
UNITED STATES 

DEPARTMENT OF THE INTERIOR 

GEOLOGICAL SURVEY 

Office of Earthquake Studies 

PROCEEDINGS OF 

CONFERENCE III 

FAULT MECHANICS AND ITS 

RELATION TO EARTHQUAKE PREDICTION 

Convened Under Auspices of 

NATIONAL EARTHQUAKE HAZARDS REDUCTION PROGRAM 

1-3 December, 1977 

OPEN-FILE REPORT 78-380 

This report is preliminary and has not been 
edited or reviewed for conformity with 
Geological Survey standards and nomencla­
ture 

Menlo Park, California 

1978 





·~ UNITED STATES 

DEPARTMENT OF THE INTERIOR 

GEOLOGICAL SURVEY 

Office of Earthquake Studies 

PROCEEDINGS OF 

CONFERENCE III 

FAULT MECHANICS AND ITS 

RELATION TO EARTHQUAKE PREDICTION 

Convened Under Auspices of 

NATIONAL EARTHQUAKE HAZARDS REDUCTION .PROGRAM 

1-3 December, 1977 

William D. Stuart 

United States Geological Survey 

Office of Earthquake Studies 

Menlo Park, California 94025 

Co-Organizers 

Convener 

Jack F. Evernden 

United States Geological Survey 

Office of Earthquake Studies 

Menlo Park, California 94025 

OPEN-FILE REPORT 78-380 

This report is preliminary and has not been 
edited or reviewed for conformity with 
Geological Survey standards and nomencla­
ture 

AmosNur 

Department of Geophysics 

Stanfo_!_d U.niY.ersity _ --·­

Stanford, California 94305 

The views and conclusions contained in this document are those of the authors and should 
not be interpreted as necessarily representing the official policies, either expressed or 
implied, of the U.S. Government. 

Menlo Park, California 

1978 





CONTENTS 

Introduction .................•... ~ ..•.•. : • • . . . . . . • . . . . . . . . . • . . • . . 1 

Summary 

Amos Nur and William Stuart................................. 3 

A Quantitative Model for Stress in a Seismic Region as a 
Basis for Earthquake Prediction 

Keii ti Aki. . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . • • • . . . . . . . • . . • . . . • . 7 

Application of Rupture Propagation Theories to Earthquakes 

D. J. Andrews. . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . • • . . • . . . . 33 

Implications of Earthquake Triggering and Rupture Propagation 
for Earthquake Prediction Based on Premonitory Phenomena 

James N. Brune. . . . . . . . . . . . . . . . . . . . . . . . • • . . . . . . . . . . • . . . • • . . . • 71 

Far-Field S-Wave Spectra, Corner Frequencies and Pulse Shapes 

James N. Brune, Ralph J. Archuleta, Stephen Hartzell........ 83 

Modeling of Rock Friction, Part I: Experimental Results 
and Constitutive Equations 

James H. Dieterich.......................................... 117 

Modeling of Rock Friction, Part 2: Simulation of Preseismic 
Slip 

James H. Dieterich .............•. o o •• o o o •• o o. o ••• o ••••••• 0.. 144 

The Mechanics of Dynamic Shear Crack Propagation 

L.B. Freund ................................................. 173 

The June 10, 1975 Kurile Islands Tsunami Earthquake: An 
Extended Abstract 

Robert J. Geller and Kunihiko Shimazaki o • o • • • • • • • • • • • • • • • • • • . 213 

b-Values and w-y Seismic Source Models 

Thomas C. Hanks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 

III 



Variable Friction and Stress in One Dimensional Model 

Moshe Israel and Alnos Nur. . . . . • • . . • . . • • . . • . . . • • . . . . . . . . . . . . . 253 

Use of Seismic Rad~ation to Infer Source Parameters 

Hi roo Kanamori. . . . . . . . • • . . . . . • • . . . . • . . • . . . . • • . • . . • • . . • • . . • . . 283 

A Relation Between Seismic Moment and Stress Drop of 
Complex Earthquakes 

Raul Madariaga .•.........•...............•. . · .•........•.••.. .. · .... ·319 

Large Scale Quasi-Static Fault Models 

Gerald M. Mavko.. . . . . . . . . . . • . . . • . . . . . . . . • . • . . • • . • • . • • . . . • . . . 339 

Observations Relevant to Seismic Driving Stress, Stress 
Drop, and Radiation Efficiency 

Art McGarr, S.M. Spottiswoode, N.C. Gay,- W.O. Ortlepp ....... 413 

Slow Earthquakes and Very Slow Earthquakes 

J . H. Pfl uke. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 7 

Earthquake Precursory Effects Due to Pore Fluid 
Stabilization of a Weakening Fault Zone 

James R. Rice and John W. Rudnicki .••...••........ ·. • . . . . . . . . 469 

·Review of Theories for Earthquake Instabilities 

William D. Stuart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541 

Models for the Distribution of Stress and Strain Adjacent 
to the San Andreas Fault 

o~L. Turcotte, R.T. Clancy, D.A. Spence, F.H. Kulhawy •..•..• 589 

Inherent Instability of Quasistatic Creep Slippage on a 
Fault 

J. Weertman ......... ~............................. . . . . . . . . . . 619 

Closing Comments 

Joe Andrews................................................. 649 

James Brune................................................. 651 

IV 



James H. Dieterich.......................................... 653 

L. B. Freund. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655 

Robert Geller............................................... 657 

Tom Hanks................................................... 659 

Hi roo Kanamori ......................... · . . . . . . . . . . . . . . . . . . . . . 661 

G. Mavko. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663 

Art McGarr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665 

Amos Nur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 7 

Jim Rice .. ·· . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669 

John Rudnicki............................................... 671 

James Savage................................................ 673 

Bill Stuart ....... ·.......................................... 675 

Donald L. Turcotte.......................................... 677 

J. Weertman................................................. 679 

v 





Introduction 

On 1 - 3 December 1977, a Conference on "Fault Mechanics and 

Its Relation to Earthquake Prediction" was held at Stanford 

University, Stanford, California. This Conference was the third 

in a continuing series of Conferences to be held under the auspices 

of the Earthquake Hazards Reduction Program. 

These Conferences and publication of their proceedings are a 

vital part of the EHRP, as they are intended to be state-of-knowledge 

Conferences and documents. They are intended to provide intellectual 

stimulus both to participants and to recipients of the proceedings. 

Participants in the EHRP are encouraged to suggest topics for 

future Conferences. The subject should be of comparatively narrow 

focus, should be based on active participation of all attendees, 

all of whom must be conducting research appropriate to the Con­

ference theme. Total attendance is restricted to 25 or 30. 
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SUMMARY 

by 

Amos Nur and William Stuart 

Discussion of theoretical mechanical models for deformation associated 

with faulting fell into five overlapping categories: (1) large scale quasi­

static fault models, (2) fault instability (earthquakes), (3) dynamic 

rupture propagation, (4) use of seismic radiation to infer source parameters, 

and (5) heterogeneity of fault constitutive properties. Each category was 

distinguished not only by the topic discussed, but also by the mathematical 

and conceptual approaches commonly used. In each category recent work was 

described and discussed and main outstanding problems identified; in most 

the current state of knowledge was reviewed. We summarize here the scientific 

results receiving general acceptance, and identify promising areas of future 

work emerging from the conference. 

Current Results 

Consititutive (stress-deformation) properties, especially those of fault 

zones seemed to be the dominant recurrent subject. In particular, hetero­

geneity or spacial variation of constutive behavior was considered to be a 

major factor to be considered in realistic models of both quasi-static and 

dynamic faulting. 

In large scale quasi-static plate models the lithosphere is adequately 

described by elasticity, but the deeper asthenosphere is better approximated 
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by an inelastic law such as viscous, visco-elastic, or plastic. Geodetic 

observations are too scarce and imprecise to distinguish the finer points 

of models at present, however. 

Earthquake precursor and instabilty models require either a post-peak 

strain {slip} or strain rate (velocity) weakening fault zone to produce in­

stability. Models also postulate that the fault zone properties vary w~th 

position. In models growing pre-instability deformtion rates arise from two 

sources: (1) the above mentioned fault weakening on a time scale determined 

by remote forcing, (2) temporary pore fluid stabilization due to Biot type 

or dilatant hardening on a diffusion controlled time scale. 

Strong evidence from diverse observations indicates that faults are 

often very heterogeneous. This is reflected in the frequency - magnitude 

relation, random ground motion, and strongly non uniform fault offsets often 

observed following sizeable earthquakes. These heterogeneities are respon­

sible for uncertainties in using seismic moment for stress estimates. Several 

analyses of the seismic radiation field indicate that the stress state along 

faults may be highly irregular, both in space and time. Furthermore, earth­

quake rupture often appears to be a complex succession of smaller ruptures 

leading to multiple events. Inspection of seismically produced fractures in 

mines · and at the surface also suggests faulting complexity. 

Consequently, one problem in fault modelling is to understand how 

faults remain heterogeneous with time. It appears that spatially nonuniform 

fracture energy may account for the maintenance of heterogeneity, as well 

as irregular rupture velocity and irregular slip. 

Laboratory measurements of frictional slippage show increasing rates 

prior to stick-slip events. Transiently higher rates also occur without 

stick-slip. Several theoretical models show similar phenomena. Such 
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accelerated fault slip before earthquakes may cause observable precursory 

deformation fields. A key problem which remains unresolved, however, is 

the conditions for rupture initiation. Although the point of initiation 

appears central for earthquake prediction, it is unclear what the initiation 

process actually is. Much work is needed, particularly in observing seismicity 

patterns before the main event in and around the epicentral region. 

The state of crustal shear stress is unclear: Some seismic and crustal 

deformation data as well as laboratory results suggest high stress, whereas 

the lack of heat flow anomalies imply low stress. 

Future Work 

It now seems possible to formulate and solve analytically or numerically 

a wide variety of boundary value problem representations of quasi-static . 

and dynamic faulting. The principal uncertainties are the form and spacial 

variation of fault constitutive laws and physical properties. Non-linear 

rate dependent and independent weakening as well as healing laws need 

elaboration. Relevant laboratory data, either from homogeneously 'deformed 

samples or from scaled simulations is scarce, and the connection between lab­

oratory and natural condition remains unclear. To a lesser extent, geometric 

and boundary conditions are poorly known. Field observations such as surface 

deformation, pore pressure, and deviation stress state are too sparce to test 

theoretical models in detail. 

One prodedure is to construct a quasi-static numerical (e.g. finite 

element) model of a portion of an active fault like the San Andreas. Geo­

detic, seismic, and other data might then be inverted to estimate the stress 

and strain near the fault. Though resolution is likely to .be poor, one might 

be able to infer the fault consitutive law form and co.efficient values, as 
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well as eleatic and friction heterogeneities nearby. 

Perhpas the clearest conclusion is that heterogeneities are important, 

and perhaps essential feature of the earthquake mechanism, and must be 

included in future modelling work. 

The determination of the state of crustal shear stress - at present 

unclear - must be accomplished in order to understand the process of faulting. 

In conclusion~ it is clear that earthquake studies are shifting from 

geometrical or kinematic source modesl to mechanical and dynamic models. 

The nature of the faulting instability, the fundamental link between rupture 

velocity and rise time, slip and stress will receive much more attention than 

in the past, leading eventually to a source model of self generating and 

propagating rupture which can also stop on its own. 
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A QUANTITATIVE MODEL OF STRESS IN A SEISMIC REGION 

AS A BASIS FOR EARTHQUAKE PREDICTION 

by 

Keiiti Aki 

Department of Earth and Planetary Sciences 

Massachusetts Institute of Technology 

Cambridge, Massachusetts 02139 
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Abstract 

This paper outlines a framework for combining available 

data from plate tectonics, geodetic, seismic, and laboratory 

measurements for the purpose of estimating stress in a seismic 

region. Applying a new earthquake source model containing 

a fault plane with unbroken barriers to major earthquakes, 

we find the importance of distinguishing between tectonic 

stress and self stress, as pointed out by Andrews [1978]. 

The self stress is due to irregular slip function along fault 

plane and may show great variation in the fault zone after a 

major earthquake. The stress may drop to a low value on 

the slipped segment of fault, but may be elevated considerably 

near the unbroken barriers. Because of the resistance by 

unbroken barriers, the stress drop for the whole fault zone 

as seen from outside by geodetic methods is only a small 

fraction of the initial stress. This implies an ambient 

tectonic stress much higher than tile range from 10 to 100 

bars and adds support to the argument of Banks [19771 o.f the 

importance of traction at the base of a plate as a cause of • 

tectonic stress. Methods for determining the basal traction 

by downward continuation of stress from observations on the 

surface as well as a preliminary quantification of self stress 

in the fault zone are discussed 

0 
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Introduction 

Since the stress in the earth is believed to be the 

cause of an earthquake, it is desirable to know its space-

time distribution accurately and in detail for the purpose 

of earthquake prediction. 

There are three distinct approaches to estimating 

stress in a seismic region. One is to use the seismic waves 

radiated from an earthquake. This gives the stress drop 

which occurred along the fault plane during the earthquake. 

Another approach is to measure the defonnation of the earth's 

surface. This gives the secular change in strain, which may 

be related to stress change. The third method uses artificial 

perturbations of the stress field in the earth by hydraulic 

fracturing or some other mechanical operation and, in principle, 

gives the absolute value of existing stress. 

Various observations have been used in estimating the 

stress change associated with earthquakes. Large-scale' geo-

detic measurements, such as the leveling and triangulation 

surveys in the epicentral areas of major shallow earthquakes, 

usually indicate the strain change in the immediate vicinity 

-5 -4 pf the epicenters in the range 2 x 10 to 2 x 10 , as 

aummarized by Rikitake [1976]. Even if these strains are 

entirely elastic, the above range of strain corresponds to the 

range of stress drop from 6 to 60 bars, assuming a crustal 

rigidity of 3 x 1011 dyne cm- 2 • 

Similar low values of stress drop have been "obtained 

from seismic observations for major earthquakes. If the 
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seismic moment (measured from long period waves} and the 

fault area (estimated from aftershock area, Tsunami source 

area, geodetic data, seismic wave-form, and spectrum, etc.} 

are combined and interpreted in terms of a simple crack model, 

the result usually gives the stress drop in the range fro&\ 

10 to 100 bars as summarized by Aki [1972] and Kanamori and 

Anderson [1975]. 

Revaluation of stress drop on the basis of the barrier model 

Recently, Das and Aki [ 1977] Illade numerical experiments 

on the rupture propagation over a fault plane with distri­

buted barriers, to explain a variety of seismic observations 

on the complexity of earthquake source such as the so-called 

multiple events. 

Aki et al. [1978] further proposed that major earth­

quakes may be modeled by a rupture over a fault plane with 

distributed barriers, some of which will remain unbroken 

after the earthquake. One important consequence of this 

new model is that if this model applies to major earthquakes, 

the stress drop estimated by assuming a simple crack (without 

barriers} may be an order of magnitude too small. 

The new model is supported by some geologists' obser­

vations on the slip distribution along the fault. Wallace 

[1968] discovered in the Carrizo Plain in central California 

streams with no apparent offset lying along fault segments 

on which 10 meters of offset had occurred during the great 

earthquake of 1857. For the maximum slip of 10 meters over 
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a fault segment of estimated length 8 km, the corresponding 

stress drop is nearly 1 kilobar. 

Such a segmentation of a fault appears to be rule 

rather than an exception. The maps published by the U.S. 

Geological Survey of recently active breaks along the San 

Andreas and related faults show that the pattern of surface 

faulting is not a single continuous fracture but consists 

of multiple breaks. The longest individual segment is about 

10 to 18 km. Earthquakes with greater fault lengths must 

then be multiple fractures. 

The segmentation of faults is not restricted to the San 

Andreas fault. Tchalenko and Berberian [1975] studied the 

fault slip of the Dasht-e Bayaz earthquake of 1968 and found 

clear evidence for a segmented fault. Similar evidence is 

found by ft'latsuda [1972, 1974, 1976] and Matsuda and Yamashina 

[1974] from detailed studies of the Nobi (1891), Tango (1927), 

Izu-Hanto-Oki (1974), and Kita-Izu (1930) earthquakes. It 

appears that the fault slip distribution is always irregular 

whenever a detailed observation is made. This irregularity 

may be due to complication by soft surface material, but 

some features can only be explained by the real segmentation 

of the fault at depth. One such example is the Parkfield 

earthquake of 1966. Not only the fault trace jumps from 

the northeast to the southwest rim of the fault-zone valley, 

but also the initial linear trend of the aftershock zone is 

terminated at the point of fault trace jump, and a new segment 

is started along a line about 1 km apart from the initial 

11 
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trend [Eaton et al., 1970]. Since these aftershocks are 

located down to 15 km deep and believed to define the fault 

plane of the San Andreas fault, the segmentation of fault 

cannot be due to secondary effects of the surficial layer. 

High stress drop has been reported for some major 

earthquakes. For example, the stress drop in the area of 

nucleation of rupture in the San Fernando earthquake is 

estimated as high as 500 bars [Hanks, 1974; Bouchon, 1978]. 

Bouchon [1978] found a kinematic similarity between 

the uniform dislocation model widely used in earthquake 

seismology and the crack model over a fault plane with 

distributed unbroken barriers. The two models are roughly 

equi~alent in seismic radiation, if the rise time of the 

uniform dislocation model is equated to the barrier interval 

divided by the rupture velocity. Using this approximate 

equivalence relation, one can obtain the barrier interval 

for earthquakes for which the rise time and rupture velocity 

is known. 

Figure 1 shows the suramary of relations between the 

barrier interval and maximum slip determined by the geological 

and seismic methods (reproduced from Aki et al., 1978). The 

stress drop associated with an individual fault segment can be 

estimated from the barrier ~nterval and the maximum slip. 

They lie in the range between 100 and 1 kilo bars, an order 

of magnitude higher than the range obtained by the use of ~ 

simple crack model. 

12 
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Large-scale tectonic stress versus stress in the fault zone 

From the above discussion, we must conclude that the 

local stress drop over a fault segment can be an order of 

magnitude higher than the large-scale stress release esti­

mated from geodetic data. Accompanying this large stress drop 

in the slipped segment of the fault, the stress near the 

unbroken barrier will be increased after the earthquake. 

Thus, the stress will vary strongly along the fault plane 

after the earthquake. 

At this point, it is convenient to separate the stress 

in the fault zone into two terms, tectonic stress and self 

stress, following Andrews [1978]. The tectonic stress is 

due to distant causes and should be smoothly varying along 

the fault plane. The self stress is due to irregular slip 

function and varies strongly along the fault plane. 

Andrews [1978] pointed out, from a consideration of 

energetics, that the stationary occurrence of a large number 

of small earthquakes cannot be explained by the load of 

smoothly varying tectonic stress alone, but requires a 

generation of short wavelength self stress by a large earth­

quake, unless fault creep, varying in amplitude at all length 

scales prepares the fault for small earthquakes. Our barrier 

model offers a physical mechanism for such a roughening of 

self stress in the fault zone after a major earthquake. 

The strong spatial variation of self stress after a 

major earthquake becomes smoother with time through the 

occurrence of aftershocks, creep, and other stress relaxation 

mechanisms. On the other hand, the tectonic stress in the 

13 
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fault zone drops only by a small amount. This drop is 

recovered slowly by the time of the next major earthquake. 

By that time, the self stress in the fault zone is probably 

diminished by healing and stress relaxation. Within the 

framework of our barrier model, the initial stress before 

the major earthquake must be at least as high as the stress 

drop in the fault zone. Then, it follows that the absolute 

value of tectonic stress must be an order of magnitude 

greater than its drop during an earthquake (observed as a 

large scale stress change by geodetic means). The stress 

m~y drop to a low value on the slipped segment of the fault, 

but it will be elevated considerably near the unbroken 

barriers. Because of the resistance by unbroken barriers, 

the stress drop for the whole fault zone as seen from outside 

by geodetic methods is only a small fraction of the initial 

stress. 

Absolute value of tectonic stress 

Brune et al. [1969] argued for a low atnbient tectonic 

stress along the San Andreas fault on the basis of lack of 

local heat flow anomaly near the fault. They obtained the 

upper limit of 200~250 bars if the fault slip occurs primarily 

by earthquakes. If our barrier model is applicable to the 

San Andreas fault, the stress drop in the fault zone may 

amount to 1 kilobar as discussed above. However, since the 

· lack of heat flow anomaly only contrains the dynamic friction 

on the fault to about 100 bars over a fault depth of 20 km, 

the initial stress can be as high as 1.1 kilobar, for a 

14 
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kilobar stress drop, without contradicting the heat flow 

observations. 

Evidence of a very high (~1 'kilobar) tectonic stress 

has been presented by Hanks [1971] for the plate near the 

Kuril trench from the high apparent stress drop in shallow 

earthquakes and the bulge of the ocean floor seaward of 

the trench axis which was interpreted as due to flexure 

of elastic plates [Walcott, 1970]. Watts and Talwani [1974] 

obtained a similar result for other trenches in the Pacific 

using gravity data in addition to topography. 

Another evidence for high stress comes from rock 

mechanics laboratories. It is now well established that a 

single simple law exists relating frictional strength to 

normal stress irrespective of mineralogy, pressure, tempera­

ture to about 600°C, and a wide range of displacement rates. 

Unless pore pressure is unusually high in the fault zone, 

the frictional strength must be higher than 1 kilobar at 

the depth of foci even for the shallow earthquakes of a 

transform fault. 

Hanks [1977] argues that if the frictional strength 

of transform faults is higher than a kilobar, the boundary 

forces such as gravitational pull by descending slabs or the 

push from mid-ocean ridges cannot drive the plate motions. 

Traction at the base of a plate exerted by convection current 

in the asthenosphere is needed to overcome the resistance at 

the transform fault. Our results from seismic studies of 

earthquake faulting processes give additional support to 
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the high ambient stress. It supports Hanks' argument which 

opposes the idea advocated by Forsyth and Uyeda [1975] and 

Solomon et al. [1975] that the boundary forces are the main 

driving forces and the asthenosphere is only passively 

exerting weak drag on the plates. It also suggests the 

importance of traction at the base of the plates as a source 

of tectonic stress. 

Downward continuation of tectonic stress 

If the traction at the base of a plate is an important 

cause of tectonic stress, it is worthwhile to attempt a down-

ward continuation of stress from observations at the surface 

in a manner similar to the density determination from gravity 

observed on the surface. 

Our problem is not well posed. The uniqueness theorem 

for elastic fields states that if the body force inside an 

elastic body v and the displacement £!:.. traction is known on 

the surface enclosing V, then the displacement inside the body 

is uniquely determined. Our problem is ill-posed, because 

we know the displacement and traction on the free surface 

but neither the displacement nor the traction is known at the 

base or side of the volume of plate under consideration. 

Furthermore, non-elastic strain or stress-free strain [Eshelby, 

1957; Backus and Mulcahy, 1976] such as dilatancy, seismic 

and a~eismic slip, etc. will contribute in general as unknown 

body forces distributed in the body. These difficulties, 

however, may not prevent a geophysicist from working on the 
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problem, because though many geophysical problems are of 

this nature, a solution may be found under some reasonable 

assumptions, giving better insight to the phenomena than the 

mere accumulation of data. 

Our problem can be approached by several different 

methods. If we can assume a vertically heterogeneous earth 

model, then the Fourier transformation with respect to the 

two horizontal coordinates (x,y) and the propagator method, 

such as used by Brown [1975], can be applied to find a 

solution in z with the boundary condition that the displace­

ment is known and traction vanishes at z = 0. This approach 

was attempted by Aki (1953, unpublished) for the three 

components of displacement data for the Tokyo earthquake 

of 1923 using a half-space model. The result was unpublished 

because of the undue amplification of short-wave length with 

increasing depth. Recent advances in inversion techniques, 

such as the stochastic inversion [Franklin, 1970], can be 

used to obtain an optimal solution by taking into account 

the signal-to-noise ratio at each wave length. 

The finite element method would be more versatile. 

Dividing the plate into appropriate elements, we shall dis-

tinguish elements in which non-elastic processes such as 

seismic slip, aseismic slip, or dilatancy is occurring from 

purely elastic elements. Non-elastic processes will be 

modeled by assigning the stress-free strain to each non­

elastic element. 

Putting the nodal displacement vector U, the nodal load 
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vector R, and the stiffness matrix K, the usual finite-element 

formulation can be written as 

KU = R {1) 

where R contains the contributions from the stress-free strain 

{or initial strain in the terminology of finite-element method) 

and elastic strain. 

In our problem, U is measurable for the nodes on the 

free surface by geodetic survey. Since traction is free on 

the free surface, R is partially known there. The part of R 

due to stress-free strain may be known from independent measure-· 

ments. If not, they must be considered as unknown. Plate 

tectonics may constrain the value of U for the nodes on the 

outside boundary. On the other hand, the upper bound of 

absolute value of R at the nodes on the bottom surface may 

be constrained from laboratory measurements on stress relaxa-

tion mechanisms for rocks under appropriate pressure and 

temperature. 

Then, equation {1) will present a linear inverse problem 

for unknown parts of U and R. The equation is most likely 
f 

singular, and the solution will be non-unique. We can, 

however, determine the range of possible solutions. The 

method of linear programming would be useful for finding the 

range of possible solutions. If the result is meaninglessly 

arbitrary, then it would at least suggest what new observations 

can be made in order to reduce the non-uniqueness. 

18 
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Fault zone stress 

The self stress in the fault zone can be calculated 

if the slip function is known [Andrews, 1974}. In principle, 

the slip function for seismic slips may be determined by 

seismic methods. For example, the distribution of self stress 

after the mainshock may be inferred from the waveform of the 

mainshock. Then, the occurrence of aftershocks, which are 

relaxation of self stress, may be related with the waveform 

of the mainshock. In fact, Tsujiura (1977, personal cor~nu­

nication) showssome correlation between the envelope shape 

of P waves from large earthquakes and the frequency of their 

aftershocks. Earthquakes with P waves of gradually rising 

envelope, suggesting more complex rupture propagation, are 

accompanied by a large number of aftershocks. On the other 

hand, very few aftershocks follow a mainshock that shows a 

P wave form with shorter duration and presumably has a 

smoother fault plane. 

As described earlier, our earthquake model suggests 

the rougher stress distribution after the mainshock. Then, 

the distribution of fault zone stress may be smoother during 

the period of foreshock occurrence. Then, we anticipate 

more abundant small earthquakes relative to larger ones in 

the former than in the latter, in accordance with observations 

that the b-value for foreshocks is sometimes lower than that 

for aftershocks. Our model may give a physical basis for the 

difference in magnitude distribution between foreshocks and 

aftershocks found by Kagan and Knopoff [1976], who analyzed 
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several earthquake catalogues as a branching point process. 

An adequate starting point for developing the fault 

zone stress model is the study of aftershock phenomena because 

a large amount of data is available from seismic, geodetic, 

and geologic observations. 

Here, I shall make a preliminary attempt to construct 

a quantitative stress model for a fault zone during an after-

shock sequence. 

Immediately after the mainshock the self stress g-enerated 

by irregular slip function shows the roughest distribution. 

The stress will be elevated at unbroken barri~rs and drop 

at slipped segments of the fault. We shall introduce a single 

parameter S(t) as a function of time to describe the level 

of elevated stress. Then, we shall make the following assump-

tions. (1) When an aftershock occurs, the fault-zone stress 

S(t) is decreased by a certain amount ~S. Following Kostrov 

[1974], we shall assume that an earthquake with seismic moment 

M
0 

will introduce a strain change spread over a "volume of 

seismic region." The corresponding stress change may be 

estimated simply as M /V, where V is the volume of seismic 
0 

region, or 

~S = M /V 
0 

(2) 

we may consider equation (2) as defining the fault-zone stress 

s in terms of volume of seismic region v~ or vice versa. 

(2) According to Magi [1962], the probability of occurrence 
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of fracture in a rock sample increases exponentially with the 

applied stress S. When a constant stress is applied at t = 0, 

he found that the probability of occurrence of fracture between 

t and t + dt is independent of t and given by 

essdt 
ll(t)dt = 110 

where S is determined as 0.37 bar-1 • 

(3) 

This formula has been used by Mbgi [1962], Scholtz [1968], 

and Utsu [1962, 1970] in the discussion of aftershock phenomena. 

Hagiwara [1974] applied this formula to the statistical 

distribution of "ulti~ate strain" obtained by geodetic measure­

ments and obtained the value of S to be 0.3 bar-1 • 

Since eS~S ~ 1 + S~S for a small increase of stress ~S, 

the probability of earthquake occurrence is increased by a fraction 

S~S. For example, for a stress increase by 1 bar, the proba-

bility is increased by 30-37%. 

Denoting a cumulative moment of aftershocks as 

Q(t) = l:M , 
0 

(4) 

the fault zone stress S(t) at time t can be written as (assuming 

no supply from the causes of tectonic stress during the after-

shock period), 

S(t) = S(t ) - Q(t)/V 
0 
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where t is the time immediately after the occurrence of the 
0 

main shock. Then, from equation (3), we have 

11 ( t) = 11 exp {BS(t ) - BQ(t)/V} 
0 0 

(6) 

Assuming that the fracture rate 11(t) is independent of magnitude 

of the aftershock, we can estimate the corresponding rate of 

total moment increase. The result can be written in the form 

d~~t) = R(t
0

) exp(- BQ(t)/V) 

where R(t ) is independent of t. The solution of the above 
0 

differential equation is given by 

R(t ) 
Q(t) = ~ (ln( V 

0 
) + ln t) 

This logarithmic time dependence of cumulative moment 

(7) 

(8) 

was actually observed by Eaton et al. [1970] for the aftershocks 

of the Parkfield earthquake of 1966. Their results show that 

the value of (ln lO)V/B, slope of the Q vs. log t relation, 

23 is 1~3 x 10 dyne-em. Using the value of B obtained by Mogi 

[1962] and Hagiwara [1974], we find that the volume of after­

shock zone of the Parkfield earthquake is V = 1. , 5~4 x 10
16 

cm3 • 

Using the fault area estimated by Eaton et al. [1970], the 

fault zone thickness d is given by 
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16 3 
d = 1.5~4 x 10 cm2 = 0.7~2 x 104 em 

2 x 1012 em 

or 70 to 200 meters. The narrow width of aftershock zone is 

consistent with the planar distribution of aftershock hypo-

centers determined by Eaton et al. 

Using the above value of V, we can estimate the drop 

of fault-zone stress S by a given earthquake in the case of 

the Parkfield aftershocks. For example, an earthquake with 

magnitude 4 and moment lo 23 dyne-cm, S drops by M /V = 2.5~7 
0 

bars. 

The period of observation covered by the work of Eaton 

et al. is from 3 to 80 days from the time of the main shock. 

During this period the total seismic moment is increased by 

1.5~3.5 x 10 23 dyne-em. This corresponds to the drop of 

fault-zone stress by about 10 bars durin~ this period. 

According to McEvilly et al. [1967], there were three 

aftershocks with M > 4 in the first three days and the total 

moment due to these events in roughly 4 x 10 24 . This corres-

ponds to the drop of fault-zone stress by 100~300 bars during 

the first three days. 

Conclusion 

The barrier model of Das and Aki [1977] developed from 

numerical experiments on rupture propagation over a fault 

plane with distributed barriers has been shown to explain 

various observations on major earthquakes. In the model 

with unbroken barriers, the stress may drop to a low value 
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on the slipped segment of the fault, may .be • elevated 

considerably near the unbroken barriers. Because of the 

resistance by unbroken barriers, the stress drop for the 

whole fault zone as seen from outside by geodetic methods 

is only a small fraction of the initial stress. On the 

other hand, the stress in the fault zone varies strongly 

in time and space. The fault zone stress will become 

smoother with time through aftershocks, creep, and other 

stress ~elaxation mechanisms. Thus, the large scale tectonic 

stress and the stress in the fault zone show quite different 

behavior during a cycle of earthquake recurrance. We need 

different strategies for developing quantitative models for 

them. The strategy for smoothly varying tectonic stress 

was outlined by dual approaches. One is based on the down­

ward continuation of stress by the propagator method, and the 

other is a generalized inverse or linear programming solution 

of observational equations for surface displacements formulated 

by the finite element method. For the fault zone stress, 

a preliminary analysis was made on the stress in the fault 

zone of the Parkfield earthquake of 1966 during the aftershock 

period. 

Finally, we emphasize that the determination of stress 

is quite a non-unique problem and the testing of stress models 

by deep-drilling into the fault zone is essential. A deep 

hole or holes can be used to monitor the stress by the 

hydraulic fracturing method or the seismic velocity method. 
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Figure Caption 

Figure 1. Relation between the barrier interval and the 

maximum slip obtained by various methods. The lines 

correspond to constant stress drop assuming a circular 

crack with the diameter equal to the barrier interval. 

Reproduced from Aki et al. [1978]. 
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ABSTRACT 

Determination of a rupture or seismic source from 

initial conditions i~, in general, a nonlinear problem .. 

However, a special class of ruoture models, in which sliding 

takes place at constant stress after slip is initiated, may 

be aoproximat~d as a mixed boundary value problem. For 

prescribed motion of the rupture front such a problem is 

linear. The velocity of the rupture front is determined by 

the energy absorbed within the nonlinear rupture front 

region. This nonlin~ar region must be considered to 

establish the magnitude of the energy absorbed and its 

scaling law in going from laboratory experiments to 

earthquakes. Outstanding problems dependent on the 

nonlinear rupture front include mixed-mode rupture 

propagation and the determination of the thickness of the 

zone that is· heated by nonelastic energy loss. 
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OVERVIEW 

I would like to start this discussion of rupture · 

propagation with some philosophical perspectives. Most of 

the work done in geophysics quite properly consists of 

natural science, with the researchers being observers of 

nature. The observers may at times use rather complex 

mathematics to interpret their data but are still basically 

interested in perceiving the earth in all its complexity. 

The rest of geophysics consists of applied physical science, 

in which the goal of the researchers is to construct models, 

supposedly representing some idealized version of the earth, 

that works according to the principles of physics. Both the 

observers and the modelers may make heavy use of applied 

mathematics; that is not the basis of the distinction I am 

making. The observers want to perceive the world, and the 

modelers want to understand some of its essential mechanisms 

in terms of physics. 

I am speaking today as a modeler, to seek to 

understand rupture propagation as a physical process 

determined by initial conditions and · material properties in 

the medium. Still it is necessary to be aware, as a natural 

scientist would quite naturally be aware, that the initial 

conditions and material properties in the earth may be quite 

heterogeneous. I will return to this point at the end of the 

talk. 

A rupture, such as an earhquake, is an inelastic 
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,> 

process that takes place in a solid continuum that to a good 

approximation is linearly elastic outside the rupture. 

Tndeed, a rupture is a source of elastic stress and 

displacement fields in the medium. 

Elasticity has been compared to other linear field 

theories and worked out as an example of a tensor field by 

Morse and Feshbach (1953). It is curious that in Morse and 

Feshbach and in many other standard texts elasticity is 

treated as a field theory without a source. What is the 

source of elastic fields? What is the analogue of electric 

charge? 

The answer is that the source of an elastic field is 

the deviation of the medium from linear elastic beh3vior 

(Eshelby, 195n, 1957; Backus and Mulcahy, 1976a, 1976b). If 

an element of the medium follows a st~ess-strain curve that 

deviates from Hooke's Law, then that deviation ("stress-free 

strain", a second order tensor); through the effect of 

strain incompatibility with neighboring elements, is the 

source density of the resultin~ elastic field. When 

multiplied by the elastic constant tensor, this source 

density is the "moment tensor density", and its volume 

integral is the seismic moment tensor. The terisor divergence 

of this source density is the more familiar, though less 

physically meaningful, ''equivalent body force". A volume 

distribution of stress-free strain that is concentrated to 

become a delta function on 8 surface represents a 
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displacement discontinuity, as on a crack or fault. 

Rupture propagation, then, is concerned with the 

question of the development in time of a space-time 

distribution of stress-free strain, a breakdown of 

elasticity. An analogue is dielectric breakdown and the 

propagation of a lightning stroke. 

In this talk I want to classify modeling efforts into 

four conceptual levels. Level I consists of the 

determination of the displacement and stress fields arising 

from a prescribed source distribution, for instance slip on 

a fault prescribed as a function of space and time. The 

electromagnetic analogy would be the determination of the 

electric and magnetic fields from a prescribed charge and 

current distribution. In the elastic case Level I modeling 

can lead to quite complicated mathematics, for compressional 

and shear waves are coupled together at any interface or 

heterogeneity. 

If the source distribution is described in terms of an 

assumed functional form characterized by a small number of 

parameters, then Level I modeling can indicate to the 

modeler how observed field variables are related to those 

parameters. More generally, linear inverse theory can be 

used to infer from observed field variable~ the seismic 

moment tensor, and, with limited resolution, the space- time 

distribution of the moment tensor density. A unique inverse 

does not exist from far-field data alone, regardless of the 

37 



6 

completeness of azimuthal coverage or accuracy of the data 

(Aki, personal communication; Kostrov, 1975). 

From the point of view of a pure natural scientist, an 

observer, inverse Level T modeling is entirely sufficient to 

study seismic sources. However, a modeler will not be 

satisfied and will want a model based on physical principles 

of continuum mechanics that is consistent with laboratory 

observatio~s of rock properties. Laboratory rock mechanics 

experiments have not yet been done with fast enough time 

resolution to record motion from a dynamically propagating 

rupture. Therefore the modeling effort must be largely 

theoretical. 

The term "rupture" is taken to mean a more or less 

abrupt drop in stress accompanied by an increase in 

stress-free strain that might be concentrated on a ·surface 

as a displacement discontinuity. It can be either fracture 

of virgin rock or unstable frictional sliding on a 

pre-existing fault. 

I define as Level II those models in which stress is 

assumed to drop abruptly at the rupture front and then 

remains at a prescribed level as stress-free strain or slip 

develops. An example is Archambeau's (1968) model in which 

stress is prescribed on an expanding surface and the 

nonelastic source develops within the enclosed volume. If 

the source volume is collapsed onto a surface then we have a 

crack model, which is a mixed boundary value problem. Beyond 
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the edge of the crack displacement discontinuity is zero and 

on the crack surface inside the edge stress is prescribed. 

For prescribed motion of the crack edge this is a linear 

boundary value problem, and it is possible to attack such 

problems with analytic methods. 

I want to jump ahead now to define Level III modeling . • 
This is true physical modeling in which both the source 

(stress-free strain or slip) and the dynamic elastic field 

are determined by initial conditions. The stress-free 

strain at each point in space-time is consistent with the 

stress history of the particulat material element through a 

nonelastic constitutive relation. At the same time the 

stress and displacement fields are consistent with elastic 

field equations with stress-free strain included as a source 

density. This is analogous to an antenna problem in 

electromagnetism, in which source and radiated field must be 

self-consistent. The dynamic development of rupture is 

determined by assumed initial stress and material 

constitutive relations that may depend on position. In order 

to have an instability, such as spontaneous rupture 

nucleation and propagation, it is necessary that the 

constitutive relation allow for decreasing elastic strain 

energy as stress-free strain increases. A Level III model 

is, by definition, nonlinear, and cannot in general be 

attacked by analytic methods. 

The importance of Level II modeling, the mixed boundary 
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value problem, is that if a physical criterion is provided 

to determine the propagation of the crack tip then Level II 

models comprise a special subgroup of Level III models. For 

a sharp-tipped crack propagating at less than a limiting 

velocity, inverse square root singularities of stress and 

particle velocity exist at the crack tip, at the juncture of 

the different types of boundary condition, up to a critical 

crack velocity. The tip of a prpooagating crack is an energy 

sink. The partition of released strain energy between 

absorption at the crack tip and radiation is a function of 

crack velocity. If the energy absorbed at the crack tip were 

known, either as a material constant or as determined by 

dynamic processes within the crack tip, then the propagation 

of the crack would be determined. In this way analytic 

solution techniques have come close to the solution of an 

essentially nonlinear problem. All the nonlinearity is 

concentrated at a singularity, the crack tip. 

More generally, we may consider some constitutive model 

in which some arbitrary nonelastic breakdown process occurs 

followed by sliding at constant stress. Then the region in 

which the stress drops is no longer a singularity, the crack 

tip, but is spread out into a rupture front, analogous to a 

boundary layer in fluid mechanics. The inner solution in the 

rupture front must be matched to the large scale outer 

solution, which to a good approximation may be taken to be a 

sharp tipped crack solution. The important parameter in the 
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matching is the energy lost in the rupture front. In this 

way an~lytic Level II solutions can be generalized to a 

special class of Level III problems. 

An outstanding difficulty in Level III modeling is that 

the constitutive law governing the failure process is not 

known. Conventional rock mechanics experiments provide only 

gross information about the initial and final states. 

Dynamic measurements with very fast time resolution that can 

reveal the structure of the rupture front are needed. 

So far the initial conditions determining an event have 

been dicussed as if they were arbitrary choices. Here we 

reach the conceptual limitation of Level III modeling. 

Initial stress and material properties cannot be uriiform if 

a rupture is to stop. Furthermore, the detailed variation of 

stress and material properties from point to point within 

the earth is essentially unknowable. The initial conditions 

are determined, of course, by the past history of faulting 

and tectonic loading. Statistical mechanical modeling of 

these initial conditions I define as Level IV modeling. 

Virtually nothing has been done at this level of modeling. 

This is what is required, however, if physical modelers are 

to contribute anything toward understanding the questions of 

seismicity statistics, foreshocks, aftershocks, and the high 

frequency spectrum of ground motion. 

SELF-SIMILAR SHARP-TIPPED CRACK 

Let us return now to Level II, the mixed boundary value 
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problem, and consider rupture propagation in the case of a 

uniform initial stress field and a uniform elastic medium 

with no reflecting boundaries. In this case if a rupture 

initiates it will not stop, but this case might proviqe an 

approximation to the initial growth of an actual ruptur~. 

The prescription of the problem is that on an elliptical 

area expanding at a constant velocity shear stress drops to 

a prescribed constant level. This problem has a 

self-similar solution, and if the propagation velocity of 

all points of the crack edge is less than the Rayleigh wave 

velocity then the slip function plotted as a function of 

position on the crack surface is an ellipsoid (Kostrov 1964, 

Burridge and Willis 1969, Dahlen 1974, Richards, 1976). A 

cross section through the solution is shown schematically in 

Figure 1. Ahead of the crack edge stress rises from the 

initial value and has an inverse-square-root singularity as 

the crack edge approaches. Inside the crack edge stress is 

at a constant level lower than the initial value. What is 

plotted is the stress change; the zero level of absolute 

stress would presumably lie somewhere below the sliding 

stress level. The slip function has a square root dependence 

near the crack edge, which means that the particle velocity 

has an inverse-square-root singularity. On the crack plane 

itself the particle velocity singularity does not overlap 

the stress singularity. 

The dynamic solution for a crack growing self-similarly 
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is qualitatively the same as a static solution. If the 

dynamic solution is compared at some instant of time with a 

static crack of the same size and equal stress drop, it is 

seen that the amplitude of both the slip function and the 

stress singularity ahead of the crack are smaller in the 

dynamic case. The dependence of these amplitudes on rupture 

velocity is shown in figure 2. The quantity Q is the 

amplitude of the slip function of a dynamic circular crack 

relative to that of a static crack of the same size and 

stress drop. It is a smooth curve that falls off about 20 

percent as rupture velocity increases from zero to the 

Rayleigh wave velocity. The intensity of the singularity in 

particle velocity is this function times the rupture 

velocity itself. 

The stress intensity factor may vary around the edge of 

the elliptical crack. For the sake of definiteness· let the 

y axis of a Cartesian coordinate system be normal to the 

crack plane and let the slip be in the x direction. It is 

the shear stress component sxy that is prescribed to drop 

inside the crack edge, and it is the amplitude of the 

singularity of this component that is called the stress 

intensity factor. Locate the origin of the coordinate system 

at the center of the ellipse. The solution on the x axis 

as the crack edge is approached is a two-dimensional plane 

strain configuration (mode II crack). The stress intensity 

factor at this point relative to that of a static crack of 

43 



12 

the same size and stress drop is labeled kit in the 

figure. It decreases smoothly as a function of the 

propagation velocity of this point of the crack edge and 

crosses zero ~t the Rayleigh wave velocity. On the z axis 

near the crack edge the solution approaches a two 

dimensional antiplane strain configuration (mode III crack). 

The stress intensity factor at this point (labeled kllt in 

the figure) falls smoothly as a function of ~upture velocity 

down to zero at the shear wave velocity. 

The singular crack edge is a sink for energy. To see 

this, consider the energy flux through the surface of a tube 

of radius r surrounding the crack edge. Energy flux · is 

stress times particle velocity. Although the peaks of 

particle velocity and stress do not overlap on the crack 

plane, they do overlap on the tubular surface and each ~s 

-~ proportional to r . Their product, proportional to 

1/r , times the surface area of the tube is indepepdent of 

r . Therefore the energy flowing through the tubular 

surface is independent of the radius of the tube, and the 

crack edge is an energy sink. Since the tube is moving 

through the material, one must also consider the flux of 

kinetic and internal energy by material transport, but there 

is no net contribution from this source (Freund 1972). The 

energy flux to the crack edge is proportional to the product 

of the 0 and k factors shown in Figure 2, which is a 

function of rupture velocity alone, and is also proportional 
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to the distance the crack has propagated in the self-similar 

solution. 

If the elastic material inside a tube of some 

particular radius were replaced by a region in which 

nonelastic deformation takes place, then the elastic 

solution outside the tube could still hold to a good 

approximation if the energy flowing through the tube matches 

the energy absorbed by nonelastic deformation inside the 

tube. In this way the mixed boundary value problem can be 

generalized to a case where the crack tip is smeared out 

over a rupture front region in which nonelastic deformation 

occurs. The relevant parameter in matching an inner solution 

to the outer solution is the energy absorption in the 

rupture front. The outer solution is a mixed boundary value 

oroblem and can be approached analytically. Assuming a 

value for fracture surface energy obviates the need for an 

inner solution. However, this assumption needs to be 

examined, and the energy absorption is determined by the 

inner solution in the rupture front region, which is a 

nonlinear problem. 

The nonlinear inner solution can be found from 

numerical .calculations, if a constitutive relation is 

specified to determine the development of stress-free strain 

i n the early stage of rupture before sliding takes place at 

constant stress. One may expect in general that nonelastic 

deformation will take place in a volume with finite 
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thickness. However, I will first show some results for an 

artificial model in which all nonelrtstic deformation is 

confined to the crack plane. 

SLIP-WE~KENING MODEL 

In the slip-weakening model shown in Figure 3 the 

stress level at which sliding takes place is a function of 

the amount of slip at each point on the crack plane. Slip 

does not occur until shear stress reaches the limiting 

stress, analogous to a plastic yield stress. As slip 

increases the limiting stress decreases to the sliding 

friction level, and then further slip takes place at 

constant stress. The shaded area in the Figure is the 

energy absorbed on the crack plane in excess of the energy 

that would be absorbed if stress were constant at the 

sliding friction level (assuming that there is no singular 

energy sink). Palmer and Rice (1973) have shown that it is 

the energy represented by the shaded area that is relevant 

to rupture prop~gation; the absolute level of stress is 

relevant only to th~ heat produced on the fault. In this 

artificial constitutive model the fracture surface energy is 

constant and is independent of the dynamic solution. 

The ratio of fracture surface energy to energy released 

oer unit volume by the stress drop determines a critical 

crack length. A critical crack solution for a slip weakening 

model is shown in Figure 4. The crack tips are not singular, 

but are spread over a significant fraction of the crack 
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length. The solution shown is a two dimensional plane strain 

case. This numerical solution, which was found by trial, is 

slightly beyond the verge of instability. 

Rupture propagation in the dynamic solution developing 

from this nearly critical solution is shown in Figure 5, 

where the location of the rupture front in space-time is . 
shown by the ~haded region. The rupture front is initially 

f~irly wide, and the rate of growth is quite slow. By the 

time the crack has doubled its length the rupture velocity 

i s a significant fraction of the Rayleigh wave velocity, and 

it approaches the Rayleigh velocity asymptotically. 

Ida (1972) has examined rupture propagation with 

s l ip-weakening models in antiplane strain semi-analytically. 

Be finds that the length of the rupture front varies 

inversely with the length the crack has propagated. The 

same tightening up of the rupture front is seen in this 

numerical calculation in plane strain. 

A snapshot of the solution is shown in Figure 6 at the 

i nstant of time when the rupture has propagated to 5.5 times 

t he critical half length. The length interval in which 

s tress drops is much shorter than for the critical crack. 

The stress peak at the rupture front is propagating at 

s l ightly less than the Rayleigh velocity. There is another 

s tress peak ahead of the rupture front propagating at the 

shPar wave velocity, which leads to another story (Andrews 

1Q76b) that I will not go into now. 
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• 
As the crack grows, the ratio of fracture surface 

energy to energy released per unit advance of the rupture 

front decreases. The slip function becomes more singular as 

the size of the rupture front decreases, and the rupture 

velocity approaches the Rayleigh velocity, which is the 

velocity at which ~ plane strain crack with zero fracture 

energy will propagate. As the crack length becomes much 

longer than the critical length the solution approaches the 

solution for a cohesionless crack. 

The motivation for usin~ the slip-weakening model was 

to examine a simple rupture model in which stress is finite. 

The shear stress component sxy is indeed finite and is 

given by the slip weakening law. However, as the crack gets 

longer, the rupture front gets shorter, the derivative of 

the slip function gets larger, and strain components other 

than exy get larger. Any finite elastic stress limit will 

be exceeded for a sufficiently large crack length. 

Typical values of fracture surface energy measured in 

laboratory experiments are 0.5e3 erg/em~ for single crystals 

and 0.5e5 erg/cm1 for polycrystralline rocks. These values, 

together with assumed stress drops ranging from 100 bars to 

1 kilobar, give critical crack lengths ranging from microns 

to centimeters. Clearly we are dealing with much larger 

length scales in earthquakes. If fracture surface energy is 

constant at a laboratory value, then it is negligible at the 

length scale of an earthquake, and the dynamic solution 
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approaches that for a cohesionless crack. 

For either a cohesionless crack or a crack with 

constant fracture surface energy that has propagated a 

distance much larger than the critical length shear stress 

components other than sxy will exceed any finite elastic 

limit in some volume around the rupture front. In the 

cohesionless case a singularity in sxy is avoided by the 

crack propagating at the limiting velocity, the Rayleigh 

velocity in plane strain or the shear velocity in antiplane 

strain. But other components of shear stress are singular at 

any rupture velocity due to the slip function having a 

singular derivative. 

These singular stress components will produce 

microcracks at orientations different from the main crack, 

as shown in Figure 7. In antiplane strain the microcracks 

will be perpendicular to the main crack, and in plane strain 

they will be at 45 degrees to it. Slip on the microcracks is 

in opposite directions on opposite sides of the main crack, 

so that they do not contribute to the distant solution. The 

significance of the microcracks is that additional energy is 

absorbed in a larger rupture front volume. Even in the case 

of stick-slip friction, there will be an effective fracture 

surface energy due to microcracking at the rupture front. 

The basic assumption underlying this discussion is that if 

any solid material is strained at a sufficiently high stress 

it will absorb energy. 
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STRAIN-WEAKENING MODFL 

To test the idea that inelastic energy loss will 

incre~se as the crack lengthens a numerical calculation was 

done with a strain-weakening constitutive law, rather than 

the slip-weakAning law used before (Andrews 1976a). 

Nonelastic deformation takes place in a volume of finite 

thickness. In this calculation rupture takes place in a 

continuous uniform medium, and the prospective fault pl~ne 

has no special properties. Fracture energy absorbed per unit 

area of rupture is not a material constant, but is 

proportional to the thickness of the rupture front, which is 

determined as part of the dynamic solution. In Figure 8 the 

shaded region shows where plastic strain exists at an 

instant of time in the dynamic solution. Near the origin the 

plastic zone is only one finite element thick. Farther out 

the plastic zone thickness increases linearly with rupture 

length. The solution grows self-similarly in time. The 

energy absorbed at the rupture front is a constant fraction 

of the energy released by the stress drop, so the fracture 

energy per unit area on the fault plane increases with crack 

length . . 

SCALING 

The result that fracture surface energy is proportional 

to the distance rupture has propagated will hold in general 

if the constitutive law does not determine a length scale. 

This will be true if plastic strain is determined by the 
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pa8t stress-strain path but is independent of strain rate, 

and if layer dimensions, gravity, and heat conduction are 

not important. In that case if length, time, and 

displacement are multiplied by the same scale factor another 

valid dynamic solution is obtained in which stress and 

strain at scalPd space-time ooints are unchanged. If in 

addition the initial state is uniform then the dynamic 

solution will be self similar. 

Clearly scaling is important in applying laboratory 

results to the field. The scaling laws that apply depend on 

the rate dependence of the constitutive law and upon whether 

the failure orocess is confined to a surface or takes place 

through a volume. For instance, the slip-weakening and the 

strain-weakening models discussed here scale differently. 

Also Burridge has pointed out that if stress on a crack 

surface is a function or slip velocity a self similar 

solution is to be expected, in contrast to the 

rate-independent slip-weakening model discussed here. 

MIXED-MODE RUPTURE 

The limiting rupture propagation velocity of a pure 

antiplane shear crack is the shear wave velocity and of a 

pure plane strain shear crack is the Rayleigh velocity. What 

is to be expected for a mixed mode shear crack? This is 

still an outstanding problem. What is the solution if a 

crack propagates between the Rayleigh velocity and the shear 

wave velocity? 
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In his excellent review of self similar elliptical 

shear cracks Richards (1976) was concerned that the energy 

absorbed at the crack edge could be embarassingly larger . 

than laboratory values of fracture energy. He proposed that 

the solution for sub-Rayleigh rupture velocity be applied 

above the Rayleigh velocity where the plane strain stress 

intensity factor is negative. Then the plane strain 

component could generate energy at the crack edge while the 

antiplane comoonent absorbs energy. Then the rupture 

velocity could be adjusted until the generation and 

absorption of energy nearly cancel. 

Freund and Clifton (1974) have shown that a solution in 

which energy is generated at the crack edge is not uniaue, 

and Burridge (1973) has found a different plane strain 

solution for rupture velocity between the Rayleigh and shear 

wave velocities. Still, Richards' proposal can not be 

disproved from within the context of mixed boundary value 

oroblerns. 

To examine the reasonableness of Richards' proposal we 

must ask ·whether his singular solution is the limit of a 

class of nonsingular solutions satisfying physically 

realistic constitutive relations. If Richards' solution is 

convolved with a function that has the effect of smearing it 

out slightly on the crack plane then the solution to some 

slip-weakening law is obtained. What are the properties of 

such a slip-weakening model? Associated with the antiplane 
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component of slip is a component of traction in the opposite 

direction, but the plane strain component of slip is 

associated with a traction in the same direction in the 

rupture front region. At a rupture velocity with no net 

energy absorption the traction vector will be perpendicular 

to the slip velocity vector on the average within the 

rupture front. This is not a physically realistic model. 

If you want to talk about nonelastic yielding in a 

volume instead of on a surface, you must consider whether a 

plastic flow rule could allow energy to be transferred from 

plane strain to antiplane strain deformation. In principal 

stress space a plastic strain increment vector need not be 

exactly parallel to the stress vector, but it seems unlikely 

that they could be at right angles. Therefore Richards' 

proposal is not physically reasonable. A solutidn for 

mixed-mode rupture propagation between the Rayleigh and 

shear velocities that is consistent with a physically 

realistic constitutive law inside the rupture front has yet 

to be found. The nonlinear inner solution is essential to 

the question. 

STOPPING 

So far my discussion has been limited to a uniform 

medium with uniform stress. In such a case a rupture will 

not stop. The important question of the size of an 

earthquake is determined by nonuniformities of stress and 

material properties. 
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Burridge and Halliday (1971) have obtained an analytic 

solution that stops for a cohesionless frictional sliding 

model in which the difference between the friction level and 

the initial stress level varies as a function of position. 

Rupture begins in a region where initial stress is above the 

sliding friction level. As the rupture propagates out into a 

region where there is no longer a net stress drop, slip 

slows down and stops. In this model the rupture must 

penetrate into a region where the final stress is larger 

than the initial stress. 

Husseini et al. (1975) have proposed that rupture is 

stopped by a barrier, a large increase in fracture surface 

energy. The result of their analysis is that the total 

fracture energy required to stop a rupture for a given 

stress drop amounts to a certain fraction of the total 

elastic strain energy released. Dividing the total fracture 

energy by the fault area ruptured gives an average fracture 

surface energy proportional to crack length. Husseini et 

al. interpreted their results in terms of fracture surface 

energy being a material property. Then for a barrier of 

given fracture energy to stop earthquakes of different sizes 

average stress drop of an . earthquake would have to be 

inversely proportional to the square root of length of 

rupture. 

From the point of view that fracture surface energy is 

not a material property but is determined by the dynamic 
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solution itself, one cannot escape the conclusion that the 

difference between stress and sliding friction must vary on 

the fault surface. This difference must vary at all length 

scales to explain earthquakes of different sizes. 

Furthermore, the heterogeneity must be reproduced after a 

cycle of earthquakes of all sizes. 

ENERGY BUDG~T 

The energy budget of an earthquake is indicated 

schematically in Figure 9, which is a plot of stress vs. 

slip for a typical point on a fault plane. Area on this plot 

represents energy per unit fault surface, so the plot must 

be imagined to be integrated over the fault surface to get 

the total energy budget. Of course, initial stress, sliding 

friction, final stress, and final slip vary over the fault 

surface. The dashed line connecting the initial and final 

states is a hypothetical quasistatic process, and the 

trapezoidal area under this line is the difference between 

the elastic strain energy of the initial and final static 

states. The rectangular area under the sliding friction 

level is energy lost to frictional heating on the fault. 

The difference between the trapezoidal and rectangular 

areas, indicated by the diagonal . hatching, is available 

energy, which may be partitioned between fracture energy and 

radiation of elastic waves. The ratio of the hatched area to 

the trapezoidal area is conventionally defined to be the 

seismic efficiency. 
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If the rupture is a smooth event, with most of the 

slipping area in communication with itself while slip 

proceeds, such as the case calculated by Burridge and 

Halliday, the final static stress is below the sliding 

friction stress. If, on the other hand, a patch slips and 

then locks while slip still continues farther down the 

fault, then the final static stress is larger than the 

sliding friction stress. In this case more energy can be 

radiated for a given static stress drop. 

The total energy absorbed in nonelastic deformation is 

represented by the area· under the stress-strain curve that 

rises to the upper yield stress and then falls to and 

follows the sliding friction stress. In addition to the 

frictional . heatin~, fracture energy, represented by the 

black area, is included. This energy loss, due to focusing 

o~ energy at the rupture front, is auite schematic in the 

diagram; it includes work done against other components of 

stress-free strain on microcracks. 

The energy that is radiated is the energy available, 

the hatched area, minus the fracture energy, the black area. 

Hu~seini (1977) defines radiation efficiericy to be the ratio 

of radiated energy to available energy. Radiation efficiency 

determines rupture velocity, so it may be inferred from 

seismic observations. On the other hand, the dynamic motion 

is independent of the seismic efficiency, so the absolute 

stress level cannot be inferred from ground motion. 
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A possible contribution that modele~s might make to the 

question of the absolute stress level concerns thermal 

effects on the fault. Heating from nonelastic deformation 

could change the mechanical properties of the medium and 

reduce the friction level as slip increases. If melting 

occurs or if fluid pressure rises sufficiently, stress drop 

may be nearly complete. The essential variable that is not 

known in such considerations is the thickness of the zone in 

which heat from nonelastic deformation is deposited. So far 

theoretical modeling has contributed virtually nothing to 

this question. 

In conclusion it should be noted that this discussion 

has been restricted to generalizations of the mixed boundary 

value problem, in which sliding is assumed to take place at 

constant stress after an initial breakdown process is 

completed. This is an assumption that needs to be 

questioned. There has been much discussion at this meeting 

of the irregularity of faulting. Theoretical treatments of 

heterogeneous conditions may have to be statistical in 

nature in general. Some interesting conclusions about 

radiated waveforms have been reached by Das and Aki (19~7) 

from a simple deterministic model in which a rupture jumps 

barriers that do not break. 
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FIGURE CAPTIONS 

1. Slip and stress as a function of position on crack 

plane for a static or sub-Rayleigh dynamic crack. 

2. Dynamic intensity factors relative to static values for 

slip, 0, antiplane stress~ k~ , and plane strain 

stress, ~, shown schematically as a function of 

rupture velocity. 

3. Slip-weakening model. 

4. Critical crack. Solid curve is slip function, dashed 

curve is stress change. 

5. Space-time plot of rupture front. 

6. Dynamic crack. 

7. Orientation of microcracks. Top, antiplane strain; 

bottom, plane strain. 

8. Snapshot of rupture calculated with strain-weakening 

model. Stress-free strain exists in shaded region. 

Contours show particle velocity, which is nonsingular. 

9. Energy budget illustrated on plot of stress vs. slip 

for a typical point on fault. 
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One approach to earthquake prediction is to think up earthquake 

models for which prediction will work, and test to determine if these models 

correspond to nature. An associated task might be to think up earthquake 

models for which prediction won't work and test them. One risk of the 

first approach is that one might go on indefinitely discarding models 

and not hit on -one that corresponds to nature. On the other hand, in the 
' second approach you might find that your model corresponds to nature and 

thus save some money and effort to apply to other means of earthquake 

hazard reduction. Since there have been a number of 9ptimistic models pro­

posed which have not been verified, this paper attempts to define a reasonable 

mode 1 for \tlhi ch earthquake prediction based on premonitory phenomena won • t 

\·Jork and see if it can be refuted. The model discussed here is ca 11 ed the 

triggering rupture propagatton model (Brune, 1974). The model is suggested 

by the following observations: 

1. Many large earthquakes appear to be made of a series of 

multiple events successively triggered, the initial 

event, or hypocenter often being at the edge of the 

region of energy release. 

2. Some earthquakes appear to have triggered small anounts 

of motion considerably outside the region of main energy 

release (Allen et;. aZ., 1968; Allen, ei aZ., 1972). 

3. Earthquake mechanism studies, particularly studies of 

earthquake spectra, suggest that earthquakes can be 

modeled as _ ruptures that start at a point and grow 
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initially outward from this point and then continue either bi­

laterally or unilaterally. There is often continued 

slower slip after the wain slip. 

4. Spectral studies of small earthquakes suggest a complex 

small-scale stress field. 

These facts suggest that a fault may rest in a state of stress 

considerably below that necessary to initiate slip, and yet be t}"iggered 

and caused to slip by nearby earthquakes or by a propagating rup-

ture. Thus, in order to predict slip on a particular fault section, 

one must predict when nearby parts of that fault or adjacent faults 

wi 11 s 1 i p and \'lhether or not they wi 11 trigger motion or cause 

a rupture to propagate into the section. However, the same reasoning can 

be app 1 i ed to these adjacent parts .or faults, and so on back to the 

11 init1al event 11
• The 11 initial event 11 or initial rupture presumably occurs 

where the state of stress is high enough to spontaneously initiate rupture, 

or high enough to allow triggering by much weaker strain sources such as 

tides, atmospheric loading or gradual or episodic tectonic strain build up, 

This is the region where one might expect premonitory phenomena such as 

dilatancy, microfracturing, et_c., a11d associated anomalous behavior. 

In this model, to predict large earthquakes, we must predict rup­

ture initiations. Hmvever, presumably every small earthquake begins as a 

rupture initiation. Thus, one must either predict every small earthquake 

and determine which of these will in fact grow into a large earthquake, 

or know in some way that only a small subset of rupture initiations _ (h~pe­

fully one) can grow into a large earthquake, and be able to predict this one. 
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To be more precise in defining this model, we define the following stress 

parameters: or' the stress necessary for rupture propagation (of' the sliding 

frictional stress, is presumably close to a [Andrews, 1976]); a , the 
r P 

stress necessary for premonitory phenomena to be produced; a;, the stress 

necessary for rupture initiation, and a, the actual ambient stress 

ta function of both time and position). Note that the definition 

of or is not precise since it depends on the nature of the 

rupture, - a rupture can propagate to some extent into a zone where the 

stress resists rupture propagation (a < or) but the actual extent depends 

on which direction the rupture comes from and how long of a rupture has 

preceded. 

A Model for Hen-Predictable Earthquakes 

Earthquake prediction using premonitory phenomena will not be 

possible in the state defined by the following conditions: 

1. At any point along the fault the material stress parameters 

are ordered as follows: (a) of ; or; (b) or < a;; (c) 

or < op; (d) a; can either be greater than or less than op. 

2. All but a small {perhaps zero) volume of the medium is under 

too low a stress to be associated with premonitory phenomena 

(a< ap). 

3. A certain section of the fault in this volume is under high 

enough strain so that a rupture can propagate through it 

releasing enough energy to cause an earthquake, i.e., the 

stress is sufficiently above the dynamic sliding friction, 

of' to allow rupture and energy release if triggered from 

outside (o > ar~ · · 
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4. At some point a small volume, Vi' somewhere in the region 

is stressed high enough to initiate spontaneous slip 

(a= a . ) and is located \·Jhere it can grmv, by rupture pro­, 
pagation or triggering, and release the energy stored up 

on the larger fault area. 

General Models 

vJe can imagine that after a 1 arge earthquake has occurred and its 

aftershocks have subsided, the actual stress level is low and no section ofthe 

fault shows premonitory phenomena, i.e., a< o . 
p As the general tectonic stress 

I 

level increases, it may remain erratic along the fault, but at some points 

the rupture initiation stress is exceeded, causing small earthquakes, or 

creep, r-edi stri buti n~ the stress, so that stress concentrations 

or stress spikes occur within a generally erratic stress pattern. As the 

general stress level increases, several interesting conditions can occur, 

i 11 us trated by diagrams A through H , Figure 1. 

A. Premonitory effects occur without an earthquake (false 

alann). An earthquake might occur later as stress builds 

up or creep may relieve the stress so that no earthquake 

occurs. 

B. A small earthquake occurs, preceded by premonitory 

effects. 

c. A small earthquake occurs with no premonitory effects. 

D. A large earthquake occurs along L triggered off by initial 

slip at D which was preceded by 1 oca 1 i zed premonitory effects. 

75 



A 

6 

D E 
!............. 1 ..... ·a: ......... . 

i •• • • • • ••• • • ..JI' ...... --- .... --....... __ 

......... ------------------. ........ ____________ .. :....--.. . 
----... __ a:., ..... --- - - -- --- .,...,. - __. 

...----::;Pr"emonitory Phenomena~ 

~Rupture 

G 
l ,..,. . ······ 

F 
l .. . ···'-'t········· -~···· .... ··············· . . . . . .. . . •• • •• .. . . •..... ~~cr- - - - - - - ::= 

~ - ---v- .. ----------~--------- --~----- _.,..,..---
-----·---•~~ ~'-~-----~-------------

"--Rupture Zones __......,. 

H 
. .. ... . . . . .. .. ... . . . .. ... ,.,. 

••••••••••• •••••••••••••• • • ••••••• • •••••••• ..,1 

I 
1 

-------- ..... --------- ---__. - --:z:(j --- a; - . r-----.._........___..--... ___ 

----------------..... ------------op----------~----------------

---------------~~---------------------~---

...---Premonitory Phenomena----., 
~~~~~~~~~~~~~~~~~~~~~~~ 

rupture zone 

Figure 1. 

76 



7 

E. A large earthquake occurs along L triggered off by initial slip atE 

with no premonitory effects (the non-predictable earthquake 

described above). 

F. - I. Potentially predictible earthquakes, preceded by widespread 

premonitory phenomena. 

In case E prediction using premonitory effects is impossible because 

there are none. In case D prediction using premonitory effects is difficult 

because the zone of premonitory effects is very small and difficult to detect. 

It is also difficult to know if the event will grow or not, i.e., it is 

difficult to distinquish D from B, without knowing the details of the stress 

distribution around the zone of premonitory effects. 

In case F, a predictable earthquake, rupture over an extensive region 

is initiated by rupture at F, and the prior stress level over a large region 

around F (approximately the same area as the rupture zone) is high enough 

to cause premonitory effects. 

Although it seems probable that op > or, this is not known for sure 

and we should consider the opposite case. Earthquake prediction will be po-. 

tentially effective if a is relatively smoothly varying and or > op at .all 

points (Gin Figure 1), i.e., if in order to reach the stress required for 

rupture propagation every section of the fault must first pass through op and 

thus demonstrate observable premonitory phenomena, This situation 

does not eliminate the possibility of false alarms because a large 

region could reach op without reaching oi or or· A-case where 

earthquake prediction without false alarms is possible i s when a is rela­

tively smoothly varying and a;, or and op are all nearly equal, \'lith a; 

infinitesimally higher than or. However, in this case the lead time for 

77 



8 

prediction will be very small. A more realistic case where prediction with­

out false alanns would be possible is when op < or and a is relatively 

smoothly varying along the fault, and increasing at a known constant rate so 

that a can be predicted to reach oi at a certain time after op is observed to 

have been reached; thus the approximate length of rupture can· also be 

estimated. Another model for which earthquake prediction might be successful 

is the dilatancy-fluid flmJ model, which has been \'lidely discussed (Nur, 1972; 

Scholz et aZ.~ 1973; Anderson and Whitcomb, 1973). 

Reid • s Model 

The simplest model where predicti.on will work is when a; and or are 

known at every point of the fault and a is known and predictable, i.e., 

when tectonic strain build-up as well as rock properties are known. 

This corresponds to the method for earthquake prediction suggested by 

Reid (1910, 1969) as a result of his studfes of the San Francisco earth­

quake of 1906. In this method, prediction is not dependent on observation 

of premonitory phenomena. The method \'Ji 11 probably remain quite 

unreliable for the near future because the required information cannot 

be obtained with sufficient accuracy. However, it may ultimately be the 

only workable model of earthquake prediction if no reliable premonitory 

phenomena are established. 

:an \-Je Refute tr1e Model for Non~Predtctable Earth.qtJakes1 

The critical condition in the model for non-predictable earthquakes 

is that a large section of the fault can exist in a state of stress such 

that or< a< op' i.e., the stress is greater than the stress necessary to 
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allow triggering or rupture propagation through the area, but less than 

the stress necessary to cause premonitory effects. In this state a large 

section of the fault can be triggered off by a small event occurring within 

the section or near its edge. 

Unfortunately, neither or nor op is accurately known. Laboratory 

results suggest that dilatancy, one of the mechanisms associated with 

premonitory effects requires stress of the order of a kilobar or greater at 

depths corresponding to shallm'l earthquake strain energy release (5- 15 km). 

un the other hand, or might be identified with stress drop which is the 

order of a hundred bars, perhaps less than the stress required to cause 

dilatancy at depth. Because of these possibilities, it does not appear 

that we can reject the triggering-rupture propagation model without further 

study, and thus we have to accept the possibility that in many cases pre­

diction of earthquakes may be difficult or impossible. 

Two-· and Three-Di mens i_Q!la_l ~upture Zones 

For simplicity, the foregoing description has been done in one 

dimension, along the strike of the fault zone. Of course, actual fault 

planes are approximately two-dimensional or in complex cases even three­

dimensional. However, the basic reasoning remains the same. In the case 

of a simple planar fault we would describe the various stress levels by 

contour lines on the fault plane. In three dimensions, the stress distri­

butions could be described by surfaces of constant stress. 
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Statistical Considerations 

It will be noted that one of the critical differences between the 

case of a predictable earthquake and the case of a non-predictable one is 

the smoothness of the stress distributions. In case F the stress was relatively 

smoothly distributed so that when point F reached the stress required for 

rupture initiation it was surrounded by a large zone of relatively constant 

high stress, sufficient to cause observable premonitory phenomena, whereas in 

case E there was a sharp spike of stress sufficient to cause rupture initiation, 

but no contiguious large zone demonstrating premonitory phenomena. This 

suggests that the reliability of earthquake prediction might be estimated 

if the scale and amplitude (statistical properties) of stress variations were 

kno\'1:1. 

Experimental Tests 

Stress Values 

The most crucial evidence necessary to test the implicatio·ns of 

the above model is of course experimental values for or, ap, ai and a. 

The values for or are not well known for real rocks. Although values 

of a necessary to cause dilatancy, perhaps related to ap, are kno\'m from 

laboratory experiments to be some considerable fraction of the breaking 

strength (30-50%) it is not known for certain what values are appropriate 

to the low strain rates and other in situ conditions in the earth. 

Similarly, values of a; can be estimated from rupture strength of rocks 

in the laboratory, but it is not known whether these values are appropriate 

for large faults with highly developed gouge zones. Levels of the 

actual in situ str~ss a are not known. Debate still continues between 

those who feel absolute shear stresses are cpmparable to stress drops 

(- 100 bars) or more like fracture strengths in the laboratories (kilobars). 
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It ~ill be of prime importance to estimate the above parameters in 

the next few years if we are to advance our understanding of earthquake 

mechanism. At present we can only speculate on their values. 

Evidence from Earthquake Spectra and Time Functions 

As mentioned above, studies of earthquake spectra and time functions 

have supported the idea that earthquakes are propagating ruptures and can be 

complex multiple ruptures in many cases. This suggests large variability 

for the various stress ~arameters discussed above. Similarly, 

evidence from the large variation in stress drops observed for small earth­

quakes suggests that stress parameters may be extremely complex in a given 

region. However, the evidence for variations in stress drop for small 

earthquakes is not as reliable as that from larger earthquakes in which 
• actual fault offsets can ·be measured, and needs to be further studied. 

Kanamori and Anderson (1975) have suggested that the variation in stress 

drop for large earthquakes is considerably less (range 10-30 bars). This 

has led Kanamori (1977 - Oral communication at meeting of the John Muir 

Geophysical Society, Yosemite Valley, Ca.) to suggest that the large range 

in stress drops for small earthquakes as contrasted to the smaller range for 

large earthquakes, might be evidence for statistical variations in stress 

and strength, e.g., asperities, along the fault. 

If small earthquakes can give reliable information about variations 

in stress along . faults the information would be very useful in testing some 

of the ideas presented in this paper. Therefore, it seems important to carry 

out more careful experiments using large numbers of broad band digital recorders. 
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ABSTRACT 

Recent results concerning the relationship of S-wave far-field 

corner frequencies to stress drop are discussed. It is suggested that 

the corner frequency as picked by Madariaga (1977) from his theoretical 

spectra is not consistent with the way in which corner frequencies were 

pi eked by Tucker and Brune (1973, 1977). l~hen the difference is taken 

into account, the stress drops inferred from the r·1adari aga rel ati onshi p 

and his method of picking corner frequencies are roughly the same as inferred 

using the Brune (1971) relationship and the Tucker and Brune method of 

picking corner frequencies (for those relatively few experimental spectra 

which are similar in shape to the Madariaga theoretical spectra). 

Far-field spectra for a number of new finite element models of 

fault ruptures in a half-space are presented, and for these data, new 

values for the relationship between source dimension and corner frequency 

are obtained. Fault models used include semi-circular faults with rup­

ture initiation at the surface and at depth, and rectangular faults with 

unilateral and bilateral rupture propagation. The results indicate that 

there is a considerable variation in corner frequency with respect to type 

of rupture and position around the rupture. Because of the variation it 

is not possible to conclude, without more calculations, what the "best" 

average relationship between corner frequency and source dimension is; 

however, a value for K about l/3 is reasonable where K = fcr/6 (fc = 

corner frequency, r = radius and B =shear wave velocity). 

Dahlen (1974) speculated that the corner frequencies picked experi-

mentally could be significantly altered by scattering. For the San 

Fernando after~hocks, it is possible to make a case that this is not 

so. l'·1any of the San Fernando aftershocks shm·1 very simple pulse shapes, 
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with a pulse duration consistent with the spectral corner frequency and 

little later arriving energy - a direct indication that scattering is not 

radically affecting the results. 
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INTRODUCTION 

Studies of far-field spectra and puls~ shapes of earthquakes offer 

the possibility of estimating the level and variability of tectonic stress. 

This possibility is especially attractive if small earthquakes can be 

used, since they occur so frequently. Hm·1ever, to test the reliability 

and usefulness of such studies will require more experimental and 

theoretical work. We need reliable near-field recordings at a large number 

of observation points on the focal sphere of earthquakes to obtain accurate 

information about source parameters such as dimension, rupture velocity 

and stress drop. For comparison \'lith theory, \'le need to examine more fault 

models to detern1ine the effects of stress drop, friction, and rupture 

ve 1 oci ty on spectra and pulse shapes. In this paper \'Je present soiTie further 

discussion of the experimental digital data obtained from aftershocks of 

the San Fernando earthquake, and theoretical data obtained from finite­

element numerical models of earthquake rupture. 

SArJ FERNANDO AFTERSHOCK DATA 

The main experimental data discussed in this paper is the data 

obtai ned by Tucker and Brune ( 1973, 1977) from aftershocks of the San 

Fernando earthquake. In those studies high-dynamic range, broad-band 

digital data were useu to determine near source earthquake spectra. These 

were then interpreted to infer seismic moment, source dimension and stress 

drop using formulas given by Brune (1970, 1971). The results suggested 

a wide range in stress drops, with an upper li~it of about 200 bars, and 

many cases of stress drop less than 1 bar. A number of the larger events 

(r·1 = 3. 5 - 4 )' apparently had two corner frequencies, one between . 1 and 

86 



5 

1 Hz, below which the spectra were approximately constant and another 
-2 between 3 and 10 Hz above which spectra were proporttonal to about w to 

w-3. · It was suggested that for these 1 a rger events with two corner fre­

quencies, a two stage rupture process may have occurred, an tnitial sharp 

high stress drop followed by a more slowly growing rupture. Similar 

results were found by Hartzell and Brune (1977) for earthquakes occurring 

in the Bra\"'ley swarm of January, 1975. We will not discuss these results 

further in this paper, but ~ill use the experimental data to investigate the 

method of determining corner frequencies and the relationship of corner 

frequency to source dimension and hence stress drop, All the experimental 

seismograms and spectra are taken frout Tucker anci ~rune (1973) using their 

numbering. The horizontal arrow under each seismogram indicates the time 

window for the Fourier transform used to obtain the spectra (Figures 2-7). 

MADARIAGA'S THEORETICAL MODEL RESULTS 

Madariaga (1976, 1977} used a numerical finite-difference method 

to compute the dislocation rate on a growing circular fault which stopped 

at a certain radius r (in a full space). With the dislocation rate and 

the far-field representation integral, r~1adariaga computed the far-field 

spectra at different azimuths. From these results he obtained an average 

spectrum at an angle of 60° from the normal to the fault (Figure 1). For 

this spectrum, he dre\·J a 1 ow frequency asymptote and a higher frequency 

asymptote to deten1ine the corner frequency fc (indicated by Min Figure 1). 

From f he determined K = f r/s = .21, where r is the fault radius and s the c c 
shear wave velocity. This value of K is considerably lower than the value 

of K for the Brune model, K = .37. Since the formula for determining stress 
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drop from corner frequency depends on the 3rd power of corner frequency, 

Madariaga's relationship implies a stress drop 5.47 times nigner than ~rune's. 

This would mean that for the San Fernando aftershocks the estimated upper 

bound on stress drops would be closer to 1 kb than to 200 bars as inferred 

by Tucker and Brune. Since the values of stress drop determined from 

earthquakes have played a considerable role in recent discussions about 

earthquake sourcemechanisms, this uncertainty is important, and hence we 

\'lish to investigate further the interpretation of earthquake corner 

frequencies. 

In a second paper, r,1adariaga (1977) also calculated a high fre­

quency asymptote which if used to infer corner frequency, gave a value for 

K of .40 (indicated by Bin Figure 1). If this value of K were used, nearly 

the same va 1 ues of stress drop as found by Tucker and Brune \'Joul d be 

obtained. 

It appears that the method of picking corner frequencies and~ in 

particular, the weight put on high frequencies, is important. This is 

particularly true in the case of numerical modelling since it is difficult 

and costly to adequately represent frequencies much above a factor of 2 

or 3 times the corner frequency. This is why ~-1adari aga had to use other 

techniques to estimate the higher frequency asymptote. At this point 

it is necessary to decide whether the method of picking corner frequencies . 
used by Madariaga is consistent with that used by Tucker and Brune. 
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COMPARISON OF THE TUCKER AND BRUNE EXPERIMENTAL SPECTRA WITH THE MADARIAGA 
THEORETICAL SPECTRA 

I In order to compare the theoretical and experimental soectra, 

we have plotted the Madaria~a spectrum and a number of Tucker 

and Brune spectra on the same scale (Figure 2). Comparison with the 

more than 100 spectra presented by Tucker and Brune shows that one of the 

characteristics of the Madariaga spectrum is a more flattened corner 

than observed for most of the Tucker and Brune spectra. Figure 2 was 

purposely selected to show examples of some of the Tucker and Brune spectr~ 

which have this character, i.e,, a flattened corne·r or missif'i'g energy near 

the corner frequency (top three spectra in Figure 2). Most of the Tucker 

and Brune spectra have sharper corners, like the bottom two examples in Figure 

2, and hence there is little uncertainty in determining a corner frequency. 

Because of the difference in shape between the f··1ada ri aga spectrum and most 

of the Tucker and Brune spectra, there is some doubt about the growing 

and stopping circular crack as a model for the San Fernando aftershocks. 

The dashed lines in Figure 2 show the asymptotes used ~o infer 

corner frequencies by Tucker and Brune, and these can be compared with the 

asymptotes used by Madariaga to interpret the theoretical spectra as shown 

in the upper part of Figure 2. It is immediately obvious that the corner 

fY'equency picked by Madartaga, indicated by an M in the upper theoretical 

spectrum, is considerably lower than would have been picked by Tucker and 

Brune. ~·Jhereas, the corner frequency determined from the "high frequency 

asymptote" of t1adariaga, indicated by B, corresponds nearly exactly with the 

corner frequency as determined by Tucker and Brune. 

Since the Madariaga high frequency asymptote gives a corner fre­

quency to fault radius relationship almost identical to that used by Tucker 
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and Brune (K = .40 vs. K • .37), it is evident that the interpretation of 

stress drops by Tucker and Brune i·s in accordance with the theoretical 

spectra of Madariaga. The further question of why the shape of most of 

the Tucker and Brune spectra are different from the shape of the Madariaga 

spectra is left unanswered. Some recent results pertinent to this are 

discussed in the next section. 

NEW RESULTS FOR FAR-FIELD PULSE SHAPES AND SPECTRA BASED ON FINITE ELEMENT 
MODELS OF FAULT RUPTURE 

Archuleta and Frazier (1977) have presented results for finite 

element models of faulting based on stress relaxation. The resulting time 

functions for fault slip at various points on the fault can be used to com­

pute the far-field radiation. Half-space Green•s functions, computed using 

a program of Johnson (1974), for each point on the fault-surface, are 

convolved with the slip functions on the fault and suiTJlled to give the com­

plete far-field pulse {Hartzell et al.~ 1978). 

Preliminary results using this method were presented orally by. 

Hartzell and Archuleta (1976). We have now completed calculat1ons 

for far-field SH pulses observed on the surface of an elastic half-space 

for four different fault models: 

l. A semi-circular fault in which rupture initiation begins at 

the surface (r = 0) and propagates radially to a specified 

fault radius, with 10 elements on a radius. 

2. A semi-circular fault in which rupture initiation begins at 

the deepest point on the fault and symmetrically propagates 

over the semi-circle, breaking out at the surface, also with 

10 elements on a radius. 
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3. A rectangular fault 3 elements deep and 15 elements long 

in which rupture propagation proceeds unilaterally from one 

end to the other. 

4. A rectangular fault 5 elements deep and 20 elements long 

in which rupture proceeds bilaterally from the center to 

both ends. 

A rupture velocity of 0.9 B is used for each of the four fault models 

above. Results for the far-field time functions (azimuthal component) are shown 

in Figures 8a and 8b and the corresponding spectra (S phase only) at the bqttom 

of Figures 3 through 7 and in Figures 9 through 12. All of the numerica l 

results shown here are for surface observations, with the azimuthal angle 

relative to the normal to the fault as a variable. Interpreted corner 

frequencies are indicated by the intersecting asymptotes draNn on the spectra. 

For each fault model, the points of observation are at a 

constant radial distance, R, from the center of the fault. R. is equal to 

10 r
0 

for both semicircular faults, 5 1
0 

for the bilateral rupture, and 

6.6 1
0 

for the unilateral rupture. Here r
0 

is the radius of the semicircular 

faults and 1
0 

is the length of the correspondtng rectangular fault. The 

azimuth of the point of observation is measured from the normal to the fault. 

In the case of the rectangular unilateral rupture, the time function at 90° 

is in the direction of rupture propagation. The far-field time functions are 

plotted in dimensionless format (Figures 8a and 8b), where the dimensionless 

displacement is given by u ~ 103/a r for the semicircular faults and u ~ 103/a 1 
0 0 

for the rectangular faults. Here u is the displacement, ~ the rigidity, and 

a is the effective stress. 

Because of the finite grid size, frequencies greater than 2Hz are 
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not accurately synthesized (Archuleta and Frazier, 1977), and this must 

be taken into account in interpreting corner frequencies and pulse shapes. 

Archuleta and Frazier (1977) have shown that their results have somewhat 

better frequency range than the results of r~adari aga. In most cases the 

frequency range was sufficient to es tab 1 ish the true corner frequency with 

confidence. To assure objectivity in picking corner frequencies, both 

Brune and Archuleta independently picked the corner frequencies without 

knowledge of the other•s picks. In nearly all cases the picked corner 

frequencies agreed within 20%. Since Brune was one of the investigators 

picking corner frequencies in the Tucker and Brune experimental study, there 

is some assurance that corner frequencies determined there were determined 

in the same manner as in this study. As a comparison with observed spectra, 

some of the results for the rectangular faults are shown along with represen­

tative spectra of San Fernando aftershocks, chosen to show similar features, 

in Figures 3 through 7. 

Study of the time functions and spectra shows a range of pulse 

durations, and a corresponding range of corner freq~encies (inverse 

proportionality) depending primarily on the azimuth between the direction 

of rupture propagation and the direction of observation. For bilateral 

ruptures, the pulse widths are narrower normal to the fault than in the 

direction of rupture; however, the rise times are shorter in the direction 

of rupture propagation than normal to the fault. The pulse width is con­

trolled primarily by the difference in travel times from different points 

on the fault surface. The rise time is related to focussing caused by a 

propagating rupture. In the propagating stress relaxation models of 

Archuleta and Frazier (1977) the slip velocity increases in amplitude in 

the direction of propagation. Thus, in addition to the common Doppler 

effect due to a moving source, we have the effect of increasing slip 
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velocity in the direction of rupture. The combined effect is strong 

focussing of energy in the direct.ion of rupture propagation. It ts 

this combined effect which leads to the shorter rise times in the direc­

tion of rupture propagation. This focussing has also been observed in 

a laboratory model of propagating stress relaxation {Archuleta and Brune, 

1975; Archuleta, 1976). For unilateral ruptures, both the pulse width and 

rise ti~e decrease as one moves from normal to the fault to in line with the 

direction of rupture propagation. Short rise times and narrow pulse widths 

increase the high frequency content and yield higher corner frequencies and 

larger values of K. In the direction away from the rupture propagation, fo·r a 

unilateral rupture, both the pulse width and rise ttme are greater, leading 

· to lower values of K, In figure 13 we shov1 the value of K = feD/~ as a 

function of azimuth for our fault moci~ls and those of Savage and Madariaga. 

He have also re-interpreted the corner frequencies for the Maciariaga 

spectra using the considerations outlined in the first part of this paper and 

these are shovm as M in Figure 13. This figure can be used as an aid in 

interpreting experimental data. 

Since, for a given fault, the corner frequency, and consequently 

the relationship between corner frequency and source dimension, are strong 

functions of azimuth, or position on the focal sphere, it is desirable 

to know the fault orientation and direction of rupture propagation before 

interpreting the spectra and time functions in terms of fault parameters 

such as fault dimension, moment and stress drop. However, in many cases, 

especially for small earthquakes, this is not possible, and hence · it is 

helpful to have some approximate relationship bet\'Jeen corner frequency 

and fault dimension. Besides Brune and Madariaga, Savage (1972, 1974), 

Randall (1973), and Dahlen (1974) have also obtained such relationships. 
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To summarize the results of various models, we have shown in Table I 

the values of K fore= 60°, or in some cases average values. The 

value of e = 60° was selected by Madariaga because it represents 

the angle which divides the focal sphere roughly in half (equal areas). 

Thus, for numerous random observations around the fault, approximately 

half of the observations should have higher corner frequencies. The 

value of K for e = 60° should not be equated with the corner frequency 

averaged over the focal sphere nor with the value of K obtained by Brune 

(1970, 1971 ), which corresponds to the corner frequency for a spectrum 

which, if constant over the focal sphere, would, at high frequencies, give 

the same total energy radiation as the actual variable spectrum. However, 

the values of K determined in the v~rious ways should be roughly comparable. 

The values forK in Table I range from .13 to ~49. Tr1~ lo~ Villuc cf .13 

corresponds to a bilateral rupture, and the corresponding spectrum (Figure 

6, bottom) has a broad intermediate slope proportional approximately to w- 1 

At other azimuths the bilateral rupture produces values of K near .3, 

Figure 13. This spectrum is quite different from most of the other spectra 

and from most of the spectra observed by Tucker and Brune. However, some of 

the Tucker and Brune spectra did show such a broad w-l region and as 

would be expected gave low stress drops when interpreted using a K value of 

.37. Considering the rest of the results, this low value can be considered 

to a certain extent anomalous. 

Although the results of Table I are derived from a variety of different 

earthquake models, an average value of K for ruptures with v = .9a is .32. If 

the models of Brune (1970,1971) and Randall (1973) (v = oo) are included, then K 

becomes .33. In veiw of the many uncertainties in relating theoretical 

models to actual earthquakes, a reasonable average value of K is l/3. It 
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K = f c/(/J/0) 

FAR-FIELD S-WAVE 9 = 60° v = .9/J 

Semicircular Faults in a Halfspace 

This Study 

origin (0, 0, 0) 

origin (0, r
0

, 0) 

Rectangular Faults 

This Study: Halfspace 

L = 4W bilateral 

L = 5W unilateral 

SAVAGE (HASKELL) Full 

L ~ W bilateral 

L >> W bilateral 

Space 

Circular Faults in a Full Space 

MADARIAGA 

high frequency asymtote 

DAHLEN 

BRUNE (v =co) 

RANDALL; ARCHAMBEAU (v = co) 

Dislocation / MOLNAR, TUCKER, BRUNE (e = 55°) 
Models SAVAGE 

95 

D = r 
0 

K = .26 

K = .29 

D = W 

K = .13 

K = .32 

K = .32 

K = .29 

D = ro 

K = .21 

K = .40 

K = .45 

K = .371 Average Values 
K = .42 

K = .32 

K = .49 (. 1 ) 
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must be noted that for a given station recording an earthquake, K could 

possibly range between .15 and .5, i.e., K = l/3 ~ (.5) (1/3). A 50% 

error in K corresponds to an ~rror in inferred stress drops of a factor 

of 3.3. This factor is consistent with the variation in stress drops 

computed by Tucker and Brune between two different stations for the San 

Fernando aftershocks. 

SCATTERING AND CORNER FREQUENCY 

Dahlen (1974), observing that the ratio of corner frequencies 

of P-waves and S-waves observed by Molnar et al. (1973) was inconsistent 

with a source mechanism theory he had developed, suggested that th~ ob­

served corner frequencies may have been seriously perturbed by scattering. 

A small amount of scattered energy arriving slightly after the S-wave 

would not cause a frequency shift in the spectrum, since the reflected 

pulses would have nearly the same spectrum as the direct energy. 

The existence of a certain amount of scattering is one of the main 

reasons for using the spectrum rather than the direct time function -

the time function can be seriously distorted by scattering without seriously 

affecting the amplitude spectrum (which is based -on the modulus of the FoJricr 

transform and not the phase). In order for scattering to seriously affect 

the corner frequencies, a significant fraction of the energy would have to be 

scattered to travel paths that cause the scattered energy to arrive 

considerably later than the main energy. This would imply that the S-wave 

pulse would'be considerably distorted or complicated. Thus, in a quali­

tative way we can estimate the importance of scattering by looking at pulse 

shapes. A large number of seismograms of aftershocks of . the San Fernando 
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earthquake pub 1 i shed by Tucker and Brune (1 973) can be used for thts 

purpose, 

Perusal of the seismograms of the San Fernando aftershocks 

immediately reveals a wide range of apparent pulse shapes, ranging from 

simple pulses of about 0.1 sec duration, \'lith little scattered energy, to 

very complex looking signals of a second or more duration, Figure 14 

presents a selecti'on cf:sei~mograms with simple pulse shapes. A curious 

thing is observed by comparing these seismograms with the more complex 

seismograms (e .g., 87 and 57 in Figure 2; 138 in Figure 3; 111 and 112 

in Figure 5; 129 and 130 in Figure 6; and 53 and 57 in Figure 7). Seismo­

grams with simple S-waves generally have low P-wave amplitudes relative to 

the S-wave, while the seismograms with complex-~ooking S-waves generally 

have high P-wave amplitudes relative to the S-\laves (all the seismograms 

presented by Tucker and Brune were normalized to the same peak amplitude 

for plotting purposes; they actually represent a wide range in magnitude). 

The obvious explanation for this phenomenon is that it is an 

effect of radiation pattern (Tucker and Brune, 1977 ). Near a node for 

S-waves there will tend to be an antinode for P-waves (relatively high 

P-wave amplitudes) whereas S-waves will appear complex because scattered 

energy \'/ill be large relative to the main S-wave energy. On the other 

hand, near an antinode for S-waves, the P-wave will tend to be small 

and the S-wave will appear simple because it will stand out from the 

smaller scattered energy. If we accept this explanation, we can 

estimate of the amount of scattering by observing the time functions of 

the simpler events. Figure 15 sho\'JS two simple time functions constructed 

as examples of predicted S-wave pulses when no scattering is present. These 

are compared with two of the simple observed pulse shapes. The theoretical 
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pulses were diagramatically constructed so as to correspond to a simple 

smooth spectrum with the same corner frequency as determined experimentally, 

with a time function similar to the theoretical pulse used by Brune (1970), 

as seen through a simple velocity transducer of the type used by 

Tucker and Brune (1977). For the purposes of determining the approximate 

amount of scattered energy, it is not important whether or not this pulse 

is exactly correct; we are interested in the amount of late arriving 

scattered energy relative to the main pulse. As can be seen from the 

seismograms in this figure, when the 5-pulse is simple, the scattered late 

arriving energy is quite small relative to the main energy, probably not 

enough to seriously affect the inferred corner frequencies. The effect 

of scattering could be more serious for the more complex looking seismo­

grams. Ho\-1ever, study of the resu 1 ts of Tucker and Brune does not indicate 

any obvious correlation of stress drop with complexity, suggesting that, 

as expected, the scattered energy has about the same spectrum as the direct 

energy. Further evidence of this is the fact that in a number of trials 

to determine the effect of record length on the shape of the spectrum, 

Tucker and Brune feund very little effect, i.e., adding more or 

less of the 5-wave coda, presumably scattered energy, had little effect 

on the specturm shape. We conclude that at least for the San Fernando 

aftershocks studied by Tucker and Brune, scattering did not seriously 

affect the observed spectra. Other effects such as variation in source 

parameters, source complexity, and direction of rupture propagation were 

probably more important in causing the variations in spectral shape (and 

inferred stress drop) observed by Tucker and Brune. 
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INTRODUCTION 

The principal source of uncertainty and variability found in theories for 

the earthquake source is the designation of mechanical properties to represent 

interactions along a fault prior to and during an earthquake. It is asserted 

here that physical parameters and phenomena observed in laboratory fault fric­

tion experiments can provide a rational means for identifYing the critical 

mechanical properties controlling fault slip. 

Of course faults as studied in the laboratory do not have many of the 

complexities of natural faults. It could be argued therefore that important 

controlling pr.ocesses that . operate in natural fault systems have been simpli­

fied out of the experiments. However, there exist many analogies between the 

response of simple laboratory faults and real fault phenomena - a situation 

that invites detailed analysis of laboratory fault friction processes for 

possible application to faulting. The most widely noted analogy is the 

possible relevance of unstable frictional slip sliding (stick-slip) to the 

mechanism of crustal earthquakes caused by unstable fault slip (Brace and 

Byerlee, 1966). In addition to the qualitative similarities between stick­

slip and earthquake fault slip, Dieterich (1974) proposes that stick-slip can 

account for the relatively low stress drops of earthquakes when differences in 

the geometry of slip are taken into account. Similarly, experimental observa­

tions of stable frictional slip have been equated with aseismic fault creep 

(Scholz et al., 1969). Elevated temperatures are found to enhance the tendency 

for stable sliding and may account for the absence of earthquakes below 15 km 

!n California (Brace and Byerlee, 1970). A critical test of the use of 
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friction data to earthquake faulting was provided by the earthquakes at 

Rangely, Colorado. It was found that the Rangely earthquakes could be 

accounted for and modeled (Dieterich et al., 1972) at the stresses and fluid 

pressures, measured in the focal zone (Raleigh et al., 1972) using friction 

data for the onset of slip as a function of confining pressure and fluid 

pressure (Byerlee, 1975). At a more speculative level, observations of 

time-dependent friction have been used to explain the mechanism of aftershocks 

(Dieterich, 1972a) and experimental observations of preseismic slip may 

explain certain earthquake precursors (Dieterich, 1978a). 

The general insensitivity of friction measurements to rock type, test 

conditions and characteristics of the sliding surface further suggest that 

laboratory friction may be relevant to natural faults under more complex 

conditions. Similar values for the coefficient of friction and qualitatively 

similar slip phenomena are obtained for slip on clean, machine finished sur­

faces; surfaces with simulated gouge; and for slip on fracture surfaces. This 

indicates that the processes controlling the coefficient of friction and slip 

instability are intrinsic to slip on discontinuities in rocks and are not 

greatly dependent on complexities of geometry, structure or composition. 

Instability theories for the earthquake source have an essential feature 

in common. Some form of displacement (or strain) weakening for the fault or 

focal region must be postulated to give rise to the instability and stress 

drops of earthquakes. .At present there is no consensus as to the mechanism of 

displacement weakening and the number and variety of instability models that 

have been proposed is noteworthy. For repeated slip along a fault, the 

requirement of displacement weakening has a corollary - some type of healing 
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mechanism must operate to restore the fault strength following earthquake slip. 

Otherwise the fault strength would eventually fall to zero with repeated earth­

quakes. 

The purpose of this paper is to: 1) present experimental data tha~- is 

relevant to understanding displacement weakening and healing processes, and 2) 

develop constitutive equations that account for the experimental details. The 

companion paper employs the constitutive equations to model experimental 

observations cf preseismic fault slip. 
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PREVIOUS WORK 

The friction model and constitutive relationships developed in a later 

section of this paper extend the results of Dieterich (197~b) on time- and 

velocity-dependence of friction and displacement weakening effects. Earlier 

observations showing time-dependence of friction (Dieterich, 1972b; Scholz et 

al., 1972; Tuefel and Logan, 1977) give convincing evidence on the character-

istics of fault healing in friction experiments. It is found that the coeffi-

cient of static friction increases with the time of stationery contact. The 

following empirical law has been proposed (Dieterich, 197~b) for the time 

dependency: 

~ = ~ + A log (Bt +1) 
0 

(1) 

where ~ is the coefficient of friction is given by the ratio of shear to normal 

stress, T/cr; t is the time of contact; and ~ , A and B are constants with 
0 

values of approximately 0.6 - 0.~, 0.01 - 0.02 and 1.0 - 2.0 respectively. 

Measurement of sliding friction at different velocities of slip (Dieterich, 

197~b) has shown an analogous velocity dependency: 

d 
,. = ~ + A log (~ +1) 
,... 0 0 (2) 

where d is an experimental displacement parameter and 8 is slip velocity. 
c 

Hence, friction decreases with increasing slip velocity. Note that (2) is 

equal to (1) if the constants ~ , A and B are the same and time t is replaced 
0 

• by 

de 
t = -.- (3) 

0 
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The identification of the parameter de was suggested by records giving friction 

as a function of displacement. Those records show that if the slip velocity 

is increased the coefficient of friction does not drop immediately to a value 

characteristic of the new slip velocity, but that the friction changes with 

displacement and stabilizes at the lower value only after a critical displace­

ment, de' has taken place. The magnitude of de appears to be independent of 

normal stress, a, and the magnitude of the change of velocity, but does corre­

late with surfa.ce roughness. Values of 5 x lo-4 em and 1 x lo-4 em were 

obtained for surfaced lapped with 1240 and 1600 abrasives respectively. 

These observations were interpreted (Dieterich, 1978b) to be of importance 

in understanding the surface interactions that control friction and cause slip 

instability. The dependence of de on surface roughness and the apparent 

success of using (3) to replace time in equation (1) suggest that the t in (3) 

is properly the average lifetime of a population of contacts and that de is 

the displacement required to completely change the population of contact 

points. Hence, the friction observations noted above result from the competi­

tion of two distinct processes. First, as a population of contacts ages, 

friction increases according to (1). Second, displacement acts to destroy an 

existing population of contacts which is then replaced with new and conse­

quently weaker contacts. Displacement weakening occurs whenever the average 

lifetime of the population of contacts decreases because of displacement. 

Based on this interpretation, a simple spring and slider model was 

proposed to explain experimental observations of the transition from stable 

sliding to stick-slip (Dieterich, 1978b). With this model the spring, with 

stiffness K, represents the combined stiffnesses of the sample and test 
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apparatus. The friction of the slider satisfies equations (1), (2) and the 

drop of ~ from the static to the sliding value is assumed to be linear over 

the displacement d . Unstable slip occurs when the decrease of friction with 
c 

displacement has a slope that exceeds the slope, -K, of the unloading curve of 

the system. In that case the stress acting on the slider will be greater than 

the frictional resistance to slip causing an acceleration of . the slider and 

instability. Stable sliding takes place if the decrease of friction with 

displacement has a lesser slope than the characteristic unloading curve of the 

system. The transition from stable sliding to stick-slip occurs when the slope 

of the unloading curve first equals the slope for displacement weakening of 

friction. The model quantitatively accounts for experimental observations 

that show the transition from stable to unstable slip depends on normal stress, 

stiffness and surface roughness. The principal shortcoming of the model is 

that it does not predict nor account for laboratory observatons of preseismic 

slip. Modeling of preseismic slip which is discussed in the companion paper 

appears to require a more complete constitutive relationship for friction as a 

function of displacement, velocity and time. The procedure followed . below is 

to build up constitutive equations that permit detailed simulation of experi-

mental records for ~ for different time, displacement and velocity conditions. 
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EXPERIMENTAL RESULTS AND CONSTITUTIVE EQUATIONS 

The experimental results presented here were obtained using the "sandwich" 

type direct shear configuration described previously (Dieterich, 1972}. The 

~ample material is gray "granite" from the Raymond, California quarry. Sliding 

surfaces were lapped using #60, #240 or #600 abrasive. 

Figure 1 gives results for the coefficient of friction, }.1, as a function 

of displacement. Normal stress was held constant at 60.7 bars. For each of 

the two experimental runs shown in Figure 2, slip velocity varied in a stepwise 

manner from ~lo-b em/sec to ~lo-3 em/sec. Each curve represents a contin-

uous record in which the velocity or slip was held constant for a displacement 

or ~s x lo-3 em then abruptly increased by a factor of ten and held constant 

for another displacement of ~5 x lo-3 em and so on. The small irregularities 

in the experimental curves are caused by electronic noise. The apparently 

greater noise at the slower sliding velocities arises because or lower 

recording pen velocity which compresses the irregularities on the record. In 

Figure 1 note that ll stabilizes at progressively lower values for each 

increase in sliding velocity as indicated by equation (2). The transient 

increase in lJ, observed when the velocity is increased, is discussed below. 

Critical displacement, d , for slip on the 190 surfaces shown in Figure 1 is 
c 

taken to be ~2 x lo-3 em. Table _1 lists the center-line-average surface 

roughnesses and critical displacements for the #60, #240 and #600 surfaces. 

Figure 2 gives ll as a function of displacement for a different type of 

experiment with the 160 surfaces. In these experiments the driving ram was 

held stationary for approximately 400 seconds then advanced at different 
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velocities as shown at the top of the figure. Normal stress was held constant 

at 57.2 bars. The peak of the curve gives the "static" friction. These 

experiments show that static friction is sensitive to loading rate - a feature 

that had not been noted previously. Higher rates of loading give higher static 

friction values. This effect appears to be analogous to the well~known effect 

of strain rate on critical stress for yield or fracture of silicates. Below, 

it will be shown that this effect is probably related to the transient increase 

in ~ when velocity is increased as shown by Figure 1. Note again in Figure 2 

that sliding friction tends to stabilize at lower values for the higher slip 

velociti.es. The points on the curves labeled o.v. and c.v. correspond to the 

opening and closing respectively, of the hydraulic valve that controls motion 

of the driving ram. The jump in the curve at c.v. probably arises because of 

a slight pressure surge in the hydraulic system. Small amounts of fault creep 

that partially relax stress in the sample cause the decrease in amplitude of 

the curves between c.v. and o.v. During creep the rate of slip rapidly decays 

with time. It is of possible significance that the creep takes place at 

stresses below the stresses for steady-state slip (equation 2). Previously, 

Johnson (1975) reported a similar surface creep phenomena at stresses below 

the nominal stress for static friction and having a slip velocity that decays 

with time. 

For the purposes of developing a more complete constitutive relation for 

friction it is assumed that friction of rocks like friction of metals and most 

other materials is largely controlled by adhesion at actual points of contact 

between sliding surfaces. Several lines of evidence indicate that adhesion is 

the principal source of the frictional force in rocks (Dieterich, 1978b). 
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Reliance on adhesion is not essential for the following discussion, however it 

does provide a plausible framework for discussion of parameters and for inter­

pretation of mechanisms. 

Bowden and Tabor (1964) propose that when surfaces are brought into 

contact minute irregularities will prevent uniform contact over the entire 

surface, even for flat, well polished surfaces. Actual contact is limited to 

scattered points (asperities) where the contact stresses are very high. An 

increase of the normal stress pushing the surfaces together causes the points 

of contact to yield and results in an increase of the real area of contact. 

For a unit area of surface, the real area of contact A, may by approximated by 

A == Ca (4) 

where a is the average normal stress applied over the entire surface (assuming 

lOOJ contact) and C is a material constant inversely proportional to indenta­

tion hardness or yield stress. Bowden and Tabor assert that the resistance of 

the surface to slip is controlled by the adhesive strength of the junctions. 

Hence, the average shear stress, t, (again assuming uniform contact) for slip 

is proportional to the real area of contact: 

't" = FA (5) 

where F is the strength per unit area of a contact. The coefficient of 

friction, ~, is given by Tla: 

~ = T/a CF (6) 
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Note that C x F is dimensionless because c-1 and F are proportional to 

strength. 

The time-dependence of equation (1) is clearly related to an increase in 

area of contact, or perhaps in some situations depth of penetration of asper­

ities (Scholz and Engelder, 1976; Tuefel and Logan, 1977; Dieterich, 1978b). 

Creep deformation of the asperities apparently causes the increase in area. 

This suggests that C in 6quation (4) is time dependent: 

giving for the coefficient of friction from (6): 

which is the same as (1) with: 

c 1F = ll
0 

c 2F = A 

= B 

(7) 

(8) 

The reader will note that (8) applies to static friction if t is the time 

of stationary contact or to sliding friction if t is the average lifetime of 

the population of contacts. The use of (8) vrlth relationship (2) for the 

average time of contact as a function of velocity gives a steplike change in 

friction whenever the sliding velocity abruptly changes. Figure 3 curve A is 

a simulation of the experimental run (to~ curve) using equations (2) and (8). 

Comparison of curve A with the experimental results demonstrates the 

unsuitability of this approach for representation of friction as a function of 

displacem~nt. The steps in curve A arise because t is assumed to jump to a 
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new value whenever the velocity changes. The observations suggest ho~ever 

that t relaxes to the new value over the characteristic displacement d • A 
c 

possible relationship for the relaxation of t as a function of displacement o, 

is given by: 

(9) 

where t 0 and 0
0 are the average contact time and displacement respectively 

when the slip velocity is changed to the new value. Use of (9) with (B) for 

step changes in velocity gives curve B of Figure 3. 

The transient increase in friction observed when the velocity is increased 

seems not to be associated with variation of surface area with displacement, 

but apprears to result from another process. The interpretation is offered 

here that this effect results from a loading rate dependence of the strength 

term, F. The following relationship appears to give satisfactory results: 

F = f +" l (10) 

1 f2 log (lf + 10) 

where f 1, r 2 and f 3 are constants. For the simulations discussed here and in 

Part II of this study f3 has been equated with de. Several other relationships 

might serve as well. The essential characteristic of (10) is that if the area 

of contact is held constant, the strength of a contact increases as the veloc-

ity of loading increases. As noted above, this effect is analogous to the 

effect of strain rate on yield strength of silicates. In addition, it is noted 

that the creep that apparently causes the time-dependent increase in area 

(equation 7) implies a similar strain rate dependence in strength. 
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Use of (10) and (7) gives the following expression for the coefficient of 

friction as a function of velocity and time of contact. 

\l = [cl + c2(1og c3t +1)] rl + f2 log (f/;3 + 1~] (11) 

Equation (11) used with (9) for the variation of contact time with displacement 

and velocity appears to adequately represent the static, transient and steady 

state sliding friction observations described above. 

Curve C in Figure 3 gives the variation of ~ as a function of displacement 

and velocity using equations (11) and (9). Overall, curve C appears to be in 

good agreement with the data. An increase in sliding velocity first causes an 

increase in friction because of the velocity dependence of F. As sliding 

proceeds however, the average time of contact relaxes to the new value, causing 

a decrease in the real area of contact and an overall lowering of the total 

resistance to slip. In detail the simulation shown by curve C (Fig. 3) differs 

from the experiments, mainly in the sharp peak in friction obtained when the 

velocity is increased. 

Figure 4 shows further refinement of the simulation that tends to smooth 

out the peaks. In this case the velocity of slip accelerates and temperarily 

overshoots the driving velocity. This type of' velocity overshoot is evident 

in the displacement vs. time records for the experiments and apparently arises 

because of elasticity of the sample and load-bearing anvils in the apparatus. 

Figure 5 gives a simulation of the experiment shown in Figure 3 for static 

friction as a function of loading velocity. Again, equation (11) was used to 

determine ~. The initial time of static contact was taken to be 400 seconds 

and equation (9) was used to give the variation of contact time with 
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displacement and velocity. Comparison of Figure 5 with Figure 3 shows that 

the simulation provides a reasonably good quantitative representation of 

principal features of the experiment. No attempt was made here to represent 

the variations in slip velocity due to elastic effects in the apparatus or to 

model the fault creep that occured in the experiments when the hydraulic system 

feeding the driving ram was valved off. Incorporation of a more realistic 

velocity history that accounts for accelerations of slip rates when the surface 

begins to slide would result in flattening of the peaks in the friction curves 

and yield a better agreement with the experimental curves. 

Fault creep occurs at stresses as much as 3 percent below the coefficient 

of friction for steady state slip (i.e. when ~ = d /~) and can be accounted 
c 

for by equation (11). The effect arises becaue of the velocity dependence of 

F. The characteristics of fault creep observed in the experiments of Figure 

3 are illustrated with the aid of Figure 6. Figure 6 plots ~ from equation 

(11) against the logarithm of the contact-time for different velocities of 

slip. Constants for C, F and de are those used for the above simulations. 

The heavy dashed curve in Figure 6 gives ~ as a function of contact time 

assuming t = de/~. Hence, the dashed curve gives the value for·~ and t for 

steady~state slip at constant velocity. During slip at constant velocity if 

the parameters for~, and t fall on the dashed curve, those parameters will be 

stable and will not change unless ~ is changed. If the conditions during slip 

plot above the dashed curve, then slip will be at a velocity in excess of the 

steady-state velocity and therefore cause a decrease in t with displacement. 

If the velocity of slip is held constant then t and consequently ~ must 
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decrease with displacement until both parameters cdincide with the steady state 

values. If the stress is held constant, then acceleration of slip must result. 

Similarly, slip may take place for conditions plotting below the dashed curve. 

In this case the velocity of slip is less than the steady state value and t 

must increase. If velocity is held constant, ~ will increase with t until the 

steady-state value is reached. If stress(~), is held constant or decreases 

then 8 must decay with total elapsed time. 

Curves labeled by points a-i in Figure 6 show the approximate paths 

followed for the experiment of Figure 3. Point (a) in Figure 6 corresponds to 

the first peak in friction for slip at 1.8 x 10-3 em/sec. Contact time is 

approximately 400 seconds. As sliding progresses, ~ decreases along the path 

a-b and stabilizes at b. Closure of the hydraulic valve prevents further slip 

at b. Any additional slip results in a decrease in stress in the sample which 
. 

drops ~ into the field below the dashed curve. Because o is less than the 

steady-state value, contact time .increases along the path b-e. Assuming that 

slip is small during creep: displacem~nt will not change the population of 

contacts significantly and contact time will be approximately equal to the 

duration of creep. At c the valve is opened and stress rapidly rises to the 

second peak, d, where the slip velocity is 1. 2 x lo-4 em/sec. In response to 

slip, t and ~ follow the path d-e and stabilize at e. Again at e, the valve 

is closed and creep occurs following the path e-f. Path f-g is the loading of 

the sample at a velocity of 1.4 x lo-3 em/sec and g-h is slip at that veloc-

ity. Creep following closure of the value follows h-i. 
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SUMMARY AND DISCUSSION 

Equation (11) used with equation (8) appear to give an adequate represen-

tation of the experimental observations reported here for the variation of 

friction with time, displacement and slip velocity. It is quite possible that 

other mathematical relationships could give as good or perhaps better represen-

tation of the data. However, the results presented here clearly establish the 

qualitative effect of several experimental parameters affecting rock friction. 

Specifically, the coefficient of friction can be expressed as the product of 

the parameters C and F. Parameter C depends on the time or contact as given 

approximately by equation (7) and F depends on velocity of slip as given 

approximately by equation (10). During slip, time of contact depends on ~-1 

and for changes in velocity t relaxes to a new value over the characteristic 

displacement, d , equation (8). The decrease in contact time with increasing 
c 

velocity causes a decrease in friction for steady-state slip. Hence, there 

are two competing velocity effects. The first is a transient effect giving an 

immediate increase in friction for an increase in slip velocity. The second 

arises indirectly from decrease in contact time with increased velocity and 

becomes evident only after finite displacement at the new velocity. 

The effect of contact time on friction apparently arises because creep at 

contacting asperities increase the actual area of contact between the sliding 

surfaces. While the transient velocity effect given by parameter F is identi-

fied here with the breakdown of adhesive junctions at the points of contact, 

it is not clear what specific processes control asperity failure. Simple 

pulling apart of the adhesive junctions without surface damage, brittle 
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failure of the contacting asperities and ploughing may all be important proc-

esses. The presence of wear-generated gouge along the surfaces gives evidence 

for at least some brittle processes during slip. The observations on time of 

contact suggest that creep determines the size, i.e. cross sectional area, of 

the junctions that subsequently fail, at least in part by velocity dependent 

brittle processes. 

Additional experiments are needed t _o explore the details of time, dis-

placement and velocity dependence as a function of rock type, pressure and 

especially temperature. Generally, friction data in the literature are inade-

quate to test for the time, velocity and displacement dependence reported here 

for normal stress above approximately 1 kilobar. The similarity of observa-

tions for frictional instabiltiy for different types of rocks and for very 

different normal stresses suggests that the effects noted above are general 

characteristics of rock friction at room temperatures. Time-dependent effects 

that agree with the general form of (7) have been reported for normal stresses 

from 19 bars to ~700 bars for a variety of rocks (Dieterich, 1972; Tuefel and 

Logan, 1977). Evidence for the parameter d is limited and has been noted 
c 

only in the study by Dieterich (1978b) and the present study. However, the 

model for the transition from stick-slip to stable sliding by Dieterich (1978b) 

specifically requires a characteristic displacement and successfully accounts 

for data to normal stresses of 1.2 kilobars. Data for the velocity dependence 

of the type given in equation (10) is reported here for the first time and 

needs additional experimental corroboration. The similarity of the velocity 

dependence of F to the widely observed dependency of the brittle strength of 

silicates suggests that this effect may also be general. 
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'FIGURE CAPTIONS 

Figure 1. Coefficient of friction, P, vs. displacement. Slip velocities are 

shown by the arrows above the experimental curves. 

Figure 2. Coefficient of friction vs. displacement. The driving ram was held 

fixed for ~400 seconds, then advanced at the velocities indicated above 

the experimental curve. 

Figure 3. Comparison of experimental results from Fig. 1 with empirical 

friction laws. Curve (A) employs equations (2) and (8) with c1F = 0.72, 

c2F = 0.005 and c3 = 0.1. Curve (B) employs equations (8) and (9). Curve 

(C) employs (9) and (11) with de = 2 x l0-3 em, c1 = 0.69, c2 = 0.010, 

c3 = 0.5, f1 = 1.0, f2 = 25. and f3 = 2 x lo-3. 

Figure 4. Comparison of experimental results with empirical friction laws (9) 

and (11). The upper curves give p as a function of displacement from the 

experiments of Fig. 1 and for the model. Lower curve gives velocity as a 

function of displacement used for the model. 

Figure 5. Simulation of the experimental data of Fig. 2. Friction pa~ameters 

for equ.ations (9) and (11) are: de = 2 x lo-3 em, c
1 

= 0.69, c
2 

= 0.013, 

c
3 

= 0.5, f1 = 1.0, f2 = 20., f
3 

= 2 x lo-3. 

Figure 6. Coefficient of friction vs. time of contact from equation (11) using 

the parameters given for Fig. 5. The solid curves give slip velocity. 

The dashed curve gives p vs. t for steady state slip, t = de/v. The 

dotted curves a-i show the path followed by the experiment in Fig. 2. 
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' MODELING OF ROCK FRICTION, PART 2: 

SIMULATION OF PRESEISMIC SLIP 

James H. Dieterich 
U.S. Geological Survey 

345 Middlefield Road 
Menlo Park, CA 94025 
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Part I of this study first presents experimental results for friction as 

a function of time, displacement and velocity and then develops constitutive 

relationships that permit a fairly accurate simulation of the experimental 

phenomena. This portion of the study applies those results to the modeling of 

preseismic slip and the initiation of unstable slip. The motivation for this 

analysis is twofold. First, some recent experiments (Dieterich, 1978a) provide 

detailed data for preseismic slip that afford an opportunity to further test 

the constitutive equations in a system with fairly complicated mechanical 

interactions. The model presented below has the mechanical elements needed to 

represent the principal interactions that have been identified in the labora­

tory experiments. Simulation of earthquake faulting probably requires analo­

gous interactions. The model is two-dimensional physical properties and 

stresses along the sliding surface are permitted to vary as a function of 

position and the elastic properties of the sample and test apparatus are 

represented. Second, the process of preseismic slip in laboratory experiments 

holds obvious interest as a possible earthquake precursor. At present, the 

applicability of experimental preseismic slip data for earthquake precursor 

models is quite conjectural because the mechanisms and parameters controlling 

preseismic slip are poorly ·understood. The simulations presented here may 

provide some insight into the mechanics of preseismic slip in laboratory 

experiments. 
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PRESEis-IIC SLIP · 

Stable slip as a premonitor of unstable (seismic) slip occurs for a 

variety of experimental conditions and for different types of sliding surfaces 

(for example: Scholz et al., 1972; Logan et al., 1972; Byerlee and Summers, 

1975). While the magnitude of the preseismic slip displacements observed for 

the studies cited above is extremely variable, it appears that at least small 

amounts of stable slip always precede slip instability. 

Scholz et al. (1972) have examined preseismic slip on ground surfaces of 

Westerly granite under .biaxial loading conditions. They observe preseismic 

displacements on the order of lQ-3 em, independent of strain rate. The 

duration of preseismic slip is inversely proportional to strain rate. Plots 

of fault displacement against time show accelerating displacement rates u~ to 

the time of unstable slip. 

The study by Dieterich (1978a) employed a biaxial configuration with 

Westerly granite (Figure 1) similar to that of Scholz et al. (1972). The 

principal refinement was the addition of several strain gages adjacent to the 

surface that permit the propagation of preseismic slip along the surface to be 

monitored. The gages at positions 1, 2 and 3 in Figure 1 record strains ~or~l 

to the slip surface and the remaining gages 4, 5, •.. 16 record shear strains 

parallel to the surface. 

Two distinct stages of preseismic slip were consistently observed in 

those experiments. The first stage consists of a slip event that begins at 

some point on the surface and slowly propagates over most or all of the 

sliding surface. Figure 2 is a representative example given by Dieterich 
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(1978a). Shear strains are plotted as a function of time for several locations 

adjacent to the surface. The curves are arranged by position on the sliding 

surface and the numbers labeling the curves correspond to the strain gages 

shown in Figure 1. Prior to slip, the rams that load the sample increase the 

shear stress at an approximately constant rate. A leveling or a decrease in 

strain amplitude indicates slip on the fault adjacent to the strain gage. For 

the example in Figure 2 slip begins at gage 15 and propagates across the 

sample. Once slip starts at a location on the fault, stable slip continues at 

that point until the time of the instability. 

The breakout of the first stage of slip at the end of the sliding surface 

initiates the second stage of slip which is of very short duration, 0.01 to 

"' 0.001 seconds. Note in Figure 2 that unstable slip occurs a short time after 

the slip event reaches the end of the sample at gage 5. While the first stage 

of slip appears to be intrinsically stable, the second stage rapidly becomes 

unstable and is characterized by acceleration of slip rates and falling 

stresses. Other preseismic slip events vary in detail and sometimes show 

greater complexity than the example in Figure 2. However, all have the common 

characteristic that unstable slip follows a short interval of falling stresses 

that is triggered after stage I reaches ·the end of the sample. Hence, most or 

all of the surface is slowly sliding at constant or slightly decreasing stress 

at the time the second stage of slip begins. 

Figure 2 gives evidence for velocity dependent friction because the 

stresses are higher during the low velocity stage I slip than during the high 

velocity slip of the instability. Part I of this study explains that type of 

velocity dependence as originating from ·a decrease in the time of asperity 
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contact with increasing velocity. Independent observations show that friction 

decreases with time of contact. Slip instability appears to'be triggered as a 

velocity perturbation when the slip event breaks out at the end of the surface. 

This causes a jump in slip velocity that in turn causes the friction to 

suddenly drop. 

The stability of the first stage of slip appears to be associated with 

the discovery that !nhomogeneity of stress relative to the critical stress for 
; 

slip initiation controls the amount of stage I slip. The greater the inhomo-

geneity the greater the amount and duration of preseismic slip. For two 

experiments arranged to give homogeneous stress with respect to the frictional 

strength, no stage I preseismic slip was observed. It was concluded by 

Dieterich (1978a) that during the first stage of slip, increasing external 

load is required to drive the boundary between the slipping and unslipped 

portions of the surface into the regions where the applied stress is less than 

the frictional strength. 
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M:>DEL 

Figure 3 illustrates the finite element model u~ed to simulate the 

experimental configuration of Figure 1. Slip between the two triangular blocks 

is represented in this model by the motion of a single triangular block on a 

planar surface. During slip, friction at points along the surface satisfy the 

relationship developed in the first part of this study (Dieterich, this 

volume): 

J1 = [ c1 + c2 log (c3t + 11Yl + 

where p is the coefficient of friction which 

stress, T, to normal stress, cr, during slip. 

1 ] (1) 

e ratio of shear 

The parameters o , o , o , f , 
1 2 3 1 

f 2 , f3 are constants; t is the time of contact; and~ is the slip velocity. 

During slip at constant velocity t was found to be a function of displacement, 

6, velocity, ~, and initial time of contact, t : 

t = ~(j_ t )e _o~:o 
• d 0 
6 c 

(2) 

where 60 is the initial displacement and de is an experimental parameter with 

values characteristic of the surface roughness. 

For the experiments, hydraulic rams apply shear and normal stress to the 

sliding surface. Those rams have finite stiffness and therefore interact with 

the blocks during loading and slip. The series of springs shown in Figure 3 

represent the rams in the model. The total stiffness of the springs was 

specified to give a shear stiffness for slip of 400 bars/om which falls within 

the range of stiffnesses measured for the hydraulic system under various loads. 
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In the model motion of the rigid boundaries distorts the springs and applies 

uniform loads to the sides of the block. To simplify the analysis the left 

boundary compresses the springs while the right boundary extends the springs 

by_. a.n ·equal amount. Hence, there is no change in the total normal stress 

acting·across the surface. For these simulations, normal stress is independ-

ently prescribed and may vary systematically by position on the surface. . 

Frictional strength is the product of prescribed normal stress and the coef-

ficientof friction. It will be recalled that inhomogeneity of shear stress 

relative to strength controls preseismic slip in the experiments. Hence, 

specified variations of normal stress simulate the inhomogeneity that controls 

preseismic slip. 

Quasi-static slip and deformation of the block and loading system are 

computed with the finite element method. The triangular finite element mesh 

shown in Figure 3 represents the block. The mesh consists of an array of 

elastic triangular elements connected at nodal points. 
, 

The Lame elastic 

constants are equal to 2.5 x 1ol1 dynes/cm2. Strains within each element 

are constant giving a displacement field that varies linearly by position 

within the element. Each spring is represented by simple one-dimensional 

elastic elements with two nodal points that connect the element to the block 

and to the rigid driving boundary. 

Nodal displacements are determined from a system of equations ·having the 

form: 

{F} = [K]{o} (3) 

where {F} is a vector listing the x- and y-components of the nodal forces, {cS} 
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is the corresponding vector of nodal displacements and [K] is the stiffness 

matrix. Procedures for the determination of [K] are found in the standard 

references. Stress and displacement boundary conditions are incorporated into 

(3) by specifying equivalent nodal forces and nodal displacements. This yields 

a system of simultaneous equations for the unknown nodal displacements. 

Frictional stresses on the sliding surface are represented by lumped nodal 

forces. For the computations reported here, the sliding surface is assumed to 

be rigid, Hence the y-component of nodal displacement at each node on the 

surface is fixed at zero. It is noted that non-uniform displacements on an 

initially planar surface will cause warping and the appropriate boundary con-

dition is for constant normal stress instead of fixed displacements perpendic-

ular to the surface. Comparison of results using both boundary conditions 

yielded indistinguishable slip histories. The displacement condition was 

chosen because iterative solution of (3) was significantly more rapid than for 

models with the stress boundary condition and therefore permitted more 

economical simulations. 

A time marching procedure is used to find the displacement fields at 

successive time steps. The duration of the time steps, ~T, is variable and 

depends on the rate of loading or the rate of slip. Because ~ changes over 

the characteristic displacement, d , ~T is selected to give slip at any point 
c 

that is much less than d . For the initial stages of slip when displacement 
c 

rates are low: 

(4) 

where K is the total stiffness of the springs and R is the rate of displacement 

of the rigid boundaries that distort the springs. 

151 



36 

During the later stages of preseismic slip, the slip rates accelerate and the 

time steps from (4) give displacements that greatly exceed de. Therefore, if 

the maximum slip displacement, flo, during a time step is greater than d /5. 
c 

then the time step, l:lT', for the next step is set at 

flT' = d l:lT/(I:lo x 5) c . . (5) 

Motion of the rigid boundary connected to the springs is at constant 

velocity. For each time step those hodal displacements are appropriately 

incremented and entered as displacement boundary conditions in (3). Along the 

sliding surface the x-component of either the nodal force or nodal displacement 

are specified. Initially, the simulation begins with all displacements on the 

surface held fixed. The boundary condition changes, permitting the nodes to 

slide when the applied force equals the frictional force. Conversely, if the 

velocity of a sliding node is less than or equal to zero, then the displacement 

of the node is again held fixed. 

An iterative procedure coupled to the solution of (3) gives the frictional 

force from equations (1) and (2) that satisfy the displacements and velocities. 

An initial estimate of displacement and sliding velocity of each surface node 

for the current time step is first obtained by extrapolation of the velocity 

from the previous time step. From· equation (2) velocity and displacement give 

an initial estimate of contact time that is used in (1) to obtain l.1 at the end 

of · the time step. This approximation of l.1 is used to find the frictional force 

for the boundary conditions for equation (3). Solution of (3) yields an 

improved estimate of displacement, velocity and t which are used again to 

obtain a better estimate of l.1. The procedure continues until the solution no 
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longer changes. The simulation is then continued for another time increment. 

Because the computations are quasi-static, the analysis terminates when 

unstable slip begins. The criterion for instability in these simulations was 

for slip velocity in excess of 10 em/sec. 
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RESULTS 

For these simulations the shear stress on the surface prior to slip varies 

somewhat with position, especially near the ends. Apparently the truncated 

corners of the triangular blocks prevent homogeneous loading by the springs. 

Inhomogeneity of shear stress on the sliding surface relative to the frictional 

strength was found to be a · principal determinant of the amount of preseismic 

slip in the experiments of Dieterich (197~a). Figure ij gives the results of a 

simulation in which the prescribed normal stress distribution was set to give 

a friction distribution that is everywhere identical to the shea~stress. The 

average shear stress at the beginning of slip is 60 bars. Parameters for ~, 

equation (1), were obtained using the results of the first part of this study 

(Dieterich, this volume), and have the following values: c 1 = 0.69, c 2 = 0.015, 

c 3 = 0.5, f 1 = 1.0, f 2 = 20. and f 3 = 5 x 10-ij. Initial time of contact, 

t
0 

= lOij sec., and de= 5 x 10-ij em, which is appropriate for the measured 

surface roughness of 2 x lo-5 em. 

No significant preseismic slip occurs in this simulation. Figure ij plots 

the component of shear stress parallel to the surface as a function of time 

for the row of elements in Figure 3 that have a single node on the sliding 

surface. The position of those elements corresponds approximately to the 

position of the strain gages used in the experiment. As with the experimental 

results, each curve in Figure ij is arranged by position on the sliding surface. 

A leveling or decrease in amplitude of the curves indicates slip adjacent to 

the element. As shown by Figure 4, slip rapidly accelerates giving an insta-

bility without a propagating preseismic slip event. 
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Figure 5 shows the results of a simulation with a friction distribution 

similar to that of the experiment shown in Figure 2. For this model, the 

difference between the frictional strength and shear stress prior to slip was 

specified to increase linearly along the sliding surface. The frictional 

strength of the extreme ends of the surface differ by a factor of 1.5. Other­

wise, all conditions and parameters for ~ are identical to the previous 

simulation. In this case a distinct period of stable sliding precedP~ the slip 

instability. The details of this simulation closely resemble the details seen 

in the experimental result of Figure 2. Slip begins at the end of the surface 

(bottom curve) where the strength is least and propagates uniformly across the 

surface. The upturn of the curves immediately prior to slip is caused by slip 

on the nearby segment of the surface which increases the rate of loading on 

the adjacent unslipped portion of the surface. 

Once slip begins at a node, slip continues with slightly decreasing 

stress. Instability and rapid stress drop occur only after the propagating 

front of the boundary between the unslipped and the stably slipping segments 

of the surface breaks out at the end of the sample. 

Figure 6 gives the results for the model with frictional strength arranged 

to give a bilateral propagation of preseismic slip. Again the parameters for 

~, de and t
0 

are identical to the previous models. In this case the weakest 

point on the fault is near the middle of the surface and strength (measured 

relative to the shear stress) increases linearly toward each end. A sequence 

of events similar to that of Figure 5 is also seen here. The length of the 

zone of preseismic slip grows approximately linearly with time and instability 

occurs after stable slip has propagated across the entire surface. 
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The experimental results of Scholz et al. {1972) show an acceleration of 

preseismic slip rates prior to instabilty. Slip displacements were not 

recorded in the experiments of Dieterich {197Ha). However, an analysis based 

on the characteristics of strain records suggests that the smoothly accelera-

ting rates of displacement observed by Scholz et al. {1972) result from growth 

of the area of preseismic slip (Dieterich, 197Ha). Figure 7 plots preseismic 

displacements for a point near the center of the ·surface against time for the 

simulat~ons of Figures 5 and b. The displacement curves for the simulated 

events show an acceleration of displacement rates similar to that seen by 

Scholz et al. (1972). The agreement of the results of Figures 5, b and 7 with 

the strain and displacement records of Dieterich {197Ha) and Scholz et al. 

{1972) respectively, indicate that the slip phenomena of the simulations give 
,, 

a good approximation to the phenomena of those experiments. Although slip 

rates in the simulations accelerate with time, it is interesting to note that 

the rates of slip at the time of breakout of the slip events are over an order 

of magnitude less than the rate of loading. Because the entire surface is 

sliding at that time, the block must then greatly accelerate to the loading 

velocity, just to keep the stress from increasing. This extreme jump in slip 

rates appears to cause a sudden drop in friction ·because of the decrease in 

contact time with velocity given by equation {2). 

The correlation between triggering of unstable slip and breakout of pre-

seismic slip at the end of the surface was tested with the simulation shown in 
-~ 

Figure 8. The conditions for this model are indentical to the model of Figure 

b except that the ends of the sliding surface are pinned. Therefore, the zone 

of preseismic slip was not allowed to break out at the ends of the sliding 
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surface, and slip could not homogenize the stresses to the frictional strength. 

No instability occured in this simulation. Unlike the simulations of Figures 

5 and 6, slip rates for this model ceased to accelerate when the slip boundary 

encountered the pinned ends. 

Surface roughness is a principal experimental determinate of slip insta-

bility with smoother surfaces having a greater tendency for unstable slip than 

rough surfaces (Dieterich, 1978b). Dieterich (1978b) gives a quantitative 

explanation for this effect based on the correlation between surface roughness 

and critical displacement, d . The simulation of Figure 9 has conditions 
c 

identical to that of Figure 6 except that d = 5.0 x lo-3 em compared to 
c 

5 x lo-4 em for the previous simulations. While rapid slip occurs following 

breakout of the zone of stable slip, no instability occurs in this simulation. 

The maximum slip velocity is 6.4 x lo-2 em/sec. Another simulation with 

d = 5.0 x lo-2 em greatly smoothed out the accelerated slip event seen in 
c 

Figure 9 and yielded a maximum slip rate of 2.5 x lo-3 em/sec. The rate of 

loading in these simulations would give a stable slip rate with no change in 

stress of 7.1 x lo-4 em/sec. 
• 

157 



42 

DISCUSSION 

Some of the general characteristics of preseismic slip have been explored 

with the above simulations. Overall, the results agree with the phenomena 

reported by Dieterich (197~a) and also appear to be compatable with the data 

of Scholz et al. (1972). It is concluded that constitutive relationships (1) 

and (2), which are developed in the companion paper (Dieterich, this volume), 

give an adequate representation of the coefficient of friction as a function 

of time, displacement, velocity and surface roughness. It appears that precise 

simulations of experimental observations can be obtained by careful selection 

of the .model and friction parameters. 

Inhomogeneity of stress relative to friction strength causes preseismic . 

slip. In experiments (Dieterich, 197~a) and in these simulations, little or 

no preseismic slip takes place if the stress is homogeneous with respect to 

the strength. For inhomogeneous distributions, stable slip begins at a point 

and propagates along the surface. The observations by Scholz et al. {1972) 

that the duration of preseismic slip is inversely proportional to the loading 

rate while the amount of slip and the form of the displacement vs. time curves 

are independent of loading rate indicate that preseismic slip is controlled by 

external loading. An analysis by Dieterich (197~a) that is confirmed by these 

simulations shows that the preseismic displacements observed by Scholz et al. 

(1972) are associated with the growth of the area of preseismic slip. If the 

surface stress is inhomogeneous with respect to the strength it is clear that 

an incremental increase of external loading is required to incrementally expand 

the area of slip into regions on the surface where the stress is less than the 
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friction. Hence, preseismic slip is intrinsically stable and is driven by 

external loading. 

Slip instability in the simulations and experiments occurs after preseis-

mic slip breaks out at the ends of the sample. Prior to the breakout, slip 

rates are less than rates of boundary loading. Hence, at the time slip reaches 

the end of the surface slip rates must jump to the loading rate in order to 

keep the stress from increasing. However, equations (1) and (2) predict that 

friction must decrease with displacement at the higher slip velocities because 

the time of contact decreases with increasing velocity. The displacement 

weakening leads to unstable slip. 

Conditions for the occurence of unstable slip have been outlined by 

Dieterich (197~b) using a simple block and spring model and somewhat more 

primitive constitutive relationships than those employed here. The simple 

model would appear to approximate the conditions in the experiments only after 

slip breakout when the stress and friction are homogeneous and the entire 

block is uniformly sliding. According to the theory, instability occurs if • 

K 
lllla 
d 

c 

(6) 

where K is the shear stiffness of the sample and loading system, a is the 

normal stress and llll is the change in the coefficient of friction that takes 

place over the characteristic displacement, d . As originally employed, llll is 
c 

the difference between friction using the time of static contact and the 

steady-state friction at the loading velocity. However, the results discussed 

in this study suggest that time of static contact might be altered by preseis-

mic slip. Therefore, it would be more appropriate to use contact time when 
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slip breaks out at the end of the sample rather than time of static contact 

prior to slip. 

This raises an interesting point. Considering the uncertainty in the 

specification of contact time the analysis of Dieterich (197ijb) using static 

time of contact is in surprisingly good agreement with experimental data for 

the transition from stable to unstable slip as a function of normal stress, 

stiffness and surface roughness. For those experiments it is considered likely 

that preseismic slip took place prior to instability. In the preseismic slip 

experiments considerable trial and error were required to give a few events 

with homogeneous stresses ·and no preseismic slip. No such care was exercised 

for the experiments used to analyze the transition from stabl~ to unstable 

slip. It appears that the analysis of Dieterich (1978) was successful because 

preseismic displacements were small and at a low velocity. If this were the 

case, the static time of contact would not be much different than the time of 

contact when slip reached the end of the sample. This interpretation ·is 

supported by the model simulations of this study. For example, in the simula­

tions of Figures 5 and 6, the time of static contact was 104 sec while the 

average times of contact at slip breakout were 3 x 103 and 5 x 103 seconds 

respectively. By comparison the time of contact for , steady slip at the loading 

velocity was 1.4 seconds. Using static time and steady state time with loading 

velocity in equation (1) gives ~~ = 0.055 while use of contact times at slip 

breakout and steady state contact time gives ~~ = 0.046 - 0.050. The differ­

ence between these values is well within experimental error. Because preseis­

mic displacements increase with the length of the slipping zone (e.g. Fig. 7) 

larger sliding surfaces would have proportionally larger preseismic 
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displacements and the use of static contact time would probably lead to signi­

ficant error for the prediction of the transition from stable sliding to stick­

slip. 

A principal reason for this detailed study of preseismic slip is the 

potential relevance to earthquake prediction (Dieterich, 1978a). The consis­

tency with which preseismic slip is observed in laboratory experiments suggests 

by analogy that preseismic fault displacements may be a regular premonitor to 

earthquake instability. A source of uncertainty in applying experimental 

results to earthquake faulting is the question of scaling. Of particular 

importance is the possibility that for earthquake faults, preseismic slip may 

take place over relatively small fault dimensions with earthquake slip propa­

gating well beyond the zone of initial slip (Dieterich, 1978a). If this is 

the general case then preseismic slip might be of little practical interest 

for earthquake prediction. Unfortunately the scaling question may not be 

accesible to direct experimentation. The good agreement between the results 

of this study and experimental data suggests that simulations might yield 

reliable results for earth faulting. 
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FIGURE CAPTIONS 

Figure 1. Schematic diagram of the experiment by Dieterich (1978a). Arrows 

indicate loading directions. 

Figure 2. Shear strain vs. time record from Dieterich (1978a). Numbers refer 

to the strain gages shown in Fig. 1. Arrows mark the beginning of slip 

at each gage. 

Figure 3. Finite element model of the experiment shown in Fig. 1. Arrows 

indicate the direction of motion of the rigid boundaries that distort the 

springs and load the block. 

Figure 4. Canputed stress vs. time for elements adjacent to the sliding 

surface. Shear stress prior to slip is homogeneous with respect to the 

frictional strength. 

Figure 5. Computed stress vs. time for elements adjacent to the sliding 

surface showing unilateral propagation of stable slip prior to instabil­

ity. The difference between frictional strength and shear stress prior 

to slip increases linearly along the surface. 

Figure 6. Computed shear stress vs. time for elements adjacent to the siding 

surface showing bilateral propagation of stable slip prior to instability. 

Figure 7. Displacement vs. time for the center nodes in the simulations of 

Fig. 5 and Fig. 6 (A and B, respectively). The arrows mark the breakout 

of slip at the end of the sliding surface. 

Figure 8. Computed shear stress vs. time for the elements adjacent to the 

sliding surface. This simulation is identical to the simulation of Fig. 6 

except the ends of the sliding surface are pinned. Only the first third 

of the simulation is shown. 
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Figure 9. Computed shear stress vs. ti~P$ for elements adjacent to the sl~din8 

surface. The conditions for this simulation are identica~ to Fig. b 

except de = 5 x l0-3 em instead of 5 x 10-~ em used for Fig. b,. 
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THE MECHANICS OF DYNAMIC SHEAR CRACK PROPAGATION 

L. B. Freund 

Division of Engineering, Brown University, Providence, RI 02912 

INTRODUCTION 

The mechanical modeling of an earthquake source h~s been a research objec­

tive in seismology for many years, and a recent trend in this area has been to 

view the source as a dynamically extending shear crack. In pre-cracked laboratory 

specimens, shear cracks often tend to extend in a direction oblique to the initial 

crack direction under stress. On the other hand, it is almost universally assumed 

that shear cracks serving as earthquake source models extend as planar cracks, and 

this assumption appears to be consistent with ob$ervation. Possible reasons for 

the planar growth are that a pre-existing fault prQvides a weakened path which is 

preferential for crack extension and thqt the confining pressure reduces the effect 

of tensile stresses near the crack tip which might otherwise lead to oblique crack 

growth. 

The emphasis here is on basic concepts which seem to be important in dynamic 

shear crack analysis, and methods of analysis for specific problems are not con­

sidered in detail. A number of signifi9ant contributions which have concentrated 

on the dynamic shear fracture process have appeared in the literature in recent 

years, including those by Burridge [1], Burridge and Halliday [2], Fossum and 

Freund [3], Husseini, et al. [4], Kostrov [5,6], Kostrov and Nikiti~ [7], Richards 

[8], and Weertman [9] on analytical solutions to particulaF problems, and those by 

Andrews [10,11], Das and Aki [12], and Ida [13] on numerical solutions to particu­

lar problems. The present discussion is bas~d primarily on these contributions, 

as well as on the results of research on dynamic tensile fracture which were 

recently reviewed by . Freund [14]. It should also be noted that a number of signi-
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ficant contributions which have concentrated on the stress wave radiation from a 

propagating shear crack have also appeared, including those by Brune [15], 

Hussein! and Randall [16], Madariaga [17] and Richards [18]. 

SOME GENERAL RESULTS FOR PROPAGATING SHEAR CRACKS 

Two general concepts which have played a major and fundamental role in the 

study of dynamic crack propagation are those of dynamic stress intensity factor 

and dynamic energy release rate. In this section, these concepts are given mathe­

matical definitions in terms of the elastodynamic stress and deformation fields 

which prevail in a body of isotropic elastic material ·during crack propagation. 

Stress and Particle Velocity Near a Crack Tip 

A number of analytical solutions for the propagation of a sharp crack through 

a plane elastic solid are available. It has been observed for some time that the 

dependence of the stress field on spatial coordinates local to the crack tip is 

common to all solutions. For running cracks the spatial distribution is dependent 

on the speed of crack propagation, and it redu~es to the appropriate expression for 

the stationary crack when .the crack speed is set equal to zero. It can be demon­

strated that this common spatial dependent of the near tip elastic field for running 

crack solutions is a general results, independent of the configuration of the body 

and the details of the loading system. The only quantity which varies from one spe­

cific problem to another is a time-dependent scalar multiple of the universal spatial 

dependence. The corresponding result for elastostatic fracture mechanics was first 

presented by Irwin [19] an~ Williams [20].' The general result for rapid propaga­

tion of a mode II shear crack may be derived by following the asymptotic analysis 

of Frel.md and Clifton [21], who presented the corresponding results for dynamic 

propagation of a mode I tensile crack at sub-sonic speeds. 

A Cartesian coordinate system is oriented in the body in such a way that . the 

particle displacement is in the x,y-plane; see Fig. 1. The region of the plane 
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occupied by the body is denoted by D and the outer boundary by S. The inner 

boundary of D consists of the crack faces, except near the crack ends where. 

the inner boundary is augmented by small loops surrounding the crack tips. The 

loops have arbitrary shape, but they are fixed with respect to the moving crack 

tips. The outer boundary S is subjected to traction boundary conditions, dis-

placement boundary conditions, or some suitable combination of both. Tractions 

may be acting on the crack faces, but they are assumed to be bounded in magnitude 

near the crack tips, and no body forces are acting. For simplicity, it is assumed 

that conditions are such that crack extension occurs in mode II, the plane strain 

shearing mode. 

Attention is directed to the crack tip surrounded by the loop L, and a 

local Cartesian coordinate system (E;,n) anq a local polar coordinate system 

(r, e), both of which move with the crack tip, are introduced as shown in Fig. 1. 

The crack is assumed to be extending in its own plane, and the instqntaneous rate 

of extension v is any continuously varying function of time. .with the require-

ment that the local energy density must be integrable~ the following general re-

sult may be established by application of the asymptotic method described in [21]: 

For all plane elastodyn~mic solutions for running mode II cracks the shear stress 

component 

u 
X = 

a xy and the particle velocity component 

for 0 < v < v s , and by 

175 

u are given by 
X 

(1) 

(2) 



4 

* H(-~-B fnf) :nm)} K
2
(t) {cos <:e .e> sin s 

(3) a = + xy & rl (-~-Bsf n f )m tan 

* H(-~-B f n f) :nm)} vK2(t) {sin <:.e> sin 
u = - 2a s s (4) 

X 
2lJal & ls f J m r.t (-~-Bs n ) tan 

for vs < v < vl, as r-+- 0. The subscripts l and s refer the longitudinal 

and shear wave speeds v , lJ s is the elastic shear modulus, and 

(1 2/ 2)1/2 al = - v vl (5) 

ie r e s = ~ + ia n s s 
(6) 

(7) 

,_.;;i· R(v) = 4alas (1 + a2)2 
s (8) 

H(t) {~ t > 0 = 
t < 0 

(9) 

Similar expressions may be written for the local crack tip variation of other 

components of stress and particle velocity for both crack velocity ranges. How-

ever, the above expres~ions are typical and perhaps are the most important for 

discussing mode II shear fractures, and the expressions for other components are 

not included here. 

The expression (1) has been normalized with respect to the relation 

= limo (2wr)112 a (r, O, t) 
r+ xy 

(10) 

The time dependent scalar K2(t) is then the mode II stress intensity factor 

of elastic fracture mechanics. For crack tip speeds in the range 0 < v < v , 
s 

the local stress and velocity vary as the inverse square root of distance from 
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the crack tip. The algebraic sign of the coefficient of the square root singular 

factor depends on whether the crack speed is less than or greater than the Rayleigh 

surface wave speed v . 
r 

The function R(v), which appears in (1, 2) and which is 

defined in (8), is the so-called Rayleigh wave function. This function has the 

properties that R(± v ) = 0, R( v) > 0 
r 

for 0 < v < v , and R(v) < 0 .r for 

v < v < v • Examination of (1, 2) leads to the conclusion that shear traction 
r s 

on the prospe~tive fract~e plane 8 = o± and particle velocity on the fracture 

surface 8 = ± 11' have opposite algebraic sign if 0 < v < v and the same sign 
r 

if v < v < v . This observation has important implications in considering r s 

energy fluxes associated with crack growth. It should also be noted that the 

expression (1) represents only the dominant singular term in the expansion of 

the elastic field about the crack tip, and the expansion could be continued. For 

example, if the crack faces are subjected to tractions such that a + T 
~ 0 

and n = ± O, then the "order one" term in the expansion is simply 

as 

T • 
0 

The next term in the expansion is proportional to /:;, and so on. Of course, 

if K
2
(t) = 0 then the higher order terms in the expansion take on added impor-

tance. 

The expression (3) has been normalized with respeqt to the relation 

lim r:::.- m = r+O v 211' r a xy ( r , 0 , t ) (11) 

,'( 

so that the time dependent scalar K
2
(t) is also a mode II stress intensity 

factor, although the singularity in stress for vs < v < vl is in general weaker 

then the inverse square root singularity which arises for O<v<v. 
s 

As can be 

seen from (7), the exponent m which appears in (3, 4) varies continuously from 

m = 0 at v = vs' up to a maximum value m = 1/2 at v = v /2, s and back to 

m = 0 at v = It should be noted that the shear wave contribution to the 

expressions (3, 4) is very dif£e~ent from that in (1, 2). Because the crack tip 
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speed is greater than the shear wave speed, no shear waves radiated from the 

crack can propagate ahead of the running crack tip. Instead, shear wave motion 

can exist only behind discrete wavefronts which appear in the form of Mach waves · 

trailing from the extending crack. In the local (~, n) coordinate system, these 

Mach wavefronts coincide with the lines ~ + a lnl = o. In the solution of a s 

particular mode II crack propagation problem Burridge [1] noted that the stress 

singularity for crack speeds in the range . v s < v < v l.. has the form shown in ( 3) • 

It is concluded from an application of the asymptotic method of [21] that this is 

a general result, common to all mode II c~ack propagation problems. 

Finally, the local crack tip field for dynamic propagation of a crack in 

the anti-plane shear mode, or mode III, is included. Referring once again to 

Fig. 1, the only nonzero component of displacement is in the . .direction normal to 

the x,y-plane which is, say, the z-direction. The shear stress component a yz 

and the particle velocity uz are 

a yz 

u = z 

K
3
(t) 

= cos 
l2nr 

s 

(e /2) 
s 

sin <e /2) · s 

as r + 0 for any crack speed in the range O<v<v. s 

(12) 

(13) 

The notation is the 

same as that for mode II, except for the appearance of the mode III stress inten-

sity factor, 

lim (2•r)l/2 ( ) = _.0 ,. a r, 0, t 
"'., yz . 

(14) 

As can be seen from (12,. i3) the local stress and velocity fields have the charac-

teristic square root singular dependence on distance ·from the moving crack tip. 

The nynamic Energy Release Rate 

Consider once again the two-dimensional . body of linear elastic material con-
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taining a crack shown in Fig. 1. For present purposes, it is not necessary that 

the crack be mathematically sharp but it is assumed that the loop L originates 

on one crack surface, that it terminates on the opposite crack surface, and that 

it completely surrounds the crack tip zone, whether this zone is a point or a 

diffuse region. As before, the loop is considered to be fixed with respect to 

the crack tip, which is moving at ~n arbitrary rate. The figure represents the 

body at a fixed instant of time. As was shown in [14], a general expression for 

energy absorption rate may be derived in terms of the local crack tip stress and 

velocity fields without specification of a particular mode of crack propagation. 

As the crack tip surrounded by L moves under the action of the applied 

loading, mechanical energy flows through L at a rate which will be denoted by 

F. This energy flux F may be computed in terms of the elastic field of the 

body by application of an overall energy rate balance. Let P, T and U denote 

the rate of work of the applied tractions, the total kinetic energy of the material 

in D, and the total strain energy of the material in D, respectively. Then 

the flux of energy through L is equal to the difference between the rate of 

work of the applied loads and the rate of increase of internal energy in D, that 

is, 

F = p - (T + U) (15) 

If the terms on the right side of (15) are expressed in terms of the instantaneous 

stress and velocity fields in the body according to standard definitions and the 

divergence theorem is applied, then the following main result is obtained 

P = J [a.jn.~. + 
1
2 (a .. u .. + p~.~-) vnx]dL 

L ~ J ~ ~J ~ ,J ~ ~ 
(16) 

where o •. and u. are the stress and velocity components, n. is the normal 
~J ~ ~ 

to L pointing away from the crack tip, and p is the material mass density. 
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The interpretation of the terms in (16) is straightforward. The first term is 

the rate of work of the material outside of L on the material ins.ide , .L, that 

is, it is the sum along L of the inner product of traction and particle velo-

city and, if L were fixed with respect to the material, this would be the only 

contribution to the energy flux. ~ecause L is moving through the material, 

however, material particles cross L. Associated with _each material particle 

is an energy density, and the second term in (16) represents the contribution to 

the energy flux due to the flux of energy-bearing material particles. 

Several remarks should perhaps be ·added here concerning previous ·work on the 

energy flux (16) or quantities related to it • . First of all, in the original 

derivation of (16) in [22], only the limiting case in which L is shrunk onto 

the crack tip was considered. It seems that the expression {16) provides a 

basis for unification of several apparently diverse results on dynaDdc energy 

release rate, however, and consideration of limiting cases of L is post?oned. 

Secondly, F does reduce to the appropriate form of the path-independent J-

integral [23] for the special case of quasi-static deformation. In general, 

however, the value of F will indeed depend on the path employed to evaluate 

it [22,24]. The fact that F is path-independent under the special condition 

that the complete elastic field is constant with respect to an observer moving 

with the crack tip has been observed by Sib [25]. Finally, it is noted that the 

result (16) is also valid for three dimensional crack growth provided that L 

is understood to be a tube of fixed cross-section surrounding the crack edge and 

moving with it, and 

surface. 

vn is the normal speed of the tube at each point on its 
X 

Sha~_£rack ,!i.E_. For extension .of, a sharp crack under plane conditions, the 

rate of energy being supplied to the growing crack is given by F in (16) in the 

limit as L is shrunk onto the moving crack tip. To perform this calculation, 

F may be evaluated for a path within the region where the elastic field is ade-
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quately described by the results (1)-(4) and (12)-(13) prior to taking the limit. 

Because the near-tip fields have universal spatial dependence, the integral defin-

ing F may be evaluated and an expression for F in terms of the dynamic stress 

intensity factors may be obtained. Furthermore, the near-tip fields are steady 

with respect to an observer moving with the crack tip, so that the value of F 

which is calculated is independent of the shape of L within the crack tip region 

[14]. Some of the details of calculating F in terms of the dynamic stress inten-

sity factor for extension of a mode I crack are included in [22]. For combined 

mode II and mode III crack growth at a speed in the range 0 < v < vs, the energy 

flux into the crack tip is given by 

3 
v as 2 2 

K _v_K 
-2--- 2 + 2~a 3 (17) 
v R s s 

where v and E are Poisson's ratio and Young's modulus, respectively, of the 

material. The energy flux F is related to the energy released per unit crack 

advance, the dynamic energy ~elease rate G, simply by F = vG. Equation (17) 

thus represents a relationship between the dynamic stress intensity factors and 

the dynamic energy release rate which is valid for all loading conditions and all 

geometrical configurations. In this sense, it is the analogue for dynamic shear 

cracks of Irwin's well-known relationship between energy release rate and the mode I 

stress intensity factor. It is noted from (17) that if K2 ~ 0 then energy is 

absorbed by a mode II crack tip for speeds in the range 0 < v < v and energy 
r 

is radiated from the tip for speeds in the range v <v<v. r s For a mode III 

crack with K3 # 0, energy is absorbed into the tip for all speeds in the range 

O<v<v. 
s 

For propagation of a mode II cr~ck with speed in the range 

crack tip singularity in stress and velocity is weaker than the inverse square 

the 

root singularity, unless v = v /2, s 
and therefore F = 0 for all speeds in this 
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range except for v = v 12. 
s For this particular speed, the s~ear waves tr~iling 

the crack tip are absent and the energy flux into the tip du~ to longitudinal wave 

motion is 

(18) 

It must be noted that a stress distribution with an infinite singularity is 

clearly a mathematical idealization, in that no real material can actually support 

such · a stress. The usual _rationalization for admitting the singular stress dis-

tribution, the strength of which is measured by the stress intensity factor, is 

based on the concept of small scale yielding [23]. It is thus assumed that in 

the immediate vicinity of the crack tip the potentially large stresses are relieved 

by some nonlinear process in a region whose dimensions are small compared to crack 

length and body dimensions. It is assumed further that the stress distribution in 

the elastic material adjacent to the small zone is adequately described by the 

dominant singular term in the elasticity solution. Under small scale yielding 

conditions, the stress intensity factor may be considered to be a one-parameter 

measure of the amplitude of the stress which is being applied to the material in 

the crack tip region. The stress intensity factor approach circumvents considera-

tion of how the material in the crack tip region actually responds to the applied 

stress. 

_£o_!!e!_i ve _ Z£_n~ E_r~c~ .! i.E_ mo~e.!: In order to avoid infinitely large stresses 

on the fracture plane, a number of models involving a one-dimensional cohesive zone 

extending ahead of the physical crack tip in the fracture plane have been proposed. 

In each case, the model is analyzed by making the crack longer by an am6unt 

the cohesive zone size (see Fig. 2a), with the cohesive stresses in this zone 

acting so as to restrain crack opening (in mode I) or crack face sliding (in modes 

II or III). The size of the cohesive zone is chosen so that the net stress inten-

sity factor due to both the applied loads and the cohesive stress is zero. Cohesive 

zone models have been proposed for a variety of physical processes, for. example, 
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for pure cleavage tensile fracture by Barenblatt, Salganik and Cherepanov [26] 

and for fully developed plane stress plastic yielding at a tensile crack tip by 

Dugdale [27]. A cohesive zone model which seems to be quite realistic for a 

number of geophysical applications involving frictional sliding is the so-called 

slip weakening model, according to which it is assumed that slip will commence 

at a point on a slip plane when the local shear stress on the slip plane is ele-

vated to a certain level as' that the shear stress required to sustain slip 

is reduced as the amount of slip ~ is increased to some critical amount ~ ' c 

and that the shear stress required to sustain slipping beyond the critical amount 

of slip is The shear stress magnitudes a s and are usually associated 

with the static and dynamic frictional resistance of an interface to relative 

slip. The slip weakeni~g model has been discussed by Palmer and Rice [28], Ida 

[29], and Andrews [10], among others. 

In the slip weakening model for a mode II crack, the local cohesive stress a 

depends on the local slip o(x, t) = u (x, 0+, t)- u (x, 0-, t) 
X X 

as shown in 

Fig. 2b. The appropriate path L for computing energy flux into the cohesive 

zone during crack propagation is shown in Fig. 2a. Because n = 0 for all points 
X 

on L, the expression for F in terms of the cohesive stress and the slip reduces 

to 

I ao 
F = . a ( o ) at dx (19) 

cohesive 
zone 

The slip may be viewed as a function of the crack tip coordinate ~ and time, in 

which case a~(x, t)/()t may be replaced by - vao(~, t)/()~ + ao(~, t)/()t. The 

energy flux (13) then becomes the sum of two terms 

J ~c JRc . ao 
F = v O a (o )d~ + O a (o) at d~ (20) 

where o = o(O, t) is the crack tip opening displacement. The expression (20) 
c 
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is for the total energy flux into the cohesive zone during crack propagation. 

The first term represents the rate at which energy must be supplied per unit 

crack s~face area to completely overcome the cohesive stress, i.e., to 

produce a total slip of an amount 0 . 
c 

The second term represents the rate of 

work which must be supplied to change the amount of slip within the cohesive 

zone and to change zone size during nonsteady crack propagation. If the elastic 

field of the propagating crack is constant as seen by an observer moving with the 

crack tip, then o depends on t only through ~' that is 3o(~, t)/3t = 0 

and the second term in (20) is zero. 

Assuming such steady-state crack propagation and assuming a linear relation-

ship between cohesive stress and slip, o(o) =as - (as- od)o/oc, the energy 

flow into the cohesive zone per unit crack advance is G = (os + od)oc/2. It 

should be noted that most authors view the excess of a · above od as the cohe­

sive stress and in this case ~he energy absorbed per unit crack advance in over-

coming cohesion is G = (a - od )o /2. s c The energy release rate expressions for 

the slip weakening model applied to mode III crack extension are identical to 

those for mode II. It is noted that if conditions for small scale yielding are 

met, that is, if the cohesive zone size ·R is much less than all other physical 
c · 

dimensions, then a relationship between the stress intensity factor and the physi-

cal parameters of the cohesive zone is obtained by equating the energy flow into 

the singular crack tip to the energy absorbed in the cohesive zone. 

The results reported in this section provide a number of general relation-

ships among parameters which characterize the mechanical conditions which prevail 

near the tip of a shear crack during rapid crack propagation. The actual depen-

dence of any of these parameters on applied loading and geometrical configuration 

in any specific model of a dynamic shear rupture process can only be established 

by analyzing the corresponding boundary value problem. Although the collection of 
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crack propagation problems which have been studied is rich in variety from the 

analytical, computational and physical points of view, only a few analytical 

models are considered in the following sections. These particular models have 

been chosen because they address questions which appear to be important at the 

present time in the modeling of the dynamic crustal faulting process, they can 

be analyzed without undue complexity, and the results seem to provide some in­

sight into the process of dynamic shear crack propagation. 

STEADY-STATE CRACK PROPAGATION 

The simplest dynamic crack propagation problems which can be analyzed are 

those of the steady-state type, that is, the crack propagation speed is assumed 

to be constant and the complete stress and deformation fields are taken to be 

fixed as seen by an observer moving with the crack tip. This idealization is 

clearly inadequate when considering the abrupt initiation or arrest of a dynamic 

fracture, but it may be quite acceptable for describing processes for which the 

duration of the acceleration and deceleration phases is short compared to the 

total duration of the process. Furthermore, in the present context, the steady­

state assumption makes it pos~ible to demonstrate in a simple way some of the main 

features of dynamic shear crack propagation which may be relevant in earthquake 

source modeling. Attention is directed toward several specific interlated features 

in the steady-state problems to be discussed below. Among these features is the 

phenomenon of fault plane healing. That is, analysis of a simple steady state 

model allows consideration not only of the onset of slipping between the fault 

faces at the leading edge of the dynamically extending fault but also of the 

cessation of slipping between the faces, or fault healing, at. some distance behind 

the leading edge. A second specific aspect concerns the concept of the stress 

drop associated with fault extension. The inherent inhomogeneity of the stress 

distribution in the vicinity of a crack leads to the identification of several 
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significant stress magnitudes in the description of the dynamic crack growth 

process. Thus, several stress differences can be identified as stress drops or, 

in other words, the definition of stress drop appears to be ambiguous. A third 

feature of the dynamic faulting process which can be considered by means of the 

analysis of steady-state problems is the influence on the process of a change in 

remote loading conditions. An almost universal assumption in dynamic crack propa-

gation analysis is that the process is driven by a quasi-static, spatially uni-

form stress which is applied far from the process region. As will be shown below, 

some interesting results may be deduced quite simply from a steady-state crack 

model involving remote displacement conditions. In contrast to the remotely 

applied stress condition, which represents dead-weight or perfectly soft loading, 

the remotely applied displacement condition represents the opposite extreme of 

perfectly stiff loading. These features will be discussed in greater detail in 

the remainder of this section on the basis of the analysis of a few particular 

problems. An app~ach whereby complete stress and deformation fields are esta­

blished is briefly described first, and then an indirect app~ach based on an 

energy integral is considered. 

~ stre~s _ a!!.ag~i~ ~EP~ach..:.. As typical of the problems of the steady-state 

type which can be analyzed by standard methods is the anti-plane shear mode III 

problem represented in Fig. 3a. Under the action of a uniform remote shear 

stress a = a , yz co 
the mode III crack grows in the x-direction at speed v. The 

x,y coordinate system is fixed with respect to the moving crack. At the leading 

edge of the crack x = a, a singularity in a (x, 0) yz will be admitted, and it 

is assumed that the strength of this singularity is governed by the cohesive 

strength of the fault plane y = 0. Slipping begins at x = a - 0, y = 0 and 

it continues throughout the interval - a < x < a, y = 0. Relative slipping of 

the crack faces is resisted by a uniform frictional stress a (x, 0) = ad which - yz 

is less than 0
00 

and which might be due to Coulomb friction arising from a uniform 
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compressive stress in the y-direction. At x = - a, y = 0 the relative particle 

velocity across the fault reduces to zero, and for x < - a, y = 0 no further 

slipping occurs. The total amount of slip between the fault surfaces will be 

denoted by ot, and the slipping process is assumed to terminate smoothly with 

bounded stresses at the healing point x = - a, y = 0. 

An analytical technique of general applicability in problems of this type 

is that based on the theory of analytic functions of a complex variable. A 

general discussion of this method for steady-state plane strain elastodynamic 

problems has been given by Radok [30] and several specific applications to mode 

I fracture propagation are cited in [14]. An equivalent formulation for anti-

plane shear problems is straight-forward. It is easily verified that the relevant 

field equations are satisfied if stress and particle velocity have the representa-

tions 

a - ia /a = g(~) xz yz s (21) 

where g(~) is a function of the complex variable r; = x + iasy which is analytic 

in the complex ~-plane cut along - a < x < a, y = 0. The determination of stress 

and particle velocity then reduces to the determination of g(~) according to 

the powerful methods of analytic function theory; cf. [23]. For the problem at 

hand, the result is 

g(~) = i(a -a )a-l (1- ~~~ 2-a2 ) - i~o /2w~ 2-a2 - ia a-l 
oo a s t oo s (22) 

from which the stress components and particle velocity may be extracted according 

to ( 21). Graphs of a (x, 0) and ~ (x, 0) are shown in Fig. 3b. The length yz z 

of the slipping region is determined from the condition that stresses be bounded 

at x = - a, y = 0 as a = ~asot/2n(a00 - ad) and the stress intensity factor 

for the leading edge of the slipping zone is K3 = 2.(a
00

- ad) lia. From (12) the 

energy release rate at the leading edge is then 
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(23) 

A stress difference which appears naturally in this analysis is (a~- ad), and 

(23) gives a value for this stress difference as the cohesive energy density of 

the fault surface divided by the total slip displacement across the fault. This 

cohesive energy is a measure of the static frictional strength of the fault and 

it is usually assumed to be several orders of magnitude larger than the actual 

surface energy of the material which is typically about 2 
lJ/m • 

If small scale yielding conditions prevail and if the interface failure at 

the crack tip occurs in the slip weakening mode represented in Fig. 2b, then G 

in (23) may be replaced by cS (a - ad)/2, c s where cS < cS • c t In this context, 

the stress a is viewed as a measure of fault resistance to onset of slipping, 
s 

the resistance to slipping d~creases from a as the amount of slip increases to s 

eSc' and slipping is resisted by the stress ad for greater amounts of slip. In 

this case, the relationship (23) may be rewritten as 

= (a s 
- a ) .d 

(24) 

It is clear from (24) that a second stress difference (as - ad) has been intro­

duced. Whereas the previously introduced stress difference (a~ -ad) represents 

the stress drop from the -uniform remote tectonic stress a 
~ 

to the frictional 

stress on the slipping part of the fault, the difference (as - ad) represents 

the stress drop from a point just ahead of the propagating edge of the slipping 

region of the fault to a point just behind the edge within the slipping region. 

It can be seen from (24) that the magnitudes of these two stress drops can be very 

different. For example, if eSt is about 1 m and cS about 
c 

1 mm then the 

stress drop (as - ad) is three orders of magnitude larger than (a~ - ad). 

In the case of mode II crack propagation, the same general analytical proce-

. dure may be applied although the detailed formulation is somewhat more complicated. 
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However, it turns out that certain key results for problems of this type, such 

as those in (23) and (24), may be extracted without actually solving the boundary 

value problems, that is, without determining the complete stress and deformation 

fields, as is discussed in the following subsection. 

~ _ eE_eE_gy_ .!_n,!e_F.al_ aE_P.:,:o~c.!!_. The analysis is based on the energy flux inte-

gral (16) for the special case of steady-state crack propagation in the x-direction 

at speed v, for which a;at = - va/ax. If the ratio F/v for a given contour 

L surrounding the crack tip is denoted by E(v; L), then it is a simple matter 

to show that 

E = I [. ~21 a . . u. . + p v 
2 
u. u. ) n - a . . n . u. J dL L 1] 1,] 1,X 1,X X 1J J 1,X 

(25) 

If L were a closed contour containing no singularities of the elastic field, 

then E = 0. This may be demonstrated by application of the divergence theorem 

to the integral in (25). A direct consequence of this result is that E is a 

path-independent integral. That is, the value of E is the same for all simple 

paths which originate at a particular point on one face of the crack, which com~ 

pletely surround the crack tip region, and which terminate at a particular point 

on the opposite face of the crack. If the crack faces are traction-free, then the 

integrand of (25) vanishes on the crack faces and the value of E is independent 

of path even if the comparison contours do not originate and terminate at the same 

points on opposite faces of the crack; cf. [23]. 

As a first example of the applicatio~ of the path-independent integral (25), 

consider the anti-plane shear problem which was discussed in the previous subsec-

tion and which is represented in Fig. 3a. Suppose that a uniform stress a yz = a 
GO 

is subtracted from the stress state shown. The stresses and displacement gradients 

then decay as (x2 + y2)-112 at large distances from the crack tip which implies 

that the value of E along any remote contour will be zero, E = 0. remote If a 
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second path L is considered which originates on the lower crack surfac~ at 

x + - ~, y - - O, which runs along the lower crack face to x = a, which sur-

rounds the crack tip at x = a and then runs along the upper crack face to 

X+ - ~, y = + 0, then the value of E for this path is G + (a - a )~ = d ~ t 

E k. crac Because the integral is path independent, E = E = 0 and remote crack 

the result (23) is reproduced. It is noteworthy that a cohesive zone represent-

ing a slip weakening region could be included explicitly with this approach and 

the result (2L~) could be derived directly without recourse to the small scale 

yielding assumption. Similar results for a variety of other problems concerned 

with steady-state crack propagation in unbounded bodies, such as that considered 

by Weertman [9], can be directly extracted in much the same manner. 

The energy integral approach becomes particularly useful in certain situations 

where the complete stress and deformation fields cannot be determined by any of the 

standard analytical methods, but where enough information is available to compute 

the value of E. As typical of such a situation, consider the steady-state propa-

gation of a mode II shear crack in a strip of width 2h as shown in Fig. 4. Under 

the action of applied displacements ux(x, ± h) = ± u
0

, u ( x ,. ± h) = 0 , the mode 
y 

II crack grows in the x-direction at speed v. The x,y coordinate system is 

fixed with respect to the moving crack. Although a singularity in the stress com-

ponent a xy at the leading edge of the slipping region could be admitted just as 

in the above mode III probl~m a linear slip weakening cohesive zone is introduced 

at the outset instead. Thus, a (a, 0) = a xy s 

with ~{0) = ~c' and axy(-b, 0) = ad with 

with ~{a) = 0, a (0, 0) =ad 
xy . 

~(-b) = ~ > ~ • Just as before, t c 

slipping begins on the fault plane at x = a, it continues throughout the interval 

- b < x < a, and it terminates with net displacement off-set of &t at x = - b. 

Relative slipping is resisted by the cohesive/frictional stress a (x, 0) = xy 

0 < x < a and by the uniform frictional 

stress axy{x, 0) = ad in the interval - b < X < 0. The frictional stress might 
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be due to Coulomb friction arising from a superimposed uniform compressive 

stress in the y-direction. If such a stress were actually introduced by speci-

fying the alternate boundary condition u (x, ± h) = ± u , 
y y 

however, it would 

have no influence on the main results to be obtained in the subsequent discus-

sion. 

The unique feature of this particular problem is that it represents crack 

propagation under displacement control or very stiff loading conditions, in con-

trast to the mode III problem of crack propagation under stress control or very 

soft loading conditions which was considered previously. Displacement control 

conditions make possible the consideration of stress relief by crack extension, 

that is, the shear stress on the fault plane at some point far behind the slipping 

region, say a = ~(u - ot/2)/h, will be less than the shear stress on the fault 
- 0 

plane at some distance ahead of the slipping region, say a = ~u /h. 
+ 0 

The rela-

tionship among the various stress magnitudes and slip magnitudes is obtained by 

direct application of the energy integral (25). 

The two choices of contour L for evaluation of E are shown in Fig. 4, 

and the value of E along the outer contour, say E remote' will be considered 

first. For points far ahead/behind the crack tip, the only nonzero stress component 

is a 
xy 

and the only nonzero displacement gradient component is u =a+/~, x,y -

and these components are essentially uniform across the strip. For the portion of 

the remote contour along y = ± h, the displacement components are uniform and 

n = 0 so that the integrand of (25) vanishes identically and there is no contri­
x 

bution to the value of E. It is thus clear that 

E = (a 2 
remote + 

2 a )h/~ 

As shown in Fig. 4, the other choice of contour 
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at all points of the inner contour. Then, according to (25), the value of E 

for the inner path is 

(27) 

In view of the path-independence of E, E = E remote crack or 

(28) 

This analysis introduces two additional stress differences which might be identified 

as stress drops, that is, (a+ -ad) and · (a+ - a_). The second of these is par- . 

ticularly interesting because it satisfies the relationship 

(29) 

If h can be identified in some way with the total distance of travel of the fault 

edge, which is not an entirely unreasonable identification, then the right side of 

(29) coincides with one of the standard definitions of stress drop [31]. It is 

noteworthy that a+ and r:J 

The magnitudes of r:J + and a 

do not represent frictional properties of the fault. 

are arbitrary except that a+ +a > 2ad and 

cr > a for the process to occur at all. Unfortunately, the energy integral 
+ -

approach provides no apparent means for computing the physical dimensions a and 

b in Fig. 4. 

The steady-state crack propagation models considered in this section are 

representative of problems in this class. There are, of course, many other 

steady-state crack propagation models involving other fault plane strength charac-

terizations or other friction laws which might be profitably studied. The mode III 
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problem represented in Fig. 3a was chos.en here because it is typical of the 

simplest steady-state problems which can be analyzed, and the mode II str.ip 

problem represented in Fig. 4 was chosen because it is typical of problems for 

which useful information can be extracted by means of the energy integral approach, 

even though the stress and deformation fields cannot be determined by known ana­

lytical methods. If a crack tip is moving more or less steadily, then a steady­

state analysis yields relationships among the various parameters used to charac­

terize the process without specific reference to a crack propagation criterion. 

A study of how a crack tip or fault edge actually moves according to a particular 

crack propagation condition must be based on an analysis of transient crack propa­

gation, and certain results of such analysis are summarized in the next section. 

TRANSIENT CRACK PROPAGATION 

The discussion of transient shear crack propagation is based on the model of 

a half-plane crack extending in mode II in an otherwise unbounded body. This model 

exhibits most of the conceptual features which have been considered in dynamic 

shear crack propagation analysis. In the geophysics literature, more emphasis 

has been placed on the analysis of the symmetrical expansion of a mode II shear 

crack of finite length and the three-dimensional expansion of an elliptical com­

bined mode II and III shear crack than on the semi-infinite mode II or mode III 

cracks. The reason for this emphasis seems to be that actual faults have finite 

dimensions and if primary interest is on the details of seismic radiation due to 

fault motion, for example, then these fault dimensions must be included. If 

primary interest is on the fracture process, on the other hand, then the actual 

fault dimensions are of lesser importance and the semi-infinite crack models appear 

to be suitable. In general, for a specific characterization of fracture resis­

tance, the main influence on crack tip motion is the increased area over which 

the stress drop acts as the crack increases in size, and this effect can be included 
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in the semi-infinite plane crack models. The influence on crack tip motion at 

some point on a fault edge due to stress waves generated at some other point on 

the fault edge seems to be minor by comparison, and this effect is automatically 

precluded in the semi-infinite plane crack models. In his study of the symmetri-

cal extension of a mode I tensile crack of finite length, Rose [32] showed that 

the wave disturbance generated by either moving crack tip had a negligible effect 

on the motion of the other. Concerning .three-dimensional shear cracks, the edge 

deformation can be resolved into a combination of mode II and mode III deforma-

tions and, with this point of view, the results obtained from analysis of plane 

models have bearing on three-dimensional plane crack propagation as well. 

The specific mode II shear crack model on which this discussion is based is 

represented in Fig. 5. At the initial time t = 0 the half-plane crack begins 

to grow in the plane y = 0 and at time t the crack edge has advanced a distance 

·l(t). Equal and opposite shear tractions of magnitude a 
0 

act on the crack faces 

in the interval 0 < x < l(t) as shown. The stress a may be viewed as the 
0 

difference between a remotely applied stress of magnitude a 
00 

and a frictional 

stress which resists sliding ad. Thus, a 
0 

is a stress drop and it acts over 

a region of increasing size as the crack grows. There are no other crack face 

tractions or remote loads acting on the body. Posed in this way, the problem is 

not suitable for consideration of fracture initiation. Initial loading of the 

body is not included explicitly, and the role of the pre-existing crack as a 

stress concentrator in fracture initiation is not considered. These exclusions 

were made in order to keep the analysis as simple as possible, and loading condi-

tions for this problem which might be more suitable for the study of fracture 

initiation are considered in [3]. 

The solution of this problem for arbitrary nonuniform motion of the crack 

tip with speed l(t) in the range 0 < l < v has been given by Fossum and 
r 

Freund [3]. A solution of this problem for crack speeds greater than the Rayleigh 
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wave speed v has not appeared in the literature, although solutions for crack r 

growth at constant speed l=v>v 
r 

can be obtained by following the analytical 

procedure of [3]. In terms of the notation established in (1)-(4), the shear 

stress on the prospective fracture surface y = 0 directly ahead of the crack 

tip at x = l(t) is 

a = 
xy l21r ( x-l) 

a 
0 

for arbitrary l(t) within the range 

a = - a 
xy 0 

for constant speed v in the range 

,•: 

v r 

O<l<v 
r' 

K
2
(t) 

< v < v , 
s 

= 0 

and 

K
2
(t) 

* * (vt)m a = a K
2
(t) = k (v) a xy l2n (x-vt )m 0 0 

for constant speed v in the range v < v < 
s The function 

(30) 

(31) 

(32) 

k in (30) is · 

defined precisely in equation 12 of [3] and a rough approximation of this function 

is k(l) = 1 - ltv ; r in particular, k(O) = 1 and k(v ) = 0. 
r 

For the crack tip 

speed range vr < v < vs, a solution with K2 ¢ 0 can be found. However, as can 

be seen from (17), a mode II crack tip propagating at a speed within this range 

with K
2 

~ 0 acts as a point source of energy. Such a result must be ruled out 

on physical grotmds, so that K2 = 0 and the next term in the expansion of stress 

* with distance from the crack tip is that shown in (31). The function k (v) has 

not yet been evaluated in detail, but it seems to be bounded, nonzero and of order 

unity for speeds in the range vs < v < vt. When considered in conjunction with 

a fracture propagation criterion, the results (30)-(32) imply crack tip motions 

having certain characteristics. These will be briefly discussed for several dif-

ferent fracture criteria. 
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required to propagate in such a way that the stress intensity factor always has 

a fixed critical value. This is a generalization to the case of extending cracks 

of Irwin's well-known fracture initiation criterion. After the initiation phase 

has passed, the expression for K2 in (30) suggests that the fracture condition 

can be satisfied as l increases indefinitely by having the crack tip gradually 

accelerate toward the Rayleigh wave speed so that the product lk(l) is held 

constant. In this sense, the Rayleigh wave speed represents the terminal velo-

city for crack propagation. Furthermore, if the traditional definition or inter-

pretation of the stress intensity factor is understood, then crack speeds greater 

than the Rayleigh wave speed are not considered with this criterion because the 

coefficient of the square-root singular contribution to the local stress field 

is zero (except for the special case v = v /2). 
s 

required to propagate in such a way that the energy release rate G always has 

a fixed critical value. This is a generalization of the classical Griffith cri-

terion. The resulting crack motion will be almost identical to that for the cri-

tical stress intensity factor criterion, differing only in minor details. The 

reason for this similarity is that the. energy release rate is proportional to 

the square of the stress intensity factor, and the energy release rate is nonzero 

only if the local crack tip stress field is square-root singular. Stress fields 

with weaker singularities and nonsingular stress fields result in zero energy 

release rate for a sharp crack tip. Crack motion according to this criterion is 

discussed in detail in [3]. The main qualitative result is that an unstable sharp 

tipped mode II crack propagating with a constant energy release rate will accelerate 

toward the Rayleigh wave speed, but its speed will always be less than the Rayleigh 

wave speed. The energy release rate is also nonzero for the special crack speed 

v 1:2 but, according to (32), any specific value of energy release rate can be 
s 
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achieved at this speed only for a particular fixed crack length. Thus, the fracture 

condition cannot be satisfied for a crack extending at the speed v 12. 
s 

Critical stress level criterion. Suppose that large, and possibly singular, 

shear stresses on the prospective fracture plane ahead of the crack tip are admitted, 

but that the interface can support such stresses without fracture only if the in-

terval over which some critical stress level, say as, is exceeded in less than 

some critical length, say A. Further, suppose that fracture will begin if the 

fault plane shear stress is greater than a s over an interval of length A, and 

that the fracture will proceed with this condition satisfied. The shear stress 

can never exceed a over a length interval greater than A. This notion of a s 

critical stress acting over a certain distance was used by Irwin [33] in his early 

studies of crack tip plasticity. In this case the critical stress was proportional 

to the plastic flow stress of the material and the critical distance was the radius 

of the plastically deforming region around the crack tip. A similar viewpoint was 

adopted by Congleton and Petch [34] in modeling the initiation of microcrack growth 

ahead of the tip of a much larger crack. In this model, growth of the large crack 

was achieved through coalescence of numerous microcracks. In this case, the critical 

stress was the Griffith stress necessary to extend pre-existing microcracks and the 

corresponding critical distance was the mean spacing of these microcracks. A ver-

sion of the same criteriqn was recently employed by Das and Aki [12] in a form par-

ticularly well-suited for numerical computation by a finite difference scheme. 

However, it seems that they used the crack tip stress distribution (30) for the 

entire velocity range 0 < v < vi. 

After some fracture initiation phase has passed, the critical stress level 

fracture condition implies that the crack will accelerate according to 

K
2
(t) 

-- - (a - ad) = (a - a ) r::-::- 00 s 00 

v2trA 
(33) 

The term - a 
00 

has been inserted on the right side of (33) to account for the 
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fact that the remote loading contribution to the prospective fracture plane stress 

was not included in the formulation of the boundary value problem. With the explicit 

expression for K2(t) given in (30), the result (33) becomes (cf. equation 27 of 

[12]) 

(34) 

After any appreciable amount of crack growth l >> A. Therefore k must approach 

zero, or the wave speed must approach the Rayleigh wave speed. 

During the acceleration phase, the shear stress on the fracture plane is 

usually small compared to a s at distances ahead of the crack tip which are large 

compared to A. However, as the crack propagates steadily at speeds near the Ray-

leigh wave speed, the shear stress distribution on the fracture plane develops a 

sharp peak at a point traveling with the shear wave speed. This behavior was 

also observed for the symmetrically growing shear crack by Burridge [1]. The 

shear stress magnitude at this peak is n(a~ - ad). An estimate of the integral 

defining n yielded a value of about three, which is not too different from 

the numerically computed value n = 1.63 reported in [1]. If the inte~face is 

relatively weak, i.e., if as is not much larger than a
00

, then it is quite 

possible that n(a - ad) > (a . - a ) . 
00 s ~ 

If this inequality is satisfied at the 

shear stress peak, then it will simply be a matter of time before it is satisfied 

over an interval of length A. Thus, if the interface is relatively weak, then 

a secondary fracture will initiate at some distance ahead of the main fracture 

at some time. 

· A question then arises as to how this secondary fracture will grow. A detailed 

analysis of the growth process would be prohibitively complicated. There are not 

many possibilities, however, and the growth of the secondary fracture may be dis-

cussed in qualitative terms. The end of the secondary fracture nearest the main 

crack tip and the main crack tip will likely coalesce shortly after formation of 
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the secondary fracture, so that the other tip of the secondary fracture becomes 

the main crack tip. One possibility is that this tip will move at a speed just 

below the Rayleigh wave speed, another secondary fracture will be initiated some 

time later, and this process will be repeated over and over. A second possibility 

is that this tip will move at a speed greater than the Rayleigh wave speed. If 

then it can be seen from (31) that speeds in the range v < v < v r s 

are ruled out, and possible speeds in the range vs < v < vt must be sought. 

For this purpose, use is made of (32) with the interpretation of vt in (32) as 

the amount of crack growth since the formation of the secondary fracture, say 6!. 

The crack growth criterion then takes the form 

r.'t 
k (v) (6~r = (35) 

* If k is insensitive to variations in speed v, then m must decrease as 6! in-

creases for fixed A. As can be seen from its definition (7), the value of m de-

creases from m = 1/2 at v = v f2 to m = 0 at s 

would begin to grow at a speed equal to or greater than 

Thus the secondary crack 

v 12 and it would accelerate s 

toward the speed vt. The second of these two possibilities is qualitatively consis­

tent with the numerical calculations of Andrews [11] and of Das and Aki [12]. 

In summary, it seems that for a relatively strong interface with (a - a )/ s 00 

(a
00 

- ad) > n the crack will accelerate rapidly to speeds approaching the Rayleigh 

wave speed, but will continue to propagate indefinitely at speeds below the Rayleigh 

wave speed. For a relatively weak interface with _ (as - a
00

)/(a
00 

- ad) < n the crack 

tip will quickly accelerate to speeds approaching the Rayleigh wave speed and it 

will propagate for some shorttime at sub-Rayleigh wave speeds. 

dary fracturing,the crack tip speed will abruptly increase to 

Then, due to secon-

v 12 or beyond and s 

it will continue to accelerate toward the longitudinal wave speed vt. The quali­

tative picture of crack propagation based on the critical stress level fracture 
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· criterion and the simple mode II crack problem represented in Fig. 5 is generally 

consistent with the numerical results of [11] and [12]. One fundamental diffi-

culty with the critical stress level criterion is that the existence of a critical 

length A seems to have no particular physical basis. However, as discussed by 

Das and Aki [12], the criterion appears to be well-suited for numerical computation 

by a finite difference approach where A can be identified with the difference 

mesh spacing on the fracture plane. Furthermore, in such a numerical scheme the 

shear stress can be reduced from a 
s 

to according -to some cohesive zone model 

to simulate energy uptake in overcoming an intrinsic material cohesion in the crack 

tip region. Unless a s is larger than a 
00 

and ad by two or three orders of 

magnitude, however, the rate of work against cohesion is negligible by comparison 

to the rate at which is energy absorbed through frictional sliding of the crack 

faces. A direct comparison of the results of the numerical calculations in [11] 

and [12] strongly suggests that the crack motion is quite insensitive to whether 

or not a finite, nonzero crack tip fracture energy exists. Andrews [11] uses a 

cohesive zone crack tip model to simulate nonzero energy uptake at the crack tip 

at all crack speeds. On the other hand, Das and Aki [12] simulate crack growth in 

their finite difference scheme by abruptly releasing nodes in the ~ difference mesh 

whenever the nodal stress reaches a critical value. As observed by Rice [35], 

crack growth consisting of abrupt release of stress over a finite interval (the 

mesh spacing) occurs without energy absorption at the crack tip. The fact that 

the crack motion predictions in these two studies are qualitatively identical 

suggests that the influence on crack motion of crack tip energy absorption rates 

is small', probably because such rates are usually small compared to other energy 

rates involved as noted above. 

Nonuniform stress drop and fracture resistance. This section is concluded ------------------------
with a brief discussion of crack arrest. As noted by Husseini, et al. [4], a 

running fracture can be arrested by either of two mechanisms, either a reduction 
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of the crack driving force to a subcritical level or an increase in the resistance 

of the material to a supercritical level. A simple illustration of these effects 

can be given in terms of the present mode II crack propagation model and the 

critical stress intensity fracture criterion, for example. The dynamic stress 

intensity factor for the shear crack shown in Fig. 5 for crack face traction repre-

senting a stress drop a (x) 
0 

which varies in an arbitrary manner along the slip 

plane is given in equation 18 of [3] for sub-Rayleigh wave speeds. In terms of 

this arbitrary stress drop, the critical stress intensity factor fracture condi-

tion requires that the crack move in such a way that the dynamic stress intensity 

factor is always equal to some critical value, say C(l), which may also vary in 

an arbitrary manner along the slip plane. The equation of motion of the crack tip, 

i.e., the equation governing l(t), is then 

where Kst(l) is the equivalent static crack stress intensity factor 

Kst(l) = {-TI'2 )1/2 flo a (x)dx 
0 

(36) 

(37) 

Some specific implications of (36) are.shown schematically in Figs. 6 and 7. 

The case consider~d in Fig. 6 is that with constant critical stress intensity factor 

c and with continuously decreasing stress drop a 
0 

as shown. The equation (37) 

implies that the equivalent static stress intensity factor will first increase 

after initiation and then decrease, with a maximum at the point where a = 0. 
f 0 

The equation of motion (36) implies that the crack tip velocity will also increase 

and then decrease, with a maximum at the same point. The crack will arrest when 

Kst has been reduced to C. With reference to the sketch, the speed l = 0 

when K = C. st 

A similar example in which the stress drop 

201 

a 
0 

is constant but the fracture 



30 

resistance C increases along the slip plane is shown schematically in Fig. 7. 

The equation (37) implies that Kst will continuously increase with crack length, 

and according to (36) the crack will continue to accelerate as long as the slope 

of Kst vs. t is greater than the slope of C vs. l. The crack tip reaches 

a maximum velocity when these slopes coincide, and the crack tip will come to 

rest if C reaches the value Kst at some point. With reference to the sketch, 

l = 0 when Kst = C. 

Finally, it is noted that the functions C1 (x) 
0 

and C(i..) need not be mono-

tonic, but they could vary in an arbitrary way along the slip plane in order to 

simulate variations in driving stress, frictional resistance and fracture resis-

tance in the faulting process. It is clear from (36) that if these functions 

varied in an oscillatory manner, then crack motions l(t) which solve (36) or 

other equations of motion similar to it could be very complicated indeed. The 

effects of nonuniform driving stress and fracture resistance are likely to be 

important in future development of dynamic shear crack models. 
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Figure 1. 

Figure 2. 

Figure 3. 

Figure 4. 

FIGURE CAPTIONS 

'Configuration of a body containing a crack at a fixed instant of time. 

The cohesive zone crack tip model. The amount of slip between the 
crack faces is denoted by ~ and the shear traction resisting slip 
within the cohesive zone is o(~). The contour L shown in (a) is 
employed in the derivation of (19). The cross-hatched area in (b) 
is the cohesive energy density of the interface. 

A typical mode III steady-state crack propagation problem is shown in 
(a), where slip is resisted over a slipping region of length 2a by 
a shear traction Od· The variation of shear stress and particle velo­
city along the slip plane is sketched in (b). 

A typical mode II steady-state crack propagation problem which can be 
analyzed by means of the energy integral (25). 
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Figure 5. 

Figure 6. 

Figure 7. 
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Transient extension of a mode II semd-infinite shear crack due to a 
uniform stress drop a 0 act.ing over the interval 0 < x < l( t). 

A sketch of the variation with position along the slip plane of the 
physical quantities appearing in the crack tip equation of motion 
(36) for the special case when the critical stress intensity factor 
C is a constant but the stress drop decreases along the slip plane. 

Same as Fig. 6 for the special case when the stress drop a0 is 
uniform but the critical stress intensity·factor increases along the 
slip plane. 
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ABSTRACT 

The source process of the June 10, 1975 Kurile Isl~nds earthquake 

(~ = 5.8, M = 7.0) is studied using WWSSN data, ultra-long period 
b s ' 

seismic records, and .tsunami data. The observed tsunami amplitudes 

are much larger than are normally expected for .an earthquake of this 

magnitude, suggesting that the rupture process may have a very long time 

duration. This is confirmed by a study of the WWSSN Rayleigh and Love 

waves, which show that the effective moment (the seismic moment of the 

step function source which would produce the same amplitudes at a particular 

period) increases rapidly from 5 x 1026 dyne em at 50 see. to 2 x 1027 

dyne em at 200 sec. The extremely long rise time causes relatively low 

amplitudes at periods of about 20 sec. (at which M is measured), while 
s 

the tsunami amplitude (which depends on the moment at periods of several 

hundred seconds) is thus larger than expected for this M • 
s 

The mechanism inferred from body and surface waves is a shallow 

angle thrust fault, dipping 16° W and striking N 41° E. The main shock 

is relocated at T = 13:47:12.5, 42:97°N, 147.17°E, h = 2.1 Ian. On the 
0 

basis of relocated after shocks within one day, the fault area is 50 km 

X 35 km. 

This earthquake is classified as a tsunami earthquake (Kanamori, 

1972) on the basis of its anamolously large tsunami amplitude and low 

dislocation velocity • . Complex multiple events in the body waves and the 

unusually slow rupture process suggest that the fault zone may be unusually 

fractured and weak, with a very heterogeneous distribution of material 

strength. 
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APPENDIX 

Figure 1: General Tectonic Setting of the June 10, 1975 Kuriles 

Earthquake (labeled 1975 Nernuro-Oki Earthquake in the figure), 

from Fukao (1978). Note that the aftershock zones are plotted 

using JMA locations. 

Figure 2: Relocated aftershocks (within one day of main shock) of the 

June 10, 1975 tsunami earthquake. 

Figure 3: RMS residual of observed-computed P arrival time when the 

epicenter of the mainshock is relocated with the depth constrained. 

h = 2.1 krn is optimal. The circle in the upper left shows the 

number of stations in each quadrant. 

Figure 4: Three long period vertical WWSSN seismograms of the June 10, 1975 

earthquake. Note the extreme complexity of the waveforms, showing 

complex multiple ·events, with a duration of about two minutes. 

Also note the small foreshock about 10 seconds before the first 

arrival from the main shock. The earthquake waveforms have been 

traced over. 

Figure 5: Difference in arrival time between the small foreshock and 

the first waves from the main shock, as a function of azimuth. There 

is no significant azimuthal variation, suggesting that the fore­

shock and mainshock have essentially the same location. 

Figure 6: Focal mechanism determined from first motions on WWSSN stations 

and Rayleigh waves. The steeply dipping plane is constrained by 

the first motions and the conjugate plane, which represents the 

shallow angle thrust plane on which the earthquake actually 

occurred, is constrained by the Rayleigh wave radiation pattern. 
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APPENDIX 

Figure 6 continued: 

Solid circles represent compressions, and open circles dilatations. 

Figure 7: Observed and theoretical Rayleigh wave spectral radiation patterns 

at periods of 200 sec, 100 sec and 50 sec. All theoretical 

27 
spectra are for a moment of 2 x 10 dyne em. The observed spectral 

amplitudes are as large as the theoretical amplitudes at 

200 sec, half as large at 100 sec and one fourth as large at 50 sec. Thus 

the moment is 2 x 1027 at a period of 200 sec, 1 x 1027 at 100 sec 

and 0.5 x 1027 at 50 sec. This is consistent with the slow slip 

shown by the body waves. 

Figure 8: Observed Rayleigh wave spectra at several WWSSN stations. 

Note the holes (indicated by arrows) which vary in period as a 

function of azimuth. 

Figure 9: If the spectral holes are interpreted as being caused by 

directivity, then by minimizing this misfit of the period of 

spectral holes as a function of azimuth we find that the rupture 

propagated N 40° E (along the fault strike), with characteristic 

rupture time L/VR = 30 sec. This is difficult to reconcile 

with the observed source duration of about 2 min, and we are studying_ 

this question. 
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b-VALUES AND w-Y SEISMIC SOURCE MODELS 

Thomas C. Hanks 

U. S. Geological Survey 
345 Middlefield Road 

Menlo Park, California 94025 

ABSTRACT 

In this study, earthquake magnitude-frequency of occurrence statis­

tics (b-values) and high-frequency spectral characteristics of crustal 

earthquakes (w-Y models) are the basis of a discussion of fault zone 

heterogeneity as it might be inferred from seismological observations. 

b-values of 1 for constant stress drop earthquakes imply the existence . 
of a stress-drop potential function the spectral amplitude composition 

of which is white; its rms-value is determined by the average earthquake 

stress drop 6a. Several lines of evidence suggest that the w-Y, y = 2 

seismic source model is the one generally applicable to describing the 

high-frequency radiation of crustal earthquakes in the far-field. This 

model is interpreted in terms of a white, random(?) distribution of 

dynamic stress differences ~ developing in the source region in the 

course of crustal faulting. The y = 2 model predicts the rms accelera­

tion for the San Fernando earthquake at Pacoima Dam to 50% and for the 

Kern County earthquake at Taft to 20%. 
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INTRODUCTION 

The purpose of this discussion is to address the issue of how hetero­

geneity of crustal fault zones may be inferred from two classes of seismo­

logical observations, those pertaining to earthquake magnitude-frequency of 

occurrence relations (b-values) and high-frequency spectral characteristics 

of seismic sources (w-Y models). At the outset it is appropriate to 

emphasize that whatever inferences about fault-zone heterogeneity we may 

derive from these observations are indirect and non-unique. Fundamentally, 

these seismological observations can be related only to distributions of 

stress differences that develop along crustal fault zones (quasi-statically 

in the case of b-values, dynamically in the case of the high-frequency 

radiated field of an earthquake). These distributions of stress differences · 

may arise from material heterogeneity, geometric irregularities, or dynamic 

propagation of rupture--or some combination of these and perhaps other 

variables along the fault zone. 

Apart from the significance these seismological observations may play 

in unraveling fault-zone heterogeneity and its role in earthquake mechanics, 

the format of this session is especially well-suited for their discussion 

here. My colleagues who share the soap box with me today have separately 

considered b-values (Nur, 1977) and w-Y seismic source models (Geller, 1976) 

--and have reached distinctly different conclusions from the ones I shall 

present in this communication. 

b-VALUES 

In Hanks (1977), the relations between the frequency of occurrence N of 

earthquakes of magnitude M 

log N = a - bM, ( 1 ) 
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between seismic moment M
0 

and M 

log M
0 

= eM + d, 

and between source radius r, earthquake stress drop ~o, and M
0 

M = k~ar 3 
0 

were algebraically combined to obtain 

bd b log N = {a+ c:) -clog (k~ar3). 

(2) 

{3) 

(4) 

In these relations a is a constant defined by the choice of region and time 

interval in which earthquakes are counted, d is an empirically determined 

constant, and k = 16/7 for a circular fault of radius r. It is empirically 

known that b is generally but not always very nearly equal to 1, irrespective 

of the choice of region and time interval in which earthquakes are counted. 

Also cis empirically known to be 1.5 whether local magnitude ML (Thatcher 

and Hanks, 1973) or surface wave magnitude Ms (Kanamori and Anderson, 1975) 

is used in {2), although serious departures from {2) with c = 1.5 begin to 

develop for M ~ 7~. s -
Forb= 1 and c = 1.5, {4) reduces to 

{5) 

If the earthquakes of the counted sample share the same ~cr, as they do on the 

average for all samples for which ~a have been determined(~.~., Hanks, 1977), 

earthquake magnitude-frequency of occurrence statistics reduce to a simple 

matter of geometrical scaling in terms of the reciprocal faulting area. In 

everyday English, the number of coins that fit in a ring of specified size de~ 

pends on the area of the coin, and, provided that earthquake stress drops are 
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constant, (1) says nothing more than this. 
. < 

For those earthquakes with r "'h' = h/coscS, where h is the seismogenic 

depth and c5 is the fault dip, (5) can be interpreted in terms of a two-

dimensional "stress-drop potential" function on the fault surface, the 

functional form of which is specified by a mean-square value determined by 

the average earthquake stress drop ~a and a spectral composition with constant 

amplitudes at all wavelengths~ h'; the stress-drop potential in a region of 

incipient faulting, is realized as the earth'quake stress drop at the time of 

faulting. On the average, such a stress-drop potential function will produce 

earthquakes with stress. drop "Ka and their frequency of occurrence will scale 

as l/r2 (r ~ h'), due to the constant spectral amplitudes at all wavelengths 

~ h' in two dimensions (Figure 1). Earthquakes with 6o both higher and 

lower than Eo will occur, however, with certain probabilities. Whatever 

the origin of the stress differences recoverable in crustal faulting may be, 

then, they are more or less distributed in a white, possibly random fashion 

through the seismogenic zone. The stress-drop potential function, moreover, 

retains its mean-square value and white, random(?) characteristics until such 

time as the region of interest is faulted by a major earthquake, inasmuch as 
< - ' 

earthquakes with r"' h' cannot materially reduce the net stress on the fault 

surface. 

When the fault length L becomes significantly greater than the fault 

width w, the two-dimensional character of the faulted surface collapses 

essentially to one, and it can be expected that the ideas presented above will 

no longer hold. For a seismogenic depth of 15 km and a vertical transform 

fault, we may estimate roughly that this will occur for L ~ 30 km, or equiva­

lently when M ~ 6~. In particular (3) then takes the form s 

(6) 
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Moreover, (2) with c = 1.5 begins to fail at slightly larger Ms, 7 to 7~. 

Finally, as is well-known, Ms becomes an increasingly poorer measure of 
. > > 

source strength for M
0 
~ 1Q27dyne-cm, or Ms ~ 7~. As such, present un-

certainties in estimating both 'imagnitude 11 and c at large magnitude 

preclude, at the present time, an extension of these results to the more 

nearly one-dimensional character of large and great earthquakes. But these 

difficulties in no way change the arguments given above for Ms ~ 6~ earth­

quakes for which r ~ h'. 

In Nur (1977) A(A), where A is wavelength, is a measure of the fric­

tional heterogeneity and may be identified with the stress-drop potential 

function defined earlier and in Figure 1. Nur (1977) finds that A(A) ~A, 

where we have found that the spectral amplitude composition of the stress-drop 

potential function is independent of wavelength. Had Nur (1977) used (3) to 

relate M
0

, ~a, and r, rather than the one-dimensional form analogous to (6) 

that he did use, he would have found A(A) ~canst-- as we have here. 

-Y 
w SEISMIC SOURCE MODELS 

Simple models of the seismic source are generally characterized, in 

spectral form, by a long-period level n
0 

proportional to M
0

, a corner fre­
-1 

quency f
0 

proportional to r , and a high-frequency spectral decay of the 

form (f/f )-Y. (In the following discussion, we denote frequency with fin 
0 

hertz rather than w in radians/sec; "hiah-frequenc.v" means frequencies hiah 

with respect to f
0

). The corner frequency f
0

, fundamentally, is closely 

allied with the reciprocal duration of faulting Tdl' but it is well-known 

that several .. faulting durations .. can be defined, in particular those asso-

ciated with the fault length, fault width, and the rise time of a propagating 

displacement discontinuity. Depending on the faulting geometry and rise time 

characteristics, the associated corner frequencies can be well separated, 
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leading to more complicated high-frequency spectral amplitude decay (that 

is, y is a function of frequency). Moreover, by making the displacement 

discontinuity a smooth enough function of time, y can become arbitrarily 

large at high enough frequencies. Whether, in fact, a generally applicable 

source representation of high-frequency spectral characteristics exists 

within the infinity of possibilities is, as yet, theoretically controversial 

and observationally unresolved. 

More as a matter of convenience than a matter of hard fact, high-fre­

quency spectral characteristics of seismic sources are generally discussed 

in terms of n
0 

and f
0 

related by the constant stress drop assumption (n
0
f

0
3 = 

canst in the context of the n
0
-f

0 
relations of Hanks and Thatcher, 1972) and 

y = 2 (the w-square model) or y = 3 (the w-cube model, in the terminology of 

Aki, 1967). 

Figure 2 schematically illustrates the y = 2 andy = 3 seismic source 

models in terms of two idealized far-field shear-wave displacement spectra at the 

same distance R. In both the y = 2 and y = 3 cases, the two earthquakes have 

been assigned the same ~o, so the corner frequencies lie on a line of slope 

-3 in these log-log plots. In both cases, the larger event (1) has n
0 

and M
0 

3 orders of magnitude larger than the smaller event (2), and f
0 

(l) is ten times 

s rna ll e r than f 
0 

( 
2 ) . 

At frequencies greater than f
0

(
2), spectral amplitudes are ten times 

greater for event (1) than event (2) in they= 2 case but are the same in 

the y = 3 models. How do we interpret these models in terms of time-domain 

amplitudes, recognizing that Td(l) ~ 10 Td( 2)? Figure 3 presents the extreme 

interpretations. H~re, for purposes of illustration, we have taken f
0
(l) = 

(2) (1) (2) 0.05 Hz, f
0 

= 0.5 Hz, Td = 20 sec., Td = 2 sec., and are investigating 

possible interpretations of 1-second time-domain amplitudes. 
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Figure 3a is the interpretation for the y = 2 earthquakes if the 1-

second energy arrives more or less continuously over the complete faulting . 

duration. In this case, 1-second ipe~tral amplitudes for the larger event 

are ten times greater than for the smaller event, but the 1-second time­

domain amplitudes are the same for both events--they have the same mb. If 

all the 1-second energy arrives at the same time, however, the 1-second time­

domain amplitudes and ~b of the larger event are ten times larger (Figure 3b). 

For they= 3 earthquakes, 1-second spectral amplitudes must be the 

same. In Figure 3c, this is achieved in a manner analogous to Figure 3a, 

but now 1-second time domain amplitudes for event (1) are ten times smaller 

than for event ( 2) ; that is mb must decrease with M
0

• Figure 3d is the 

analogue to Figure 3b; here 1-second time domain amplitudes for the two earth-· 

quakes are the same; they have the same mb. 

Interpretation c is certainly unacceptable: mb does not systematically 

decrease with increasing M
0

. Neither, however, does mb increase beyond mb 'V 

6~ to 7, and interpretation b is also inappropriate, at least for M
0 
~ 102 6 , 

dyne-em. One • s preference for interpretation a or d, and thus one's prefer­

ence for y = 2 or y = 3 seismic source models, then depends on whether one 

believes that all (or most) of the 1-second energy arrives more or less con­

tinuously through Td (Td > 1 sec.) or arrives more or less impulsively in a 

'V 1-second window (and in the case of mb' the ffrst one or two such windows) 

no matter what the value of Td. It is appropriate to recall, now, that 

both possibilities are extreme interpretations, and the truth, in most cases, 

should lie somewhere in between. Even so, when Td >> 1 sec. in the case of 

the larger earthquakes (Ms ~ 6~), it is clear that Figure 3d is much more 

the exception than the rule, as almost all short-period seismograms of large 

and great earthquakes reveal. Thus, I conclude, as Aki (1967) did ten years 

234 



8 

ago, that mb- Ms data support they= 2 model, in the interpretation of 

Figure 3a, as the one generally (but certainly not always) applicable to 

the representation of high-frequency spectral characteristics. 

With the assumptions that (1) fault propagation in both coordinates of 

the fault plane is equally phase coherent and (2) the source displacement 

time function is a propagating ramp of finite duration (with singular 

particle accelerations), Geller (1976) correctly followed Haskell (1964) to 

obtain y = 3 at high frequencies. His justification of this model with 

existing mb - Ms data is not correct, however, because he assumed that mb 

and Ms faithfully represent spectral amplitudes at 1- and 20-second periods, 

respectively, across the entire range of magnitudes observable at teleseismic 

distances. Geller (1976) notes that "it is not exactly correct" to do this; 

quite generally it is not at all correct to do this, except for the smaller 

earthquakes (M ~ 5) for which f
0 
~ 1 Hz. In the latter case, both mb and 

Ms become long-period measurements, proportional to M
0

, but then, of course, 

mb - Ms data carry no information at all about high-frequency spectral 

characteristics of earthquake sources. 

There are, in addition, several other observations that are in general 

accord with the high-frequency spectral characteri sties of the w-2 model. 

First, the difference of a factor of 20 in the maximum mb of~ 7.0 and maxi­

mum Ms of~ 8.3 is "exactly" predicted by the y = 2 model (because of the 

period shift in the amplitude measurement from 1 to 20 seconds) provided that 

mb ~ Ms at M ~ 7. In the "latest" form of the linear relations between mb and 

Ms, mb = Ms at 6.75 (Richter, 1958, p. 348). Secondly, the same arguments 

used above to justify the y = 2 model in terms of mb and Ms data, and the 

upper limit to each, may also be used to explain why peak acceleration data at 

fixed Rare such a weak function of magnitude (Figure 4). The analogy is some-
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what complicated by the fact that the peak acceleration may occur anywhere 

in the record, whereas the mb amplitude cannot, and thus are susceptible to 

biasing by chance interference by two or more phases coincidentally arriving 

at the same time. At some fixed high frequency, the probability of this 

occurring plainly increases with increasing Td and M, without reflecting in­

trinsic changes in high-frequency source excitation. Finally, the high­

frequency spectral characteristics of the San Fernando earthquake are very well­

known, even at frequencies two orders of magnitude greater than f , because of the 
0 ' 

large number of strong-motion accelerograms that recorded this earthquake at 

local distances. Figure 5 and 6 suggest that the simplest possible interpre­

tation of these data is they= 2 model, although more complicated interpretations 

are possible (and perhaps warranted). 

INTERPRETATION OF THE w-2 MODEL 

Figure 7 is the y = 2 model for shear-wave displacement spectral ampli­

tudes in terms of shear-wave acceleration spectral amplitudes. In the fre­

quency band f < f ~ fma , shear-wave acceleration spectral amplitudes are 
0- X 

constant (fmax is determined by setting the argument of the exponent equal to 

1 in the usual attenuation relation e -Q~R for a given choice of R and Q). 

That is, the associated ground motion time history may be regarded as band­

limited (f
0 

< f < f ), finite duration (0 < t -RIB. ~ Td)' white noise(?) - - max -
in acceleration, where (again) the randomness has simply been assumed but not 

unreasonably so in view of the generally chaotic nature of strong-motion 
> accelerograms of M ~ 5 earthquakes. 

Hanks and Johnson (1976) developed the following linear relation between 

the amplitude U of any acceleration pulse at 'Rand the dynamic stress differ­

ence ~ giving rise to it in the source region 
1 

~ 

u=-.!L 
r R 
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where pis density. We may then interpret the constant spectral amplitudes 

of acceleration (f > f
0

) for the y = 2 model in terms of a white, random(?) 

distribution of dynamic stress differences (A~ r) arising in the course of 

faulting that generates the earthquake. 

The coincidence of this result with the one inferred earlier from b-

values for the distribution of quasi-static stress differences on crustal 

fault zones is interesting--but quite possibly meaningless. While the white­

ness of both distributions seems to be a reasonably firm result, the random 

character assumed in both cases is simply a guess. Moreover, there is no 
'V justification for assuming, at the present time, that the whiteness of o and 

8op arise from the same physical con_dition. If this should be the case, 

however, b-values different from 1 would be expected to occur in association 

with y different from 2. In the case of the Oroville aftershocks b was sig­

nificantly less than 1 (0.61 according to Morrison et !l·, 1976), and 13 of 

( < < ) > 21 small 1 "'ML"' 2~ but well-recorded aftershocks had y"' 3 (the other 8 

had y ~ 2) (J. B. Fletcher, personal communication). For the mining-induced 

seismicity at the East Rand Proprietary Mines in South Africa "y is 3 more 

often than 2 and b"' 0.6" (A. McGarr, personal communication). In both 

cases, the interpretation would be that the spectral composition of 8op and 

~is deficient in high-frequency amplitudes, relative to those forb= 1 and 

y = 2. 8op deficient in high-frequency amplitude is seemingly a logical (if 

not always necessary) prelude to a larger dimension shock, and a pursuit of 

this matter in connection with the poorly documented claim that b is less 

than 1 prior to larger earthquakes in the same region as the counted sample 

would be a potentially interesting area of earthquake prediction research. 

ESTIMATION OF HIGH-FREQUENCY STRONG GROUND MOTION 

The interpretation of the y = 2 model given above allows, through an 

application of Parseval's theorem, a determination of the rms acceleration 

237 



11 

through Td that is · based only on the properties o
0

, f
0

, and fmax--or lla, 

f
0

, and fmax· Parseval's theorem is 

-~, 6-lt.)\t &l == ~ _r \ 2::(e>~\' .. &~ (8) 

where a(t) is the acceleration time history and ~(w) is its amplitude spectrum. 

Ignoring contributions outside the ranges 0 ~ t-R/8 ~ Td and f
0 
~ f ~ fmax' we 

write (8) as 
ll 

~ \ CA.lt) \\lt * 
0 

or with (9) 

(9) 

(1 0) 

- "'!~ Jy.,_ 
Itt"~: [ t =i \ J A: llo\) \~!\A) • (11) 

~"!· 
For f

0 
~ f ~ fmax' ~(w) = o

0
(2nf

0
) 2 so (11) becomes 

~~: [ .~ t")4\ sz: ~: Q;~-~)1~~- (12) 

For earthquakes with M > 5 observed at R ~ 20 km, fmax >> f
0

• This together with 

the approximation 

' -Ta 
( 13) 

gives 

(14) 

which we write as 

(15) 
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to factor out the stress drop quantity n0 f 0 
3 ... 

For the Brune (1970, 1971) model, Hanks and Thatcher (1972) give 

n f 3 = !1o 
o o 106 pR 

so (15) becomes, in terms of !1o, 

_ ./2(2rr)2 

arms - 106 

( 16) 

( 17) 

Table 1 compares arms values estimated from (17) with those 11 0bserved11 for 

the San Fernando earthquake at Pacoima Dam and the Kern County earthquake at 

Taft. The 11 0bserved 11 values are those given in Volume I, Part A, of the series 
!::: 

"Strong Motion Earthquake Acce lerograms", corrected by (record 1 ength/T d) 2 to 

estimate the {larger) arms value that occurs in the time interval of the S­

wave arrival through the S-wave arrival plus Td. Because the accelerations are 

non-zero outside of this interval, the 11 0bserved 11 values are overestimates of 

the actual arms values, 0 ~ t-R/a ~ Td. In any case, however, the agreement 

between the estimated and 11 0bserved 11 values is remarkable, by conventional 

seismological standards in estimating high-frequency amplitudes, being approxi­

mately 50% in the case of the San Fernando earthquake and 20% in the case of 

the Kern County earthquake. 

Equation (17) is built on the far-field representation of they= 2 model, 

and so it may be expected to fail close to a large enough shock, unless we can 

be clever enough to break big earthquakes into small enough analytical chunks. 

If the major part of the radiated energy comes from depths of several km or 

greater, however, we are always in the far-field for radiation at frequencies 

of several hz and greater, which make the principal contribution to (15) at R 

~ 10 km. It thus appears that (15), or a discrete sum based upon it, holds 

considerable promise for accurately and reliably estimating high-frequency 
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strong ground motion for those earthquakes for which the y = 2 model is valid. 

With the additional assumption of constant stress drop, arms for any hypo­

thetical earthquake can be estimated with knowledge of only the source property 

f
0 

and the path properties R and Q, exclusive of anomalous site effects. 
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Table 1 

Comparisons of Estimated and Observed arms Values 

San Fernando Earthquake 

Feb. 9, 1971; ML = 6.4 

1026 dyne-em 

10 km 

50 bars 

0.1 Hz 

at Pacoima Dam 

- 10 km 

25 Hz 

140 em/see2 

220, 240 em/sec2 

r 

R 

fmax 

estimated 
110bserved 11 

242 

Kern County Earthquake 

July 21, 1952; M = 7.7 

2 x 1027 dyne-em 

25 km 

60 bars 

(0.04 Hz) 

at Taft, California 

40 km 

7 Hz 

36 em/sec2 

42, 42 cm/sec2 
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Figure Captions 

Interpretation of the stress-drop potential function when b = 1. 

The stress-drop potential function is the areal distribution of 

all the stress drops (to be realized at the time of discrete 

faulting for individual events) of the incipient earthquake popu­

lation. 

Fig. 2 The w-2 and w-3 source models for constant stress drop earthquakes. 

Fig. 3 Interpretation of the w-2 and w- 3 models in the time domain. Event 

(2) (left-hand side) has a duration of 2 seconds, and event (1) 

(right-hand side) has a duration of 20 seconds, although only 10 

of these are shown in b and d. The range of possible 1-second 

time-domain amplitudes for the w-2 and w- 3 models are graphically 

illustrated here and discussed in the text. Relative 1-second 

amplitudes are given in two groups of four (one each for the w-2 

model, a and b, and the w-3 model, c and d); the choice of 1 in 

the upper left corner of each square is arbitrary. 

Fig. 4 Peak acceleration at R ~ 10 km as a function of magnitude, as 

presented in Hanks and Johnson (1976). 

Fig. 5 Fourier amplitudes of acceleration determined from 15-second win-

dows, beginning with the S-wave arrival, of strong motion accelero-

grams of the San Fernando earthquake as a function of frequency 

(0.4, 1, 2, 4, 8, and 16Hz) and R. Data from transverse components 

are indicated as x, from radial components as o. The curved lines 

are least-squares fitted to the data and are of the form a (f,R) = 

~ ( f, 1 km) 
0 

R 
_nfR where 8 = 3.2 km/sec and Q = 330. 

e Qs 
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"' of a
0 

are plotted as a function of frequency in Fig. 6. Modified 

from Berri11 (1975). 

Fig. 6 ~0 (f, 1 km) at 0.4, 1, 2, 4, 8, and 16Hz at three azimuth ranges 

from the San Fernando earthquake compared to those for the y = 2 

model at an average azimuth (in the sense of a point source radia­

tion pattern). Modified from Berri 11 (1975). 

Fig. 7 Acceleration amplitude spectra at R for two constant stress drop 

earthquakes with attenuation explicitly shown. 
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THE MODEL 

t The one dimensional model (Fig.l), introduced by .Knopoff et al. (1973) 

is assumed. Using this mo.del, we examine the effects of variable stress 

distribution and energy absorbed at the crack tip. Mathematically, one 

has to solve the equation: 

a2 a
2 

u p(x) · u = }.l(x~ -
at2 ax2 A(x)u - B(x) ~ + F(x) at 

where ll(X) is the rigidity, p(x) the density, xis spatial coordinate and 

t the time. The terms A(x) and B(x) take into account the interaction of 

the fault with the surrounding medium, F(x) is th"e stress drop, i.e., the 

difference between tectonic stress and dynamic stress. 

Equation (1) may be solved if we assume that the rupture velocity, 

dt dt , is known in advance (t(t) is the position of the crack tip). However, 

from a physical point of view, the rupture velocity is determined by the 

stress drop F(x) and the rate of energy absorption per unit distance at 

the crack, y. Using some results of Knopoff et al. we find: 

•2 
Y = ~ u2 (1 - __ t __ ) 

2 X 2· 
c 

where c is the wave velocity. We may solve (1) by specifying the rate of 

energy absorption, y , or the rupture velocity, 

t Knopoff, L., Mouton, J.U. and Burridge, R., 1973. The dynamic of a one-

dimensional fault in the presence of friction, Geophys. ~· !· astr. Soc., 

35' 169-184. 
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We assume that static friction effects the motion in the following way: 

if for some X and some t the particle velocity au vanishes, then 
at 

au = 0 
at for t > t at X -- X . In other words, we assume that static 

friction is large enough to prevent negative velocity. Generally, the 

acceleration does not vanish when the velocity does, and therefore the 

solution involves discontinuity of the second partial derivatives. 

THE METHOD 

The characteristic method is used to solve the hyperbolic equation (1). 

The method is numerically stable, furthermore discontinuity in partial 

derivatives are treated in a natural way. We assume a constant wave 

velocity equal to 1. In this case, the grid points are given by the 

intersection of the characteristics: 

X t + a (a characteristics), 

x = -t + a (a characteristics). 

The grid and the boundary conditions are described in Fig. 2. 

Let us consider the healing process. Suppose that at some point the 

velocity of some particle vanishes. At this point there is usually a jump 

in the acceleration from some negative value to zero. This jump propagates 

at a speed equal to the wave velocity. Now, the solution is not effected by 

this jump while the healing velocity is larger than the wave velocity. At 

a point Q, where the healing process reaches the sound velocity, the dis-

continuity plays an important roll. From this point, the particles are 

accelerated and the motion continues in the remaining segment. Referring 

to fig. 2, we note that to the right of Q, a boundary line in which 
au 
at 
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is formed. The discontinuity at Q propagates along th~ a
1 

characteristics, 

the al characteristics and so on. 

NUMERICAL RESULTS 

We assume, for the purpose of numerical computation, that 11(x) = 1, 

p(x) = 1. Different positive values of A(x) and B(x) were assumed (0 ~A(x)~ 3, 

0 ~ B(x) ~ 3). Since the conclusions drawn do not depend on the specific 

values of A(x) and B(x), we present solutions where A(x) = 0 and B(x) = 0. Let 

us examine first the case in which the stress drop is variable. 

CASE A 

The rate of energy absorption is given by 

y = f;3/8 

The stress drop is 

F(x) = 1 - £ sin(2nx), 

where .. £ ~ 0., 0.46, 0.5. 

The solutions are described in figures 3 to 12. We note the following 

features of the solutions: 

(a) When £ = 0 and 0.46 the fault extends itself out to about x = 1.3. 

When £ = 0.5 the extension is only out to x = 0.5 (see figure 4 for rupture 

velocity). This is certainly a non linear effect associated with rupture 

propagation. 

(b) We denote the difference betweenthe initial and final stress by 

dynamic stress drop. From Figures 3 and 5, we conclude that overshooting 
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always exists. It is larger near the end of the fault and in the cases of 

variable stress drop. 

(c) It may be shown that the stress drop of a subsequent earthquake 

a2
u a2

u is given by p---2 + T, where ~ is conputed at the instant of healing. 
at at 

T is the tectonic stress applied on the system between the two successive 

earthquakes. If T is independent of x, then particle accelerations (Figure 6) 

describes the form of the stress drop function for a subsequent earthquake. 

We note that the stress drop of an expected earthquake is generally smoother 

than that of the actual earthquake (consider the cases e: = 0.46, 

e: = 0.5). 

(d) The healirtg process is continuous in all cases (Fig. 7)~ 

(e) Particle accelerations and velocities are significantly dependent 

on stress drop ~ariation (Figures 9 to 12). 

CASE B 

We assume a constant stress drop given by 

F(x) == 1 (5) 

The rupture velocity is given by 

t(t) = n(l + sin (7nt/4)) + (1 - 2n) (1 - t/2) (6) 

when 0 < t < 2 and zero o~herwise. n is a parameter which assumes the 

values: 0, 0.1, 0.2, 0.4. 

The computed rate of energy absorbed at the crack is given in Figure 13. 

We may regard the energy absorbed as completely specifying the physical con-
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dition of the system. The rupture velocity (equation 6) will result from 

this condition. 

The numerical results are desrcibed in Figures 13 to 20. We note that: 

(a) Variations in the absorbed energy cau~e discontinuities in the 

healing process (see Figures 13, 15 when n = 0.2, 0.4). 

(b) When the healing process is discontinuous we observe irregularities 

in the dynamic stress drop and particle motion. Consequently, fluctuations 

in the stress drop of a subsequent earthquake occur. 

Finally, we compute static solutions by the equation: 

where a is the mean of the dynamic stress drop. The boundary conditions are 

u(O) = u(L) = 0, L is the fault lenght. 

using (7) we obtain 

12M 
0 

(J = --
L3 

We denote by M the seismic moment. 
0 

In table 1 we summarize the mean of the dynamic stress drop computed by the 

dynamic and static methods (Equation 8). In the static case we use the values 

of M and L compted in the dynamic case. It may be seen that the static 
0 

approximation (8) leads to an underestimation when the healing process is 

discontinuous. 

CONCLUSIONS 

It is shown that: 

(a) The healing process is usually supersonic. 
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(b) Variation in friction at the crack tip is connected with discon-

tinuity in the healing process. The discontinuity causes irregularities 

in the motion of the fault and the final stress. 

(c) Dynamic and static computations of stress drop are in reasonable 

agreement when the healing process is continuous. When it is discontinuous, 

the static approximation leads to an underestimation. 

259 



8 

TABLE 1 

CASE L M a: Dynamic Solution a: Static Solution ·o 

A £ = 0 1.28 0.2 1.1 1.2 

A £ = 0.46 . 1.32 0.25 ( 1.1 1.3 

A £ = 0.5 .46 0.06 0.68 0.75 

B n = o. 1. 0.1 1.15 1.2 

B n = 0.1 1.018 0.13 1.31 1.5 

B + 0.2 1.036 0.093 1.38 1.0 n = 

B + 0.4 1.072 0.057 1.47 0.56 n = 

+ . 
Healing process discontinuous 

• 
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FIGURE CAPTIONS 

Fig. 1 The one dimensional model is composed by particles which slide on 

a rough surface. The particles are connected to each other by coil 

springs and to the moving support by leaf springs. The continuous 

case is obtained when the distance a, between the particles tends 

to zero. 

Fig. 2 Grid points and boundary conditions. 

Fig. 3 Case A, variation of stress drop (difference between tectonic and 

dynamic friction) as a function of the spatial_coordinate x. 

Fig. 4 Case A, computed rupture velocity. 

Fig. 5 Case A, computed dynamic stress drop (difference between initial 

and final stress). 

Fig. 6 Case A, particle accelerations at the time of healing. 

Fig. 7 Case A, the healing ti~~ as a function of the spatial coordinate x. 

Fig. 8 Case A, final displacement as a funciton of the spatial coordinate 

Fig. 9 Case A, particle accelerations as a function of time, the case of 

constant stress drop ( E· = 0 ) . 
Fig. 10 Case A, particle velocities as a function of time, the case of 

constant stress drop ( E = 0 ). 

Fig. 11 Case A, particle accelerations as a function of time, the case of 

variable stress. drop ( E = 0. 46 ) . 
Fig. 12 Case A, particle velocities as a function of time, the case of 

variable stress drop ( E = 0.46 ) . 
Fig. 13 Case B, variations in the absorbed energy rate per unit length 

x. 

·Fig. 14 Case B, rupture velocity as a funciton of the spatial coordinate x. 

Fig. 15 Case B, healing time as a function of x. 
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FIGURE CAPTIONS (cont'd) 

Fig. 16 Case B, dynamic stress drop as a function of x. 

Fig. 17 Case B, particle accelerations at the time of healing. 

Fig. 18 Case B, final displacement as a function of x. 

Fig. _ 19 Case B, particle accelerations as a function of the time, the case 

of discontinuous healing { n c 0.2 ). 

Fig. 20 Case B, particle velocities as a function of the time, the case 

of discontinuous healing { n = 0.2 ). 

262 



11 

1-
a:: 
0 
a.. 
a.. 
:::::> 
CJ) r-4 . 

bO .,... 
~ 

(.!) 

z 

263 



12 

X 
••• q- (\J 

• 264 



13 

1 ·~ 1 

1 
1.4 I 

o: € = 0 1 

1 : € = 0.46 1 

2: .€ = 0.5 1 
-

1 
1.2 

1 

1 

Cl.. 
0 1 
0::: 
0 1.0 

r'l r'l r'l , n n n n,.. n n 1n n r, n n n n r. nnnnn n n n n n n n 
v.:T\7'-' v v v v'"" VVW--cT'-' vuvv~ \..1' \..1' v v v v v v v '-' V\J 

(/) 
(/) 1 
w 
0:: ._ 
en ! 

0.8 
~ 1 

~ 
1 1 
2 

1 

1 2 1 
2 1 

1 1 2 
1 

2 1 1 1 1 
2 '.> 2 

0.6 

0·0 0·2 0·4 0·6 0·8 1· 0 1·2 
X 

Fig. 3 

265 



>-
1-. 
u 

0.80 

3 0.60 
w 
> 
w 
0:: 
==>· 
1-
0... 
::::> 0.40 
0:: 

0.20 

0·0 

~ · 
0 . l 0 
~ ( 0 

~ 

2 

0 0 . 
0 r 

"" 0 
0 

1 
2 

1 
-c. 

1 

2 1 

,.. . 
'- J. 

1 

2 

2 

14 

I 
o: € ;: 0 

1 : € = 0.46 

2: € = 0.5 

0 0 
c 

0 
0 

0 
n 

0 
0 

0 
0 

0 

1 
1 1 1 1 ~ 

~ 
1 (9 1 

1 o. l 
1 0 1 

1 1 
0 1 

1 1 
0 1 

0 

1· 0 
X 

Fig. 4 

266 



15 

1 .~ l. 

1 
1.6 f .. 

0: E = 0 1 

1: E = 0.46 
1 

1 

2: E = 0.5 
1 

t 
J. 1.4 

1 
1 

a.. 
0 
0::: 1.2 0 

(/) 
(/) 
w 
0:: 
~ 
(/) 

1.0 
(.) -

- n n 0 
1 

ooooo 
~ 0 0 u v 

aoooo 
o~ooc 

o o o o-c 1 

n o o c I 

2 
1 

1 
~ 1 
<t 
z 
>-
0 

0.8 

1 1 1 
1 1 2 
"' '-

1 1 2 

2 1 1 

0.6 
1 1 1 2 

2 

2 2 
.., ;> . 

0·4 
X 

Fig. 5 

267 



16 

a~ 

(!) 

l 6 f 2 
1 o· 2 2 

0 n 2 , z 
..J 
<X 
w 
I 

lL 
0 

w 
.:; 
1-· 

w 
I r-

~ 
z 
0 

-0.050 

-0.100 

-0.150 

1-- -o.aoo <t 
0: 
w 
..J 
w 
g 
<( -0.250 
lJJ 
...J 
u 
I- . 
0:: 

~ -0~300 

0·0 

. 
l 

1 

1 

1 

0·2 

u ~ 

0 0 2 
02 

00 
0 r 

1 0 0 0 
1 

1 
1 

1 
1 

1 
1 

1 
• 
" 1 

0·4 0·6 
X 

Fig. 6 

. 268 

0: E = o· 
1 : € = 0.46 · 

2:E = 0.5 

0 (J 

00 

u 0 
0 

0 
0 

0 
. . 0 r, 

"" 

1 
00 

1 
1 1 . 

1 
I 1 

1 
1 

1 
1 

1 
1 

f 

0·8 1·0 



17 

3.5 

1 1 l 1. 11 l l I· ""!" 

1 1 1 
1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 

o: E = 0 
1 : E = 0.46 

2: E = 0.5 

3.0 

0 0 0 c 0 0 0 0 c o o o o·c 0 0 0 0 0 0 0 0 0 c 00000 0 0 
(.!) 

z 
_J 

<l 
w 2.-5 I 

lL 
0 I 

w 
~ 
.._ 2.0 

1.5 

:> ..:> :> ... ·:> ·:> -:> ·:> .... ·:> "') 

0·0 0·2 
~ 

X 

Fig. 7 

269 



18 

1 1 " .l 1 
1 1 

1 1 

0.250 1 1 

1 0 0 0 0 
l 

(] 

1 0 c 
0 1 0 

0.200 

. 0 0 
1 0 0 1 

1 c 0 
1 

.... 0 (J 

z 
w 
~ 

1 
0 0 1 

w 0.150 u 
<[ · 

l n 
u - 1 _. 

a.. e 0 
(/) 

0 
1 

~ · 0 
..J 

0.100 '<X 
· Z 

Lt.. 
m 0: E = 0 0 

1 

1 : E = 0.46 
(I) 2:€ = 0.5 0 1 

0.050 
(D 0 

2 2 
2 2 2 2 2 2 '"1 

c:: 
2? 

0·0 0·2 0·4 0·6 0·8 1· 0 
X 

Fig. 8 

270 



z 
0 
I­
<( 

0 

0 

~0 
_J 

w 
(.) 
() 
<( 

en 
w 
...J 
() 

I­
n:: 
<( 
a.. 

Or-

0 

o~ 

-

0 

]~0.1 

-

-

-

19 

X= 1.2 

-

X= 1.0 

j 

X =0.8 
--

X=0.6 -

X =0.4 

/ 

X=0.2 

TIME 
2. 8 

Fig. 9 

271 



. 20 

oL-----------------~--------------~1 

oL-----------------------------~--1 

X=0.4 

X=0.2 

TIME 

Fig. 10 

272 



21 

oL---------------------------

X= 1.2 

0 

]_

0

0.2 
. X= I 

z 
0 
~ 0 <( 
a:: 
w 

X= 0.8 _J 

w 
(.) 
(.) 

<l 

(/) 0 
X =0.6 

w 
_J 
(.) 

~ 
0:: 
<l 
a.. 

0 

0 X=0.2 

0 TIME 
3.6 

Fig. 11 

273 



22 

0 

0.12 
X=I.O 

>- 0 .._ 
u 
0 
_J 0 w 
> 
(/) X =0.8 
w 
_J 

u -.._ 
a:: 
<t 0 Q_ 

X=0.6 

X=0.4 

TIME 3.6 

Fig. 12 

274 



Q_ 

r­
~ 
u 
<t: 
5 0.167 

w 
:r: 
I-

~ 
0 
w 
a:l 
gj 0.11 
(f) 

CD 
<! 

>­
(!) 
0:: 
w 
z 
w 

lL 0.056 o · 
w 
1-
<t 
0: 

23 

I 

o: TJ = 0 

1 : '7 = 0.1 

2: '7 = 0.2 

4: TJ = 0.4 
. 

44 

2 
4 2 

241 
4 2 1 

4 2 1
1 0~ 

a,~~66oo 
!2t~~UU~~~~ ' ' 

~~~~taalt~~~ 

000·0 000·2 000·4 
X 

Fig. 13 

275. 

L.. 

1 

c 

0 

0 12 

0 

0 1 J. 

0 2 
,... 1 
u 

0 1 2 4 
0 1 

0 1 2 0 1 1 4 

tlfl9 1 1 1 2 

222!1 0 2 
1 ?n ? 4 

lT 5222 2 
0 22 222 4 

00 
0 

4 
4 4 

44 4 
44 4 

4 4444 4444 

000·8 1· 0 



4 

4 
>-.._ 
0 
0 00.6 
_J 
w 
> 
w 
0: 
::> .._ 
0-

00.4 .::l 
0:: · 

00.2...__-
. . 

000·0 

o: 'f) = 0 

1 : 'TJ = 0.1 

2: TJ = 0.2 

4: TJ = 0.4 

I 
000·2 000·4 

X 

24 

Fig. 14 

276 

4 

4 

4 4 

4 

000·6 

4 4 
4 4 

4 

4 

0 1 
0 1. ~ 

0 (. 

0 1 
0 2 I. 

0 1 

0 

000·8 1·0 



(!) 

z 
_J 

<l 
w 
I 

u.. 
0 

w 
~ 

...... 

25 

2.2 

•.l.l.lJ.llll 
1111111111 

11111111 
. 11 

111 1 t . 

. 222222 
~ J. 1 

2222222222 1 1 1 
2222'>22 1 1 

000000000 ooo666666~ 
c:.. 222 zd~! 

0000000000 6~~8A@@~!Aa lnnnnn~~~l~ 3)"') 

' '1 .q4444""'""'\.JU~ ... -c..:. 

44444 44A 
2.0 

1.8 

o: "' = 0 

1 : "' = 0.1 
1.6 

2: "' = 0.2 

4: "' = 0.4 

1.4 

2 
~ 222 

22222222~ 

1.2 

1.0 

444444444 4444.dL1.i!AAA AA4 

000·0 000·2 000·4 
X 

000·6 000·8 1 .. 0 

Fig. 15 

277 



Q.. 
0 
0:: 
0 

(f) 
(/) 
w 
0:: 
I-
(/) 

\) ... ~ 
1:" 
a; 
'Z 

~ a 

26 

1.83 
A4~.rt4 

4 
4 

~ 

o: '7 :; 0 4 
"""' ~2 4 222~ 

1 : '7 = 0.1 2 4 2 · 

- 2: '7 = 0.2 2 4 2 
l: 2 4 

4: '7 = 0.4 2 4 
2 ' 2 4 

2 2 
2 4 

1.5 
2 4 2 

A4A ...... ? 
44 4 L 

4 4 2 4 
f1111!1tl 4 4 2 

1.1 1 1. 4 · 1 1 2 
4 2 

.. 1 
.; 

1 1 
1 

A - 4 11 f 2 

. 1.16 

"T ·1 c "Itt 
4 1 2 

. ~ 

111111 Mm~ 1 
4 1 2 

4 . 4 oooo 12 
1 oo oo 

4 1 2 4 . ·ooo 
oooo 

4 • 1 2 AnoO 
0 . 

... 
2 2 oOU"' 

4 1 22 ooo 4 
1 22 22 ~ooc 

4122 ooo~o~ 4 412 · 00o 
~~oooo 2 4 

000·0 000·2 000·4 
X 

000·6 000·8 1·0 

Fig. 16 

278 

~ . 

I 



(.!) 

z 
~ 

~-0.17 
:I: 

lJ... 
0 

w 
~ 
r-
w 
:I: r-

4 
A 

4 

4 

!i 4 

27 

4 
.. ----------- I 

! 

2 
4 

2 z 4 4 4 
0 -0.5 l-----+-----:....,411!l--r-. .1,._..;;.•4'--+------2-·--+--~--+----~~~ .,4Lf- c. 
~ 2 4 2 

~ 2 4 
~ 2 
~ o: TJ =0 2 

4 
2 

u 2 4 
<t 1 : "' = 0.1 --+------t--L..--?_· --r--<1--_2 __ -+-4_, 
w 2 4 2 
~ 2: "' = 0.2 2 2 4 2 
~ 4: ,., = 0.4 222~ 2 

~ ., 4 

2 

4 

~ 

000-0 000·2 000·6 000·8 1· 0 

Fig. 17 

279 



I-
z 
w 
~ 
w 
u 
<[ 
_J 

0.. 
(/) 

0 

_J 
<[ 

z 
LL. 

0.1 

0.07 

0.03 

000·0 000·2 

28 

000·4 
X 

Fig. 18 

280 

. 000· 6 000·8 1· 0 



z 
0 

~ 
a: 
w 
_J 
w 
(.) 
(.) 
<( 

(f) 
w 
..J 
u 
I-
0:: 
<( 
c... 

29 

0~----------------~------

0 

0 

0 

0 

0 

1:.44 

TIME 

Fig- 19 

281 

X= 1.0 

X= 0.8 

X= 0.6 

X= 0.4 

X= 0.2 

2.6 



30 

X= 1.0 Or-------------

0.1 

>-.._ 
u 0 
0 
...J 
w 

0 > 
X=O.S 

U> 
w 
_J 

u --..... 
0:: 
<( 
a.. 

0 
X=O.G 

X=0.4 
. Or---

X =0.2 

0 

0 TIME . 2.6 

Fig. 20 

282 



• 

USE OF SEISMIC RADIATION TO INFER SOURCE PARAMETERS 

Hiroo Kanamori 

Seismological Laboratory 
California Institute of Technology 

Pasadena, California 91125 

Contribution No. 3026 of the Division of Geological and Planetary 
Sciences, California Institute of Technology, Pasadena, California 
91125. 

283 



1 

1. BRIEF REVIEW OF SEISMIC METHODS FOR DETERMINATION OF SOURCE PARAMETERS 

In this section we list earthquake source parameters relevant 

to the subject and briefly summarize commonly used seismological methods 

for the determination of these parameters. 

(1) Fault Geometry 

The geometry of an earthquake fault can usually be defined by 

three parameters: the fault strike, the angle of the fault plane · 

and the slip angle of the f~ult motion. Other representations and 

useful relations between them are given by Jarosch and Aboodi (1970). 
I 

These parameters can be ·determined by 1) P-wave first-motion data 

(Stauder, 1962, Honda, 1962), 2) S-wave polarization angles, (Stauder, 

1962; Honda, 1962; Hirasawa, 1966), 3) wave forms of bodywaves (Langston 

and Heimberger, 1975; Langston, 1976; Langston and Butler,. 1976), 

4) radiation pattern of surface-waves (Brune, 1961; Ben-Menahem and 

Harkrider, 1964; Aki, 1966; Kanamori, 1970; Ben-Menahem et al., 1970), 

5) the excit~tion of normal modes (Saito, 1967; Abe, 1970; Ben-Menahem, 

et al., 1971; Dziewonski and Gilbert, 1975; Gilbert and Dziewonski, 

1975), 6) geodetic data (e.g., Chinnery, 1964, 1969; Savage and Hastie, 

1966; Ando, 1971), and 7) field observations. 

(2) Fault Dimension 

The dimension of an earthquake fault can be determined from 1) 

the size of the aftershock area, 2) geodetic data, 3) tsunami source 

area, 4) directivity and asymmetry of the radiation pattern of long-

period surface waves, 5) pulse width of body waves, and 5) seismic 

corner frequency. 

1) Aftershock Area 

Although there is no standard definition of aftershocks and the 

aftershock area, the aftershock area defined by the somewhat subjective 
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judgment of the investigator often provides a very good estimate of 

the fault area of very large earthquakes (fault dimension~ 100 km), 

particularly for great shallow thrust earthquakes along subduction 

zones (Benioff et al., 1961; Press et al., 1961; Mogi,· 1968a). For 

small earthquakes, errors in the epicenteral location of aftershocks 

and the temporal expansion of the aftershock area often cause a substantial 

error in the estimate of the size of the fault plane. 

2) Geodetic Data 

When geodetic data (leveling and triangulation) are available 

over the entire area of faulting, the size of the fault plane can 

be determined very well (Savage and Hastie, 1966; Plafker, 1972; Ando, 

1971; Kasahara, 1957; Chinnery, 1964; Kanamori, 1973; Jungles and 

Frasier, 1973). The spatial decay rate of the displacement field 

can be used to infer the vertical extent of the faulting (Knopoff, 

1958), although the resolution is often limited by the quality and 

quantity of the data. 

3) Tsunami Source Area 

When tide-gage data are available near the epicenter of a large 

. tsunamigenic earthquake, the source area of tsunami can be estimated 

by using the inverse refraction diagram (Miyabe, 1934; Hatori, 1966; 

Abe, 1973). Usually, a good correlation between the size of tsunami 

source area and the aftershock area (Hatori, 1965; Abe, 1973) is found. 

4) Directivity 

From the directivity of very long-period (200 to 300 sec) surface 

waves, the rupture length can be estimated (Ben-Menahem, 1961). The 

asymmetry of the radiation pattern can also be used (Kanamori, 1970). 
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For very large earthquakes such as the 1960 Chilean earthquake, the 

1952 Kamchatka earthquake, the 1964 Alaskan earthquake, these methods 

gave a reliable estimate of the fault length, perhaps accurate to 

+ 15% (Benioff et al., 1961; Press et al., 1961; Ben-Menahem and Toksoz, 

1963). However, for events whose dimension is smaller than 100 km, 

the resolution of these methods becomes very poor. 

5) Pulse Width of Body Waves 

The pulse width of body waves was used to infer the fault dimension 

of deep focus earthquakes (Fukao, 1970). In order to determine the 

source time function from observed body waves from shallow focus earthquakes, 

the effect of structure near the source, particularly the free surface 

effects, and propagation effects must be removed from the observed 

records. Techniques have been developed to correct for these effects 

(Fukao, 1971; Heimberger, 1974; Langston and Heimberger, 1975; Heimberger 

and Malone, 1975), and the source time function can be recovered very 

accurately for relatively simple events (Burdick and Mellman, 1976). 

For complex events, the analysis of body waves is more difficult but 

several attempts have been made (Fukao, 1972; Chung and Kanamori, 

1976; Kanamori and Stewart, 1978; Chung and Kanamori, 1978) to recover 

the complex time history of the rupture process. The interpretation 

of the pulse width in terms of the source dimension involves assumptions 

on the geometry of the fault, mode of rupture and rise time of the 

local slip function, and is often nonunique. 

6) Corner Frequency 

The corner ~requency of the spectrum of body-waves is a frequency 

domain representation of the pulse width. Brune (1970) proposed a 
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relation between the source dimension and the corner frequency. Although 

Brune's equation provides a useful average relation, the estimate 

for an individual event depends on the geometry of the fault, the 

mode of rupture and the rise time of the local slip function. When 

the wave form becomes complex due to source complexity and propagation 

effects, including reflections and refractions, interpretation of 

the corner frequency in terms of the source dimension becomes very 

difficult. 

(3) Rupture Mode and Rupture Velocity 

Whether the fault rupture is unilateral, bilateral or two-dimensional 

is usually determined from the spatial relation of the main shock 

to the aftershock area. For very large earthquakes, ihe rupture velocity 

can be determined from the directivity function (Ben-Menahem, 1961; 

Benioff et al., 1961). For multiple shocks, the apparent rupture 

velocity is given by the ratio of the spatial separation to the temporal 

separation of the individual events. The rupture velocity is sometimes 

determined from the wave forms of near field ~ecords (Aki, 1968; Kanamori, 

1972; Abe, 1974a). 

(4) Dislocation 

The dislocation on the fault plane is in general a function of 

position and time. From geodetic data, the static value of the dislocation 

can be determined as a function of position on the fault. However, 

the details of the spatial distribution are usually very difficult 

to resolve (Chinnery, 1964; Kasahara, 1957; Savage and Hastie, 1966; 

Kanamori, 1973). 

If the fault area is known, the dislocation can be estimated 

from the amplitude of seismic body waves, surface waves and free oscillations. 
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However, it is very difficult to resolve the details of the spatial 

distribution of the dislocation; usually, only a spatial average can 

be determined. 

(5) Particle Velocity 

The particle velocity at a point on the fault plane is directly 

related to the effective tectonic stress (Brune, 1970). In principle, 

the particle velocity can be determined from the frequency spectrum 

or the rise time of near field seismograms. However, it is difficult 

to remove the effect of rupture propagation and near source geometry 

from the observed seismogram. Only a few determinations of the particle 

velocity have been made (Kanamori, 1972; Abe, 1974a,b, 1975a). 

(6) Complexity 

The complexity of faulting process can be determined by the analysis 

of distinct arrivals on seismograms (Imamura, 1937; Miyamura et al., 

1964; Wyss and Brune, 1967; Trifunac and Brune, 1970). More recently 

synthetic seismograms have been used to determine more details of 

the multiple shock sequence (Fukao, 1972; Chung and Kanamori, 1976; 

Kanamori and Stewart, 1978; Chung and Kanamori, 1978). Detailed study 

of complexity of faulting is important in understanding the stress 

state in the fault zone and also in predicting ground motions resulting 

from an earthquake. 

2 • SUMMARY OF RESULTS 

(1) Geodetic Data 

Geodetic data (both leveling and triangulation) are summarized 

by Rikitake (1974) and are shown in Figure 1. Figure 1 shows the 
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strain change in the immediate vicinity of the epicenters of various 

earthquakes as a function of magnitude. The strain seems to be almost 

-5 4 constant from 2 x 10 to 2 x 10- regardless of the magnitude of 

the earthquake·. Since the rigidity of crustal rocks averages 3.5 x 1011 dyne/cm2 , 

this strain change corresponds to a stress drop of 7 to 70 bars -(Chinnery, 

1964). 

(2) Great and Large Earthquakes 

The results for large and great earthquakes are summarized by 

Kanamori and Anderson (1975) and Geller (1976) (Table 1). 

Figure 2 shows the relation between log S (S: fault area) and 

log M (M =~-tDS: seismic moment) for great and large earthquakes. 
0 0 

The remarkable linearity between log M and log S can be interpreted 
0 

in terms of a constant average stress drop (30 to 60 bars) in earthquakes 

(Aki, 1972; Kanamori and Anderson, 1975; Abe, 1975b; Geller, 1976) . 

• The effective stress u = u - uf (u
0 

= initial tectonic stress oe o 

on the fault plane; uf = dynamic friction during faulting) . is the 

stress which drives the fault motin (Brune, 1970). The effective 

stress can be obtained from the frequency spectrum or the rise-time 

of near-field seismograms. Table 2 summarizes the results. Although 

these results are subject . to large uncertainty, it is important that 

a
0

e is about the same order of magnitude as the stress drop. 

(3) Small Earthquakes 

Figure 3 shows the relation between log r (r: source dimension) 

and log M (Hanks, 1977). Although the trend is similar to that for 
0 

large earthquakes, the stress drop varies over a larger range (0.5 

to 100 bars) than for large earthquakes. Whether this large variation 
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is due to real variation of the stress drop or experimental uncertainty 

is not clear. For v~ry small earthquakes, the source dimension r 

is estimated mainly from the corner frequency and the uncertainty 

of this measurement is very difficult to estimate. 

For several earthquakes, the duration of the source time function 

has been determined from time-domain analyses (Figure 4, Heimberger 

and Johnson, 1977). These results again indicate a stress drop of 

10 to 100 bars. In some cases, a very large stress drop ( 1 kbar 

or larger) has been reported (e.g., Brune et al., 1976). Although 

the absolute values of the stress drop are subject to large uncertainty 

due to the lack of information about the rupture mode and the source 

dimension, these results indicate a larger range of stress drop~ for 

small earthquakes than for large earthquakes. 

3. MULTIPLE SHOCKS 

Many seismograms indicate that earthquake fault motion is extremely 

complex. This complexity exists at all scales. Figure 5 shows an 

example of the strong-motion seismogram of the 1971 San Fernando earthquake 

recorded at Pacoima Dam. The "displacement" trace shows the ground 

displacement recorded by an instrument whose response is given by 

curve 3. The displacement is relatively smooth and various theoretical 

methods can be used to explain this trace. The stress drop has been 

estimated by various analyses (Mikumo, 1973; Trifunac, 1974; Hanks, 

1974). The "acceleration" trace shows the ground displacement recorded 

by an instrument with a response shown by curve 1. The displacement 

in this high frequency range is extremely complex, and simple theoretical 
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models fail to explain this irregularity. 

Figure 6 shows an irregularity at a larger scale. It is obvious 

that very complex source models are necessary to explain these complex 

events. However, estimates of the average stress drop and effective 

stress have been obtained using simple dislocation models or simple 

crack models. These models can explain the long-period component 

of the seismograms but fail to explain the short-period component. 

How meaningful is the estimate of the stress drop and other source 

parameters obtained by using these incomplete models? Madariaga (1977) 

showed that the estimate of the average stress drop depends upon the 

distribution of the stress drop on the fault plane. However, it is 

probably unlikely that the estimate of the average stress drop obtained 

for earthquakes using a simple model is in error by a factor of five 

or so. 

A more detailed analysis was made for the 1976 Guatemala earthquake 

(Kanamori and Stewart, 1978). Figure 7 shows wave forms of P waves 

at seven stations which exhibit remarkable complexity. These wave 

forms were matched by synthetic seismograms computed for a sequence 

of point sources (Figure 7). The resulting source time sequence is 

shown by Figure 8. This result sugests that the earthquake can be 

represented by a sequence of approximately ten distinct events, the 

seismic moment of which varies by a factor of about four. The rupture 

can be represented by a stop-and-go sequence with an average rupture 

velocity of 2 ~m/sec. The spatial separation of the individual events 

1.s 14 to 40 km suggesting that either stress, frictional characteristics 

or sliding characteristics on the fault plane vary with comparable 
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spatial scale along the fault plane. Although the average stress 

drop is about 30 bars, the local stress drop for the individual events 

may be significantly higher than this value, perhaps by a factor of 

two or three. Other multiple shocks which were studied earlier include 

the 1923 Kanto e~rthquake (Imamura, 1937), the 1964 Alaskan earthquake, 

(Wyss and Brune, 1967), and the 1940 Imperial earthquake (Trifunac 

and Brune, 1970). These multiple shocks will provide important clues 

to the understanding of the mechanics of faulting. 

4. ASPERITY 

The multiple shocks can be interpreted in terms of asperities 

on the fault plane. Here the asperities can be geometrical asperities, 

heterogeneities of the frictional strengh or a combination. A fault 

plane can probably be represented by a random distribution of stress 

concentrations of various scale lengths. This asperity model can 

be used to interpret seismicity patterns before large earthquakes. 

Several investigators (e.g., Mogi, 1968b; Kelleher and Savino, 

et al., 1975), found that foreshocks tend to cluster near the epicenter 

of the main shock (Figure 9). For the 1971 San Fernando earthquake, 

Ishida and Kanamori (1977) found a ·clustering of activity for a two­

year period before the main shock (Figure 10). As shown in Fig~re 11, 

these events show nearly identical wave forms at Pasadena indicating 

that they originated nearly at the same hypocenter. As shown by Figure 10 

the distribution of small earthquakes in the epicentral area prior 

to 1965 was relatively random. During the period fom 1965 to 1968, 

the seismic activity was very low in the epicentral area. 
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These observations may be interpreted in terms of the asperity 

model. The distribution of asperities is initially uniform. As the 

tectonic stress builds up, weak asperities break in sequence resulting 

in small earthquakes distributed over the fault plane. As the weak 

asperities break, stress concentrations occur near the stronger asperities 

and eventually near the strongest one. This redistribution of stress 

results in clustering of earthquakes near the strongest asperity, 

the hypocenter of the impending main shock, and relative quiescence 

elsewhere on the fault plane. This stage corresponds to the "foreshock" 

activity. When the last asperity breaks, the entire fault plane ruptures 

resulting ~n the main shock. In this case, the stress drop in the 

beginning of the faulting process is substantially higher than the 

average stress. Hanks (1974) suggested that the 1971 San Fernando 

earthqua~e was initiated by an event with a very high stress drop. 

Under certain conditions, a failure of one asperity may load 

up the neighboring asperities and cause failure resulting in a swarm­

type earthquake activity. 

Frmn the point of view of earthquake prediction, it is important 

to distinguish foreshock activity from swarm activity or background 

activity. At the present time no established method exists, but the 

result for the San Fernando earthquake is encourag~ng ~n that the 

events just before the main shock are very distinct from the earlier 

events in terms of both wave form and clustering characteristics. 

Detailed study of temporal variations of wave forms, spectra, source 

mechanisms, and locations of small earthquakes may be very important 

for identifying foreshocks. 

293 



11 

5. LOW EARTHQUAKE STRESS DROP VERSUS HIGH FRICTIONAL STRENGTH 

OF ROCKS 

Byerlee (1977) conclude that, under laboratory conditions, the 

coefficient of friction does not depend on mineralogy, pressure, 

temperature, and texture of the sample. The coefficient of friction 

was found to be 0.6 + 0.05 (Figure 12). Under mid-crustal conditionsJ 

the normal stress is about 5 kbars so that a frictional strength of 

about 3 kbars is suggested unless the pore pressure is very large. 

If the pore pressure is very large, the frictional strength may be 

about the same order of magnitude as the earthquake stress drop. 

In this case, earthquakes represent a complete release of the tectonic 

stress. 

On the other hand, if the pore pressure is small compared with 

the lithostatic pressure, the frictional stress is nearly two orders 

of magnitude larger than the stress drops in large earthquakes (see 

Figure 2). In this case the stress drop in earthquakes is only partial 

(about 1%), and the frictional stress during faulting must be very 

high. As a result, high heat flow may be expected along the fault 

zone. The lack of high heat flow along the San Andreas fault has 

been used as evidence against this idea (Brune et al., 1969). However, 

if the frictional heat is ·transferred by mechanisms other than conduction, 

the lack of a heat flow anomaly may not be compelling evidence against 

high frictional stress on the fault (Hanks, 1977). Since the earthquake 

stress drop is very uniform (about 30 to 60 bars), a mechanism which 

provides a uniforin fractional stress drop is necessary. One such 

mechanism may be suggested from the results of friction experiments 

(J. Rudnicki, personal communication, 1977; see Figure 12) .. At high 
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pressures the shear stress (here interpreted as the frictional stress) 

fluctuates very little about the average value. This small fluctuation 

is due to difference in the mineralology, grain size and texture of 

rocks. Since the fault zone is nonuniform in composition, a small 

amount of fluctuation in the frictional strength ~a= aM -am would 

be expected where aM and am are the maximum and the minimum strengths 

respectively. In this case, when the tectonic stress exceeds the 

maximum frictional stress aM, a sudden failure takes place and the 

stress on the fault plane drops. When the stress on the fault plane 

drops to am then the fault is locked again. Then the average stress 

drop would be of the or~er of ~a. In this model it is the range of 

the frictional stress that coQtrols the stress drop in earthquakes. 

Since experimental data suggest that, at pressures corresponding to 

the mid-crustal depth, the fluctuation of the frictional strength 

is very small, only a few percent of the frictional strength itself, 

the stress drop in earthquakes can be a very small fraction of the 

frictional strength. This model suggests that, if the fault zone 

is completely homogeneous, the stress drop is zero and stable sliding 

rather than earthquakes occurs. In the above discussion, dynamic 

loading effects and the stiffness of the crust are ignored for simplicity. 

If these effects are included the process would become more complex. 
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TABLE 1 

EARTHQUAKE SOURCE PARAMETERS 

M. L w D r r• •• &r 
Evtnl Dale M, "'• )( 101' dyne-em Ckml Ckml . Cml ,_, ,_, C~mi!ICCt (harst 

1. Kanto 1 Sep. 1923 8.2 -- 7.6 t30 70 2.1 7 10 -- 21 
2. Tango 27 Mar. 1927 1.15 - 0.46 35 13 3 6 2.5 2.3 I 15 
3. North lzu 25 Nov. 1930 7.1 - 0.2 20 11 3 - 1.7 - 150 
4. Saitama 21 Sep. 1933 6.75 - 0.068 ~() 10 I 2 1.6 2.3 59 
S. Sanriku 2 Mar. 1933 8.3 - 43 IR5 100 3.3 7 12 3.2 42 
6. Long Beach 11 Mar. 1933 6.25 - 0.028 30 IS 0.2 2 2.5 2.3 7 
7. Imperial Valley 19 May 1940 7.1 - 0.48 70 11 2 -- 3.2 -- 55 
8. Tottori IOSep. 1943 7.4 - 0.36 33 13 2.S 3 4.0 2.3 99 
9. Tonankai 7 Dec.l944 8.2 ·- 15 1:!0 . 80 3.1 - 9.2 -- 39 

10. Mikawa 12Jan. 1945 7.1 - 0.087 12 11 2.2 - 1.3 .... 140 
1 1. Nankaido 20Dec. 1946 8.2 - 15 120 80 3.1 - 9.2 -··- 39 
12. Fukui 28 Jun. 1948 7.3 - 0.33 30 13 2 2 1.9 2.3 100 
13. Tokachi-Oki 4 Mar. 1952 8.3 - 17 180 100 1.9 - 14 -- 17 
14. KernCounty 21 Jul. 1952 7.7 -- 2 60 18 4.6 1 3.6 - 140 
15. Fairview 16 Dec. 1954 7.1 ·- 0.13 36 6 2 -- 1.7 -· 100 
16. Chile 22 May 1960 8.3 -- 2400 800 200 21 -- 36 3.5 91 

(.N 17. Kitamino t9 Aug. t961 7.0 - 0.09 12 10 2.5 2 1.3 3.0 170 N 

0 ~ 

.&;:. 18. Wasaka Bay 27 Mar. 1963 6.9 -- 0.033 20 8 0.6 2 t.S 2.3 40 
19. North Atlantic I 3 Aug. 1963 6.7 6.1 0.12 32 11 t - 2.2 - 44 
20. Kurile Islands 13 Oct. 1963 8.2 5.1 75 250 140 . 3 - 17 3.5 28 
2 I. North Atlantic II 17 Nov. 1963 6:5 5.9 0.038 27 9 0.48 - 1.8 - 24 
22. · Spain 15 Mar. 1964 7.1 6.2 0.13 95 10 0.42 - 3.6 1.4 I I 
23. Alaska 28 Mar. 1964 8.5 6.2 520 500 300 7 - . 35 3.5 22 
24. Niigata 16Jun. 1964 7.4 6.1 3.2 80 30 3.3 - 5.3 - 66 
25. Rat Island I 4 Feb. 1965 7.9 . 6.0 140 500 ISO 2.5 - 25 4.0 17 
26. Rat Island II 30 Mar. 1965 7.5 5.1 3.4 so 80 1.2 - 5.8 ·- 33 
27. Parkfield 28Jun. 1966 6.4 5.3 0.032 26 7 0.6 0.7 1.6 2.7 32 
28. Aleutian 4Jul. 1966 7.2 6.2 0.226 35 12 -1.6 - 2.4 - 64 
29. Truckee 12 Sep. 1966 5.9 5.4 0.0083 tO 10 0.3 - 1.2 - 20 
30. Peru 17 Oct. 1966 1.5 6.3 20 80 140 2.6 - · 9.6 - 41 
31. Borrego 9 Apr. 1968 6.7 6.1 0.063 33 I I 0.58 - 2.2 - 22 
32. Tokachi-Oki 16 May 1968 8.0 5.9 28 150 . 100 4.1 - 12 3.5 37 
33. Saitama 1 Jul. 1968 5.8 5.9 0.019 tO 6 0.92 t 0.9 3.4 tOO 
34. Portuguese 28 Feb. 1969 8.0 7.3 s.s 80 so 2.5 - 6.1 - 53 
35. Kurile Islands 11 Aug. 1969 7.8 7.1 22 180 85 2.9 ·- 12 3.5 28 
36. Gifu 9 Sep. 1969 6.6 5.5 0.035 18 10 0.6 t 1.7 2.5 35 
37. Peru 31 May 1970 7.8 6.6 10 130 70 1.6 - 8.7 2.5 28 
38. San Fernando 9 Feb. 1971 6.6 6.2 0.12 20 14 1.4 t 2.0 2.4 62 
39. Nemuro-Oki 17 Jun. 1973 7.7 6.5 6.7 60 100 1.6 - 1.5 - 35 
40. Turkey 22 Jul. 1967 7.1 6.0 0.83 80 20 1.7 - 4.7 - 32 
41. Iran 31 Aug. 1968 7.3 5.9 I 80 20 2.1 ·- 4.7 - 38 
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2 
ABSTRACT 

We study the relation between seismic moment and the stress drop on 

the fault, or supfaults, of multiple events. By means of the reciprocity theo­

rem we show that the seismic moment is an integral of the stress drop on the 

fault weighted by a slip functiG>n· for the same fault geometry but uniform 

stress drop equal to ~ , the rigidity. This relation shows that the seismic 
'• 

moment is strongly dependent on the geometry of the fault. In particular, for 

a given stress drop, a multiple fault has a smaller seismic moment than a 

simple fault of the same area. Conversely, for the same seismic moment and 

total area the stress drop estimate obtained by the usual smooth cirGular fault 

approximation underestimates the actual stress drop on the subfaults. The 

stress drop is subestimated by factors of P /R where P is the typical 

radius of a subfault and R is the characteristic radius of the total fault 

area. 

Apprc;>ximations for multiple circular faults demonstrate that the abso­

lute high frequency radiation for · m~tiple faults and simple faults of the 

same stress drop and total area are approximately the same. However ~n· relative 

terms, for the same low frequency seismic moment, multiple faults radiate more 

high frequency energy than simple faults. 
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INTRODUCTION 3 

Since the determination of the se1sm1c moment of the Niigata Earthquake 

by Aki (1966) the number of earthquakes for which this source parameter has been 

accurately determined has steadily increased. Kanamori and Anderson (1975) and 

Kanamori (1977) have presented a list of seismic moments for about 50 large events. 

For these events, these authors estimate that the seismic is probably measured 

with a precision of a factor of two. Many determinations of seismic moments 

exist also for smaller events (Thatcher and Hanks, 1973). The seismic moment 

was derived from the representations of dislocations as equivalent double couple 

sources. At very long periods a plane fault appears essentially as a double couple. 

The seismic moment M is defined as the moment of one of these couples and the 
0 

representation theorem (Maruyama, 1963 ; Burridge and Knopoff, 1964) yields a 

simple relation between M and the average slip Don the fault (see eq.1). This 
0 

is essentially a kinematic description of the source. We would also like to 

express the seismic moment in terms of dynamic source parameters like the 

stress drop. This has been done using some specific models'of faults: long thin 

faults (Knopoff, 1958), circular faults (Keilis Borak, 1959) with constant 

stress drop. The use of these models has led to the remarkable result that the 

calculated stress drops are almost constant for large earthquakes. A question 

naturally arises as to the exact meaning of these calculated stress drops. 

What is the meaning of the estimated stress drop when the actual stress drop 

is not constant on the fault, the geometry is not a simple circle and the 
• 

source is complex ? We will show in the following that a general expression for 

the seismic moment and the stress drop may be found. The relation actually 

depends on the geometry of the source. For many simple geometries this expression 

may be given a precise meaning. Finally we obtain expressions for the seismic 

moment of complex multiple events which indicates that the stress drops determined 

from simple circul~ models may substantially understimate the actual stress drop 

of each of the subearthquakes. 
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THE GENERAL RELATION OF M , STRESS DROP AND GEOMETRY 
0 

The seismic moment is the most reliable source parameter determined by 

seismologists. It 1s usually defined in the form 

M = ~~ dS D(x,y) = ~DS 
0 s (1) 

where ~ 1s the rigidity, D is the offset of the fault, S its total area and 
-
D the average slip. As defined in (1) the seismic moment is a scalar : it is the 

moment of one of the couples in the double couple representation of ·a point dis­

location (Bur..rid~e and Knopoff, 1964). Implicit in this definition is the assumption 

that the fault .is plane. For curved fault surfaces, or for non-coplanar multiple 

sources, the seismic moment is defined as a tensor whose components are (Kostrov 

1974) 

~ -:::.. M .. = ~~ (D.(r) n. + D.(tJ n.)dS 
lJ ~ ~ J J 1 

(2) 

where ~ is the position vector on the fault, ri = (n , n , n ) is the unit normal 
;;, -71 • X y Z 

and D is the slip vector at the point r. In (2) it was assumed that the faults 

do not open (i.e. t.~ = 0). The surfaceS may now be curved or a collection of 

smaller faults in the case of multiple earthquakes. At lo~g periods the excitation 

of body waves, surface waves and free oscillations is directly. proportional to 

the moment tensor components M .. (Gilbert and Dziewonski 1975), 
lJ 

The definitions (1) or (2) express the seismic moment 1n terms of the 

slip at the fault. From observations of the seismic moment and the surface area S, 

the average slip 0 has been determined for many large earthquakes. In some cases 

D has also been determined directly form geodetic observations. Stress drop 6o is 

usually determined by assuming that the fault was circular and the stress drop 

was constant on the fault. The stress drops thus obtained are remarkably constant 

and limited for most events to the range 10 to 100 bars (Aki, 1972, Kanamori and 

Anderson, 1975 and Kanamori, 1977). The ~hysical significance of this 

stress drop in terms of the fault geometry and the actual, prob~bly non uniform 

stress drop on the fault does not seem to have been explored. In the following 

we shall derive a relation between the seismic moment and stress drop that is 

valid for general source geometries and stress drop variations. 

The basis of this work is Betti's reciprocity theorem for static elastic 

fields. Let us consider two general elastic static states .of the same 

elastic,possibly non uniform body of volume V and surface S. The surface S 

includes the external surface S , which will be taken at infinity and a collection 
. CX) 

of internal surfaces Si which we shall eventually close to form cracks. A first 
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5 

elastic state of displacement u. and stresses a .. and a second one of displacements 
1 1J 

v. and stresses T .. are considered. We shall assume that there are no body forces 
1 lJ 

in v. Then the elastic reciprocity theorem may be written in the form 

!
8

t . . u. n . dS = J
8
a . • v. n . dS 

lJ 1 J 1J 1 J (3) 

where n. are the components of the external normal to S. Let us now close the 
l i 

internal surfaces S to form cracks. We choose on each of these cracks a negative 

and a positive side. We define the normal to the negative side as the reference 

normal. Then the identity (3) may be rewritten as : 

1.5 T • • u
1
• nJ. dS + 1 ~ t . . 6 u. n . dS = 1

8 
a . . v. n . dS + I~ a . . 6 v. n . dS ( 4) 

00 lJ ~ lJ l J 00 lJ l J ~ lJ l J 

where I: is the collection of all internal surfaces Si, + llv. • v. - v. 
l l 1 

and 
+ 

I:J. u. = u. - u. 
1 l 1 

are the slips at the cracks for each elastic field. We let now 

the surface Sob tend to infinity. If we take zero stress as the reference stress 

level,the integrals on 8
00 

will be finite in general. But the absolute stress level 

does not affect seismic radiation, only stress changes do. For 
. . . "al 0 0 th1s reason we take the 1n1t~ stress o .. or T •• 

l.J 1J 
before the earthquake as 

the reference stress. In this case t .. and o .. are the stress changes due to 
l.J lJ 

decrease like slip at the faults. They, and the displacements fields u., v., 
1 l 

R-2 at infinity and the integrals on Sco may be dropped from (4). Let us remark 

that, ·as noticed by Savage (1969), in the earth a~. and T~. are of internal 
"1J 1J 

origin so that the elastic reciprocity theorem (3) does not apply to them~ A 

second remark is that ~ may be taken as the surface of the Earth. For shallow 

earthquakes this may require modifications of the fields v., t •. used below. 
1 1J 

Let us derive now an expression for the seismic moment (2) in terms 

of the stress drops. For that purpose we take u.;, a .. to be the actual elastic 
... lJ 

field due to an earthquake,then : 

where D is the slip and 

flu. = D. 
1 1 

a . . n. = 6o. 
lJ J l 

(5) 

I:J.o the stress drop at the fault si. For vl.' T .• we 
lJ 

take the following boundary conditions 
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6 
~v. = E~ l l 

si on (6) 
T •• n. • 'jJn1 6

ik lJ J 

1 
where E. will be the slip determined from the solution of the crack problem with 

l 

stress drop \.1 n1c5ik and c5ik is Kroneker's symbol. Replacing (5) and (6) in the 

reprocity theorem (4) we find 

I ~a. E~ dS 
l l 

Repeating the process with another solution of (6), where Tijnj = \.1 nk6il 

adding we finally find 

M k =I ~a.(E~ + ~) dS 
1 [ l l l 

(7) 

Where E is the collection of all fault segments Si. The expression (7) defines 

the seismic moment tensor in terms of the stress drop 6o. in a completely 
l 

general case. But this 1efinition uses weighting functions.El which themselves 
l 

have to be obtained from the solution of crack problems. This may seem not to 

be very useful. However in most proble~s of interest in seismology tl:e slips 

E~ · are already known from standard solutions in fracture mechanics. For 
l 

example, for plane faults the stress drop 6b is constant and solutions are 

known for many simple fault shapes and for some multipd.e cracks. We shall use 

these solutions to define the seismic moment in several seismologically inte­

resting problems. 
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7 
SIMPLE PLANE FAULTS 

For a plane fault the seismic moment tensor may be written in the 

simpler form 

(8) 

where nt and vk are the ~irections of the fault normal and the slip vector 

respectively, M
0 

is given by ( 1) •. From (7) we find now that 

(9) 

where E. is the slip calculated for a crack of the same shape S as the studied 
1 

fault, but with a uniform stress drop 6Ti= ~vi . For simple faults, solutions 

are known for a multiplicity of source shai • For most earthquakes the after­

shocks areas are approximately elliptical so ~hat approximating the source area 

by an ellipse appears to be a natural choice. The solution for elliptical faults 

with uniform stress drop may be derived from Eshelby's ,(1957) study cr ellipsoidal 

inclusions.The slip 1s found as 
2 

X 

E. = A. W( 1- -
1 1 L2 

1/2 
( 10) 

where we choose the ax1s x 1n the semi major ax1s direction ; L and W are the 

semi major and semi minor axii, respectively. The non dimensional constants A. 
1 

are a function of the ellipticity E = W/1 and are shown in fig 1 for longitudinal 

A or transversal A slip. The constants A. are very smoothly varying functions 
X y 1 

of the ellipticity which vary at must by a factor of about 2. In the case of 

a circular fault L = W = R, and (10) reduces to the well-known result 

( 11 ) 

where r is the radial variable (Eshelby, 1957 ; Keilis Borck, 1959). 

The expression (9) is valid for a general stress drop distribution 

on the fault and yields a precise relation between seismic moment and stress 

drop for elliptical faults. We may give it a more conventional form. 

where now C. = 
1 

M = C. <6a.> W S 
0 1 1 

( 12) 

2 
~ Ai 1s a non dimensional constant which depends on the direction 

of slip at the fault and the ellipticity of the fault. It 

varies from 0.728 for circular faults to a maximum of 
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1.33 for longitudinal slip on a very long fault. The estimated stress drop 

<Ao> = ~ Jr. Ao (1 - ~- ~)1'2ds {13) 

is an average of the stress drop with a weighting function that emphasizes the 

stress drop near the cer.ter of the fault. The fault appears to be stiffer near 

the ends and softer towards the center. If stress drop is uniform then <Ao>:Ao. 

For general non-uniform stress drop <Ao> '.~ill in general differ from "'i(,-

the average stress drop. This 

difference will be large if stress drops are large near the edges of the fault. 

This is the case for instance of some dislocation models (like Ha-;kell's) where 

stress drop is infinite at the edges but the seismic moment is finite. In actual 

earthquakes little is known about the true stress drops. For bounded stress 

drops we expect that <Ao> will not be · too different from Acr since the 

ellipsoidal averaging function in (13) is very smooth and close to one over much 

of the fault plane. 

In many observational work, however, the shape of the fault is not 

well known ; in those cases a usual assumption is that (12) may be approximated 

by • 

M = C' <A0> g3/L 
0 

where for the elliptical fault C' =C.(~ W/1) 1/ 2 . But in most practical 
1 

work the circular fault approximation C' = 16/7 r 3/ 2= .41 is used. The effect 

in general is to underestimate the true ~.r~r:)~~ stress drop. 
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COMPLEX MULTIPLE EVENTS 9 

Several recent works have shown th~t many large seismic events are 

1n fact complex suites of smaller events Olustered in the source region. 

Observations of this sort have been rep.orted, among others, by Wyss and Brune 

(1968), Wu and Kanamori (1975), Fukao and Furumoto (1975), Aki (personal 

communication, 1977). Evidence for multiple events usually comes from the com­

plexity of the P-waves radiated by most large events. Direct evidence of the 

segmentation of faults has been reported by Spottinswoode and Me Garr (1975) 

for shocks in deep gold mines of South Africa. Complex events have also been 

found in the numerical modelling of faulting with variable strength by Das 

( 1976) and 1-1ikumo and Miyatake ( 1977). The complex events may be of two 

types: first, connected sources where fault patches remain unbroken 

( Mikurno et al., 1977) or isolated multiple faults ( Aki and Das, 1977). 
Second, simple fault but very inhomogeneous stress drop (- Kanamori, 1978 
this conference ). The latter case may be analysed with the solution 

of the previous section. In this case 6cr in (13) will be very non-uniform 

and <6cr> is the average stress drop estimated by the usual methods.Here 

we shall concentrate on the case of a fault that is made of several 

isolated sub-faults. 

In order to discuss the expression for the seismic moment we shall make 

several additional simplifying assumptions. First, we shall assume that all 

the multiple faults are coplanar. This assumption is also generally made 1n 

observational work. If this is not assumed the moment tensor may not be 

written in terms of a single scalar M as in (8). For multiple coplanar 
0 

faults the seismic moment is again given by the expression (9). But now 

E. is the slip produced by a constant stress drop 6T.= ~ v. in each of 
1 1 1 

the subfaults of the complex event. This slip is necessarly smaller than 

the slip calculated for a single source of the same total area. Tnus, for 

a given stress drop on the subfaults, the seismic moment will be larger for 

a single fault than for a multiple fault of the same equivalent area. When 

using ( 12) or ( 15) to estimate <!::.a> in the usual way, the actual stress drop 

in every subfault will be underestimated. To illustrate this problem we shall 
i assume that the actual event is made of N smaller fractures of area S . We 

shall also assume that each of these subfaults is of circular shape. Ei then 

the slip in a coplanar array of circular cracks with identical, uniform stress 

drop. The solution of this problem depends on the actual separation between 

faults and their spatial arrangement. For simplicity we shall, neglect the 
• interaction between the faults and assume that each of them is idependent. 

The slip in Ei in each fault is then of the form (11) with R = Ri the radius 

of each of the s~bfaults. 
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10 
'i'he seismic moment for this complex event may be written as 

M = 24 L R. J 6a (1 - r2/R~ )1'2ds 
o 1 w i 1 si 1 . 

(15) 

where the sum is over all the subfault.s. We may rewrite this equation in the 

slightly different form 

M = _!§__ L R. <fha~. S. 
o 7 n 1 l 1 1 

( 16) 

where <6o>i is a weighted average of the form (13) of the stress drop 

in each of the subfaults. Compared to the .simple crack model of stress 

drop <6o> = <6o>. and total surface S = r S. • the seismic moment ( 16) 
l . l 

is smaller by a factor of Ri/R than that Bf the simple fault. We may 

see this more clearly if we assume that all the subfaults are identical. 

with radius R. = p, stress drop <6o> = o and that the total area 
l 

S = rs .. In this case the seismic moment (16) has the simpler expression 
i 1 

(17) 

We may compare this to the seismic moment of a simple circular fault of 

area S (and radius R) with apparent stress drop <6o> 

M = __l§__ R <6o> S 
0 7 n (18) 

For the same stress drop on the broken patches of the fault 8 = <6o>~ , 

the seismic moments differ by the ratio of the radius of .the total fault to 

the radius of a typical subevent. Similar results would be obtained for faults 

where isolated patches of the fault remain unbroken. It appears as if a simple 

fault is much more efficient in generating low frequency waves than a complex 

source. In the latter case the fault is effectively "pinned down" at the unbroker. 

patches. But the problem of interest in seismology is usually an inverse one 

given a certain seismic moment and a certain source area, what is the stress 

drop ? This may be seen again from ( 17) and ( 18). Using ( 18) for a complex 

event instead of ( 11) will yield a stress d:rop estimate <6o.> which is smaller 

than a • In conclusion, the stress drops obtained for complex events may 

severely ; underestimate the actual stress drops in the broken patches 

of the fault . 

We may view this result in still another perspective. We think now 

that the fault is simple but that in the unbroken segments a stress 

concentration (a stress "rise" ) exists that is just enough to make 

the slip in this region equal to zero. Then the stress change in the 

fault has stress drops in the subfaults and stress rises in the unbroken 

patches. The average stress drop over the fault will be lower than the 

stress drop on the subfaults: it is biased to low stress drops because 

of the stress concentrations in th,e unbroken sections. 
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THE SPECTRA OF SIMPLE AND COMPLEX EVENTS 

At low frequencies the radiation of body waves is directly proportional 

to the seismic moment. At high frequencies, however, the radiation depends 

on the details of rupture. Thus, it is very likely that the spectra of complex 

events be quite different from that of simple events. This has already been 

observed in two-dimensional models by Das (1976). Here we shall study this 

problem with the help of the array of non interacting circular faults used 

in the previous section. The radiation from a simple circular fault was 

studied by Madariaga (1976) with numerical methods. In fig.2, we show a 

typical far field spectra and pulses in a direction that makes an angle e = 60° 

with the normal to the fault. In this example the fault grows self-similarly 

with a constant rupture velocity vR = ·9 vS until it stops abruptly at a 

These spectra show the typical constant low frequency level proportional 

to the seismic moment. At the high frequency end, on the other hand, the 
-2 spectra decay like f , where f is the frequency in Hertz. There are 

also intermediate frequency trends which depend on the details of the 

rupture process. In order to discuss the radiation it ie:.converiient to 

Yrite · tbe far field displacement spectrum in the form 

lu( R,f)l= g( ep IM (~,f)j 4 n P c3 o [19) 
R 

-+-
where p is the density, R 1s the position of the observation point, 

R = IRI, 9e 8 ~ is the P or S radiation pattern, and c is the velocity 

of P or S waves. M (R,f) is then a moment rate spectral density. It 
.... 0 

depends on R the direction of radiation, so that at high frequencies 

a fault does not really radiate like a pure double couple. This is due 
.... 

to effects like focusing and directivity. At low {requencies M (R,f)-+- M , 
0 0 

the static seismic moment. At high frequencies the spectrum decays like 
-2 f and the moment rate spectrum has the general form 

.... 
IM (R,f)l ~ m(R1 flo a v2 f-2 

0 s (20) 

where flo is the stress drop, a is the source radius, v
8 

is the shear wave 

velocity and m(R) is a function that depends on the direction of radiation. 

From Madariaga(1977) we find that it varies strongly with rupture 

velocity vR. For instance it is m=.25 at vR=.9 vs and m=.17 at vR=.6vS. 

These are values of mat 8=60°, a mean value of the angle of radiation 

with respect to the normal to the fault. Let us remark that the seismic 

moment of a circular fault 1s 

M = 16/7 flo a 3 
0 
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Thus m is a measure of the corner frequency, f
0

= (7m/16) 112 Vs/a. 

The most important .consequence of (20) is that high frequencies scale like a 

linear dimension of the fault while the low frequencies scale like the cube 

of this linear dimension. 

Consider no~, as in the previous section, an array of N circular 

cracks of identical radii p • We shall assume for simplicity that the 

rupture velocities in every fault is the same. Then the total radiation 

from the collection of faults may be obtained superposing the high frequency 

energies. The energy is proportional to (M
0

}
2 so that the total high fre­

quency seismic moment of a complex fault ~s 

a (f) = m 6o . pN v2 
0 s 

-2 
f 

(23) 

_, 
~here 6o = N r boo? is the mean square stress drop over the collection 

~ 

of faults. If the collection of circular faults covers an area of approximate 

radius R, then Np ~ill not be very different from R. As a consequence, the 

high frequency radiation from a simple and a complex fault of the same stress 

.drop 6oand total radius R are approximately the same. This is a surprising 

result because the usual assumption is that complex faulting enriches the 

high frequency radiation. Instead ~e find that what really happens is that 

the low frequency radiation is diminished ~hile the high frequency part 

rema~ns approximately the same (fig.3a). This effect may in fact be observed 

in the non normalized spectra of Das and Aki(1977) for t~o dimensional 

faults with barriers. 

In general, spectra are normalized by the seismic moment at~ong periods. 

In this case, as seen in fig 3b, a multiple event appears enriched in high 

frequency energy ~ith respect to a simple event of the same seismic moment. Thus 

complex events scale differently than simple events and stress drop estimates 

from the high frequency trend of the spectra should yield a stress drop which 

is much closer to the actual stress drop on the subfaults. The sealing of 

corner frequencies is more complex. As discussed by Das (1976) complex events 

usually show intermediate frequency trends and at least two more or less clear 

corner frequencies. One of the corner frequencies would be associated naturally 

with the characteristic size of the subevents (f 
1 

in fig.3) and the other 
0 

f 2 with the total duration of the rupture process. If the subfaults occur 
0 

simultaneously, or separated by times comparable to the time of propagation 

of a wave accross the total source area, the corner frequency f 
2 

will 
0 

reflect the total size of the fault as for simple source models. If the 
2 multiple rupture develops more slowly then f may be much lower and the low 

0 

frequency spectrum may appear to grow at very long periods. ~Intermediate 

frequency trends should appear between these two corner frequencies. This 
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region of the spectrum contains all the information about the time development 

of the complex rupture. 

DISCUSSION 

The seismic moment was introduced as a kinematic parameter 

dtscribing the radiation of low frequency seismic waves by a dislocation 

source. From the representation theorem it was found that it is a measure 

of the average slip discontinuity on the fault multiplied by the source 

area. In this sense it is a measure of the distortion of the source region 
I 

due to faulting. ~e have shown in this paper that it may also be given 

a dynamic interpretation 1n terms of the stress drop of the fractured areas 

at the source. The relation is very general but not as simple as that 

between moment and slip at the source. In fact we showed that the geometry 

of the source affects the seismic moment as much as the stress drop. In 

particular, for multiple sources the seismic moment is smaller than for 

simple faults of the same area and stress drop. A simple interpretation 

of this result is that the unbroken sections of the fault pin down the 

fault and reduce the distorsion of the source region, reducing 1n 

consequence the seismic moment which measures this distorsion. Consequences 

for the inverse problem are severe : the stress drops for complex events, 

estimated by the usual circular fault formula (Keilis-Borok, 1959), are only 

a fraction of the actual stress drop on the broken sections of the faults. 

The actual and estimated stress drop are in the ratio of the total source 

size to the size of a typical subevent. 

Observations for many large events have led to the conclusion that 

the stress drops are almost constant ranging from about 10 to a 100 bars (Aki, 

1972, Kanamori and Anderson ,1975). These stress drops have been invariably 

obtained from formulas for simple smooth faults. There is abundant evidence 

that ~any of these large events are not really simple events but complex 

multiple events. In this case our previous discussion implies that the 

actual stress drops are very probably larger t~at those estimated from 

observations. What is the meaning then of the almost constancy of stress 

drops ? If we admit that large events, for which the seismic moment has been 

estimated, include both simple and complex faults we are led to the conclusion 

that what is really constant is the product of actual stress drop by the ratio 

of subfault size to total size. It appears then that the .more complex the 

source area, the larger is the stress drop on each of the subfaults. This 
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in fact may not be surprising if we consider that the resistance of a 

source with closely spaced barriers is certainly larger than that of 

a fault which has a relatively uniform strength. We may interpret 

observations to imply that the actual stress drops are inversely propor~ 

tional to the distance between high stress patches on the fault. 
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Most theories concerning earthquakes are based on elastic rebound­

the idea that elastic strain energy is gradually stored in the earth 

and is abruptly released during episodes of failure known as earthquakes. 

Comparisons of the accumulation of deformation at the earth's surface 

before large earthquakes with the instantaneous deformation during 

earthquakes show that they often .approximately cancel. This led to the 

idea of a rebound [Reid, 1910]. In the context of plate tectonics, the .process 

of strain build up and release at major plate boundaries repeats itself 

in a roughly cyclic fashion. The driving mechanism or source of energy 

for the earthquake cycle is the relative plate motion across the common 

boundary. Whether or not strain accumulates, and the way it is released 

depends on the nature of slip on the boundary. 

In a very general way we can describe a major cycle in terms 

of four time phases relative to the earthquake [Mescherikov, 1968; 

Lensen, 1970; Scholz, 1972]: In the strain accumulation phase, the 

average fault slip on the plate boundary is slower than the long term 

average plate rate far from the fault. A simple geometric deficiency of 

slip accumulates causing strain energy to be stored in the plate. The 

coseismic phase is the period of several seconds to minutes during which 

rapid fault slip occurs, generating seismic waves. All or part of the 

slip deficiency is recovered; stored elastic strain energy is converted 

into heat and waves (kinetic energy). The coseismic phase may or may not 

be preceded by a preseismic phase. This is a period of incipient strain 

release characterized by higher strain rates than occur ~uring the strain 

accumulation phase. Rapid changes of any sort during this period might 
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be interpreted as precursors. Finally the postseismic phase is a period 

of transient readjustment following the rapid earthquake movement. 

This may take place through aseismic creep, aftershocks, or viscoelastic 

relaxation. 

In this paper we review some recent models for the earthquake cycle. 

Our emphasis will be on the observable, quasi-static deformation associated 

with the preseismic, postseismic, and strain accumulation phases of 

major earthquakes at plate boundaries. To begin, we summarize some 

observations of transient deformation ranging over periods of several 

minutes to several years. These define a relaxation spectrum that is 

much broader than might be expected from simple elastic rebound, and 

may, therefore, contain information about the physical processes important 

to earthquakes. A number of possible relaxation mechanisms are also 

presented. Next, we dis·cuss models for postseismic deformation. These 

are perhaps the most useful of the quasistatic models for interpreting 

rheology since postseismic data ~s more abundant and reliable than, 

for example, preseismic transients. Finally we focus on str.ain accumulation 

and the earthquake cycle as a whole. This is the most critical since it 

encompasses predictive information, yet is most difficult to measure 

without knowing when and where events will occur. An appendix is added to 

summarize some early models for coseismic deformation. Although these 

largely neglect the aseismic portion of the cycle they often form the 

computational basis for more recent models. In addition, the nature 

of seismic strain release obviously sets the conditions for postseismic 

transient deformation. 
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THE NATURE OF THE OBSERVATIONS 

In a strictly elastic earth, complete elastic rebound would 

take place in a few seconds, with the characteristic time of strain 

release determined by the seismic source rise time, fault dimensions, 

and rupture velocity. The only slow deformation would be the 

accumulation of tectonic strain. However, pre- and postseismic transients 

are observed which indicate a much broader relaxation spectrum. For 

example, following the 1966 Parkfield, California, earthquake (M = 5.5; 

right-lateral strike slip) near surface fault creep continued, at a 

decaying rate, for several years. Figure 1 [Smith and Wyss, 1968; 

Scholz, et al., 1969] shows the postseismic fault slip inferred from five 

small-scale geodetic stations established in the epicentral region. 

Although little or no surface breakage occurred during the main event, 

as much as 25 em of slip accumulated in the 3 years ~ediately thereafter. 

In addition, road damage occurring within several years before, and 

. en-echelon cracks formed within a month before the earthquake [Allen and 

Smith, 1966] suggest a preseismic transient. 

Even the great 1906 San Francisco earthquake, which led H.F. Reid 

to propose the elastic rebound mechanism, was followed by transient 

deformation. Thatcher [1975a] suggests that substantial postseismic 

crustal strains, continuing for at least 30 years following the earthquake, 

can be inferred from geodetic resurveys since 1906. These strains can 

be explained (though not uniquely) by IV 4 m of aseismic fault slip from 

10 to 30 krn depth, without additional surface slip. Thatcher [1975a] 

also suggests anomalously rapid strain accumulation during the 50 years 

prior to 1906, although the evidence is weak. 
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Perhaps the most spectacular example of measureable postseismic 

deformation was observed following the 1946 Nankaido, Japan, earthquake 

(M c 8.2; thrust type) where upheavals of as much as 2m occurred over 

a 1 to 3 year period. Figure 2 [Matuzawa, 1964; Kanamori, 1973] 

shows the rather complicated nature, in space and time, of the vertical 

displacement. The transient mechanism has been interpeted either as 

aseismic fault slip at depth [Fitch and· Scholz, 1971] or viscoelastic 

rebound of the asthenosphere without fault slip [Nur and Mavko, 1974]. 

A similar analysis of postseismic uplift following the 1964 

Alaskan (thrust type) earthquake is reported by Brown, et al. [1977]. 

In this case the transient dec~y lasted about 1 to 8 years depending 

on distance from the fault trace, and was attributed to fault slip .. 

Particularly short-lived transients have also been observed. 

Figure 3 shows fault slip lasting only several hours, recorded after a 

Matsushiro shock on September 6, 1966 [Nakamura and Tsuneishi, 1967; 

Scholz, 1972]. A precursory aseismic slip with time constant of 300 

to 600 sec, starting about 1000 sec before the main shock of the 1960 

Chilean earthquake has been inferred from long-period surface waves and 

body waves [Kanamori and Cipar, 1974] and from free oscillations [Kanamori 

and Anderson, 1975). 

Further examples of transient deformation are reviewed by Scholz 

[1972], Kanamori [1973] and Dunbar · {1977]. 
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THE VISCOUS ELEMENT 

These observations suggest an obvious deviation from simple 

elasticity. Episodes of accelerated strain or creep that occur without 

an earthquake require a localized viscous instability which can initiate 

and arrest each strain event. Furthermore, seismic precursors and 

postseismic transients imply a strain or strain rate-dependent damping 

associated with the otherwise brittle release of energy. 

What are these viscous elements? A simple mechanical model for the 

earth's crust and upper mantle, suggested by plate tectonics, consists 

of a relatively elastic, brittle lithosphere overlying a ductile 

asthenosphere. Within this framework we can distinguish geometrically three 

general sources of relaxation: 

Relaxation in the asthenosphere 

The asthenosphere is characterized by high temperature relaxation 

mechanisms. Solid mineral grains can flow plastically by atomic diffusion 

and the motion of lattice dislocations [Gordon, 1965; Weertman and Weertman, 

1975; Heard, 1976; Carter, 1976]. This makes the polycrystalline composite 

fluidlike over long time scales and can account for the large-scale, 

finite deformation implied by plate motion and the low strength implied by 

isostatic equilibrium. In addition, enhanced deformation at grain 

boundaries can occur resulting from dislocation motion and diffusion 

[Ke, 1947; Zener, 1948; Anderson, 1967] or the viscous flow of melt [Walsh, 

1969; Mavko and Nur, 1975]. Other loss mechanisms which are relevant 

at seismic frequencies include thermoelastic, dislocation damping, point 

defect diffusion, and grain boundary effects [Anderson, 1967]. We will 

discuss in more detail the possible role of asthenospheric relaxation 
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during major earthquake faulting in the next section. 

Relaxation in the lithosphere 

The lithosphere by definition is a relatively strong, rigid layer with 

a long term strength. This means that it can resist permanent deformation 

or plastic flow for millions of years under stress differences of several 

hundred to a thousand bars, whereas the asthenosphere cannot [Le Pichon, 

et al., 1973]. This is consistent with analysis of glacial rebound 

and lithospheric flexure [Walcott, 1973], as well as our concept of 

continental drift. It is by definition, then, that we can rule out · large 

scale, large strain, plastic flow or solid state creep as an important 

relaxation mechanism in the lithosphere. 

The important question then becomes: how thick is the lithosphere? 

Or, at least, if we are tp construct simple mechanical_ models for the 

earthquake cycle, what thickness is appropriate for the elastic layer? 

Estimates of lithospheric thickness can be made in several ways [Le Pichon, 

et al., 1973]: the depth of the solidus can be obtained from a computation 

of the thermal structure; seismic studies give the depth of the top of 

the low velocity zone; studies of rebound and flexure give an elastic 

plate thickness. Altough it is not completely obvious that these 

various depths based on different physical parameters should agree, they 

are all generally consistent with the existence of a lithosphere about 

75 km thick under the deep ocean basins and 110-130 km thick under 

continental shields. If we consider that the mechanical properties of 

strength and elastic stiffness are both effected by temperature, in 

particular by the presence of partial melt, then perhaps the comparison, 

made over many orders of magnitude of t ·ime, makes sense. In contrast, 
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Anderson [1971] and Hadley and Kanamori [1977] suggest that in parts 

of southern California the shallow crust is mechanically decoupled 

from the lower crust, so that the moving surface plate is much thinner 

than is commonly assumed in plate tectonic theory (as discussed above). 

Lachenbruch and Sass [1973] suggest a similar decoupling between the 

shallow crust (15-20 km) around the San Andreas Fault and the more ductile 

material below in order to explain a low broad heat flow anomaly. 

However in this case, the crustal plate is also undergoing permanent shear 

flow, generating heat. We shall see that this uncertainty in plate 

thickness can greatly affect interpretation of surface strain. 

Aside from large scale flow which distinguishes the asthenosphere 

from the lithosphere, a smaller viscoelastic response to changes in 

the stress field can occur within the lithosphere. A material is visco­

elastic when its response to abrupt changes is initially elastic, followed 

by a longer term relaxation or flow (not necessarily linear). The 

relaxed configuration may also be essentially elastic, distinguished 

from the unrelaxed state only by a smaller effective rigidity. Hence, 

a viscoelastic lithosphere exhibiting transient relaxation times on the 

order of several years would look elastic at seismic frequencies as well 

as over the longer periods of flexure and isostatic rebound. 

A number of relaxation mechanisms can be considered to account for 

a viscoelastic response. Concentrated plastic flow at grain boundaries 

is reasonable in much of the lower lithosphere (below, say, 20-30 km) 

where the ratio of absolute temperature T to the melting temperature 

Tm is greater than one half (T /Tm > 1/2). Presumably, motion at grain 

boundaries could occur while the grains themselves remained essentially 
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elastic, giving to the polycrystalline composite a long term finite 

strength, yet a short term viscoelastic strain. 

In the shallow crust stress induced viscous shearing and -local 

squirt of pore fluids [Mavko and Nur, 1975, Mavko and Nur 1977b] as well 

as large scale, regional diffusion [Biot, 1941; Nur and Booker, 1972] 

can give a time dependent deformation qualitatively similar to a visco­

elastic response. The regional diffusion might also be enhanced by 

dilatancy [Nur, 1973]. 

Fault Creep 

In addition to direct observations of surface fault ·creep, aseismic 

fault slip has been invoked at depth in the lithosphere to explain pre­

and postseismic surface deformation [Fitch and Scholz, 1971; Thatcher, 

1975a; Brown, et al., 1977]. However, very little is known about the 

detailed stress-strain behavior of the fault zone, and hence the physical 

mechanism of creep, at any depth. Nason and Weertman [1973] conclude 

little more than the existence of an upper yield phenomenon from observations 

of shallow creep events. In the laboratory transient stable sliding 

sometimes precedes stick slip on frictional surfaces [Scholz, et al., 1969] 

at conditions corresponding to several kilometers depth. At higher 

temperatures and pressures Stesky [1974] observes a nonlinear stress-

strain rate sliding law similar to that expected for solid-state creep. 

Laboratory measurements on fault gouge and clay have also been made. 

The main problem lies in determining what kind of material is representative 

of a fault zone at depth. 

In addition to creep. on the primary fault being studied, creep on 

nearby faults can have an effect on relaxation. Even though the bulk of 

the crustal material is elastic, slip on secondary faults makes the crust 
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effectively more compliant. If the slip iscreep~ike, the change in 

compliance is gradual, and the overall effect may not be distinguishable 

from viscoelastic relaxation. 
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MODELS FOR POSTSEISMIC TRANSIENTS 

Despite the wide range of relaxation mechanisms several 

general observations can be made: For short times and small strains 

the mechanical behavior of the crust and upper mantle is approximately 

linear elastic. This holds at least out to periods of many minutes, 

as demonstrated by wave propagation and free oscillations. As a result 

when rapid fault slip occurs the initial response of the earth is 

elastic. The earthquake rupture superimposes a stress perturbation on 

the preseismic state -- decreasing the stress over much of the fault 

and increasing it elsewhere. Under this new stress field any number of 

viscous elements may immediately begin to relax. Those that cause 

a large enough change to be measurable and which fit within a reasonable 

time window may turn out to be observed as postseismic transients. 

Dip Slip Earthquakes 

One major distinction to be made when discussing important mechanisms 

for dip slip and strike slip faulting is the depth of rupture in the 

lithosphere. Major thrust type earthquakes at subducting plate margins 

often rupture through a substantial fraction of the lithosphere. Thus, 

in addition to adjustments in slip at seismically loaded boundaries of the 

rupture surface, it is reasonable to expect a large interaction with the 

asthenosphere. 

The earliest studies of relaxation following major thrust-type 

earthquakes ignored completely the details of fault geometry and examined 

the nature of the interaction of the elastic lithosphere with the ductile 

asthenosphere. Elasser [1969, 1971] introduced the stress guide hypothesis 

of a strong elastic lithospheric plate over a fluid asthenospheric channel. 
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If the scale of lateral variations in stress is large compared to the 

thickness of the plate and asthenosphere, the horizontal displacement 

u takes the form of the diffusion equation: 

where h
1 

and E are the thickness and Young's modulus of the lithosphere 

and h2 and n are the thickness and linear viscosity of the asthenosphere. 

The obvious interpretation pointed out by Bott and Dean [1973] is that 

localized disturbances (stress drops) associated with earthquakes on 

plate margins will diffuse away. Quasi-static stress waves might be 

measurable near the plate boundaries, but changes will be damped out 

beforereachingthe interior region of the plate. 

The mechanical effect of a major earthquake which ruptures through 

the lithosphere is to locally decouple the two plates. Stresses are 

relieved over much of the slip zone and transferred laterally along 

the plate margin, and vertically downward to the asthenosphere. As the 

asthenosphere relaxes more and more load is applied to the unslipped 

plate margin. Anderson [1975] suggests that this diffusive transfer of 

load along the plate margin can explain observed migrations of earthquakes 

[Mogi, 1968a, b]. For example, a systemic migration of activity from 

~ 

Japan to Alaska has occurred during the last several decades. 

Similar patterns have been noted from Central America to Chile 

and on the Anatolian fault in Turkey. 

The utility of the stress guide model arises from its simplicity. 

Only two mechanical elements are present. The elastic plate supplies 

the driving force for diffusion; the viscous asthenosphere balanced 

against the elastic stiffness determines the rate. Hence the nature of 
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diffusion is insensitive to geometric detail at the plate margin, but 

is diagnostic of upper mantle rheology. The earliest models of the stress 

guide concept assumed a linear viscous asthenosphere which results 

in the linear diffusion equation. The results are consistent with an 

effective viscosity of 5 x 10
19 

poise [Anderson, 1975]. Melosh [1976] 

has modified the model to account for a nonlinear stress-strain behavior 

that appears to be more appropriate for the asthenosphere [Weertman and 

Weertman, 1975; Post and Griggs, 1973]. The result is, naturally, 
' 

a nonlinear diffusion which strongly restricts the postseismic stress 

and displacement fields close to the edge of the plate. The typical 

behavior is for stress and displacement contours to spread rapidly 

from the plate edge, and then quickly slow down beyond some characteristic 

distance. Comparison of predicted stress diffusion with the observed 

pattern of aftershock migration from the 1965 Rat Island earthquake 

strongly suggests a nonlinear asthenosphere. 

A second class of postseismic thrust models concentrates on the 

near field plate interaction. In most cases the data of interest are 

confined to a very small region on the upthrown block (ie., the island 

arc). These allow some insight into the relaxation process, but yield 

little information on the large scale diffusion of the earthquake perturbation . 

away from the fault. 

One of the largest and most studied episodes of postseismic deformation 

followed the 1946 Nankaido, Japan earthquake (see fig. 2). Fitch and 

Scholz [1971] obtain reasonable fits to the postseismic data with additional 

forward slip on the down-dip extension of the fault plane and back slip 

of several meters on portions of the fault that slipped during the earthquake. 

354 



17 

The model is based on the solution for slip on a rectangular fault plane 

in an elastic half space. The requirement of backslip has been criticized 

by Nur and Mavko [1974] who suggest the alternative explanation that 

viscoelastic decoupling of the lithosphere from the asthenosphere caused 

the deformation. Comparison of theoretical and observed deformation 

ff i . . f 1019 1020 i f h h h suggests an e ect ve v1scos1ty o - po se or t e ast enosp ere. 

This is an order of magnitude or more lower than viscosities based on 

rebound from crustal loading [Cathles, 1975; Walcott, 1973], but may be 

appropriate for the anomalously high temperature, low Q Nankaido region 

[Kanamori, 1970; Barazangi, et al., 1975]. This is similar to the 

model presented by Smith [1974]. 

As with many strike slip earthquakes it is possible, because of 

limited geodetic data, to fit the Nankaido observations with a combination 

of mechanisms [Smith, 1976]. Furthermore it is reasonable that anomalously 

high temperature will tend to enhance fault creep as well as asthenospheric 

relaxation. However, based on the evidence for diffusive stress guide 

behavior and the problem of backslip it is probably not reasonable to 

neglect asthenospheric interaction. 

One of the largest events with measurable postseismic deformation 

was the 1964 Alaskan earthquake [Brown, et al., 1977]. A series of first 

order leveling surveys was made in 1964, 1965, 1968 and 1975 along a 

route between Anchorage and Whittier, Alaska, roughly normal to the 

surface trace of the fault. A gradual uplift of as much as .55 m was 

revealed with a pattern roughly parabolic in shape, convex upward. The 

motion occurred at an approximate exponentially decaying rate, with time 

constants ranging from 1 to 8 years depending on position. There is some 
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indication that the position of maximum uplift has migrated toward 

the trench. Brown, et al. [1977] explain the observations with pos.tseismic 

creep along a deep extension of the fault zone, with the possibility of· 

some superimposed strain accumulation and viscoelastic rebound. 

Strike Slip Earthquakes 

As with the case of dip slip earthquakes, a- major uncertainty 

exists in resolving the source location of postseismic strain following 

strike slip events. The two most likely sources appear to be viscoelastic 

decoupling at the base of the surface elastic plate and aseismic fault 

slip within the plate. 

In order to determine the characteristics of deformation due to 

viscoelastic relaxation at the base of the lithosphere, Nur and Mavko 

[1974] and Mavko [1977a] consider an earth model consisting of an elastic 

layer (lithosphere) overlying a linear viscoelastic half space (astheno-

sphere) as shown in figure 4. The half space is chosen to be a standard 

linear solid which allows for a nonzero relaxed shear modulus ~ - (always 
r 

less than the initial or unrelaxed modulus: ~ >~ ~0). The special case 
u r 

~r 0 is a Maxwell solid which behaves like a fluid over long times. 

Assuming that at time t = 0 sufficient tectonic stress has accumulated 

to cause sudden faulting, a screw dislocation is introduced instantaneously 

into the layer at depth D (D <H where His the layer thickness). The 

slip I::J.u occurs uniformly over a vertical fault surface as a step function 

in time. 

The resulting surface displacement is shown in figures 5 and 6. 

The sudden appearance of the screw dislocation produces horizontal deformation 

(at t = 0) identical to values in an elastic layered half-space. But as 

356 



19 

X 

~y 

LITHOSPHERE 

ASTHENOSPHERE 

Figure 4. Simple model for earthquakes in an elastic lithosphere 

over a viscoelastic asthenosphere. 
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Figure 5. The postseismic surface displacements vs. distance from the 

fault trace resulting from partial viscoelastic decoupling at the, base of 

the lithosphere. The curve t = 0 gives the coseismic surface displacement 

for uniform slip to depth Din an elastic earth (halfspace). The curves 

t ~ oo give the subsequent relaxed displacements (for ~ /~ = .5) for r u 

several values of D/H. Displacement is normalized to unit slip and 

horizontal distance is in units of fault depth. 
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Postseismic surface displacement as in figure 5 for ~ /~ =.2. 
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Figure 7a. Postseismic relaxation curves similar to figures 5 and 6. 

Here the stress drop is uniform over the fault instead of slip, and 

l-1 Ill = o. r u 
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·Figure 7b. Comparison of fault slip vs. depth for the dislocation 
~ 

model(broken curves)and uniform stress drop model (solid curve). The 

vertical axis is in units of plate thickness (This example is for 

D/H = .75). The dashed dislocation curve has the same surface slip 

as the stress drop curve. The dotted dislocation curve has the same 

average slip as the stress drop curve. 
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time progresses, the deformation changes, due to the relaxation of 

stresses in the lower half-space. Curves for the limiting case t + 00 

are shown for several values of DIH and ll Ill • The difference between r u 

the curves t + 00 and t = 0 giyes the total postseismic deformation. 

The net change in deformation between initial and relaxed states 

plus some estimate of the relaxation time are often all that we need 

from a viscoelastic model. Observations of deformation are usually 

not frequency enough to reveal a detailed time history, so that 

the time dependence predicted by the model doesn't add much to the analysis. 

In cases like this it is convenient to note that the initial and 

relaxed states for a viscoelastic problem can be completely described 

by the initial and relaxed elastic moduli. Hence we can always supplement 

our collection of relaxation curves like those in figures 5 and 6 by 

constructing the appropriate static elastic solutions. 

For ' the special case of an elastic layer over a Maxwell viscoelastic 

half-space, the relaxation process following strike slip faulting gradually 

transforms the initial solution in an elastic layered half-space to a 

final solution in an e·lastic plate with a traction-free base. The 

''relaxation" curves in figure 7 are obtained from the static elastic solution 

for a plat~ with a uniform stress drop fault, given Turcotte ~nd Spence 

[1974]. To plot the change corresponding to a constant applied stress, 

the shear field has been subtr~cted out. Each curve is normalized to 

unit offset at the fault trace. Although the slip is not uniform with 

depth as in figures 5 and 6 this is a more convenient representation 

since the screw dislocation solution is very slow to converge for ll I ll + 0. r u 

It is also interesting to note that these relaxed curves describe an 

362 



25 

elastic layer over any decoupling material. Since we only examine the 

completely relaxed state, it only matters that the base tractions 

eventually become very small. 

Certain features of the deformation shown in figures 5, 6 and 7 are 

~ediately evident. The overall amplitude of surface displacement is 

proportional to fault slip. For fixed material constants, variations in 

fault depth simply stretch or shrink the horizontal scale without changing 

the basic shape of deformation. Shallpwer faults have a much more localized 

effect; deeper faults, much broader. Deeper faults (larger D/H) are 

also accompanied by a larger and, hence, more measurable change in 

displacement between initial and relaxed states. This occurs because 

the closer the dislocation is to the boundary, the greater is the coseismic 

stress superimposed on the asthenosphere -- hence, the greater the relaxation 

that can occur. Stmilarly, a greater change in displacement between initial 

and relaxed states without change in horizontal scale, is accomplished with 

a lower ratio ~ /~ • This permits a higher degree of relaxation in the 
r u 

half space. 

It is tempting to apply these results to observations. Consider, 

for example the 1906 San Francisco earthquake. Thatcher [1975a] reports 

that a (tensor) shear strain accumulated parallel to the San Andres fault 

-6 -1 at a rate of ~1.2 x 10 yr for about 30 years after the earthquake or 

~3.6 x 10-5 for the entire period. This represents an average over a 

region of roughly ± 5 km on either side of the fault. The corresponding 

right lateral displacement at 5 km relative to the fault trace is ~.36m. 
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Assuming a coseismic slip of ~ 5 m from the surface to 10 km depth 

we can scale the curves in figures 5, 6, and 7 to find the postseismic rebound 

that might be expected from viscoelastic relaxation below the seismic layer. 

For this example a horizontal distance of 5 km corresponds to y/D = .5, 

shown by the vertical dashed lines in figures 5, 6 and 7. The values 

of displacement in each of the curves should be multiplied by 5 m. For 

a partial relaxation of (~ /~ ) = .5 the greatest possible postseismic 
r u 

displacement at 5 krn is ~.15 km (labeled S in figure 5) for an elastic 

layer thickness of 10 km (D/H 1). This is a factor of 2- 3 smaller 

than inferred from the observed strain. For a greater viscoelastic 

relaxation, (~ /~ ) = .2 (figure 6), a correspondingly greater displacement 
r u 

of /~.4 m is esti~ated for a 10 km elastic layer (D/H = 1). This is on 

the order of the observed value. Other fits to the near field strain data 

can be found using a range of thicker layers and greater viscoelastic 

relaxation. For the Maxwell solid (figure 7) a displacement of ~ .3 m 

is estimated for a 13 km thick layer (D/H = 3/4). Although the surface 

slip here is 5 m, the average slip at depth is ~.8 what it would be for 

a dislocation model since figure 7 gives the uniform stress-drop solution. 

Hence, a slightly thicker plate might accomplish the same deformation if 

relatively more slip occurred near the lower edge of the break. The 

subsurface fault slip for the dislocation and uniform stress drop models is 

compared in figure 7b. 

We conclude from this simple-minded comparison that all of the 

observed postseismic strain change can be explained by viscoelastic relaxation 

alone if the elastic layer is only slight deeper than the 10 km depth of 
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faulting, and if it becomes almost decoupled during relaxation. 

In contrast, Thatcher [1975a] explains the observed postseismic 

strain change with additional fault slip at depth, occurring over a period 

of years following the earthquake. He dismi·sses viscoelastic relaxation 

of the asthenosphere by assuming that the lithosphere is much thicker 

than the depth of faulting. This is reasonable for a "typical" lithosphere 

of 100 km. But in view of an anomalously low P velocity [Thompson and 
n 

Burke, 1974; Herrin, 1972] and the suggestion that the crust in parts of 

California may be decoupled [Anderson, 1971; Hadley and Kanamori, 1977], 

a discussion of thin plates is warranted. 

A systematic comparison of the mechanisms of postseismic straining 

for the 1906 San Francisco earthquake is attempted by Rundle and Jackson 

[1977]. Their model consists of an elastic layer over a (Maxwell) visco-

elastic half-space. They prescribe on the lower portion of the plate 

a steady fault creep as. well as an episodic postseismic creep as suggested 

by Thatcher [1975a]. A fairly arbitrary loading strain proportional to 

the far field plate velocity is also included. The strain data (angle 

changes) within a few kilometers of the fault do not resolve the question 

of the dominant mechanism. However good fits are obtained without episodic 

fault creep using layer thicknesses of 16-50 krn with a poorly constrained 

range of viscoelastic decay times and loading strain fields. Because 

steady straining is assumed to account for a portion of the observed angle 

changes, the inferred plate thickness is systematically greater than 

found in our purely viscoelastic analysis given above. Rundle and Jackson 

are probably the first to quantitatively suggest the viscoelastic mechanism 

for the 1906 event. 

.)I, 
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Barker [1976] makes a similar comparison of displacements from 

transient fault creep and viscoelastic relaxation, though not specifically 

for any one earthquake. His viscoelastic model consists of an elastic 

layer over a Maxwell viscoelastic half-space. At time t 0 a strike slip 

fault of finite length is introduced, breaking through the entire 

lithosphere. At subsequent time the surface deformation along the 

perpendicular bisector of the trace is qualitatively similar to the 2-D 

results in figures 5, 6 and 7. Barker compares this deformation with that 

obtained from a purely elastic model where the original fault gradually 

extends deeper into the (elastic) half-space. He concludes that w~th the 

limited quality and spatial extent of data generally available we cannot 

expect to distinguish between the two mechanisms. 

A second piece of evidence which may help to distinguish the source 

of postseismic strain is the net relative displacement of points further 

from the trace -- the "rigid block" offset. To establish a framework for 

looking at more distance plate deformation, let us consider again the 

lithosphere-asthenosphere model shown in figure 4. The upper plate surface 

is stress free. On the lower surface we assume rate-dependent viscous 

shear tractions that are negligibly small during much of the earthquake 

cycle, but which may be substantial during episodes of rapid strain release. 

This assumption isclearly subject to debate. Melosh [1977] argues that the 

average basal stress must be at least one or two orders of magnitude 

smaller than shear stresses acting at plate boundaries. In the following 

discussion we describe the forces acting on a fairly local part of plates 

making up the earthquake system. The basal area of interest will be in 

general less than a factor of 10 times the corresponding area of the plate edge. 
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If Melosh is correct then we may neglect the basal tractions. In 

the context of our viscoelastic discussion we ,must, however, acknowledge 

significant basal stresses during periods of rapid coseismic and post-

seismic change. If the viscoelastic relaxation time is short compared 

to the recurrence time of major earthquakes then we might expect these 

tractions to eventually die away. 

Driving forces on the plates include a gravitational push at ocean 

ridges and a pull at subduction zones. In addition asthenospheric tractions 

integrated over the entire plate area might contribute a net drive or 

drag even though we might neglect them on a local scale. For the local 

system in figure 4 we assume that the net effect of the distant forces 

is to apply a nearly uniform shear stress cr 
yz 

At the fault plane, y = 0, the shear stress 

= a to the lithosphere. 
0 

a can vary signficantly 
yz 

with x and z resulting from variations in fault displacement and frictional 

resistance stresses. However, for a system in equilibrium, the mean of 

cr at y = 0 must equal cr during periods when the viscous shear tractions 
yz o 

from below are negligible. 

To explore the role of boundary conditions on a system like this 

Mavko [1977b] derives a simple relation between the far field applied 

stress a , the far field displacement u(x,y,z) and the fault slip 
0 

6u(x,z) = u(x,O+,z) - u(x,O-,z). In two dimensions the result for negligible 

asthenospheric tractions is 

H 

2U 
0 

! s Llu(x)dx (1) 

0 

where ~ is the average shear modulus of the lithosphere 
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uniform plate displacement relative to the fault trace at a distance 

y = W from the fault. W must be large enough (W>H) so that elastic 

perturbations due to variable fault have died away. 

1 H 
Defining ~U = 2U 

0 0 

and 1'1~ = H j - frudx, (1) becomes 

0 

0 
0 

.l! (!'lU -!'li:i) w 0 
(2) 

Equation (2) is an extremely simple relation between the relative 

plate displacement at y ±w, the average fault slip !'li:i and .the mean or 

applied stress a. 
0 

Note that the average slip is defined in terms of 

the plate dimension H. Nothing has been assumed about fault material · 

properties or the details of seismic or aseismic creep. It is valid 

during portions of the earthquake cycle when asthenospheric tractions are 

small. Differentiating with respect to time we obtain: 

. 
0 

0 

ll .!. 
- (l'lU - l'l u) w 0 

(3) 

. 
The simple interpretation of (3) is that if the gross plate speed l'lU 

0 

exceeds the fault slip rate l'l~ because of frictional resistance or locked 

portions of the fault, then the mean stress in the plate grows. The mean 

stress is relieved when the fault slip rate l'lu exceeds l'lU • 
0 

Using equation (2) we can examine the far field displacement and strain 

accompanying the 1906 earthquake. Prior to the earthquake the mean stress, 
i i 

-i plate displacement and fault slip are given by a , !'lU _, hu • If the 
0 0 

asthenospheric tractions are small these are related by equation (2): 

.(4) 
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When the earthquake occurs, a substantial amount of fault slip takes place 

to a depth D. Since the short term response of the earth is essentially 

elastic the abrupt surface strain change should be confined to within,vD 

of the fault. This is the result predicted by elastic half-space models 

of faulting. The coseismic changes in a and !::. U are therefore IVQ. 
0 0 

During the postseismic period asthenospheric stresses gradually relax. 

from an elastic half-space to a plat~-like response_ 

In the case of a Maxwell asthenosphere the system evolves from an 

elastic half-space to a plate-like response, as discussed earlier. 

In addition, postseismic slip may simultaneouslyoccur at depth on the fault. 

When readjustment is complete the final mean stress and far field displacement 
f f 

a and !::.U are once again related to the fault slip t::.uf(x) by equation (2): 
0 0 

f 
!::.U 

0 

f 
a f 

W(~) +!::. ~ 
ll 

(5) 

Subtracting (4) from (5) we can write the postseismic far field displacement 

change as: 

f 
!::.U 

0 

i 
- !::.U 

0 
(6) 

The first term on the right is linear with distance~ W, from the fault. 

This corresponds to a homogeneous strain change proportional to the 

mean stress change in the plate. The second term is a uniform rigid 

block displacement equal to the average coseismic plus postseismic 

slip. Neither far fielrl term is predicted by elastic half-space models 

of faulting where disturbances -- stress, strain and displacement --

tend to zero far from the fault. 

If the mean or applied stress in the plate is the ·same after relaxation 

f i 
as before the earthquake (a = a ) as suggested by Savage [1975] then 

0 0 

the relative block offset that occurs during the postseismic period is 

equal to: 
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1 H 
H j .. [ 6 uc (x) + ~up (x)] dx 

0 

where 6u is the coseismic slip and 6u is the postse_ismic slip. 
c p 

(7) 

Hence, the far field offset measures the sum of coseismic and postseismic 

slip, and it is not correct to interpret it as due to postseismic slip alone. 

As an illustration of the effect of viscoelastic decoupling, 

consider the faulting parameters determined by Thatcher [1975a] for the 

1906 earthquake. The average coseismic slip is v 4 m from the surface to 

a depth of 10 km. The postseismic slip is ~4 m between 10 and 30 km. 

We simplify CC!lculations by using a uniform stress drop model irt place of 

uniform slip. The results are shown in figure 8a. Curve (a) shows the 

coseismic surface displacement in a half-space for a 10 km deep fault 

with maximum surface slip of 4 m. Curve (b) gives the displacement after 

the slip has deepened during the postseismic period to 30 km, while 

keeping the surface slip fixed at 4 m. For both (a) and (b) the displacement 

tends to zero far from the fault, though rather slowly for the deeper case. 

Curve (c) shows the displacement for the same 30 km deep slip but now 

in a layer decoupled at 40 km. This value of layer thickness is arbitrary, 

chosen for illustration to be only slightly greater than the depth of 

faulting. Far from the fault the displacement is asymptotic to 1.2 m. 

Figure 8b shows the postseismic displacement obtained by subtracting 

curve (a) from (b) and (c) in figure 8a. The curve for a 100 km thick 

plate is also shown for comparison. For the first 5 km the curves are 

within about 15% of each other. This suggests that the near fault strains 

are fairly insensitive to the details of deep model structure. This 

is the same conclusion arrived at earlier [Rundle and Jackson, 1977, 
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Figure Sa. Postseismic displacement models for the 1906 San Francisco 

earthquake. Curve (a): the coseismic displacement for a constant stress 

drop crack 10 km deep in an elastic half-space. Curve (b): the displacement 

after the original fault deepens to 30 km in an elastic half-space, with 

no viscoelastic decoupling. Curve (c): the displacement for 30 km 

deep fault in a layer decoupled at 40 km. 
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Figure 8b. Postseismic displacement given by the difference of 

curves in part a. Curve for a 100 km decoupled layer is also 

shown. 
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Barker, 1976]. Beyond 5 km the curves diverge. At 50 km the thin layer 

model predicts 2.5 times the displacement given by the half space. Hence 

for a given set of data both the halfspace and plate models may predict 

similar near-fault strain, but halfspace models demand significantly 

greater slip at depth to explain distance offsets. If the plate is thick, 

say 100 km, the curves are within 30% for the first 40-50 km 

We can draw several conclusions from the above results. Postseismic 

changes in strain near a strike slip fault can result from a number of 

sources fault slip, viscous decoupling at depth, and changes in the 

applied or mean stress field. If we constrain all but one mechanism, then 

we can generally resolve features of the remaining one. Though without 

other information the source of strain cannot be resolved from near field 

data alone. In contrast, the far field data may contain separable 

information if measurements span most of the period of postseismic adjustment. 

The far field strain changes reflect mean stress changes in the lithospheric 

plate. The rigid block offset gives the average fault slip. If the 

plate thickness is known, the total of coseismic and postseismic slip 

can be found. If only the coseismic slip is known, an upper bound on the 

effective plate thickness can be determined. 

Discussion 

Some generalities of postseismic relaxation are evident. Earthquakes 

always tend to decrease stress over most of the slip zone and increase 

it elsewhere, with the greatest stress concentration usually near the 

margins of the slip. Following an earthquake any number of viscous 

elements may begin to relax. 

The largest postseismic changes in stress and strain probably result 
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from ·aseismic fault slip and nonlinear viscoelastic decoupling of the 

surface plate. The nature of these changes are largely the subject of 

this section. Other mechanisms may be more subtle. For example, large 

shallow earthquakes can induce coseismic changes in fluid pore pressure 

that are comparable to the stress drop on faults. The subsequent re­

distribution of pore pressure [Nur and Booker, 1972] via diffusion slowly 

decreases the strength of rock and may result in delayed fracture, i.e. 

the characteristic 1/t decay in aftershock frequency. Other effects 

of fluid relaxation include transients in seismic velocity, gravity, 

water well levels, and electrical resistivity. 

The relative importance of postseisrnic slip and viscoelastic 

decoupling will depend on a number of factors. Major strike-slip 

earthquakes are usually confined to the shallow, brittle portion of the 

lithosphere (the upper 20 km or so of the crust). Depending on the 

steady or accelerated creep prior to the earthquake a substantial amount 

of postseismic slip adjustment may be required near the bottom of the 

rupture to relieve the coseismic stress concentration and to accomodate 

relative plate offset everywhere on the fault [Mavko, 1978]. Deeper 

ruptures that break through the entire lithosphere might in principle 

require less slip adjustment. A similar statement would apply to major 

thrust type earthquakes. In contrast the viscous component of adjustment 

occurs as the earthquake stress field relaxes in the decoupling layer 

(asthenosphere) and the surface strain evolves from a half space to 

plate response to faulting. For shallow earthquakes a smaller viscous 

adjustment is expected since the stresses fall off quickly with distance 

below the rupture. Deep earthquakes interact much more with the astheno­

sphere and produce a larger relaxation. Once this geometric condition for 

interaction is achieved, we obviously need a low enough viscosity for the 
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relaxation to be recognized as a discrete phase in the earthquake cycle. 

Kanamori [1971] outlines several stages in the evolution of subducting 

plate boundaries that we can try to identify with different modes of 

relaxation (see figure 9). A young subduction zone, of the Alaska-Aleutian 

type is characterized by a low angle thrust of thin, stiff oceanic 

lithosphere beneath the much thicker continental lithosphere. Temperatures 

are low because frictional (viscous) heating has just recently begun. The 

corresponding high effective viscosity (perhaps 1021- 1022 poise, representative 

of postglacial uplift under more stable areas) and the large plate thickness 

will tend to reduce the effectiveness of viscoelastic relaxation and 

emphasize the importance of postseismic creep. This is consistent with 

the view of Brown, et al. [1977] that postseismic deformation following 

the relatively shallow 1964 Alaska earthquake was due primarily to creep. 

An older subduction zone (Figure 9b) is characterized by higher 

temperatures. This results in a thinner lithosphere due to partial melting 

and a lower viscosity asthenosphere on the continental side of the trench. 

The dip angle also tends to be greater, so that a given down-dip rupture 

length will break through a relatively greater portion of the lithospheric 

thickness compared with the low angle thrust. In general, conditions are 

favorable for enhanced viscoelastic relaxation. 

Most of Japan has the features of such an older subduction zone 

[Kanamori, 1971], although signfiicant local variations in structure are 

evident (see figure 10). Much of northern Japan along the Japan trench 

and Kurile trench is underlainby arelatively high Q asthenosphere 

[Barazangi, et al., 1975]. The 1973 Nemuro~Oki earthquake in this region 

had a· large postseismic deformation which Kasahara [1975] attributes to 
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Figure 9. Two stages in the model of Kanamori [1971] for the 

evolution of subduction zones. 
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Figure 10. Map showing distribution of high and low Q regions behind 

Island arcs [Barazangi, et al., 1975]. Open circles- low Q; Closed 

circles - high Q. 
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deep aseismic slip. This interpretation is consistent with the high Q 

(low temperature) asthenosphere and the fact that the coseismic slip 

ruptured less . than half the thickness of the lithosphere. Several other 

thrust type earthquakes (1968 Tokachi-Oki, M = 7.9; 1976 Kurile Islands, 

M = 7.8) showed no observable postseismic deformation [Kan~ori, 1973]. 

Farther to the south, under Shikoku and southern Honshu there is 

evidence for an anomalously high temperature, low viscosity asthenosphere 

[Barazangi~et al. 1975; Kanamori, 1970]. The 1946 Nankaido earthquake (thrust) 

and 1923 Kanto (substantial strike slip) each broke through a substantial 

portion of the lithosphere and each had very large postseismic deformation. 

The interpretation of viscoelastic relaxation at Nankaido [Nur and Mavko, 

1974; Smith 1974] or a combination of aseismic slip and viscoelastic 

relaxation [Smith 1976] is consistent with the deep rupture and low Q 

(high temperature creep might also . be enhanced). The deformation at 

Kanto has been described as a difference in seismic and geodetic "slip" 

[Kanamori, 1973] but it is likely that viscoelastic relaxation also 

played an important role. 

We can extend this analogy to transform faults. On continents, 

where postseismic measurements are possible, the lithosphere is in 

general very thick c0mpared to the brittle seismic layer. Relaxation, 

if it occurs, is probably due to shallow effects like creep (1966 Parkfield 

earthquake, [Scholz, et al., 1969]),compaction of sediments (1927 Tango 

earthquake, [Kanamori, 1973]), fluid diffusion, etc. Transform faults 

with a complex history like the San Andreas fault, might have a thinner 

lithosphere, due to old subduction or some shallow effect which decouples 

the upper crust. The asymmetry in postseismic surface strain across the 
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San Andreas near San Francisco [Thatcher, 1975a] could be due to a non­

vertical fault [Walsh, 1969], the variation in geology across the fault, 

or more interesting, some remnant asymmetry in the deep structure due to 

the old subduction. 

A complication in interpreting postseismic transients is the ipossible 

coupling of contrasting mechanisms. Consider, for example the 1966 

Parkfield earthquake. Seismic and geodetic evidence suggest that coseismic 

slip on the order of 30 em occurred between 4 and 10 km depth. Little 

or no coseismic slip occurred at the surface, but as much as 25 em of 

surface slip accumulated at a decaying rate in the 3 years following the 

earthquake. One simple interpretation of the postseismic slip is that 

the upper 4 km of the fault zone has a viscous stress~slip relation. 

For example, 

b.~ = A crn 

where 6U is the creep rate, a is the applied stress, and A and n are 

positive constants. With this type of damped motion, very abrupt motion 

is resisted, but gradual motion occurs with relative ease. (A similar 

behavior is suggested by Kasahara [1975] for aseismic slip in the lower 

lithosphere). Hence, the abrupt concentration of stress near the 

surface is gradually relieved following the earthquake. Any sliding law 

with slip rate monotonic with stress can qualitatively explain postseismic 

slip at a decaying rate. The rate of slip is determined by the constants 

of the slip law. A second interpretation is that the upper 4 km of the 

fault are characterized by a single value of creep strength S, independent 

of strain or strain rate. Whenever the stress meets S, sliding occurs 

to guarantee that the stress does not exceedS (eg. plastic fault zone). 
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In this case we assume that the sum of preseismic plus coseismic stress 

is at or slightly below S. Near the fault, viscoelastic relaxation 

of some sort (perhaps a decoupling from below) gradually transfers 

stress back into the fault plane. S_lip occurs at a rate proportional 

to the rate of reloading. Hence the slip rate is determined by the 

viscoelastic law somewhere off the fault and not by the sliding law. 

Obviously other combinations are possible. 
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STRAIN ACCUMULATION AND THE WHOLE CYCLE 

Almost all earthquake models are designed to be compatible with the 

concept of relative plate motion. Over periods longer than at least 

several earthquake cycles the plates remain essentially elastic, while 

at narrow zones along plate boundaries the motion is accommodated as 

frictional sliding or plastic flow. Hence, a simple condition that we 

can impose is that over several earthquake cycles~ the time averaged 

slip everywhere on the fault must equal the relative plate offset; the 

stress and strain must everywhere in the plate be roughly periodic 

without a net accumulation. Of course, deviations from this do occur, 

resulting in permanent deformation and additional faulting, but for our 

purposes we will assume them to be small. 

In this section we discuss some recent models for strain accumulation 

and its role in the earthquake cycle. The main emphasis will be on strike-

slip faults. 

The only reasonably constrained portion of the cycle is the coseismic 

part. In general we can determine from seismic and geodetic data the 

approximate area and orientation of the fault plane, and the average slip. 

This is simplified by the short term elastic response of the earth which 
• 

is insensitive to uncertainties in rheology and plate thickness. 

Heterogeneities in elastic response can also complicate interpretation, 

but these can in principle be corrected for using known velocity structure. 

The common feature of all coseismic strain fields is that they rapidly 

die out away from the fault, within several lO's of kilometers for strike 

slip faults and 100 km or so for major thrusts. This difference in scale 

results mainly from the depth of faulting and dip angle. Contrary to what 

some authors have suggested [Brune, 1974, Thatcher, 1975a], the fact that 
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the localized coseismic strain field depends on fault depth instead of 

fault length is not an indication of a large plate thickness. It in­

dicates only that the short term response of the crust and upper mantle 

is essentially elastic to considerable depth. 

A strict interpretation of elastic rebound would suggest that strain 

accumulation must match coseismic strain release. For example, Scholz 

and Fitch [1969] have argued that along the San Andreas fault in California 

accumulated strain must be concentrated near the fault on a scale com­

parable to the eventual earthquake rupture depth. If strains were not 

localized near the fault then earthquakes would- not continue to occur 

along the same fault, but would migrate laterally where the unrelieved 

strain had accumulated. 

There are a number of weaknesses in this argument. For example, 

following the large (M = 7.1) Imperial Valley, California earthquake of 

194~, geodetic measurements revealed a broad zone (100 km wide) of right 

lateral shear strain that accumulated over the period 1941-1954 (see figure 11). 

Strict elastic rebound, as outlined above, would require an earthquake 

25-40 km deep [Scholz and Fitch, 1969] in ~rder to relieve this broad 

zone of strain. This depth is unreasonably large, since in California 

strike-slip earthquakes almost never occur below 15 km. The most widely 

accepted explanation for this discrepancy is that aseismic slip will 

take place on the fault, while a combination of creep and coseismic slip 

will occur shallower [Scholz and Fitch, 1969; Chinnery, 1970]. Savage 

and Burford [1970] point out that the broad zone of strain accumulation 

spans both the Imperial and San Andreas faults. There is a suggestion in 

the data that the single broad zone might, in fact, be resolved into 

two narrower zones straddling the separate faults. 
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Although a number of authors have tried to associate the depth of 

faulting with crustal thickness [Benioff, 1951; Byerly and DeNoyer, 1958; 

Scholz and Fitch, 1969] relatively few [Turcotte and Spence, 1974; 

Spence and Turcotte, 1976; Mavko, 1977b, 1978] have accounted for the 

effect of finite plate thickness in analysis of strain accumulation. For 

the case of the 1940 Imperial Valley earthquake, consider first the effect 

of postseismic viscoelastic decoupling that may have occurred at the 

base of the elastic plate. The average coseismic slip was about 1 .7 m 

[Brune and Allen, 1967] and the fault depth was 8 km [Kasahara, 1958 ] . 

The expected change in surface displacement can be obtained_ from figure 7. 

The coseismic displacement is given approximately by curve (a) with the 

amplitude multiplied by 2.3 m (which gives an average slip at depth of 

1.7 m) and the horizontal scale multiplied by 8 km (depth of faulting). 

If the plate is gradually decoupled, for example, at the base of the 

crust (32 km) the relaxed displacement is given by curve (b), scaled 

similarly. The net change is given by the difference between (a) and (b) 

and is shown in figure 11 (curve a), superimposed on the data. An 

additional surface offset of .17 m during the survey period has been 

suggested [Scholz and Fitch, 1969]. If we simply add this to the post­

seismic displacement in curve (a) we get the larger net change shown as 

curve (b) in figure 11. Curve (b) shows that more than half of the 

accumulated displacement can be explained with simple viscoelastic decoupling. 
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Figure 11. Displacements parallel to the Imperial fault for the 

period 1941-1954 [Scholz and Fitch, 1969]. Curve (a): Postseismic 

displacements due to viscoelastic decoupling at base of crust. 

Curve (b): Postseismic displacements due to decoupling plus 0.17 m 

of surface creep. Dashed line is for .virtual dislocation model 

proposed by Scholz and Fitch. 
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Viscoelastic relaxation is just one of several modes of strain 

accumulation. If the average stress in the lithosphere far from the 

fault stays constant [Savage, 1975] an earthquake will tend to transfer 

stress downward by loading the asthenosphere and the lower portion of 

the lithosphere. As the asthenosphere relaxes the stress is transferred 

back to the lithosphere. The resulting strain will be roughly as shown 

in figures S-8. This process has been discussed in some detail by Nur 

and Mavko [1974], Spence and Turcotte [1977] and Rundle and Jackson 

[1977]. Normally we would classify this as the postseismic phase, but 

it is also obviously a mechanism of strain accumulation. If the re­

laxation time becomes comparable to the earthquake recurrence time 

[Spence and Turcotte, 1977] the distinction completely disappears. 

Steady aseismic slip on the lower portion of the lithosphere will 

also tend to concentrate strain near the upper locked portion of the 

fault. This is the most commonly quoted mechanism, but it can only be 

correctly modeled by accounting for the nature of plate motion at the 

lithosphere-asthenosphere boundary. Turcotte and Spence [1974] assume 

a two dimensional plate model for the lithosphere and calculate the 

surface strain rate due to steady slip on the lower portion of a long 

straight transform fault. The shear tractions at the base of the litho­

sphere and on the creeping fault are assumed to be zero. (The solution 

is conveniently found for the strike-slip problem by using the solution 

for mode III deformation of a periodic array of cracks, which automatically 

gives regularly spaced stress-free planes.) Computed strain rates are 

consistently lower (by a factor of 2) than observed values along the 

San Andreas fault south of San Francisco reported by Savage and Burford 

[1973]. This suggests that either the locked portion of the San Andreas 
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fault is shallower than the 5 km chosen by Turcotte and Spence or the 
';;.. ' •., 

strain measurements are too close to the actively slipping portion of 

the San Andreas to be explained with a two dimensional model. Thatcher 

[1975b] has suggested a further complication in the San Francisco area. 

Since about 1950, shear• straining has been uniform across an 80 km 

wide zone east of the San Andreas near San Francisco and indicates 

significant slip at depth on the Calaveras fault • . Farther to the north-

west the strain is more concentrated near the San Andreas and is some-

what smaller. This latter region is probably more suitable for a two 

dimensional description. 

Turcotte and Spence [1974] extend their model results qualitatively 

to discuss an earthquake cycle in three dimensions. Because the lower 

portion of the fault is stress free, the eventual earthquake rupture of 

the upper locked portion essentially reduces the stress on the entire 

vertical section of the plate boundary. There is no means for transferring 

stress downward to the asthenosphere or lower lithosphere. Stress can 

only be transferred horizontally along the fault beyond the locked ends.· 

With this analysis the fault length q (third dimension) is included only 

approximately. The resulting coseismic change is similar to suddenly 

introducing a cut of length q through the entire plate thickness. The 

most important conclusion is that strain variations throughout the earth-

quake cycle penetrate into the plate to distances comparable to the fault 

length, rather than the fault depth. 

Savage [1975] criticizes the model based on comparisons of preseismic, 

coseismic and postseismic slip. He points out that the zero stress con-

dition on the lower fault requires an enormous amount of postseismic 
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slip both at the surface and at depth. He proposes instead a constant 

stress condition which confines strain changes close to the fault. 

Mavko [1977b, 1978] has shown that the differences between the Turcotte 

and Spence and the Savage versions of the model can be summarized in 

terms of boundary conditions. In two dimensions a constant stress 

boundary condition confines all strain changes during an earthquake 

cycle to within a few tens of kilometers of the fault. In contrast, a 

constant plate speed boundary condition results in a small but varying 

component of uniform shear out to great distances from the fault. Along 

the major active and locked regions of the San Andreas fault a two-

dimensional analysis has some validity. However, the three dimensionality 

of the system determines the boundary conditions for the two-dimensional 

approximations. It appears that when adjacent portions of the fault vary 

from smoothly slipping to locked behavior, each section alone is best 

described by constant plate rate boundary condition. This suggests that 

-6 shear strains on the order of 4-9 x 10 accumulated and were released 

out to distances of hundreds of kilometers during the 1906 San Francisco 

earthquake cycle. 

Using this type of analysis Mavko has proposed a modification to 

the Turcotte and Spence [1974] model of the San Andreas. By adding a 

nonzero creep strength at depth on the fault a larger stress accumulates 

on the locked portions, allowing a greater coseismic surface slip. This 

can eliminate the need for postseismic surface slip to accommodate the 

net plate offset. The magnitude of creep strength depends on a number 

of factors. If the seismic surface slip is assumed to just equal t he 

accumulated preseismic slip at the bottom of the plate, then a mini mum 
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preseismic creep strength of about 37 bars is needed to account for 

5 m of surface slip during an event like the 1906 San Francisco earthquake. 

However, this implies that the creep strength at the beginning of strain 

accumulatiort is greater than it is just before an earthquake. On the 

other hand, if the creep strength is constant during the entire period 

of strain accumulation, a creep strength of at least 68 bars is required, 

and the seismic slip is greater than the preseismic slip at the bottom 

of the plate. 

• 
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FINAL COMMENT 

Nearly all fault models are consistent with the concepts of plate 

tectonics and elastic rebound. Through some combination of remotely 

applied forces the elastic plates move relative to each other. Whether 

or not strain accumulates and the way it is released depends on the 

nature of slip at the common plate boundaries. 

The most serious and fundamental problem in developing fault models 

is our general inability to resolve the location of sources of aseismic 

strain. For example the postseismic strain following the 1906 San 

Francisco earthquake can be explained by either aseismic slip or visco­

elastic rebound. A combination of these can give an uncertainty of 

several lO's of kilometers in effective plate thickness. The main reason 

for the uncertainty is the lack of strain data at large distances from 

the fault. 

It is probably fair to say that we are not limited by our comput ational 

ability to construct models, but instead by how clear we are about using 

them. Model assumptions about geometry and rheology are always necessary 

in lieu of reliable data. However it is essential that we always identify 

which model outputs result from the various assumptions. An example is 

the question of the scale of strain accumulation and release around 

strike-slip faults. While the scale clearly results from the type of 

stress or displacement boundary conditions built into a model, some authors 

have tried to associate the problem with plate thickness etc. This 

confusion, in part, has resulted from our extensive experience with e l astic 

dislocation models which result in strictly local effects. 
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APPENDIX - THE EVOLUTION OF STATIC FAULT MODELS 

Since Reid introduced the concept of elastic rebound in 1910, the 

greatest effort to understand and model the earthquake mechanism has 

focused on the coseismic or strain release portion of the earthquake 

cycle. There are a number of reasons for this. It is the most noticeable 

part and it presents the greatest hazard. The coseismic period also 

provides the most accessible data, conveniently fit into time windows 

short enough for study. Of particular interest in understanding the 

tectonic ~ole of earthquakes is the very low frequency data 

specifically, the net change in elastic fields that result from fault 

slip. In this section we summarize briefly the evolution of models for 

the static stress change and displacement that accompany faulting. 

Although the primary emphasis of this paper is on aseismic motion, the 

coseismic slip is by far the best known, while the distribution of slip 

at depth between earthquakes is very poorly resolved. Hence, static 

models provide a useful constraint. The following summary is roughly 

chronological reflecting the gradual increase in sophistication of fault 

models. 

Early insights into the faulting process followed from the study of 

seismic wave arrivals. Shida [1929] made the first observation of a 

systematic azimuthal distribution of push-pull first motions on seis­

mograms, today interpreted as the quadrantal nature of the source mechanism. 

This led to the consensus that most earthquakes (or at least their seismic 

radiation) are caused by abrupt stress changes at their origins in the 

form of shear force couples or perpendicular pairs of.tensile and com­

pressional stresses [Honda, et al.,~95[]. Source models were first treated 
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as points in space and were later extended to include stress changes 

distributed on the surface of finite size spheres [Sezawa, 1936; Kawasumi 

and Yosiyama, 1935; Honda, 1934; Inouye, 1936]. Kasahara [1957], noting 

the success of the stress-release model for explaining the pattern of 

seismic wave arrivals, observed that permanent crustal deformations 

[C. Tsuboi, 1933] sometimes resembled the same push-pull pattern. Com­

bining this with the concept of stress release by faulting or fracture, 

suggested by elastic rebound, he computed the displacement field corres­

ponding to a prescribed stress drop on a vertical plane in an elastic 

half space. His model approximated an infinitely long strike slip 

fault, although the slip was only approximately zero below the prescribed 

depth of faulting. Perhaps the most important result was the conclusion 

that the width of the zone of greatest seismic strain release straddling 

the fault is roughly proportional to the depth of faulting, an idea 

earlier dismissed by Reid. With this model Kasahara inferred depths of 

15, 8, and 6 km respectively for the Tango (1927), North-Izu (1930) and 

San Francisco (1906) earthquakes. 

In a rather different approach Byerley and DeNoyer [1958] attribute 

the concentration of strain near the fault zone to an anomalously low 

rigidity. They assume that faulting penetrates a decoupled crustal plate 

and that ... the observed displacement-s are. uniform with . depth. . The strain 

energy ·- release, therefore~ becomes proportional. to - the plate - thickness. 

Comparing. -this '-with the observed distribution of :wave energy they infer 

the :plate·,, thickness and, ' hence, the -fault depth. The notion of a soft 

(low rigidity) faultzone extending to the Moho ' nas also been suggested 

by Benioff [1951, 1955]: Although -it is generally helieved that major 

faults (or perhaps concentrated shear zones at depth) do penetrate the 

391 



54 

lithosphere, seismic slip is often confined to the brittle portion of 
~ 

the upper crust(l5-20 km). Furthermore, the short term mechanical response 

of the earth tends to be elastic, even in the presence of horizontal 

viscous zones that may gradually decouple the upper plate. Hence the 

approximation of uniform strain with depth can only be very rough. 

Further refinements in computing static stress and strain fields 

have fallen into two types: crack models and dislocation models. The 

crack model is based on a prescribed stress change during faulting. 

This is the case studied by Kasahara [1957]. In contrast, the dislocation 

model is based on a prescribm fault slip. An advantage of the dislocation 

approach over the prescribed stress approach is the ability to compute 

the stress and displacement fields due to well defined, arbitraril y 

shaped faults with arbitrary slip distributions. (Recall that Kasahara 

[1957] treated an infinitely long fault with slip only approximately 

zero outside the slip zone.) The crack problem, on the other hand in-

valves mixed stress and slip boundary conditions in the plane of the 

fault which is generally more difficult to solve. Of course, both stress 

and slip changes accompany faulting and the two descriptions are equivalent, 

but the dislocation approach has been much more popular because of the 

computational flexibility it allows. 

Steketee [1958a, b] has shown that if we approximate a fault as a 

discrete surface of discontinuity (or dislocation) in an otherwise elastic 

half space, the resulting displacement field is given by an integral 

over the fault surface of point nuclei or strain [Love, 1944] weighted 

with the local value of slip. He presents the method for obtaining the 

six kernals corresponding to the general dislocation surface in a half 

space, and derives the one corresponding to strike slip motion. In an 
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earlier study Rochester [1956] had used dislocation theory to solve for 

three dimensional slip distributions, but only discussed in detail the 

infinitely long fault. Other authors who had studied or suggested internal 

nuclei of strain to describe the static problem were Sezawa [1929], 

Whipple [1936], Soeda [1944], Mindlin and Cheng [1950], Yamakawa [1955] 

and Vvedenskaya [1956}. A similar problem due to surface loading was 

treated by Honda and Muira [1935]. 

Chinnery [1961] integrated Steketee's expressions to find analytic 

expressions for the surface displacements due to a finite size, rectangular, 

vertical strike-slip fault. In this and a number of subsequent papers 

the integration was simplified by assuming uniform slip on the .fault. 

He refined the relation between the scale of surface deformation (both 

horizontal and vertical components) and fault depth, showing the effect 

of finite length. Although the qualitative features of deformation agreed 

with Kasahara's [1957] Chinnery's inferred depths for the Tango (1927), 

North Izu (1930) and San Francisco (1906) earthquakes were systematically 

shallower, probably because Kasahara's slip tapered to zero at depth 

while Chinnery's went discontinuously to zero. 

To calculate the stress field around a rectangular strike slip fault 

Chinnery [1963] differentiated his earlier expressions for displacement. 

He later [Chinnery, 1964] used these results to evaluate the stresses at 

the center of rectangular strike slip faults. Analyzing the displacements 

of the San Francisco (1906), Tango (1927), Idu (1930), Imperial Valley 

(1940) and Fairview Peak (1954) earthquakes, he concluded that the stress 

drop and hence fault strength prior to rupture is on the order of a few 

tens of bars. (It was assumed that complete stress release occurred.) 

This value was several orders of magnitude less than the known typical 

strength of rock. Chinnery [1965] also discussed the vertical component 
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of surface displacement accompanying strike slip faulting, suggesting 

that permanent topographic features along faults (eg. mountains, basins) 

could be the accumulation over many earthquakes (and many krn. of offset) 

of the vertical deformation suggested by the (infinitesimal strain) 

elastic model. 

Maruyama [1964] extended the work of Steketee and Chinnery, giving 

the expressions for all six of the Green's functions for the displacement 

and stress field aue to a general dislocation surface in a half space. 

He integrated these to obtain analytic expressions for the displacement 

fields for vertical and horizontal faults, each with three choices of 

uniform Burgers vector. He also solved for the deformation due to an 

arbitrarily dipping rectangular fault. 

Press [1965] used the method of Steketee [1958a], Maruyama [1964] 

and Chinnery [1961] combined with catalogs of nuclei of strain by Mindlin 

and Cheng [1950] to study the displacement, strains, and tilts resulting 

from vertical strike-slip and dip-slip rectangular faults. He was 

mostly concerned with the deformation at teleseismic distances (at dis­

tances 10 times the fault length). Comparisons of computed strains 

with observed values in Hawaii and California from the 1964 Alaskan 

earthquake were reasonable and suggested that far field studies of static 

source parameters are feasible. It should be noted, however, that Press 

used the complimentary fault plane (he used a vertical fault to approximate 

a near vertical reverse fault) to the one generally accepted today (low 

angle thrust). 

Savage and Hastie [1966] integrated Maruyama's expressions to find 

the displacement field due to a rectangular dip slip fault with arbitrary 

dip. They compare the near field vertical displacement for a low angle 

thrust model of the Alaskan (1964) earthquake as suggested by Plafker 
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[1965] with the near vertical reverse fault studied by Press [1965]. 

Though many qualitative features of the two models are the same, the 

case for thrust faulting is stronger. Similar studies of the Fairview 

Peak, Nevada (1954) and Hebgen Lake, Montana (1959) earthquakes were 

made. 

The next step in sophistication of elastic fault models was to explore 

the effect of a variable distribution of slip over the fault surface. 

The formalism of Steketee [1958a] and Maruyama [1964] allows for general 

slip in a half space, but numerical evaluation of the integral is usually 

necessary. Chinnery and Petrak [1967] explored the effect of smoothly 

tapering the slip at the edges of strike slip faults. Tapering removes 

the singularities present in earlier uniform slip models. They concluded 

that the pattern of surface displacement is very similar to that for 

uniform slip -hence insensitive to details of slip deep on the fault. 

Weertman [1965] makes a similar argument that the surface displacements 

are insensitive to the details of stress drop on the fault. 

A more thorough study of the variation of fault slip is possible 

using two dimensional models. Starr [1928], studying the mechanisms of 

fracture in crystals, examined the plane strain deformation of a flat, 

two dimensional elliptical crack in shear. Because the crack surfaces 

are stress free, introducing the crack into a uniform stress field results 

in a uniform stress drop over the crack face with an increase in stress 

(actually a stress singularity) outside the crack tips. Knopoff [1958] 

studied the same crack in antiplane shear. Many features of the two 

models are essentially the same- an elliptical distribution of slip, 

with stress singularities outside the crack tips. (For a given stress 

the in plane slip is diminished by the factor (1 - V) where V is Poisson's 
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ratio, from the antiplane case.) A convenient feature of the antiplane 

problem is that the perpendicular bisecting plane of the crack is stress 

free. This is true for any symmetric distribution of antiplane slip. 

Hence the same solution holds for a very long vertical strike-slip fault 

intersecting the free surface in an elastic half space. The solution of 

Starr applied rigorously only to a fault in an infinite medium, though 
\ 

may be used to approximate a deeply buried fault in a half space. 

In order to decrease the arbitrariness of specifying slip or stress 

drop Weertman [1964, 1965], Walsh [1968], and Berg [1967] study the in-

finitely long strike slip fault with fault friction increasing linearly 

with depth, proportional to the lithostatic stress. By specifying the 

applied tectonic stress, the friction law, and fault dip angle a unique 

equilibrium depth of faulting and slip distribution can be found. However, 

the details of faulting become dependent on previous slip episodes since 

each earthquake represents a slip relative to the previous equilibrium 

configuration. 

A natural approach to solving two dimensional faulting problems is 

the use of elastic screw and edge dislocations [Bilby and Eshelby, 1968] 

or line dislocations. These represent spatial step functions in slip-

or slip on a half plane - in an elastic medium. (Here "slip" refers 

to a discontinuity in the displacement - exactly in the sense of the 

usual meaning of "slip" on a fault.) A continuous distribution of slip 

corresponds simply to a continuous distribution of infinitesimal dis-

locations, the density of dislocations given by the derivative of the 

slip function. Hence, the elastic stress (and strain) field of a 

single dislocation is the Green's function or spatial impulse response 

for the derivative of slip, the fields due to complex patterns of slip, 

obtained by superposition. Weertman [1964] studies the effect of applied 
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and frictional stresses on faults on the resulting slip, using dis­

location theory as a means to solve the elastic problem. Mavko and Nur 

(1977a) discuss the use of dislocation theory to solve for the deformation 

of cracks (or faults) in elastic solids. They discuss a method for ob­

taining analytic expressions for slip resulting from arbitrary continuous 

stress distributions using polynomials. 

Both the dislocation and crack models of faulting have been extended 

to elastic -earth models more complex than homogeneous half spaces. 

Kasahara [1964] solved for the deformation resulting from a prescribed 

stress drop on an infinitely long strike slip fault at the top of a half 

space underlying a surface layer. Oda and Hirasawa [1976] solve a similar 

problem for a crack at an arbitrary distance from the interface between 

two half spaces, analyzing the slip and strain energy change as a function 

of shear moduli and fault dimension. 

The stress and strain solutions for a screw dislocation near planar 

boundaries can besolved using the method of images. Chou [1966] gives 

the stress field resulting from a screw dislocation in or near a layer 

imbedded between two half-spaces. By giving one half-space zero rigidity 

the model simulates a layer with a free surface overlying a half-space. 

Rybicki [1971] solves for the stress and displacements from a pair of screw 

dislocations (simulating a long strike slip fault with constant slip) 

in and near a layer overlying a half-space. Modeling the Parkfield (1966) 

earthquake as a buried fault in a half space underlying a soft surface 

layer Rybicki finds the surface displacements to be more localized than 

for an identical fault in a half space. In addition, the stress concentration 

near the top edge of the fault is enhanced by the soft layer relative to 

the lower edge, suggesting a mechanism for the greater concentration of 

397 



60 

observed aftershocks near the top edge. Chinney and Jovanovich [1972] 

solve the screw dislocation problem for two layers over a half-space. 

They find that low rigidity layers beneath a rigid crust or lithosphere 

will enhance the surface displacements by decoupling the upper layer 

from the half-space. 

Barnett [1972], Canales [1975], and Mahrer and Nur [1977] have studied 

the case of a strike slip fault in a half space with a continuously 

varying shear modulus. 

The problem of an edge dislocation near an interface cannot be 

treated using simple images. Hence the modeling of very long dip-slip 

faults can be more cumbersome. The problem of an edge dislocation near 

a circular inclusion was studied by Dundurs and Mura [1964]. Weeks et 

al. [1968] solve for the edge dislocation near a surface layer and Lee 

and Dundurs [1973[ treat an edge in thin layer. 

Singh [1970] presents a method for finding the stress and displacement 

due to arbitrary nuclei of strain in an arbitrary multilayered half space. 
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ABSTRACT 

Observations of the effects of tremors in deep gold mines suggest that 

(1) seismic stress drops are typically at least an order of magnitude less than 

the ambient shear stress driving the faulting, (2) the seismic failure associated 

with a tremor is very inhomogeneous within the source region of the tremor, (3) 

nearly all of the elastic energy released during a tremor is consumed in cre­

ating the comminuted fault zone with generally less than 1% of the available 

energy accounted for by the seismic .radiation, and (4) the available data on 

shear stress in the crust indicates that natural tectonic shocks are probably 

similar in these respects to mine tremors. 

INTRODUCTION 

Currently, the most important outstanding questions in seismology concern 

the relationship of earthquake source properties, deduced from the analysis of 

seismograms, to the actual fal.iure process and the conditions in the source 

region. For example, how is the stress drop inferred from the seismic radia­

tion related to the stresses driving the seismic failure? Does failure associ­

ated with earthquakes bear any resemblance. to brittle failure in laboratory 

samples? These questions must be answered if any genuine progress is to be 

made in understanding the mechanics governing earthquakes.and faults. 

Observation since the 1940's of tremors in the vicinity of the deep gold 

mines of the Witwatersrand in South Africa have indicated that the tremors are 

identical to small to medium sized earthquakes and yet are clearly related to 

the mining activity (e.g. Gane et al., 1946; Cook, 1963). The high level of 

seismicity and the localization of this seismicity to regions of active mining 

make the deep mines an excellent laboratory to study earthquakes in detail at 
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close hand. The tremors occur in rock with known mechanical properties and in 

response to well-determined stress and deformation fields (Cook, 1963). The high 

level of seismicity and the localization of this seismicity to regions of active 

mining make the deep mines an excellent laboratory to study earthquakes in detail 

at close hand. The tremors occur in rock with known mechanical properties and in 

response to well-determined stress and deformation fields (Cook et al., 1966; 

McGarr et al., 1975; HcGarr, 1976). Perhaps most importantly, the effects of 

some of the tremors are accessible to direct underground observations so that 

the failure process can be observed and compared in detail to laboratory measure~ 

ments. 

This report first revie\~S instrumental observations of tremors and rock con­

ditions in the E.R.P.U. (East Rand Proprietary lfines) Mine, near Johannesburg, 

with emphasis on results related to stress and then attempts to relate these ob­

servations to recent underground observations and laboratory analyses of faulting 

associated with medium to large tremors. The primary intent here is to try to 

relate in as much detail as possible, the failure observed in the laboratory to 

that generating mine tremors or earthquakes. Perhaps the most important result 

to be inferred from the observations, to be described, is that there is no es­

sential difference between the failure of dry brittle rock in the laboratory 

and rock within the source region of a tremor. This finding reduces the class of 

possible models of earthquake mechanics considerably because we know that much of 

the seismogenic region of E.R.P.U. has no ground water (e.g. HcGarr et al., 1975) 

and so the ambiguities associated with possible pore pressure effects do not 

arise. 

SOURCE P.ARAHETERS AND INFERRED STRESS DROPS 

Spottiswoode and ~1cGarr (1975) reported on seismic moments and source dimen-
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-sions for a suite of tremors with magnitudes ranging from 0 to 3. the tremors 

occurred at typical depths of about 3 lan and were recorded on magnetic tape at 

a three-component seismograph station almost directly above the source region. 

Both the P and the S waves were analyzed in terms of Brune's (1970,) 1971) model, 

or modifications of it for P waves (Hanks and Wyss, 1972) and the results are 

summarized in Figure 1. We see that nearly all of the data fall between the lines 

of constant stress drop (Hanks and Thatcher, 1972) of 5 and 50 bars. Thus, there 

does not appear to be any substantial difference between stress drops observed for 

tremors and natural earthquakes, which have stress drops almost invariably in the 

range of 1 to 100 bars regardless of moment or magnitude (e.g. Hanks, 1977). \~hat­

ever problem there is in relating the apparently low earthquake stress-drops to the 

high stress drops observed in the laboratory also exists for mine tremors • 

.MffiiENT STATE OF STRESS 

In situ stress measurements made in the deep mines of the Witwatersrand were 

reported by Gay (1972, 1975) and HcGarr and Gay (1977) and are summarized in 

Figure 2. The measurements were all made using overcoring stress-relief techniques 

in boreholes extending far enough into the solid rock that the stress field was not 

significantly influenced by the proximity of the tunnel. The maximum principal 

stress is generally close to the stress corresponding to the weight of the over­

burden and oriented in a near-vertical direction, consistent 'to7ith the "basin" 

tectonics of the region. The near-horizontal principal stresses are typically of 

the order of half the overburden stress. On the basis of these data we have 

chosen 



aSv = 
265 bars/km az 

4 

132.5 bars/kni 
(1) 

as representative stress gradients in the Witwatersrand, where Sv is the vertical 

stress, SH is the horizontal stress and z is the depth coordinate (Figure 2). 

All of the available evidence indicates that in the vicinity of the deep 

mines near Johannesburg the ambient state of stress illustrated in Figure 2 cor-

responds to a very low level of seismicity. Tremors only began to be noticed in 

Johannesburg after the mines had attained depths of about a hundred meters of so 

(Cook et al., 1966). Furthermore, all of the careful studies of seismicity in 

these deep mines have shown that tremors only occur where the stress field has 

been substantially changed by mining, as will be seen. 

LOCATIONS OF MINE TRENORS AND INDUCED STRESS CHANGES 

In 1971 the Bernard Price Institute, in cooperation with the Chamber of Uines 

of South Africa, installed an underground array of 10 geophones at depths ranging 

from 1.8 to 3.3 km in the E.R.P.M. gold mine. The array was about 10 km across 

and was centered about the central section of the mine. Shortly after the seismic 

array became operational we decided to focus our efforts on studying a small 

region about 300 m in extent near the center of the array. It was an area where 

the gold was concentrated at unusually high levels in the ore body with the result 

that the mine faces advanced at considerably greater rates than in other parts of 

the mine. The seismicity in this region, termed region A, was correspondingly high. 

Figure 3 is a plan view of the seismicity in region A during a 46-day period 

in the first quarter of 1973. The mining results in a broad tabular excavation about 

1.25 to 1.5 m in thickness which causes very high stress concentrations in the abut-
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ting rock. The excavation parallels the stratigraphic layers of quartzite which 

dip southwestward at between 25° and 30°; the average depth of mining in region A 

is about 3.2 YJn. We see that most of the seismicity is concentrated in an area 

within 100 m of the advancing mine face. 

A cross section view of the seismicity along line A - A' (Figure 3) is shown 

in Figure 4, where the hypocenters, which were located with an uncertainty in 

position of 35 m, have been plotted relative to the instantaneous face position. 

The events sho'~ in Figure 4 occurred during two 50-day periods, one in the last 

quarter of 1972 and the other during the first quarter of 1973. We see that most 

of the hypocenters were located in the rock above the mine excavation, which is 

an exceptionally siliceous and thickly-bedded quartzite, in contrast with the 

quartzite below the mining which has a much lower quartz content and closely spaced 

bedding planes. 

As the ambient stress fields and the changes in these fields caused by 

mining are essentially the same above and below the mining horizon we would expect 

the seismicity to be symmetrically distributed about the level of mining. It 

seems likely that the asymmetry arises because of difference is in the strengths. 

The rock above has a typical strength in uniaxial compression of 3.5 kb whereas 

that belo\·1 normally fails at about 2. 1 kb (McGarr et al., 197 5) , a contrast of 1. 4 

kb. Thus, the tremors tend to occur in especially strong rock that is capable of 

storing considerable elastic strain energy before failure. 

The contours in Figure 4 indicate the degree to which the stress field has 

been altered from its ambient state (McGarr et al., 1975). Before discussing the 

stress changes, however, consider the ambient state. From Figure 2 and equation 

(1) we predict vertical and horizontal components of stress of about 850 b and 

425 b, respectively, at a depth of 3.2 km, the approximate depth at the center of 
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Figure 4. 

The contours are meant to show the extent to which the changes in the stress 

field from its ambient state caused the quartzite to fail. The failure criterion 

in compression is approximated by 

s = 0 1 - Go 
c 

(2) 

where s is the strength in uniaxial compression, o 1 is the axial or maximum prin­

cipal stress, and oc is about 3.5 kb. 

On the basis of equation (2) we chose to represent the change in the stress 

field as contours of the function 

F 6tiu 3 (3) 

where ~1 and ~3 are the maximum and minimum principal stress changes induced by 

mining. F was calculated from Hushkehishvili's (1953) relationships for the stress 

field of a slit in a compressed medium. ~o and ~o 3 arise because of the interaction 

between the component of stress normal to the plane of the mining and the collapsing 

excavation. 

Most of the seismicity occurs between the contours F= lkb and 4kb (Figure 4) 

which supports the hypothesis that the changes in the stresses induced by mini~g 

are triggering the events. It is of interest, however, to analyze the stress 

changes in somewhat more detail for conparison with the strength of the rock. Along 

the dashed line in Figure 4 l~o1J IG~o 3 1. To the right of the dashed line ~o 1 is 

the more important term and it is oriented more or less parallel to s1, the maximum 

principal ambient stress. Thus, in this region the tremors are presumably triggered 

by the addition of between 1 and 4kb to s1• To the left of the dashed line the more 
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change in the stress field is an added tension stress of between 160 b and 670 b. 

It is important to note that even though the s-tress changes induced by mining 

seem quite substantial the overall s ·tress level in the quartzite is considerably 

below a failure state according to inferences from laboratory data. As will be 

discussed, one of the key underground observations of failure associated with 

tremors is that they are the result of shear failure in previously intact rock 

and that the fault zone resembles those created on a smaller scale in the labora-

• tory even in microscopic detail. Thus, one might expect a failure criterion for 

tremors to be similar to equation (2). At the center of the distribution of seis-

micity, about 25 m to the right of the fact and about 70 m above the slit, the 

total stress field (arnbient+induced) has maximum and minimum principal stresses of 

about 1.8 kb and 400 b, respectively. Inserting these values into equation (2) 

gives = -600 b whereas the observed values of s for laboratory failure generally 

range from about 2 kb to 4 kb. thus, although the mine-induced changes in the 

stress field seem to trigger the tremors, the tremors occur at levels of stress 

far below a failure state according to criteria developed from laboratory measure-

ments. Even if pre-existing faults are more important in the failure process than 

we currently think they are, the quartzite would be far from a state of failure. 

The only region expected to fail on the basis of laboratory results in the shaded 

region in Figure 4, which, in fact, does fail in a continuous manner as mining 

proceeds. This continuous failure results in fracture planes spaced typically at 

about 10 em extending 10 to 20 m above and below the slit and forming as far as 

10m ahead of the face (McGarr, 1971a). 

In summary, the tremors appear to be triggered by change (equation (3)) in 

the ambient stress field of the order of 1 kb. The typical shear stress in the 

seismogenic region (Figure 4) is roughly 700 b which is ~ore than an order of 

magnitude greater than the stress drops, which range from 5 to SOb. Thus, from 
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this evidence the average stress driving the seismic failure is of the order of 

700 b and the stress drop is insignificant by comparison. 

SEISlUC EFFICIENTY IN REGION A 

From the observation that the typical driving stress in Region A is about 

700 b in conjunction with the information on stress drops, the seismic radiation 

efficienty, n, can be estimated. If the stress drips to the frictional stress on 

the fault then (e.g. Wyss and Holnar, 1972) 

n (4) 

UNDERGROUND OBSERVATIONS OF FAULTING ASSOCIATED \viTH TREHORS 

As seen in Figure 4 most of the seismic failure occurs in the solid rock 

well away from the mine excavations. Occasionally, however, the tremors, especially 

in the magnitude range of 1.5 and greater, result in damage to the workings due 

either to a very high levels of vibration or, more seriously, to sudden closure of 

the excavation. Sometimes a zone of highly-sheared rock actually outcrops in the 

workings and when this happens, shear displacements across these freshly-formed 

faults can be measured if distinct stratigraphic horizons are displaced (McGarr, 

1971b). 

Figure 5 shows a shear zone associated with underground damage in the eastern 

section of E.R.P.H. at a depth of about 3 km. The pencil indicates where the hang­

ingwall side of the fault has been displaced downward about 3 ern relative to the 

footwall side. The occurrence of these normal faults is consistent with the state 

of stress that is believed to give rise to these failures. 
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There are several features about these shear zones that are of importance to 

the present discussion. First, these zones most frequently involve the failure 

of intact rock. Although there are abundant geological faults and joints in 

the Witwatersrand mines the faulting associated with the tremors does not show 

any marked tendency to follow pre-existing faults. The dark mylonite of the 

geological faults forms a very obvious contrast to the quartzite and if the con­

temporary faulting, which forms a white zone of finely crushed rock, followed a 

pre-existing fault, the dark mylonite would be easily visible. 

The second key feature of the shear zones is that the failure has an appear­

ance very similar to brittle shear failure in laboratory samples subjected to axial 

loades in conditions of confining stresses of 100 bars to several kilobars. Thus, 

it seems entirely reasonable to compare in detail the failure corresponding to mine 

tremors with laboratory results. 

In 1974 we found one of the best examples of an outcropping shear zone inter­

secting a tunnel in the western part of E.R.P.M. The fault outcropped along the 

sidewalls and roof of a bay, which had been excavated in the side of the tunnel to 

house a ventilation fan. Figure 6 shows a shear displacement of 4~ em being meas­

ured in the sidewall of the fan chamber. 

From May 1974 until October 1975, a "rabbit warren" of inclined tunnels was 

developed to follow the complex fracture system and from these tunnels the system 

was mapped and photographed in detail by Gay and Ortlepp (1978) with help from 

others of us. In essence, the mapping showed that there were two distinct fracture 

systems, which intersected, termed shear zones A and B. Each shear zone is approx­

imately planar with zone A dipping at 75° toward the NE and shear zone B dipping 

56° to the north (Gay and Ortlepp, 1978); the faulting shown in Figure 6 is part 

of shear zone A. The morphology of the faulting shown in the vicinity of their 

intersection indicated that shear zone B formed before A and from detailed comparison 
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of the positions and attitudes of the shear zones with the mine geometry and the 

reports of the underground damage it appears that both zones formed in September 

1970. 

The tremors associated with the two fracture systems unfortunately occurred 

between two periods of time when seismic data were monitored at E.R.P.M. and so 

the only seismic information available was recorded at the WWSSN station in Pretoria, 

55 lan due north. From the reports of underground damage shear zones A and B were 

correlated with events having local magnitudes of 2.1 and 1.7 (or 3.4) respectively; 

admittedly the correlations are somewhat uncertain especially for zone B, as will be 

discussed. 

Returning to the mophology of the shear zones, the observations in the inclined 

tunnels showed that each shear zone consisted of a comples series of sub-parallel 

shear planes sometimes offset in an en-echelon manner, as seen in Figure 7, or a 

network of planes that bifurcate and join along their lengths as seen in the upper 

half of the exposure of Figure 8. 

The maxi~um observed length of a single, continuous shear plane was 4 to 5 

m and at the end points the movement died out and was taken up by an adjacent par­

allel fracture as seen in Figure 7. Closely-spaced, conjugate shear fractures 

connect the end regions of the primary shear fractures and presumably form as a 

result of the interaction of the ends of the offset fractures. A close inspection 

of Figure 7 indicates that the conjugate fractures tend to offset the primary 

fractures and do not extend beyond the region between the en-echelon fractures. 

Thus the conjugate shear fractures must have occurred after the primary fractures. 

Finally, we note that the amount of offset of the end points of en-echelon fractures 

varies from a few em to roughly 1 m. 

Extension cracks were commonly observed to branch off from the main shear 
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0 fractures forrning . angles of about 30 ; one such example is seen in the upper left-

hand portion of Figure 7. 

Generally, each of the major shear zones consisted of planar systems of fractures 

distributed over a region several metres in thickness. The typical shear displacement 

across the planes was 5 - 6 ern with a maximum observed displacement of 10 c~ distri-

buted between three parallel fractures. The mapping showed that the fracture system 

extended from the mine stope downward for at least 20 to 30 m to the level of the 

tunnel, where we first discovered it. Shear zones A and B had total observed areas 

of 500 rn2, respectively. 

ANALYSIS OF FAULT GOUGE 

On the basis of the similarity between the fractures observed undergound and 

those formed in the laboratory, Spottiswoode (1978) was motivated to analyze the 

distributions of particle sizes of the comminuted rock in the fault zones in terms 

of the energy required to create a given amount of free-surface area. To establish 

the energy necessary to produce free surfaces during failure in triaxial compression 

he performed a series of laboratory experiments which involved testing specimens of 

E.R.P.M. quartzite to beyond failure at confining stresses similar to those expected 

underground. The work W, done on the specimens by the testing apparatus was then 

compared to the total surface area of the crushed rock in the shear zone. 

The crushing energy, G, is defined as 

G = t-J/NS (5) 

where M is the total mass of the crushed rock and S is the surface area per unit 

mass. 

The most difficult measurements in Spottiswoode's study were the estimates 

of s. First the size distribution of the quartz particles was determined by 
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measuring numbers of particles in various size ranges from 5 to 320~. The observed 

distributions could be described quite well by log-normal curves and from these 

empirically determined distributions, S could be estimated from (Herdan, 1953) 

(6) 

where mi is the proportioned by mass of particles of size xi, K is a geometrical 

shape factor, taken as 11, and p = 2.7 gm/cm3, the density of quartz. The sum­

mation was taken over the 12 measured size intervals as well as for sizes less than 

5~. The surface area from particles larger than 320~, of the order of the grain 

sizes, is of little consequence. 

The results of the laboratory studies are suffiQarized in Table 1. The average 

driving stresses, T, were calculated from 

T = H/AD (7) 

where A is the fault area andD is the fault displacement. The specimens were 

tested at t"tvo levels of confining stress of 138 b and 276 b (Table 1), which, 

from equations (1), correspond very roughly to depths of 1 km and 2 km, respectively. 

Because of some experimental difficulties in the post-failure region of sample 21, 

Spottiswoode (1978) gave considerably greater emphasis to the results of samples 20 

and 22. These analyses yielded values of G of 2.7 x 105 and 4.5 x 105 ergs/em, 

respectively, values which are very high in comparison to determinations from 

failure in tension (e.g. Brace and Walsh, 1962). Another point of possible signi­

ficance is the apparent dependence of G on confining stress from these three deter­

minations. 

Spottiswoode (1978) then applied the laboratory results to the analysis of 

gouge particles from the fracture system in the western part of E.R.P.M. Gouge 

particles were extracted from three regions of the portion of the fracture system 

shown in Figure 7 and from a fourth region nearby and the results of analyzing 

these samples of gouge are summarized in Table 2. 
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To estimate the driving stress, T', Spottiswoode combined equations (S) and 

(7) to obtain 

1' = SGpw/D (8) 

where w is the thickness of a particular zone of gouge and the gouge density·, p, 

was estimated as 2 gm/cm3. The average depth of the fracture system is about 2 

km and so, from equation (1), the value of G of 4.5 x 105 ergs/cm2, corresponding 

to the higher confining stress of 276 bars (Table 1) is more appropriate for the 

present analysis. This departs from Spottiswoode's (1978) analysis in that he 

averaged the determinations of G from samples 20 and 22 to obtain G = 3.6 x 105 

ergs/cm3 and thus, somewhat lower estimates of T than those listed in Table 2. 

The average value of T of 400 bars is in reasonable agreement with the value of 

700 b determined in region A from the distribution of hypocenters. 

The analysis of the fault gouge indicates that nearly all of the elastic 

energy released during faulting is consumed in creating the zone of crushed rock 

and this is consistent with the estimates of seismic efficiency of less than 1%, 

discussed earlier. 

DISCUSSION 

To what extent can the results discussed here be applied . to the analysis of 

naturally occurring earthquakes? Are the driving stresses of natural earthquakes 

also an order of magnitude or so greater than the observed stress drops as sug­

gested by Hanks (1977), among others? The available data on the levels of shear 

stress within the crust indicate a generally increasing level of T with depth as 

seen in Figure 9. At depths of 5 to 10 krn T must almost certainly be in excess of 

300 bars in hard rock such as granite. Unfortunately, only one of the measurements 

represented in Figure 9 was made in the vicinity of a currently-active tectonic 
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fault and so it is conceivable that shear stresses in a major fault zone are much 

lower than those suggested by the data of Figure 9. As indicated in Figure 9, the 

measurement made near the San Andreas fault (Zoback et al., 1977) is sor.1ewhat higher 

than the average of the shallow measurements and so there are no data so far that 

indicate remarkably low shear stresses in the San Andreas fault zone or along any 

other active fault. 

From the present evidence, then, it seems likely that natural tectonic earth­

quakes result from faulting driven by shear stresses of about 300 bars or more with 

the necessary implication that crustal earthquakes have very low seismic efficiencies 

of the order of 1% or less. Nearly all of the elastic strain energy may be consumed 

in creating fault gouge. 

It is of prime interest to compare the various aspects of shear zones A and B 

to the seismic source parameters normally measured for tremors with magnitudes 

close to 2 and this comparison is summarized in Table 3. 

At the outset we should emphasize that most of the measurements listed in 

Table 3 have a considerable amount of uncertainty and are primarily intended to 

illustrate the comparisons between the conventional modes of faulting and what was 

observed. The limitations on the estimates of the areas of the shear zones have 

been discussed already. The average shear displacements, D, were based on a suite 

of about 10 measurements of offsets of marker horizons or geological joints such 

as shown in Figures 5,6 and 7. The values ranged from about 4 to 10 ems and 6 em 

is a reasonable average displacement for each of the zones. Because the fracture 

system did not appear substantially different away from the positions where dis­

placements could be measured we are confident that the measured displacements are 

representative within the general region of observation. 

As indicated in Table 3 the moments inferred from the underground measure­

ments are lower bound estimates only as the entire fracture system was not encom-
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passed by the expioratory tunnels. Similarly the radii of the shear zones, ~deal-

ized as circles, are lower limits and tabulated only for the purpose of comparison 

with a circular model of seismic faulting. 

"tfo/ 3 The stress drops, ~T = (7/16) ro 

and are almost certainly over-estimated, as will be seen. 

(9) 

As mentioned before, the assignment of particular tremors to the two shear 

zones was somewhat uncertain, especially the correlation between the event of mag-

nitude 1.7 and shear zone B, the first of the shear zones to be formed. On 5 September 

1970 (Saturday) a tremor of magnitude 3.4 occurred at 21.53 G}IT and then on 6 September 

at 21.58 GMT_ there was an event of magnitude 1.7; as both of these events occurred 

during the weekend break when there was no production, the corresponding underground 

damage was reported about 300 m to the west of the area under discussion and lesser 

damage was reported irr the mine stope almost coincident with shear zone B. We 

associated the smaller event with shear zone B on the basis of the relative amounts 

of damage but there is a fair possibility that this shear zone was· part of the fail-

ure that occurred at the time of the event of magnitude 3.4. We have considered 

both possibilities in Table 3 as indicated by the additional set of values in par-

enthesis for zone B. Fortunately, the correlation of shear zone A with an event 

of magnitude 2.1 is more certain. 

All of the seismically inferred results listed in Table 3 were based on 

Brune's (1970, 1971) model of faulting and relations between source parameters and 

magnitude developed by. Spottiswoode and ~1cGarr (1975). \ole see that there are con-

siderable discrepancies between the fracture parameters observed underground and 

those inferred seismically. The seismically inferred moments are significantly 

larger than the moments measured underground which means that the exploratory tun-

nels circumscribed only a small fraction of the total fracture surface. This is 

not too surprising because at the lower and souther extremities of the tunnels (e.g. 
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Figure 6), the fracture system was still showing large displacements with no 

indications of attenuation. 

The seismically determined source radii are also an order of magnitude, or 

more greater than the approximate radii of the region explored underground, again 

suggesting that only a small fraction of the total system was actually mapped. 

Perhaps the most interesting comparison is between the observed displacements 

and those inferred using Brune's (1970, 1971) model. The observed displacements 

are more than an order of magnitude greater than displacements expected for a cir­

cular fault with a uniform stress drop. As seen in Table 3 the seismically infer­

red displacements are only weakly dependent on the magnitude. 

Furthermore, according to the model, the maximum displacement, at the center 

of the circular fault, should only be 33% larger than the average displacement. 

Thus, the large shear displacements of 4 to 10 em measured in the tunnel, are clearly 

inconsistent by an order of magnitude, or so, \lith a model involving a homogeneous 

stress drop of 5 to 50 bars over the fault surface. 

Finally we note that the stress drops estimated from the underground observa­

tions are about two orders of magnitude greater than those typically calculated 

from the seismic data. The calculated from the seismic data. The calculation of 

6T (underground) was based on the assumption that all of the faulting was included 

within the tunnel network, which is almost certainly not the case, especially in 

view of the discrepancies between underground and seismic moments. The only reason 

for listing 6T (underground) is to suggest the extent to which locally high values 

of stress drop occur. It is reasonably certain that the stress drops are nowhere 

as high as the apparent values listed in Table 3 because if the driving stress is, 

in fact, close to 400 b then 6T > 800 bars implies that the fault overshoots in 

relaxing the shear stress. 

Although we know that shear zones A and B must extend well beyond the limits 
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of the tunnel system we neither know how far they extend nor the nature of the 

extension. One possibility is that the faulting extends outward from the explored 

region for more than 100 m but with shear-displacements that are only a small 

fraction of 1 em on the average. Another possibility is the the faulting extends 

over a region with perhaps 10 times the area of the explored region, with shear 

displacements comparable to those that were measured. 

The analysis of our underground observations of shear zones has not solved 

any of the fundamental problems about the relationship between failure associated 

with earthquakes 8.nd failure in laboratory samples but the observations and com­

parisons presented here may serve to define the problem more closely. 
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Sample 

20 

21 

22 

Max. axial 
stress (bars) 

3400 

4320 

4240 

TABLE 1 

Failure and gouge data of E.R.P.M. quartzite 

tested in triaxial compression 

Confining 
stress (bars) 

138 

276 

276 

8 w 
(10 ergs) 

7.3 

5.4 

11.0 

:r 
(bars) 

800 

1550 

930 

u 
(gm) 

3.50 

1.81 

3.04 

2s 
(em /gm) 

780 

600 

800 

5 G 2 
(10 ergs/em ) 

2.7 

5.0 

4.5 
N 
0 
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Gouge 

A+B 
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D 

\-1 
(em) 

2.1 

0:75 

1.2 

\. 

TABLE 2 

Data on samples of burst zone gouge 

D s 
(em) (em2 /gm) (bars) 

6. 1500 470 

s. 2700 360 

6. 2200 400 

Average 410 
N 
~ 



TABLE 3 

Comparison of observed and inferred source parameters 

Shear zone A Shear zone B . ·-·-
Area, m >500 >600 

D, em 6 6 

H
0 

(underground), adyne-cm >1.9xlo19 >1.4xlo19 

r 0 (underground), m >13 >14 

6T (underground), b >3.8x103 >2.2x1o3 

Magnitude 2.1 1.7 (3.4) 

}~ (seismic), bdyne-cm 1.7x1o20 5.5x1o19 (6x1o21) 
N 

r 0 (seismic), em 
N 

~ 
215 130 (1030) 

(.N 
c.n 

6T (seismic)c, b 5 to 50 5 to 50 

2 
a- - 11 dynes/ em 

Mo = ~·Area·D, ~ = 4x10 

b log Ho = 17.7 + 1.2·11agnitude (Spottis~voode and HcGarr, 1975) 

c From results of Spottiswoode and McGarr (1975) 
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FIGURE CAPTIONS 

Figure 1. The long period asymptotic level of the seismic spectrum as a function 

of the corner frequency of the seismic moment as a function of the source 

radius. (Fro~ Spottiswoode and McGarr, 1975) 

Figure 2. Vertical and horizontal components of stress as a function of depth. 

The vertical stresses were measured in Southern Africa, North America and 

Australia. The horizontal stresses were all measured in Southern Africa and 

all determinations at depths below 1 krn are from the deep mines of Witwatersrand. 

SHmi and SHm denote the minimum and maximum near-horizontal principal 
n . ax 

s~resses, respectively. 

Figure 3. Seismicity in region a from February 13 to March 31, 1973. The tremors, 

represented as dots, have been classified into five . ranges of local magnitude, 

cross-hatched region indicates the advance of the mine face during this period. 

(From McGarr et al., 1975) 

Figure 4. Cross section view of ~eismicity reiative to the instantaneous position 

of the mine face. The mined-out area is the slit extending leftward from the 

middle of the picture and has a thickness of 1.25 to 1.5 m. The tremor sizes 

were explained in the previous figure caption. (From UcGarr et al., 1975.) 

Figure 5. A burst fracture di~covered in the Eastern Section of E.R.P.M. The 

pencil indicates where the fracture has offset the conglomerate horizon about 

3 em in a sense appropriate for normal faulting. 

Figure 6. Part of the outcrop of shear zone· A where it outcrops in the southern 

sidewall of the fan chamber. A shear displacement of 4~ em is being measured. 

Figure 7. An en-echelon offset in shear zone A where it outcrops in the face of 

the initial inclined tunnel. A prominent geological joint has been displaced 
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about 6 em across the offset region of the fault. 

Figure 8. Shear zone A where it outcrops in the sidewall of the fan chamber. 

In the lower left portion of the fault is an en-echelon offset and in the 

upper right the fault bifurcates and joins several times. 

Figure 9. ~1easurements of shear stress as a function of depth made in North 

America, Southern Africa and Australia. The circles indicate measurements 

made in soft rock such as shales, sandstones and limestones. The triangles 

represent measurements in hard rocks such as granite and quartzite. 
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Introduction 

There has recently been a resurgence of interest in some slow 

deformations that oftentimes accompany or slightly precede regular 

earthquakes. These deformations are detected on strain meters or on 

ultra-long period seismometers. Sacks and others (1977) reported 

detecting several such events on a borehole strainmeter in Japan. 

The duration of these events was of the order of tens of' minutes. 

Sacks named these events "slow earthquakes", since they were ob­

served to have very slow.rise times on the record. The slow rise 

time was interpreted to be the result of abnormally low velocity of 

rupture on the fault plane. Sacks also made a comparison of two 

events with similar magnitude and location that occurred off Hokaido 

in June of 1975. One was a normal earthquake and the other was 

accompanied by a large coseismic slow deformation. The latter 

generated a tsunami whereas the former did not. He offered that 

pair· as evidence that slow earthquakes and normal earthquakes can 

occur at the same locality. 

R. J. Geller reported at this conference (paper included in 

this volume) of discovering independently the same "slow earthquake" 

off the coast of Hokaido by observing that its seismic moment, when 

computed from 200 second surface waves, was much larger than what 

would be computed from the standard magnitude vs. moment relation­

ship. J. H. Pfluke (comments to Geller's paper) pointed out in the 

ensuing discussion that there are several documented cases in the 

literature of the early 1970's of another type of slow fault slip, 
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some with duration times up to 30 hours. Such prolonged fault 

movements might well be called "very slow earthquakes". It is the 

purpose of this paper to review certain of these cases with which I 

am familiar and to emphasize two investigations in which I was a 

participant. 

Evidence of coseismic slow deformation from tsunamis 

Sacks and others (1977) and Geller (this volume) give evidence 

of earthquakes whose total moment was considerably larger than that 

which was calculated from conventional seismic methods. In both of 

these cases, tsunamis resulted because, although the time constant 

of the fault slippage was long compared to the response band cf 

seismographs, it was short compared to response characteristics of 

the sea whereunder the deformation took place. 

Ando (1975) presented a well-documented study revealing a large 

component of slow deformation that occurred coseismically with the 

Nankaido earthquake of 1946. He showed that the fault moment (~Au) 

necessary to produce the deformations associated with the observed 

geodetic data is some five times that which is calculated from con­

ventional seismic observations. This earthquake also produced a 

tsunami which was too large to be consistent with the source area 

calculated by seismic means. 

The observations of Sacks and Ando might lead us to believe 

that information on coseismically occurring slow deformations might 

be obtainable from a catalog of tsunamis. With this in mind, I have 
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extracted .from the Catalog of Tsunamis in Hawaii (Pararas-Carayannis 

and Calebaugh, 1977) some statistics on the largest tsunamis that 

have occurred in the Pacific since 1930. The list (Table I) summar-

izes all of the tsunamis that had a tsunami magnitude, Mt, greater 

than 2. Mt is a quantitative measure of the size of a tsunami 

(Iida et al., 1967). It is calculated by the relationship 

where H is the maximum runup or amplitude on a 

coas'tline near the origin. 

The tsunamis are arranged by date. The other information in the 

table is the location of the origin, the earthquake magnitude, the 

tsunami magnitude, and the ratio of these quantities. The 

ratio ut/M6 (Ms is the seismic magnitude from 20 second surface 

waves) is taken to be a measure of the seismic effici~ncy of tsunami 

generation. 

Three generalizations that can be made from the table and from 

the originating catalog are as follows: 

1) All of the tsunamis of Table I, with the exception of two 

(1935, Hawaii; and 1975, Hawaii) originated in a zone of litho-

spheric subduction (a well-known fact of tsunami generation). 

2) The majority of tsunamis generated by earthquake magnitudes 

less than 8.0 have tsunami magnitudes less than 1. 

3) Earthquakes with M > 8.25 display the largest s 

ratios--U /H . This phenomenon is probably the result of the fact 
t s 

that the magnitudes scale, M , is known to be deficient in s 

reflecting the true seismic moment of very large earthquakes (Geller 

and Kanamori, 1977). 
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There are two notable exceptions (1946, E. Aleutian Islands; 

1963, Kurile Islands) to generalization number 2, above, which, 

although seismically rather small, generated large tsunamis and 

exhibited high tsunami generating efficiency. 

It should be pointed out that neither the 1946 Nankaido earth-

quake nor the 1975 Nankaido earthquake had unusually high tsunami 

generating efficiency (M /M = .30), although in each case good 
t s 

evidence has been presented (Ando, 1975; Shimazaki and Geller, 1977) 

that these earthquakes had associated with them substantial compon-

ents of slow deformation, i.e., aseismic fault slip. This fact leads 

to the speculation that several other earthquakes listed in Table I 

had associated components of aseismic fault slip as part of their 

mechanism. 

It is interesting to focus on those events of Table I for which 

M < 8.0. For these events, the conventional means of computing s 

earthquake magnitude should render a good understanding of the "size" 

of the earthquake, i.e., the difficulties of consistency that are 

known to exist for M 
8 

> 8. 0 do not pertain. Eight events fall into 

this category and two of these (1946, E. Aleutian Islands; 1963, S. 

Kuril Islands, M
8 

= 6.8) stand out as having been highly efficient 

at tsunami generation. In fact, the 1946 Aleutian earthquake gener-

ated the most destructive tsunami ever to strike the Hawaiian Islands 

(Pararas-Caraymis, and Calebaugh). It is intriguing to speculate 

that large components of coseismic aseismic fault slip may have been 

operative for these two events. Unfortunately, neither the geodetic 
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data nor the long period seismic data exist to permit investigations 

such as those done on the Nankaido earthquake and the 1975 Hokaido 

earthquake and the 1975 Hokaido earthquake. Assuming that the high 

tsunami generating efficiency of the Kurile, M = 6.8, earthquake 
s 

was due to a large component of aseismic slip, and comparing its 

parameters with those of the 1963 Kurile event (M = 8.25, Mt/M 
s s 

.24) supports a statement made by Sacks and others (1977) that 

"normal" earthquakes and "slow" earthquakes can occur in the same 

region. 

The 1975 Hawaiian earthquake-tsunami stands out as an 

exceptional event in Table I. This event and the Hawaiian event of 

1935 are the only ones in the list that do not fall in a zone of 

lithospheric subduction. The ratio M 1M is .41 for the 1975 event 
t s 

(no value forM has been published for the 1935 event). A fault 
s 

plane solution (Ando, to be published) along with tsunami·data 

(Hatori, 1976) indicate a shallow dipping fault plane (dip< 50) 

extending in a southerly direction away from the epicenter. The 

tsunami and geodetic data indicate that the slip plane is much 

larger than what can be deduced from seismi~ data alone (R. S. 

Crosson, personal communication). For example, that area of the sea 

floor attributed by Hatori to have generated the tsunami extends 

some 30 kilometers away from earthquake epicentral and aftershock 
! 

zones (R. S.C.). These observations indicate that this event was 

indeed a slow earthquake. 
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Of the remaining five small events (M <: 8.0) of Table I, three 
s 

(occurring in 1965, 1969 and 1971) were characterized by the 

ratio M
8

/Mt being .4 or greater. This together with the statistics 

on the large earthquakes listed in Table I (M > 8. 0), whose ratios 
s 

are generally greater than .4, suggest that perhaps a considerable 

component of aseismic fault slip is required before an earthquake 

can generate a destructive tsunami. 

Evidence of very slow earthquakes from regional strain data 

From 1968 to 1971 a large number of strain seismometers (of a 

modified Benioff type) were in operation in Nevada and the Aleutian 

Islands. Most of these instruments were operated continuously for 

about two years as part of a national effort to discern whether 

large nuclear explosions were likely to trigger large earthquakes. 

During this period, some interesting observations of earth strain 

were made in these regions which would not have been possible 

without the increased number of strainmeters. Major and Tocher 

(1971) reported to have observed large transients on the Aleutian 

strainmeters. The transients were as large as 3-4 parts in 106 

and were correlatable across the entire array of instruments whose 

locations spanned some 350 km along the Aleutian arc. Smith and 

Kind (1972) reported similar correlatable transients in Nevada over 

an array of six strainmeters covering an area 60 x 150 km. 

The regional strain variations in Nevada were such that a 

secular trend would be observed for a month or so, followed by an 
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overall field reversal that would take place over one or two days. 

Smith and Kind performed an analysis on one such sequence spanning 

two months of data. They assumed that the strain field was uniform 

in space and varied quasi-statically in time. Since there were six 

strainmeters, the problem of solving for the principal axes was 

overdetermined. They then determined the strain field at daily 

intervals using an iterative least-squares technique. They found 

that the principal axes, thus determined, remained more or less 

statically oriented but built up gradually to values as large as 

1Q-5 and subsided spasmotically as described above. The direction 

of the principal axes agreed closely with those determined from 

earthquake focal plane solutions and from geomorphological evidence. 

Smith and Kind attempted to interpret the strain transient as 

aseismic slip occurring on geologic faults in the area. Using 

numerical techniques and the displacement field equations of 

Mansinha and Smylie (1971) for uniform slip on a rectangular fault 

did not provide a satisfactory fit of the model to the data. Their 

final interpretation was that the strains were direct results of 

relative movement between the crust and the mantle. 

Examples of the types of strain variation observed in the 

Aleutian Islands -are shown in Figures 1 and 2. Figure 1 depicts 

tracings of two components of the strain- and tilt-meter array that 

operated in the Aleutians in 1970-71. The records are characterized 

by a large annual variation which approaches 1 x 1o-5 in magni­

tude. Superposed on this are abrupt variations, the largest of 
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which are 1 to 3 parts in 106. Following the abrupt variation, 

the strain trace would typically return back to the long term mean 

trend for the particular season. The return phase typically lasted 

from 1 to 4 weeks. During the period of operation of the Aleutian 

array, about 6-8 similar such phases could be correlated across the 

array each year. 

The abrupt variations can be better examined in the expanded 

scale tracing shown in Figure 2. The figure depicts the strain and 

tilt tracings of the 14 components that were operating at that time. 

The geographic locations and azimuthal orientations of the respec­

tive components are indicated in Figure 3. Two of the above­

mentioned abrupt strain episodes occurred during the ten day period 

shown in Figure 2. The vertical dashed lines mark points of common 

absolute time. The episode occurring on 11 October can be clearly 

seen on the Amchitka records and on the Adak records. There were no 

records for Rat Island at that time and the records from the tilt 

components on Amatignak were quite noisy. An even larger episode 

occurred on 16-17 October that was visible on all records. The 

duration of each of these episodes was about 30 hours. 

It was suggested by Major and Tocher (1971) that these large 

strain episodes might be caused by aseismic slip on fault surfaces 

at depth. They were motivated by the similarity of form of these 

episodes with the well-documented episodes of aseismic slip that 

take place at the surface along some of the active faults in 

California (e.g. Nason, 1971). Pfluke and Stewart (1973) carried 
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this hypothesis further by solving the inverse problem of finding 

the location, orientation and dimensions of the fault plane of one 

such event, assuming that that the episodes were indeed caused by 

aseismic fault slip. 

Using the displacement field equations of Mansinha and Smylie 

(1971) for a finite dimensioned fault in a half-space, the solution 

for ·the fault plane assumed to cause the strain episode was found by 

an iterat1ve least squares technique (Marquardt, 1963). The formula­

tions of Mansinha and Smylie has nine parameters and there were 14 

elements of data, thus allowing a degree of overdetermination that 

is seldom available for this type of problem. The parameters of the 

best fitting solution to the 16 October data are as follows; 

strike azimuth goo 

dip 

depth to top edge 

width 

length 

dip component of slip 

lateral component of slip 

130 

27 lan 

29 km 

113 lan 

5. 1 meters 

7.2 meters 

A surface projection of this hypothetical fault appears on the map 

of Figure 3. The location and orientation of the solution fau~ t 

agree well with our knowledge of the upper surface of the crust 

undergoing subduction, hence inferring that the 16 October strain 

episode was caused by an episode of aseismic slip in the process of 

tectonic crustal subduction. 
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Evidence of very slow earthquakes from local strain data 

It is well-known that very slow earthquakes take place repeat­

edly along the San Andreas fault in California. Evidence for these 

events are customarily recorded on displacement meters that span the 

fault zones at localities where aseismic fault slip is known to take 

place. The time duration of these events varies typically from the 

order of 30 minutes to 3-4 days (Nason, 1971). 

Although it is commonplace to observe these events on displace­

ment meters (often called creepmeters), these events are rarely 

observed on strain measuring instruments. I know of only one such 

event that was recorded both on a creepmeter and on a type of strain 

sensing instrument. Johnson et al. (1973) documented a moving front 

of aseismic slip that was observed on a creepmeter and on a water 

well level recording device nearby. On the other hand, a small 

number of strain episodes have been observed that were assumed to 

have been caused by aseismic slip that did not propagate past a 

creepmeter (Bufe and Tocher, 1972; Bufe et al., 1973; Stewart et 

al. , 1973). 

Beginning on 15 March 1972, a series of strain events were 

recorded over a six-month period at Stone Canyon Geophysical Obser­

vatory, south of Hollister, California. One of these could be 

classified as a slow earthquake as evidenced by the strain record 

shown in Fig. 4 (taken from Bufe and Tocher, 1972). A creep event 

recorded the previous day on a creepmeter seven kilometers distant 

from the epicenter is shown for trace form comparison. The strain 
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record was taken at the time of an earthquake of magnitude 4.7 which 

occurred in the immediate vicinity of the observatory. The record 

shows the seismic oscillation superposed upon a transient deforma­

tion of about one hour duration. The slow transient was interpreted 

by Bufe and Tocher to be the result of aseismic slip very near the 

instrument. Data loss on the other two strain components prevented 

the solution of the inverse problem as done by Pfluke and Stewart. 

One of the strain transients observed in this sequence was well­

recorded on all three strain components. Tracings of that event, 

which occurred on 15 March 1972 are shown in Figure 5 (taken from 

Bufe et al.). By constraining a number of the parameters using geo­

logic evidence, it was possible to solve the inverse probl~m at 

different increments of time for the sequence of dimensions of the 

growing plane of aseismic slip. The first and last of the increment­

al solutions are shown in Figure 6 (also taken from Stewart et al.). 

Summary and Discussion 

Two earthquakes ( 1946 Nankaido, 1975 Hokaido) were found to 

have seismic moments that were much larger than those which would 

normally have been expected from the conventional magnitude-moment 

relationship. An hypothesis that much of the fault slip occurred at 

a rate that is slow compared to the respon~e of our seismographs, 

but yet fast when compared to the response time of tsunami genera­

tion is solidly supported by the work of Ando, Geller, and Sacks and 

associates. An examination of the catalog of large tsunamis in the 
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but yet fast when compared to the response time of tsunami genera­

tion is solidly supported by the work of Ando, Geller, and Sacks and 

associates. An examination of the catalog of large tsunamis in the 

Pacific further indicated that a few of these tsunamis could well 

have been generated by similar such slow earthquakes. An indicator 

that supports such a hypothesis is an abnormally high ratio of 

tsunami magnitude to earthquake magnitude. ~ From the evidence 

reviewed here, it would appear that slow earthquakes are probably 

commnplace events. 

Case histories of large, truly aseismic, strain transients that 

occurred in the Aleutian Islands and Nevada give evidence that large­

scale aseismic fault slip may also ~e a commonplace occurrence. But 

if these phenomena are commonplace, then why have so few been docu­

mented in the literature? I think the answer lay in the general 

nature of the instrumentation that is in widespread use. Many short 

and medium period seismogr&phs are in operation, but comparatively 

few strain measuring devices capable of detecting very slow deforma­

tion are in use. The ultra-long period seismic records of the type 

used by Geller have been deployed only in recent years. Furthermore, 

the rapid fall-off of the static strain field with distance coupled 

with the high n.oise customarily experienced by strain meters require 

that a natural event occur very close to an instrument (probably 

within 20 faults lengths) before it can be detected. With the 

deployment of larger numbers of strain sensitive devices that is 

taking place in the Earthquake Hazards Reduction Program, we may 

find that the occurrence of slow earthquakes and very slow earth­

quakes occur far more frequently than had heretofore been suspected. 

459 



Table I 

Date Origin 

1932 Jalisco, Mexico 

1933 Sanriku, Japan 

1935 Hawaii 

1946 E. Aleutian Is. 

1946 Nankaido, Japan 

1952 Hokaido, Japan 

1952 E. Kamchatka 

1957 Andreanof Is. 

1958 s. Kuril Is. 

1960 s. Chile 

1963 s. Kuril Is. 

1963 s. Kuril Is. 

1964 Gulf of Alaska 

1965 Rat Island 

1969 Kain.chatka 

1971 New Ireland 

1971 Kamchatka 

1975 Hokaido, Japan 

1975 Hawaii 
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M 

8. 1 

8.3 

7.4 

8. 1 

8. 1 

8.25 

8.3 

8.7 

8.5 

8.25 

6.8 

8.4 

·7.75 

7. 1 

7.5 

7.3 

6.9 

7.2 
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2 

4.8 

2 

5 

2.4 

2.0 

4 

3.5 

2 

4.5 

2 

3.5 

4.5 

3 

3 

2.5 

3 

2.2 

3 

M /M 
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.25 

.57 

.68 . 

.30 

.25 

.48 

.42 

.23 

.53 

.24 

.51 

.54 

.40 

.42 

.33 

.41 

~31 
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CAPTIONS FOR TABLE AND FIGURES 

List of tsunami generating earthquakes occurring since 

1932. 

Examples of secular strain recorded in the Aleutian 

Islands at Adak (ADK) and Amchitka (ANW). 

Record tracings of the Aleutian strain episodes of 

October 1970. 

Map of the central Aleutian Islands, showing locations 

of strainmeters and a surface projection of the fault 

plane of the 16 October 70 very slow earthquake 

Creep event and slow earthquake recorded at Stone 

Canyon Geophysical Observatory, California. 

Record tracings of strain event of 15 March 72. 

First and final fault plane solutions of 15 March 72 

slow earthquake as derived from strain data. 
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ABSTRACT 

We report the analysis of two mechanisms by which pore fluids could 

partially stabilize the earthquake rupture process in natural rock masses. 

These mechanisms are based on dilatancy ~trcngthening and on the increase 

of elastic stiffness for undrained as opposed to drained conditions. Both 

are studied in relation to an inclusion model in which a zone of strain 

weakening material, possibly representing a highly stressed seismic gap zone, 

is embedded in nominally elastic surroundings subjected to steadily increas­

ing tectonic stress. nue to the coupling between deformation and pore fluid 

diffusion the inclusion does not exhihit an abrupt rupture instability but, 

rather, a period of self-driven precursory creep occurs which ulti~ately 

accelerates to dynamic instability. The precursory time scnle is reported 

for a wide range of constitutive parameters, includin~ fluid diffusivity, 

ratio uf undrained to drained stiffness, and factors expressive o~ strain 

softening and dilatancy. Our conclusions are that the precursory timP.s for 

a spherical inclusion of 1 km radius are of the order of 15 to 240 days for 

a range of constitutive parameters that we suggest are representative. The 

predicted times are shorter by a factor of approximately 10 for a flattened 

ellipst~idal inclusion that we analyze with an 18:1 aspect ratio. It is 

suggested that perhaps only toward the latter part of the precursory period 

are the effec1;,s of accelerating inclusion strain detectable in terms of sur­

face deformation or alteration of transport or seismic properties. 
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INTRODUCTION 

We consider the possibility that rock near sites of shallow earthquakes 

is infiltrated with eroundwater, and examine quantitatively processes by which 

mechanical coupling of rock deformation and pore fluid diffusion could trans­

iently stabilize the rock against rapid failure. The stabilization results 

from dilatant strengthening within a fault region and from time-dependent 

relaxation of the effective elastic unloading stiffness of the surroundings 

from undrained to drained conditions. Both mechanisms are shown to allow 

failure to occur in a less abrupt manner tJ1an predicted without considera­

tion of fluid coupling. Instead of an instantaneous dynamic instability, 

there is a period of initially quasi-static deformation that proceeds on a 

time scale governed by pore-fluid diffusion and non-elastic deformation charac­

teristics of the failing material, and that ultimately accelerates to dynamic 

instability. 

The time-seal~ and character of this quasi-stable deformation has interest 

as a possible basis for discernible precursors to earthquakes, in the form of 

accelerating strain or tilt and local pore pressure alterations. Our aim 

in the present work is to develop quantitative estimates of these precursory 

processes on the basis of mechanically consistent models of the failure pro­

cess. In doing so we do not, of course, claim that all time-dependent pre­

cursory phenomena is traceable to such mechanical effects of pore fluids in 

an, essentially, deformation-rate-insensitive rock skeleton. Indeed, some 

precursory effects arise inevitably from the amplification of local fault 

region strain rates over remote tectonic strain rates as instability condi­

tions are approached (e.g., Rice, 1977a). Also, time-dependence from corrosive 

microcracking of stressed rock, creep processes at depth, time-dependent 
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adherence at frictional contacts, and perhaps other mechanisms could be 

important in different settin~s. 

The first mechanism of fluid coupling that we consider, namely 

di latant hardening, is \iell known in the mechanics of granular materials 

(Reynolds, 1886). Because rock masses and fault zones typically dilute 

when deformed inelastically, the local pore fluid pressure will decrease 

unless the deformation is sufficiently slow to permit alleviation of the 

induced suctions by diffusion. This decrease in pore fluid pressure causes 

the effective stress (that is, the total stress minus the pore fluid pressur~) 

to increase in compression, thereby inhibiting inelastic deformation mechan-

isms such as frictional sliding and microcracking. The relevance of dilatant 

hardening to seismic processes was first suggested by Frank (1965) and it has 

beeJt studied in the laboratory deformation of rock by Brace and Martin (1968). 

A preliminary analysis of the role of dilatancy in stabilization of faulting, 

in the spirit of that to he discussed here, has been given by Rudnicki (1977b). 

The second mechanism by which the interaction of defamation and pore 

fluid diffusion can stahil izP. against rapid failure nri.ses because of the 

dependence of fault instability conditions on th~ effective elastic stiff-

ness of the fault's surroundings. Such stiffness dependencies are well known 

in laboratory studies of failure (Jaeger and Cook, 1976); the stiffer the 
t-Ae 

loading apparatus, the more rock can be deformed stably into~post-peak range. 

For fluid infiltrated rock, the surroundings are elastically stiffer for stress 

alterat :ons which are ranid compared to diffusive relaxation times than for 

long Lerm stress nlterations. If the time scale of deformation is rapid com-

pared to that for diffusion so that the fluid tnass in materi.al elements remains 

~onstant, the response is termed "untlrained," and is elastically stiffer than 
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the long-time or "drained" response for which the .local pore fluid pressure 

is constant. 'This time dependence provides a mechanism of transient stabili­

zation as discusse.d hy Rice et al. (1977) and Rice (1977a) on the basis of 

analyses using the linear elastic theory of Biot (1941) for porous solids. 

Similar effects have been studied in problems related to aftershock mechanisms 

by Booker (1974). 

Our analysis of both the foregoing pore fluid coupling effects is 

based on a model for the inception of faulting introduced by Rudnicki (1977a). 

This model considers the deformation of a rock mass which contains an ellip­

soidal inclusion in which the properties are uniform but different ~rom those 

of the surroundings (Fig. la). Rudnicki (1977a) interpreted this inclusion 

as deforming non-linearly and exhibitin~ a peak stress as a consequence of 

weakening by faulting, whereas the surrounding material remains nominally 

elastic. Rice (1977a), however, has indicated that the model applies as 

well and, indeed, may he more pertinent if the inclusion is interpreted as 

sustaining higher stresses than its surroundings. This would be the case if 

the inclusion had undergone less strain due to past faulting than the 

surroundings and is, in effect, a "seismic gap" zone. Because of the large 

local stress, the inclusion, as in Rudnicki (1977a), exhibits a peak stress 

whereas the surrounding material remains elastic. 

In either interpretation, the slow increase of tectonic stress drives 

the inclusion material past peak stress. At some point, the slope of the 

descending stress-strain curve for the inclusion material becomes sufficiently 

negative so that no fl1rther increase of tectonic stress can he accommodated 

quasi-statically. 

of an earthquake. 

This dynamic "runaway" is interpreted as the occurrence 

As we shall see, and as suggested by prior discussions of 
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the inclusion model by Rudnicki (1977a,b), Rice et al. (1977), and Rice 

(1977a), the effect of fluid coupling mcchapisms of the type discussed 

earlier is to cause this instability to occur not abruptly, but rather in 

a more gradual manner with a time scale controlled by fluid diffusion, 

and, possibly, with discernible precursors. 

Despite the simplicity of this model, it is motivated by the idea that 

pre-failure processes are likely to he dominateJ by large scale hetero­

geneities of mechanical properties which remain as a result of the past 

history of faulting. Indeed, because the material properties and the 

geometry of such fault zones are at present so poorly known, it seems unwise 

to concoct overly-detailed models, although we do believe th~t simple analyses 

founded upon consistent mechanical principles are useful for identifying 

the salient features of precursory processes. 

Although our discussion here is organized primarily with reference 

to the inclusion model, another model which is relevant and may be more appro­

priate in many circumstances is one in which non-elastic deformations are 

asswned to be localized along a narrow fault from the outset, and in which 

the slipping zone along the fault can propagate in a shear-crack-like mode 

(Fig. lb). In the presence of an infiltrating pore fluid, both the stabilizing 

effects of dilatant hardening anrl of time-dependent stiffness of the surround­

ings are applicable here as well, as has been 1remarked by Rice and Cleary (1976). · 

Rice and Simons (1976) examined further the stabilization which results from 

tim~-dependent elasticity by solving for the stress-concentration near the 

tip of a quasi-statically propagating shear crack in a fluid-infiltrated por-

ous elastic solid. Thcv found that for a range of crack speeds comparable 
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to propagation rates inferred for episodic creep events in central California 

(King et al., 1973), the crack extended stably in the sense that with increas-

ing propagation speed an increase in far-field driving stress, relative to 

frictional resistance, was needed to maintain the same stress intensity near 

the tip. Also, by adapting an earlier analysis developed for slip surface 

propagation in overconsolidated clay soils, Rice (1977a) developed an 

expression for the increase in far-field driving stress that is required, with 

increasing propagation speed, to overcome the augmented frictional resistance 

due to dilatantly induced suctions from the shear "breakdown" process near a 

fault tip. The result suggests that the maximum induced suction and required 

driving stress increase approximately in proportion to v112 at low speeds, 

where V is the propagation speed. These stndies of pore fluid effects on 

the criterion for propagation of a shear crack suggest precursory effects 

similar to those that we discuss here based on the inclusion model. In the 

inclusion model as we present it, an entire zone deforms into the inelastic 

range and ultimately becomes unstahle. The shear crack model is more compli­

cated because it involves the gradual enlargement of the non-elastic (slipping) 

region. Fluid effects of the kind diso1ssed above provide a possible mechanism 

for control of the time-scale and extent of enlargement of the slip region 

before an unstable, d~tamic spreading of the slip zone occurs, just as they 

may control the time-scale and extent of non-elastic strain in the inclusion 

model. We leave as a goal for future work the quantification of the precursor;' 

time-scale predicted on the basis of the ~hear crack model, and concentrate 

here on the inclusion model. 

In addition to the mechanical effects of the pore fluid, there are also 

surface-chemical effects. These seem to be important in timc-Jependent crack 
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gro~th in quartz-based rocks (e.g., Martin, 1972; Scholz, 1972; Swolfs, 

1972; Martin and Durham, 1975; Anderson and Grew, 1977) and they may be 

s;~nificant in determining the strength of rocks on a time scale comparable 

tG t:tat for tectonic alterations in stress. The constitutive description 

of these effects, however, is as yet insuffici~nt to permit incorporation 

into the rupture models discussed here. Their presence, as well as presence 

of time-dependence of the frictional resistance of rock (Dieterich, 1972, 

1977J, would not invalidate the mechanical effects of pore fluids that we 

di:;c.uss here, but would add additional components to the .. verall precursory 

time-dependent deformation. 

We will begin by reviewing in more detail the inclusion model for in­

stability based on the deformation of an inhomogeneous zone. Then we will 

analyze the stabilizing effects of the pore fluid by employing the solution 

of Rice et al. (1977), discussing dilatnnt hardening on the basis of the work 

of Rudnicki (1977b) and time-dependent stiffness on the basis of that by 

Rice (1977a). In particular, we will demonstrate that both the mechanisms 

of dilatant hardeninr of the inclusion material and the time-dependence of 

elastic stiffness of the surrounding material can stabilize the roc~·< mass 

ar,ainst dynamic f~ilure at a point where runoway would occur if the infil­

trating fluid were not present. The subsequent defonnation is initjally 

slow but is self-driving and ultimately accelerates to dynamic instability. 

Because this self-driven accelerating deformation may disp'ay itself in 

obser\'able precursors, such a~ accelerate(~ creep or anomalt)US tilting of 

the ground surface, w~ estimate its time ~uration hased on the models pre­

sented here and the inco~or~tion of plausible material properties. 
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INSTABILITY OF A ROCK MASS WITII AN INHO~fOGF.NEOUS ZONE 

As discussed in the Introduction, we consider a rock mass containing an 

inclusion in which the mechanical properties differ from those of the 

surroundings (Fig. la) and for convenience of ~nalysis, we assume that the 

inclusion is ellipsoidal in shape. For the present, we neglect pore fluid 

effects and consider the material surrounding the inclusion to be linearly 

elastic. If, in addition, the inclusion material is homogeneous, the in-

elusion deforms homogeneously (Eshelhy, 1957) even if its material is non-

linear. As a result, the difference between the uniform strain of the 

inclusion (£ij)inc and that applied in the far-field (£ .. ) is related lJ 00 

linearly to the corresponding difference in stresses: 

where (£ .. ) is related to lJ 00 
(a .. ) by the elastic constants of the lJ 00 

(1) 

surrounding material. The tensor Qijk.t depends on the geometry of the 

inclusion and the elastic constants of the surrounding material, but not on 

the inclusion properties (as long .. s they are homogeneous). In particular, 

eq. (1) pertains whether the inclusion material deforms linearly or non-

linearly. Expressions for Q .. k, 
1} Tv 

in specific cases have been given by 

Rudnicki (1977a,b). 

The state of the inclusion at a particular level of far-field stress 

may be deduced from a simple graphical construction based on (1). Following 

Rice et al. (1977), we consider the component of (1) for a single shear stress 

as illustrated in Fig. la. Then, if y denotes the "engineering" shear 

strain, 

Yinc - yeo = fr (Too - Tine) (2) 

where G is the shear modulus of the surroundings and C a shape factor. 
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This equation is plotted in Fig. 2 as the ''Eshelby" line of negative slope 

G/F. along with the stress-strain relation for the far field, l' = Gy 
' ao ao 

and the non-linear T. vs. Yinc relation for th ·~ inclusion. If T 1nc 00 

has its value at point A in Fig. 2, the stress in the inclusion is given 

' by the value at point A ; that is, the intersection of the Tine vs. yinc 

curve with Eshelby line through point A. As T is increased, the 
ao 

successive states in the inclusion traverse the T. VS. y. 1nc- 1nc 
curve as 

illustrated schematically in fig. 2b. When T has reached its value at 
ao 

point B, the Eshelby line is. tangent to the inclusion stress strain curve 

' at B • No further increase of T can be sustained quasi-statically and 
00 

a dynamic runaway lJf the inclusion :;hear strain occurs. 

The parameter C in (2) is given by the following expressions 

(Rudnicki . '1977a): 
J 

2 (1\-rl\) ) 

~ 
'-' 

.::;; - 7-Sv 
• for a spherical inclusion (3) 

e 
4(1-v ) 

a 
~ 

c 
= n (2-v ) h e 

, for a narrow axisymmetrical ellipsoidal inclusion (4) 

(l-\.1 ):! 
r: e 

lf b for a narrow ellip~oiclal inclusion in (5) 
rlaTte strain, 

where v is Poisson's ratio in the surrounding material, and a and b e 

are the semi-major and semi-minor ax~s of the ellipsoid. (The second ex-

pression is a correction hy Rice (1977a) of a fonnula given by Rudnicki 

(1977a)). An examination of eqs. (3-5) reveals that the slope of the Eshelby 

line is less nc~ative for narrow inclusion~ thnn for nearly spherical ones 

~nd, consequently, runaway occurs ne:trer to peak strcs~ for the more narrow 

zones. 

Using the construction of Fig. 2b, we sec that an .t.ncrease of local shear 

strain rate is predicted as the instability point is approached. In Fig. 2~ 
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is increased in equal increments but it is evident that the correspond-

· · t f · · s · ze This acceleration of the local 1ng 1ncremen s o yinc 1ncrease In 1 • 

strain rate is a general precursory effect but whether it is sufficient to 

be observable in terms of surface deformation is unclear. 

The graphical construction corresponding to the seismic gap interpretation 

is shown in Fig. 2c. Because the inclusion has undergone less strain than 

the surroundings, the peak of the curve is drawn to the 

left of the line T = Gy • Therefore, the stress sustained by the "seismic 
00 CXI 

gap" is always greater than T 
co 

That is initially negative is 

inconsequential and results because the strains are measured relative to 

those corresponding to the unloaded state in the far-field. Otherwise, the 

analysis is the same as that for the "weakened zone" interpretation of 

Figs. 2a,b. 

The 
T inc .!!· Y inc curve in Fig. 2 is to be regarded as the relation 

appropriate to in situ conditions. If the inclusion material dilates in 

response to shear, as is typical for brittle rock near failure, it must do 

so against the constraint of the surrounding material. The induced com-

pressive stresses will then inhibit further inelastic deformation and effec-

tively elevate the T. VS. y. 
1nc - 1nc curve over that for constant mean stress. 

These effects have been addressed by Rudnicki (1977a) for general deformation 

states, but it suffices for the purpose of the constructions in Fig. 2 simply 

to regard the T vs y curve as drawn so as to incorporate the effects inc -· inc 

of dilatancy induced compression. Rudnicki (1977a) has also shown that 

prior to "runaway" instability critical conditions of the type discussed by 

Rudnicki and Rice (1975) will be met, beyond which the deformation pattern 

in the inclusion need not remain homogeneous but can begin to bifurcate into 

localized shear zones. Thus, it is appropriate to regard the stress-strain 
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relation of the inclusion as representing the overall response of a non-

elastically deforming region even if the deformation is not locally homo-

geneous. 

Effects of Pore Fluid Coupling 

Before examining mathematically the stabilizing effects of coupling of the 

deformation with pore fluid diffusion, we discuss these effects qualitativt:ly 

in terms of the schematic illustration of instahility in Fig. 2b. It is 

evident that Fig. 2b may be altered in two ways to prevent instability at 

B': The local slope of the t. vs. y. 
1nc- 1nc curve may be increased; or the 

slop~ of the Eshelby line may be steepened. These correspond to the two 

mechanisms of stabilization which were discus~cd in the TNTRODUCTION, n3mely 

dilatant hardening of the inclusion, and stiffening of the elastic response 

of the surroundings due to undrained conditions. 

We consider separately each of the stabilizing mechanisms. First, we 

neglect the time-dependent stiffness of the surroundings and concentrate on 

dilatant '1ardening of the inclusion material. The relatively rapid de forma-

tion induced near B' will cause the slope (dt/dy). to have its elevated, 
1flC 

undrained value which is denoted by "u" in Fig. 3, reproduced from Fig. 4 

of Rice (1977a) • . (We shall later show the relation of this undrained slope 

to the drained slope and to other constitutive parameters). Consequently, 

runaway instability will not ~ccur at B'. If t deviates only slightly 
00 

from its value at B' (assumed to be the critical value predicted on the hasis 

of drained response), the subsequent deformation will follow the Eshelby 

line rather than the continuation of the stress-strain curve for draiherl. defor-

mation (shown as a dashed curve in Fi~. 3). r.ontinuerl softening, however, 

will diminish the value of {dt/dy). for both drained ("d") and nndrained 
111C 
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("u") response (e.g., point C' in fig. 3). Ultim~tcly, the value of the slope 

for undrained response falls to the value of that for th~ Fshelby line and 

instability occurs at n•. 

Similarly, we can neglect the chanees in thn Tine ~· yinc curve 

which are induced by dilatant hardening anJ focu5 on the stiffness changes 

due to time-dependent response of the surroundings (Fig. 4, reproduced from 

Fig. 5 of Rice, 1977:t). Because of rapid deformation near B', the response 

of the surroundings will not be drained, as indicated by the solid line at 

B' in Fig. 4, !:>ut rather increments of inclusion and far-field deformation 

will be related according to the stiffer response appropriate to undrained 

conditions as indicated by the dashed line in Fig. 4. Although the 

T. vs. y
1
.nc curve is not tangent to the dashed line at B', continued 

1nc -

softening will reduce the value of (dT/dy). until it equals the slope 
lnC 

of the Eshelby line for undrained response at D'. Thus, instability is 

delayed beyond B' but occurs at D'. 

In the remainder of the paper, we will examine these processes more 

precisely and concentrate on the time evolution of the system from point B' 

to point _D' in Figures 3 and 4. For this purpose we require the extension 

of the F.shelby realtions (1) for application to a fluid-infiltrated solid. 

This generalization has been accomplished for spherical inclusions hy 

Rice et al. (1977) and in the next suhsection we will review their results. 

Although these relations apply rigorously only for spherical inclusions, the 

results for a more narrow zone can he approximated by an appropr]ate modifi-

cation of parameters. 

Eshelby Relations for a FluiJ Infiltrated Elastic Solid 

Rice et al. (1977) observe that when an unbounded fluid infiltrated 

elastic solid, containing a spJ1erical cavity,is subjected to a sudden alter-
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ation of pore pressure and surface traction (derivable from a homogeneous 

stress tensor) at the cavity wall, the wall displaces as if the cavity interior 

underwent a homogeneous deformation. This enabled them to generalize the 

Eshelby relations of eqs. (1,2) to spherical inclusions in fluid infiltrated 

solids, on the assumption that the inclusion is sufficiently permeable by 

comparison to its surroundings that pore pressure is effectively uniform 

within it. This assumption seems reasonable in the present context since 

the inclusion material is in the dilatant, strain softening range in the 

time scale over which we make use of the analysis. 

Consequently, the strain and pore pressur~ fields are homogeneous within 

a spherical inclusion and, following Rice et al. (1977), the Eshelby relation 

of eq. (2) connecting the mismatch of shear stress and strain between the 

inclusion and the far-field is generalized to 

( t . ] . - 1 ~ ~ t-t' . • • 
Y· Jt) - f (t) ~ -r {~ +(·~-~ )fl ( ) l[1 (t')-r. (t')l\.lt' 

lflC co l. J U U 2 oo lltC 
. -oo I (6) 

where t is time, the dots denote time diff~rentiation, G is the elastic 

shear modulus of the material surrounding the inclusion, a is the radius 

of the inclusion, and c is the diffusivity which appears in the porous 

medium equations (e.g., Biot, 1941; Rice and Cleary, 1976). The parameters 

f; and ~u are given by (3) with the value of Poisson's ratio of the 

surroundings appropriate for drained 

respectively. (Of course, ~ > ~ u 

(v) and undrained (v ) deformation, 
u 

s~nce v < v ; some numerical estimates 
u 

are given in a subsequent Table). Consequently, (6) reduces to the forms 

of (2) which are ap.propriate for undrained and drained rP-spons{: when the 
., 

nondimensional :unction · f(ct/:t"") takes on its limitin . ..: values for short 

and tong times, respectively, 
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Th 1 . . f f( ) h a I 2 • h . F" 5 f e comp ete var1.at1.on o e , w ere = ct a , l.S s own 1.n 1g. rom 

Rice et al. (1977), for their n = 0.8 and ·1.0. {The dependence of f(e) 

on n is very weak and n itself varies only from 0.8 to 1.0 for repre-

sentative material parameters). 

It is convenient to have a version of (6) which involves only finite 

times t • Specifically, we assume that prior to t = 0 there are no excess 

pore pressures and the inclusion is in equilibrium with its surroundings 

based on the fully drained elastic properties of the surroundings. That is~ 

prior to t • 0 the deformations are assumed to take place slowly enough 

so that (6) reduces to (2) with F; based on the drained elastic properties, 

whereas deformation for t > 0 involves the coupling with diffusion discussed 

above. In that case it is straightforward to rewrite (6) as 

Y (t) - y (t) = GF; [ 1 (o) - T. (o)] inc • • 1.nc 

+ _GI Jt{tu + Ct-t; )f@Ct-t')]}[; (t')-;. (t')]dt' (7) 
0 u L a2 J -• 1.nc 

As mentioned earlier, the response of the inclusion to shear may be 

coupled to that for compression hy dilatancy induced compressive stresses. Thus, 

for a complete analysis, the Eshelhy relation for the hyLlrostatic component 

of deformation is needed. The appropriate special case of (1) is (audnicki, 

1977a) 

where the strains E and stresses o (positive in compression) are the 

hydrostatic components, £ = E.kk and .o = -okk/3 • As shown by Rice 

et al. (1977), this same relation applies for fluid infiltrated solids 

(8) 

\vhenevcr a and £ change with time in a manner consistent with a con-
CXI 00 

stant fluid mass content at infinity. This includes the special e<!Se which 
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"0 

16 

t . 
ul 

arc ta ~~en to De eClns tant as T 
ro 

is increased. It is remarkable that th<' dilational Fshclhy relntion of (8) 

involves only the total hydrostatic stress o. within the inclusion and, 1.nc 

for a given o. , is indepcnrlent of the pore pressure p. • 
tnc 1 nc 

Th]s 

feature follows from the solution to the Hlot equations as developed by Rice 

and Cleary (1976) for simultaneous application of a total stre·ss and pore 

prrssure alteration to the wall of a spherical cavity. 

One additional equation is needed to relate the pore fluid pressure 

in the· inclusion to the fluid mass m. (t) 
1nc per unit volume 

within the inclusion. l~ice et al. (1~77) have ohtained this equat1on hy 

ag~in taking advantage of tl1c solution by Rice and Cleary (1976) for the 

pore pressure di strihution induced Otitside a spherical c~v1 ty by sudden 

.z:t0 the cavity, :ts comptttcd fro:n the pore fluitl prcssur,.. distribution 

outs1de the cavity and Darcy's lnw, is required to halanc.c the r:tte of 

fluid rrtass accumulation at the cavity \oJall. The result, after extension 

hy ~uperpositi.on to arbitrary tin1c vari~tion ic; (Rice et al., 1977) 

= - ~~d.. {I>. ( t) - ll_ (t) 
2 1nc ~-

a 

rt a 
+ (p. (t') - J; __ (t')]dt'} 

J ~ inc· ~ 
-w r1rc(t-t')J.l 

\·:here p is the d~nsit}' of the pr>re fluid in tl.1c material surroundin~ the 

in·. lus 1on (p is nssmne,i to he spatially uniform except for sMall pr(•ssure 

(9) 

dcpt.4'H.lcnt chanr,cs due to fluid cnmprcsc:;ibility), and where l: i::; the permea­

bility coefficient of tht• surroundings, lcfined so that narcy' s cYpres!;ion for 
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SometiMes k is written as k' (with units of Rrea, measured in narcies) 

divided by viscosity of the pore fluid; see Rice and Cleary (1976). Again, 

P and o are assumed to vary in a manner that m is constant; for 
00 00 00 

our calculation we will take all to be constant. 

Thus, we wish to use eqs. (7,8,9) to analyze the inclusion model, 

assuming that 
. . 
(J ::' p = 0 

00 00 
and that some uniform tectonic shear stressing 

. 
rate T is given. In order to complete the analysis of time-dependent 

00 

response it is necessary to specify three constitutive relations for the 

inclusion material which relate its "strain" quantities yinc , 

and m. 
1nC 

to its "stress" quantities Pine • 

e:. 1nc 

For sim-

plicity of analysis and clarity of presentation, the effects of dilatant 
.. 

hardening of the inclusion and of the time-dependent stiffness of the 

surroundings will he consiclerc(l separately. Constitutive relations for the 

dilatant hardening analysis are given in the next section, and for that 

analysis we neglect the time-dependent stiffness of the strrroundings implicit 

in cq. (7), replacing (7) hy eq. (2). For the analysis of time-dependent 

stiffness effects it suffices to simply view T • 1nc as a function of 

without dilatancy effects, as in Pigs. 2 and 4, and the analysis can then be 

based on eq. (7) without explicit consideration of cqs. (8,9). 

Our inclusion model as based on eqs. (2) or (7) and (8,9) obviously 

regards the fault zone as being of small extent hy comparison to other 

relevant dimensions. As such, its proximity to the earth's surface is ne-

glected as is also the non-uniformity of rock properties with Jepth. These 

are important limitations (but rcmoveable by more elaborate modelling) on 

the application of our results to large crustal earthquakes. 
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STABILI?.ATIONBY DILATANT HARDENING 

In this section, we will examine in detail the manner by which dilatant 

hardening can delay the onset of rapid failure and give rise to a period of 

initially slow, but accelerating defornation. For convenience the comple-

mentary mechanisms due to time-dependent stiffness of the surroundings 

will be neglected. This simplification corresponds to using (2), which 

we will assume relates rates of stress and strain, rather than (7) as the 

Eshelby relation for shear. We first however, will introduce constitutive 

relations for the inclusion which are intended to model the frictional, 

dilatant response of brittle rock. 

Constitutive Relations 

The constitutive relations employed to describe the response of the 

inclusion material are analogous to those which were introduced by Rice 

(1975), generalized to arbitrary deformation states by Rudnicki and Rice 

(1975), and used by Rudnicki (1977a,b). These relations are intended to 

describe both elastic response and frictional, dilatant inelastic response 

of compressed rock due to slip on nominally closed fissure surfaces and to 

microcrack growth from local tansile stress concentrations. 

Consider a Jf'aterial ·element which is subjected to a hydrostatic stress 

a (positive in compression), a shear stress ~ , and a pore fluid pressure 

• p • If the material responds elastically, the shear strain rate y and 

volume strain rate £ may be written 

y = ~/G 

E = -(a-p)/K - p/K s 

where G is the incremental shear modulus, K is the incremental bulk 

modulus for drained response, and K s 
is the bulk modulus of the solid 

(10) 

(11) 

constituents. The combination o-p (1-K/K ) s 
is the form of the "effective 
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stress" which has been shown by Nur and Byerlee (1971) to be appropriate 

for elastic response. In general, however, an increment of deformation 

involves inelastic response and these contributions to the strain rate must 

be added to those of (10,11). Following Rice (1977a), we write the complete 

incremental stress-strain relations as 

. . . . . 
y = t/G + [t-~(o-p)]/h . . . . . . . 
£ • -(o-p)/K- p/K + 8[T-~(o-p)]/h s 

(12) 

(13) 

where ~ is a friction coefficient and e is a dilatancy factor which ex-

presses the ratio of inelastic increments of volume strain to inelastic in-

C:rements ot shear sttalr•. f:stim~ttes trom experimental results for values 

of ~ and 8 by Rice (1975), Rudnicki and Rice (1975) and Rudnicki (1977a,b) 

lie in the ranges 0.5 to 1.0 and 0.2 to 0.5, respectively. The "hardening" 

JDOdulus (or "softening" if h < o) is related to the slope of the 

T vs. y curve for drained response at constant o by 

[at] h 
ay d . d • 1 + h/G ra1.ne 

(~:z 0) (14) 

In general, all of the constitutive parameters may vary with the deformation, 

although the variation in h is typically most substantial. 

The form of the effective stress which enters the inelastic contribu- · 

tions in {12) and (13) is o - p • Recently, Rice {1977b) has shown rigor-

ously that this is the appropriate form in describing the inelastic response 

which arises from slip at isolated asperity contacts and/or from local crack-

ing at the tips of sharp micro-fissures. 

One additional constitutive equation is needed for the fluid mass 

content m per unit volume, which is related to the appare~t volume fraction 
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v of pore space by 

m = pv 

where p is the mass density of the homogeneous pore fluid. It is 

convenient to express m in terms of the stresses by using reciprocity 

relations (Biot, 1973; Rice, 1975) to deduce the form for the elastic portion 

of dv and assuming dPv • dP€ for the inelastic portion (Rice, l975). 

The latter has been shown (Rice, 1977b) to follow rigorously in the same 

circumstances for which the use of a - p for the inelastic effective 

stress measure is justified. The result, written in rate form, is 

m v~ [ 1 1 J . . - = ~ - ..,. - - (a - p) 
P Kf ~ Ks 

where Kf is the bulk modulus of the pore fluid (p =pp/Kf) and the 

remaining quantities have been defined previously. 

The stiffness of response for shearing under undrained conditions 

(~ = O) may now be calculated and compared with the corresp6nding stiff­

ness for drained conditions, (14). Assuming ; = 0 and setting m = 0 

in (15) yields 

• -BK' • 
p = T 

h+JJSK' 

where 

1 1 v l+v 
F = K + Kf - --r; 

By suhstituting (16) into (13), we obtain the stiffness of response for shear 

at constant hydrostatic stress under completely undrained conditions: 

(dTl h + ~BK' 
dy undrained = 1 + (h+~RK')/G 

(~ = 0) 

Comparison of (18) with the analogous expression for drained rcsponse,(l4), 

reveals that the effective slope of the 1 vs. y curve has been augmented 

(IS) 

(16) 

(17) 

(18) 
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by an amount corresponding to the replacement of h by h + PBK' • The 

stiffened response under undrained conditions is depicted schematically in 

Fig. 3 by the arrow labelled "u". For representative values of lJ , B , 

and K' this effect is substantial and may be sufficient to cause the slope 

for undrained response to be positive while that for drained response is 

negative. 

For heavily fissured rock Ks >> K , Kf/v and therefore, 

KKf 
K' :: Kf + vK 

If Kf has a value appropriate for liquid water (Kf c 22 kbar) and 

(19) 

v < 0.10 , as is typical of brittle rock, K' • K • High temperatures, low 

pore pressure, or the presence of entrapped gas may, however, cause Kf to 

be reduced well below vK so that 

and the dilatant hardening effect disappears in the limit as Kf -+ 0 • 

Of course, the foregoing constitutive description is based on the assumption 

that the state of the pore fluid can he characterized by a single parameter, 

namely a pore pressure p , which is valid only when deformations are suffi-

cicntly slow that there is local pressure equilibrium between all fissure and 

pore spaces occupying what is regarded as a "point" in the continuum model 

of the material. This may not he the case in the presence of rapid deforma-

tions; some estimates of equilibrium times and generalizations of the pore 

pressure concept are considered by Cleary (1977) and O'Connell and Budiansky 

(1977). Indeed, some discussions of dilatancy (e.g., Nur, 1972) consider 
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the possibility that the effect may be so strong as to open substantial vapor-

filled or "dry" crack space in rock that is otherwise liquid saturated. Such 

a concept seems to be widely associated with the term "dilatancy", and is 

consistent with alterations of ~eismic wave speeds. But it is important to 

realize that far milder dilatancy, insufficient to cause the opening of "dry" 

crack space and thus to affect seismic transmission, may nevertheless be 

present during a failure process and, possihly, he a major factor in con-

trolling the time scale of that f"ilure through the processes to be described. 

Dilatant Hardening and Instability 

In order to apply the results of the last section to the inclusion 

problem, we adopt (12), (13), and (15) as the constitutive laws for the 

inclusion material and employ them in conjunction with the Eshelby relations 

(2), (8), and (9). The analysis follm.;s Chapter II of Rudnicki (1977b). 

Thus the relations bet\ieen rates of stress and strain are, from (2), and (8), 

y ( t) y ( t) ~ f. (~ (t ) - ~ . (t) ) inc - oo G oo 1nc 

and 

~. (t) = (3/4G)~. (t) 
1flC 1nc 

where we have assumed in (21) that 
. 
0 = 0 . 

00 

with (20) and (21) to eliminate ~inc and 

. [1 + ~] 
up. ~n(l+4G/3K ) 

lflC S 

Yinc = yt» + 
h-hd h-hd 

and 

If (12) and (13) are combined 

oi ' the results are nc 

. 
[1 -

uBKo: (1+4G/3K ) 

1 
6Ga • up inc K s 

f = h-hd Yoo 
+ K -+ 

h-·hd lTIC K s 
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where K = ~/(1+~) , a = 1/(1+4G/3K) = (l+v)/3(1-v) , and we have assumed for 

simplicity that the elastic moduli of the inclusion are identical with those 

of the surroundings. (Rudnicki {1977h) has given the corresponding expressions 

if there is elastic mismatch bet,~een the inclusion and the surroundings but 

assuming effectively incompressible solid constituents for the inclusion 

(Ks ~ ~)). The parameter hd is the value of h for which the ratio 

yinc/y~ in (22) becomes unbounded under completely drained conditions (p = 0) 

and corresponds to the onset of dynamic runaway (point B' in Fig. 3): 

hd = -G/(1+,) - uBK/{1+3K/4G) (24) 

The first term on the right in (24) would result from equating the right hand 

side of (14) to the slope of the Eshelby line (-G/') whereas the second 

term reflects the inhibiting effect of dilatancy induced compressive stresses. 

In other words, the hardening modulus corresponding to the ~situ stress 

strain curve of the inclusion is 

H • h + ~8K/(1+3K/4G) 

In order to demonstrate that the stiffened response to undrained defor-

mation (compare (18) with (14) or "u" with "d" in Fig. 3) can in fact stabilize 

against runaway at h • hd , we again consider completely undrained conditions. 

First, using (13) we can rewrite (15) as 

. 
m - = 

. 
!e. K + 

f 
+ £. 1nc 

. 
where we here and subsequently drop the designation "inc" from m and 

• p • Eliminating (. 1nc 
and ~. from (25) by means of (21) and (23) yields 

lflC 

the rate of pore fluid pressure decrease in the inclusion 

• 
(p)undrained = 
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K aKf 
f 

24 

Substituting (26) into (22) yields 

y. = y [1 + ~~::G ~ 1nc e» 
h-hd + a~BKf(l+4G/3Ks) 

(27) 

• • and demonstrates that the ratio y /y remains finite at inc 01) 
Even if 

the rock mass is constrained to deform in a completely undrained fashion, however, 

y. /y does become unbounded at 1nC e» 

' h = hu : hd - a~BKf(l+4G/3Ks) (28) 

which corresponds to point n• in Fig. 3. The discussion of (28) in cases of 

' limiting behavior for Kf follows the earlier remarks for K' • 

AlthouRh dilatant hardening can stabilize against the onset of rapid 

failure at h • hd , the subsequent deformation is self-driving (Rudnicki, 

1977b). More precisely, Rudnicki (1977b) showed that in a segment of constant 

h (and other constitutive parameters), any perturbation of yinc from its 

equilibrium value corresponding to some fixed TOI) is stable if h > hd 

(i.e., prior to point B' in Fig. 3), in the sense that the perturbation decays 

with increasing time. However, when hd > h > hu (i.e., for states between 

B' and D' in Fig. 3) perturbations in yi grow exponentially with increas-nc 

ing time and the rate of growth becomes unbounded when h • hu We define 

the precursor time as the time which elapses from .the onset of this period 

of self-driven deformation at B' to dynamic instability at D'. 

In order to determine the evolution of the inclusion state and, thus, 

the precursor time, it is necessary to solve the system of equations consist-

ing of the constitutive laws (12), (13), and (IS) and the Eshelby relations 

492 



25 

(20), (21), and (9). The number of governing equations may, however, be 

reduced to two: eq. (22) and a single equation for the alteration in pore 

fluid pressure p(t) • The latter can be obtained by using (21) and (23) to 

eliminate ~- and £. from (25) which then becomes 1.nc 1.nc 

• m = p 

a (1+4G/3Ks) 
---- [8Gy

00 
+ p(h-hu)J 

Kf(h-hd) 
, (29) 

where h 
u 

have been defined in (26) and (28). Combining (9) with 

(29) yields 

a p(t')dt') 
Inc (t-t i) 

where t = a2/c is the diffusion time, p(t) is now measured relative 
D 

(30) 

to the ambient value which exists in response to the constant hydrostatic 

stress at infinity, and the lower limit of the integral has been chosen by 

taking p(t) • o for - co < t ~ o • The parameter N = c/k is an additional 

elastic modulus which Rice and Cleary (1976) have shown may be written as 

2G(l-v)B2(l+v
0

)
2 

N = ~~--~------~ 

where v 
u 

9 (1-v ) (v - v) u u 

is the Poisson·• s ratio for undrained response and B is the ratio 

of pore fluid pressure decrease to mean normal stress increase for an incre-

ment of undrained deformation. 

The dependence of ? and, in general, all of the constitutive parameters, 

on the deformation couples (30) to (22). In solving these equations, we will 

assume, however, that the variation in all the parameters except h is small 
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enough that they may be treated as constant. Although this may be a poor 

approximation in the case of B and Kf , so little is known about the de­

tails of their variation that assuming they are constant seems justified in 

the interests of simplicity. The simple numerical procedure which was used 

to solve (30) and (22) is outlined in Appendix I. . Results of the calculations 

and a discussion of the constitutive parameters which were used are presented 

in the next section. 

Numerical Results for Precursor Time 

As mentioned earlier, the precursor time is defined as the time which 

' elapses from the onset of self-driven deformation at 8 (Fig. 3) to 

' instability at D For the calculation, we assume that the in situ 

T. c vs. yi c curve has the form of a linear segment of slope G up to an 
1n - n 

elastic limit and that this segment is connected smoothly to the following 

parabola (Fig. 6): 

G 2 
Tine • Tp - 2r (yinc - yp) (3l) 

where yp is the strain at peak stress, A is the difference between yp 

and the strain at the elastic limit, and G is the slope at the elastic 

limit. Because this represents the!!~ stress-strain curve, the value 

of H = h + ~BK/(1+3K/4G) 

by 

dT. 
1nc 

dyinc 
H 

= l+H/G • 

(see following (24)) is ·related to dTi /dy. nc 1.nc 

In particular, we choose -3 -3 Tp • lkb ' yp • 6.25 X 10 • A • 2.5 X 10 ' 

and G = 200 kb • For the remaining material paremeters we assume 

' v = 0.2 , ~ = 0.6 , B = 0.3 , N • 2.0G , Kf • 1.4SG , and 
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value of N corresponds to using "' • 0.37 u and B • 0. 8 , and is in the 

range, though toward the lower end, of values inferred from Table 1 of 

' Rice and Cleary (1976). The value of Kf is based on an initial porosity 

of v • 0.01 and assuming Kf = 22kb • The calculation was begun at peak 

stress where it was assumed the alteration in pore fluid pressure (taken to 

be zero at the elastic limit) was given by the steady state term in (30) 

6a(l+4G/3Ks)N • 
p(H • 0) = - 3(-Hd) -r.tD 

where Hd • -G/(l+C) • 

The dimensionless precursor time a c t /t prec prec D 
is shown in Fig. 7 

as a function of the dimensionless far-field strain-rate 

evident that the predicted precursor time does not simply scale with 

In particular, although 

not proportional. 

t prec increases with 2 t 0 = a /c , the increase is 

The time history of post-peak straining is shown in Fig. 8 and Fig. 9 

• -5 -6 for y~t0 equal to 1.4 x 10 and 1.4 x 10 respectively. The strain is 

given in terms of the parameter (y inc 

strain at peak stress and y
0

, is the strain at point D' in Fig. 3. Point 

B' corresponds to the onset of the period of self-driven deformation. The 

dashed portion of the solid curve indicates where the numerical calculation 

was truncated (see Appendix I). The fully-dashed curves in Figs. 8b, 9b 

incidate for comparison the strain history in the absence of pore-fluid 

effects. Those were calculated hy setting 
. 
P = 0 inc in eq. (22) and inte-

grating for y. as a function of time. It is evident that dilatant 
1nc 

hardening not only delays the onset of instability, but also gives rise to 

' more dramatic acceleration of precursory strain. In Figs. Be, 9c, the 
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decrease in the pore fluid pressure of the inclusion is shown. It is note­
'S 

worthy that the decrease~~ extremely rapid but occurs very close to final 

instability. This suggests that precursory phenomena which may be associated 

with the rapid decrease in pore fluid pressure may occur over a time period 

which is substantially less than the period of self-driving deformation. 

The results are shown in -dimensional form in Table _l. We consider 

three values for the radius of the sphere, namely, a ~ 1 km , 3 km , 5 km 
2 2 and two values of the diffusivity c • lm /sec , O.lm /sec. The larger 

value of the diffusivity was suggested by Anderson and Whitcomb (1975) as 

reasonable for shallow earthquake zones whereas c• O.Im2/sec is more in 

accord with well-head measurements near the San Andreas Fault (Kovach et al., 

1975). The value of y was chosen to correspond to CD 
• 
't a 1 bar/year, CD 

i.e., y = T /G , which is consistent with the centennial occurrence of CD CD 

a large earthquake having a stress d~op of 100 hars. Strain accumulation 

measurements along the San Andreas Fault near Palmdale (Prescott and Savage, 

1976) suggest a value of TCD which is roughly an order of magnitude smaller 

so that values of yCDt0 which are smaller than those plotted in Fig 7 may 

be relevant. However, because of the expense of computation for small 
• 2 

values of yCD t
0 

, the precursor time for a • lkm and c • lm /sec was 

simply estimated by extrapolating the curve in Fig. 7. The values in 

Table 1 again indicate that although t increases with the diffusion prec 

time a2/c , the increase is not proportional. A tenfold increase in a~/c 

corresponds to an increase of roughly four to five times t prec.• 

The last row of Tahle 1 gives the "best fit" correlation by Scholz 

et al. (1973) of precursory times (based on V /V anomalies, radon emission, p s 

and crustal movements) with the length of aftershock zone. Individual data 
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points may differ by a factor of approximately two from this time. The 

values in Table 1 identify 2a with the length of the aftershock zone. 

Comparison of the calculated with the observed precursor times indicates 

that the calculated values are generally larger than but perhaps not incon-

sistent with those observed • . The observation of seismic anomalies, for 

example, may be possible only toward the later stages of what is referred to 

here as the precursory period. This interpretation is consistent with the 

earlier remark concerning the prediction that rapid decrease of pore fluid 

pressure occurs relatively near final instability. 

The values of the material parameters which were used in the calculations 

were chosen to be consistent with the existing laboratory and fi~ld datA. 

In order to assess the magnitude of the effect that variations in the more 

uncertain of these parameters might have, we have performed a few additional 

calculations for alternative values of the dilatancy factor B , the peak 

strain parameter A and the fluid bulk modulus Kf • The calculations 

were carried out for y t = 1.4 x 10-5 which corresponds to ~ = !bar/year, 
oo D oo 

2 
a = 3km , and c = 0.1 m /sec. The results are summarized in Table 2. 

The values of 6 which were quoted earlier were estimated from labora­

tory data for tests on intact rock. Because laboratory tests h~ve indicated 

that dilatancy may diminish somewhat with cyclic loading (e.g., Scholz and 

Kranz, 1974; Zoback and Byerlee, 1975) and with increased confining stress 

{Brace et al., 1966), smaller values of B may be more representative of 

in situ conditions. Table 2 shows the calculated dimensionless precursor 

time for values of B equal to one-half and one-quarter of the value used 

for other computations (6 = 0.3). Reduction of B hy half apparently 

reduces t Jt0 by slightly more than half. prec 
Note, ho\"ever, that even 

497 



30 

for B = 0.075 , e = 0.16 corresponds to approximately 170 days in prec 

real time for a = 3km and c = O.lm2/sec. This observation emphasizes 

that even a v~ry small amount of dilatancy may have quite substantial effects 

of the kind described here. 

The value of the peak strain parameter >. is one of the most uncertain 

in the analysis since laboratory investigations of postpeak behavior have . 

been relatively sparse. Fortunately, the calculation does not appear to 

be especially sensitive to the value of ). • The entries in Table 2 suggest 

that decreasing >. by half reduces e by about 30%. prec 

In the calculations for Table 1 and Fig. 7, the bulk modulus of the 

fluid Kf was assumed to have a value appropriate for liquid water, i.e., 

Kf ~ 22kb. We remarked earlier, however, that high temperatures, low 

pressures or the presence of dissolved gases may reduce Kf • Table 2 

shows the calculated precursor times for Kf • 11 kb and 2.2 kb. These 

' ' correspond to values of Kf/G (Kf is defined following (26)) of 1.2 and 

' o.s by comparison with Kf/G = 1.45 for xf • 22 kb. We remark that an 

' equivalent reduction of Kf to O.SG can be accomplished by an increase of 

porosity from v = 0.01 to v :a 0.1 • The reduction of Kf by half reduces 

a by only about 6\ and for Kf = 2.2 kb , the predicted precursor time prec 

is decreased by slightly less than half. 

In all of the calculations, it has been assumed that the hardening. 

modulus was the only material parameter which varied substantially with the 

deformation. A more detailed calculation should consider the variation of 

other material parameters. In particular, appreciable alteration of the 

dilantancy factor B or of the bulk modulus of the pore fluid Kf will 

probably be important. It seems evident that there must exist a limit to 
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the amount of dilantancy which a rock may undergo. Thus, it is likely that 

a may decrease at large strains and that the stabilizing effect of dilatant 

hardening may be limited by the attainment of a least dense state correspond-

ing to no further dilatancy. This is consistent with the measurements by 

Crouch (1970) which indicated a decrease in the rate of dilatancy relative 

to the axial strain after some amount of deformation past peak stress al-

though dilatancy did continue throughout the postpeak regime. 

A second 1imiting effect, which was mentioned earlier, is the increase 

in fluid compressibility. for the calculations performed here, the decrease 

in the pore fluid pressure from the amhient level which was assumed to exist 

when the inclusion material was at the elastic limit did not approach 100 

bars until very near instability. The variations shown in Figs. Be and 9c 

are typical though the decreases became larger more rapidly for larger values 
. 

of y~t0 • Because the lithostatic pressure at Skm. depth is about 500 bars 

the calculations suggest that substantial decreases of Kf may be difficult 

to achieve by pore pressure decreases alone, at least until very near insta-

bility. It should be emphasized that "very near instability" in tenns of 

the dimensionless precursor time may be on the order of days or even weeks 

in real time, as can be seen from Table 1. Furthermore, elevated tempera-

tures and exsoultion of trapped gas may contribute significantly to reducing 

The calculations also apply rigorously only for spherical inclusions. 

A preliminary analysis by Rudnicki (1977b) for a flat elliptical inclusion 

in plane strain indicates that the time scale of stabilizing effects due to 

dilatant hardening is very much shorter for narrow zones. In particular, 
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Rudnicki (1977b) derived an equation whose asymptotic long-time character­

istics were similar to those of (30), except that the appropriate length 

which entered the diffusion time L2/c was the short axis of the ellipse. 

This suggests that for an axi-synwetric ellipsoid of aspect ratio a/b = 20, 

the diffusion time is 1/400 of that for a sphere of radius a • A more 

complete analysis is needed to determine the extent to which dilatant har­

dening effects are influenced by geometry. 
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STABILIZATION RY TH1E-DEPENnENT STIFFNESS OF SUP!tOUNOINGS 

For the analysis of this mAchanism we neglect any suctions induced in 

the pore fluid within the inclusion and assume that the inclusion response 

to shearing can be represented by a plot of t . VS. y. 1nc - 1nc as in Figs. 

2 and 4. As remarked earlier, this plot may be thought of as representing 

in-situ conditions and hence to .include effects of an increasing mean stress 

a induced by the constraint of the surroundings against inelastic dilation 

of the inclusion material. Thus, letting 

describe the stress-strain relation of the inclusion material, the mathematical 

problem is to solve eq. (7) subject to this relation for a given history 

Tm(t) • Since we assume in deriving (7) that there is equilibrium under fully 

drained conditions for t ~ o , the state at t = o must satisfy eq. (2), 

namely 

y. (o) - y (o) = -G~ [t (o) - T. (o)] 1nc ~ J ~ 1nc 

and this may be used to simplify the right side of (7). lienee, by using (32), 

and T = Gy , (7) becomes the non-linear integral equation 
~ m 

= y. (o) + ~ [t (t) - T (o)] 1nc 11 oo oo 

·t 

+ fr JJ~u + (Hu)f[c(:t)]j ~; .. (t) - F'[y. (t')]y. (t')ldt' 1nc 1nc 

(33) 

where F'[y. ] = dF[yi ]/dy. • 1nc nc 1nc This equation applies for t ~ o 
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T (t) is regarded as given and y. (t) is to be determined. 
• InC 

This equation is rigorous for a spherical inclusion with t and ~ 
~u 

~alculated from (3) using the drained and undrained Poisson ratios, v and 

v respectively, for v u e 
As an approximation, however, we shall also 

assume that (33) applies to other types of inhomogeneous zones, specifically 

to the flattened axi-symmetric ellipsoidal zone of semi-major axis a , 

for which t and (u are calculated from (4). For the function F[yinc] 

of (32) we use the parabolic stress-strain relation in Fig. 6. We assume 

that the inclusion strain is at the peak of the curve when t • o , 

y. (o) = y , and the remote tectonic stress is increased at a constant tnc p 
• rate T for all subsequent time. -

Eq. (33) must be solved numerically and the details are explained in 

Appendix II. Essentially, we find that the solution can be put in the 

dimensionless form 

(34) 

Here is the inclusion strain at the point corresponding to D' in 

Fig. 4 (i.e., the undrained instability point, at which dynamic instability 

occurs), 2 e = ct/a = t/t
0 

as before, and R is dimensionless measure of 

the tectonic stressing rate, namely 
2 • 

R = ((l+()(a /c)(L /GA) - (35) 

Apart from the factor ((1+() , which depends on the shape of the inclusion, 

R can be interpreted as the ratio of the characteristic diffusion time 

2 t
0

(=a /c) to the time for the remote tectonic strain to increase by amount 

A , where A is defined in Fig. 6. 

Some specific plots of the results represented by (34) will be shown 
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subsequently. First we discuss the choice of parameters. We have examined 

the cases ~ • 1 and ~ = 10 • The first corresponds to a near-spherical 

inhomogeneous zone (e.g., (3) yields ~ ~ 1 when a drained Poisson ratio 

v = 0.2 is assumed). The second corresponds to a flattened, slit-like 

zone; from (4), ~ = 10 is consistent with an axi-symmetric ellipsoid with 

aspect ratio a/b ~ 18 • Remarkably, our numerical results indicate that 

for given values of R and ~~~ , the function 
u 

g of (34) is very nearly 

independent of ~ • Results for the time e to go from B' to D' in Fig. 

4, for example, typically differ by 1\ or less for ~ = 1 versus ~ = 10 , 

except at the largest values of R that we considered (R ~ 3) , at which 

the differences were still only on the order of 10%. 

The ratio ~~~u in (34) can be interpreted via (2) as the ratio of 

the elastic unloading stiffness of the inclusion surroundings under undrained 

conditions to the same under drained conditions. From (3), (4) and (5) the 

ratio is give~ by 

~ (4-Sv)(7-5vu) 
~u = (4-Svu)(7-Sv) 

(1-v) (2-v ) u 
(1-v )(2-v) 

u 
and 1-v 

1-v u 
(36) 

for the respective cases of spherical, narrow axi-symmetric ellipsoidal, 

and narrow elliptical inclusions. The ratio evidently depends on v and 

vu and there is no direct source of in situ values known to us. Neither 

corresponds to the Poisson ratio inferred from seismic wave speed ratios, 

as noted by Rice and Cleary (1976) and O'Connell and Budiansky (1977). 

Further, in situ values will almost certainly he d~minated by the presence 

of joints and fractures, and will thus differ significantly from values 

inferred for intact laboratory specimens. For example, Rice and Cleary 

(1976) summarize data on intact specimens and report values of v and 
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of .27 and .30 for Charcoal Granite, .25 and .34 for Westerly Granite, 

.12 and .31 for Ruhr Sandstone, and .20 and .33 for Berea Sandstone. 

Large, partially opened joints or fractures reduce the drained volumetric 

stiffness of rock as much as a far larger volume fraction of equi-axed 

pores, yet have almost no effect on the undrained volumetric stiffness, 

assuming full saturation of the flat pore space by liquid water. The 

effect is to reduce v and increase "'u so that the presence of such 

joints could make the v and v values for a granite rock resemble much u 

more closely the values for intact, porous sandstones than intact granites. 

An alternate approach to the effects of joints and fractures is to use 

the theoretical estimates of elastic properties of cracked rocks by O'Connell 

and Budiansky (1974). What those authors refer to as the Poisson ratio 

for "dry" conditions corresponds to our drained ratio v , and in Table 3 • 
we summarize their results for v as a function of their· crack density 

3 parameter Nr (•&) for a rock having a Poisson ratio of 0.25 when crack-

-v 

free. Jlere N is the number of penny-shaped cracks per unit volume having 

radius r • The undrained Poisson ratio v can be calculated from the u 

values of the "dry" shear modulus G reported by O'Connell and Budiansky 

(1974) and from the undrained bulk modulus K which, as we have noted, u 

is essentially equal to the bulk modulus of the solid for flat, crack-like 

pore spaces. The resulting values of v are also listed in Table 3. We note u 

that for crack densities Nr3 greater than approximately 0.1 the crack-

interactions considered by O'Connell and Budiansky lead to results for 

v and v that differ substantially from estimates made on the basis of 
u 

dilute concentration formulae for G and K (Rice, 1977a). 
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With the results in Table 3 we can calculate the undrained to drained 

stiffness ratios, t/( , of the surroundings from (36) and the results are u 

shown in the table for different shapes of the inhomogeneous zone. Now, 

from observations on wave speerl ratios Vp/V
5 

prior to the 1971 San Fer­

nando earthquake, O'Connell and Budiansky (1974) suggest that their crack 

density parameter should have ·a range from 0.1 to 0.3 to fit one set of 

seismic data and from 0.2 to 0.4 to fit another. Per~ing Table 3, this 

suggests that stiffness ratios 

~/(u = 1.10 and 1.25 

might be taken as representative, and we have used these two ratios in our 

numerical evaluations of the function in (34). 

Results of Numerical Solutions and Precursory Predictions 

As will be seen, a value of the tectonic loading rate parameter R • 10·2 

is representative of the middle of the range considered in some subsequent nu-

merical evaluations, and we show in Figs 10 and 11 the solution of the integral 

equation (33) for stiffness ratios of 1.25 and 1.10, respectively. The points 

marked B' correspond to the drained instability point of Fig. 4 beyond which 

the system is self-driving, and D' to the undrained instability point at which 

dynamic failure occurs. The lower graphs in Figs. 10 and 11 have an en-

larged time scale and show details in the neighborhood of the instability. 

For comparison, the dashed line curves show the corresponding progression 

to instability when pore fluid effects are neglected (this corresponds to 

the construction in Fig. 2b and the details are explained in Appendix II). 

The effects of the pore fluid are evident in leading to the more pro-

longed period of accelerating strain before the instability and, of course, 

the effect is more pronounced for the larger stiffness ratio (Fig. 10) than 
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for the suller (Fig. 11). The choice of a time interval which could be 

defined as a precursory period is, of course, somewhat arbitrary. As with 

our dilatant hardening analysis, we define 

as the ti•e for traversal of the self-driven range between B' and D', and 

this time interval is shown as a function of R in Fig. 12. It is, 

evidently, a period over which local strains in the soon to be ruptured 

zone accelerate significantly over those accumulated in previous periods 

of comparable duration. Deformations at ground surface vary in proportion 

to the local strain within the inclusion (which can be regarded as an 

isolated, time-dependent dislocation) and will show a similar time history • . 

Also, the rapid· deformations could conceivably lead to discernible varia-

tions in seismic and/or transport properties within the failing zone. 

Table 4 shows some specific predictions of precurory times in days 

based on the results in Fig. 12. We consider in this Table three values, 1, 

3, and 5 km , for the radius a of the inclusion and two inclusion shapes 

(i.e., values of t ) , a sphere (t • 1) and a slit-like ellipsoid (t = 10; 

18:1 aspect ratio for axi-symmetric geometry). Also, two values of the 

fluid diffusivity are considered, c • 1 m2/s and c • 0.1 m2/s · , 

which appear to be consistent with various field (Anderson and Whitcomb, 

1975) and well-head (KOvach et al •• 1975) measurements. The first results 

shown for tprec are based on a stiffness ratio of 1.10, and following 

these we show in square brackets .the results for a ratio of 1.25. In 

preparing Table 4 it is necessary to associate a value of R , eq. (35), 

with each value of t , a , and c corresponding to .an entry in the Table. 
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This is done by choosing a tectonic stress rate T = 1 har/yr and shear 
~ 

modulus G • 200 khar as previously. Evidently, from Fig. 12, a ten-

fold reduction in T~ would lengthen all precursory times shown by a 

factor of 5 or so. The parameter A of (35) is defined with reference 

to the stress-strain curve of Fig. 6 and, as remarked earlier, if the 

curve in Fig. 6 is to have a peak strength of 1 kbar and to be linear up 

to 3/4 of peak strength, with continuous slope where the linear portion 

joins the parabola, then A = 0.0025. We use this value in the Table. 

The results in Table 4 reveal that while t increase~ with in-prec 

elusion size, it is again not directly proportional to the diffusion time 

2 a /c • Indeed, a tenfold decrease in diffusivity increases t by a prec 

factor of 2 to 3, and a 5-fold increase in inclusion size (hence 25-fold 

increases t by a factor ranging from approximately 2 to prec 

4. 

There is a significant effect of the shape of the inhomogeneous 3one. 

Assuming, as we have, the same T. VS. 
1nc --

relation in each case, the 

spherical zone has precursory times that are 10 to 20 times longer than 

for the flat zone considered. There is also a significant dependence on 

the stiffness ratio; t for ~~~ = 1.25 is 2 to 4 times longer prec u 

than for ~~~ = 1.10 • u 

Comparing Tables 1 and 4 it is seen that t prec for spherical zones 

due to dilatant hardening is 2 to 5 times longer than the mean (for the 

two ~~~ ratios) of that due to time-dependent stiffness. 
u 

Of course, if 

smaller values of the dilatancy factor B arc considered, as in Table 2, 

the t values hecome more nearly comparable. We have commented that 
prec 

t due to dilatancy should be shorter for flat zones than for spherical 
prec 

507 



40 

zones, but there are no comparisons to be made between the two mechanisms 

for flat zones. 

It is interesting that the tprec values predicted by solving the 

integral equation (33) are not very different from those estimated by 

Rice (1977a), on the basis of an approximation to the response function 

f(e) of Fig. 5. Rice's procedure amounts to replacing f(e) by a simple 

exponential form appropriate to a "standard linear model" with relaxation 

time t 0/10 • This has the effect of converting {33) to a first order 

non-linear differential equation. The resulting approximation to f(e) 

is not very close but predicted t values agree within typically 25% prec 

or so with the more exact results in Table 4. The cost associated with 

solving (33) is much larger than for solutions based on the standard linear 

model, mainly because of the necessity of computing error functions in the 

complex plane to determine f(e) in (33); Appendix II. Hence, in future 

calculations of the kind reported here, it may suffice to use the approxi- . 

mation based on the standard linear model. 
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CONCLUDING DISCUSSION 

We have demonstrated that the coupling of pore fluid diffusion with 

defonnation can delay the onset of rapid failure and give ri~e to precursory 

periods of quasi-static, but accelerating, deformation. Our calculations for 

the duration of this precursory period indicate that the effects can be 

significant for values of the parameters which are consistent with existing 

experimental and observational data. More specifically, Figs. 8 to 11 demon-

strate that the precursory effects are much more dramatic for fluid-infiltrated 

solids than those for which the pore fluid is absent. Further, we have 

presented results for the precursory time so that its dependence on consti-

tutive properties will he evident; see Fig. 7 and Tables 1 and 2 for the 

dilatant hardening mechanism, and Fig. 12 and Table 4 for that based on time-

dependent elastic stiffness. Tables 1 and 4 are based on a range of material 
( 

properties which we think may be appropriate to cntstal rocks at depths on 

the ord~r of 5 km. The consequences of other choices for the constitutive 

parameters and loading rate may be estimated from Table 2 and Figs. 7 and 12. 

Because much of the discussion of precursory pore fluid effects has 

concerned their role in connection with the possibility that dilatancy may 

cause alterations in seismic wave speeds, we emphasir.ed that the effects 

describecl here can be important even if conditions are not sui table for wave . 

speed alterations. Indeed, the mech'!-nism of time-dependent stiffness of the 

surroundings is not contingent upon the dilatant inelastic opening of pores 

or cracks. Moreover, our calculations for the dilatant hardening mechanism 

suggest that an amount of dilatancy much smaller than that necessary to 

affect wave speeds can have a considerable effect of the kind described here 

in stabilizing the rupture process, and that the magnitude of the pore pressure 
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decrease induced by dilatancy alone becomes large only in close proximity 

to instability. For example, reductions of seismic wave speeds are sometimes 

postulated to result from the opening of vapor filled or dry crack space in 

extensive regions of rock, and this process would be accompanied by large 

suctions in the pore fluid. But results such as those in Figs. 8 and 9 

suggest that large suctions can result only very late in what we identify as 

the precursory period, and it is not clear as to whether they will typically 

be large enough to significantly alter wave speeds. Further, there is nothing 

in our analysis which suggests a source of the sometimes suggested return of 

seismic properties to normal levels just before rupture. These conclusions 

could, however, be a consequence of oversimplifications in our model. For 

example, the weakening zone is regarded as being spatially uniform up to 

dynamic instability, and no provision is made for a gradual concentration 

of deformations into a narrow fault zone. 

Because of the uncertainty of precursor time estimates based on ohscr­

vations prior to earthquakes it is difficult to draw definitive conclusions by 

comparison of our predicted precursor times with observations. In addition, 

while our definition of precursor time is unambiguous within the context of our 

model, it is likely to be an upper limit for precursory time as detected by sur­

face observations. This is because the strain within the inclusion continuously 

accelerates, Figs. 8 to 11, and it may only he toward the latter portion of the 

precursory period that effects are significant enough to be observed at ground 

surface. Of course, strain and tilt at the surface will have a similar time 

history to that of the inclusio~.~train, although the magnitude will be atten­

uated approximately in proportion to the inverse square of distance from 

the source. In addition, the accelerating strain near failure may also 
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have a discernible effect on transport properties in the source region, 

for example, on electrical resistivity due to the progressive microfracturing 

that accompanies inelastic straining. We note that transport properties 

seem likely to be more affected than seismic properties. at least to the 

extent that for significant alterations the latter requires suctions that 

are large enough to deplete pore spaces of liquid. 

To establish minimum estimates of the precursory time interval. ·we 

adopt the more conservative estimates of the size of constitutive parameters 

expressive of coupling between the rock and its pore fluid. Then it would 

appear that precursory times would be in the neighborhood of 10 to SO days 

for an approximately spherical weakening zone of 1 km radius. For example. 

if we modify the entries in Table 1 by use of the lowest dilatancy factor 

in Table 2 (B = 0.075, one-quarter of the value that we suggest as repre-

sentative of laboratory triaxial tests on coherent rock), we obtain 

t ~ 11 to 47 days for a range of fluid diffusivities between 1 and 
prec 

0.1 m2/s • Similarly, from Table 4 and using the smaller ratio of undrained 

to drained elastic stiffness, ~~~u = 1.10 , we find t ~ 14 to 37 days prec 

for the same range of diffusivities. If, for example, the last fifth of the 

precursory time interval is regarded as being "readily" detectable, in view 

of the rapid acceleration of strain near instability, this minimal estimate 

of the precursory period for a spherical zone of .l km radius is in the range 

of approximately 2 to 10 days. We would suggest this sort of period as most 

appropriate in searching for precursory effects of the kind we describe. 

Larger spherical zones lead to longer precursory periods, but the 

predicted effect does not scale directly Nith the characteristic diffusion 

time, 
2 

t 0 = a /c Instead, a much less rapid variation occurs, more nearly 
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proportional to a to the power 1 or lower, although no single power can 

fit all the size dependencies documented in Tables 1 and 4. 

An analysis of the dilatant hardening mechanism has not been possible 

for the non-spherically shaped zones, although an approximate analysis of 

the time-dependent stiffness mechanism has been possible for ellipsoidal 

zones. The results in Table 4 correspond to a flattened axi-symmetric 

ellipsoid of approximately 18 to 1 aspect ratio and in this case th~ precursory 

times are reduced by a factor of approximately 10. The results for other 

aspect ratios can be obtained from Fig. 12, using the appropriate value of t . 

When precursory deformations are concentrated from the start on a single fault 

plane, it is probably inappropriate to model the process hy a narrow inclusion 

as in the present work. Instead, a model like that suggested in Fig. lb seems 

more appropriate. This involves the spread of a slipping region along an 

existing fault under the driving force of the stress concentrations at the 

edges of the slipping region. We leave the fuller analysis of this case to 

subsequent work. 

The model which we have employed here is of course idealized and we have 

made many simplifications. We have considered separately each of the two 

stabilizing mechanisms of the pore fluid, but it seems evident that the effects 

will be more pronounced when both act together. For a given T. VS • y. 1nc- 1nc 

curve undrained runaway generally occurs at a larger strain for the dilatant 

hardening mechanism than for that of the time-dependent stiffness, although 

the strains at final instability are comparable for smaller values of the 

' dilatancy factor B or the modulus Kf (see eq. 28). Although we have con-

• 
sidered only parabolic T. vs. y. curves, the computations do not appear 

lnC- 1nc 
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to be strongly sensitive to their shape as expressed by A • Nevertheless, 

the form which we adopted has a continuously decreasing slope so that dynamic 

rupture is inevitable. There does, however, exist the possibility that the 

inclusion stress-strain relation reverses curvature before point D' is reached 

in Figs. 3 and 4 (e.g., see Fig. 2c). In such cases it is possible that the 

pore fluid effects allow the inclusion to undergo strain in the form of a 

wholly stable creep episode. 

Hore geRerally, we have shown that if fissured rock masses are fluid 

infiltrated, then the coupling of the deformation with the diffusion of pore 

fluid will be important in processes preparatory to faulting. As we remarked 

earlier, consideration of pore fluid effects has been primarily limited to 

aspects which we would regard as secondary to their role as setting the time 

scale of the failure process. We wouhl argue that pore fluid stabilization of 

faulting merits more attention, but at the same time we stress that these 

processes are sensitive to values of material parameters and transport proper­

ties and there is a need for better data in this regard • 
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APPENDIX I 

Equations {22) and (30) were solved by treating them as two coupled 

ordinary differential equation~ for p(t) and y. (t) • 1nc Equation (22) 

is already in the appropriate form and needs no further comment. However. 

in order to write (30) in the form of an ordinary differential equation, 

we first write the convolution integral as a sum of integrals over each 

time step 66 = 6/n 

I = Je 
1 * (a 1

) de 1 
ln(6-S') 

0 

n jk66 
= /. 

1 * {6')de' 
k=l ln{n6e-e•) 

(k-1 )66 

where 6 = t/t0 • For each integral, dp/de was assumed to vary linearly 

between its values at the limits. The remaining integrations can be per-

formed analytically and the result may be rearranged to yiel'd 

I~ (4/3)(66/n)~rp + b p + n~lKkp -k] 
n n o k=l n 

where pk = * (kA6) , 

b = {3/2)n1/ 2 - n3/ 2 
+ (n-1) 312 

n 

Using (I.l) in {30) yields 

• 

' • ~ · 4(66,1/2[ • 6KfGy + (h+hd)A p +-3 -J b p 
oo n L w n o 

p = -n 

where , 

4 66 I/2 
h - h + A(h-hd) - (--) u 3 ,. 

3Kf 

A a a(l+4G/3K )N 
s 
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Standard fourth order Runge-Kutta integration formulae were used to solve 

(I. 2) and (22). 

It is clear from the form of (I.2) and (27), and from the asymptotic 

• • analysis of Rudnicki (1977b) that yinc and p become unbounded as the point 

D' in Fig. 3 is approached. Consequently, the numerical calculation must 

be truncated before h = h u Nevertheless, the contribution to the pre-

cursor time which was omitted by the truncation was negligible within the 

accuracy needed and no special effort was made to resolve the final insta-

bility. Typical examples are shown in Fig. 8 and Fig. 9 where, although 

the calculation was truncated well before the strain had reached its value 

at final runaway, the inclusion obviously would have reached this strain 

in an extremely short amount of additional time, at least as measured. 

by e • 
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APPENDIX II 

To solve the integral equation (33) subject to the stress-strain 

relation (31), we introduce the notations 

as in (34), noting that Y0 , - Y = A/~ , and a = ~~~ • p u u 

becomes 

' 2 2 g(e) - g (8)/2 = [(a+~)/(l+~)}Re/a 

• (a-1) J
6

f(6-6')[~R/a 2 (1•~) • g(e')dg(e')/de']de' 
0 

From Rice et al. {19'/7), 

Then (33) 

(II. I) 

(II.2) 

where 28 = 3n - i[3n(4-3n)J 1/ 2 and Im means "imaginarr part of." The 

function is shown in Fig. 5 and is not very sensitive to n , over the 

allowable range; we use n = 0.9 in our calculations. 

The time interval in (II.l) is divided into a series of steps. A 

small initial step is assumed and each new .step is chosen so that the 

increment in g , predicted from the last calculated value of dg/de , is 

smaller than some limiting size chosen to guarantee numerical convergence 

(the necessary step sizes decrease in approximate proportion to the size 

of R ). The right side of (II.l) is evaluated by assuming that dg/de 

is constant (~g/~0) in each step and by treating f(e-e•) as constant 

in each step, using the mid-step value of e• • Consequently, at the end 

of each step (II.l) becomes a quadratic equation which is solved for g(e) 

so that calculations for a new step can begin. The results for R = 10-2 

are shown as the solid curves for g in Figs. 10 and 11, and the resulting 
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precursory times are shown in Fig. 12 for a wide range of R values. 

As remarked, for given values of R and a there are negligible differ-

ences between results for ~ = 1 and 10. 

The dashed curves of Figs. 10 and 11 correspond to neglecting pore 

fluid effects on stiffness, and are equivalent to replacing f by its 

long-time value of unity in (II.l). Thus by elementary calculations one 

shows that the equation of the dashed curves is 

ag = t(y. - yp)/A = 1 -(1-2Re)
112 

1nc , 

and the inclusion strain rate becomes unbounded at e = l/2R , corres-

ponding to the attainment of point B' in Figs. 2 and 4. This shows that 

R may additionally he interpreted as half the ratio of the diffusion 

time t 0 to the time for remote loadings to bring the inclusion strain 

from that at peak strength to .that at instability. 
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a = 1 km a = 3 km I a = 5 km 

2 
c = lm /sec (t

0 
.. 11.6d) (t

0 
= 104d) (t

0 
= 289d) 

t = SS.4d t = 234d t = 4lld prec prec prec 

2 (t0 = Il6d) (t
0 

= I042d) (t
0 

= 2894d) c = O.lm /sec 

t II 238d t = 844d t = 1418d prec prec prec 

Scholz et al. (1973) t ::::: 8d t tv 200d prec prec -
· Table 1. Predicted precursor times based on dilatant hardening of a 

spherical zone (t is the time for the transition from n• to D' in prec 
Fig. 3). The precursor time for a= 1 km , c = 1m2/sec was estimated 

by extrapolation of the curve in Fig. 7. Data used were the following: 

tectonic stress rate T• = 1 bar/year; peak strain parameter (Fig. 6) 

~ = 0.0025; frictional coefficient u = 0.6; dilatancy factor 3 = 0.3; 

initial porosity v = 0.01; N = c/k = 2.0G; Ks = S.OG; Kf = 22 kbar; 

G = 200 kbar; v = 0.2 • 
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--· -~ -~ -· ·-· ------·--- ---·----- ---·---· -

B 0.075 0.15 0.30 

e 0.16 0.39 0.81 prec 

A 0.00125 0.0025 o.ooso 

e O.St1 0.81 1.13 prec 

Kf 2.2 kb 11 kh 22 kb 

e 0.44 o. 7() 0.81 prec 

Table 2. Effects of variations in the dilatancy 

factor B , the peak strain parameter A , and the fluid 

bulk modulus Kf on 9 All calculations were for prec • 
y

00
t 0 = 1.4 x 10-S and values of other parameters as in 

Table 1. 
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V1 
N 

"' 

Poisson ratios (undrained stiffness)/(drained stiffness),~/~ u 
~~ -

Crack density drained undrained narrow elliptical narrow axi-
3 

cylinder sym. ellipsoid sphere parameter Nr v v u -
0 .25 .25 1.00 1.00 1.00 

.1 .21 .28 1.11 1.06 1.07 

• 2 .17 . .32 1.22 1.12 1.15 

.3 .12 .36 1.37 1.20 1.25 

.4 .08 .41 1.56 1.29 1.39 

Table 3. Estimates of drained and undrained Poisson ratios for fluid-infiltrated solids 

with crack-like pore spaces, based on self-consistent calculations of O'Connell and Budiansky 

(1974). Also shown: ratio of elastic unloading stiffness of surroundings for undrained condi­

tions to same for drained conditions, for various shapes of the inhomogeneous zone. 

V1 
00 



,._. 

I 
a = 1 ka I a:z3bl j a = 5 km 

i 

F ! 

I I c = 1 m2 /s I (t0 = II.6d) (t0 = 104d) (t0 = 289d) 
I 

spherical (~=1) R = 1.27 X 10 -4 R = 1.14 X 10 -3 R = 3.16 X 10 -3 

t = 14d (29d] I t = 36d [92d] t = SSd [lSOd] 
1 

prec 
l 

prec prec 

I flat (f;=lO) -3 I -2 R = 1.74 X 10-~ 
i 

R = 6.96 X 10 

I 
R = 6.27 X 10 

I 

I t p: = 1 • 3d [ 3. 9d] 
I 

t = 3.Sd [12d] i t . =2.6d [8.9d] ! I . rec prec prec 

2 ! 
\ c = 0.1 m /s ! (t0 = Il6d) (t0 = I042d) (t0 = 2894d) 

I 
spherical (F;=l) i R = 1.27 X 10-3 R = 1.14 X 10-2 I -2 R = 3.16 X 10 

: 
I ~ I 

! 
~ 1! 1 prec - - 11 prec II prec · 1 ~ 

t = 37d [96d] t = 83d [261d] 
I 

t = 122d [399d] 
! prec prec prec -

""'-l 
i flat (~=10) 

-2 _, I 

I 

R = 6.96 X 10 I R = G. 27 X 1 0 .1. I R = 1.74 

I ) I tp: = 2.8d [9.5d] tprec = 4,5d [18d] I t = S.2d [22d] 
i I rec I prec 

/' 
j Scholz et al. (1973) t ...., 8d I t - 200d I prec- i ! prec ...., 

I • - ·-- ·-- ·- -- '-----·· - -- ·----·-

Table 4. Predicted precursor times (for transition from B' to D' in Fig. 4) in days, based 

on time dependent elastic stiffness of surroundings. First values shown are for undrained/drained 

stiffness ratio, F;/f;u , ~f 1.10; values which follow in brackets are for ratio of 1.25. Other 

data used: ~ = 1 bar/yr , G = 200 kbar , peak strain parameter A (Fig. 6) = 0.0025. "Flat 0 zone 
~ 

corresponds to axi-symmetric ellipsoid with 18:1 aspect ratio. 
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LIST OF FIGURE CAPTIONS 

Fig. 1 Types of failure models. (a) Deformation of "inclusion 

of different mechanical properties. "Runaway" instability 

based on strain softening of inclusion and elastic unloading 

stiffness. (b) Isolated region of slippage on pre-existing 

fault, spreading quasi-statically at small speed V • 

Fig. 2 Deformation and instability of inhomogeneous zones. 

(a) Weakened zone. (b) Approach to instability. (c) 

Seismic gap zone. 

Fig. 3 Stabilization of inhomogeneous zone by dilatant hardening; 

dynamic instability delayed to D'. (Rice, 1977a) 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

Stabilization due to time-dependent elastic stiffness. The 

solid straight line represents the unloading stiffness for 

drained (d) conditions, the dashed line for undrained (u) 

conditions. Actual stiffness changes, d to u , will be 

smaller than shown. (Rice, 1977a) 

Function f(8) arising in response of spherical cavity to a 

step shear loading, from Rice et al. (1977). 

Inclusion stress-strain relation. 

Predicted precursor time t /t as a function of the 
prec D • 

non-dimensional far-field strain-rate y~tn • For values 

of material parameters, see text. 

Fig. 8 History of post-peak straining of the inclusion (a,b) and 

the decrease of pore fluid pressure (c) in the inclusion. 
• -5 

Computed for y~to = 1.4 x 10 • B' and D' are as in 

Fig. 3 and y0 , is the value of the strain at D'. 
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Fig. 9 Same as Fig. 8 except 

Fig. 10 Post-peak strain history for constant tectonic loading rate, 

based on undrained to drained stiffness ratio of 1.25. Dashed 

curve neglects pore fluid effects. Points B' and D' correspond 

to those in Fig. 4. 

Fig. 11 Same as previous figure, but for undrained to drained stiffness 

ratio of 1.10. 

Fig. 12 Precursory times as function of tectonic loading rate parameter R , 

based on time-dependent relaxation of elastic stiffness of material 

surrounding inclusion. 
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' 

\. 

(a) Deformation of "inclusion" of different mechanical 
properties ... Runaway" instability based on strain 
softening of inclusion and elastic unloading stiffness • 

quasi-static, 

.- :: ::f small f ¢ 

..... ,__ ______ _ 
dynamic, 
V large - = ~ r 

(b) Isolated region of slippage on pre- existing fault, 
spreading quasi-statically at small speed V. 

Fig. 1 Types of failure models. 
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surroundings 

line 

y 

Ya, · )inc 
(a) Weakened zone 

surroundings 

y 

"Yinc Yeo 
(c) Seismic gop zone 

Yinc 

8' 
I 
I 
I 
I 
I 
I 
I 
I 

: y 

(b) Approach to instability 

Fig 2. Deformation and instability of inhomogeneous zones. 
(R,,e) l'\113) 
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T Eshelby line 
(slope= unloading stiffness) 

(~;tndroined 

y 
(d') 
dy drained 

Fig. 3 Stabilization of inhomogeneous zone by dilotont 
hardening; dynamic instability delayed to 0'. (R\te),,113) 

T drained Eshelby line 
~undrained " " 

' '\ 

Dynamic 
Instability 

y 

Fig. 't Stabilization due to time-dependent elastic 
stiffness. The solid straight line represents the 
unloading stiff ness for dro i ned (d) conditions, the 
dashed line for undrained (u) conditions. Actual 
stiffness changes, d to u, will be smaller than 
shown. (Rite, •tt71 a) 
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FIG. 5 Function f (8) arising in response of sperical cavity to a step 
shear loading, Rice et al. (1977) 
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• Fig. 6 Inclusion stress-strain relation 

534 



67 

10.0 
8prec 
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Fig. 7 Predicted precursor time tpreclt0 as a function 
of the non-dimensional far-field strain-rate 
yrot

0
. For values of material parameters, see 

text. 
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Fig. 8 History of post-peak inclusion strain (a,b) and 
of the decrease of inclusion pore f~uid pressure 
(c). Computed for yCXI tD = 1. 4 x 10- . B-' and D' 
are as in Fig. 3 and yD' is the value of the . 
strain at D'. 
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Fig. 9 Same as Fig. 8 except f t = 1.4 x 10-6 
oo D . 
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Bprec 
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FIG. 10 · Post- peak strain history for constant tectonic 
loading rate, based on undrained to drained 
stiffness rQtio of 1.25. Dashed curve neolects 

I I · 

pore fluid effects. Points B and 0 correspond 
to those in Fig. 4. 
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FIG. II Same as previous figure, but for undrained to drained 
stiffness ratio of 1.10. 
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ABSTRACT 

Theoretical mechanical models for earthquake instabilities are reviewed 

and compared on the basis of their postul~ted fault geometry, constitutive 

properties, and remote boundary conditions. All models invoke a fundamentally 

post-peak strain or strain rate weakening fault zone surrounded by elastic 

material and are specializations of Reid's elastic rebound hypothesis. Models 

other than the most elementary case of simple shear displacement in two dimen­

sions differ principally according to whether the fault zone is approximated 

by: (1) an embedded homogeneous inclusion, (2) a propagating crack, or (3) a 

throughgoing crack with smooth peak stress variation along its length. All 

models whose formulation allows study of pre-instability deformation show 

growing deformation rates prior to instability, thus suggesting the existence 

of similar accelerating deformation prior to earthquakes. Instability may be 

delayed by pore fluid effects or physico-chemical healing, in which case 

another deformation time scale is introduced. 
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INTRODUCTION 

The essential qualitative features of earthquake mechanics are well known. 

The observed suddenness and short duration of earthquakes indicate that they 

are mechanical instabilities because locally large strain and strain rate 

changes result from apparently small or slow changes of regional stress. In 

addition, direct observation of recent earthquake ruptures and exhumed ancient 

faults, plus fi~st motion studies, imply that rocks fail during earthquakes by 

a shear mode and that the large deformations are restricted to thin tabular 

bodies, viz. fault zones. Occasionally earthquakes are attributed to volumet­

ric sources, for example volcanic explosions or solid-solid phase transforma­

tions, or even to subterranean magma flowage as with harmonic tremors, but such 

earthquakes are not considered here. 

An earthquake by definition involves strain rates large enough to generate 

stress waves in the nominally elastic crust and thus inertia must be considered 

in theoretical analyses. In contrast, if small or slow regional stress changes 

induce temporaril~ large but sub-inertial strain rates, a quasi-static formula­

tion is sufficient. The so-called fault creep events and aseismic creep epi­

sodes fall into the latter category and their properties suggest that their 

and an earthquake's physical origin are fundamentally similar. 

The elastic rebound hypothesis advocated by Reid (1910) seems to explain 

the main characteristics of crustal earthquakes and, with modification, deep 

focus earthquakes (< 700 km). Reid's proposal and later refinements, however, 

provide little insight into the precise mechanical conditions that might permit 

or pr~vent an earthquake instability, or for that matter, into deformation 
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preceding the instabilty. In general terms at least one thing is clear: in 

the context of a boundary value problem representation of Reid's hypothesis, 

the earthquake instability marks the transition from slow stress buildup to 

rapid propagation of an earthquake rupture surface. Being a boundary between 

sub-inertial and inertial deformation modes, an instability occupies a point 

in time and is a mathematical singularity in strictly quasi-static analyses. 

Notwithstanding the central role of the instability, only recently have theo­

retical fault models been formulated so as to reveal precise requirements for 

instability. Both quasi-static models for recurrent earthquakes and dynamic 

rupture propagation frequently impose rather than compute an instability by 

invoking a discontinuous fault stress drop according to some failure criterion. 

The formal definition of instability is usually expressed as the deriva­

tive of fault strain or displacement with respect to remotely applied strain 

or displacement becoming unbounded. An example is au/aU-+ oo where u is 

fault slip and U is the remotely applied boundary condtion displacement. 

Substitution of stress or strain in the derivative may be more convenient in a 

specific problem. A corresponding definition employing potential energy 

derivatives may also be constructed. Finally, it is always possible to express 

the instability condition by comparing suitably defined stiffnesses of the 

fault zone and surrounding elastic medium. The stiffness criterion provides a 

particularly succinct graphical representation on a force-displacement plot 

where instability occurs when the weakening fault first becomes stiffer than 

the surroundings. In other words instability occurs when the fault weakens 

faster than the nearby elastic stress can decrease. A special case of 

instability is the sudden failure of brittle rock in a laboratory compression 

test with a compliant machine (Jaeger and Cook, 1976, p. 177). 
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Thus field observations, instability definition, and laboratory data 

suggest partitioning the earth into two coupled bodies of distinct geometry, 

constitutive properties, and strain history, namely: (1) a laminar fault zone 

containing initially brittle material experiencing finite and monotonic shear 

strains embedded in (2) an expansive elastic medium subjected to infinitesimal 

and reversible strains. Boundary conditions of force or displacement are 

applied to the exterior of the latter body. Modern instability theories retain 

Reid's basic postulates, but are distinguishable by and more explicit in their 

assumptions of geometry, constitutive properties, and remote forcing. 

There is a practical reason for the theoretical study of instabilities. 

A successful theory may reveal that a restricted class of crustal deformations 

in space-time precedes earthquake instabilities. Thus a field monitoring 

program might detect rapid, even large, ground deformation, but the theory 

would determine if the deformation field were precursory to an instability or 

merely a reflection of a fault creep episode. The same theory might suggest a 

technological procedure for replacing a single forthcoming earthquake with an 

aseismic creep episode or several smaller earthquakes, for moving the earth­

quake elsewhere, or even for delaying the earthquake for posterity. 

This paper reviews mathematical theoretical models for earthquake 

instabilities. Where possible, an attempt is made to identify pre-instability 

deformation that may lead to discovery of reliable earthquake precursors. 

The next section outlines the simplest strain softening (weakening) analytic 

model whose attributes and consequences underlie the more elaborate models. 

After exposition of the simple model, more complex strain or displacement 

softening models are considered. Next, stabilizing phenomena that can delay 
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instabilities are covered, followed by a section on strain rate softening 

models. The last section is a general discussion of earthquake instabilites 

with suggestions for future research. 
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THE SIMPLEST INSTABILITY MODEL 

First consider the simple shear strain geometry of Figure la~ where the 

constitutive response of the uniform fault zone f between h and -h is 

Tf = Tf(ef), independent of time. Tf is shear stress, ef = u/2h is shear 

strain, and 2u is fault slip. Let the surrounding elastic material c 

bounded by h,H and -h,-H represent portions of the earth's crust forced by 

antisymmetric boundary conditions applied at y = ±H. Assuming stress contin-

uity at y = ±h (welded contact), smoothly increasing boundary displacement 

U at H will cause the shear stress to increase initially. U might, for 

example, approximate the inexorable movement of tectonic plates. If, as in 

Figure lb, Tf(ef) reaches a peak stress, shear stress will thereafter decline 

during strain softening of the fault zone. If the softening slope is steep 

enough, an instability will occur in the sense that an arbitrarily small 

increase of U will cause a large increase of u, i.e. au/aU~ oo. A quasi-

static development will be followed here, but it is easily seen that if 

momentum terms were retained in the equations of motion acoustic waves would 

be generated and the instability might be characterized as "inertia limited"; 

if the fault constitutive law had a viscous component the instability might be 

"viscous limited". In any case, the instability, which is due to elastic 

rebound of c, resembles an earthquake in primitive respects. This elementary 

instability model, since it illuminates more sophisticated and real'istic models 

discussed below, will be analyzed assuming that T 
f 

has a parabolic form. 

R~gion c in Figure la is assumed to satisfy Hooke's law 

T = 2p£ = p(U-u)/(H-h) 
c c 
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where ~ · is the ri~idity modulus and E is infinitesimal shear strain. c 

Region f, the fault zone, surely is non-elastic and undergoes finite strain 

in situ, but neither laboratory experiments nor constitutive law theory estab-

lish its form or material coefficients well. If it has a power series repre-

sentation in Ef in the present geometry, the simplest expression allowing an 

instability is quadratic, namely 

T = s [1 - ( E -E ) 
2 

IE 
2] 

f f 0 0 

where E is the strain at the peak stress S (Figure lb). Triaxial compres­
o 

sion tests on sandstones and cohesionless aggregates by Griggs and Handin 

(1960), Rummel (1975), and Zoback and Byerlee (1976) show a roughly parabolic 

shape near the peak stress. Actual fault zones defined by large shear strain 

are probably thin compared to the space scale of smooth regional forcing, 

suggesting H>>h in the model. In fact for reasonable rock properties insta-

bility is impossible unless H>>h. As usual it is convenient to convert 

thereby avoiding the ambiguity of strain and fault zone width. 

(1) 

u is the 
0 

fault slip at peak stress S. Equating Tf = Tc gives the dependence of u 

on U 

~ uo 
~' = ~u /S(H-h) = - • o H-h S 

(2) 

where ~' can be interpreted as a dimensionless stiffness ·or the system in 
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response to U. The instability commences when au;au-+oo, which performed on 

(2) gives the condition 

( 2+~')2 _ 4~'U = O 
u 

0 

The value of fault displacement at the instability is 

Beyond 

ui = 1 + ~'/2 
u 

0 

u. no quasi-static· solution for 
1 

u exists. 

(3) 

(4) 

As shown at position 1 in Figure lb, the instability occurs when the 

tangent to the friction law Qas a value aTf/au = -S~'Iu0 = -~/(H-h). Thus 

the point of instability is determined by a comparison of two slopes or stiff-

nesses. Observe in (2) that ~· is the ratio of elastic stiffness ~/(H-h) 

to a characteristic fault stiffness S/u0 • Walsh (1971), contemplating the 

relevance of laboratory stick slip events to earthquakes, pointed out that the 

earth is several oraers of magnitude more compliant than laboratory apparatus. 

Since instability depends on stiffnesses of both the fault zone (gouge zone or 

friction surface) and surrounding crust (laboratory machine), both gouge and 

fault zone properties are needed to resolve the issue. 

Equation (4) says that increasing ~· delays the instability. The 

earliest the instability can start is at ui = u
0

, i.e. at the peak stress 

when ~· = 0; ~· = 0 implies a perfectly flexible system. The latest realis-

tic initiation of the instability with a quadratic law is at ui = 2u
0 

in 

which case ~· = 2. Hence no instability is possible for ~· > 2. To the 

extent that this model is .relevant to the earth, an earthquake instability can 
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be prevented by increasing ~·, for example by increasing the crustal rigidity 

or by modifying fault properties S and u such that the slip softening slope 
0 

(~S/u0 ) is gentler. In this and all other instability models considered here, 

stress appears scaled by a material constant. For this reason knowledge of 

the absolute stress level is not required to test instability models with field 

data. 

Figure 2 shows how the fault slip u and stress T : T 
c 

vary with 

remote displacement U for [ oth unstable deformation (~' = 1.5) and stable 

deformation (~· = 3). ~ef re the instability and while the shear stress is 

decreasing from its max1mu , u shows a rapid rate of increase. Both phenom-

ena occur more gradually during the stable case too, which is a possible analog 

of a rapid aseismic fault slip episode. Enhanced slip or strain rates appear 

before instabilities in most models and seem to be a general consequence of a 

continuous strain softening law. 

Similar results with a more realistic but more intricate friction law are 

not so amenable to concise analysis. A point worth making, however, is that 

unstable slip may be stabilized if the fa~lt law slope becomes less steep, say 

at position 2 in Figure lb. If this is so, the slip between positions 1 and 2 

may be estimated with two quasi-static solutions for u, both for the same 

value of U. 

A qualitative version of the above analysis was given by Stuart (1974). 

The principal conclusions of that paper, as here, are that average fault stress 

should decrease and fault slip rate increase before an earthquake instability. 

An increasing stress boundary condition is a common alternate to 

increasing displacement, notably in dislocation theories. The instability 
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11 

criterion in this instance becomes au/aT-+- oo where T is now the stress 

boundary condition replacing U in Figure la From (1), the condition is 

met only at the peak stress where u = u if T is monotonically increasing. 
0 

The instabilty is equivalent to the ~' = 0 situation with a displaceme~t 

boundary condition, and consequently occurs earlier than all ~' > 0 cases. 

A stress boundary condition in simple shear geometry does not provide much 

insight. 

Strain localization is a phenomenon that invariably accompanies shear 

instability in continuous brittle media, though its physics is poorly under-

stood. Localization is the concentration of deformation into thin bands of 

large and therefore non-elastic strain within a larger region of otherwise 

relatively homogeneous deformation. A complete theory for deformation in 

Figure la would involve localization and would likely show that the fault width 

2h decreases in time. In practice, localization may be regarded as implicit 

in a softening friction or constitutive law. Shear bands in failed laboratory 

samples and narrow fault zones (meters or less wide) in the field appear to be 

examples of a localization process. Localization need not lead to an inertial 

instability, however, but the converse is probably false. 

Even though it seems likely that shear failure in the crust is fundamen-

tally associated with a localization mechanism, certain progress is possible 

without knowing details. In structural geology, for instance, numerous studies 

of the orientation and direction of faulting derived from elasticity theory 

(e.g. Hafner, 1951; Sanford, 1959) and plasticity theory (Ode, 1960) give 

solutions which agree well with both mapped faults and partially scaled simula-

tions on clay and sand. The origins of localization in elastic-plastic media 

admitting a coupling between shear and normal strains are discussed below. 
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Figure la suggests four additional ways of making the simple shear model 

more realistic: generalize to three dimensions, possibly with a free surface; 

vary the shape of the fault zone; modify the fault constitutive law and let it 

vary with position; and alter boundary conditions. The models of the next 

section are distinguished on these grounds. 

STRAIN SOFTENING INSTABILITY MODELS 

Table 1 compares modern instability models whose mechanism is fundamen-

tally strain or strain rate weakening. The models are best contrasted 

according to their assumption of fault zone geometry, or equivalently, in their 

postulated fault heterogeneity structure. The three variations to the simplest 

model just discussed (Figure la ) are shown in Figure 3. The first two are 

also elements in the similar classification by Rice (1977). 

In the first, Figure 3~, the fault zone is taken to be an elastic-plastic 

ellipsoidal inclusion embedded in an elastic full space subjected to a remotely 

applied shear stress T or strain Y . In the limit the ellipsoid may become 
00 ()() 

a thin disk or a sphere. The ellipsoid may be regarded either as having 

greater or lesser "strength" than the surrounding medium. This work is due to 

Rudnicki (1977a) and Rice (1977). 

The second and oldest fault geometry (Figure 3b), which draws on the 

early work of Griffith (1921) and subsequent development, is a zero-thickness 

crack whose ends propagate into the surrounding elastic medium under favorable 

friction strength and applied shear stress. A variety of external boundaries 
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can be treated, including full and half spaces. Fault constitutive properties 

are simulated by a stress-displacement weakening law: stress decreases from a 

peak value appropriate for unbroken pristine material at the crack tip to a 

residual frictional sliding value a short distance away. In models of this 

genre, the crack length actively experiencing failure during propagation is 

often assumed small compared with the total crack length (sharp tipped crack), 

and then fracture mechanics methods based on energy release rates are applica­

ble. The fault is assumed to propagate in its own or another predetermined 

plane. Rigorous two-dimensional analyses (one-dimensional cracks) are due to 

Weertman (1967, 197ti), Palmer and Rice (1973), and Cleary (1976). 

A third type of fault zone geometry, Figure 3c, is a throughgoing crack 

over which a continuous position- and slip-dependent friction law is imposed. 

This strategy avoids consideration of crack tip propagation because fault slip 

never vanishes, though it may be arbitrarily small. Two-dimensional boundary 

value problems may be attacked with continuous distributions of dislocations 

(Stuart and Mavko, 197tl), or with numerical discretization of the elastic 

continuum (Stuart, 1977). Faults where frictional strength varies only with 

position do not admit instability (Weertman, 197~), and the problem of a 

uniformly slip weakening fault is straightforward. 

Theories invoking a throughgoing fault plane may themselves be further 

set apart according to the space scale of fault property variation relative to 

the fault slip required for complete softening. The last three workers postu­

late that fault slip is small compared to the scale of peak stress variation. 

Semi-quantitative one-dimensional models prompted by laboratory stick slip 

observations (e.g. Byerlee, 1970, Nur and Schultz, 1973) assume the softening 
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and peak stress are of the same scale inasmuch as friction depends on slip 

only. The same is true for phenomenological constructs employing rider masses 

moving across irregular frictional surfaces. Spacial property variations 

smaller than the slip softening scale are absorbed into a macroscopic continuum 

formulation. 

No attempts yet exist where constitutive properties vary with position 

within a throughgoing, finite-width fault zone. Nor do any models consider a 

curving fault plane or multiple interacting faults. 

Ellipsoidal Inclusion 

Rudnicki (1977a) departs from the conventional fault plane geometry by 

considering the possibility of inertial instabilities within an ellipsoidal 

inclusion of different material embedded in an infinite, homogeneous, elastic 

space. Forcing is by a remotely applied shear strain Y
00 

or stress L • 
00 

The inclusion, shown in Figure 3a, need not be elastic for Eshelby (1957) has 

shown that deformation within such an elastic ellipsoid is homogeneous. Thus 

any non-elastic constitutive law for which the stress and strain state satis-

fies displacements and tractions at the inclusion surface may be substituted. 

Special inclusion geometries recoverable from an ellipsoid are a flat disc, 

presumably representing a thin fault zone or plane, and a sphere. The physical 

interpretation of roughly equant inclusions is not so clear as that of a thin 

ellipsoid, but they could conceivably be appropria-te models of the first 

throughgoing failure of a solidified igneous body emplaced in the crust. As 

Rice (1977) and Rice and Rudnicki (1978) mention, Rudnicki (1977a) regarded 

the inclusion to be a zone weakened compared to surrounding material, but the 
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theory is not particular and the inclusit n may equally well be thought of as a 

body of greater failure strength. The l i tter situation corresponds roughly to 

a relatively locked "seismic gap" whose <1>rigins in the two dimensional case 

are traceable to Orowan (1960). 

If the constitutive law for the inc usion has a peak stress followed by 

smoothly continuous strain softening, a stress level may be reached with 
I 

increasing Y when the inclusion will weaken faster than the rate of stress 
00 

decrease in the nearby surrounding mater al. The condition for this inertial 

instability, or "runaway instability" in Rudnicki's (1977a) terms, is 

ay inc/ ayoo -roo, where y inc denotes the t nclusion strain. Rudnicki (1977a) 

gives an analytic expression for the in]ability in terms of geometric and 

constitutive parameters. 

Rice (1977) provides a simplified 

1

aphical presentation of Rudnicki's 

(1977a) analysis by considering one comp<1>nent of the general Eshelby equation 

relating inclusion and remote :tresses ai d strains 

(Eij) - (Ei.) - Qi"kl[(Tkl) - (Tkl) (S) 
inc J oo J I oo inc 

where E is strain, T is stress, and Slllbscripts "inc" and "oo" refer to the 

inclusion and great distances from the i lclusion respectively. The Qijkl are 

functions depending on the ellipsoid given in Rudnicki (1977a). The one 

component of (5) needed here is 

y - y : ~ (T - T. • ) 
inc oo ~ oo 1nc 

(6) 

~ = (1-v)a thin elr psoidal disk in plane strain 
b 

~ = 2(4-Sv) sphere 
7-5\) 
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where v is Poisson's ratio; 2a and 2b are major and minor axes of the ellip-

soid. The two ~ are approximately 3a/4b and 1 for v - .25. Figures 4a 

(weak inclusion) and 4b (strong inclusion) show the non-elastic stress-strain 

curve for the inclusion and the elastic curve of slope G (rigidity modulus) 

for the surrounding region. As -r increases, say at a uniform rate, the 
00 

intersection of the "Eshelby line" of slope -1-d~ (see equation (6)) with the 

two constitutive laws determines the current stress and strain states. Points 

A and A' mark a possible quasi-static deformation state prior to the insta-

bility, but points B and B' mark the onset of the instability--at B,B' 

no quasi-static solution is possible for even an arbitrarily small increase 

of -r • Positions B' appear where the Eshelby line is tangent to the inclu-
oo 

sion constitutive law. 

As with the simplest model outlined in the preceding section, the strong 

inclusion may distort to a new quasi-static configuration B" in Figure 4b if 

the inclusion law has a residual stress level (and if inclusion strains are 

infinitesimal). The Eshelby lines in Figure 4 indicate that the weak inclusion 

always has a stress lower than the surroundings; the situation is reversed for 

the strong inclusion (except at B"). By drawing lines parallel to A-A' it 

is also easy to see that the increment of inclusion strain for equal increments 

of -r increases as the instability approaches. As mentioned above, such 
co 

accelerating strain (or slip) rates seem to be congenital properties of strain 

softening instability models. 

Rudnicki (1977a,b), Rice (1977), and Rice and Rudnicki (197tl) consider 

the influences on stability, including special stress states; inclusion geome-

tries and constitutive laws; localization; and pore fluid stabilization. The 

last two effects will be discussed below. 
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Finite Fault 

Two classes of methods have been used to study instability of semi-infinte 

and finite fault segments where the fault friction law may depend on position 

or slip. No closed solutions exist where the friction law depends on both 

position and slip, however. 

The first method, which is also suitable for infinite faults, employs 

continuous distributions of straight edge or screw dislocations. For a full 

space and a two-dimensional vertical strike-slip fault, fault stress and slip 

derivative are related through a Hilbert transform. Weertman (1967) seems to 

have been the first to apply this approach to inertial instability on a 

slipping segment in a full space. Employing slip weakening friction laws 

having step or ramp stress drops, he showed that the remotely applied shear 

stress can be double valued for a certain range of plastic strain due to fault 

slip. 

This explanation for discontinuous yielding in crystalline material may 

also be interpreted as a mechanism for inertial instability if one imagines 

that the slowly increasing applied stress is a similar regional stress. At a 

certain stress level, a plastic strain level is reached which is also an 

equilibrium solution for a lower applied stress level. Weertman shows that 

the instability vanishes if the rate of slip weakening is sufficiently gradual. 

Linear fracture mechanics supplies the second general method for dealing 

with fault instability. The method, initially directed toward tensile crack 

propagation, dates back to Griffith (19211). Reviews are given by Irwin (1958) 

and Rice (1968). When the friction stress is constant in a shear crack, it is 
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1 

well known that an r-~ stress singularity exists at the crack tips where r 

is distance from the tip. By postulating that fault friction decreases from a 

value TP appropriate for intact material just ahead of the crack tip to a 

residual value T after large slippage <5 < <5 as in Figure 5, Palmer and Rice r r 

(1973) were able to remove the singularity. Furthermore, assuming also that 

the near-tip fault length over which (the breakdown region) is 

small compared to any other characteristic length sucb as the fault length or 

body dimension allows use of the J line intergral (Rice, 1968). The propa-

gation criterion for such a sharp-tipped crack becomes 

f l-v 2 
J - T 0 = (T-T )do = - k 

p r p r 2G 
(7) 

Subscript P denotes that evaluation of the quantity is to include a fault 

point P outside the breakdown zone. Other symbols are Poisson's ratio v, 

rigidity G, and stress intensity factor K. Palmer and Rice (1973) give the 

K formulae for various geometries including a semi-infinite crack in simple 

shear (Figure 5a) and a finite fault segment in an infinite two-dimensional 

space. The integral in (7) is interpreted as the crack driving force and is 

equal to the supra Tr hachured area in Figure 5b. Any larger value of the 

left hand side of (7) will result in an inertial instability. As expected, 

the fault may propagate even though the applied stress Ta is less than the 

peak fault strength TP. When the unfaulted medium is partially plastic, 

Palmer and Rice (1973) recommend using the unloading portion of the constitu-

tive law. Equation (7) asserts that instability depends on the stress in 

excess of the residual level, implying that in the earth the absolute stress 

level is of no consequence to the model. (The absolute stress may, 
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[9 

nonetheless, enter implicitly into the f~ult slip law.) Andrews (197b) has 

derived a form of t7) without invoking the J integral, but founded on compar-

able energy arguments. The second equality in (7) holds only when the width 

of the breakdown zone is small compared to the overall fault length. The 

breakdown zone width is of order 

slip for breakdown given by (~). 

8 = 
1 j<'t'--r )do 't' -T r 

p r 

Go/t't' -
1

1' > P r 
where is the characteristic 

(8) 

To maintain infinitesimal strains, 8 id (~) must be much smaller than the 

width of the breakdown region over which 8 becomes comparable to 8. 

Cleary tl97o), whose work like that of Palmer and Rice tl973J is applied 

to slip surfaces in soil mechanics studi~s, especially slope failures, examined 

the propagation of two-dimensional faults with numerical methods. He combined 

a discretization of continuously distributed dislocations and fault stress-

displacement relations like Figure 5b and of hyperbolic form to compute the 

onset of propagation. The friction law dloes not vary in space. Perturbations 

arising from proximity to a free surface were considered by allowing the dis-

tance of the fault from the free surface to be comparable to fault length. 

Although fracture mechanics models for propagation of sharp-tipped faults 

or cracks have enjoyed success in technollogical and materials science applica­

tions, they would appear to benefit from 1elaboration when descibing earthquake 

instability. In particular, the models just outlined do not obviously yield 

phenomena which might be associated with reported earthquake precursors without 

the assumption of an additional mechanisJ for time dependence, such a~ pore 

fluid diffusion, rate-dependent constitutive properties, or geometry change. 

Such precursors might arise, however, from inhomogeneity of stress-displacement 

properties on the fault surface. 
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Throughgoing Fault 

Using a finite element method, Stuart (1977) was able to determine with 

moderate precision the condition distinguishing stable and unstable slip on a 

two-dimensional strike-slip fault where the friction stress varied with both 

depth and slip. Referring to the geometry and variables depicted in Figure 

ba, the friction law was postulated to be Gaussian in depth and fault slip 

according to 

2 v'-1 2 Tf = exp[-(2w') ] exp[-(~) ] (9) 

where T' f is fault stress, 2w' is fault slip, x' is horizontal distance 

from the fault, y' is depth, and b' measures the broadness of the peak 

stress in depth. Primes denote dimensionless variables scaled according to 

= T/S, w' = w/a, (x',y') = (x,y)/y , ~· = va/Sy, and b' = b/y (this def-o 0 0 

inition of v' differs from (2) by the substitution of y
0 

for (H-h)). S 

is the greatest peak stress (located at y = y ), a measures the slip 
0 

broadness of the friction law, a'nd ~ is the rigidity modulus. Friction law 

(9) is intended to approximate brittle failure of the fault zone and may be 

regarded as superimposed on an unknown stationary background stress. Thus 

once the boundaries of the rectangular region are chosen, here x' = 0, 12.5 

andY' = 0, 7.5, v' and b' sufficiently characterize a dimensionless 

solution. As with the simplest model in Figure 1 and equation (2), v' is a 

stiffness; b' essentially determines the influence of the free surface. 

Although little laboratory data or theory exists for comparison with (9), it 

has the virtue of continuous first derivatives, slip softening to a residual 
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I stress level, and an isolated peak stresf maximum in depth. Increasing 

boundary displacement W' applied at x' = 12.5 and y' = 7.5 generates 

elastic stresses which are balanced by frictional resistance at the fault. 
I 

Consequently, deformation time scales ar~ determined by the time dependence 

of W'. The qualitative response can be seen by inspection. Since the fault 

becomes slip softening at increasingly s~allow depths below y' = 1 as W' 

grows, stress becomes concentrated progressively closer to y' = 1. Finally, 

and if in addition JJ' < 4, a discontinuof s displacement jump occurs which is 

considered to be an earthquake analog. The instability criterion is formally 

aw'/ aw•-+oo. No such jump occurs for ll' > 4. 

Figure 6b shows the displacement history for the case b' = 1, ll' = .25. 

I 

As anticipated, fault slip rates just below y' = 1 incre~e dramatically 

prior to the instability time ~· = W'/1J .5 = .48, starting roughly at about 
I 

~· = .3. Figure 7a shows that these enhl nced slip rates cause fairly 

distinctive increases in shear strain E, rate starting at ~· = .3 at the 

free surface near the fault trace, x' << 1. (Oscillations at large z;' are 

of numerical origin.) Because similar s f rain anomalies for stable cases 

ll' > 4 are lacking, e.g. Figure 7b, sucn anomalies may point the way to a 
I . 

method for recognizing precursory anomal t es in field data. 

Except near the depth y' = 1, the fault has slipped beyond the peak 

stress position and resides at diminished levels before the instability. 

Consequently, the average fault stress ai so declines from the prior maximum by 

about one half. Furthermore, the averasJ fault stress change during the insta-

bility jump is a small fraction of the s r ress change transpiring near the depth 

y' = 1. 
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A nearly identical problem has been solved numerically by Stuart and Mavko 

(1978) using a more elegant procedure involving continuous distributions of 

screw dislocations. Friction law (9) was used but the bottom plate boundary 

Y' = 8. was stress-free and remote displacement W' was applied at x' = 20. 

Satisfying the nonlinear boundary condition at the fault and estimating -r' a' 

the applied stress at x' = 20. , was accomplished by an algorithm containing 

(9), a reciprocity relation between stresses and displacements at x' = 0 and 

x' = 20. (Mavko, 1977), 

-r' = ~'(W'-~')/20 
a 

stress equilibrium at the fault 

-r' = -(-r'--r') 
d a f 

and the Hilbert transform relating fault slip to fault stress (e.g. Weertman, 

1965) 

dWd = ___ 2__ Td(n)dn ' f' 
ay' ~'1r y'-n 

w' is average fault slip, wJ is dislocation slip after removal of average 

fault slip and -r' d 
is dislocation stress. 

Figures 8a and 8b contain computed displacements for the unstable case 

~· = 2.5 and the stable case ~· = 10. respectively, both for b' = 1. The 

fault slip discontinuity is apparent in Figure 8a, but missing in Figure 8b. 

The latter case is taken to be the analog of a rapid aseismic slip episode. 

The displacements are qualitatively similar to those in Figure 6b, but somewhat 

smoother (disregarding numerical perturbations). The principle difference is 

that the stable-unstable boundary is near ~· =10. Thus freeing the plate 
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bottom promotes instability (the small g~ometry difference has little effect 
I 

on the critical ~'). In the finite element approach, the boundary between 

stable and ~nstable modes in .the completl ~'-b' space remains to be mapped 

but the Hilbert transform solutions show that for a constant ~', raising b' 

promotes instability. 

Preliminary calculations for a long thrust fault using the finite element 

method, displacement boundary conditiona l, and friction law (9) show a response 

analogous to the strike slip case. As if Figure 6b, the position of greatest 

fault slip rate migrates updip toward the depth of greatest peak stress prior 

to the instability. The magnitude of subface uplift rate grows in time as the 

position of the maximum moves toward the epicenter. Furthermore, fault dis-

placement during the instability is rougrtly ten times the nearby uplift 

preceding the instability. These resultf are in fair agreement with corre­

sponding elevation changes associated with the ML = 6.4 San Fernando earth­

quake (Castle et al., 1975). 
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STABILIZATION AND LOCALIZATION 

It must be expected that the preceding instability models, even if 

substantially correct, will submit to modification by additional mechanical 

processes in the earth. Stabilization of rupture propagation by pore fluid 

effects and strain localization are two possible perturbing phenomena which 

have achieved theoretical development. 

Mechanical consequences of pore fluids have received considerable atten-

tion, initially as a means of explaining time dependent consolidation in soil 
' 

mechanics and large horizontal displacements of gently dipping thrust faults . 
. 

More recently, the success in triggering seismicity by artificial fluid injec-

tion (Raleigh et al., 1976), in addition to the well known inverse relation 

between failure strength of brittle rock and pore fluid pressure, suggests the 

importance of pore. fluid diffusion. Since boundary conditions associated with 

injection-stimulated seismicity, both in the laboratory and in the field, have 

no obvious direct counterpart with naturally occuring seismicity near faults, 

it is unclear whether pore fluids play an essential role in natural earthquake 

processes. Earthquakes in· volcanic regions may constitute an exception. If 

the earth is sufficiently porous, permeable, and saturated, however, pore 

fluids have the potential of delaying an instability and thereby of adding 

another time scale to the deformation. The mechanical analysis, as a result, 

must consider the coupled equations of elasticity and fluid diffusion in a 

porous medium. 

In the simplest case, the descriptive equations given by Biot (1941) and 

restructured by Rice and Cleary (1976) suffice as long as the solid skeleton 
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obeys linear elasticity and the interstitlal fluid has constant compressibility 

and diffuses according to Darcy's law. Then the porous medium will appear 

temporarily stiffer during rapid deformation and exhibit time dependent elas-

ticity during diffusion. Rice and Cleary (1976) prefer to specify the elastic 

properties of the medium in terms of an effective Poisson's ratio v . 
e 

Limiting values of v are: (1) v for completely drained response or 
e 

constant pore pressure achievable when thi pore fluid diffuses quickly compared 

to the external loading rate, and (2) vu' the undrained value appropriate for 

no pore fluid flow during rapid external loading. Clearly v > v and rapid 
u 

deformation implies a stiffer medium. In the instability models so far dis-

cussed, a steeper slope on the weakening part of the fault law was possible at 

instability when the stiffness of the sur~ounding medium was increased. 

Therefore, qualitatively one can see that rapid loading of the fluid-impreg-

nated surroundings may allow overshoot of the instability point while retaining 

quasi-~tatic deformation. Instability is then inevitable as the drained 

condition is approached, because instabillty under drained conditions occurs 

at gentler post-peak slopes and smaller fault slip. It is also evident that 

such an overshoot introduces an additional time scale associated with acceler-

ating precursory deformation. 

Booker (1974) and Rice and Cleary (1976) present analysis of such fluid 

diffusion effects near faults in plane strain distortion. Rudnicki (1977a), 

Rice (1977), and Rice and Rudnicki (1978) discuss similar effects in the 

I 

inclusion model, and Rice and Simons (1976) examine the stabilization of 

propagating sharp-tipped faults. The latter authors regard migrating fault 

creep events as examples of fluid stabilization. 
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A more complicated fluid stabilization problem emerges when shear and 

volumetric strains are coupled, as during dilatancy. Not only do additional 

material coefficients arise, but judging from laboratory work, the 

constitutive law is nonlinear and partially non-elastic. As with the linearly 

elastic Biot (1941) description, when the medium is fluid filled, rapid 

deformation may cause a temporary stiffening of the medium and delaying of the 

instability (Rice, 1975). Coupled dilatant-diffUsion fault theories are less 

well developed than the linearly elastic theories. Rudnicki (1977a,b), Rice 

(1977), and Rice and Rudnicki (1978) describe stabilization and precursory 

phenomena arising from dilatancy hardening. Rice {1977), drawing on the work 

of Rice (1973), shows that dilatancy-induced suctions at a spreading shear 

crack tip can raise the maximum quasi-static spreading velocity, thus causing 

stabilization. 

Dilatancy-induced stabilization is an essential assumption of the 

dilatancy fluid diffusion hypotheses for earthquake precursors and 

instabilities {Nur, 1972; Scholz et al., 1973; Whitcomb et al., 1973). These 

models focus on the suction created during shear stress buildup near the 

impending earthquake focus. Pore fluid diffusion from surrounding regions is 

assumed to then raise the fluid pressure near the focus enough to permit an 

instability. 

Another frequently mentioned stabilizing mechanism is healing or aging of 

recently disrupted fault zone material by a chemical or viscoelastic 

interlocking of mineral grains. Apparently no laboratory observations on bulk 

samples exist to demonstrate the importance or form of. this phenomenon. 

Dieterich (1972) gives empirical evidence that, just as with metals and 
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ceramics, the coefficient of friction b~tween smooth rock surfaces increases 

proportional to the logarithm of the contact time. 

Localization of deformation into narrow shear bands, traditionally called 

faults, may replace more uniform deformation prior to or during an inertial 

instabilty. Failure of laboratory samples is in fact often due to localization 

if the testing machine is stiff enough to preclude instability, although 

examples of homogeneous post-peak softening exist. 

Despite the obvious importance of localization, the subject has only 

recently received much theoretical attention, principally from Rice (1973), 

Rudnicki and Rice (1975), Rudnicki (1977a,b) and Rice (1976, 1977). They take 

the view that a single constitutive law is sufficient to describe all future 

deformation in a material. At some deformation state that depends on geomet­

ric, boundary condition, and constitutive parameters, the currently homogeneous 

strain state may either continue to be homogeneous or tend to generate a 

localization band within the otherwise uniformly strained body. This amounts 

to a bifurcation of admissible solutions to the boundary value problem. It is 

assumed that localization occurs over a planar zone in three dimensions or a 

band in two. The spread of a localization band from a point imperfection or 

crack tip is not well studied. Microscopically, localization in compact 

brittle rocks is apparently associated with creation of porosity, grain 

comminution, and relative displacement and rotation of grains. 

With such dilatant frictional mechanisms in mind, Rudnicki and Rice 

(1975) developed by a rather intricate analysis the conditions for localization 

in an infinitely long shear band. Rudnicki (1977a,b) applied the theory to 

localization within the ellipsoidal inclusion considered previously by 
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postulating the incremental elastic-plastic constitutive law 

, _ dT ~j T ~j [Jt"kl dTkl dTkk l 
2de:ij - G + hY 2Y + ~J 

_ dTkk S [ TkldTkl dTkkl 
de:kk - ~ + h 2t= + trJj 

T = (T~ .T~ ./2)~ 
l.J l.J 

(10) 

where G, b, ~r K, and S are the rigidity modulus, plastic hardening modulus, 

internal friction coefficient, bulk modulus, and dilatancy coefficient respec-

tively, all functions of the state of stress. Primed variables are the devia-

toric components and primeless variables are volumetric components. The e 

term connects shear stress with volumetric strain. h is the slope at a point 

on the suitably defined stress strain curve. Rudnicki (1977a) gives geometric 

interpretations of the coefficients for the far field stress states of axisym-

metric compression (approximately the situation for uniaxial compression of 

laboratory samples under confining pressure) and estimates ~ ~ 1. and e ~ .5 

from experimental data. The condition for localization can be translated into 

finding the critical value h of the hardening modulus h cr in terms of 

geometric and material coefficients as well as the remote stress state. 

Rudnicki (1977a) finds that when using (10) for both the spherical and 

narrow inclusions (the latter simulating a thin fault zone) localization will 

generally precede inertial instability, though localization and instability 

will be closer together and to the peak stress for narrow inclusions. Accord-

ing to the theory, localization also depends on the stress state symmetry and 

will occur earliest and near peak stress in pure shear (e.g. a long strike 

slip fault). Inertial instability, of course, occurs only in the post peak 
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region where slopes are negative, for the sphere far more negative than for 

the narrow zone. Localization implies large strains in the localized zone, 

hence a weakened post-peak stress state, which in turn favors instability. In 

this view, localization is the most fundamental cause of earthquake instabil­

ities. 

Both localization and inertial instability depend delicately on the 

material coefficients, none of which are well known in the laboratory and 

essentially unknown in the field. Ayden (1977) has attempted to reconcile 

observations of exposed faults and shear bands in porous sandstone (Entrada 

and Navajo) with the preceding localization theory. 

STRAIN RATE SOFTENING INSTABILITY MODELS 

An inertia-limited instability appears possible in certain situations if 

the fault weakens with strain rate or velocity instead of strain or slip. At 

least two types of weakening mechanisms are possible. In the first a tem­

perature- and activation energy-dependent creep law allows an increasing 

strain rate with a rise in temperature at constant stress. Heat generated 

during deformation of the shear zone raises the temperature, hence the strain 

rate even more, and an instabiltiy may ensue. A variant of this idea is the 

increase of pore pressure due to dehydration of hydrous minerals during the 

temperature rise (Raleigh, 1977). Thermal softening mechanisms are most 

attractive for explaining intermediate and deep focus earthquakes where 

conventional Coulomb frictional failure is considered to be unlikely because 

of high confining pressure. 
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To explain deep focus earthquakes, Griggs and Baker (1969) postulated 

that material within the thin, infinite fault zone of Figure la obeys the· 

empirical creep law 

• n 
y = aT exp(-E/RT) (11) 

where y is shear strain rate across the fault width 2h, a is a material 

constant, T is shear stress, n is a number between 2 and 10, E is the 

activation energy, R the gas constant, and T temperature. Although Griggs 

and Baker (1969} did not say so, the strain rate softening character of the 

fault zone emerges readily by combining (11) with the equation converting 

plastic work to thermal energy assuming slow diffusive heat loss. Strictly 

adiabatic deformation yields a strain softening law. The result is that strain 

rate varies inversely with stress, the opposite of both forms like (11) and 

viscous laws. 

By combining (11) with an energy balance equation and the heat flow equa-

tion, Griggs and Baker (1969) computed the onset of inertial instabilities upon 

fault melting for increasing displacement boundary conditions (U in Figure 

la). Unreasonably large values of U and H/~, ~ being the rigidity, were 

required to provide instabilities, however. Similar calculations seemed to 

adequately account for the stick-slip sliding reported by Bridgman (1936) in 

samples deformed by torsion at pressures up to 50 kbar. The hot creep mecha-

nism for instabilty proposed by Orowan (1960) appears to be essentially equiva-

lent to a strain rate softening constitutive law. 

Another mechanism, perhaps more appropriate for crustal depths where 

rocks are thought to be brittle, is indicated by friction experiments of 

Dieterich (1978a). He noted that frictional resistance between rock sample 
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surfaces decreased about 5 percent with increasing sliding velocity over the 

-5 -2 range 10 to 10 em/sec. The microscopic processes responsible are not 

firmly established, but Dieterich (1978a) conjectures that a competition 

between a time-dependent asperity adhesion and a displacement-dependent tearing 

apart may transpire. This type of mechanism is easy to conceptually generalize 

to the continuum where one might envision fault zone rocks as strain weakening 

during high strain rates before an earthquake, but healing or aging during low 

post-earthquake strain rates. Virtually no relevant laboratory or theoretical 

work on this subject exists, however. Dieterich (1978b,c) proposes an empir-

ical friction relation depending on slip and slip rate. With the friction 

law, numerical simulations of the laboratory experiment are able to reproduce 

the main features of observed stick slip events. 

Weertman (1967, 1978) shows that inertial instability is possible on a 

fault segment when the friction decreases rapidly enough with sliding velocity. 

As in his similar study with a slip weakening law, dislocation distributions 

and a position independent friction law are used. 
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CONCLUSION 

All of the well developed instability models rely on a strain (displace­

ment) or strain rate (velocity) weakening fault zone. In fact Weertman (1978) 

argues that earthquakes cannot occur unless the fault weakens with ~lippage. 

Models differ primarily in their assumptions of fault zone geometry and spatial 

extent of actively failing fault material, the latter being controlled by 

heterogeneity of constitutive properties. Increasing fault slip rate prior to 

instabilities appears to be a universal feature of models formulated to include 

also precursory deformation. Thus models have potential of being distinguish­

able by field observations (when they become available) on the basis of 

theoretical predictions. Only a few models are in a form that is readily 

translatable into a field experiment, mainly because of geometry assumptions. 

Moreover, no single model connecting precursory deformation directly with 

earthquake parameters exists; such a model would simulate the pre-earthquake 

loading, onset of instability, dynamic propagation, and cessation of propaga­

tion. On the other hand, field testing is likely to be difficult because 

several mechanisms are able to stabilize or delay instabilities, including 

Biot-like stiffening of fluid-filled porous media, dilatancy-pore fluid 

coupling, and fault zone healing. These mechanisms may not exist in all 

regions, however, whereas some form of strain softening probably does. 

Considerable spacial variation of fault zone properties is expected in 

the earth, and some heterogeneity is essential to all but the most elementary 

models. So far, only the simplest heterogeneities have been studied, and only 

for a single instability. 
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Knowledge of the precise form and coefficient values for fault constitu­

tive laws is sparse. This shortcoming is in principle surmountable in two 

ways. The first is to assume that laboratory data represents in situ behavior 

and is appropriate for large scale boundary value problems. Both tests on 

bulk samples and instability simulations can provide constitutive data. 

Unfortunately, few experiments have been performed to elucidate the key consti­

tutive behavior required by theoretical models, namely post-peak weakening, 

localization, and healing. · Another approach is to postulate plausible consti­

tutive laws and compare field data with the subset of theoretical calculations 

yielding instabilities. Limits on in situ constitutive properties can be 

thereby estimated. Successful theories might then be applied in the future to 

recognize anomalous crustal deformation precursory to earthquakes. 
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TABLE 1. Classification of instability models 

Model 
Reference Geometry 

This paper two-dimensional 
simple shear 

Weertman two-dimensional 
(1967) 

Rudnicki full space 
(1977) 

Palmer and two-dimensional 
Rice (1973) 

Cleary 
(1976) 

Stuart 
(1977) 

Stuart 
Mavko 
(1978) 

Griggs 
Baker 
(1969) 

and 

and 

Weertman 
(1978) 

a. full space 
b. free surface 

inclined to 
gravity 
vector 

two-dimensional, 
strike-slip; 
free surface 

two-dimensional, 
strike-slip; 
free surface 

two-dimensional 
simple shear 

two-dimensional 

Remote Boundary 
Conditon 

displacement 
or stress 

stress 

stress or 
strain 

dis placement 
or stress 

a. stress 
b. gravity 

displacement 

displacement 

velocity 

stress 
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Fault 
Geometry 

constant width 
band 

finite crack 

homogeneous 
ellipsoidal 
inclusion 

sharp tipped 
crack 

a. sharp tipped 
finite crack 

b. sharp tipped 
crack inter­
secting free 
surface 

throughgoing 
fault plane 

throughgoing 
fault plane 

constant 
width band 

transform fault 
with spreading 
centers 

Fault 
Properties 

quadratic in 
strain with 
peak stress 

displacement 
and velocity 
softening 

elastic­
plastic, 
dilatant 

linear 
displacement 
softening 
from peak 
stress to 
residual 
stress 

linear and 
hyperbolic 
displacement 
softening 
from peak to 
residual 
stress 

Gaussian in 
fault slip 
and depth 

Gaussian in 
fault slip 
arid depth 

strain rate 
softening 
from creep 
law and 
plastic work 

velocity 
softening 
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TABLE 1. (cont.) Classification of instability models 

Reference 

This paper 

Weertman 
(1967) 

Rudnicki 
(1977) 

Palmer and 
Rice (1973) 

Cleary 
(1976) 

Stuart 
(1977) 

Stuart and 
Mavko 
(1978) 

Instability 
Criterion 1 

au/au ~ 00 

au/dT ~ oo 

at./aT --+-- oo 

at./ a£ --+ 00 
00 

critical elastic 
energy release 
rate 

critical elastic 
energy release 
rate 

aw' I aw• --+ 00 

aw' /aw• --+ 00 

Griggs and a~/au --+ oo 
Baker (1969) 

Weertman 
(1978) 

au/aT --+ 00 
00 

Precursory 
Deformation 

increasing 
fault strain 
rate 

increasing 
inclusion strain 
rate 

Solution 
Method 

analytic 

analytic 

analytic 

analytic 

distributed dis­
locations, numer­
ical solution 

increasing fault finite element 
slip rate 

increasing fault 
slip rate 

distributed dis­
locations, numer­
ical solution 

increasing fault finite differ-
strain rate ence 

analytic 

Pore Fluid 
Stabilization 

Footnote 2 

3 

3 

1. Derivative of fault slip (u,w') or strain (E) with respect to remotely 
applied displacement (U, W'), strain (£

00
), or stress (Too). 

2. Rice (1975) examined stabilization of dilatant material in homogeneous 
simple shear deformation 

3. Stabilizing mechanisms reviewed and developed in Rice (1977), Rice and 
Rudnicki (1978) and references cited therein. 
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Two studies are reported in this paper. The first concerns the interaction 

between an elastic lithosphere and a visco-elastic asthenosphere caused by 

periodic fault displacement. The results of an analytical solution show that 

the periodic fault motion is damped out by the interaction several lithospheric 

thicknesses from the fault. The second study reports a finite element investi-

gation of a depth dependent fault rheology. After a great earthquake the stress 

on the locked portion of the fault is assumed to increase linearly with depth; 

the stress on the lower plastic portion of the fault is assumed to be independent 

of time and to decrease linearly with depth. The depth of the locked portion of 

the fault is decreased with increasing strain accumulation in order to remove 

the stress singularity at its lower end. The surface distribution of strain and 

stress is obtained. 
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INTRODUCTION 

There is no question that the San Andreas fault represents a major boundary 

between the Pacific and North American plates. If the fault accomodates the 

relative motion between the two plates then it must lie on a small circle about 

the pole of rotation that defines the relative motion of the plates. Taking the 

pole of rotation (50.9°N, -66.3°E) given by Minster et al. (1974), good agreement 

between the circle of rotation and the general trend of the San Andreas fault 

is obtained. This is evidence that the fault is the primary boundary between 

the Pacific and North American plates. 

In order to understand the cyclical accumulation and release of stress and 

strain on the San Andreas fault it is necessary to hypothesize appropriate models. 

A two-dimensional model for the accumulation and release of slip on a strike-slip 

fault has been proposed by Turcotte and Spence (1974). In this model the litho­

sphere was treated as rigid elastic plates. The fault was taken to be the 

boundary between two plates sliding laterally past one another. The upper part 

of the fault was assumed to be locked (zero displacement) and the lower part of 

the fault zone and the lower boundary of the plates were assumed to be free 

sliding (zero shear stress). · An analytical solution for the distribution of 

stress and strain was given. During .a great earthquake the accumulated stress 

and strain was assumed to be relieved. 

Implicit in this model is the assumption that the failure stress on the 

locked brittle zone is large compared with the yield stress on the deeper plastic 

zone. After a great earthquake the remaining stress on both the upper brittle 

zone and the lower plastic zone is small compared with the initial stress on the 

intially locked brittle zone before the earthquake. This assumption has been 

questioned by Savage (1975) who proposed a transfer of stress between the upper 

brittle zone and the lower plastic zone. 
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In order to explain the longitudinal behavior of the San Andreas fault a 

three-dimensional model for the accumulation and release of stress and strain was 

proposed by Spence and Turcotte (1976). Two semd-infinite plates acted on by 

shearing forces were assumed to be sliding freely past each other except for 

two locked sections. These sections corresponding to the northern and southern 

locked sections elastic of the fault (Turcotte, 1977) were assumed to be locked 

to a specified depth. At greater depths the fault was assumed to be free sliding 

as well as on other sections of the fault. ~ing the technique of matched 

asymptotic expansions, analytic expressions were obtained for the three-dimensional 

distribution of strain and stress. According to this elastic analysis the 

locked sections impede the lateral sliding between the plates, and the plate 

interactions extend large distances from the locked sections. 

Asthenospheric Damping 

It is known from studies of postglacial rebound that the asthenosphere 

exhibits viscous behavior with a viscosity near 1021 poise. An important 

question is whether interactions between the elastic lithosphere and viscous 

asthenosphere damps the periodic motions associated with fault slip at plate 

boundaries. 

An approximate equation for stress diffusion has been derived by Elsasser 

(1969) assuming an elastic plate overlies a viscous layer. This has been applied 

to periodic displacements at plate boundaries by Bott and Dean (1973) and by 

Anderson (1975). Melosh (1976) has considered the interaction of an elastic 

lithosphere with a non-Newtonian asthenosphere. Since the elastic constants of 

the asthenosphere are nearly equal to the elastic constants of the lithosphere, 

in most cases, it is not consistent to retain the elastic behavior of the litho­

sphere while dropping the elastic behavior of the asthenosphere. The problem 

of the time-dependent response of an elastic lithosphere overlying a visco­

elastic asthenosphere has been considered by Nur and Mavko (1974). They 
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considered a uniform initial displacement on a fault to a prescribed depth and 

the subsequent relaxation problem. 

Spence and Turcotte (1977) have considered the problem of two semi-infinite 

lithospheric plates of elastic material with a constant thickness h assumed to 

be in contact along their common edge. This common edge models the fault, which 

is taken as the strip x • 0, -h < y < 0 of a plane z c constant. Beneath the 

semi-infinite plates the asthenosphere is modelled as a semi-infinite, elasto-

viscous material with constant properties. The stress-stra1n relation in the 

asthenosphere is taken to be the stress-relaxing Maxwell law. The model is 

illustrated in Figure 1. 

The deformation both in the plate and in the asthenosphere must satisfy 

the equilibrium equation. 

(p • density). In the lithosphere the stresses are elastic, i.e., 

where G is the shear modulus and eij are the antiplane strain components 

awL 
e • -- e xz ax ' yz 

(the subscripts L, A will denote displacements in the lithosphere and in the 

asthenosphere, respectively). Substitution of (2) and (3) into (1) gives the 

wave equation 

where 6 c a2/ax2 + a2/ay2 , which holds within the lithosphere. 

(1) 

(2) 

(3) 

(4) 

In the asthenosphere (2) is replaced by the Maxwell law which is given in 

differential form by 
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where n is the Newtonian viscosity. 

n T-=­
G 

5 

(5) 

The viscoelastic relaxation time is then 

(6) 

It is reasonable to assume that the densities and shear moduli of the litho-

sphere and asthenosphere are the same. Combining (3) and (5), eliminating the 

resulting stress components by means by (1) and integrating with respect to time 

(the constant of integration can be taken to be zero for periodic motions) gives 

P (a2w A 1 aw A) 
- -;:;::-r- + - -- = ~w G at T at A (7) 

On the upper surface of the plate the shear traction vanishes: 

y a: 0: 
aw

1 o =G--•0 
yz ay (8) 

while on the interface between the lithosphere and asthenosphere the displacement 

wand shear stress o are continuous, i.e., yz 

y - -h: 

(9) 

We are primarily interested in processes which occur on a time scale of the 

order of relaxation time T. Introducing dimensionless scaled time and coordinates 

by 

~ ~ ~ ~ 

t = Tt, x = hx, y = by, w = hw (10) 

(4) and (5) become 

(11) 
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"' awA 
-- c 
at (12) 

"' . 2 "' "'2 respectively, where 6 = a /ax2 + a2 /ay and 

(13) 

Thus £ can be interpreted as the ratio of the time taken by a shear wave to cross 

the plate to the viscoelastic relaxation time. 

We assume that the li·.:hosphere has a thickness h = 100 km. The lithosphere-

asthenosphere boundary is the transition from rigid, plate-like motion to viscous 

flow of the mantle rock. Since the viscosity of the mantle is associated with 

thermally activated creep processes it is expected that the viscosity is exponen-

tially temperature-dependent. The base of the lithosphere is an isotherm defining 

a rigid behavior; this isotherm is approximately 1000°C. If significant frictional 

heating occurs on the San Andreas fault the isotherms andJtherefore, the lithosphere-

asthenosphere boundary, may be elevated beneath the fault. We assume that the 

density of the mantle rock is p = 3.3 x 10 3 kg/m3 and the shear modulus is 

G = 7 x 10 10 N/m2 • The best data on the viscosity of the asthenosphere comes from 

studies of postglacial rebound. Cathles (1975) has concluded that beneath the 

lithosphere there is a low viscosity channel with a viscosity n = 4 x 10i 9 N·s/m2 

with a thickness of 75 km and that the remainder of the upper mantle has a viscosity 

n • 1021 N·s/m2 • For our viscosity model we will assume that the asthenosphere 

has a viscosity n = 4 x 10 19 N•s/m2 • This corresponds to a viscoelastic relaxation 

time T = 5. 7 x 10 8 s("' 18 years). Substitution of these values into (13) gives 

£ • 3.8 x lo-B, a very small number as expected, and with £ = 0 we have 

'VV 'VV 
6w1 = 0, 6w A = 0 (14) 

Laplace's equation must be satisfied in both the lithosphere and asthenosphere. 

The solutions must .satisfy the matching conditions (9). In terms of the variables 

from (10) these become 
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'\, 

y - -1: (15) 

The solutions of Laplace's equation in the plate -1 < y < 0 and in the 

asthenosphere y < -1 can be expressed in terms of the normal derivatives on the 

common interface. For the lithosphere we write at y • -1: 

awL 
-- • q(x,t) ay 

and for the asthenosphere 

y = -1: 
awA 
-- • g(x, t) ay 

Henceforth the tildes on the non-dimensional variables will be omitted. The 

matching condition (15) is then 

We shall use the notation 

wL(x,O,t) = w (x,t) 

(16) 

(17) 

(18) 

(19) 

(20) 

for the displacements on the free surface and on the lithosphere-asthenosphere 

interface. 

The solution of Laplace's equation for wAin the asthenosphere in terms of 

its normal derivative at y = -1 is 

00 

Y ~ -1 : ( -= .![ g ( s , t) in I s + z + i I ds w A x,y' t) 1T 0 s - z - i (21) 

where z = x + iy. The antisymmetry condition about x = 0 is automatically satis-

fied. We shall solve the problem in terms of the Fourier sine transform 

(22) 
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(OD I s + x I dx • ( I ) Since~ sin ex ln s - X n c sin (s, the sine transform of (21) with 

z • x - i yi e 1 ds 

w * - g*/ c I 

where g* is the sine transform of g with respect to x. 

For the elastic lithosphere, the solution of Laplace's equation for the 

strip -1 < y < 0, x > 0 giving ~: in terms of ~ on the boundaries is 

y - 0: 0 

(sin "Y) (#) dy 

cos n y ~ cosh nx 

y = -l: ax 

OD 

0 

(sinh ns) g (s) ds 
cosh ns :t cosh nx 

(23) 

where f(y) is the prescribed displacement at x = 0. The boundary value problem 

is illustrated in Figure 2. Multiplication of these expressions by cos ~x and 

integration with respect to x from 0 to OD gives 

~w 0* = i
0

e~Yf(y)dy + e-~F(~,t) - q*/(sinh ~) 

tw1• c F(~,t) - q*/(tanh ~) 

where 

Io 
F . ~ 

• sinh ~ 
-1 

cosh ~y f(y,t) dy 

(25) 

(26) 

(27) 

Since w * c g*, by (23), (26) provides a relation between g* and q*. A second 
I 

is obtained by taking the transform of (18), with the result 

·-~ q*- dt (28) 

Combining (23), (26), and (28) yields a single equation for q*: 

_1_~ + * 
a(~) dt q 

dF 
a:-

dt 
(29) 
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where a(~) = e-tsinh c. The solution of (29) is 

q* • a F(C,t) - a e F(t,t)dT i t -a(t-T) 

-CD 

The transformed displacement on the surface is then given by (25),. and has 

the inverse Fourier transform 

w (x, t) 
0 

where 

= ~J
0

x f(y,t)dy 
n x2 + y2 

-t 

+ (t {
0 

k(x,y, t- T) 

)_CI)f-1 
f(y,T)dTdy 

2[CI) -2C-ta(C) 
k(x,y,t) = ~ 

0 

e cosh ~y sin tx d~ 

(30) 

(29) 

The first term represents the instantaneous elasticitiy of the half space y < 0, 

i.e., of the combined lithosphere and asthenosphere, and the second, the relaxation 

due to viscoelasticity in the asthenosphere. The kernel (x,y,t) can be expanded 

in a power series in t by termwise integration. When f(y,t) is a function of t 

independent of depth on the fault, the expressions simplify further. 

For the case of a single step-wise displacement at t • 0, 

f(y, t) 
_fo t 

1f(y) 

< 0 

t > 0 

(30) gives, for t > 0 

q* (,,t) e ,e-,-ta(O(of(y) 
)_1 cosh ~y dy 

For a displacement which is not a function of depth 

f(y.t) =e t < 0 
(-1 < y < 0) 

t > 0 
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and (31) reduces to 

- 2Ioo 
w (x,t) • 1 --

0 1T 
. 0 

(33) 

The instantaneous displacement is obtained by setting t = 0 in (33) with the result 

w (x,o+) = 1 - ~ tan- 1x 
0 1T 

in agreement with the leading term of (29). This is precisely,the solution for 

a unit displacement on a crack of unit depth in an elastic half space y < 0. 

To evaluate the integral for general values of x and t, a change in the 

contour of integration gives the alternative form 
co 

w (x,t) • ~fo e -(xn + t sin2 n) i ¢(n,t) dn s n 
0 n 

(~4) 

where 

¢ • n + t sin n cos n 

This expression is suitable for numerical quadrature after the substitution 

n w:: tan e. 

Shear stress accumulates on the fault between great earthquakes as a result 

of the steady motion of the plates at large distances, and is relieved by dis-

placements during the earthquakes. As a model ~f this process, we look on .the 

current state as being the result of an infinite sequence of equal step displace-

ments at equal time intervals T , the time between great earthquakes. If the 
s 

mean displacement in each such earthquake is d this corresponds to a plate velocity 

V = d/T • The suggested mechanism is indicated schematically in Figure 3. At 
QO s 

t = 0+, after slip on the fault the surface stress on the fault is zero, i.e., 

aw /ax = 0. Measuring displacement from the position at t • 0+, there is a steady 
0 

increase in w with time at all x positions except on the fault x = 0+, and at 
0 

large values of x the plates are in uniform translation with velocity Vco. 
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When the next great earthquake is imminent, at time t • T , the shear stress on s-

the fault has reached a maximum causing brittle failure on the fault. Between 

t • Ts- and t • Ts+ slip occurs on the fault and the instantaneous elastic dis­

placement takes place indicated by arrows, but this dies out at large x so there 

is no sudden change at sufficient distances from the fault. 

The overall motion of the plates at inifinity is caused by the underlying 

mechanism of continental drfit, which could be represented by tensile or compressive 

forces in the direction of motion or by shear forces applied to the plate boundaries, 

but the presence of such forces at large distances does not affect the present 

discussion. We consider an infinite sequence of step displacements 

fd/h 0 < t < T s 

-1 < y < 0: f(y,t) - 0 -T < t < 0 s 

-nd/h -(n+l)T < t < -nT s s 

In summing to infinity, the total displacement is unbounded, however, the 

derivative of (33), summed over the sequence, gives 

2d[ a(~)e-~-ta(~) 
w (x,t) = wh -T a(r) 

0 1 - e s ~ 
0 

(sin ~x) ~ 
~ 

giving the displacement from t • 0+ to T as 
s-

At t = T , this gives 
s-

(sin ~x) d~ 
t 

(35) 

(36) 

(37) 

(38) 

The second term rep resents the lagging displacement due to adhesion on the fault, 

which is made up by the instantaneous elasticity of the half space when slip takes 

place at t = T , so that s 

W (X T ) W (X T ) • 2d (tan-1 l) , + - , h o s o s- 1r x 
(39) 
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The integral (37) can be converted by a change of contour to the form 

w (x,t) -= ~ + 2df e-xnA(n,t) dn 
o T h Trh B ( n, t) n 

s 0 

where 

B(n,t) • 2 cosh (T sin2 n) - 2 cos ~ s 

¢ = n + ~ sin 2n, ~ = ~ T sin 2n s 

(40) 

This form is suitable for numerical evaluation, after the transformation n = tan e. 

Computed values of the incremental displacement w (x,t) - w (x,O-) as a 
0 0 

function of time between offsets for fixed values of x are shown for the 

three values T • 1, 5, 10 in Figures 4a, b, c. As x ~ oo, (40) shows that 
s 

td 
hw ( x, t) -+- T = V t 

0 s 00 

and the displacement increases linearly with time at the constant plate velocity V • 
CIO 

If the offsets occur more frequently, i.e., for small T , the approach to a uniform s 

velocity is somewhat more rapid. 

It is seen from these results that periodic displacements associated with the 

fault are damped out in a distance away from the fault which is of the order of 

the plate thickness. Instantaneous displacements due to faulting are identical to 

those obtained from a dislocation model. 

Finite Element Studies 

Although analytical stuJies can provide important insight into deformations 

associated with the San Andreas fault, they are limited to relatively simple 

boundary value problems. In order to study more complex boundary value problems, 

numerical methods are required. For problems involving elasticity the finite 

element technique is usually used. The essential feature of finite elements is 
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the ability to divide a region into separate elements. Material properties and 

boundary conditions are conveniently prescribed as functions of position by 

assigning different values to each element. 

Variational calculus provides a theoretical basis for the finite element 

technique. Conventionally, a partial differential equation will govern the 

unknown distribution in a region. Alternatively, the integral of some function 

of the unknown (a functional) may be considered to be minimized over the region. 

The deformation of an elastlc region is governed by the partial differential 

equilibrium equation. 

(41) 

where X. are body forces and traction forces which are considered separately as 
~ 

boundary conditions. 

The equivalent variational problem is the Principle of Minimum Potential 

Energy 

oP - ou +ow = o (42) 

where P is the total potential energy; U, the strain energy, and W, the potential 

energy of any applied loads. In terms of integration over the region, (42) becomes 

<a> <b> <c> 
oP. o. III du- III x · ~dv- II!· ~ds 

v v s (43) 

Term <a> represents the change in strain energy (U) over the volume (V) of 

the region. Terms <b> and <c> account for work done on the region by body forces 

(X) and surface traction forces (T) respectively; u is the unknown displacement 

field. 

For the case of a linear elastic region, 

(44) 
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(43) becomes in matrix notation 

~Ill [e:]T[C][e:]dV = IJI [X][u]TdV +II [T]dV + 
v v . s (45) 

Assuming infinitesimal strain, 

(45) now determines u for each element, given the loading forces. The solutions 

will be described by individual element stiffness matrix equations. 

[K] [S] = [F) 

[K] is the stiffness matrix; [S] and [F] are the nodal displacement and force 

vectors, respectively. 

Elements are constructed from nodal points, at which forces and displacements 

may be either prescribed or determined. It is the number of nodal points within 

an element which determines the degree of the solution, u, found for the elements. 

A linear solution for u (i.e., u • ax+ b) within each element is allowed by two 

end nodes. Additional, internal nodes permit quadratic and cubic solutions 
;J. 

(u • ax2 + bx + c; u = ax 3 + bx2 +ex+ d). The advantage of extra, internal nodes 

is an internally less stiff element. This allows the numerical solution within 

each element to more closely model the actual response. 

Unfortunately, solution time of computers increases drastically with the 

addition of extra nodes. For this particular study, three-dimensional elements 

with no internal nodes are employed. Displacements within the elements are 

linear (i.e., constant shear within each element). 

A solution for the combined region of elements is attained by construction of 

the global stiffness matrix. The stiffness equations for the individual elements 

are assembled to form the global stiffness matrix. The numerical solution becomes 

one of a system of simultaneous equations. Displacements at the nodes are solved 
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for and stresses computed from these displacements. The significant 

features of this model include: 

1) It is an approximate, discretized model of a region. 

2) A linear system of simultaneous equations are solved numerically to within 

computer accuracy. 

3) There is the ability to vary material properties from element to element. 

4) There is the ability to specify nodal forces and nodal displacements for 

5) 

elements to model boundary conditions. 

Greater accuracy of the model is attained by a finer element mesh. 

the cost may be prohibitive. 

However, 
~ 

The particular finite element program used in this study is the Structural 

Analysis Program, Version IV (SAPIV). SAPIV is a very general, structural finite 

element program developed and refined in later versions at the University of 

California at Berkeley. The program consists of approximately 15,000 Fortran IV 

statements. 

We initially consider the problem of strain accumulation on the San Andreas 

fault between great earthquakes. The problem is idealized but not as idealized 

as that considered by Turcotte and Spence (1975). The finite element mesh employed 

is given in Figure 5. Ninety-five elements in a slab of one element thickness 

are constructed from two hundred and thirty nodes. A concentration of elements 

is placed near the stick-slip region, ac, where stress and strain gradients are 

largest and of most interest. 

The slab represents a vertical cross-section perpendicular to the fault, 

extending from the fault out into the Pacific plate. The solution is considered 

asymmetric across the fault plane. The slab is assigned the dimensions of a 

square cross-section of the lithosphere 50 km by 50 km. 

The upper and lower boundaries are assumed to have zero stress (unrestrained). 

The visco-elastic interaction with the asthenosphere is neglected in this study of 

fault behavior. Uniform displacements are applied on the edge of the slab away 

from the fault. As initial conditions the stress conditions applicable just after 
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a great earthquake (and associated aftershock sequence) are applied on the fault. 

We assume that the upper part of the fault (to depth a = 0.5, nondimensionalized 

with the thickness of the plate) has a stress increasing linearly with depth 

(constant coefficient of friction on the fault). We also assume that the lower 

part of the fault has a stress that decreases linearly to the base of the litho-

sphere. This decrease is associated with the decrease in yield stress with 

increasing temperature. These initial conditions are the case a s 0.5 given in 

Figure 6. The stress at a • 0.5 is used to define a nondimensional stress. 

These initial conditions are obtained as follows (see Figure 5): 

1. Nodes on the edge (de) of the slab away from the fault plane are held fixed 

(u = 0) using boundary elements. z 

2. The stress regime of Figure 6 (a = 0.5) is input on the fault plane (be) as 

nodal forces. Forces are initially estimated as o zx Area, where o (X) is the 
zx 

piecewise linear function of stress on the fault plane. As there are only a 

finite number of nodes on the fault plane, a stress average over fault surface 

areas between the nodes must be calculated to form lumped loads at the nodes. 

3. These approximate forces are imput for an initial run. The program calculates 

resulting stresses in the slab and, in particular, on the fault surface. 

Differences between calculated stresses and the specified stresses on the fault 

plane are measured to adjust force input at the fault surface nodes. 

4. Once the desired stress profile on the fault is reached, resulting surface 

displacement and stress profiles (along ce) are noted. Displacements of nodes 

in the stick-slip region of the fault surface (ac) will be required for the 

following strain accumulation sequence. 

During strain accumulation uniform displacements are applied on the side of 

the slab away from the fault. Initially, the upper part of the fault y < 0.5 is 

assumed to be locked and the lower part of the fault to have the stress initially 

applied. Without any further modification of the depth of the locked zone a stress 
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singularity would develop- at the lower end of the locked zone, y • 0.5. 

In order to eliminate this stress singularity, we allow the lower to· migrate upwards. The 

lower tip of the locked zone is allowed to migrate upwards during each step of 

strain accumulation until the stress on the free zone (y > a) decreases linearly 

with depth. This stress accumulation sequence is carried out as follows: 

1. Nodes on the stick-slip portion of the fault (ac) are held fixed with the 

initial displacements. Boundary elements with very high stiffnesses are used for 

this purpose. 

2. The stress profile on the plastic flow region of the fault (ab) is maintained 

by nodal force loads as before. 

3. Edge de is increasingly displaced in the z direction by repetitive use of 

boundary elements. Displacement on this edge is uniform at all times. 

4. Stress on the locked, stick-slip section (ac) increases as displacement at 

edge de is increased. At some displacement, u , on edge de, nodes directly above z -

the crack tip will experience stresses equivalent to plastic yield as determined 

by the extrapolated plastic flow stress profile. Boundary elements at these nodes 

are then removed and appropriate nodal forces applied to produce the extrapolated 

flow stress. 

6. Step 4 is repeated until the crack tip a is within two element distances from 

the surface. 

The resulting stress distribu~ions on the fault zone are given in Figure 6. 

The results are given for equal increments in the depth of the locked section. 

The corresponding values of the surface (y • 0) stress are given in Figure 7. 

The surface displacements for two episodes of strain accumulation are given in 

Figure 8. 

CONCLUSIONS 

Both analytical and numerical studies of the stress and strain fields associated 

with a fault model provide important insight into fault behavior. The analytical 

study reported here shows the importance of the interaction between the elastic 
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lithosphere and the viscoelastic asthenosphere in damping the periodic fault D>tion. 

The study also shows the critical nature of the interaction of the fault with the 

asthenosphere. In the model this interaction results in a stress singularity. 

This singularity may have important implications for fault behavior and must 

certainly be carefully treated in modelling studies. 

In terms of detailed modelling. of the San Andreas fault numerical solutions 

will certaily be required. For problems involving elasticity, plasticity, and 

fluid flow the finite element technique is favored. The results of a finite 

element calculation concerning the depth dependent rheology of the fault is 

reported here. It is concluded that the depth of the locked portion of the fault 

is likely to decrease as strain accumulates. 

Clearly present models are quite idealized. However, even these idealized 

models point out important aspects of the problem of strain accumulation on major 

strike-slip faults. Future studies should be expanded to include: 

1. MOre realistic rheologies. The actual rheology of the fault problem is likely 

to be a complex combination of elastic deformation, plastic yielding, and time­

dependent viscous flow. 

2. MOre realistic geometries. Fault curvature may be an essential feature of the 

behavior of the San Andreas fault. The role of secondary faults may also be 

essential. 

Nevertheless modelling studies must play an important role in understanding 

the San Andreas fault. Only when a successful model has been produced will we 

really be able to say that we understand the behavior of the fault. · 
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FIGURE CAPTIONS 

Figure 1. Illustration of the model. Two elastic plates with a common edge 

in the plane x = 0 overlie a viscoelastic half space. 

Figure 2. The two dimensional boundary value problem. 

Figure 3. Illustration of the surface deformation when the surface plates 

have constant velocities at large distance from the fault and are 

subjected to step displacements at the fault. The shaded regions 

represent surface displacement due to elastic deformation of the 

plates and asthenosphere. 

Figure 4. Solutions for an infinite series of step displacements. The surface 

displacement is given as a function of the time between steps at 

various distances from the fault. Three ratios of the time interval 

between the steps to the viscoelastic relaxation time are considered. 

(a) Ts = 1, (b) T = 5, (c) T • 10. 
s s 

Figure 5. The finite element mesh used in this study. 

Figure 6. Shear stress profiles on fault plane. 

Figure 7. 

Figure 8. 

Surface displacement profiles. Nondimensional displacement, u(u G/o L) 
z o · 

is plotted versus nondimensional distance from fault, X(X/L). Profiles 

are presented for various crack tip depths, a (a/L). The difference 

between the •solid and dashed sequence characterizes displacements 

during earthquakes, 6u (6uG/o L). 
0 

Surface stress profiles. Nondimensional shear stress, ;(o /o ) is zy o 

plotted versus nondimensional distance from fault, X(X/L). Profiles 

are presented for various crack tip depths, a(a/1). 
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Inherent Instability of Quasistatic Creep Slippage on a Fault 

ABSTRACT 

J. Weertman 
Department of Materials Science and Engineering 

and Department of Geological Sciences, 
Northwestern University 
Evanston, Illinois 60201 

The inherent instability of quasistatic creep slippage is studied 

for two examples. One example is that of a symmetric transform fault 

at which a single spreading center terminates. The other example is the 

transform fault between two spreading centers. It is assumed that the 

friction stress of a fault decreases with increasing slip velocity. 

INTRODUCTION 

In earlier papers (Weertman, 1967, 197la) an analysis was developed 

with which it could be shown for one special example that an inherent 

instability exists during creep slippage on a fault. In this paper this 

intrinsic instability is studied further. 

It is assumed in our analysis that the friction stress on a fault 

decreases in value as a result of creep slippage. It appears rather 

certain that the friction stress at a given place on a fault at a given tfme 

cannot have a unique value if earthquakes are to occur on it. If the 

friction stress has a unique value that cannot be altered by slip the energy 

that is available to produce motion across a fault must all be dissipated 

in the immediate vicinity of the fault in frictional losses. No (elastic) 

energy can be released into the formation of seismic waves. Figure 1 illus-

trates in a schematic way why this claim is true for the two dimensional 

619 



2 

case. 

Figure la shows schematically (as a solid line) the friction stress 

af as a function of distance x along a fault. (The frictional stress af 

may be a function of position because of variations of rock type along 

a fault or because, at a given instant in time, the pressure of fluid 

within the fault is a function of position). 

Figure la shows schematically (as a dashed line) the internal stress 

ai that exists on a fault because of prior non-uniform slip across the 

fault. Let D.{x) represent all the prior displacement that has occurred 
~ 

at position x across the fault. Let the derivative of D.(x) be represented 
~ . 

l!f B. (x) where 
]. 

B.(x) =- aD.(x)/nx 
~ ]. . 

The internal stress (1.(x} that is produced by prior non-uniform 
]. 

slip is given by 

QC) 

a. (x) = __.1L._ J Bi (x r) dx' 
~ 2TTQ' x- x* 

-oo 

{1) 

(2) 

where ~ is the shear modulus and under plane strain conditions the constant 

Q' = 1- v where ~ is Poisson's ratio if the displacement Di(x) is in the 

x direction and Q' = 1 if the displacement Di(x) is in the z direction where· 

the z direction is perpendicular to the x direction and is in the plane of 

the fault. (Under plane stress conditions Q' = 1/(1+~).) As is well known 

the displacement derivative B.(x) can be considered to be equal to the 
]. 

density of a collection of infinitesimal dislocations. Figure lb shows 

schematically these infinitesimal dislocations that prior non-uniform slip 

has left on the fault. Let Si (x) represent the additional, "applied" stress 

that exists on the fault at a given instant in time that is produced by all 
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processes that cause the earth to be deformed and which drive the motion 

of the plates. Figure lc shows a plot of the stress difference crf -

(ai + Si) where crf and cri are the stresses shown in Fig. la. In the 

regions on the fault where the term crf - (a. + S.) = 0 only an infinites-
~ ~ 

imal increase in the "applied" stress on the fault is required to obtain 

slippage. 

The processes that cause the earth to be deformed will produce an 

additional stress S to act across the fault as time goes by. This additional 

stress will produce further creep slippage on the fault starting in the 

regions where ~f - (cr. + S.) = 0. 
- ~ ~ 

The new slippage in general is non-

uniform and an additional internal stress 0 (x) will be produced on the 

fault and an addllional infinitesimal dislocation distribution B(x) will 

be added to the fault. (The stress a(x) and the dislocation distribution 

B(x) are related to each other through equation (2) if in that equation the 

stress cri(x) is replaced with the stress a(x) and the term Bi(x) is replaced 

with the term B(x).) Eventually, everywhere on the fault the sum of the 

stresses S. + S +a. + a will equal the frictional stress crf• Thus 
~ 1 

Once equation (3) is satisfied creep slippage will occur everywhere along 

the fault. If the fault can be considered to be essentially infinitely long 

both the value of the stress S and the new dislocation stress a will no longer 

change with time. Subsequent creep displacement will be constant everywhere 

across the fault. Only if the frictional stress af can fall in value would 

it be possible for the rapid slippage that can generate seismic waves take 

place on the fault. 
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It should be pointed out that there is a formal solution for rapid 

propagation across a fault in an infinite medium when the fault is in the 

condition for which equation (3) is satisfied. Suppose, as is shown in 

Fig. 2, a localized dislocation distribution propagates down a fault at 

a uniform velocity V = c where c is the Rayleigh wave velocity if the 
r r 

dislocations are of edge character and V = c where c is the shear wave 

velocity if the dislocations are of screw character. These moving dis-

locations produce no stress across their fault plane (Weertman and Weertman, 

in press). Because they are in uniform motion their total elastic and 

kinetic energy is a constant and no additional work is required to keep 

them in motion. Thus once created a localized group of infinitesimal dis-

locations can move rapidly down the fault, at least until anelastic damping 

losses within the rock masses on either side of a fault stop them. However, 

the formation of a localized group of fast moving dislocations requires 

energy. They cannot be formed unless stored energy is released somewhere 

along the fault when the frictional stress crf drops suddenly in value. 

In a finite medium, say of dimension L, the passage of a group of infinites-

imal dislocations of total Burgers vector b*, (where b* = fB(x)dx) also will 
~ 

cause the stress S to drop by an amount approximately equal to ~b*/L behind 

the dislocations. 

It is to be concluded that if the frictional stress af at a given place 

on a fault has a unique value and if the stress applied to the rock some dis-

tance from the fault is increased monotonically that the patches of localized 

creep slippage on the fault will become larger until all these patches connect 

up with each other. Thereafter uniform slip takes place everywhere across 

the fault. The applied stress can no longer increase in value. This is true 
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even if the frictional stress varies in value in the horizontal direction 

as well as in the vertical direction. Slow changes in the value of af that are 

produced by slow water flow around a fault will not change this conclusion. 

However, if the frictional stress can plunge downwards in value such a fault 

is "primed" for catastrophic fast slippage to take place on it. 

But if the value of frictional stress af can drop suddenly in value 

instabilities on the fault will occur even before it is "primed" every-

where along its length. One example is given in Weertman (197la). Consider 
\ 

now other examples. 

Spreading Center that Terminates at a Symmetric Transform Fault 

Consider a hypothetical two dimensional spreading center that is shown 

in Fig. 3 that terminates at a symmetric transform fault. Because of the 

continuous emplacement of dikes at the spreading center a uniform velocity 

o0 is forced upon the material on either side of the spreading center. The 

spreading center is considered to terminate at the origin (x = 0) and it 

continues to infinity in the upper half planeaf Fig. 3. A symmetric 

transform fault exists on either side of the spreading center termination 

point. The emplaced dikes are imagined to give rise to normal stresses 

on either side of the x = 0 plane that are just sufficiently large enough to 

force material at X = 0 in the upper half plane to move with a constant 

velocity in the x direction with a velocity 
. 
no to the right and a velocity 

. 
Do to the left as indicated in the figure. No shear stress is applied at 

large distances that would produce a shear stress across the transform 

fault. 
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(It should be emphasized that dike formation requires an overall 

tensile stress to act parallel to the x-axis of Fig. 3 (and Figs. 10 

and 12). If a compressive stress were to act the magma of a dike, 

before it solidified, would be forced out of the crack that is a 

dike onto the earth's surface (Weertman, 197lb). The magma, while 

it solidifies, can "push" rock on either side of a spreading apart 

only if a tensile stress is already present. Otherwise the rock on 

either side of the magma will "squeeze" the magma out and no spreading 

will occur. In Fig. 3 (and Figs. 10 and 12) it is imagined that 

at any one time almost all the material in the spreading center is 

solidified rock and that dikes that contain molten magma at a 

given instant in time are only of limited number and have limited 

lengths. Hence the spreading center can be considered, for all / 

practical purposes, to be solid everywhere.) 

Assume that the friction stress obeys a law in which the friction 

stress decreases continuously with increasing displacement velocity 

D = oD/ot. Such a friction law is show~ schematically in Fig. 4. 

Next let the continuously decreasing friction curve of Fig. 4 be 

approximated by a step function curve shown in Fig. 5 in which the 

friction stress has a constant value equal to ~f up . to a critical 

displacement velocity D and at larger displacement velocities the 
c 

the friction stress drops to the value af = ba· 

Now consider the slippage on the symmetric transform fault 

from the moment the spreading center is first created. Consider first 
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the case in which the spreading center forces a displacement velocity 

at the origin (x = 0) that is equal to Do where n
0 

is smaller than 
. 

the critical velocity Dc of the friction law that is given in Fig. 5. 

As slippage propagates from the spreading center the stress a(x) 

that acts on the fault isequal to the frictional stress af where slip 

has occurred. (The slippage that is being considered is a slow 

creep displacement across the transform fault.) At a given instant 

in time let slip occur out to a distance equal to b on either side 

of the spreading center. Thus 0 (x) =a£ out to x = b on the right 

hand side of the center and a(x) = -a£ on the left hand side of the 

center out to x = -b, as shown in Fig. 6. (The negative value for 

a(x) occurs for the left hand side because the slip displacement 

on the left hand side is in the opposite sense of the slip displace-

ment on the right hand side.) 

If slippage takes place on only a finite segment of a fault 

and if the stress on that segment is known then the dislocation 

distribution function B(x) is calculated very easily from the following 

equation of elasticity theory 

B(x) 
b a(x')dx' 

J (x-x')(b2-x•2)~ 
-b 

625 
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where x = 0 is taken to be the center of the slipped region which extends 

from x = -b to x =b. (In the regions for which jxj ~ b the density B(x) = 

0.) The following subsidiary equation must also be satisfied 

b r q(x)dx = 0 
·:.b (b 2 

-x2) ~ 
(5) 

If a(x) is an antisymmetric function of x equation (5) always is satisfied. 

If the stress function a(x) that is shown in Fig. 6 is substituted 

into equation (4) the following equation is found for B(x) 

B(x) log 

In Fig. 7 is shown a plot of the dislocation density B(x) that is given 
b 

(6) 

by equation (6). The slip displacement D(x), which is equal tor B(x)dx, 
·; 

X 

is found by integrating equation (6) and it is equal to 

2aa f 
{ -1 

lb + 
(b2 -x2)% 

1 (7) D(x) = -- nb - 2bsin (x/b) xlog (b2 -x2)~~ 1TIJ. b -

The displacement velocity D(x) is found by taking the time derivative 
. 

of equation (7). The value of D(x) is 
. 

2abaf 1 D(x) = + { 1T- 2sin- lx/bll (8) 
1Tj.l. 

where the + sign is used for x > 0 and the minus sign for x < 0. The term 

b = db/dt is the velocity with which the outer edges of the slipped zone 

propagate away from the spreading center. At x = 0 the displacement velocity 

D(O) = ± n0 • Hence b is given by 

(9) 
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and the term b has a constant value. It should be noted that the magnitude 

of D(x) decreases monotonically from the value DO at x = 0 to the value 0 

at x = b. Hence if D0 is smaller than Dc then D(x) is everywhere smaller 

than D in the slipped zone. Thus equations (6), (7), and (8) represent a 
c 

satisfactory solution for the slippage on a symmetric transform fault at 

a newly created spreading center. (The solution, however, may be one for 

a fault in "unstable equilibrium".) 

Now suppose the spreading velocity Do is larger than Dc. Near the 

spreading center the stress a(x) on the fault need ·only equal the term 

of - ~cr in order to have slippage. Far from the fault the slippage velocity 

should decrease and there the stress a(x) must equal the term 0 f. Hence the 

stress function 0 (x) must be that shown in Fig. 8 when creep slippage is 

'~ell behaved". The stress 0 (x) = of - ~a for 0 < x < a, where a is a constant 

with a value a< b, and o(x) = af for a< x <b. Also o(x) =- a(-x). 

If the stress function 0 (x) that is shown in Fig. 8 is substituted into 

equation (4) the following equation for B(x) is found 

B(x) (10) 

Figure 9 shows a plot of B(x) given by equation (10) for the case of 

~/af = 0.25 and a/b = 0.7. If equation (10) is integrated in order to obtain 

D(x) and then the time derivative of D(x) is taken the following equation is 

found for D(x) 
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(11) 

where again the + sign is used for x > 0 and the - sign for x < 0. The term 

a is the time derivative of the term a. 

Now note: for a finite value of a the logarithmic term in equation (11) 

approaches infinity in value as x -a. It is thus impossible for D(x) < D 
c 

for values of x that are slightly larger than a in value. Hence equation (10) 

can be a solution of the equation (4) only if a = 0. Thus set a = 0. From 

the conditions that D(O) = ± D0 and D(a) = Dc the following equation for 

the value of a is found. 

and the following equation for b is obtained 

Now if a = 0 equations (12) and (13) can be satisfied only at ~ 

(12) 

(13) 

instant of time. At any other~iod of time, because b increases with time, 

a different value of a is required to satisfy equation (12). 

Therefore, in general, no ·~ell behaved" solution is possible. By 

well behaved is meant a solution for a slow creep slippage on the fault 

for which an essentially static elastic stress analysis can account for the 

displacement and the stress that acts across the fault. Hence the slippage 

on the symmetric transform fault,when D(O) > n ,must take place sporatically . c 

in a fast catastrophic fashion between periods of slow creep or no creep. 

The reason that a well behaved, slow creep slip solution cannot be 

maintained indefinitely is the occurance of the large dislocation density 
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which is shown in Fig. 9, at the boundaries x = ± a that separate a high 

friction stress region from a low friction stress region. If the position 

of this boundary moves during creep slippage the localized packet of dis­

locations there also move and in so doing produce a large slip velocity. 

A large slip velocity reduces the friction stress and the slip process 

runs away, producing an earthquake. Of course, the infinite value of B(x) 

at x = + a is a consequence of the fact that the stress there is required 

to jump discontinuously in value. However, if the friction stress 

decreased rapidly but continuously with increasing sliding velocity in the 

vicinity of x = ± a the infinite value of the dislocation density B(x) 

will be rounded off to a finite value. The density B(x) will still have a 

much larger value than elsewhere (except at x = 0) and consequently a quasi-

steady slow creep displacement solution still cannot exist. Only if the 

friction stress drops gradually in value with increasing displacement velocity 

would a quasi-steady solution be possible. A quantitative definition of what 

is a rapid and what is a gradual drop in friction stress can be made by solving 

the equations of this section with different friction laws in the same manner 

that an analogous problem of deciding what is a rapid or slow friction stress 

decrease was treated earlier (Weertman, 1967). 

Transform Fault Between Two Spreading Centers 

The example of the last section is rather artfficial. A newly created 

spreading center that terminates at a symmetric transform fault if one ever 

existed, must be a very rarely occuring phenomena. Consider next a phenomenon 

that does exist in abundance - a transform fault between two spreading 

centers.. Such a fault is shown in Fig. 10. 
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If the distance between two spreading centers does not change with 

time and the positions of the two spreading centers themselves remains 

fixed in space then on average all the slip on the transform fault takes 

place between the two spreading centers. The average slip on the projections 

of the fault beyond the spreading centers - the fossil or inactive projections 

of the fault - must be equal to zero. Now suppose slip at a constant velocity 

can occur on the fault between the spreading centers. The stress a(x) must 

equal crf everywhere on the transform fault for this slippage to occur if the 

velocity 2n0 , which is twice the spreading rate of each center (see Fig. 10), 

is smaller than the term D . 
c 

In Fig. lla is shown a plot of 0 (x) versus distance on a transform 

fault. The origin is taken to be the midway point between the two spreading 

centere. The spreading centers are situated at x = + a. In the region -a < 

x <a the stress a(x) = crf· Slip in the region -a< x <a requires limited 

slip in the regions lxl >a. If no limited slip occured in this latter 

region an infinite stress would build by at x = + a. Hence, as shown in 

Fig. lla, it is reasonable to expect that a(x) = -of in the regions 

a< Jxl < b where the value of b is determined through equation (5). 

The stress 0 (x) shown in Fig. lla requi.res the stationary distribution 

of dislocations that is plotted in Fig. llb. This distribution is found from 

equations (4) au1 (5) and is equal to 

(14) 
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k 
and the distance b is equal to b = 2 2

' 

If the net sliding velocity 2D0 is larger than Dc between.the two 

spreading centers the friction stress there is reduced to the value 

crf - ~. The dislocation density in this situation (cr(x) = crf - ~ for 

-a < x <a and a(x) = - crf for a < lxl <b) is equal to 

2a(2crf- ~) 1 Jx(b2-a2)~ + a(b2-x2)~~ 
og 2 2 k 2 2 k 

TI~ x(b -a ) 2
- a(b -x ) 2 

B(x) 

where the distance b is equal to b = a/cos{(n/2)(crf-~)/(2af-~)} 

(15) 

Although the solution that has just been constructed and which is represented 

by equation (14) (or by equation (15)) and the plo~ shown in Fig. 11 appar-

ently satisfy the condition of slippage with a constant velocity -on the 

transform fault (that is, in the region -a < x <a) there is a serious 

difficulty associated with this solution. The regions that are 

the projections of the transform fault (that is, the regions a < lxl <b) 

require a stationary distribution of dislocations to 

prevent the stress there from building up to an infinite value. But any 

locked-in dislocations on these fossil projections of the tra?sform fault 

will be moved at a velocity n0 away from the spreading center. But if 

the dislocations in regions a < lxf < b do move away from the spreading 

center the stress on both the active transform fault (-a < x < a) as well 

as on the fossil projections of the transform fault is changed. The dis-

locations on the fossil fault projections could move back towards the 

spreading center. This motion will produce slip on the projections. However, 

if they do the direction of the slip is such that in the regions a < lxl < b 

the stress 0 (x) must have a reversed value. That is, o(x) must change its 

value from a(x) = - crf to 0 (x) = of. But the slip on the fossil projections 

631 



14 

average over time must equal zero. Hence in the regions near the spreading 

center (see Fig. 12) on the fossil fault projections periods of slip in one 

direction (with ~(x) =of) must be followed by periods of slip in the 

opposite direction (with a(x) =- af). These alternating slip periods 

will have the effect of placing locked-in dislocations of alternating sign, 

such as is shown in Fig. 12, on the fossil transform fault projections. 

At large 

distances ' from the spreading centers the dislocations on the fault projections 

will be locked-in and the fossil fault itself will be locked. The locked-

in dislocations do move away from the spreading centers but this motion 

does not require slip on the fossil fault. 

The slip on the transform fault between the two spreading centers cannot 

take place at a velocity that is constant with time as well as with 

position if alternating slip must take place on the fault projections near 
. 

the spreading centers. If the displacement velocity 2D(O) is larger than 

the critical velocity D it is inevitable that periods of fast, catastrophic 
c ' 

slippage, that is, earthquakes, must occur on the transform fault. 

Savage (reviewed in Savage, in press) has proposed the existence of 

"dislocation waves" that might explain the apparent migration of earthquake 

sequences along an earthquake fault. The somewhat qualitative analysis given 

above would explain how Savage's dislocation waves and migrating earthquake 

sequences could get started from a spreading center and move along a 

transform fault. 
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CONCLUSIONS 

In this paper two more examples have been analysed of an inherent in­

stability of quasi-static creep slip on a fault. In the example of a hypothetical 

symmetric transform fault this inherent instability can be demonstrated 

rigorously. In the other, more realistic, example of a transform fault between 

two spreading centers it is clear that a uniform slip velocity across the fault 

that is constant both in time and in position along the fault cannot be main­

tained. It is obvious that slip on such a transform fault also is unstable 

although no attempt was made in this paper to develop mathematical equations 

that rigorously would prove this claim. 

It is predicte~ that on the fossil fault projections of a transform 

fault there should exist locked-in infinitesimal dislocations of alternating 

sign. The existence of these locked-in dislocations could be proved from first 

motion studies of small and rare earthquakes that might occur on the fossil fault 

projections. There should be just as many earthquakes with first motions in 

one direction as th$e with first motions in the opposite direction if the 

picture presented in Fig. 12 is correct. 
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FIGURE CAPriONS 

Fig. 1. (a) Schematic plot of friction stress crf and internal stress cri 

versus distance x along a fault. (b) Infinitesimal dislocations 

that produce the internal stress cri· (c) The stress difference 

crf - (cr· + S.) versus distance x where S. is the initial value 
1 1 1 

of the "applied" stress. Slippage can tak·e place in the patches 

where the stress difference is equal to zero. 

Fig. 2. Localized distribution of infinitesimal dislocations -of density 

B(x) that moves with velocity V across fault plane. 

Fig. 3. Spreading center that terminates at a symmetric transform fault. 

Fig. 4. Schematic plot of friction stress versus slippage velocity D. 

Fig. 5. The friction stress plot of Fig. 4 is here approximated with a 

step function. 

Fig. 6. Stress cr on a symmetric transform fault versus x for the case in 

which Do< De· 

Fig. 7. Dislocation distribution B(x) versus x that corresponds to the 

stress variation shown in Fig. 6. 

Fig. 8. Stress cr versus x for a symmetric transform fault for the case in . . 
which Do > De. 

Fig. 9. Dislocation distribution B(x) versus x that corresponds to the 

stress variation shown in Fig. 8 for the case in which 6cr/crf = 0.25 

and a/b = 0.7. 

Fig.lO. Transform fault between two spreading centers. 

Fig.ll. (a) Stress variation of cr versus x required to have slippage every­

where on transform fault for the case in which the friction stress 

crf is a constant. (b) Dislocation distribution B(x) versus x that 

corresponds to the stress variation shown in (a). 

Fig.l2. Infinitesimal dislocations on transform fault between two spreading 

centers and locked•in infinitesimal dislocations that exist on inactive 

"fossil" portions of the fault. 
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Joe Andrews 

There's been alot of discussion at this meeting about 

heterogeneity being basic to fault mechanics and earthquake 

occurence. For instance, the stress or material properties must 

be heterogeneous to stop a rupture, and we have earthquakes of 

all sizes upon a fault. We have seen much evidence for the 

heterogeneity, in particular, evidence from the South African 

gold mines. It almost seems as if the process of repeated 

brittle failure in a natural setting leads to this heterogeneity 

and irregularity. Whereas if you were talking about a viscous 

deformation, you would expect a very smooth behavior. I think a 

major theoretical question is why is brittle failure associated 

with heterogeneity. A very promising idea is what Jim Rice 

suggested, that if you have a fresh fracture anywhere on the 

fault it will be at a different orientation from the major shear 

direction. We need to have some statistical idea of the hetero­

geneity on the fault, to understand the strong motion from 

earthquakes and also just to get at such basic questions as why 

are there earthquakes of all sizes. 
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James Brune 

I feel we're still in the basic research stage of the whole 

problem. For that reason, I tend to focus my thinking on earth­

quake hazards reduction and not so much on earthquake prediction. 

Part of the reason for this is I think the definition of predic­

tion is kind of fuzzy. The definition is such that in some 

sense we are predicting earthquakes right now, everyone of us 

is predicting an earthquake from some certain section of the 

fault within certain accuracy and certain magnitudes. We need a 

socially useful type of definition. 

I still think there are still some big uncertainties. For 

example, if we can't decide whether the stress on the fault is 

100 bars or a kilobar, then there are some basic things we need 

to determine before we can be very sure that the way we spend 

our money is very efficient. 

We need to understand the problem of rupture strength and 

length of rupture, and what stops a rupture, if we're going to 

deal with the problem of ruptures growing into regions where 

there isn't any premonitory evidence nor any way of knowing that 

the fault is dangerous there. Without this understanding, we 

won't be able to predict how big an earthquake is going to be. 

I think we need higher quality standard seismic surveys. We 

need to use strong motion data for high frequencies, to help 

understand what the true stress is. We need some good absolute 

stress measurements. I also think we need to get some temperature 

measurements on active faults, if possible right after a big 

earthquake, (or perhaps on faults in the deep African mines) to 
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get some idea of the energy that's going into heat. I guess, 

most important, we need higher guality tilt and strain measure­

ments to understand the long term deformation. I have a sus­

picion that we're going to need better instruments, long base 

tiltmeters and strain meters. We may not be able to establish 

the possibilities for earthquake prediction with a lot of low­

quality data which yields ambiguous results. It may be expen~ 

sive, but I think that we can gradually increase our understanding 

of the tectonics of the fault zone with really precise tilt and 

strain measurements in conjunction with other types of information. 

I think we have to approach the earthquake prediction problem, 

perhaps through the back door, by understanding the basic physics 

better. In this way we will at least be sure to gain a lot in 

earthquake hazards reduction, that is, taxpayers will get their 

moneys worth in hazards reduction, if not in a neat scheme for 

earthquake prediction in a short time. 
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James H. Dieterich 

Traditionally, three groups, from different disciplines, 

have worked on the mechanics of earthquakes. Those groups are 

the theoretical mechanicists, seismologists and laboratory 

experimentalists. Something this meeting brought home to me is 

that there is still not enough communication between those 

groups. The seismologists have questioned the relevance of the 

theoretical mechanical models to the processes they consider 

important; namely multiple events, fault heterogeneity and so 

forth. Some of the models based on those seismological observations 

have asserted dynamic stresses and complete stress drops on the 

order of kilobars. In turn, from the point of view of current 

laboratory studies, I find such seismological models implausible. 

I think all of our work would benefit from better communication 

and better attempts to reconcile work in the different groups. 
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L. B. Freund 

My comments concern the mechanics of dynamic crack propagation, a fairly 

narrow subject within the scope of this meeting, but a fairly important subject 

on which the interpretation of seismic data is based. The viewpoint of this 

subject which I took in my talk is at a very basic research level, a viewpoint 

which I believe is useful in planning further work in this area. The main objec­

tive of the work is to obtain a more accurate picture of the local fracture pro­

cess on a fault so that seismic data can be better interpreted. In relation to 

Jim Dieterich's remarks about communication among seismologists, theoreticians, 

model-makers and so on, I think that it is important to keep in mind that these 

analytical models provide a very useful language for discussing and interpreting 

data which may lead to greater insight into the faulting process but, at least at 

this time, they should not be viewed as providing an absolutely rigid framework 

by which to draw conclusions. 

There are a number of relevant special problems within dynamic fracture which 

are currently being studied, and I might mention one or two of these problems here. 

One such problem is concerned with trans-sonic frictional crack propagation on a 

fault plane, which is a relatively unexplored phenomenon. If we think of fracture 

as being the transfer of load to prospective fracture sites due to a trans-sonically 

moving stress concentrator, then this load transfer takes place by means of stress 

waves travelling at about the same speed that the fracture progresses. This is an 

unusual situation in fracture mechanics and one worth further study. 

Another important problem in this area has to do with fracture criteria. A 

number of elaborate earthquake models have been proposed and these will undoubtedly 

have to be analyzed by numerical methods which will require some sort of discretiza­

tion in the solution procedures. I think it is extremely important to distinguish 

between the selected fracture criterion and its numerical implementation, i.e., the 

fracture criterion must not be determined by the nature of the discretization in 

the numerical procedure. 

in the paper. 

Several other special problems in this area are discussed 
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Robert Geller 

I think at this point we have many theoretical models and many 

different laboratory experiments. However, only a very small number 

of earthquakes have been studied in detail from all aspects, including 

percursory seismicity, long term observations of tilts and strains, and 

rigorous analysis of the actual mechanisms of the earthquake and the 

aftershocks. I think what we need is more rigorous and complete obser­

vational studies of perhaps several tens of earthquakes under diverse 

circumstances. If we had that, it might become more clear which 

theoretical models and experiments were applicable and which ones were 

not. Basically~ however, I think many more earthquakes must be studied 

in real detail observationally before we can make much more progress. 
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Tom Hanks 

Both from the summaries just given and from the conversation 

generated over the past three days, it seems clear that there is 

a wide range of approach to and opinions on this subject. There 

are fundamental aspects of earthquake mechanics that we don't 

understand, and the order of magnitude of the tectonic stress 

giving rise to crustal earthquakes is probably at the top of the 

list. Moreover, there seem to be difficulties in communicating 

the results of one relevant discipline to another, which is in 

part due to the often contradictory nature of the separate 

results. But that's why we have meetings like this, which I have 

greatly enjoyed. 
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Hiroo Kanamori 

I am more or less of the same opinion as Jim Brune, Jim 

Savage and Bob Geller. As we have discussed throughout this 

meeting, fault properties are probably very heterogeneous along 

the fault zone. It is possible that precursory phenomenon, if 
~ 

any, may be limited to a zone of the initial stress concentration 

and may not be related to the entire fault length. In view of 

this, we should be careful in looking at the simple-minded 

relations on the precursory time versus fault dimension. It is 

my opinion that, from a practical point of view of earthquake 

prediction, short-term precursors like foreshocks and land­

deformation are very important. In the past, because of the 

lack of pronounced foreshock activity before major California 

earthquakes, the usefulness of foreshock activity as a tool for 

prediction of California earthquakes has been viewed with con­

siderable reservation. In order to study the physical process 

of pre-earthquake activity, it will be necessary to have broad-

band instrumentation near fault zones. 
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Comments--G. Mavko 

I have one comment and a question: On the first evening of this 

conference someone asked, "Can we conclude that softening is required for 

instability?" I think that the answer is "yes" as long as we are considering 

models with localized zones of slip or inelastic strain imbedded in an 

otherwise elastic material. Although heterogeneity may be important, I 

don't think that spatially varying properties alone are enough to cause 

instability, without local softening or weakening. 

My question has to do with our treatment of heterogeneity in earthquake 

modeling. During this conference we have heard evidence for heterogeneity 

in the form of wildly varying fault slip and high frequency seismic energy. 

I'm wondering if these observed heterogeneities can be related in a deterministic 

way to the distribution or statistics of stress, strength or friction on the 

fault prior to the earthquake. Or, for all practical purposes, is the earthquake 

a very random process once rupture has begun? Is there a simple relation 

between the instantaneous spatial statistics of stress and strength, the 

ensemble statistics of static parameters contained in the frequency-

magnitude relation, and the statistics that determine the seismic spectrum 

in a given event? 
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Art McGarr 

I want to present several questions which can be answered or which 

may be capab 1 e of being answe-red observationally. If they are answered 

conclusively, modelers can save considerable time, money and effort and 

avoid chasing up false leads. First, the matter of stress levels has been 

quite central to the discussions of this meeting. There are two essential 

questions involving the operable stress field. I think we are capable of 

resolving the controversy about whether the level of stress on the San Andreas 

fault is less than 100 bars or greater than a kilobar. One procedure would 

be simply drilling a deep hole and doing a suite of ambient stress measure­

ments at various depths. The capability exists and this hopefully will be 

done over the next five years. The other question is whether stress can 

ever be of any use in predicting earthquakes, or even be related in detail 

to earthquakes. I am very pessimestic about this. If it does show a lot 

of variability, then it would require incredible luck to make the appro­

priate observation, plus an incredtble amount of money and time. Probably 

it's simply not practical. 

The other questions are some upon which seismologists disagree but 

for which I think answers are obtainable. These questions are: 

- Do b values for foreshocks and aftershocks change or not? 

Some of the people here who are not seismologists may think that b values 

are lower for foreshocks than for aftershocks, but this question certainly 

has not been resolved. 
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- I think \'le need to get some fie 1 d evidence on whether there is 

any observable strain softening. 

- As far as I know, no one has ever conclusively shown that there 

is any field evidence whatsoever for instability preceding failure, 

and yet a lot of the modeling is done on the basis that this is an 

observable phenomenon. 

- A very important question asked this morning by Amos and one that 

is capable of being answered is whether earthquakes ever occur in 

relatively weak rock. If they don't, then we should be focusing our 

attention on only the strong rocks. The obvious corrolary -to this 

would be that a zone of fault gouge is not really a very useful con­

cept in trying to model fault movement in seismogenic zones. 

- Another subsidiary question along that line is whether or not 

aftershocks occur in previously unfractured material or whether 

they result from movement on the fault of the main shock. I don•t 

know whether that is really capable of being answered or not but 

possibly it is. 

- Another question is the importance of aseismic slip. Some modelers 

seem to think that earthquakes are sort of a pathologic phenomenon 

and that aseismic slip is relatively important. On the other hand, 

in seismogenic regions the seismic moments appear to be capable of 

accounting for virtually all of the relative motion between plates. 

- The last item is the importance of pore pressure. If we can do 

the critical observations which indicate that it is not a very im­

portant phenomenon, or doesn•t really go on in the seismogenic region, 

we can perhaps get rid of some unnecessary complexity in our models. 
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Amos Nur 

I made a chart here of what I consider the old views of what people had 

before they came here and their new views as expressed by their presentations 

just now, and I must say that most of us didn•t change our views much. After 

two and a half days, we still hold roughly the same views we held before we 

came here, including myself. This is shown by the fact that the most important 

conclusion I drew from this meeting is that heterogeneities are very important 

in-situ with two resultant implications. One relative to earthquake prediction 

is that there is a strongly random component in the failure process, and 

probably in the preparation for failure there are some elements in the earth­

quake that are not going to be predictable simply because it is random. What 

exactly it is going to do, I don't know. Whether this randomness will be 

expressed in uncertainty in time, place or magnitude, I don't know, but this 

intrinsic random element in the failure process will cause some difficulties 

in time prediction. 

The other implication is that laboratory experiments will have to be 

designed to cope with this problem. In the past, laboratory experiments have 

been performed on samples that were ground to be perfectly flat. Fortunately, 

they never got to be perfectly flat and that maybe is why we have stick-slip 

in the laboratory. However, one should think of laboratory experiments 

designed to include heterogeneities to the correct scaling relationship. 

This is not easy because of the stiffness, but this type of work should be 

done. 

An important question that I see is that we know heterogeneities are 

important but are they really essential? Can we have failure without hetero­

geneities? The way to answer this is by a combination of some kind of dynamic 

modeling that sees failure occur in a continuous system (hopefully, having 
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some similarities to observed patterns of seismicity), and we have to to into 

the field and somehow identify the nature of the heterogeneities present on 

faults. Are they due to variation in elastic constants, in fault gouge 

properties, in friction, in pore pressure, etc.? 
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Jim Rice 

I have some comments on what we might look at to understand 

processes leading to instability, rather than the dynamics of 

the instability per se. Hence, my comments are directed to the 

understanding of non-elastic, constitutive response for frictional 

sliding and general deformation of rocks and to the development 

of models for the pre-instability period. It seems that the 

biggest question mark we have is that of the relevance of labor­

atory studies to the field situation. If we could become con­

vinced that laboratory studies were really relevant, as I expect 

we probably could, then I think we would conclude that the 

amount that has been done thus far in laboratory studies to 

really get at strain softening or strain weakening behavior and 

time dependent behavior is, in fact, very far short of what's 

needed. I was very encouraged by the kind of study that Art 

McGarr reported under the category of relevance of laboratory 

studies to field situations. I think it would be worthwhile to 

pursue more examinations of faulting at this scale, as the 

mining scale is perhaps a good intermediate between the laboratory 

and earthquake levels. At the same time, I think that measurements 

of stresses by over coring, hydraulic fracturing and the like 

are very much needed. Another type of field observation which 

is very little reported so far relates to the kinds of consti­

tutive parameters that enter porous media theories. In the 

field, these are almost certainly going to be dominated by large 

scale joints. It's very difficult to estimate from tests on 

intact laboratory rocks what parameters control drained versus 
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undrained elastic constants in the field. The only way I know 

of getting any evidence of that is to look at things like long 

time consolidation when you change the magnitude of loading on 

the surface of rock. I think that's an important area to get 

at. So far, the only thing I've seen discussed very much in the 

literature is the field estimation of diffusivity, but this is 

very far from a complete description of all the constitutive 

parameters that enter porous media theories. If laboratory 

studies are relevant, I think we must conclude that we want to 

know a lot more about time-dependent friction of the type Dieterich 

discussed, ·especially in connection with strain softening and 

instability behavior, and I think it would be worthwhile to seek 

some laboratory evidence on healing under conditions of temperature 
, 

matching those at depth. Also, in our constitutive studies of 

friction, I think it's important to look more at the question of 

roughness and how much this changes the observations reported so 

far. I could say other things on where we might go with respect 

to looking at precursory models of the type Rudnicki and I reported 

on, but I believe that discussion is contained well enough within 

our paper. 
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John Rudnicki 

I would second the specific recommendations made by Rice 

and I would also second the comment of Jim Dieterich that there 

have been a number of groups involved here and the communication 

between them has not been very good. This diversity of view­

points is indicative of a certain lack of understanding of the 

fundamental features of processes we're trying to describe. I 

think that suggests that we need further work on a broad front 

which includes theoretical models which have explicit assumptions 

that are carried to logical conclusions. Even if these don't 

lead to predictions which are directly observable at this time, 

I think they provide a context for further work, both experimental 

and observational. This was evident in the discussion of strain 

softening. At the same time, on the bottom line of those models 

we have a real uncertainty about what numbers to put into them. 

Some of the things Rice suggested are areas for further work, 

both in experimental determination of parameters and in the 

field determination of transport properties. And finally, the 

ultimate test is what you can observe in the field. However, I 

think some of the discussion here has pointed out that inter­

pretations of field observations is influenced by concepts that 

are carried over from times when we knew less. One of these is 

the fact that stress drops are ordinarily discussed in terms 

of a planer surface whereas the actual width of a fault zone may 

be very important in the way in which we determine stress drops. 

In short, there's a need for progress on all fronts, theoretical, 

experimental and observational. 
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James Savage 

I do believe that we need more observations. The observations 

we have can be explained with very simple models, for example 

dislocation models. Indeed, we can explain the observations 

with several different dislocation models. I'm not sure that 

we need more elaborate theories; rather, I think we need more 

interpretation of the actual observations. As an example, the 

Southern California uplift merits more interpretation because 

the observations there are quite good. 
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Bill Stuart 

It appears that considerable progress has been made in the formulation 

of mechanical models for pre-earthquake deformation, earthquake instability, 

and rupture propagation, although no single model exists for a complete 

sequence. I believe such a model can be constructed if we obtain more know­

ledge about shear strain localization, post-peak strain and strain rate 

constitutive properties and their variation in space, and aging (healing) of 

disrupted fault materials. Information about these phenomena can be gained 

from a few laboratory experiments, theoretical analyses, geophysical obser­

vations, and study of exhumed faults. 

Despite elementary mechanical principles and theoretical results, I 

notice that archaic concepts and language live on. Three examples are: (1) 

earthquakes occur on a fault when the local stress reaches the local fault 

strength, (2) absolute stress values are needed to test instability theories, 

and (3) laboratory data represent the ultimate truth. In fact earthquake 

instabilities occur when the net resisting force on a fault declines at a 

critical rate, only deformation changes are needed to test models, and neither 

laboratory bulk sample tests nor simulations are perfectly scaled versions of 

field situations. 
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COMMENTS BY DONALD L. TURCOTTE 

It seems to me that there are two approaches to the problem of earthquake 

prediction. The first is essentially empirical; to measure all observational 

quantitites hoping that one or more will provide systematic precursory infor­

mation on the occurrance of earthquakes. The second is to develop a basic 

understanding of the fundamental processes associated with the occurrance of 

earthquakes. This understanding may then provide the basis for the systematic 

prediction of earthquakes. 

Although some might argue that the accumulation and release of stress on 

the San Andreas fault is so complicated that it is impossible to satisfactorily 

model the process, I would disagree. Although it may, in fact, be impossible 

to model every aspect of the fault,, I believe it will be possible to model the 

basic behavior. It is clear from this meeting that much remains to be done 

before satisfactory fault modelling will be possible. Specialists from many 

branches of mechanics, materials science, applied mathematics, and computer 

science will be required . I would hope that the U.S.G.S. program on earthquake 

prediction and hazard reduction would attract increasing numbers of young scien­

tists in these areas into research on the San Andreas fault and other related 

problems. 
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J. Weertman 

I have two comments. Slow slippage on a fault has the effect of smoothing 

away internal stress fluctuations. I'd like to see with simple-minded models 

ways internal stress fluctuations can be regenerated on a fault during the 

fast slip process. One way might be what I was talking about at the 

conference. At the source of the motion it may be impossible to have slow, 

smooth, continuous slippage. Another obvious way: if the stress drops 

themselves that occur during fast slippage were functions of position internal 

stress fluctuations would automatically be regenerated on a fault. The stress 

drops may be functions of position because of variations of rock types along 

a fault. Anyway, I'd like to see simple, convincing ways to regenerate the 

internal stress fluctuations that slow slippage removes from a fault. 

My second comment concerns what we heard from Joe Andrews yesterday. 

He pointed out that there is a difficulty with crack tip stress conditions for 

propagating slip considered as a propagating crack if it's in a mixed mode 

(combined mode II and III shear crack). The same problem occurs with a 

moving dislocation, i.e., there are problems with a fast moving mixed dis­

location (partly edge and partly screw in character). This difficulty might 

mean that for a fault slipping in a mixed mode that the moving boundary 

between the slipping and the unslipped regions is not a continuous smooth 

line. The boundary line might have to take on a zigzag form with the zig 

portions moving in a mode II (edge character) manner and the zag portions in a 

mode III(screw character) manner. Or the boundary line might move with respect 

to time in a very irregular fashion. Internal stress irregularities might 
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be left behind after mixed mode slippage. For any small earthquake where 

you have a loop of an expanding slipped area most of the slippage at the 

boundary line is in a mixed mode. Thus mixed mode slippage might be 

rather important to study. 
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