum, is considerably lower than would have been picked by Tucker and
Brune. MWhereas, the corner frequency determined from the "high frequency
asymptote" of Madariaga, indicated by B, corresponds nearly exactly with the
corner frequency as determined by Tucker and Brune.

Since the Madariaga high frequency asymptote gives a corner fre-

quency to fault radius relationship almost identical to that used by Tucker
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and Brune (K = .40 vs. K = ,37), it is evident that the interpretation of
stress drops by Tucker and Brune is in accordance with the theoretical
spectra of Madariaga. The further question of why the shape of most of
the Tucker and Brune spectra are different from the shape of the Madariaga
spectra is left unanswered. Some recent results pertinent to this are

discussed in the next section.

NEW RESULTS FOR FAR-FIELD PULSE SHAPES AND SPECTRA BASED ON FINITE ELEMENT
MODELS OF FAULT RUPTURE

Archuleta and Frazier (1977) have presented results for finite
element models of faulting based on stress relaxation. The resulting time
functions for fault slip at various points on the fault can be used to com-
pute the far-field radiation. Half-space Green's functions, computed using
a program of Johnson (1974), for each point on the fault-surface, are
convolved with the slip functions on the fault and summed to give the com-
plete far-field pulse (Hartzell et al., 1978).

Preliminary results using this method were presented orally by
Hartzell and Archuleta (1976). We have now completed calculations
for far-field SH pulses observed on the surface of an elastic half-space

for four different fault models:

1. A semi-circular fault in which rupture initiation begins at
the surface (r = 0) and propagates radially to a specified

fault radius, with 10 elements on a radius.

2. A semi-circular fault in which rupture initiation begins at
the deepest point on the fault and symmetrically propagates
over the semi-circle, breaking out at the surface, also with

10 elements on a radius.
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3. A rectangular fault 3 elements deep and 15 elements long
in which rupture propagation proceeds unilaterally from one
end to the other. |

4. A rectangular fault 5 elements deep and 20 elements long
in which rupture proceeds bilaterally from the center to

both ends.

A rupture velocity of 0.9 B8 is used fdr each of the four fault models
above. Results for the far-field time functions (azimuthal component) are shown
in Figures 8a and 8b and the corrésponding spectra (S phase only) at the bottom
of Figures 3 through 7 and in Figures 9 through 12. Al1 of the numerical
results shown here are for surface observations, with the azimuthal angle
relative to the normal to the fault as a variable. Interpfeted corner
frequencies are indicated by the intersecting asymptotes drawn on the spectra.

For each fault model, the points of observation are at a
constant radial distance, R, from the center of the fault. R is equal to
10 o for both semicircular faults, 5 20 for the bilateral rupture, and
6.6 % for the unilateral rupture. Here P is the radius of the semicircular
faults and %0 is the length of the corresponding rectangular fault. The
azimuth of the point of observation is measured from the normal to the fault.

In the case of the rectangular unilateral rupture, the time function at 90°

is in the direction_of rupture propagation. The far-field time functions are
plotted in dimensionless format (Figures 8a and 8b), where the dimensionless
displacement is given by u u 103/0 o for the semicircular faults and u u 103/0 20
for the rectangular faults. Here u is the displacement, p the rigidity, and

o is the effective stress.

Because of the finite grid size, frequencies greater than 2Hz are
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not accurately synthesized (Archuleta and Frazier, 1977), and this must

be taken into account in interpreting corner frequencies and pulse shapes.
Archuleta and Frazier (1977) have shown that their results have somewhat
better frequency range than the results of Madariaga. In most cases the
frequency range was sufficient to establish the true corner frequency with
confidence. To assure objectivity in picking corner frequencies, both

Brune and Archuleta independently picked the corner frequencies without
knowledge of the other's picks. In nearly all cases the picked corner
frequencies agreed within 20%. Since Brune was one of the investigators
picking corner frequencies in the Tucker and Brune experimental study, there
is some assurance that corner frequencies determined there were determined
in the same manner as in this study. As a comparison with observed spectra,
some of the results for the rectangular faults are shown along with represen-
tative spectra of San Fernando aftershocks, chosen to show similar features,
in Figures 3 through 7.

Study of the time functions and spectra shows a range of pulse
durations, and a corresponding range of corner frequencies (inverse
proportionality) depending primarily on the azimuth between the direction
of rupture propagation and the direction of observation. For bilateral
ruptures, the pulse widths are narrower normal to the fault than in the
direction of rupture; however, the rise times are shorter in the direction
of rupture propagation than normal to the fault. The pulse width is con-
trolled primarily by the difference in travel times from different points
on the fault surface. The rise time is related to focussing caused by a
propagating rupture. In the propagating stress relaxation models of
Archuleta and Frazier (1977) the slip velocity increases in amplitude in
the direction of propagation. Thus, in addition to the common Doppler

effect due to a moving source, we have the effect of increasing slip
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velocity in the direction of rupture. The combined effect is strong
focussing of energy in the direction of rupture propagation. It is
this combined effect which leads to the shorter rise times in the direc-
tion of rupture propagation. This focu;sing has also been observed in
a laboratory model of propagating stress relaxation (Archuleta and Brune,
1975; Archuleta, 1976). For unilateral ruptures, both the pulse width and
rise time decrease as one moves from normal to the fault to in line with the
direction of rupture propagation. Short rise times and narrow pulse widths
increase the high frequency content and yield higher corner frequencies and
larger values of K. In the direction away from the rupture propagation, for a
unilateral rupture, both the pulse width and rise time are greater, leading
~to lower values of K, In Figure 13 we show the value of K = f.D/g as a
function of azimuth for our fault rodels and those of Savage and Madariaga.
tle have also re-interpreted the corner frequencies for the Madariaga
spectra using the considerations outlined in the first part of this paper and
these are shown'as M in Figure 13. This figure can be used as an aid in
interpreting experimental data.

Since, for a given fault, the corner freguency, and consequently
the relationship between corner frequency and source dimension, are strong
functions of azimuth, or position on the focal sphere, it is desirable
‘to know the fault orientation and direction of rupture propagation before
interpreting the spectra and time functions in terms of fault parameters
such as fault dimension, moment and stress drop. However, in many cases,
especially for small earthquakes, this is not possible, and hence it is
helpful to have some approximate relationship between corner frequency
and fault dimension. Besides Brune and Madariaga, Savage (1972, 1974),

Randall (1973), and Dahlen (1974) have also obtained such relationships.
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To summarize the results of various models, we have shown in Table I

the values of K for 6 = 60°, or in some cases average values. The

value of o = 60° was selected by Madariaga because it represents

the angle which divides the focal sphere roughly in half (equal areas).
Thus, for numerous random observations around the fault, approximately
half of the observations should have higher corner frequencies. The

value of K for & = 60° should not be equated with the corner frequency
averaged over the focal sphere nor with the value of K obtained by Brune
(1970, 1971), which corresponds to the corner frequency for a spectrum
which, if constant over the focal sphere, would, at high frequencies, give
the same total energy radiation as the actual variable spectrum, However,
the values of K determined in the v.rious ways should be roughly comparable.

The values for K in Table I range from .13 to .49. Tne low value cf .13

corresponds to a bilateral rupture, and the corresponding spectrum (Figure
6, bottom) has a broad intermediate slope proportional approximately to w'].
At other azimuths the bilateral rupture produces values of K near .3,
Figure 13. This spectrum is quite different from most of the other spectra
and from most of the spectra observed by Tucker and Brune. However, some of

L region and as

the Tucker and Brune spectra did show such a broad w~
would be expected gave low stress drops when interpreted using a K value of
.37. Considering the rest of the results, this low value can be considered
to a certain extent anomalous.

Although the results of Table I are derived from a variety of different
earthquake models, an average value of K for ruptures with v = .98 is .32. If
the models of Brune (1970,1971) and Randall (1973) (v = «) are included, then K

becomes .33. In veiw of the many uncertainties in relating theoretical

models to actual earthquakes, a reasonable average value of K is 1/3. It
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TABLE I

K = f./(8/D)

FAR-FIELD S-WAVE © =60° v = .98

Semicircular Faults in a Halfspace D= P
This Study
origin (0, 0, 0) K= .26
origin (0O, Po? 0) K= .29
Rectangular Faults D=W
This Study: Halfspace
L = 4W bilateral K=.13
L = 5W unilateral K= .32
SAVAGE (HASKELL) Full Space
L =~ W bilateral K= .32
L >> W bilateral K= .29
Circular Faults in a Full Space D=ry
MADARIAGA K= .21
high frequency asymtote K= .40
DAHLEN K= .45
BRUNE (v = @) K= .37
Average Values
RANDALL; ARCHAMBEAU (v = =) K= .42

bislocation MOLNAR, TUCKER, BRUNE (& = 55°) K = .32

Models SAVAGE K=.49 (.1)
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must be noted that for a given station recording an earthquake, K could
possibly range between .15 and .5, i.e., K =1/3 + (.5) (1/3). A 50%
error in K corresponds to an error in inferred stress drops of a factor
of 3.3. This factor is consistent with the variation in stress drops
computed by Tucker and Brune between two different stations for the San

Fernando aftershocks.

SCATTERING AND CORNER FREQUENCY

Dahlen (1974), observing that the ratio of corner frequencies
of P-waves and S-waves observed by Molnar et aZ. (1973) was inconsistent
with a source mechanism theory he had developed, suggested that the ob-
served corner frequencies may have been seriously perturbed by scattering.
il sﬁa]] amount of scattered energy arriving slightly after the S-wave
would not cause a frequency shift in the spectrum, since the reflected
pulses would have nearly the same spectrum as the direct energy.
The existence of a certaih amount of scattering is one of the main
reasons for using the spectrum rather than the direct time function -
the time function can be seriously distorted by scattering without seriously
affecting the amplitude spectrum (which is based on the modulus of the Fouricr
transform and not the phase). In order for scattering to seriously affect
the corner frequencies, a significant fraction of the energy would have to be
scattered to travel paths that cause the scattered energy to arrive
considerably later than the main energy. This would imply that the S-wave
pulse would’'be considerably distorted or complicated. Thus, in a quali-
tative way we can estimate the importance of scattering by looking at pulse

shapes. A large number of seismograms of aftershocks of the San Fernando
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earthquake published by Tucker and Brune (1973) can be used for this
purpose,

Perusal of the seismograms of the San Fernando aftershocks
immediately reveals a wide range of apparent pulse shapes, ranging from
simple pulses of about 0.1 sec duration, with little scattered energy, to
very complex looking signals of a second or more duration, Figure 14
presents a selection &f.seidmograms with simple pulse shapes. A curious
thing is observed by comparing these seismograms with the more complex
seismograms (e.g., 87 and 57 in Figure 2; 138 in Figure 3; 111 and 112
in Figure 5; 129 and 130 in Figure 6; and 53 and 57 in Figure 7). Seismo-
grams with simple S-waves generally have low P-wave amplitudes relative to
the S-wave, while the seismograms with complex-looking S-waves generally
have high P-wave amplitudes relative to the S-waves (all the seismograms
presented by Tucker and Brune were normalized to the same peak amplitude
for plotting purposes; they actually represent a wide range in magnitude).

The obvious exp1énation for this phenomenon 1is that it is an
effect of radiation pattern (Tucker and Brune, 1977 ). Near a node for
S-waves there will tend to be an antinode for P-waves (relatively high
P-wave amplitudes) whereas S-waves will appear complex because scattered
energy will be large relative to the main S-wave energy. On the other
hand, near an antinode for S-waves, the P-wave will tend to be small
and the S-wave will appear simple because it will stand out from the
smaller scattered energy. If we accept this eXp1anation, we can
estimate of the amount of scattering by observing the time functions of
the simpler events. Figure 15 shows two simple time functions constructed
as examples of predicted S-wave pulses when no scattering is present. These

are compared with two of the simple observed pulse shapes. The theoretical
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pulses were diagramatically constructed so as to correspond to a simple
smooth spectrum with the same corner frequency as determined experimentally,
with a time function similar to the theoretical pulse used by Brune (1970),
as seen through a simple velocity transducer of the type used by

Tucker and Brune (1977). For the purposes of determining the approximate
amount of scattered energy, it is not important whether or not this pulse
is exactly correct; we are interested in the amount of late arriving
scattered energy relative to the main pulse. As can be seen from the
seismograms in this figure, when the S-pulse is simple, the scattered late
arriving energy is quite small relative to the main energy, probably not
enough to seriously affect the inferred corner frequencies. The effect

of scattering could be more serious for the more complex looking seismo-
grams. However, study of the results of Tucker and Brune does not indicate
any obvious correlation of stress drop with complexity, suggesting that,

as expected, the scattered energy has about the same spectrum as the direct
energy. Further evidence of this is the fact that in a number of trials

to determine the effect of record length on the shape of the spectrum,
Tucker and Brune found very little effect, i.e., adding more or

less of the S-wave coda, presumably scattered energy, had little effect

on the specturm shape. We conclude that at least for the San Fernando
aftershocks studied by Tucker and Brune, scattering did not seriously
affect the observed spectra. Other effects such as variation in source
parameters, source complexity, and direction of rupture propagation were
probably more important in causing the variations in spectral shape (and

inferred stress drop) observed by Tucker and Brune.
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PART I:

MODELING OF ROCK FRICTION,
EXPERIMENTAL RESULTS AND CONSTITUTIVE EQUATIONS

James H. Dieterich
U.S. Geological Survey
345 Middlefield Road
Menlo Park, CA 94025
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INTRODUCTION

The principal source of uncertainty and variability found in theories for
the earthquake source is the designation of mechanical properties to represent
interactions along a fault prior to and during an earthquéke. It is asserted
here that physical parameters and phenomena observed in laboratory fault frie-
tion experiments can provide a rational means for identifying the critical
mechanical properties controlling fault slip.

Of course faults as studied in the laboratory do not have many of the
complexities of natural faults. It could be argued therefore that important
controlling processes that,bperate in natural fault systems have been simpli-
fied out of the experiments. However, there exist many analogies between the
response of simple laboratory faults and real fault phenomena - a situation
that invites detailed analysis of laboratory fault friction processes for
possible application to faulting. The most widely noted analogy is the

.possible relevance of unstable frictional slip sliding (stick-slip) to the
mechanism of crustal earthquakes caused by unstable fault slip (Brace and
Byerlee, 1966). 1In addition to the qualitative similarities between stick-
slip and earthquake fault slip, Dieterich (1974) proposes that stick-slip can
account for the relatively low stress drops of earthquakes when differences in
the geometry of slip are taken into account. Similarly, experimental observa-
tions of stable frictional slip have been equated with aseismic fault creep
(Scholz et al., 1969). Elevated temperatures are found to enhance the tendency
for stable sliding and may account for the absence of earthquakes below 15 km

in California (Brace and Byerlee, 1970). A critical test of the use of
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friction data to earthquake faulting was provided by the earthquakes at
‘Rangely, Colorado. It was found that the Rangely earthquakes could be
accounted for and modeled (Dieterich et al., 1972) at the stresses and fluid
pressures, measured in the focal zone (Raleigh et al., 1972) using friction
data for the onset of slip as a function of confining pressure and fluid
pressure (Byerlee, 1975). At a more speculative level, observations of
time-dependent friction have been used to explain the mechanism of aftershocks
(Dieterich, 1972a) and experimental observations of preseismic slip may
explain certain earthquake precursors (Dieterich, 1978a).

The general insensitivity of friction measurements to rock type, test
conditions and characteristics of the sliding surface further suggest that
laboratory friction may be relevant to natural faults under more complex
conditions. Similar values for the coefficient of friction and qualitatively
similar slip phenomena are obtained for slip on clean, machine finished sur-
faces; surfaces with simulated gouge; and for slip on fracture surfaces. This
indicates that the processes controlling the coefficient of friction and slip
instability are intrinsic to slip on discontinuities in rocks and are not
greatly dependent on complexities of geometry, structure or composition.

Instability theories for the earthquake source have an essential feature
in common. Some form of displacement (or strain) weakening for the fault or
focal region must be postulated to give rise to the instability and stress
drops of earthquakes. At present there is no consensus as to the mechanism of
displacement weakening and the number and variety of instability models that
have been proposed is noteworthy. For repeated slip along a fault, the

requirement of displacement weakening has a corollary - some type of healing
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mechanism must operate to restore the fault strength following earthquake slip.
Otherwise the fault strength would eventually fall to zero with repeated earth-
quakes.

The purpose of this paper is to: 1) present experimental data that is
relevant to understanding displacement weakening and healing processes, and 2)
develop constitutive equations that account for the experimental details. The
companion paper employs the constitutive equations to model experimental

observations cf preseismic fault slip.
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PREVIOUS WORK

The friction model and constitutive relationships developed in a later
section of this paper extend the results of Dieterich (1978b) on time- and
velocity-dependence of friction and displacement weakening effects. Earlier
observations showing time-dependence of friction (Dieterich, 1972b; Scholz et
al., 1972; Tuefel and Logan, 1977) give convincing evidence on the character-
istics of fault healing in friction experiments. It is found that the coeffi-
cient of static friction increases with the time of stationery contact. The
following empirical law has been proposed (Dieterich, 1978b) for the time

dependency:
M= + A log (Bt +1) (1)

where p is the coefficient of friction is given by the ratio of shear to normal
stress, 1/0; t is the time of contact; and Hs A and B are constants with
values of approximately 0.6 - 0.8, 0.01 - 0.02 and 1.0 - 2.0 respectively.
Measurement of sliding friction at different velocities of slip (Dieterich,

1978b) has shown an analogous velocity dependency:

d
W= +A log (B-gi +1) (2)

where dc is an experimental displacement parameter and ¢ is slip veloecity.
Hence, friction decreases with increasing slip velocity. Note that (2) is

equal to (1) if the constants L) A and B are the same and time t is replaced

L ]

by

de 3)
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The identification of the parameter dc was suggested by records giving friction
as a function of displacement. Those records show that if the slip velocity
is increased the coefficient of friction does not drop immediately to a value
characteristic of the new slip velocity, but that the friction changes with
displacement and stabilizes at the lower value only after a critical displace-
ment, dc, has taken place. The magnitude of dc appears to be independent of
normal stress, 0, and the magnitude of the change of velocity, but does corre-
late with suéface roughness. Values of 5 x 10-% em and 1 x 10-% cm were
obtained for surfaced lapped with #240 and #600 abrasives respectively.

These observations were interpreted (Dieterich, 1978b) to be of importance
in understanding the surface interactions that control friction and cause slip
instability. The dependence of dc on surface roughness and the apparent
success of using (3) to replace time in equation (1) suggest that the t in (3)
is properly the average lifetime of a population of contacts and that dc is
the displacement required to completely change the population of contact
points. Hence, the friction observations noted above result from the competi-
tion of two distinct processes. First, as a population of contacts ages,
friction increases according to (1). Second, displacement acts to destroy an
existing population of contacts which is then replaced with new and conse-
quently weaker contacts. Displacement weakening occurs whenever the average
lifetime of the population of contacts decreases because of displacement.

Based on this interpretation, a simple spring and slider model was
proposed to explain experimental observations of the transition from stable
sliding to stick-slip (Dieterich, 1978b). With this model the spring, with

stiffness K, represents the combined stiffnesses of the sample and test
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apparatus. The friction of the slider satisfies equations (1), (2) and the
drop of u from the static to the sliding value is assumed to be linear over

the displacement dc.‘ Unstable slip occurs when the decrease of friction with
displacement has a slope that exceeds the slope, -K, of the unloading curve of
the system. In that case the stress acting on the slider will be greater than
the frictional resistance to slip causing an acceleration of the slider and
instability. Stable sliding takes place if the decrease of friction with
displacement has a lesser slope than the characteristic unloading curve of the
system. The transition from stable sliding to stick-slip occurs when the slope
of the unloading curve first equals the slope for displacement weakening of
friction. The model quantitatively accounts for experimental observations
that show the transition from stable to unstable slip depends on normal stress,
stiffness and surface roughness. The principal shortcoming of the model is
that it does not predict nor account for laboratory observatons of preseismic
slip. Modeling of preseismic slip which is discussed in the companion paper
appears to require a more complete constitutive relationship for friction as a
function of displacement, velocity and time. The procedure followed below is
to build up constitutive equations that permit detailed simulation of experi-

mental records for u for different time, displacement and velocity conditions.

123



EXPERIMENTAL RESULTS AND CONSTITUTIVE EQUATIONS

The experimental results presented here were obtained using the "sandwich"
type direct shear configuration described previously (Dieterich, 1972). The
sample material is gray "granite" from the Raymond, California quarry. Sliding
surfaces were lapped using #60, #240 or #600 abrasive.

Figure 1 gives results for the coefficient of frietion, y, as a function
of displacement. Normal stress was held constant at 60.7 bars. For each of
the two experimental runs shown in Figure 2, slip velocity varied in a stepwise
manner from ~10~® em/sec to 710~3 cm/sec. Each curve represents a contin-
uous record in which the velocity of slip was held constant for a displacement
of v5 x 10-3 cm then abruptly increased by a factor of ten and held constant
for another displacement of "5 x 10-3 cm and so on. The small irregularities
in the experimental curves are caused by electronic noise. The apparently
greater noise at the slower sliding velocities arises because of lower
recording pen velocity which compresses the irregularities on the record. 1In
Figure 1 note that u stabilizes at progressively lower values for each
increase in sliding velocity as indicated by equation (2). The transient
increase in yp, observed when the velocity is increased, is discussed below.
Critical displacement, dc, for slip on the #90 surfaces shown in Figure 1 is
taken to be A2 x 10-3 em. Table 1 lists the center-line-average surface
roughnesses and critical displacements for the #60, #240 and #600 surfaces.

Figure 2 gives p as a function of displacement for a different type of
experiment with the #60 surfaces. In these experiments the driving ram was

held stationary for approximately 400 seconds then advanced at different
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velocities as shown at the top of the figure. Normal stress was held constant
at 57.2 bars. The peak of the curve gives the "static" fricﬁion. These
experiments show that static friction is sensitive to loading rate - a feature
that had not been noted previously. Higher rates of loading give higher static
friction values. This effect appears to be analogous to the well-known effect
of strain rate on critical stress for yield or fracture of silicates. Below,
it will be shown that this effect is probably related to the transient increase
in p when velocity is increased as shown by Figure 1. Note again in Figure 2
that sliding friction tends to stabilize at lower values for the higher slip
velocities. The points on the curves labeled o.v. and c.v. correspond to the
opening and closing respectively, of the hydraulic valve that controls motion
of the driving ram. The jump in the curve at c.v. probably arises because of
a slight pressure surge in the hydraulic system. Small amounts of fault creep
that partially relax stress in the sample cause the decrease in amplitude of
the curves between c.v. and o.v. During creep the rate of slip rapidly decays
with time. It is of possible significance that the creep takes place at
stresses below the stresses for steady-state slip (equation 2). Previously,
Johnson (1975) reported a similar surface creep phenomena at stresses below
the nominal stress for static friction and having a slip velocity that decays
with time.

For the purposes of developing a more complete constitutive relation for
friction it is aséumed that friction of rocks like friction of metals and most
other materials is largely controlled by adhesion at actual points of contact
between sliding surfaces. Several lines of evidence indicate that adhesion is

the principal source of the frictional force in rocks (Dieterich, 1978b).
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Reliance on adhesion is not essential for the following discussion, however it

does provide a plausible framework for discussion of parameters and for inter-

pretation of mechanisms.

Bowden and Tabor (1964) propose that when surfaces are brought into
contact minute irregularities will prevent uniform contact over the entire
surface, even for flat, well polished surfaces. Actual contact is limited tov
scattered points (asperities) where the contact stresses are very high. An
increase of the normal stress pushing the surfaces together causes the points
of contact to yield and results in an increase of the real area of contact.

For a unit area of surface, the real area of contact A, may by approximated by
A = Co 4)

where O is the average normal stress applied over the entire surface (assuming
100% contact) and C is a material constant inversely proportional to indenta-
tion hardness or yield stress. Bowden and Tabor assert that the resistence of
the surface to slip is controlled by the adhesive strength of the junctions.
Hence, the average shear stress, T, (again assuming uniform contact) for slip

is proportional to the real area of contact:

T = FA (5)

where F is the strength per unit area of a contact. The coefficient of

friction, y, is given by t/o:

u =1/0c = CF (6)
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Note that C x F is dimensionless because C~! and F are proportional to
strength.

The time-dependence of equation (1) is clearly related to an increase in
area of contact, or perhaps in some situations depth of penetration of asper-
ities (Scholz and Engelder, 1976; Tuefel and Logan, 1977; Dieterich, 1978b).
Creep deformation of the asperities apparently causes the increase in area.

This suggests that C in equation (4) is time dependent:

C = cl + c

, log (c3t + 1) (7N

giving for the coefficient of friction from (6):
u = [c1 + ¢, log (c3t + 1)][F] (8)

which is the same as (1) with:

ch = uo
czeA
c3 = B

The reader will note that (8) applies to static friction if t is the time
of stationary contact or to sliding friction if t is the average lifetime of
the population of contacts. The use of (8) with relationship (2) for the
average time of contact as a function of velocity gives a steplike change in
friction whenever the sliding velocity abruptly changes. Figure 3 curve A is
a simulation of the experimental run (top curve) using equations (2) and (8).
Comparison of curve A with the experimental results demonstrates the
unsuitability of this approach for representation of friction as a function of

displacement. The steps in curve A arise because t is assumed to jump to a
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new value whenever the velocity changes. The observations suggest however
that t relakes to the new value over the characteristic displacement dc. A
possible relationship for the relaxation of t as a function of displacement §,

is given by:

d 3 8o=8
(@)

where t  and 8 are the average contact time and displacement respectively

o
when the slip velocity is changed to the new value. Use of (9) with (8) for
step changes in velocity gives curve B of Figure 3.

The transient increase in friction observed when the velocity is increased
seems not to be associated with variation of surface area with displacement,
but apprears to result from another process. The interpretation is offered

here that this effect results from a loading rate dependence of the strength

term, F. The following relationship appears to give satisfactory results:

F=f + 2 (10)
X log it
2 'g- + 10

where fl, f2 and f3 are constants. For the simulations discussed here and in

Part II of this study f3 has been equated with dc‘ Several other relationships
might serve as well. The essential characteristic of (10) is that if the area
of contact is held constant, the strength of a contact increases as the veloc-
ity of loading increases. As noted above, this effect is analogous to the
effect of strain rate on yield strength of silicates. In addition, it is noted
that the creep that apparently causes the time-dependent increase in area

(equation 7) implies a similar strain rate dependence in strength.
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Use of (10) and (7) gives the following expreséion for the coefficient of

friction as a function of velocity and time of contact.
1
p=le, +c,(log c,t +1)||f, + (11)
[1 . - "¢ 1og<f§_+1o>
2 8

Equation (11) used with (9) for the variation of contact time with displacement

and velocity appears to adequately represent the static, transient and steady
state sliding friction observations described above.

Curve C in Figure 3 gives the variation of U as a function of displacement
and velocity using equations (11) and (9). Overall, curve C appears to be in
good agreement with the data. An increase in sliding velocity first causes an
increase in friction because of the velocity dependence of F. As sliding
proceeds however, the average time of contact relaxes to the new value, causing
a decrease in the real area of contact and an overall lowering of the total
resistance to slip. In detail the simulation shown by curve C (Fig. 3) differs
from the experiments, mainly in the sharp peak in friction obtained when the
velocity is increased.

Figure 4 shows further refinement of the simulation that tends to smooth
out the peaks. In this case the velocity of slip accelerates and temperarily
overshoots the driving velocity. This type of velocity overshoot is evident
in the displacement vs. time records for the experiments and apparently arises
because of elasticity of the sample and load-bearing anvils in the apparatus.

Figure 5 gives a simulation of the experiment shown in Figure 3 for static
friction as a function of loading velocity. Again, equation (11) was used to
determine p. The initial time of static contact was taken to be 400 seconds

and equation (9) was used to give the variation of contact time with
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displacement and velocity. Comparison of Figure 5 with Figure 3 shows that

the simulation provides a reasonably good quantitative representation of
principal features of the experiment. No attempt was made here to represent
the variations in slip velocity due to elastic effects in the apparatus or to
model the fault creep that occured in the experiments when the hydraulic system
feeding the driving ram was valved off. Incorporation of a more realistic
velocity history that accounts for accelerations of slip rates when the surface
begins to slide would result in fléttening of the peaks in the friction curves
and yield a better agreement with the experimental curves.

Fault creep occurs at stresses as much as 3 percent below the coefficient
of friction for steady staté slip (i.e. when t = dc/é) and can be accounted
for by equation (11). The effect arises becaue of the velocity dependence of
F. The characteristics of fault creep observed in the experiments of Figure
3 are illustrated with the aid of Figure 6. Figure 6 plots u from equation
(11) against the logarithm of the contact-time for different velocities of
slip. Constants for C, F and dc are those used for the above simulations.

The heavy dashed curve in Figure 6 gives 1 as a functio? of contact time
assuming t = dc/&. Hence, the dashed curve gives the value for u and t for
steady-state slip at constant velocity, During slip at constant veloeity if
the parameters for u, and t fall on the dashed curve, those parameters will be
stable and will not change unless § is changed. If the conditions during slip
plot above the dashed curve, then slip will be at a velocity in excess of the
steady-state velocity and therefore cause a decrease in t with displacement.

If the velocity of slip is held constant then t and consequently y must
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decrease with displacement until both parameters coincide with the steady state
values. If the stress is held constant, then acceleration of slip must result.
Similarly, slip may take place for conditions plotting below the dashed curve.
In this case the velocity of slip is less than the steady state value and t
must increase. If velocity is held constant, u will increase with t until the
steady-state value is reached. If stress (u), is held constant or decreases
then 8 must decay with total elapsed time.

Curves labeled by points a-i in Figure 6 show the approximate paths
followed for the experiment of Figure 3. Point (a) in Figure 6 corresponds to
the first peak in friction for slip at 1.8 x 10"3 cm/sec. Contact time is
approximately 400 seconds. As sliding progresses, u decreases along the path
a-b and stabilizes at b. Closure of the hydraulic valve prevents further slip
at b. Any additional slip results in a decrease in stress in the sample which
drops y into the field below the dashed curve. Because 8 is less than the
steady-state value, contact time increases along the path b-c. Assuming that
slip is small during creep, displacement will not change the population of
contacts significantly and contact time will be approximately equal to the
duration of creep. At c the valve is opened and stress rapidly rises to the
-4

second peak, d, where the slip velocity is 1.2x 107" cm/séc. In response to

slip, t and y follow the path d-e and stabilize at e. Again at e, the valve
is closed and creep occurs following the path e-f. Path f-g is the loading of
the sample at a velocity of 1.4 x 10‘3 cm/sec and g-h is slip at that veloc-

ity. Creep following closure of the value rollows h-i.
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SUMMARY AND DISCUSSION

Equation (11) used with equation (8) appear to give an adequate represen-
tation of the experimental observations reported here for the variation of
friction with time, displacement and slip velocity. It is quite possible that
other mathematical relationships could give as good or perhaps better represen-
tation of the data. However, the results presented here clearly establish the
qualitative effect of several experimental parameters affecting rock friction.
Specifically, the coefficient of friction can be expressed as the product of
the parameters C and F. Parameter C depends on the time of contact as given
approximately by equation (7) and F depends on velocity of slip as given
approximately by equation (10). During slip, time of contact depends on §=1
and for changes in velocity t relaxes to a new value over the characteristic
displacement, dc, equation (8). The decrease in contact time with increasing
velocity causes a decrease in friction for steady-state slip. Hence, there
are two competing velocity effects. The first is a transient effect giving an
immediate increase in friction for an increase in slip velocity. The second
arises indirectly from decrease in contact time with increased velocity and
becomes evident only after finite displacement at the new velocity.

The effect of contact time on friction apparently arises because creep at
contacting asperities increase the actual area of contact between the sliding
surfaces. While the transient velocity effect given by parameter F is identi-
fied here with the breakdown of adhesive junctions at the points of contact,
it is not clear what specific processes control asperity failure. Simple

pulling apart of the adhesive junctions without surface damage, brittle
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failure of the contacting asperities and ploughing may all be important proc-
esses. The presence of wear-generated gouge along the surfaces gives evidence
for at least some brittle processes during slip. The observations on time of
contact suggest that creep determines the size, i.e. cross sectional area, of
the junctions that subsequently fail, at least in part by velocity dependent
brittle processes.

Additional experiments are needed to explore the details of time, dis-
placement and velocity dependence as a function of rock type, pressure and
especially temperature. Generally, friction data in the literature are inade-
quate to test for the time, velocity and displacement dependence reported here
for normal stress above approximately 1 kilobar. The similarity of observa-
tions for frictional instabiltiy for different types of rocks and for very
different normal stresses suggests that the effects noted above are general
characteristics of rock friction at room temperatures. Time-dependent effects
that agree with the general form of (7) have been reported for normal stresses
from 19 bars to 700 bars for a variety of rocks (Dieterich, 1972; Tuefel and
Logan, 1977). Evidence for the parameter dc is limited and has been noted
only in the study by Dieterich (1978b) and the present study. However, the
model for the transition from stick-slip to stable sliding by Dieterich (1978b)
specifically requires a characteristic displacement and successfully accounts
for data to normal stresses of 1.2 kilobars. Data for the velocity dependence
of the type given in equation (10) is reported here for the first ﬁime and
needs additional experimental corroboration. Tﬁe similarity of the velocity
dependence of F to the widely observed dependency of the brittle strength of

silicates suggests that this effect may also be general.
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'FIGURE CAPTIONS

Figure 1. Coefficient of friction, u, vs. displacement. Slip velocities are
shown by the arrows above the experimental curves.

Figure 2. Coefficient of friction vs. displacement. The driving ram was held
fixed for “400 seconds, then advanced at the velocities indicated above
the experimental curve.

Figure 3. Comparison of experimental results from Fig. 1 with empirical
friction laws. Curve (A) employs equations (2) and (8) with ch = 0.72,
coF = 0.005 and e3 = 0.1. Curve (B) employs equations (8) and (9). Curve
(C) employs (9) and (11) with d, = 2x 10-3 cm, ¢; = 0.69, c, = 0.010,
e3 = 0.5, f; = 1.0, f, = 25. and f3 = 2 x 103,

Figure 4. Comparison of experimental results with empirical friction laws (9)
and (11). The upper curves give y as a function of displacement from the
experiments of Fig. 1 and for the model. Lower curve gives velocity as a
function of displacement used for the model.

Figure 5. Simulation of the experimental data of Fig. 2. Friction parameters

for equations (9) and (11) are: dc =2x10°3 em, ¢

1 = 0.69, 02 = 0.013,

¢y = 0.5, f; =1.0, £, =20., f, =2x 10-3.
Figure 6. Coefficient of friction vs. time of contact from equation (11) using
the parameters given for Fig. 5. The solid curves give slip veloecity.

The dashed curve gives u vs. t for steady state slip, t = dc/v. The

dotted curves a-i show the path followed by the experiment in Fig. 2.
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MODELING OF ROCK FRICTION, PART 2:

SIMULATION OF PRESEISMIC SLIP

James H. Dieterich
U.S. Geological Survey
345 Middlefield Road
Menlo Park, CA 94025
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Part I of this study first presents experimental results for friction as
a function of time, displacement and velocity and then develops constitutive
relationships that permit a fairly agcurate simulatioﬁ of the experimental
phenomena. This portion of the study applies those results to the modeling of
preseismic slip and the initiation of unstable slip. The motivation for this
analysis is twofold. First, some recent experiments (Dieterich, 1978a) provide
detailed data for preseismic slip that afford an opportunity to further test
the constitutive equations in a system with fairly complicated mechanical
interactions. The model presented below has the mechanical elements needed to
represent the principal interactions that have been identified in the labora-
tory experiments. Simulation of earthquake faulting probably requires analo-
gous interactions. The model is two-dimensional physical properties and
stresses along the sliding surface are permitted to vary as a function of
position and the elastic properties of the sample and test apparatus are
represented. Second, the process of preseismic slip in laboratory experiments
holds obvious interest as a possible earthquake precursor. At present, the
applicability of experimental preseismic slip data for earthquake precursor
models is quite conjectural because the mechanisms and parameters controlling
preseismic slip are poorly understood. The simulations presented here may
provide some insight into the mechanics of preseismic slip in laboratory

experiments.
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PRESEISMIC SLIP

Stable slip as a premonitor of unstable (seismic) slip occurs for a
variety of experimental conditions and for different types of sliding surfaces
(for example: Scholz et al., 1972; Logan et al., 1972; Byerlee and Summers,
1975). While the magnitude of the preseismic slip displacements observed for
the studies cited above is extremely variable, it appears that at least small
amounts of stable slip always precede slip instability.

Scholz et al. (1972) have examined preseismic slip on ground surfaces of
Westerly granite under biaxial loading conditions. They observe preseismic
displacements on the order of 10-3 cm, independent of strain rate. The
duration of preseismic slip is inversely proportional to strain rate. Plots
of fault displacement against time show accelerating displacement rates up to
the time of unstable slip.

The study by Dieterich (1978a) employed a biaxial configuration with
Westerly granite (Figure 1) similar to that of Scholz et al. (1972). The
‘principal refinement was the addition of several strain gages adjacent to the
surface that permit the propagation of preseismic slip along the surface to be
monitored. The gages at positions.l, 2 and 3 in Figure 1 record strains normal
to the slip surface and the remaining gages 4, 5, ... 16 record shear strains
parallel to the surface.

Two distinct stages of preseismic slip were consistently observed in
those experiments. The first stage consists of a slip event that begins at
some point on the surface and slowly propagates over most or all of the

sliding surface. Figure 2 is a representative example given by Dieterich
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(1978a). Shear strains are plotted as a function of time for several locations
adjacent to the surface. The curves are arranged by position on the sliding
surface and the numbers labeling the curves correspond to the strain gages
shown in Figure 1. Prior to slip, the rams that load the sample increase the
shear stress at an approximately constant rate. A leveling or a decrease in
strain amplitude indicates slip on the fault adjacent to the strain gage. For
the example in Figure 2 slip begins at gage 15 and propagates across the
sample. Once slip starts at a location on the fault, stable slip continues at
that point until the time of the instability.

The breakout of the first stage of slip at the end of the sliding surface
initiates the second stage of slip which is of very short duration, 0.01 to
0.001 ;econds. Note in Figure 2 that unstable slip occurs a short time after
the slip event reaches the end of the sample at gage 5. While the first stage
of slip appears to be intrinsically stable, the second stage rapidly becomes
unstable and is characterized by acceleration of slip rates and falling
stresses. Other preseismic slip events vary in detail and sometimes show
greater complexity than the example in Figure 2. However, all have the common
characteristic that unstable slip follows a short interval of falling stresses
that is triggered after stage I reaches the end of the sample. Hence, most or
all of the surface is slowly sliding at constant or slightly decreasing stress
at the time the second stage of slip begins.

Figure 2 gives evidence for velocity dependent friction because the
stresses are higher during the low velocity stage I slip than during the high
velocity slip of the instability. Part I of this study explains that type of

velocity dependence as originating from'a decrease in the time of asperity
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contact with increasing velocity. Independent observations show that friction
decreases with time of contact. Slip instability appears to be triggered as a
velocity perturbation when the slip event breaks out at the end of the surface.
This causes a jump in slip velocity that in thrn causes the friction to
suddenly drop.

The stability of the first stage of slip appears to be associated with
the discovery that }nhomogeneity of stress relative to the critical stress for
slip initiation cogtrols the amount of stage I slip. The greater the inhomo-
geneity the greater the amount and duration of preseismic slip. For two
experiments arranged to give homogeneous stress with respect to the frictional
strength, no stage I preseismic slip was observed. It was concluded by
Dieterich (1978a) that during the first stage of slip, increasing external
load is required to drive the boundary between the slipping and unslipped
portions of the surface into the regions whefe the applied stress is less than

the frictional strength.
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MODEL

Figure 3 illustrates the finite element model used to simulate the
experimental configuration of Figure 1. Slip between the two triangular blocks
is represented in this model by the motion of a single triangular block on a
planar surface. During slip, friction at points along the surface satisfy the
relationship developed in the first part of this study (Dieterich, this

volume):

: 1
u=1Jc, +c, log (c,t + 1)||f, + (1)
1 2 3 1 f
’ f2 log _53. +102

where py is the coefficient of friction which is given by the ratio of shear

stress, 1, to normal stress, ¢, during slip. The parameters cl, cz, 03, fl,

29 f3 are constants; t is the time of contact; and 5 is the slip velocity.

During slip at constant velocity t was found to be a function of displacement,

f

§, velocity, 5, and initial time of contact, t :

d 3 - ozt
t = —Q(—‘S— to> de (2)
where 8, is the initial displacement and d. is an experimental parameter with
values characteristic of the surface roughness.

For the experiments, hydraulic rams apply shear and normal stress to the
sliding surface. Those rams have finite stiffness and therefore interact with
the blocks during loading and slip. mémd%ofwdmsmwanmweB
represent the rams in the model. The total stiffness of the springs was
specified to give a shear stiffness for slip of U400 bars/cm which falls within

the range of stiffnesses measured for the hydraulic system under various loads.
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In the model motion of the rigid boundaries distorts the springs and applies
uniform loads to the sides of the block. To simplify the analysis the left
boundary compresses the springs while the right boundary extends the springs
by an equal amount. Hence, there is no change in the total normal stress
acting across the surface. For these simulations, normal stress is independ-
ently prescribed and may vary systematically by position on the surface.
Frictional strength is the product of prescribed normal stress and the coef-
ficient,of'friction. It will be recalled that inhomogeneity of shear stress
relative to strength controls preseismic slip in the experiments. Hence,
specified variations of normal stress simulate the inhomogeneity that controls
preseismic slip.

Quasi-static slip and deformation of the block and loading system are
computed with the finite element method. The triangular finite element mesh
shown in Figure 3 represents the block. The mesh consists of an array of
elastic triangular elements connected at nodal points. The Lame” elastic
constants are equal to 2.5 x 1011 dynes/cmz. Strains within each element
are constant giving a displacement field that varies linearly by position
within the element. Each spring is represented by simple one-dimensional
elastic elements with two nodal points that connect the element to the block
and to the rigid driving boundary.

Nodal displacements are determined from a system of equations having the

form:
{F} = [K]{8} (3)

where {F} is a vector listing the x- and y-components of the nodal forces, {6}
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is the corresponding vector of nodal displacements and [K] is the stiffness
matrix. Procedures for the determination of [K] are found in the standard
references. Stress and displacement boundary conditions are incorporated into
(3) by specifying equivalent nodal forces and nodal displacements. This yields
a system of simultaneous equations for the unknown nodal displacements.

Frictional stresses on the sliding surface are represented by lumped nodal
forces. For the computations reported here, the sliding surface is assumed to
be rigid. Hence the y-component of nodal displacement at each node on the
surface is fixed at zero. It is noted that non-uniform displacements on an
initially planar surface will cause‘warping and the appropriate boundary con-
dition is fot constant normal stress instead of fixed displacements perpéndic—
ular to the surface. Comparison of results using both boundary conditions
yielded indistinguishable slip histories. The displacement condition was
chosen because iterative solution of (3) was significantly more rapid than for
models with the stress boundary condition and therefore permitted more
economical simulations.

A time marching procedure is used to find the displacement fields at
successive time steps. The duration of the time steps, AT, is variable and
depends on the rate of loading or the rate of slip. Because u changes over
the characteristic displacement, dc, AT is selected to give slip at any point
that is much less than dC. For the initial stages of slip when displacement

rates are low:
7
AT =~ 10° /(K x R) (4)

where K is the total stiffness of the springs and R is the rate of displacement

of the rigid boundaries that distort the springs.
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During the later stages of preseismic slip, the slip rates accelerate and the
time steps from (4) give displacements that greatly exceed dc. Therefore, if
the maximum slip displacement, A8, during a time step is greater than dc/S.

then the time step, AT', for the next step is set at

AT' = dc AT/ (A8 x 5) (5)

Motion of the rigid boundary connected to the springs is at constant
velocity. For each time step those nodal displacements are appropriately
incremented and entered as displacement boundary conditions in (3). Along the
sliding surface the x-component of either the nodal force or nodal displacement
are specified. Initially, the simulation begins with all displacements on the
surface held fixed. The boundary condition changes, permitting the nodes to
slide when the applied force equals ﬁhe frictional force. Conversely, if the
velocity of a sliding node is less than or equal to zero, then the displacement
of the node is again held fixed.

An iterative procedure coupled to the solution of (3) gives the frictional
force from equations (1) and (2) that satisfy the displacements and velocities.
An initial estimate of displacement and sliding velocity of each surface node
for the current time step is first obtained by extrapolation of the veloecity
from the previous time step. From equation (2) velocity and displacement give
an initial estimate of contact time that is used in (1) to obtain u at the end
of the time step. This approximation of MU is used to find the frictional force
for the boundary conditions for equation (3). Solution of (3) yields an
improved estimate of displacement, velocity and t which are used again to

obtain a better estimate of u. The procedure continues until the solution no
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longer changes. The simulation is then continued for another time increment.
Because the computations are quasi-static, the analysis terminates when
unstable slip begins. The criterion for instability in these simulations was

for slip velocity in excess of 10 cm/sec.
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RESULTS

For these simulations the shear stress on the surface prior to slip varies
somewhat with position, especially near the ends. Apparently the truncated
corners of the triangular blocks prevent homogeneous loading by the springs.
Inhomogeneity of shear stress on the sliding surface relative to the frictional
strength was found to be a principal determinant of the amount of preseismic
slip in the experiments of Dieterich (1978a). Figure 4 gives the results of a
simulation in which the prescribed normal stress distribution was set to give
a friction distribution that is everywhere identical to the shear’ stress. The
average shear stress at the beginning of slip is 60 bars. Parameters for u,
equation (1), were obtained using the results of the first part of this study

(Dieterich, this volume), and have the following values: ey = 0.69, Cy = 0.015,

05, £, 21.0, £, =20, and £, = 5 x 10-4, 1Initial time of contact,

%3

2

1
104 sec., and dc = 5 x 10-% cm, which is appropriate for the measured

surface roughness of 2 x 10~2 cm.

No significant preseismic slip occurs in this simulation. Figure 4 plots
the component of shear stress parallel to the surface as a function of time
for the row of elements in Figure 3 that have a single node on the sliding
surface. The position of those elements corresponds approximately to the
position of the strain gages used in the experiment. As with the experimental
results, each curve in Figure 4 is arranged by position on the sliding surface.
A leveling or decrease in amplitude of the curves indicates slip adjacent to
the element. As shown by Figure 4, slip rapidly accelerates giving an insta-

bility without a propagating preseismic slip event.

154



39

Figure 5 shows the results of a simulation with a friction distribution
similar to that of the experiment shown in Figure 2. For this model, the
difference between the frictional strength and shear stress prior to slip was
specified to increase linearly along the sliding surface. The frictional
strength of the extreme ends of the surface differ by a factor of 1.5. Other-
wise, all conditions and parameters for ﬁ are identical to the previous
simulation. In this case a distinct period of stable sliding precedes the slip
instability. The details of this simulation closely resemble the details seen
in the experimental result of Figure 2. Slip begins at the end of the surface
(bottom curve) where the strength is least and propagates uniformly across the
surface. The upturn of the curves immediately prior to slip is caused by slip
on the nearby segment of the surface which increases the rate of loading on
the adjacent unslipped portion of the surface.

Once slip begins at a node, slip continues with slightly decreasing
stress. Instability and rapid stress drop occur only after the propagating
front of the boundary between the unslipped and the stably slipping segments
of the surface breaks out at the end of the sample.

Figure 6 gives the results for the model with frictional strength arranged
to give a bilateral propagation of preseismic slip. Again the parameters for
u, d, and t, are identical to the previous models. In this case the weakest
"point on the fault is near the middle of the surface and strength (measured
relative to the shear stress) increases linearly toward each end. A sequence
of events similar to that of Figure 5 is also seen here. The length of the
zone of preseismic slip grows approximately linearly with time and instability

occurs after stable slip has propagated across the entire surface.
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The experimental results of Scholz et al. (1972) show an acceleration of
preseismic slip rates prior to instabilty. Slip displacements were not
recorded in the experiments of Dieterich (1978a). However, an analysis based
on the characteristics of strain records suggests that the smoothly accelera-
ting rates of displacement observed by Scholz et al. (1972) result from growth
of the area of preseismic slip (Dieterich, 1978a). Figure 7 plots preseismic
displacements for a point near the center of the surface against time for the
simulations of Figures 5 and 6. The displacement curves for the simulated
events show an acceleration of displacement rates similar to that seen by
Scholz et al. (1972). The agreement of the results of Figures 5, 6 and 7 with
the strain and displacement records of Dieterich (1978a) and Scholz et al.
(1972) respectively, indicate that the slip phenomena of the simulations give
a good approximation to the phenomena of those experiments. Although slip
rates in the simulations accelerate with time, it is interesting to note that
the rates of slip at the time of breakout of the slip events are over an order
of magnitude less than the rate of loading. Because the entire surface is
sliding at that time, the block must then greatly accelerate to the loading
velocity, just to keep the stress from increasing. This extreme jump in slip
rates appears to cause a sudden drop in friction because of the decrease in
contact time with velocity given by equation (2).

The correlation between triggering of unstable slip and breakout of pre-
seismic slip at the end of the surface was tested with the simulation shown in
Figu;e 8. The conditions for this model are indentical to the model of Figure
6 except that the ends of the sliding surface are pinned. Therefore, the zone

of preseismic slip was not allowed to break out at the ends of the sliding
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surface, and slip could not homogenize the stresses to the frictional strength.
No instability occured in this simulation. Unlike the simulations of Figures
5 and 6, slip rates for this model ceased to accelerate when the slip boundary
encountered the pinned ends.

Surface roughness is a principal experimental determinate of slip insta-
bility with smoother surfaces having a greater tendency for unstable slip than
rough surfaces (Dieterich, 1978b). Dieterich (1978b) gives a quantitative
explanation for this effect based on the correlation between surface roughness
and critical displacement, dc. The simulation of Figure 9 has conditions
identical to that of Figure 6 except that dc = 5.0 x 10~3 cm compared to
b % 10'” cm for the previous simulations. While rapid slip occurs following
breakout of the zone of stable slip, no instability occurs in this simulation.
The maximum slip velocity is 6.4 x 102 cm/sec. Another simulation with
dC = 5.0 x 10-2 cm greatly smoothed out the accelerated slip event seen in
Figure 9 and yielded a maximum slip rate of 2.5 x 10-3 cm/sec. The rate of
loading in these simulations would give a stable slip rate with no change in

Stress of 7.1 x 10-4 cm/sec.
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DISCUSSION

Some of the genéral characteristics of preseismic slip have been explored
with the above simulations. Overall, the results agree with the phenomena
reported by Dieterich (1978a) and also appear to be compatable with the data
of Scholz et al. (1972). It is concluded that constitutive relationships (1)
and (2), which are developed in the companion paper (Dieterich, this volume),
give an adequate representation of the coefficient of friction as a function
of time, displacement, velocity and surface roughness. It appears that precise
simulations of experimental observations can be obtained by careful selection
of the model and friction parameters.

Inhomogeneity of stress relative to friction strength causes preseismic
slip. In experiments (Dieterich, 1978a) and in these simulations, little or
no preseismic slip takes place if the stress is homogeneous with respect to
the strength. For inhomogeneous distributions, stable slip begins at a point
and propagates along the surface. The observations by Scholz et al. (1972)
that the duration of preseismic slip is inversely proportional to the loading
rate while the amount of slip and the form of the displacement vs. time curves
are independent of loading rate indicate that preseismic slip is controlled by
external loading. An analysis by Dieterich (1978a) that is confirmed by these
simulations shows that the preseismic displacements observed by Scholz et al.
(1972) are associated with the growth of the area of preseismic slip. If the
surface stress is inhomogeneous with respect to the strength it is clear that
an incremental increase of external loading is required to incrementally expand

the area of slip into regions on the surface where the stress is less than the
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friction. Hence, preseismic slip is intrinsically stable and is driven by
external loading.

Slip instability in the simulations and experiments occurs after preseis-
mic slip breaks out at the ends of the sample. Prior to the breakout, slip
rates are less than rates of boundary loading. Hence, at the time slip reaches
the end of the surface slip rates must jump to the loading rate in order to
keep the stress from increasing. However, equations (1) and (2) predict that
friction must decrease with displacement at the higher slip velocities because
the time of contact decreases with increasing velocity. The displacement
weakening leads to unstable slip.

Conditions for the occurence of unstable slip have been outlined by
Dieterich (1978b) using a simple block and spring model and somewhat more
primitive constitutive relationships than those employed here. The simple
model would appear to approximate the conditions in the experiments only after
slip breakout when the stress and friction are homogeneous and the entire

block is uniformly sliding. According to the theory, instability occurs if

Auo
E 3 (6)
[

where K is the shear stiffness of the sample and loading system, o is the
normal stress and Au is the change in the coefficient of friction that takes
place over the characteristic displacement, dc. As originally employed, Ap is
the difference between friction using the time of static contact and the
steady-state friction at the loading velocity. However, the results discussed
in this study suggest that time of static contact might be altered by preseis-

mic slip. Therefore, it would be more appropriate to use contact time when
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slip breaks out at the end of the sample rather than time of static contact
prior to slip.

This raises an interesting point. Considering the uncertainty in the
specification of contact time the analysis of Dieterich (1978b) using static
time of contact is in surprisingly good agreement with experimental data for
the transition from stable to unstable slip as a function of normal stress,
stiffness and surface roughness. For those experiments it is eonsidefed likely
that preseismic slip took place prior to instability. In the preseismic slip
experiments considerable trial and error were fequired to give a few events
with homogeneous stresses and no preseismic slip. No such care was exercised
for the experiments used to analyze the transition from stable to unstable
slip. It appears that the analysis of Dieterich (1978) was successful because
preseismic displacements were small and at a low velocity. If this were the
case, the static time of contact would not be much different than the time of
contact when slip reached the end of the sample. This interpretation-.is
supported by the model simulations of this study. For example, in the simula-
tions of Figures 5 and 6, the time of static contact was 10% sec while the
average times of contact at slip breakout were 3 x 103 and 5 x 103 seconds
respectively. By comparison the time of contact for steady slip at the loading
velocity was 1.4 seconds. Using static time and steady state time with loading
velocity in equation (1) gives Au = 0.055 while use of contact times at slip
breakout and steady state contact time gives Ap = 0.046 - 0.050. The differ-
ence between these values is well within experimental error. Because preseis-
mic displacements increase with the length of the slipping zone (e.g. Fig. T7)

larger sliding surfaces would have pfoportionally larger preseismic
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displacements and the use of static contact time would probably lead to signi-
ficant error for the prediction of the transition from stable sliding to stick-
slip.

A principal reason for this detailed study of preseismic slip is the
potential relevance to earthquake prediction (Dieterich, 1978a). The consis-
tency with which preseismic slip is observed in laboratory experiments suggests
by analogy that preseismic fault displacements may be a regular premonitor to
earthquake instability. A source of uncertainty in applying experimental
results to earthquake faulting is the question of scaling. Of particular
importance is the possibility that for earthquake faults, preseismic slip may
take place over relatively small fault dimensions with earthquake slip propa-
gating well beyond the zone of initial slip (Dieterich, 1978a). If this is
the general case then preseismic slip might be of little practical interest
for earthquake prediction. Unfortunately the scaling question may not be
accesible to direct experimentation. The good agreement between the results
of this study and experimental data suggests that simulations might yield

reliable results for earth faulting.
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FIGURE CAPTIONS

Figure 1. Schematic diagram of the experiment by Dieterich (1978a). Arrows
indicate loading directions.

Figure 2. Shear strain vs. time record from Dieterich (1978a). Numbers refer
to the strain gages shown in Fig. 1. Arrows mark the beginning of slip
at each gage.

Figure 3. Finite element model of the experiment shown in Fig. 1. Arrows
indicate the direction of motion of the rigid boundaries that distort the
springs and load the block.

Figure 4. Computed stress vs. time for elements adjacent to the sliding
surface. Shear stress prior to slip is homogeneous with respect to the
frictional strength.

Figure 5. Computed stress vs. time for elements adjacent to the sliding
surface showing unilateral propagation of stable slip prior to instabil-
ity. The difference between frictional strength and shear stress prior
to slip increases linearly along the surface.

Figure 6. Computed shear stress vs. time for elements adjacent to the siding
surface showing bilateral propagation of stable slip prior to instability.

Figure 7. Displacement vs. time for the center nodes in the simulations of
Fig. 5 and Fig. 6 (A and B, respectively). The arrows mark the breakout
of slip at the end of the sliding surface.

Figure 8. Computed shear stress vs. time for the elements adjacent to the
sliding surface. This simulation is identical to the simulation of Fig. 6
except the ends of the sliding surface are pinned. Only the first third

of the simulation is shown.
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Figure 9. Computed shear stress vs. time for elements adjacent to the sliding
surface. The conditions for this simulation are identical to Fig. 6

except dc = 5 x 10~3 om instead of 5 x 10-4 cm used for Fig. 6.
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THE MECHANICS OF DYNAMIC SHEAR CRACK PROPAGATION

L. B. Freund

Division of Engineering, Brown University, Providence, RI 02912

INTRODUCTION

The mechanical modeling of an earthquake source has been a research objec-
tive in seismology for many years, and a recent trend in this area has been to
view the source as a dynamically extending shear crack. In pre-cracked laboratory
specimens, shear cracks often tend to extend in a direction oblique to the initial
crack direction under stress. On the other hand, it is almost universally assumed
that shear cracks serving as earthquake source models extend as planar cracks, and
this assumption appears to be consistent with observation. Possible reasons for
the planar growth are that a pre-existing fault provides a weakened path which is
preferential for crack extension and that the confining pressure reduces the effect
of tensile stresses near the crack tip which might otherwise lead to oblique crack
growth.

The emphasis here is on basic concepts which seem to be important in dynamic
shear crack analysis, and methods of analysis for specific problems are not con-
sidered in detail. A number of significant contributions which have concentrated
on the dynamic shear fracture process have appeared in the literature in recent
years, including those by Burridge [1], Burridge and Halliday [2], Fossum and
Freund [3], Husseini, et al. [4], Kostrov [5,6], Kostrov and Nikitin [7], Richards
[8], and Weertman [9] on analytical solutions to particular problems, and those by
Andrews [10,11], Das and Aki [12], and Ida [13] on numerical solutions to particu-
lar problems. The present discussion is based primarily on these contributions,
as well as on the results of research on dynamic tensile fracture which were

recently reviewed by Freund [14]. It should also be noted that a number of signi-
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ficant contributions which have concentrated on the stress wave radiation from a
propagating shear crack have also appeared, including those by Brune [15],

Husseini and Randall [16], Madariaga [17] and Richards [18].
SOME GENERAL RESULTS FOR PROPAGATING SHEAR CRACKS

Two general concepts which have played a major and fundamental role in the
study of dynamic crack propagation are those of dynamic stress intensity factor
and dynamic energy release rate. In this section, these concepts are given mathe-
matical definitions in terms of the elaétodynamic stress and deformation fields

which prevail in a body of isotropic elastic material during crack propagation.

Stress and Particle Velocity Near a Crack Tip

A number of analytical solutions for the propagation of a sharp crack through
a plane elastic solid are available. It has been observed for some time that the
dependence of the stress field on spatial coordinates local to the crack tip is
common to all solutions. For running cracks the spatial distribution is dependent
on the speed of crack propagation, and it reduces to the appropriate expression for
the stationary crack when the crack speed is set equal to zero. It can be demon-
strated that this common spatial dependent of the near tip elastic field for running
crack solutions is a general results, independent of the configuration of the body
and the details of the loading system. The only quantity which varies from one spe-
cific problem to another is a time-dependent scalar multiple of the universal spatial
dependence. The corresponding result for elastostatic fracture mechanics was first
presented by Irwin [19] and Williams [20]. The general result for rapid propaga-
tion of a mode II shear crack may be derived by following the asymptotic analysis
of Freund and Clifton [21], who presented the corresponding results for dynamic
propagation of a mode I tensile crack at sub-sonic speeds.

A Cartesian coordinate system is oriented in the body in such a way that the

particle displacement is in the x,y-plane; see Fig. 1. The region of the plane
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occupied by the body is denoted by D and the outer boundary by S. The inner
boundary of D consists of the crack faces, except near the crack ends where
the inner boundary is augmented by small loops surrounding the crack tips. The
loops have arbitrary shape, but they are fixed with respect to the moving crack
tips. The outer boundary S 1is subjected to traction boundary conditions, dis-
placement boundary conditions, or some suitable combiﬂation of both. Tractions
may be acting on the crack faces, but they are assumed to be bounded in magnitude
near the crack tips, and no body forces are acting. For simplicity, it is assumed
that conditions are such that crack extension occurs in mode II, the plane strain
shearing mode.

Attention is directed to the crack tip surrounded by the loop L, and a
local Cartesian coordinate system (&,n) and a local polar coordinate system
(r, 6), both of which move with the crack tip, are introduced as shown in Fig. 1.
The crack is assumed to be extending in its own plane, and the instantaneous rate
of extension v 1is any continuously varying function of time. With the require-
ment that the local energy density must be integrable, the following general re-
sult may be established by application of the asymptotic method described in [21]:
For all plane elastodyngmic solutions for running mode II cracks the shear stress

component ny and the particle velocity component ﬁx are given by

K,(t) cos (8,/2) cos (8 _/2)
_ 2 f 4 2.9 s
Oxy = ;g:————— uazas —155 1+ as) 175 (1)
m R(v) rp rg
. va_ K, (t) | sin (8,/2) sin (8_/2)
b, = ——2 152' = 4L # “2) 172 (2)
. uR(v) V2r rp r

for 0 < v < Vo and by
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K:(t) cos (mez) H(-E-lenl) sin (mr)

hr ™ < + = ' (3)
Vor ry (-E-len’) tan m

a vK*(t) sin (m8,) H(-£-B_|n|) sin (wm)

A P £ 2 ° (1)
2uap Vor ry (-E-lenl)m tan m

for Vv, S V<v, as r* 0. The subscripts £ and s refer the longitudinal

and shear wave speeds vp and Vgs M is the elastic shear modulus, and

ap = (1 - v2/v12,_)l/2 . rzeiel = £ 4+ iazp (5)
ag = (1 - \'2/v§)l/2 . rseies = E+ iusn' (6)
By = W2 - Y2 | wm = ran” [uazss/(l + az)z] (7)
% R(v) = bapa - (1 + u:)2 (8)
Be) s{ + 0 TR0 __ (9)
0 t<O0

Similar expressions may be written for the local crack tip variation of other
components of stress and particle velocity for both crack velocity ranges. How-
ever, the above expressions are typical and perhaps are the most important for
discussing mode II shear fractures, and the expressions for other components are

not included here.

The expression (1) has been normalized with respect to the relation

£Zim
r+0

/2

» il
K2(t) = (2nr) ny(r, 0, t) (10)

The time dependent scalar K2(t) is then the mode II stress intensity factor
of elastic fracture mechanics. For crack tip speeds in the range 0 < v < Vgs

the local stress and velocity vary as the inverse square root of distance from
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the crack tip. The algebraic sign of the coefficient of the square root singular
factor depends on whether the crack speed is less than or greater than the Rayleigh
surface wave speed LA The function R(v), which appears in (1, 2) and which is
defined in (8), is the so-called Rayleigh wave function. This function has the
properties that R(% vr) =0, Rv) > 0 for 0 < v« V,s and R(v) < 0 for

vV, EVe Vg Examination of (1, 2) leads to the conclusion that shear traction

on the prospective fracture plane 6 = 0* and particle velocity on the fracture
surface 6 = * m have opposite algebraic sign if 0 < v < Y and the same sign
if v, v v, This observation has important implications in considering
energy fluxes associated with crack growth. It should also be noted that the
expression (1) represents only the dominant singular term in the expansion of

the elastic field about the crack tip, and the expansion could be continued. For
example, if the crack faces are subjected to tractions such that o+ t_ as

Xy o
E+ 0 and n =% 0, then the "order one" term in the expansion is simply T,
The next term in the expansion is proportional to /;, and so on. Of course,
if K2(t) = 0 then the higher order terms in the expansion take on added impor-

tance.

The expression (3) has been normalized with respect to the relation

Kz(t) = fi‘(‘)‘ Vor " - (r, 0, t) (11)

%
so that the time dependent scalar K2(t) is also a mode II stress intensity
factor, although the singularity in stress for Vo<V <V, is in general weaker
then the inverse square root singularity which arises for 0 < v < L As can be

seen from (7), the exponent m which appears in (3, 4) varies continuously from

m=0 at v Vgs UP to a maximum value m = 1/2 at v = ¥y Y2, and back to

m 0 at v = V- It should be noted that the shear wave contribution to the

expressions (3, 4) is very different from that in (1, 2). Because the crack tip
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speed is greater than the shear wave speed, no shear waves radiated from the
crack can propagate ahead of the running crack tip. Instead, shear wave motion
can exist only behind discrete wavefronts which appear in the form of Mach waves
trailing from the extending crack. In the local (£, n) coordinate system, these
Mach wavefronts coincide with the lines § + lenl = 0. In the solution of a
particular mode II crack propagation problem Burridge [1] noted that the stress
singularity for crack speeds in the range VSR ¥ Ry, has the form shown in (3).
It is concluded from an application of the asymptotic method of [21] that this is
a general result, common to all mode II crack propagation problems.

Finally, the local crack tip field for dynamic propagation of a crack in
the anti-plane shear mode, or mode III, is included. Referring once again to
Fig. 1, the only nonzero component of displacement is in the direction normal to
the x,y-plane which is, say, the z-direction. The shear stress component ayz

and the particle velocity ﬁz are

551 cos (0,02 (12)
(o = cos (6 _/2 12
yz 2nr ’ :
s
E VK, (t)
u = ————— sin (93/2) (13)
= uas /2wrs

as r + 0 for any crack speed in the range 0 < v < s F The notation is the
same as that for mode II, except for the appearance of the mode III stress inten-
sity factor,

£im
r0

1/2

K3(t) = (2rr) cyz(r, o T < (14)

As can be seen from (12, 13) the local stress and velocity fields have the charac-
teristic square root singular dependence on distance from the moving crack tip.

The Dynamic Energy Release Rate

Consider once again the two-dimensional body of linear elastic material con-
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taining a crack shown in Fig. 1. For present purposes, it is not necessary that
the crack be mathematically sharp but it is assumed that the loop L originates
on one crack surface, that it terminates on the opposite crack surface, and that
it completely surrounds the crack tip zone, whether this zone is a point or a
diffuse region. As before, the loop is considered to be fixed with respect to
the crack tip, which is moving at an arbitrary rate. The figure represents the
body at a fixed instant of time. As was shown in [14], a general expression for
energy absorption rate may be derived in terms of the local crack tip stress and
velocity fields without specification of a particular mode of crack propagation.
As the crack tip surrounded by L moves under the action of the applied
loading, mechanical energy flows through L at a rate which will be denoted by
F. This energy flux F may be computed in terms of the elastic field of the
body by application of an overall energy rate balance. Let P, T and U denote
the rate of work of the applied tractions, the total kinetic energy of the material
in D, and the total strain energy of the material in D, respectively. Then
the flux of energy through L 1is equal to the difference between the rate of
work of the applied loads and the rate of increase of internal energy in D, that

is,
F=P- (T + U) (15)

If the terms on the right side of (15) are expressed in terms of the instantaneous
stress and velocity fields in the body according to standard definitions and the

divergence theorem is applied, then the following main result is obtained
F = [o. Nty ¥ Casls s + p\.xu) vn ]dL (16)
L i394 7 2.\ ii 1S 171 X

where °ij and ﬁi are the stress and velocity components, n. is the normal

to L pointing away from the crack tip, and p is the material mass density.
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The interpretation of the terms in (16) is straightforward. The first term is
the rate of work of the material outside of L on the material inside L, that
is, it is the sum along L of the inner product of traction and particle velo-
city and, if L were fixed with respect to the material, this would be the only
contribution to the energy flux. Because L 1is moving through the material,
however, material particles cross L. Associated with each material particle

is an energy density, and the second term in (16) represents the contribution to
the energy flux due to the flux of energy-bearing material particles.

Several remarks should perhaps be added here concerning previous work on the
energy flux (16) or quantities related to it. First of all, in the original
derivation of (16) in [22], only the limiting case in which L is shrunk onto
the crack tip was considered. It seems that the expression (16) provides a
basis for unification of several apparently diverse results on dynamic energy
release rate, however, and consideration of limiting cases of L is postponed.
Secondly, F does reduce to the appropriate form of the path-independent J-
integral [23] for the special case of quasi-static deformation. In general,
however, the value of F will indeed depend on the path employed to evaluate
it [22,24]. The fact that F is path-independent under the special condition
that the complete elastic field is constant with respect to an observer moving
with the crack tip has been observed by Sih [25]. Finally, it is noted that the
result (16) is also valid for three dimensional crack growth provided that L
is understood to be.a tube of fixed cross-section surrounding the crack edge and
moving with it, and vn is the normal speed of the tube at each point on its
surface.

Sharp crack tip. For extension of a sharp crack under plane conditions, the
rate of energy being supplied to the growing crack is given by F in (16) in the
limit as L is shrunk onto the moving crack tip. To perform this calculation,

F may be evaluated for a path within the region where the elastic field is ade-
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quately described by the results (1)-(4) and (12)-(13) prior to taking the limit.
Because the near-tip fields have universal spatial dependence, the integral defin-
ing F may be evaluated and an expression for F in terms of the dynamic stress
intensity factors may be obtained. Furthermore, the near-tip fields are steady
with respect to an observer moving with the crack tip, so that the value of F
which is calculated is independent of the shape of L within the crack tip region
[14]. Some of the details of calculating F in terms of the dynamic stress inten-
sity factor for extension of a mode I crack are included in [22]. For combined
mode II and mode III crack growth at a speed in the range 0 < v < Voo the energy

flux into the crack tip is given by

(") Vao‘s, 2 v .2
= ; K (17)

F
E 2 2 2ua_ 3
s

where v and E are Poisson's ratio and Young's modulus, respectively, of the
material. The energy flux F is related to the energy released per unit crack
advance, the dynamic energy release rate G, simply by F = vG. Equation (17)
thus represents a relationship between the dynamic stress intensity factors and
the dynamic energy release rate which is valid for all loading conditions and all
geometrical configurations. In this sense, it is the analogue for dynamic shear
cracks of Irwin's well-known relationship between energy release rate and the mode I
stress intensity factor. It is noted from (17) that if K2 # 0 then energy is
absorbed by a mode II crack tip for speeds in the range 0 < v < Ve and energy
is radiated from the tip for speeds in the range T © ¥ L X For a mode III
crack with K3 # 0, energy is absorbed into the tip for all speeds in the range
0<vx ¥y

For propagation of a mode II crack with speed in the range vV, < V<V, the
crack tip singularity in stress and velocity is weaker than the inverse square

root singularity, unless vV = VS/E, and therefore F = 0 for all speeds in this
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range except for v = v /2. For this particular speed, the shear waves trailing
the crack tip are absent and the energy flux into the tip due to longitudinal wave
motion is
F = v(K.)2/tya (18)
2 £

It must be noted that a stress distribution with an infinite singularity is
clearly a mathematical idealization, in that no real material can actually support
such a stress. The usual rationalization for admitting the singular stress dis-
tribution, the strength of which is measured by the stress intensity factor, is
based on the concept of small scale yielding [23]. It is thus assumed that in
the immediate vicinity of the crack tip the potentially large stresses are relieved
by some nonlinear process in a region whose dimensions are small compared to crack
length and body dimensions. It is assumed further that the stress distribution in
the elastic material adjacent to the small zone is adequately described by the
dominant singular term in the elasticity solution. Under small scale yielding
conditions, the stress intensity factor may be considered to be a one-parameter
measure of the amplitude of the stress which is being applied to the material in
the crack tip region. The stress intensity factor approach circumvents considera-
tion of how the material in the crack tip region actually responds to the applied

stress.

Cohesive zone crack tip model. In order to avoid infinitely large stresses
on the fracture plane, a number of models involving a one-dimensional cohesive zone
extending ahead of the physical crack tip in the fracture plane have been proposed.
In each case, the model is analyzed by making the crack longer by an amount Rc’
the tohesive zone size (see Fig. 2a), with the cohesive stresses in this zone
acting so as to restrain crack opening (in mode I) or crack face sliding (in modes
II or III). The size of the cohesive zone is chosen so that the net stress inten-

sity factor due to both the applied loads and the cohesive stress is zero. Cohesive

zone models have been proposed for a variety of physical processés, for example,
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for pure cleavage tensile fracture by Barenblatt, Salganik and Cherepanov [26]
and for fully developed plane stress plastic yielding at a tensile crack tip by
Dugdale [27]. A cohesive zone model which seems to be quite realistic for a
number of geophysical applications involving frictional sliding is the so-called
slip weakening model, according to which it is assumed that slip will commence
at a point on a slip plane when the local shear stress on the slip plane is ele-

vated to a certain level o that the shear stress required to sustain slip

s?
is reduced as the amount of slip & is increased to some critical amount 6c’
and that the shear stress required to sustain slipping beyond the critical amount
of slip is 0. The shear stress magnitudes o, and o, are usually associated
with the static and dynamic frictional resistance of an interface to relative
slip. The slip weakening model has been discussed by Palmer and Rice [28], Ida
[29], and Andrews [10], among others.

In the slip weakening model for a mode II crack, the local cohesive stress o
depends on the local slip 6(x, t) = ux(x, 0+, t) - ux(x, 0 , t) as shown in
Fig. 2b. The appropriate path L for computing energy flux into the cohesive

zone during crack propagation is shown in Fig. 2a. Because n, = 0 for all points

on L, the expression for F in terms of the cohesive stress and the slip reduces

to
- 36
F = J a(8) = dx . (19)
cohesive
zone

The slip may be viewed as a function of the crack tip coordinate £ and time, in
which case 38(x, t)/3t may be replaced by - vds(g, t)/3& + 38(g, t)/3t. The

energy flux (13) then becomes the sum of two terms

5 R
r=vf°o(5)dc +Icc(6)—g-f-:-d§ (20)
0 0 -

where Gc = §(0, t) is the crack tip opening displacement. The expression (20)
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is for the total energy flux into the cohesive zone during crack propagation.

The first term represents the rate at which energy must be supplied per unit
crack surface afea t§ completely overcome the cohesive stress, i.e., to

produce a total slip of an amount Gc. The second term represents the rate of
work which must be supplied to change the amount of slip within the cohesivg

zone and to change zone size during nonsteady crack propagation. If the elastic
field of the propagating crack is constant as seen by an observer moving with the
crack tip, then 6 depends on t only through £, that is 238(E, t)/3t = 0

and the second term in (20) is zero.

Assuming such steady-state crack propagation and assuming a linear relation-
ship between cohesive stress and slip, o(§) = o - (os - od)G/Gc, the energy
flow into the cohesive zone per unit crack advance is G = (os + od)ﬁc/2. It
should be noted that most authors view the excess of o above o4 as the cohe-
sive stress and in this case the energy absorbed per unit crack advance in over-
coming cohesion is G = (cs - ad)éc/2. The energy release rate expressions for
the slip weakening model applied to mode III crack extension are identical to
those for mode II. It is noted that if conditions for small scale yielding are
met, that is, if the cohesive zone size Rc- is much less than all other physical
dimensions, then a relationship between the stress intensity factor and the physi-
cal parameters of the cohesive zone is obtained by equating the energy flow into
the singular crack tip to the enefgy absorbed in the cohesive zone.

The results reported in this section provide a number of general relation-
ships among parameters which characterize the mechanical conditions which prevail
near the tip of a shear crack during rapid crack propagation. The actual depen-
dence of any of these parameters on applied loading and geometrical configuration
in any specific model of a dynamic shear rupture process can only be established

by analyzing the corresponding boundary value problem. Although the collection of
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crack propagation problems which have been studied is rich in variety from the
analytical, computational and physical points of view, only a few analytical

models are considered in the following sections. These particular models have
been chosen because they address questions which appear to be important at the
present time in the modeling of the dynamic crustal faulting process, they can
be analyzed without undue complexity, and the results seem to provide some in-

sight into the process of dynamic shear crack propagation.
STEADY-STATE CRACK PROPAGATION

The simplest dynamic crack propagation problems which can be analyzed are
those of the steady-state type, that is, the crack propagation speed is assumed
to be constant and the complete stress and deformation fields are taken to be
fixed as seen by an observer moving with the crack tip. This idealization is
clearly inadequate when considering the abrupt initiation or arrest of a dynamic
fracture, but it may be quite acceptable for describing processes for which the
duration of the acceleration and deceleration phases is short compared to the
total duration of the process. Furthermore, in the present context, the steady-
state assumption makes it possible to demonstrate in a simple way some of the main
features of dynamic shear crack propagation which may be relevant in earthquake
source modeling. Attention is directed toward several specific interlated features
in the steady-state problems to be discussed below. Among these features is the
phenomenon of fault plane healing. That is, analysis of a simple steady state
model allows consideration not only of the onset of slipping between the fault
faces at the leading edge of the dynamically extending fault but also of the
cessation of slipping between the faces, or fault healing, at some distance behind
the leading edge. A second specific aspect concerns the concept of the stress
drop associated with fault extension. The inherent inhomogeneity of the stress

distribution in the vicinity of a crack leads to the identification of several
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significant stress magnitudes in the description of the dynamic crack growth
process. Thus, several stress differences can be identified as stress drops or,
in other words, the definition of stress drop appears to be ambiguous. A third
feature of the dynamic faulting process which can be considered by means of the
analysis of steady-state problems is the influence on the process of a change in
remote loading conditions. An almost universal assumption in dynamic crack propa-
gation analysis is that the process is driven by a quasi-static, spatially uni-
form stress which is applied far from the process region. As will be shown below,
some interesting results may be deduced quite simply from a steady-state crack
model involving remote displacement conditions. In contrast to the remotely
applied stress condition, which represents dead-weight or perfectly soft loading,
the remotely applied displacement condition represents the opposite extreme of
perfectly stiff loading. These features will be discussed in greater detail in
the remainder of this section on the basis of the analysis of a few particular
problems. An approach whereby complete stress and deformation fields are esta-
blished is briefly described first, and then an indirect approach based on an

energy integral is considered.

type which can be analyzed by standard methods is the anti-plane shear mode III
problem represented in Fig. 3a. Under the action of a uniform remote shear
stress oyz = o_, the mode III crack grows in the x-direction at speed v. The
x,y coordinate system is fixed with respect to the moving crack. At the leading
edge of the crack x = a, a singularity in oyz(x, 0) will be admitted, and it
is assumed that the strength of this singularity is governed by the cohesive
strength of the fault plane y = O. Slibping begins at x=a - 0, y = 0 and

it continues throughout the interval - a < x< a, y = 0. Relative slipping of

the crack faces is resisted by a uniform frictional stress oyz(x, 0) = T4 which

is less than o, and which might be due to Coulomb friction arising from a uniform
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compressive stress in the y-direction. At x = - a, y = 0 the relative particle
velocity across the fault reduces to zero, and for x < - a, y = 0 no further
slipping occurs. The total amount of slip between the fault surfaces will be
denoted by Gt’ and the slipping process is assumed to terminate smoothly with
bounded stresses at the healing point x = - a, y = 0.

An analytical technique of general applicability in problems of this type
is that based on the theory of analytic functions of a complex variable. A
general discussion of this method for steady-state plane strain elastodynamic
problems has been given by Radok [30] and several specific aéplications to mode
I fracture propagation are cited in [14]. An equivalent formulation for anti-
plane shear problems is straight-forward. It is easily verified that the relevant
field equations are satisfied if stress and particle velocity have the representa-
tions

B ™ 1cyz/us = g(z) , wu, = - v Re g(z) (21)

where g(z) 1is a function of the complex variable ¢ = x + iasy which is analytic
in the complex ¢-plane cut along - a < x< a, y = 0. The determination of stress
and particle velocity then reduces to the determination of g(z) according to
the powerful methods of analytic function theory; cf. [23]. For the problem at

hand, the result is

g(z) = i(o - ca)a;l (1 - C/Vc2—a2) - iuGt/2ch2-a2 - icwu-l (22)

s

from which the stress components and particle velocity may be extracted according
to (21). Graphs of oyz(x, 0) and Lz(x, 0) are shown in Fig. 3b. The length
of the slipping region is determined from the condition that stresses be bounded
at x=-a,y=0 as a= uasét/Qw(om - cd) and the stress intensity factor
for the leading edge of the slipping zone is K3 = 2(c_ - od) Vra. From (12) the

energy release rate at the leading edge is then
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G= (o, -0y 6, . (23)

A stress difference which appears naturally in this analysis is (o - od), and
(23) gives a value for this stress difference as the cohesive energy density of
the fault surface divided by the total slip displacement across the fault. This
cohesive energy is a measure of the static frictional strength of the fault and
it is usually assumed to be several orders_of magnitude larger than the actual
surface energy of the material which is typically about lJ/m2,

If small scale yielding conditions prevail and if the interface failure at
the crack tip occurs in the slip weakening mode represented in Fig. 2b, then G

in (23) may be replaced by Sc(os - cd)/2, where Gc < 6_. In this context,

t
the stress o is viewed as a measure of fault resistance to onset of slipping,
the resistance to slipping decreases from o, as the amount of slip increases to

Gc, and slipping is resisted by the stress o4 for greater amounts of slip. In

this case, the relationship (23) may be rewritten as

2<St/6c = (cs - od)/(o°° - qd) (24)

It is clear from (24) that a second stress difference (cs - od) has been intro-
duced. Whereas the previously introduced stress difference (o°° - od) represents
the stress drop from the uniform remote tectonic stress o_ to the frictional
stress on the slipping part of the fault, the difference (cs - od) represents
the stress drop from a point just ahead of the propagating edge of the slipping
region of the fault to a point just behind the edge within the slipping region.

It can be seen from (2u4) that the magnitudes of these two stress drops can be very
different. For example, if Gt is about 1 m and Gc about 1 mm then the
stress drop (os - od) is three orders of magnitude larger than (o - od).

In the case of mode II crack propagation, the same general analytical proce-

'dure may be applied although the detailed formulation is somewhat more complicated.
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However, it turns out that certain key results for problems of this type, such

as those in (23) and (24), may be extracted without actually solving the boundary
value problems, that is, without determining the complete stress and deformation
fields, as is discussed in the following subsection.

An_energy integral approach. The analysis is based on the energy flux inte-
gral (16) for the special case of steady-state crack propagation in the x-direction
at speed v, for which 3/3t = - v3/3x. If the ratio F/v for a given contour
L surrounding the crack tip is denoted by E(v; L), then it is a simple matter

to show that

1 2
E= JL[-Q-(cijui,j + pv ui,xui,x)nx - Gijnjui’x]dL (25)

If L were a closed contour containing no singularities of the elastic field,
then E = 0. This may be demonstrated by application of the divergence theorem
to the integral in (25). A direct consequence of this result is that E is a
path-independent integral. That is, the value of E 1is the same for all simple
paths which originate at a particular point on one face of the crack, which com-
pletely surround the crack tip region, and which terminate at a particular point
on the opposite face of the crack. If the crack faces are traction-free, then the
integrand of (25) vanishes on the crack faces and the value of E is independent
of path even if the comparison contours do not originate and terminate at the same
points on opposite faces of the crack; cf. [23].

As a first example of the application of the path-independent integral (25),
consider the anti-plane shear problem which was discussed in the previous subsec-
tion and which is represented in Fig. 3a. Suppose that a uniform stress oyz =0,

is subtracted from the stress state shown. The stresses and displacement gradients

then decay as (x2 + y2)_l/2 at large distances from the crack tip which implies

that the value of E along any remote contour will be zero, Eremote = 0. Ifa
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second path L 1is considered which originateé on the lower crack surface at
X+ -®,y =~ 0, which runs along the lower crack face to x = a, which sur-
rounds the crack tip at x = a and then runs along the upper crack face to
X+ -®, y=+ 0, then the value of E for this path is G + (od - ow)dt =

E Because the integral is path independent, E = E = 0 and

crack”’ remote crack

the result (23) is reproduced. It is noteworthy that a cohesive zone represent-
ing a slip weakening region could be included explicitly with this approach and
the result (24) could be derived directly without recourse to the small scale
yielding assumption. Similar results for a variety of other problems concerned
with steady-state crack propagation in unbounded bodies, such as that considered
by Weertman [9], can be directly extracted in much the same manner.

The energy integral approach becomes particularly useful in certain situations
where the complete stress and deformation fields cannot be determined by any of the
standard analytical methods, but where enough information is available to compute
the value of E. As typical of such a situation, consider the steady-state propa-
gation of a mode II shear crack in a strip of width 2h as shown in Fig. 4. Under
the action of applied displacements ux(x, *+ h) = % u s uy(x, + h) = 0, the mode
II crack grows in the x-direction at speed v. The x,y coordinate system is
fixed with respect to the moving crack. Although a singularity in the stress com-
ponent oxy at the leading edge of the slipping region could be admitted just as
in the above mode III problem a linear slip weakening cohesive zone is introduced
at the outset instead. Thus, oxy(a, 0). = o with é8(a) = 0, oxy(o’ 0) = 94
with 6(0) = Gc’ and cxy(-b, 0) = 94 with 6(-b) = 8, > 6c. Just as before,
slipping begins on the fault plane at x = a, it continues throughoﬁt the interval
-b< x< a, and it terminates with net displacement off-set of Gt at x = - b.
Relative slipping is resisted by the cohesive/frictional stress oxy(x, 0) =
o_ - (oS - od)G/dc in the interval 0 < x < a and by the uniform frictional

s
stress o_ (x, 0) = 94 in the interval - b < x < 0. The frictional stress might
Xy
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be due to Coulomb friction arising from a superimposed uniform compressive
stress in the y-direction. If such a stress were actually introduced by speci-
fying the alternate boundary condition uy(x, + h) = % ﬁy, however, it would
have no influence on the main results to be obtained in the subsequent discus-
sion.

The unique feature of this particular problem is that it represents crack
propagation under displacement control or very stiff loading conditions, in con-
trast to the mode III problem of crack propagation under stress control or very
soft loading conditions which was considered previously. Displacement control
conditions make possible the consideration of stress relief by crack extension,
that is, the shear stress on the fault plane at some point far behind the slipping
region, say o_ = u(u° - 6t/2)/h’ will be less than the shear stress on the fault
plane at some distance ahead of the slipping region, say ", = qu/h. The rela-
tionship among the various stress magnitudes and slip magnitudes is obtained by
direct application of the energy integral (25).

The two choices of contour L for evaluation of E are shown in Fig. 4,

and the value of E along the outer contour, say E will be considered

remote’

first. For points far ahead/behind the crack tip, the only nonzero stress component

is oxy = o, and the only nonzero displacement gradient component is u ¥ =0, /u,
+ 5 ¥

and these components are essentially uniform across the strip. For the portion of

the remote contour along y = * h, the displacement components are uniform and

n = 0 so that the integrand of (25) vanishes identically and there is no contri-

bution to the value of E. It is thus clear that

.5 B
E o ove = ©F - 00)D/u

(26)

(o+ + o_)st/2

As shown in Fig. 4, the other choice of contour L embraces the crack and n = 0
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¢

at all points of the inner contour. Then, according to (25), the value of E

for the inner path is

0 a
= - I o 29—-dx - J o(6) %% dx

E
crack b d 9x 0
(27)
= (as - od)ac/z + Udst
In view of the path-independence of E, Eremote = Ecrack or
o (28)
§, (o +o_-2,)

This analysis introduces two additional stress differences which might be identified
as stress drops, that is, (o+ - cd) and -(0+ - 0_). The second of these is par-

ticularly interesting because it satisfies the relationship

o, - o_=us/2h. (29)

If h can be identified in some way with the total distance of‘travel of the fault
edge, which is not an entirely unreasonable identification, then the right side of
(29) coincides with one of the standard definitions of stress drop [31]. It is
noteworthy that %y and o_ do not represent frictional properties of the fault.
The magnitudeé of o, and o_ are arbitrary except that g e > 20d and

+

o, >9_ for the process to occur at all. Unfortunately, the energy integral
approach provides no apparent means for computing the physical dimensions a and
b in Fig. 4.

The steady-state crack propagation models considered in this section are
representative of problems in this class. There are, of course, many other

steady-state crack propagation models involving other fault plane strength charac-

terizations or other friction laws which might be profitably studied. The mode III
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problem represented in Fig. 3a was chosen here because it is typical of the
simplest steady-state problems which can be analyzed, and the mode II strip
problem represented in Fig. 4 was chosen because it is typical of problems for
which useful information can be extracted by means of the energy integral approach,
even though the stress and deformation fields cannot be determined by known ana-
lytical methods. If a crack tip is moving more or less steadily, then a steady-
state analysis yields relationships among the various parameters used to charac-
terize the process without specific reference to a crack propagation criterion.

A study of how a crack tip or fault edge actually moves according to a particular
crack propagation condition must be based on an analysis of transient crack propa-

gation, and certain results of such analysis are summarized in the next section.
TRANSIENT CRACK PROPAGATION

The discussion of transient shear crack propagation is based on the model of
a half-plane crack extending in mode II in an otherwise unbounded body. This model
exhibits most of the conceptual features which have been considered in dynamic
shear crack propagation analysis. In the geophysics literature, more emphasis
has been placed on the analysis of the symmetrical expansion of a mode II shear
crack of finite length and the three-dimensional expansion of an elliptical com-
bined mode II and III shear crack than on the semi-infinite mode II or mode III
cracks. The reason for this emphasis seems to be that actual faults have finite
dimensions and if primary interest is on the details of seismic radiation due to
fault motion, for example, then these fault dimensions must be included. If
primary interest is on the fracture process, on the other hand, then the actual
fault dimensions are of lesser importance and the semi-infinite crack models appear
to be suitable. In general, for a specific characterization of fracture resis-
tance, the main influence on crack tip motion is the increased area over which

the stress drop acts as the crack increases in size, and this effect can be included
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in the semi-infinite plane crack models. The influence on crack tip motion at
some point on a fault edge due to stress waves generated at some other point on
the fault edge seems to be minor by comparison, and this effect is automatically
precluded in the semi-infinite plane crack models. In his study of the symmetri-
cal extension of a mode I tensile crack of finite length, Rose [32] showed that
the wave disturbance generated by either moving crack tip had a negligible effect
on the motion of the other. Concerning three-dimensional shear cracks, the edge
deformation can be resolved into a combination of mode II and mode III deforma-
tions and, with this point of view, the results obtained from analysis of plane
models have bearing on three-dimensional plane crack propagation as well.

The specific mode II shear crack model on which this discussion is based is
represented in Fig. 5. At the initial time t = 0 the half-plane crack begins
to grow in the plane y = 0 and at time t the crack edge has advanced a distance
£(t). Equal and opposite shear tractions of magnitude e act on the crack faces
in the interval 0 < x < £(t) as shown. The stress o, may be viewed as the
difference between a remotely applied stress of magnitude o_ and a frictional
stress which resists sliding 04 Thus, % is a stress drop and it acts over
a region of increasing size as the crack grows. There are no other crack face
tractions or remote loads acting on the body. Posed in this way, the problem is
not suitable for consideration of fracture initiation. Initial loading of the
body is not included explicitly, and the role of the pre-existing crack as a
stress concentrator in fracture initiation is not considered. These exclusions
were made in order to keep the analysis as simple as possible, and loading condi-
tions for this problem which might be more suitable for the study of fracture
initiation are considered in [3].

The solution of this pfoblem for arbitrary nonuniform motion of the crack
tip with speed 2(t) in the range 0 < 2 < Vi has been given by Fossum and

Freund [3]. A solution of this problem for crack speeds greater than the Rayleigh
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wave speed L has not appeared in the literature, although solutions for crack

growth at constant speed £ = v > v, can be obtained by following the analytical
procedure of [3]. In terms of the notation established in (1)-(4), the shear
stress on the prospective fracture surface y = 0 directly ahead of the crack

tip at x = £(t) is

K, (t)
2 .
0 = ——--0 s K. (t) = 20 Y22/ k(L) (30)
¥ Vamx-L) ° 2 =

for arbitrary £(t) within the range 0 < 2 < Vs

oxy =-0, K2(t) =0 (31)

for constant speed v in the range V. S ¥ LY, and

%
K, (t) % * "
-0, K2(t) =k (v) o, (vt) (32)

g, = ————
oo (x-vt)® °

for constant speed v 1in the range Vg <V < V. The function k in (30) is:
defined precisely in equation 12 of [3] and a rough approximation of this function
is k(2) =1 - Z/vr; in particular, k(0) = 1 and k(vr) = 0. For the crack tip
speed range V< V<V, a solution with K2 # 0 can be found. Hdwever, as can
be seen frqm (17), a mode II crack tip propagating at a speed within this range
with K2 # 0 acts as a point source of energy. Such a result must be ruled out
on physical grounds, so that K2 = 0 and the next term in the expansion of stress
with distance from the crack tip is that shown in (31). The function k*(v) has
not yet been evaluated in detail, but it seems to be bounded, nonzero and of order
unity for speeds in the range Vg <V < V. When considered in conjunction with
a fracture propagation criterion, the results (30)-(32) imply crack tip motions

having certain characteristics. These will be briefly discussed for several dif-

ferent fracture criteria.
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Critical stress intensity factor criterion. Suppose that the shear crack is
required to propagate in such a way that the stress intensity factor always has

a fixed critical value. This is a generalization to the case of extending cracks
of Irwin's well-known fracture initiation criterion. After the initiation phase

has passed, the expression for K, in (30) suggests that the fracture condition

2
can be satisfied as £ increases indefinitely by having the crack tip gradually
accelerate toward the Rayleigh wave speed so that the product Zk(k) is held
constant. In this sense, the Rayleigh wave speed represents the terminal velo-
city for crack propagation. Furthermore, if the traditional definition or inter-
pretation of the stress intensity factor is understood, then crack speeds greater
than the Rayleigh wave speed are not considered with this criterion bec;use the
coefficient of the square-root singular contribution to the local stress field
is zero (except for the special case v = VS/E).

Critical energy release rate criterion. Suppose that the shear crack is
required to propagate in such a way that the energy release rate G always has
a fixed critical value. This is a generalization of the classical Griffith cri-
terion. The resulting crack motion will be almost identical to that for the cri-
tical stress intensity factor criterion, differing only in minor details. The
reason for this similarity is that the energy release rate is proportional to
the square of the stress intensity factor, and the energy release rate is nonzero
only if the local crack tip stress field is square-root singular. Stress fields
with weaker singularities and nonsingular stress fields result in zero energy
release rate for a sharp crack tip. Crack motion according to this criterion is
discussed in detail in [3]. The main qualitative result is that an unstable sharp
tipped mode II crack propagating with a constant energy release rate will accelerate
toward the Rayleigh wave spéed, but its speed will always be less than the Rayleigh

wave speed. The energy release rate is also nonzero for the special crack speed

vs/f but, according to (32), any specific value of energy release rate can be
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achieved at this speed only for a particular fixed crack length. Thus, the fracture
condition cannot be satisfied for a crack extending at the speed vS/5.

Critical stress level criterion. Suppose that large, and possibly singular,
shear stresses on the prospective fracture plane ahead of the crack tip are admitted,
but that the interface can support such stresses without fracture only if the in-
terval over which some critical stress level, say 0> is exceeded in less than
some critical length, say A. Further, suppose that fracture will begin if the
fault plane shear stress is greater than o, over an interval of length )\, and
that the fracture will proceed with this condition satisfied. The shear stress
can never exceed o, over a length interval greater than A. This notion of a
critical stress acting over a certain distance was used by Irwin [33] in his early
studies of crack tip plasticity. In this case the critical stress was proportional
to the plastic flow stress of the material and the critical distance was the radius
of the plastically deforming region around the crack tip. A similar viewpoint was
adopted by Congleton and Petch [34] in modeling the initiation of microcrack growth
ahead of the tip of a much larger crack. In this model, growth of the large crack
was achieved through coalescence of numerous microcracks. In this case, the critical
stress was the Griffith stress necessary to extend pre-existing microcracks and the
corresponding critical distance was the mean spacing of these microcracks. A ver-
sion of the same criterion was recently employed by Das and Aki [12] in a form par-
ticularly well-suited for numerical computation by a finite difference scheme.
However, it seems that they used the crack tip stress distribution (30) for the
entire velocity range 0 < v < v,.

After some fracture initiation phase has passed, the critical stress level

fracture condition implies that the crack will accelerate according to

K2(t)
- (o, -04) = (6, -0,) (33)
Y2mA
The term - 0_ has been inserted on the right side of (33) to account for the
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fact that the remote loading contribution to the prospective fracture plane stress
was not included in the formulation of the boundary value problem. With the explicit

expression for K2(t) given in (30), the result (33) becomes (cf. equation 27 of

[12])
2k (1) (!.)1/2 oy ng P
m A = (a°° - od5

After any appreciable amount of crack growth £ >> A. Therefore k must approach
zero, or the wave speed must approach the Rayleigh wave speed.

During the acceleration phase, the shear stress on the fracture plane is
usually small compared to o at distances ahead of the crack tip which are large
compared to A. However, as the crack propagates steadily at speeds near the Ray-
leigh wave speed, the shear stress distribution on the fracture plane develops a
sharp peak at a point traveling with the shear wave speed. This behavior was
also observed for the symmetrically growing shear crack by Burridge [1]. The
shear stress magnitude at this peak is n(o_ - cd). An estimate of the integral
defining n yielded a value of about three, which is not too different from
the numerically computed value n = 1.63 reported in [1]. If the interface is
relatively weak, i.e., if O is not much larger than o_, then it is quite
possible that n(o_ - cd) > (os - 0_). If this inequality is satisfied at the
shear stress peak, then it will simply be a matter of time before it is satisfied
over an interval of length A. Thus, if the interface is relatively weak, then
a secondary fracture will initiate at some distance ahead of the main fracture
at some time.

A question then arises as to how this secondary fracture will grow. A detailed
analysis of the growth process would be prohibitively complicated. There are not
many possibilities, however, and the growth of the secondary fracture may be dis-
cussed in qualitative terms. The end of the secondary fracture nearest the main

crack tip and the main crack tip will likely coalesce shortly after formation of
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the secondary fracture, so that the other tip of the secondary fracture becomes
the main crack tip. One possibility is that this tip will move at a speed just
below the Rayleigh wave speed, another secondary fracture will be initiated some
time later, and this process will be repeated over and over. A second possibility
is that this tip will move at a speed greater than thg Rayleigh wave speed. If
Oy > O then it can be seen from (31) that speeds in the range v, vy,

are ruled out, and possible speeds in the range LR A M/ must be sought.

For this purpose, use is made of (32) with the interpretation of vt in (32) as
the amount of crack growth since the formation of the secondary fracture, say AL.

The crack growth criterion then takes the form

% AL \® ) (os - cd)
k (v) (T) = W (35)

* 8. d " .
If k is insensitive to variations in speed v, then m must decrease as Af in-

creases for fixed A. As can be seen from its definition (7), the value of m de-
creases from m = 1/2 at v = vs/§ to m=0 at v = Vp: Thus the secondary crack
would begin to grow at a speed equal to or greater than vs/E and it would accelerate
toward the speed Vp- The second of these two possibilities is qualitatively consis-
tent with the numerical calculations of Andrews [11] and of Das and Aki [12].

In summary, it seems that for a relatively strong interface with (Us - g M
(c°° - cd) > n the crack will accelerate rapidly to speeds approaching the Rayleigh
wave speed, but will continue to propagate indefinitely at speeds below the Rayleigh
wave speed. For a relatively weak interface with (os = g e, ~ od) < n the crack
tip will quickly accelerate to speeds approaching the Rayleigh wave speed and it
will propagate for some shorttime at sub-Rayleigh wave speeds. Then, due to secon-
dary fracturing,the crack tip speed will abruptly increase to vs/5 or beyond and
it will continue to accelerate toward the longitudinal wave speed vp. The quali-

tative picture of crack propagation based on the critical stress level fracture
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criterion and the simple mode II crack problem represented in Fig. 5 is generally
consistent with the numerical results of [11] and [12]. One fundamental diffi-
culty with the critical stress level criterion is that the existence of a critical
length A seems to have no particular physical basis. However, as discussed by
Das and Aki [12], the criterion appears to be well-suited for numerical computation
by a finite difference approach where A can be identified with the difference
mesh spacing on the fracture plane. Furthermore, in such a numerical scheme the
shear stress can be reduced from os to % according to some cohesive zone model
to simulate energy uptake in overcoming an intrinsic material cohesion in the crack
tip region. Unless L is larger than o_ and %3 by two or three orders of
magnitude, however, the rate of work against cohesion is negligible by comparison
to the rate at which is energy absorbed through frictional sliding of the crack
faces. A direct comparison of the results of the numerical calculations in [11]
and [12] strongly suggests that the crack motion is quite insensitive to whether
or not a finite, nonzero crack tip fracture energy exists. Andrews [11] uses a
cohesive zone crack tip model to simulate nonzero energy uptake at the crack tip

at all crack speeds. On the other hand, Das and Aki [12] simulate crack growth in
their finite difference scheme by abruptly releasing nodes in the difference mesh
whenever the nodal stress reaches a critical value. As observed by Rice [35],
crack growth consisting of abrupt release of stress over a finite interval (the
mesh spacing) occurs without energy absorption at the crack tip. The fact that
the crack motion predictions in these two studies are qualitatively identical
suggests that the influence on crack motion of crack tip energy absorption rates
is small, probably because such rates are usually small compared to other energy

rates involved as noted above.

Nonuniform stress drop and fracture resistance. This section is concluded

with a brief discussion of crack arrest. As noted by Husseini, et al. [4], a

running fracture can be arrested by either of two mechanisms, either a reduction
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of the crack driving force to a subcritical level or an increase in the resistance
of the material to a supercritical level. A simple illustration of these effects
can be given in terms of the present mode II crack propagation model and the
critical stress intensity fracture criterion, for example. The dynamic stress
intensity factor for the shear crack shown in Fig. 5 for crack face traction repre-
senting a stress drop co(x) which varies in an arbitrary manner along the slip
plane is given in equation 18 of [3] for sub-Rayleigh wave speeds. In terms of
this arbitrary stress drop, the critical stress intensity factor fracture condi-
tion requires that the crack move in such a way that the dynamic stress intensity
factor is always equal to some critical value, say C(£), which may also vary in
an arbitrary manner along the slip plane. The equation of motion of the crack tip,

i.e., the equation governing £(t), is then
k(2) K_, (£) = c(&) (36)
where Kst(l) is the equivalent static crack stress intensity factor

= (37)

5 1/2 (L oo(x)dx
K, (&) = (—) f e
0 VI-x

Some specific implications of (36) are shown schematically in Figs. 6 and 7.
The case cohsidergd in Fig. 6 is that with constant critical stress intensity factor
C and with continuously decreasing stress drop o, as shown. The equation (37)
implies that the equivalent static stress intensity factor will first increase
after initiation and then decrease, with‘p maximum at the point where o, = 0.
The equation of motion (36) implies that the crack tip velocity will also increase
and then decrease, with a maximum at the same point. The crack will arrest when

Kst has been reduced to C. With reference to the sketch, the speed £ = 0

when Kst = C.

A similar example in which the stress drop o is constant but the fracture
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resistance C increases along the slip plane is shown schematically in Fig. 7.
The equation (37) implies that K ¢ Wwill continuously increase with crack length,
and according to (36) the crack will continue to accelerate as long as the slope
of Kst vs. £ 1is greater than the slope of C vs. 4£. The crack tip reaches
a maximum velocity when these slopes coincide, and the crack tip will come to
rest if C reaches the value Kst at some point. With reference to the sketch,
2=0 when K__ = C.
st

Finally, it is noted that the functions Uo(x) and C(£) need not be mono-
tonic, but they could vary in an arbitrary way along the slip plane in order to
simulate variations in driving stress, frictional resistance and fracture resis;
tance in the faulting process. It is clear from (36) that if these functions
varied in an oscillatory manner, then crack motions £(t) which solve (36) or
other equations of motion similar to it could be very complicated indeed. The

effects of nonuniform driving stress and fracture resistance are likely to be

important in future development of dynamic shear crack models.
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FIGURE CAPTIONS

Figure 1. Configuration of a body containing a crack at a fixed instant of time.

Figure 2. The cohesive zone crack tip model. The amount of slip between the

crack faces is denoted by 6 and the shear traction resisting slip
within the cohesive zone is o0(§). The contour L shown in (a) is
employed in the derivation of (19). The cross-hatched area in (b)
is the cohesive energy density of the interface.

Figure 3. A typical mode III steady-state crack propagation problem is shown in

(a), where slip is resisted over a slipping region of length 2a by
a shear traction o04. The variation of shear stress and particle velo-

city along the slip plane is sketched in (b).

Figure 4. A typical mode II steady-state crack propagation problem which can be

analyzed by means of the energy integral (25).
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Figure 5. Transient extension of a mode II semi-infinite shear crack due to a
uniform stress drop o0, acting over the interval 0 < x < £(t).

Figure 6. A sketch of the variation with position along the slip plane of the
physical quantities appearing in the crack tip equation of motion
(36) for the special case when the critical stress intensity factor
C 1is a constant but the stress drop decreases along the slip plane.

Figure 7. Same as Fig. 6 for the special case when the stress drop oo is
uniform but the critical stress intensity factor increases along the
slip plane.
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ABSTRACT

The source process of the June 10, 1975 Kurile Islands earthquake
(mb = 5.8, Ms = 7.0) is studied using WWSSN data, ultra-long period
seismic records, and tsunami data. The observed tsunami amplitudes
are much larger than are normally expected for an earthquake of this
magnitude, suggesting that the rupture process may have a very long time
duration. This is confirmed by a study of the WWSSN Rayleigh and Love
waves, which show that the effective moment (the seismic moment of the
step function source which would produce the same amplitudes at a particular
period) increases rapidly from 5 x 1026 dyne cm at 50 sec. to 2 x 1027
dyne cm at 200 sec. The extremely long rise time causes relatively low
amplitudes at periods of about 20 sec. (at which Ms is measured), while
the tsunami amplitude (which depends on the moment at periods of several
hundred seconds) is thus larger than expected for this Ms'

The mechanism inferred from body and surface waves is a shallow
angle thrust fault, dipping 16° W and striking N 41° E. The main shock
is relocated at To = 13:47:12.5, 42:97°N, 147.17°E, h = 2.1 km. On the
basis of relocated after shocks within one day, the fault area is 50 km
x 35 km.

This earthquake is classified as a tsunami earthquake (Kanamori,
1972) on the basis of its anamolously large tsunami amplitude and low
dislocation velocity. Complex multiple events in the body waves and the
unusually slow rupture process suggest that the fault zone may be unusually

fractured and weak, with a very heterogeneous distribution of material

strength.
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APPENDIX

Figure 1: General Tectonic Setting of the June 10, 1975 Kuriles
Earthquake (labeled 1975 Nemuro-Oki Earthquake in the figure),
from Fukao (1978). Note that the aftershock zones are plotted

using JMA locatioms.

Figure 2: Relocated aftershocks (within one day of main shock) of the

June 10, 1975 tsunami earthquake.

Figure 3: RMS residual of observed-computed P arrival time when the
epicenter of the mainshock is relocated with the depth constrained.
h = 2.1 km is optimal. The circle in the upper left shows the

number of stations in each quadrant.

Figure 4: Three long period vertical WWSSN seismograms of the June 10, 1975
earthquake. Note the extreme complexity of the waveforms, showing
complex multiple events, with a duration of about two minutes.

Also note the small foreshock about 10 seconds before the first
arrival from the main shock. The earthquake waveforms have been

traced over.

Figure 5: Difference in arrival time between the small foreshock and
the first waves from the main shock, as a function of azimuth. There
is no significant azimuthal variation, suggesting that the fore-

shock and mainshock have essentially the same location.

Figure 6: Focal mechanism determined from first motions on WWSSN stations
and Rayleigh waves. The steeply dipping plane is constrained by
the first motions and the conjugate plane, which represents the
shallow angle thrust plane on which the earthquake actually

occurred, is constrained by the Rayleigh wave radiation pattern.
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APPENDIX
Figure 6 continued:

Solid circles represent compressions, and open circles dilatations.

Figure 7: Observed and theoretical Rayleigh wave spectral radiation patterns
.at periods of 200 sec, 100 sec and 50 sec. All theoretical
spectra are for a moment of 2 x 1027 dyne cm. The observed spectral
amplitudes are as large as the theoretical amplitudes at
200 sec, half as large at 100 sec and one fourth as large at 50 sec. Thus

the moment is 2 x 1027 at a period of 200 sec, 1 x 1027 at 100 sec

and 0.5 x 1027 at 50 sec. This is consistent with the slow slip

shown by the body waves.

Figure 8: Observed Rayleigh wave spectra at several WWSSN stationms.
Note the holes (indicated by arrows) which vary in period as a

function of azimuth.

Figure 9: If the spectral holes are interpreted as being caused by
directivity, then by minimizing this misfit of the period of
spectral holes as a function of azimuth we find that the rupture
propagated N 40° E (along the fault strike), with characteristic
rupture time L/VR = 30 sec. This is difficult to reconcile
with the observed source duration of about 2 min, and we are studying

this question.
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b-VALUES AND w™Y SEISMIC SOURCE MODELS

Thomas C. Hanks

U. S. Geological Survey
345 Middlefield Road
Menlo Park, California 94025

ABSTRACT

In this study, earthquake magnitude-frequency of occurrence statis-
tics (b-values) and high-frequency spectral characteristics of crustal
earthquakes (v=Y models) are the basis of a discussion of fault zone
heterogeneity as it might be inferred from seismological observations.
b-values of 1 for constant stress drop earthquakes imply the existence
of a stress-drop potential function the speétra] amplitude composition
of which is white; its rms-value is determined by the average earthquake
stress drop Ac. Several lines of evidence suggest that the ™Y, y = 2
seismic source model is the one generally applicable to describing the
high-frequency radiation of crustal earthquakes in the far-field. This
model is interpreted in terms of a white, random(?) distribution of
dynamic stress differences o developing in the source region in the
course of crustal faulting. The y = 2 model predicts the rms accelera-
tion for the San Fernando earthquake at Pacoima Dam to 50% and for the

Kern County earthquake at Taft to 20%.
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INTRODUCTION

The purpose of this discussion is to address the issue of how hetero-
geneity of crustal fault zones may be inferred from two classes of seismo-
logical observations, those pertaining to earthquake magnitude-frequency of
occurrence relations (b-values) and high-frequency spectral characteristics
of seismic sources (w~Y models). At the outset it is appropriate to
emphasize that whatever inferences about fault-zone heterogeneity we may
derive from these observations are indirect and non-unique. Fundamentally,
these seismological observations can be related only to distributions of
stress differences that develop along crustal fault zones (quasi-statically
in the case of b-values, dynamically in the case of the high-frequency
radiated field of an earthquake). These distributions of stress differences
may arise from material heterogeneity, geometric irregularities, or dynamic
propagation of rupture--or some combination of these and perhaps other
variables along the fault zone.

Apart from the significance these seismological observations may play
in unraveling fault-zone heterogeneity and its role in earthquake mechanics,
the format of this session is especially well-suited for their discussion
here. My colleagues who share the soap box with me today have separately
considered b-values (Nur, 1977) and w=Y seismic source models (Geller, 1976)
--and have reached distinctly different conclusions from the ones I shall

present in this communication.

b-VALUES
In Hanks (1977), the relations between the frequency of occurrence N of

earthquakes of magnitude M

log N = a - bM, (1)
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between seismic moment M0 and M
log M, = cM +d, (2)
and between source radius r, earthquake stress drop Ac, and M0

My = kaor3 (3)

were algebraically combined to obtain

lTog N = (a + 95‘1) = % Tog (kaor3). (4)

In these relations a is a constant defined by the choice of region and time
interval in which earthquakes are counted, d is an empirically determined
constant, and k = 16/7 for a circular fault of radius r. It is empirically
known that b is generally but not always very nearly equal to 1, irrespective
of the choice of region and time interval in which earthquakes are counted.
Also ¢ is empirically known to be 1.5 whether local magnitude ML (Thatcher
and Hanks, 1973) or surface wave magnitude M, (Kanamori and Anderson, 1975)
is used in (2), although serious departures from (2) with ¢ = 1.5 begin to
develop for MS ~ 7.
For b =1 and ¢ = 1.5, (4) reduces to
N = const . (5)
(a0)%/3r2

If the earthquakes of the counted sample share the same Ao, as they do on the
average for all samples for which Ac have been determined (e.g., Hanks, 1977),
earthquake magnitude-frequency of occurrence statistics reduce to a simple
matter of geometrical scaling in terms of the reciprocal faulting area. In
everyday English, the number of coins that fit in a ring of specified size de~

pends on the area of the coin, and, provided that earthquake stress drops are
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constant, (1) says nothing more than this.

For those earthquakes with r Nh' o= h/coss, where h is the seismogenic
depth and & is the fault dip, (5) can be interpreted in terms of a two-
dimensional "stress-drop potential" function on the fault surface, the
functional form of which is specified by a mean-square value determined by
the average earthquake stress drop Ao and a spectral composition with constant
amplitudes at all wavelengths < h'; the stress-drop potential in a region of
incipient faulting is realized as the earthquake stress drop at the time of
faulting. On the average, such a stress-drop potential function will produce
earthquakes with stress drop Ao and their frequency of occurrence will scale
as 1/r2(r ~ h'), due to the constant spectral amplitudes at all wavelengths
X h' in two dimensions (ngure 1). Earthquakes with Ac both higher and
lTower than Zo will occur, however, with certain probabilities. Whatever
the origin of the stress differences recoverable in crustal faulting may be,
then, they are more or less distributed in a white, possibly random fashion
through the seismogenic zone. The stress-drop potential function, moreover,
retains its mean-square value and white, random(?) characteristics until such
time as the region of interest is faulted by a major earthquake, inasmuch as
earthquakes with r ~ h' cannot materially reduce the net stress on the fault
surface.

When the fault length L becomes significantly greater than the fault
width w, the two-dimensional character of the faulted surface collapses
essentially to one, and it can be expected that the ideas presented above will
no longer hold. For a seismogenic depth of 15 km and a vertical transform
fault, we may estimate roughly that this will occur for L R 30 km, or equiva-

lently when MS X 6%. In particular (3) then takes the form

M, = k'aolw?. (6)
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Moreover, (2) with ¢ = 1.5 begins to fail at slightly larger MS, 7 to 7%.
Finally, as is well-known, MS becomes an increasingly poorer measure of
source strength for Mo R 1027 dyne-cm, or MS R 7%. As such, present un-
certainties in estimating both "magnitude" and ¢ at large magnitude
preclude, at the present time, an extension of these results to the more
nearly one-dimensional character of large and great earthquakes. But these
difficulties in no way change the arguments given above for MS N 6% earth-
quakes for which r Noh'.

In Nur (1977) A(x), where A is wavelength, is a measure of the fric-
tional heterogeneity and may be identified with the stress-drop potential
function defined earlier and in Figure 1. Nur (1977) finds that A(A) ~ A,
where we have found that the spectral amplitude composition of the stress-drop
potential function is independent of wavelength. Had Nur (1977) used (3) to
relate Mo’ Ao, and r, rather than the one-dimensional form analogous to (6)

that he did use, he would have found A(A) ~ const-- as we have here.

w ! SEISMIC SOURCE MODELS

Simple models of the seismic source are generally characterized, in
spectral form, by a long-period level 2 proportional to Mo’ a corner fre-
quency fo proportional to r-l, and a high-frequency spectral decay of the
form (f/fo)‘Y. (In the following discussion, we denote frequency with f in
hertz rather than w in radians/sec; "hiah-frequency" means frequencies hiah
with respect to fo). The corner frequency fo, fundamentally, is closely
allied with the reciprocal duration of faulting T3, but it is well-known
that several "faulting durations" can be defined, in particular those asso-
ciated with the fault length, fault width, and the rise time of a propagating
displacement discontinuity. Depending on the faulting geometry and rise time

characteristics, the associated corner frequencies can be well separated,
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leading to more complicated high-frequency spectral amplitude decay (that
is, y is a function of frequency). Moreover, by making the displacement
discontinuity a smooth enough function of time, y can become arbitrarily
large at high enough frequencies. Whether, in fact, a generally applicable
source representation of high-frequency spectral characteristics exists
within the infinity of possibilities is, as yet, theoretically controversial
and observationally unresolved.

More as a matter of convenience than a matter of hard fact, high-fre-
quency spectral characteristics of seismic sources are generally discussed
in terms of Qo and fo related by the constant stress drop assumption (Qofo3 =
const in the context of the Qo-fo relations of Hanks and Thatcher, 1972) and
y = 2 (the w-square model) or y = 3 (the w-cube model, in the terminology of
Aki, 1967).

Figure 2 schematically illustrates the y = 2 and y = 3 seismic source
models in terms of two idealized far-field shear-wave displacement spectra at the
same distance R. In both the y = 2 and y = 3 cases, the two earthquakes have
been assigned the same Ao, so the corner frequencies lie on a line of slope
-3 in these log-log plots. In both cases, the larger event (1) has 2, and M,

3 orders of magnitude larger than the smaller event (2), and fo<]) is ten times
smaller than fo(z).

At frequencies gkeater than fo(z), spectral amplitudes are ten times
greéter for event (1) than event (2) in the y = 2 case but are the same in
the vy = 3 models. How do we interpret these models in terms of time-domain
amplitudes, recognizing that Td(]) ~ 10 Td(z)? Figure 3 presents the extreme
interpretations. Here, for purposes of illustration, we have taken fo(]) =

0.05 Hz, fo(z) = 0.5 Hz, Td(1) = 20 sec., Td(z) = 2 sec., and are investigating

possible interpretations of 1-second time-domain amplitudes.
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Figure 3a is the interpretation for the y = 2 earthquakes if the 1-
second energy arrives more or less continuously over the complete faulting
-duration. In this case, 1-second spectral amplitudes for the larger event
are ten times greater than for the smaller event, but the 1-second time-
domain amplitudes are the same for both events--they have the same m, - If
all the 1-second energy arrives at the same time, however, the 1-second time-
domain amplitudes and my of the larger event are ten times larger (Figure 3b).

For the y = 3 earthquakes, 1-second spectral amplitudes must be the
same. In Figure 3c, this is achieved in a manner analogous to Figure 3a,
but now 1-second time domain amplitudes for event (1) are ten times smaller
than for event (2); that is my must decrease with Mo' Figure 3d is the
analogue to Figure 3b; here 1-second time domain amplitudes for the two earth-’
quakes are the same; they have the same m -

Interpretation ¢ is certainly unacceptable: my does not systematically
decrease with increasing Mo' Neither, however, doeé my increase beyond my
6% to 7, and interpretation b is also inappropriate, at least for My R 1026
dyne-cm. One's preference for interpretation a or d, and thus one's prefer-
ence for y = 2 or y = 3 seismic source models, then depends on whether one
believes that all (or most) of the 1-second energy arrives more or less con-
tinuously through Td (Td > 1 sec.) or arrives more or less impulsively in a
~ 1-second window (and in the case of my s the first one or two such windows)
no matter what the value of Td. It is appropriate to recall, now, that
both possibilities are extreme interpretations, and the truth, in most cases,
should 1ie somewhere in between. Even so, when Td >> 1 sec. in the case of
the larger earthquakes (MS R 6%), it is clear that Figure 3d is much more
the exception than the rule, as almost all short-period seismograms of large

and great earthquakes reveal. Thus, I conclude, as Aki (1967) did ten years
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ago, that m, - MS data support the y = 2 model, in the interpretation of
Figure 3a, as the one generally (but certainly not always) applicable to
the representation of high-frequency spectral characteristics.

With the assumptions that (1) fault propagation in both coordinates of
the fault plane is equally phase coherent and (2) the source displacement
time function is a propagating ramp of finite duration (with singular
particle accelerations), Geller (1976) correctly followed Haskell (1964) to
obtain y = 3 at high frequencies. His justification of this model with
existing my - Ms data is not correct, however, because he assumed that m
and MS faithfully represent spectral amplitudes at 1- and 20-second periods,
respectively, across the entire range of magnitudes observable at teleseismic
distances. Geller (1976) notes that "it is not exactly correct" to do this;
quite generally it is not at all correct to do this, except for the sha]]er
earthquakes (M A 5) for which i X 1 Hz. In the latter case, both m, and
MS become long-period measurements, proportional to Mo’ but then, of course,
my - MS data carry no information at all about high-frequency spectral
characteristics of earthquake sources.

There are, in addition, several other observations that are in general
accord with the high-frequency spectral characteristics of the w2 model.
First, the difference of a factor of 20 in the maximum my of ~ 7.0 and maxi-
mum MS of ~ 8.3 is "exactly" predicted by the y = 2 model (because of the
period shift in the amplitude measurement from 1 to 20 seconds) provided that
m o~ Moat M ~ 7. In the "Tatest" form of the linear relations between my and
M, m

S b
used above to justify the y = 2 model in terms of my and MS data, and the

= M at 6.75 (Richter, 1958, p. 348). Secondly, the same arguments

upper limit to each, may also be used to explain why peak acceleration data at

fixed R are such a weak function of magnitude (Figure 4). The analogy is some-
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what complicated by the fact that the peak acceleration may occur anywhere

_in the record, whereas the my amplitude cannot, and thus are susceptible to
biasing by chance interference by two or more phases coincidentally arriving

at the same time. At some fixed high frequency, the probability of this

occurring plainly increases with increasing Td and M, without reflecting in-
trinsic changes in high-frequency source excitation. Finally, the high-
frequency spectral characteristics of the San Fernando earthquake are very well-
known, even at frequencies two orders of magnitude greater than fo’ because of the
large number of strong-motion accelerograms that recorded this earthquake at

local distances. Figure 5 and 6 suggest that the simplest possible interpre-

tation of these data ié the y = 2 model, although more complicated interpretations

are possible (and perhaps warranted).

INTERPRETATION OF THE w™2 MODEL
Figure 7 is the y = 2 model for shear-wave displacement spectral ampli-

tudes in terms of shear-wave acceleration spectral amplitudes. In the fre-

quency band fo o N fmax’ shear-wave acceleration spectral amplitudes are
constant (fmax is determined by setting the argument of the exponent equal to
1 in the usual attenuation relation e :625 for a given choice of R and Q).
That is, the associated ground motion time history may be regarded as band-
limited (f) < f < f_ . ), finite duration (0 <t - R/8 < T,), white noise(?)
in acceleration, where (again) the randomness has simply been assumed but not
unreasonably so in view of the generally chaotic nature of strong-motion
accelerograms of MR 5 earthquakes.

Hanks and Johnson (1976) developed the following linear relation between
the amplitude Ui of any acceleration pulse at R and the dynamic stress differ-
ence ¢ giving rise to it in the source region

N

..__1__0'_
us= p R H (7)
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where p is density. We may then interpret the constant spectral amplitudes
of acceleration (f > fo) for the y = 2 model in terms of a white, random(?)
distribution of dynamic stress differences (A < r) arising in the course of
faulting that generates the earthquake.

The coincidence of this result with the one inferred earlier from b-
values for the distribution of quasi-static stress differences on crustal
fault zones is interesting--but quite possibly meaningless. While the white-
ness of both distributions seems to be a reasonably firm result, the random
character assumed in both cases is simply a guess. Moreover, there is no
justification for assuming, at the present time, that the whiteness of o and
Aop arise from the same physical condition. If this should be the case,
however, b-values different from 1 would be expected to occur in association
with y different from 2. In the case of the Oroville aftershocks b was sig-
nificantly less than 1 (0.61 according to Morrison et al., 1976), and 13 of
21 small (1 N ML N 2%) but well-recorded aftershocks had vy 3 (the other 8
had y ~ 2) (J. B. Fletcher, personal communication). For the mining-induced
seismicity at the East Rand Proprietary Mines in South Africa "y is 3 more
often than 2 and b ~ 0.6" (A. McGarr, personal communication). In both
cases, the interpretation would be that the spectral composition of Aop and
o is deficient in high-frequency amplitudes, relative to those for b = 1 and
y = 2. Acp deficient in high-frequency amplitude is seemingly a logical (if
not always necessary) prelude to a larger dimension shock, and a pursuit of
this matter in connection with the poorly documented claim that b is less
than 1 prior to larger earthquakes in the same region as the counted sample

would be a potentially interesting area of earthquake prediction research.

ESTIMATION OF HIGH-FREQUENCY STRONG GROUND MOTION
The interpretation of the y = 2 model given above allows, through an

application of Parseval's theorem, a determination of the rms acceleration
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through T, that is based only on the properties 90, fo’ and fmax--or Ao,

d

f , and f < Parseval's theorem is

gbla(t\\ 4 = j-g\?{(m)\t&m (8)

where a(t) is the acceleration time history and a(w) is its amplitude spectrum.
Ignoring contributions outside the ranges 0 < t-R/B < Td and f0 LR fmax’ we

write (8) as

™ 2T} was

e 2
g \ak’d\ dt - ;—% &’HS“\K(\;\\ n. (9)

The rms acceleration is
- A . Y
fenet L 37 3 108, o
0

an
Qens * \.'TJ — l ‘Srztb\\ &\DJ/ (1)

“So
For fo <fx< fmax’ i) = 90(21rf0)2 so (11) becomes

oM © [ g_%‘*i\" .Q:s: Qm-&.}l’h e

For earthquakes with M > 5 observéd at R~ 20 km, f >> fo' This together with

or with (9)

max
the approximation

AQ » —_‘r‘: (13)
gives
. 4 1§ *
hews = | (@) @04 gml (14)

which we write as

fews = (7 (aFY 2, ), Sﬁ; ()
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to factor out the stress drop quantity Qofogﬂ

For the Brune (1970, 1971) model, Hanks and Thatcher (1972) give

3 - B0
%" = To6 R (16)

so (15) becomes, in terms of Ao,

5 J2(27)2 A Fmax (17)
rms 106 R fo ’

Table 1 compares CH. values estimated from (17) with those "observed" for
the San Fernando earthquake at Pacoima Dam and the Kern County earthquake at
Taft. The "observed" values are those given in Volume I, Part A, of the series
"Strong Motion Earthquake Accelerograms", corrected by (record 1ength/Td)l/2 to
estimate the (larger) B value that occurs in the time interval of the S-
wave arrival through the S-wave arrival plus Td‘ Because the accelerations are
non-zero outside of this interval, the "observed" values are overestimates of
the actual e values, 0 < t-R/8 5-Td‘ In any case, however, the agreement
between the estimated and "observed" values is remarkable, by conventional
seismological standards in estimating high-frequency amplitudes, being approxi-
mately 50% in the case of the San Fernando earthquake and 20% in the case of
the Kern County earthquake.

Equation (17) is built on the far-field representation of the y = 2 model,
and so it may be expected to fail close to a large enough shock, unless we can
be clever enough to break big earthquakes into small enough analytical chunks.
If the major part of the radiated energy comes from depths of several km or
greater, however, we are always in the far-field for radiation at frequencies
of several hz and greater, which make the principal contribution to (15) at R

~ 10 km. It thus appears that (15), or a discrete sum based upon it, holds

considerable promise for accurately and reliably estimating high-frequency
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strong ground motion for those earthquakes for which the y = 2 model is valid.
With the additional assumption of constant stress drop, B pms for any hypo-
thetical earthquake can be estimated with knowledge of only the source property

fo and the path properties R and Q, exclusive of anomalous site effects.

240




14

References

Aki, K., Scaling law of seismic spectrum, J. Geophys. Res., 72, 1212-1231, 1967.

Berrill, J.B., A study of high-frequency strong ground motion from the San
Fernando earthquake, Ph.D. Thesis, California Institute of Technology,
Pasadena, 1975.

Brune, J.N., Tectonic stress and the spectra of seismic shear waves, J. Geophys.
Res., 75, 4997-5009, 1970.

Brune, J.N., Correction, J. Geophys. Res., 76, 5002, 1971.

Geller, R.J., Scaling relations for earthquake source parameters and magnitudes,

Bull. Seism. Soc. Am., 66, 1501-1523, 1976.

Hanks, T.C., Earthquake stress drops, ambient tectonic stresses, and stresses

that drive plate motions, PAGEOPH, 115, 441-458, 1977.

Hanks, T.C., and D.A. Johnson, Geophysical assessment of peak accelerations,

Bull. Seismol. Soc. Amer., 66, 959-968, 1976.

Hanks, T.C., and W.R. Thatcher, A graphical representation of seismic source

parameters, J. Geophys. Res., 77, 4393-4405, 1972.
Haskell, N. A., Total energy and energy spectral density of elastic wave radia-

tion from propagating faults, Bull. Seism. Soc. Am., 54, 1811-1841, 1964.

Kanamori, H., and D.L. Anderson, Theoretical basis of some empirical relations

in seismology, Bull. Seismol. Soc. Amer., 65, 1073-1096, 1975.

Morrison, P.W., B.W. Stump, and R. Uhrhammer, The Oroville earthquake sequence

of August 1975, Bull. Seism. Soc. Am., 66, 1065-1084, 1976.

Nur, A., Nonuniform friction as a physical basis for earthquake mechanics: a
review, PAGEOPH, in press, 1977.

Richter, C.F., Elementary Seismology, pp. 768, W. H. Freeman, San Francisco,

Calif., 1958.
Thatcher, W., and T.C. Hanks, Source parameters of southern California earthquakes:

Jour. Geophys. Research, 78, 8547-8576.

241



at

15

Table 1

Comparisons of Estimated and Observed Boms Values

San Fernando Earthquake

Feb. 9, 1971; M = 6.4

1026

dyne-cm
10 km

50 bars

0.1 Hz
Pacoima Dam
~ 10 km

25 Hz

140 cm/sec2

220, 240 cm/sec2

rms

estimated

"observed"

242

Kern County Earthquake
July 21, 1952; M = 7.7

2 x 1027

dyne-cm
25 km
60 bars

(0.04 Hz)

at Taft, California

~ 40 km
7 Hz

36 cm/sec2

42, 42 cm/sec2



Fig. 2
Fig. 3

Fig. 4

Fig. 5
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Figure Captions

Interpretation of the stress-drop potential function when b = 1.
The stress-drop potential function is the areal distribution of

all the stress drops (to be realized at the time of discrete
faulting for individual events) of the incipient earthquake popu-
lation.

The w=2 and w3 source models for constant stress drop earthquakes.
Interpretation of the w=2 and w™3 models in the time domain. Event
(2) (left-hand side) has a duration of 2 seconds, and event (1)
(right-hand side) has a duration of 20 seconds, although only 10

of these are shown in b and d. The range of possible 1-second
time-domain amplitudes. for the w™2 and w~3 models are graphically
illustrated here and discussed in the text. Relative 1-second
amplitudes are given in two groups of four (one each for the w2
model, a and b, and the w3 model, c and d); the choice of 1 in

the upper left corner of each square is arbitrary.

Peak acceleration at R ~ 10 km as a function of magnitude, as
presented in Hanks and Johnson (1976).

Fourier amplitudes of acceleration determined from 15-second win-
dows, beginning with the S-wave arrival, of strong motion accelero-
grams of the San Fernando earthquake as a function of frequency
(0.4, 1, 2, 4, 8, and 16 Hz) and R. Data from transverse components
are indicated as x, from radial components as o. The curved lines

are least-squares fitted to the data and are of the form 3 (f,R) =

LY

d, (f, 1 km) _mfR  where g = 3.2 km/sec and Q = 330. Values

R € 08
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Fig. 6

Fig. 7

17

of 30 are plotted as a function of frequency in Fig. 6. Modified
from Berrill (1975).

d, (f, 1 km) at 0.4, 1, 2, 4, 8, and 16 Hz at three azimuth ranges
from the San Fernando earthquake compared to those for the y = 2
model at an average azimuth (in the sense of a pdint source radia-
tion pattern). Modified from Berrill (1975).

Acceleration amplitude spectra at R for two constant stress drop

earthquakes with attenuation explicitly shown.
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VARIABLE FRICTION AND STRESS
IN ONE DIMENSIONAL MODEL
A SUMMARY
by
Moshe Israel and Amos Nur
Department of Geophysics
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Stanford, California 94305
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THE MODEL
The one dimensional model (Fig.l), introduced by Knopoff et al. (1973)+
is assumed. Using this model, we examine the effects of variable stress
distribution and energy absorbed at the crack tip. Mathematically, one

has to solve the equation:

2 2
p0) 5 =ue0l g - A - 3 Tk FC) &
t ax

where u(x) is the rigidity, p(x) the density, x is spatial coordinate and
t the time. The terms A(x) and B(x) take into account the interaction of
the fault with the surrounding medium, F(x) is the stress drop, i.e., the
difference between tectonic stress and dynamic stress.

Equation (1) may be solved if we assume that the rupture velocity,

dg

at ° is known in advance (£(t) is the position of the crack tip). However,

from a physical ﬁbint of view, the rupture velocity is determined by the
stress drop F(x) and the rate of energy absorption per unit distance at

the crack, y. Using some results of Knopoff et al. we find:

y=%u}2‘(1——%) (2)
c

where c¢ 1is the wave velocity. We may solve (1) by specifying the rate of

dg

energy absorption, Yy , or the rupture velocity, ac °

+Knopoff, L., Mouton, J.U. and Burridge, R., 1973. The dynamic of a one-
dimensional fault in the presence of friction, Geophys. J. R. astr. Soc.,
35, 169-184.
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We assume that static friction effects the motion in the following way:

if for some x and some t the particle velocity vanishes, then

at

du R "
- =0 for t >t at x = x . In other words, we assume that static

ot

friction is large enough to prevent negative velocity. Generally, the
acceleration does not vanish when the velocity does, and therefore the

solution involves discontinuity of the second partial derivatives.

THE METHOD
The characteristic method is used to solve the hyperbolic equation (1).
The method is numerically stable, furthermore discontinuity in partial
derivatives are treated in a natural way. We assume a constant wave
velocity equal to 1. In this case, the grid points are given by the
intersection of the characteristics:
X=t+ o (a characteristics),

x=-t + 8B (B characteristics),

The grid and the boundary conditions are described in Fig. 2.

Let us consider the healing process. Suppose that at some point the
velocity of some particle vanishes. At this point there is usually a jump
in the acceleration from some negative value to zero. This jump propagates
at a speed equal to the wave velocity. Now, the solution is not effected by
this jump while the healing velocity is larger than the wave velocity. At
a point Q, where the healing process reaches the sound velocity, the dis-
continuity plays an important rqll. From this point, the particles are
accelerated and the motion continues in the remaining segment. Referring

: i £ Jdu
to fig. 2, we note that to the right of Q, a boundary line in which FT 0
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is formed. The discontinuity at Q propagates along the oy characteristics,

the Bl characteristics and so on.

NUMERICAL RESULTS

We assume, for the purpose of numerical computation, that u(x) = 1,

p(x) = 1. Different positive values of A(x) and B(x) were assumed (0 < A(x)< 3

0 < B(x) < 3). Since the conclusions drawn do not depend on the specific

values of A(x) and B(x), we present solutions where A(x) = 0 and B(x) = 0. Let

us examine first the case in which the stress drop is variable.

CASE A
The rate of energy absorption is given by

Y= 53/8

The stress drop is

F(x) = 1 -€sin(2mx),

where € = 0., 0.46, 0.5.

The solutions are described in figures 3 to 12. We note the following

features of the solutions:

(a) When € = 0 and 0.46 the fault extends itself out to about x = 1.3.
When € = 0.5 the extension is only out to x = 0.5 (see figure 4 for rupture
velocity). This is certainly a non linear effect associated with rupture
propagation.

(b) We denote the difference betweenthe initial and final stress by

dynamic stress drop. From Figures 3 and 5, we conclude that overshooting
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always exists. It is larger near the end of the fault and in the cases of

variable stress drop.
(c) It may be shown that the stress drop of a subsequent earthquake

2 2

is given by pé—g + T, where 3—% is conputed at the instant of healing.
ot at

T is the tectonic stress applied on the system between the two successive
earthquakes. If T is independent of x, then particle accelerations (Figure 6)
describes the form of the stress drop function for a subsequent earthquake.

We note that the stress drop of an expected earthquake is generally smoother
than that of the actual earthquake (consider the cases € = 0.46,

e = 0.5).

(d) The healing process is continuous in all cases (Fig. 7).
(e) Particle accelerations and velocities are significantly dependent

on stress drop variation (Figures 9 to 12).

CASE B

We assume a constant stress drop given by
F(x) =1 (5)

The rupture velocity is given by
E(t) = n(1 + sin (71t/4)) + (1 - 2n) (1 - t/2) (6)
when 0 < t < 2 and zero otherwise, n is a parameter which assumes the

values: 0, 0.1, 0.2, 0.4.

The computed rate of energy absorbed at the crack is givenin Figure 13.

We may regard the energy absorbed as completely specifying the physical con-
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dition of the system. The rupture velocity (equation 6) will result from
this condition.

The numerical results are desrcibed in Figures 13 to 20. We note that:

(a) Variations in the absorbed energy cause discontinuities in the
healing process (see Figures 13, 15 when n = 0.2, 0.4).

(b) When the healing process is discontinuous we observe irregularities
in the dynamic stress drop and particle motion. Consequently, fluctuations
in the stress drop 6f a subsequent earthquake occur.

Finally, we compute static solutions by the equation:

where o is the mean of the dynamic stress drop. The boundary conditions are
u(0) = u(L) = 0, L is the fault lenght. We denote by Mb the seismic moment,
using (7) we obtain

i2M
o

In table 1 we summarize the mean of the dynamic stress drop computed by the
dynamic and static methods (Equation 8). In the static case we use the values
of Mo and L compted in the dynamic case. It may be seen that the static
approximation (8) leads to an underestimation when the healing process is
discontinuous.
CONCLUSIONS
It is shown that:

(a) The healing process is usually supersonic.
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(b) Variation in friction at the crack tip is connected with discon-
tinuity in the healing process. The discontinuity causes irregularities
in the motion of the fault and the final stress.

(c) Dynamic and static computations of stress drop are in reasonable
When it is discontinuous,

agreement when the healing process is continuous.

the static approximation leads to an underestimation.

259



TABLE 1

CASE L Mo o: Dynamic Solution Static Solution
A e=0 1.28 0.2 1.1 1.2
A e=0.46 | 1,32 0.25 1.1 R 55
A e=0.5 .46 0.06 0.68 0.75
B n=0. 8 0.1 1.15 1.2
B n=0.1 1.018 0.13 1.31 1.5
B n =0.2 | 1.036 0.093 1.38 1.0
B nt=0.4 | 1.072 0.057 1.47 0.56

+Healing process discontinuous
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FIGURE CAPTIONS

Fig. 1 The one dimensional model is composed by particles which slide on
a rough surface. The particles are connected to each other by coil
springs and to the moving support by leaf springs. The continuous
case is obtained wheﬁ tﬁe distance a, between‘the particles tends
to zero.

Fig. 2 Grid points and boundary conditions.

Fig. 3 Case A, variation of stress drop (difference between tectonic and
dynamic friction) as a function of the spatial coordinate x.

Fig. 4 Case A, computed rupture velocity.

Fig. 5 Case A, computed dynamic stress drop (difference between initial
and final stress).

Fig. 6 Case A, particle accelerations at the time of healing.

fig. 7 Case A, the healing tim2 as a function of the spatial coordinate x.

Fig. 8 Case A, final displacement as a funciton of the spatial coordinate x.

Fig. 9 Case A, particle accelerations as a function of time, the case of
constant stress drop (€ = 0 ).

Fig. 10 Case A, particle velocities as a function of time, the case of
constant stress drop ( € = 0 ).

Fig. 11 Case A, particle accelerations as a function of time, the case of
variable stress drop ( € = 0.46 ).

Fig. 12 Case A, particle velocities as a function of time, the case of
variable stress drop ( € = 0.46 ).

Fig. 13 Case B, variations in the absorbed energy rate per unit length

Fig. 14 Case B, rupture velocity as a funciton of the spatial coordinate x.

Fig. 15 Case B, healing time as a function of x.
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FIGURE CAPTIONS (cont'd)

Fig.
Fig.

Fig.

Fig.

Fig.

16

17

18

19

20

Case B, dynamic stress drop as a function of x.

Case B, particle accelerations at the time of healing.

Case B, final displacement as a function‘of X.

Case B, particle accelerations as a function of the time, the case
of discontinuous healing ( n = 0.2 ).

Case B, particle velocities as a function of the time, the case

of discontinuous healing ( n = 0.2 ).
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DYNAMIC STRESS DROP
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TIME OF HEALING
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RUPTURE VELOCITY
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TIME OF HEALING
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DYNAMIC STRESS DROP
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1. BRIEF REVIEW OF SEISMIC METHODS FOR DETERMINATION OF SOURCE PARAMETERS

In this section we list earthquake source parameters.relevant
to the subject and briefly summarize commonly used seismological methods
for the determination of these parameters.

(1) Fault Geometry

The geometry of an earthquake fault can usually be defined by
three parameters: the fault strike, the angle of the fault plane
and the slip angle of the fault motion. Other representations and
useful relations between them are given by Jarosch and Aboodi (1970).
These parameters can be ‘determined by 1) P-wave first-motion data
(Stauder, 1962, Honda, 1962), 2) S-wave polarization angles, (Stauder,
1962; Honda, 1962; Hirasawa, 1966), 3) wave forms of body waves (Langston
and Helmberger, 1975; Langston, 1976; Langston and Butler, 1976),
4) radiation pattern of surface-waves (Brune, 1961; Ben-Menahem and
Harkrider, 1964; Aki, 1966; Kanamori, 1970; Ben-Menahem et al., 1970),
5) the excitation of normal modes (Saito, 1967; Abe, 1970; Ben—Menahem,
et al., 1971; Dziewonski and Gilbert, 1975; Gilbert and Dziewonski,
1975), 6) geodetic data (e.g., Chinnery, 1964, 1969; Savage and Hastie,
1966; Ando, 1971), and 7) field observations.

(2) Fault Dimension

The dimension of an earthquake fault can be detérmined from 1)
the size of the aftershock area, 2) geodetic data, 3) tsunami source
area, 4) directivity and asymmetry of the radiation pattern of long-
period surface waves, 5) pulse width of body waves, and 5) seismic
corner frequency.

1) Aftershock Area
Although there is no standard definition of aftershocks and the

aftershock area, the aftershock area defined by the somewhat subjective

284



judgment of the investigator often provides a very good estimate of
the fault area of very large earthquakes (fault dimension > 100 km),
particularly for great shallow thrust earthquakes along subduction
zones (Benioff et al., 1961; Press et al., 1961; Mogi, 1968a). For
small earthquakes, errors in the epicenteral location of aftershocks
and the temporal expansion of the aftershock area often cause a substantial
error in the estimate of the size of the fault plane.
2) Geodetic Data
When geodetic data (leveling and triangulation) are available
over the entire area of faulting, the size of the fault plane can
be determined very well (Savage and Hastie, 1966; Plafker, 1972; Ando,
1971; Kasahara, 1957; Chinnery, 1964; Kanamori, 1973; Jungles and
Frasier, 1973). The spatial decay rate of the displacement field
can be used to infer the vertical extent of the faulting (Knopoff,
1958), although the resolution is often limited by the quality and
quantity of the data.
3) Tsunami Source Area
When tide-gage data are available near the epicenter of a large
tsunamigenic earthquake, the source area of tsunami can be estimated
by using the inverse refraction diagram (Miyabe, 1934; Hatori, 1966;
Abe, 1973). Usually, a good correlation between the size of tsunami
source area and the aftershock area (Hatori, 1965; Abe, 1973) is found.
4) Directivity
From the directivity of very long-period (200 to 300 sec) surface
waves, the rupture length can be estimated (Ben-Menahem, 1961). The

asymmetry of the radiation pattern can also be used (Kanamori, 1970).
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For very large earthquakes such as the 1960 Chilean earthquake, the
1952 Kamchatka earthquake, the 1964 Alaskan earthquake, these methods
gave a reliable estimate of the fault length, perhaps accurate to
i:lSi (Benioff et al., 1961; Press et al., 1961; Ben-Menahem and Toksoz,
1963). However, for events whose dimension is smaller than 100 km,
the resolution of these methods becomes very poor.
5) Pulse Width of Body Waves

The pulse width of body waves was used to infer the fault dimension
of deep focus earthquakes (Fukao, 1970). In order to determine the
source time function frbm observed body waves from shallow focus earthquakes,
the effect of structure near the source, particularly the free surface
effects, and propagation effects must be.removéd from the observed
records. Techniques have been developed to correct for these effects
(Fukao, 1971; Helmberger, 1974; Langston and Helmberger, 1975; Helmberger
and Malone, 1975), and the source time function can be recovered very
accurately for relatively simple events (Burdick and Mellman, 1976).
For complex events, the analysis of body waves is more difficult but
several attempts have beeﬁ made (Fukao, 1972; Chung and Kanamori,
1976; Kanamori and Stewart, 1978; Chung and Kanamori, 1978) to recover
the complex time'history of the rupture process. The interpretation
of the pulse width in térms of the source dimension involves assumptions
on the geometry of the'fault, mode of rupture and rise time of the
local slip function, and is often nonunique.

6) Corner Frequency
The corner frequency of the spectrum of body-waves is a frequency

domain representation of the pulse width. Brune (1970) proposed a

286



relation between the source dimension and the corner frequency. Although
Brune's equation provides a useful average relation, the estimate
for an individual event depends on the geometry of the fault, the
mode of rupture and the rise time of the local slip function. When
the wave form becomes complex due to source complexity and propagation
effects, including reflections and refractions, interpfetation of
the corner frequency in terms of the source dimension becomes very
difficult.

(3) Rupture Mode and Rupture Velocity

Whether the fault rupture is unilateral, bilateral or two-dimensional
is usually determined from the spatial relation of the main shock
to the aftershock area. For very large earthquakes, the rupture velocity
can be determined from the directivity function (Ben-Menahem, 1961;
Benioff et al., 1961). For multiple shocks, the apparent rupture
velocity is given by the ratio of the spatial separation to the temporal
separation of the individual events. The rupture velocity is sometimes
determined from the wave forms of near field xecords (Aki, 1968; Kanamori,
1972; Abe, 1974a).

(4) Dislocation

The dislocation on the fault plane is in general a function of
position and time. From geodetic data, the static value of the dislocation
can be determined as a function of position on the fault. However,
the details of the spatial distribution are usually very difficult
to resolve (Chinnery, 1964; Kasahara, 1957; Savage and Hastie, 1966;
Kanamori, 1973).

If the fault area is known, the dislocation can be estimated

from the amplitude of seismic body waves, surface waves and free oscillations.
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However, it is very difficult to resolve the détails of the spatial
distribution of the dislocation; usually, only a spatial average can
be determined.

(5) Particle Velocity

The particle velocity at a point on the fault plane is directly
related to the effective tectonic stress (Brune, 1970). In principle,
the particle velocity can be determined from the frequency spectrum
or the rise time of near field seismograms. However, it is difficult
to remove the effect of rupture propagation and near source geometry
from the observed seismogram. Only a few determinations of the particle
velocity have been made (Kanamori, 1972; Abe, 1974a,b, 1975a).

(6) Complexity

The complexity of faulting process can be determined by the analysis
of distinct arrivals on seismograms (Imamura, 1937; Miyamura et al.,
1964; Wyss and Brune, 1967; Trifunac and Brune, 1970). More recently
synthetic seismograms have been used to determine more details of
the multiple shock sequence (Fukao, 1972; Chung and Kanamori, 1976;
Kanamori and Stewart, 1978; Chung and Kanamori, 1978). Detailed study
of complexity of faulting is important in understanding the stress
state in the fault zone and also in predicting ground motions resulting

from an earthquake.

2, SUMMARY OF RESULTS
(1) Geodetic Data
Geodetic data (both leveling and triangulation) are summarized

by Rikitake (1974) and are shown in Figure 1. Figure 1 shows the
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strain change in the immediate vicinity of the epicenters of various

earthquakes as a function of magnitude. The strain seems to be almost
=5 - ;

constant from 2 x 10 ~ to 2 x 10 4 regardless of the magnitude of

11 dyne/cmz,

the earthquake. Since the rigidity of crustal rocks averages 3.5 x 10
this strain change corresponds to a stress drop of 7 to 70 bars (Chinnery,
1964).

(2) Great and Large Earthuakes

The results for large and great earthquékeé are summarized by
Kanamori and Anderson (1975) and Geller (1976) (Table 1).

Figure 2 shows the-relation between log S (S: fault area) and
log Mo (Mo =[LES: seismic moment) for great and large earthquakes.
The remarkable linearity between log Mo and log S can be interpreted
in terms of a constant average stress drop (30 to 60 bars) in earthquakes
(Aki, 1972; Kanamori and Anderson, 1975; Abe, 1975b; Geller, 1976).

. The effective stress . ® Ob - O% (06 = initial tectonic stress

on the fault plane; o = dynamic friction during faulting) is the
stress which drives the fault motin (Brune, 1970). The effective
stress can be obtained from the frequency spectrum or the rise—time
of near-field seismograms. Table 2 summarizes the results. Although
these results are subject to large uncertainty, it is important that
e is about the same order of magnitude as the stress drop.

(3) Small Earthquakes

Figure 3 shows the relation between log r (r: source dimension)
and log M (Hanks, 1977). Although the trend is similar to that for

large earthquakes, the stress drop varies over a larger range (0.5

to 100 bars) than for large earthquakes. Whether this large variation
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is due to real variation of the stress drop or experimental uncertainty
is not clear. For very small earthquakes, the source dimension r
is estimated mainly from the corner frequency and the uncertainty
of this measurement is very difficult to estimate.

For several earthquakes, the duration of the source time function
has been determined from time-domain analyses (Figure 4, Helmberger
and Johnson, 1977). These results again indicate a stress drop of
10 to 100 bars. In some cases, a very large stress drop ( 1 kbar
or larger) has been reported (e.g., Brune et al., 1976). Although
the absolute values of the stress drop are subject to large uncertainty'
due to the lack of information about the rupture mode and the source
dimension, these results indicate a larger range of stress drop. for

small earthquakes than for large earthquakes.

3. MULTIPLE SHOCKS

Many seismograms indicate that earthquake fault motion is extremely
complex. This complexity exists at all scales. Figure 5 shows an
example of the strong-motion seismogram of the 1971 San Fernando earthquake
recorded at Pacoima Dam. The "displacement" trace shows the ground
displacement recorded by an instrument whose response is given by
curve 3. The displacement is relatively smooth and various theoretical
methods can be used to explain this trace. The stress drop has been
estimated by various analyses (Mikumo, 1973; Trifunac, 1974; Hanks,
1974). The "acceleration" trace shows the ground displacement recorded
by an instrument with a response shown by curve 1. The displacement

in this high frequency range is extremely complex, and simple theoretical
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models fail to explain this irregularity.

Figure 6 shows an irregularity at a larger scale. It is obvious
that very complex source models are necessary to explain these complex
events. However, estimates of the average stress drop and effective
stress have been obtained using simple dislocation models or simple
crack models. These models can explain the long-period component
of the seismograms but fail to explain the short-period component.

How meaningful is the estimate of the stress drop and other source
parameters obtained by using these incomplete models? Madariaga (1977)
showed that the estimate of the average stress drop depénds upon the
distribution of the stress drop on the fault plane. However, it is
probably unlikely that the estimate of the average stress drop obtained
for earthquakes using a simple model is in error by a factor of five

or so.

A more detailed analysis was made for the 1976 Guatemala earthquake
(Kanamori and Stewart, 1978). Figure 7 shows wave forms of P waves
at seven stations which exhibit remarkable complexity. These wave
forms were matched by synthetic seismograms computed for a sequence
of point sources (Figure 7). The resulting source time sequence is
shown by Figure 8. This result sugests that the earthquake can be
represented by a sequence of approximately ten distinct events, the
seismic moment of which varies by a factor of about four. The rupture
can be represented by a stop—and-go sequence with an average rupture
velocity of 2 xm/sec. The spatial separation of the individual events
is 14 to 40 km suggesting that either stress, frictional characteristics

or sliding characteristics on the fault plane vary with comparable
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spatial scale along the fault plane. Although the average stress

drop is about 30 bars, the local stress drop for the individual events

may be significantly higher than this value, perhaps by a factor of

two or three. Other multiple shocks which were studied earlier include
the 1923 Kanto earthquake (Imamura, 1937), the 1964 Alaskan earthquake,
(Wyss and Brune, 1967), and the 1940 Imperial earthquake (Trifunac

and Brune, 1970). These multiple shocks will provide important clues

to the ﬁnderstanding of the mechanics of faulting.

4. ASPERITY
The multiple shocks can be interpreted in terms of asperities
on the fault plane. Here the asperities can be geometrical asperities,
heterogeneities of the frictional strenéh or a combination. A fault
plane can probably be represented by a random distribution of stress
concentrations of various scale lengths. This asperity model can
be used to interpret seismicity patterns before large earthquakes.
Several investigators (e.g., Mogi, 1968b; Kelleher and Savino,
et al., 1975), found that foreshocks tend to cluster near the epicenter
of the main shock (Figure 9). For the 1971 San Fernando earthquake,
Ishida and Kanamori (1977) found a clustering of activity for a two-
year period before the main shock (Figure 10). As shown in Figure 11,
these events show nearly identical wave forms at Pasadena indicating
that they originated nearly at the same hypocenter. As shown by Figure 10
the distribution of small earthquakes in the epicentral area prior
to 1965 was relatively random. During the period fom 1965 to 1968,

the seismic activity was very low in the epicentral area.
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These observations may be interpreted in terms of the asperity
model. The distribution of asperities is initially uniform. As the
tectonic stress builds up, weak asperities break in sequence resulting
in small earthquakes distributed over the fault plane. As the weak
asperities break, stress concentrations occur near the stronger asperities
and eventually near the strongest one. This redistribution of stress
results in clustering of earthquakes near the strongest asperity,
the hypocenter of the impending main shock, and relative quiescence
elsewhere on the fault plane. This stage corresponds to the "foreshock"
activity. When the last asperity breaks, the entire fault plane ruptures
resulting in the main shock. In this case, the stress drop in the
beginning of the faulting process is substantially higher than the
average stress. Hanks (1974) suggested that the 1971 San Fernando
earthquake was initiated by an event with a very high stress drop.

Under certain conditions, a failure of one asperity may load
up the neighboring asperities and cause failure resulting in a swarm-
type earthquake activity.

From the point of view of earthquake prediction, it is important
to distinguish foreshock activity from swarm activity or background
activity. At the present time no established method exists, but the
result for the San Fernando earthquake is encouraging in that the
events just before the main shock are very distinct from the earlier
events in terms of both wave form and clustering characteristics.
Detailed study of temporal variations of wave forms, spectra, source
mechanisms, and locations of small earthquakes may be very important

for identifying foreshocks.
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- LOW EARTHQUAKE STRESS DROP VERSUS HIGH FRICTIONAL STRENGTH

OF ROCKS

Byerlee (1977) conclude that, under laboratory conditioms, the
coefficient of friction does not depend on mineralogy, pressure,
temperature, and texture of the sample. The coefficient of friction
was found to be 0.6 X 0.05 (Figure 12). Under mid-crustal con&itions,
the normal stress is about 5 kbars so that a frictional strength of
ébout 3 kbars is suggested unless fhe pore pressure is very large.
If the pore pressure is very large, the frictional strength may be
about the same order of.magnitude as the earthquake stress drop.
In this case, earthquakes represent a complete release of the tectonic
stress.

On the other hand, if the pore pressure is small compared with
the lithostatic pressure, the frictional stress is nearly two orders
of magnitude larger than the stress drops in large earthquakes (see
Figure 2). In this case the stress drop in earthquakes is only partial
(about 1%), and the frictional stress during faulting must be very
high. As a result, high heat flow may be expected along the fault
zone. The lack of high héat flow along the San Andreas fault h;s
been used as evidence against this idea (Brune et al., 1969). However,
if the frictional heat is transferred by mechanisms other than conduction,
the lack of a heat flow anomaly may not be compelling evidence against
high frictional stress on the fault (Hanks, 1977). Since the earthquake
stress drop is very uniform (about 30 to 60 bars), a mechanism which
provides a uniform fractional stress drop is necessary. One such
mechanism may be suggested from the results of friction experiments

(J. Rudnicki, personal communication, 1977; see Figure 12). At high
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pressures the shear stress (here interpreted as the frictional stress)
fluctuates very little about the average value. This small fluctuation
is due td difference in the mineralology, grain size and texture of
rocks. Since the fault zone is nonuniform in composition, a small
amount of fluctuation in the frictional strength Ao = oy —%, would

be expected where Oy and O are the maximum and the minimum strengths
respectively. In this case, when the tectonic stress exceeds the
maximum frictional stress Oy> a sudden failure takes place and the
stress on the fault plane drops. When the stress on the fault plane
drops to o then the fault is locked again. Then the average stress
drop would be of the order of Ao. In this model it is the range of
the frictional stress that controls the stress drop in earthquakes.
Since experimental data suggest that, at pressures corresponding to
the mid-crustal depth, the fluctuation of the frictional strength

is very small, only a few percent of the frictional strength itself,
the stress drop 1in earthquakes can be a very small fraction of the
frictional strength. This model suggests that, if the fault zone

is completely homogeneous, the stress drop is zero and stable sliding
rather than earthquakes occurs. In the above discussion, dynamic

loading effects and the stiffness of the crust are ignored for simplicity.

If these effects are included the process would become more complex.
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