UNITED STATES DEPARTMENT OF INTERIOR GEOLOGICAL SURVEY

FIELD PROCEDURES AND DATA REDUCTION METHODS (WITH HEWLETT-PACKARD 97-67 PROGRAMS) FOR TOTAL FIELD RESISTIVITY SURVEYS

bу

Adel A. R. Zohdy

Open-File Report 78-424

TABLE OF CONTENTS

		P.	AGE
I.	CREW	REQUIREMENTS AND BASIC EQUIPMENT	2
	(A)	Crew	2
	(B)	Vehicles	2
	(C)	Transmitter Unit and Accessories	3
	(D)	Receiver Unit and Accessories	
	(E)	Radio Transceivers	5
II.	RECO	MMENDED FIELD PROCEDURES	5
	(A)	Initial Preparations and Recommendations	5
	(B)	Preparations at Transmitter Site	6
	(C)	Preparations at Receiver Site	7
III.	DATA	ACQUISITION PROCEDURE	11
IV.	DATA	REDUCTION AND PROGRAM DESCRIPTIONS	13
	(A)	Input to Program I	
	(B)	Output of Program I	
	(C)	Examples for Program I	
	(D)	Input to Program II	
	(E)	Output of Program II	
	(F)	Examples for Program II	21
V•	THEOR	RY	22
	(A)	Equations for Program I	22
	(B)	Equations for Program II	24
VI.	APPE	NDIX	28
	(A)	User Instructions and Program I Listing (HP 97-67)	
	(B)	User Instructions and Program II Listing (HP 97-67)	32

Field Procedures and Data Reduction Methods (with Hewlett-Packard-97-67 Programs $\frac{1}{2}$) For Total Field . Resistivity Surveys

bу

Adel A. R. Zohdy

I. CREW REQUIREMENTS AND BASIC EQUIPMENT

The following list of manpower and equipment is currently used by the U.S. Geological Survey and is recommended for the optimum operation of an efficient bipole-dipole total field resistivity survey.

(A) Crew

An optimum crew consists of five (5) persons. A party chief, an assistant party chief, an operator, and two field assistants.

(B) Vehicles

Three 3/4 ton, 4×4 , vehicles are generally required. All of which should be equipped with winches.

- (1) Transmitter truck, for carrying transmitter equipment, about 3 km of #8 current bipole cable, and a truck mounted or truck towed 30-40 kva generator. This vehicle must be equipped with a powerful radio transceiver.
- (2) Receiver vehicle, generally a carryall type for carrying party chief and assistant party chief and the receiver equipment. This vehicle also must be equipped with a powerful radio transceiver.

^{1/}Use of a specific brand name does not necessarily constitute endorsement of the product by the U.S. Geological Survey.

(3) Utility truck, for carrying two crew members, reels, porous pots, test equipment, tools, and so on. It is recommended that this vehicle be equipped with a precision odometer and an additional powerful radio transceiver.

(C) Transmitter Unit and Accessories

- (1) The transmitter should be powered by a 30-40 kva generator (or a larger generator) and must be capable of pulsing a square wave current at peak to peak amplitudes of about 20 to 60 amperes, at about 400 volts, and preferably at several frequencies ranging from about 0.05 to about 0.5 Hz. A frequency of 0.1 Hz or less is used most often.
- (2) Frequency control box (may be part of transmitter box).
- (3) Dummy load.
- (4) Bipole cable (2-4 km of #8 insulated cable).
- (5) A cable "spitter" (generally operated with a hydraulic pump) to pick up the bipole cable and lay it in a "bird's nest" on the bed of the truck.
- (6) HP-97 calculator (encased in a transparent plastic bag to protect it from dust), programs, charger, and data books.
- (7) Invertor for charging calculator from vehicle battery if necessary.

(D) Receiver Unit and Accessories

(1) A potentiometric chart recorder operated with an invertor from the truck battery or a separate car battery (that

- can be simultaneously charged with the truck battery). The recorder should have a sensitivity of as much as 0.1 mv full scale and various chart speeds including speeds of about 0.12 cm/sec and 0.06 cm/sec (1 inch/20 sec and 1 inch/40 sec).
- (2) A battery powered self potential cancelling circuit (S.P. bucker), connected to recorder.
- (3) A three-way switching box for successively connecting three pairs of potential electrodes (M and N, M and N', N' and N) to S.P. bucker.
- (4) A three conductor cable with color coded terminals, for connecting potential electrodes to switching box.
- (5) Premeasured coaxial cable on separate reels with fixed lengths ranging from about 30 meters to about 200 meters.

 (A length of 75 meters (250 feet) is most often used.)

 NOTE: Coaxial cables minimize wind noise.
- (6) Several (4 to 6) copper-copper sulphate porous pots for potential electrodes and an adequate supply of copper sulphate crystals.
- (7) Canteens for watering potential electrodes.
- (8) Two azimuthal Brunton compasses.
- (9) HP-67 calculator (placed in a transparent plastic bag to protect it from dust), programs, and charger. [OPTIONAL]
- (10) Crystal clock for signal polarity determination.
 [OPTIONAL]
- (11) Topographic map, scales, and data books.

(D) Radio Transceivers

- (1) At least two powerful radio transceivers are required for communication between the transmitter vehicle and the receiver vehicle. A third radio transceiver installed in the utility vehicle is also valuable either as a spare, or for relaying messages in areas of difficult communication. Ninety (90) watt FM radio transceivers are recommended for most areas of mild topography, but single side band radio transceivers (40 watt) may be required for areas with rugged terrain.
- (2) At least three portable radio transceivers (5 watts) (or two portable FM transceivers using the same frequency as the receiver-vehicle-mounted FM transceiver) are required for communication between party chief in receiver vehicle and crew members.

II. RECOMMENDED FIELD PROCEDURE

(A) Initial Preparations and Recommendations

- (1) The party chief and his assistant should scout the area for determining the best locations for the current electrodes. Metal culverts and well casings, separated by a distance of 2-4 km, represent two of the best targets to be sought (for use as ready-made electrodes).
- (2) For safety purposes: a) Do not locate a current electrode near a farm house or a school, unless that electrode can be guarded at all times when the current is pulsed into the ground. b) Do not operate equipment

- during a thunder storm and disconnect all cables leading into the truck. c) Avoid laying the cable across major road crossing or animal pastures.
- (3) If neither metal culverts nor well casings can be found at suitable sites, then buried sheets of aluminum foil or several connected long metallic rods can be used for current electrodes, preferably after soaking the ground with brine.
- (4) Neither current electrode should be near a buried gas line, a long metal fence, or a grounded power line, otherwise one would have more than two "point sources", and unusually large signals will be recorded at stations which are located far away from the electrodes (A or B) but that are near these buried pipes or grounded poles.
- (5) Having determined the best sites for the current electrodes, place "Danger-High Voltage" signs near one of the current electrodes, lay down the insulated current bipole cable (#8 gauge), and park the transmitter vehicle near the second current electrode.

(B) Preparations at Transmitter Site

- (1) Upon connecting the bipole cable to the electrode, test the continuity of cable with an ohmmeter, using earth return. If no continuity, check connection at far end electrode.
- (2) Connect the transmitter to the current electrodes and test the maximum (steady state) current that can be put

- in the ground. A minimum peak to peak amplitude of greater than 20 amperes is desirable.
- (3) Establish the polarity of the current electrodes (A electrode is +, B electrode is -). Ascertain that the same convention is adhered to throughout the survey in subsequent days.
- (4) Set the two azimuthal Brunton compasses according to the magnetic declination of the survey area.
- (5) Measure the length of the bipole with a precision odometer (if the bipole is placed along a straight flat road) or from the topographic map.
- (6) Measure the angle of declination, β , that the bipole axis makes with the geographic North. The angle, β , should be measured in the <u>clockwise</u> direction from the geographic North to the <u>negative</u> electrode B (see figure 1), and must be expressed in degrees from 0° to 360° .
- (7) If a crystal clock is to be used, for establishing current signal polarity, synchronize clock with frequency control box.

(C) Preparations at Receiver Site

(1) Receiver stations should be set up at a distance of about 100 meters from the nearest buried pipe line, telephone cable (some old ones are embedded in a lead sheath), grounded power line poles, fences with metal posts, electric pumps, or any power line pole with a transformer box at the top of it. NOTE: a) An unusually large IP

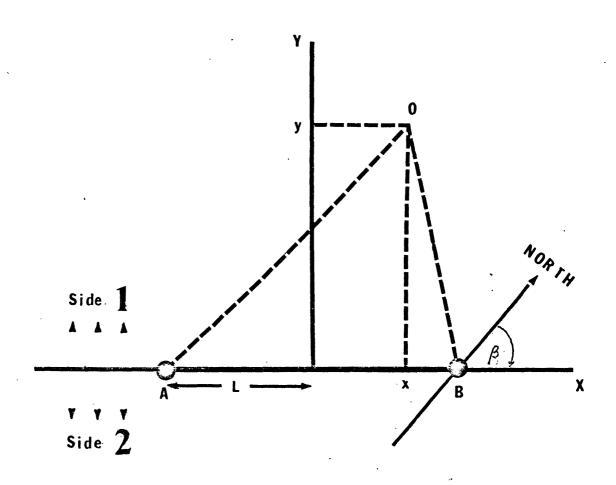


Figure 1.--Diagram for defining station coordinates (x, y, or AO, BO), side 1 and 2, and angle of declination β . A and B are current electrodes; 0, station location; L, half length of current bipole.

- (induced polarization) effect is observed when the station is located near a buried conductor. b) The station distance may have to be greater than 200 meters to eliminate the noise from transformers.
- (2) Select two (nearly orthogonal) directions for setting up a left, and a right, measuring dipoles. The best choice would be one in which the hypotenuse of the (nearly right-angled) triangle would be approximately parallel (rather than at right angles) to the expected direction of the bipole primary electric field.
- (3) Place three porous-pot electrodes (M, N, and N') in the ground, one near the truck (M electrode) and one at each of the far ends of the measuring dipoles (see figure 2).
- (4) Using the azimuthal Brunton compasses, the two field assistants should measure the azimuths (θ_L and θ_R) of the left and right dipoles. The measurements should be taken from the far ends of the dipoles (to avoid effects of the metallic body of the receiver truck) and the South seeking end (instead of the North seeking end) of the needle should be utilized in reading the angle. Thus the reported angles would be the azimuths of the measuring dipoles from the M electrode (negative or ground electrode nearest the truck) to the N and N' electrodes, respectively.
- (5) Using the color coded terminals of the cable from the switching box, ascertain that the connection of the M

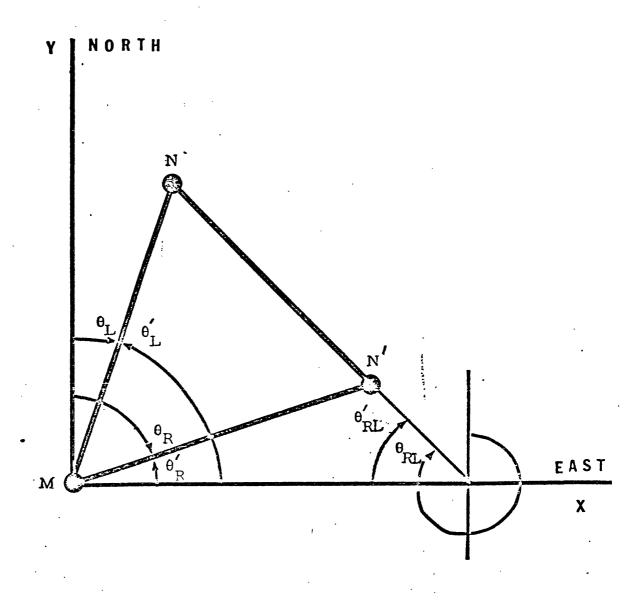


Figure 2.--Diagram for defining angles used in equations (1) through (13). M. N, and N' are potential electrodes.

electrode (electrode nearest the truck) to the chart recorder is such that it acts as a ground electrode while measuring the potential differences (ΔV_L and ΔV_R) for the left and right dipoles, respectively; and that the N' electrode (electrode at the far end of the right dipole) acts as a ground electrode while measuring the potential difference ΔV_{RL} from N' to N.

III. DATA ACQUISITION PROCEDURE

- (1) Upon arrival at a receiver station, the party chief shall call the operator (at the transmitter) to: (a) inform him of their arrival at the site, (b) receive, record, and plot data that the operator would have computed for the previous station, and (c) inform the operator that they should be ready to receive the pulsed signal in 3-5 minutes.
- (2) While the assistant party chief and the two field assistants are setting up the measuring dipoles, the party chief shall plot the location of the new station, measure and record its coordinates (x, y or AO, BO; see figure 1 and read caution on the use of AO and BO in the next section), record the azimuth angles of the left and right dipoles (θ_L and θ_R ; see figure 2) when they are transmitted to him by the two field assistants, and prepare the recorder.
- (3) The assistant party chief shall be responsible for directing the two field assistants, preparing the electrode nearest the truck, and ascertaining the proper connection of the three color coded terminals to the proper electrodes.

- (4) When the operator announces the amount of current in amperes, this will signify that a steady current (having the announced peak to peak amplitude) is being pulsed in the ground.
- (5) Three potential differences ΔV_L , ΔV_R , and ΔV_{RL} are recorded successively. For each set of measurements, the party chief will request the operator to announce the "sign" of the pulsed current (or he will use the flashing light on a crystal clock in areas of difficult radio communication) to determine the polarity of the received signal. The operator should announce at least one "Plus" followed by one "Minus", for each "sign" request from the party chief.
- (6) The announced sign that coincides with the movement of the recorder pen to the right, is the required voltage sign.
- (7) Depending on the signal to noise ratio, a set of three to eight pulses may be measured for each ΔV . The average of each set of measurements is then recorded.
- (8) As soon as the three potential differences are measured the party chief instructs the operator to "shut down" the transmitter. This will also serve as a signal to the crew that the measurements have been completed, and to pick up the receiver array.
- (9) Before leaving the site, or while moving to the next station, the party chief transmits the following two sets of data to the operator (see figures 1 and 2 for definitions): (a) Station number, left angle (θ_L) , Right angle (θ_R) , Left magnitude (ΔV_L) , Right magnitude (ΔV_R) , and Right-Left

magnitude (ΔV_{RL}); (b) The coordinates (AO and BO; or x and y) in miles, the bipole side 1 or 2 (if AO and BO are used), the current (I) in amperes, and the length of the measuring dipoles (MN = MN') in feet. All transmitted data must be confirmed by the operator.

(10) By the time the party chief and the crew arrive at the next station, the operator would have used the two HP 97-67 programs (given in the appendix section) to compute the magnitude and direction of the measured total potential difference (ΔV and ψ), and the simple total field apparent resistivity ($\bar{\rho}_{|E|}$) and other parameters of interest as explained in the next section.

IV. DATA REDUCTION AND PROGRAM DESCRIPTIONS

Two programs for HP 97-67 programmable calculators are given in the Appendix. The first program (Program I) is for the calculation of the average magnitude and direction of the total potential difference from three horizontal components, whereas the second program (Program II) is for the computation of the simple-total-field apparent resistivity and other parameters of interest.

(A) Input to Program I

The following five (5) input parameters are required:

- θ_L = azimuth of left dipole (MN) in degrees [Store in register 1]
- θ_R = azimuth of right dipole (MN') in degrees [Store in register 2]
- $^{\Delta V}_{L}$ = potential difference in millivolts for left dipole [Store in register 3]

- ΔV_R = potential difference in millivolts for right dipole [Store in register 4]
- ΔV_{RL} = potential difference in millivolts for right-left dipole [Store in register 5]

NOTE:

- (1) If one of the ΔV 's could not be measured store 0.00 in appropriate register.
- (2) Use the value of ΔV_{RL} as measured without normalization to the length of MN = MN'.
- (3) It is not required to measure the azimuth, $\theta_{\,\,RL}$, of N'N dipole.
- (4) Proper algebraic sign for measured ΔV values must be used.
- (5) For ideal data, the value of (ΔV_{L} ΔV_{R} $\Delta V_{RL})$ is equal to zero.
- (6) The lengths of MN and MN' are assumed to be equal for the use of this program.

To run Program I, after storing the above five parameters, PRESS A.

(B) Output of Program I

Three values (ψ_1, ψ_2, ψ_3) for the azimuth ψ of the measured "electric field" and their average (ψ_{AV}) are given. These are followed by three values $(\Delta V_1, \Delta V_2, \Delta V_3)$ for the measured total potential difference and their average ΔV_{AV} . The output parameters:

 ψ_1 , ΔV_1 are calculated from θ_L , ΔV_L and θ_R , ΔV_R , ψ_2 , ΔV_2 are calculated from θ_L , ΔV_L and θ_{RL} , $\Delta V_{RL(N)}$, ψ_3 , ΔV_3 are calculated from θ_R , ΔV_R and θ_{RL} , $\Delta V_{RL(N)}$, where θ_{RL} is a calculated azimuth of the dipole N'N, and $\Delta V_{RL(N)}$ is the potential difference, between the N' and N electrodes, normalized to the dipole length MN, with MN = MN'. The scatter in the values of ψ_1 , ψ_2 , ψ_3 (which is always accompanied by a scatter in the values of ΔV_1 , ΔV_2 , ΔV_3) is an index of the accuracy of the measurements.

NOTE:

If only two components of ΔV are measured and the third one was too small or too noisy to measure (and therefore 0.000 was stored in the appropriate register) then no average for ψ or ΔV will appear in the output. Instead, one value for the appropriate angle $(\psi_1, \psi_2, \text{ or } \psi_3)$ and a corresponding total potential difference $(\Delta V_1, \Delta V_2, \text{ or } \Delta V_3)$ will be printed. The zeros appearing for the other values of ψ and ΔV do not signify zero values but rather lack of information. Thus, the quality of data obtained with two components only cannot be properly checked.

(C) Examples for Program I

(1) Example for high quality data from three components:

INPUT	OUTPUT	SAMPLE OUTPUT FROM HP 97
$\theta_{L} = 269^{\circ}$	$\psi_1 = -81.840^{\circ}$	
$\theta_{R} = 2^{\circ}$	$\psi_2 = -80.628^{\circ}$	-81.848 ***
$\Delta V_{L} = +0.46 \text{ mV}$	$\psi_3 = -81.705^{\circ}$	-80.620 *** -81.765 ***
$\Delta V_{R} = +0.05 \text{ mV}$	$\psi_{AV} = -81.391^{\circ}$	-81.331 ***
$\Delta V_{RL} = +0.4 \text{ mV}$	$\Delta V_1 = 0.466 \text{ mV}$	8.468 *** 8.468 ***
	$\Delta V_2 = 0.468 \text{ mV}$	0.456 ***
	$\Delta V_3 = 0.456 \text{ mV}$	0.463 ***
·	$\Delta V_{AV} = 0.463 \text{ mV}$	

(2) Example of high (?) quality data from two components:

INPUT	OUTPUT	SAMPLE OUTPUT FROM HP 97
$\theta_{\rm L} = 93^{\rm o}$	$\psi_1 =$	
$\theta_{R} = 181^{\circ}$	$\psi_2 =$	0.880 *** 8.883 ***
$\Delta V_{L} = $ (noisy)	$\psi_3 = 48.234^{\circ}$	48.234 *** 6.888 ***
$\Delta V_R = +1.1 \text{ mV}$	ΔV ₁ =	∂.890 *** -1.620 ***
$\Delta V_{RL} = -2.25 \text{ mV}$	∆v ₂ =	
	$\Delta V_3 = -1.620 \text{ mV}$	

(3) Example of low quality data from three components:

INPUT	OUTPUT .	SAMPLE OUTPUT FROM HP 97
$\theta_{L} = 272^{\circ}$	$\psi_1 = -5.887^{\circ}$	
$\theta_{R} = 10^{\circ}$	$\psi_2 = -8.897^{\circ}$	-5.887 ***
$\Delta V_{L} = -0.1 \text{ mV}$	$\psi_3 = -19.819^{\circ}$	-8.237 *** -15.819 ***
$\Delta v_{R} = -0.70 \text{ mV}$	$\Psi_{AV} = -11.534^{\circ}$	-11.534 ***
$\Delta V_{\rm RL} = +0.4 \text{ mV}$	$\Delta V_1 = -0.728 \text{ mV}$	-8.728 ***
	$\Delta V_2 = -0.528 \text{ mV}$	-0.528 *** -0.307 ***
	$\Delta v_3 = -0.807 \text{ mv}$	-9.688 ***
	$\Delta V_{AV} = -0.688 \text{ mV}$	•

(4) Example of high quality data (same as example 1) but with $\Delta V_L \text{ and } \Delta V_R \text{ interchanged:}$

INPUT	OUTPUT	SAMPLE OUTPUT FROM HP 97
$\theta_{\rm L} = 269^{\rm O}$	$\psi_1 = -7.150^{\circ}$	
$\theta_R = 2^{\circ}$	$\psi_2 = +7.189^{\circ}$	-7.150 *** 7.189 ***
$\Delta V_L = +0.05 \text{ mV}$	$\psi_3 = -60.541^{\circ}$	-50.541 ***
$\Delta V_{R} = +0.46 \text{ mV}$	$\psi_{AV} = -20.167^{\circ}$	-10.167 axx
$V_{RL} = +0.4 \text{ mV}$	$\Delta V_1 = +0.466 \text{ mV}$	8.466 *** -0.351 ***
	$\Delta V_2 = -0.351 \text{ mV}$	6.998 ***
	$\Delta V_3 = +0.998 \text{ mV}$	8.571 ***
	$\Delta V_{AV} = 0.371 \text{ mV}$	

NOTE: Large scatter in output values signify error in input or in measurements.

(D) Input to Program II

There are two modes (mode A or mode B) for inputing data in Program II which depend on whether the station coordinates are defined in terms of x and y (in miles) or in terms of AO and BO (in miles). See figure 1.

CAUTION: If the y-coordinate of a station is small with respect to its x-coordinate, DO NOT use the program in mode B (with input values of AO and BO), as "Error" may appear in calculator window or large errors in the computed values of y and of $\psi_{\rm O}({\rm N})$ [see definition for $\psi_{\rm O}({\rm N})$ in next section] may be obtained as a result of small errors in the measured values of AO and BO. Therefore, for y << x, measure x and y and run the program in mode A as described below.

- (1) In mode A (x and y coordinates are used), the following eight (8) input parameters are required:
 - x = x-coordinate of station in miles [Store in Register 1]
 - y = y-coordinate of station in miles [Store in Register 2]
 - L = AB/2 = Half length of current bipole in miles =
 constant [Store in Register 3]
 - I = peak to peak current amplitude (in amperes)
 [Store in Register A]

- ΔV = Average total potential difference obtained
 from Program I (in millivolts) [Store in
 Register B]
- ψ = Average azimuth of total electric field (in degrees) from program I [Store in Register C]
- MN = MN' = length of potential dipoles (in feet)
 [Store in Register D]
- β = angle of declination of bipole axis, measured in degrees clockwise from geographic North to electrode B (see figure 1). [Store in Register E]

To run Program II in mode A, after storing the above eight parameters, PRESS A.

- 2) In mode B (AO and BO coordinates are used), the following nine (9) input parameters are required:
 - AO = distance (in miles) from positive

 current electrode to station.

 [Store in Register 1]
 - BO = distance (in miles) from negative

 current electrode to station.

 [Store in Register 2]

 - Side 1 or 2 = side 1 for positive values

 of y and side 2 for negative values

 of y (see figure 1). [Store 1 or 2

 in Register 4]

I, ΔV , ψ , MN, and β = as defined in mode A above. [Store in Registers A, B, C, D, and E, respectively]

To run Program II in mode B, after storing the above nine parameters, PRESS B.

(E) Output of Program II

Nine output parameters (to either input (A) or (B) are given in the following order:

- x = same as defined in input (A).
- y = same as defined in input (A).
- AO = same as defined in input (B).
- BO = same as defined in input (B).
- $\psi_{o}(N)$ = azimuth (0-360°) of primary electric field vector measured clockwise from geographic North.
- $\psi(N)$ = azimuth (0-360°) of measured electric field vector measured clockwise from geographic North.
- $\bar{\rho}_{|E|}$ = simple total field apparent resistivity.
- $\overline{\rho}_{E_0}$ = primary field apparent resistivity.
- $\bar{\rho}_{\rm E}$ = complete total field apparent resistivity.

(F) Examples for Program II

(1) Example for mode (A):

INPUT	OUTPUT	SAMPLE OUT FROM HP 9	
x = -2.67 miles	x = -2.670 miles		
y = 7.00 miles	y = 7.000 miles	-2.670	基本 基
L = 0.981 miles	AO = 7.201 miles	7.806	***
I = 24 amps	BO = 7.895 miles	7.201 7.895	
$\Delta V = 0.178 \text{ mV}$	$\psi_{0}(N) = 302.634^{\circ}$	702 . 634	
$\psi = -47.8^{\circ}$	$\psi(N) = 312.200^{\circ}$	3:2.200	本本字
MN = 250 ft	$\rho_{ E } = 294.952 \text{ ohm-m}$	294.352 290.851	
$\beta = 0.000^{\circ}$	$\bar{\rho}_{E_0} = 290.851 \text{ ohm-m}$	295.111	**#
·	$\bar{\rho}_{\rm E} = 299.111 \text{ ohm-m}$		

(2) Example for mode (A) with erroneous data (same as example1, but with erroneous algebraic sign for x):

INPUT	OUTPUT	SAMPLE OUT FROM HP 9	
x = 2.67 miles	x = 2.67 miles		
y = 7.00 miles	y = 7.000 miles	2.670	
L = 0.981 miles	AO = 7.895 miles	7.600	東東東
I = 24 amps	BO = 7.201 miles	7.835 7.201	
$\Delta V = 0.178 \text{ mV}$	$\psi_{0}(N) = 57.366^{0}*$	57.386	
$\psi = -47.8^{\circ}$	$\psi(N) = 312.2^{\circ}$	<i>512.200</i>	東京東
		294. 952 ·	
MN = 250 ft	$\overline{\rho}_{ E } = 294.95 \text{ ohm-m*}$	-77.155	
$\beta = 0.00^{\circ}$	ρ _E = -77.165 ohm-m*	-1127.415	***
	$\overline{\rho}_{E} = -1127.415 \text{ ohm-m*}$		

*NOTE: large deviation of $\psi_O(N)$ from $\psi(N)$ (which results in a correspondingly large deviation in the values of $\bar{\rho}_{|E|}$, $\bar{\rho}_{E_O}$, and $\bar{\rho}_E$) is more often caused by errors in inputting or measuring the data than by the effect of lateral heterogeneities in the ground.

(3) Example for mode (B)

INPUT	OUTPUT	SAMPLE OUT	
AO = 6.65 miles*	x = -5.040 miles		
BO = 8 miles*	y = 5.267 miles	-5.040	基系術
L = 0.981 miles	AO = 6.650 miles	5 . 267	非事家
side = 1*	BO = 8.000 miles	6.550 8.990	NAF NAF
I = 24 amps	$\psi_{O}(N) = 255.0^{O}$	255.000	茅水里
$\Delta V = 0.276 \text{ mV}$	$\psi(N) = 284.6^{\circ}$	284.500	条等者
$\psi = -75.4^{\circ}$	$\bar{\rho}_{ E } = 311.172 \text{ ohm-m}$	311.172 273.561	*** ***
MN = 250 feet	$\bar{\rho}_{E_0} = 270.561 \text{ ohm-m}$	357.379	***
$\beta = 0.00$	$\bar{\rho}_{\rm E} = 357.879 \text{ ohm-m}$		

*NOTE: Values of AO, BO, and side must be re-stored in Registers 1, 2, and 4, respectively, for every re-run of a problem.

(V) THEORY

(A) Equations for Program I

(1) Computation of the angle θ_{RL} :

As shown in figure (2), the slope of the line N'N (for MN = MN') is given by:

slope =
$$\frac{\sin\theta_L' - \sin\theta_R'}{\cos\theta_L' - \cos\theta_L'} = \frac{\cos\theta_L - \cos\theta_R}{\sin\theta_R - \sin\theta_L},$$
 (1)

and therefore the angle

$$\theta'_{RL} = \tan^{-1} \left\{ \frac{\sin\theta'_{L} - \sin\theta'_{R}}{\cos\theta'_{R} - \cos\theta'_{L}} \right\} = \tan^{-1} \left\{ \frac{\cos\theta_{L} - \cos\theta_{R}}{\sin\theta_{R} - \sin\theta_{L}} \right\}. \tag{2}$$

The angle, θ_{RL} which the dipole N'N forms with the geographic North (in a clockwise direction) is related to θ by

$$\theta_{RL} = \alpha + \theta'_{RL} \tag{3}$$

where α is a multiple of $\frac{\pi}{2}$ and its value depends on the quadrants in which MN and MN' are located.

(2) Normalization of ΔV_{RL} :

Inasmuch as the potential difference ΔV_{RL} is measured between the ends of the dipole N'N which in general is larger in length than MN, the value of ΔV_{RL} must be normalized to the common dipole length of MN (with MN = MN'). First, we obtain the length of N'N, using the law of cosines with MN = MN', from

$$N'N = MN\sqrt{2(1-\cos(\theta_{\perp}-\theta_{R}))}, \qquad (4)$$

then, the normalized potential difference, $\Delta V_{\rm RLN},$ can be calculated from the equation

$$\Delta V_{RLN} = \Delta V_{RL} \times \frac{MN}{N'N}$$
 (5)

or

$$\Delta V_{RLN} = \Delta V_{RL} / \sqrt{2(1 - \cos(\theta_L - \theta_R))}, \qquad (6)$$

which indicates that the actual length of MN or N'N are not required for the computation of $\Delta V_{\rm RLN}$ (provided that MN = MN').

(3) Determination of ΔV and ψ from two or three components: For a given total field of magnitude ΔV and direction ψ , the left and right components, ΔV_L and ΔV_R , are given by (see figure 3):

$$\Delta V_{I} = \Delta V \cos (\theta_{I} - \psi), \qquad (7)$$

$$\Delta V_{R} = \Delta V \cos(\theta_{R} - \psi). \tag{8}$$

Using the relation

 $\cos(\alpha + \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$,

we can write

$$\Delta V_{L} = \Delta V(\cos \theta_{L} \cos \psi + \sin \theta_{L} \sin \psi), \qquad (10)$$

$$\Delta V_{R} = \Delta V (\cos \theta_{R} \cos \psi + \sin \theta_{R} \sin \psi). \tag{11}$$

Solving equations (10) and (11) simultaneously, for ψ and ΔV_{\bullet} we get

$$\psi = \tan^{-1} \left\{ \frac{\Delta V_L \cos \theta}{\Delta V_R \sin \theta} \frac{R - \Delta V_R \cos \theta}{L - \Delta V_L \sin \theta} \right\}, \quad (12)$$

$$\Delta V = \Delta V_{R}/\cos(\theta_{R} - \psi) \quad . \tag{13}$$

Similarly we can solve for ψ and ΔV from ΔV_L , θ_L and ΔV_{RLN} , θ_{RL} , or from ΔV_R , θ_R and ΔV_{RLN} , θ_{RL} . Such solutions result in values of ψ_1 , ψ_2 , ψ_3 , and ΔV_1 , ΔV_2 , ΔV_3 , which then can be averaged to obtain ψ_{AV} and ΔV_{AV} .

(B) Equations for Program II

(1) Equations relating AO, BO, x, y, and L: It can be shown (see figure 1) that:

A0 =
$$\sqrt{(x + L)^2 + y^2}$$
, (14)

$$BO = \sqrt{(x - L)^2 + y^2}, \qquad (15)$$

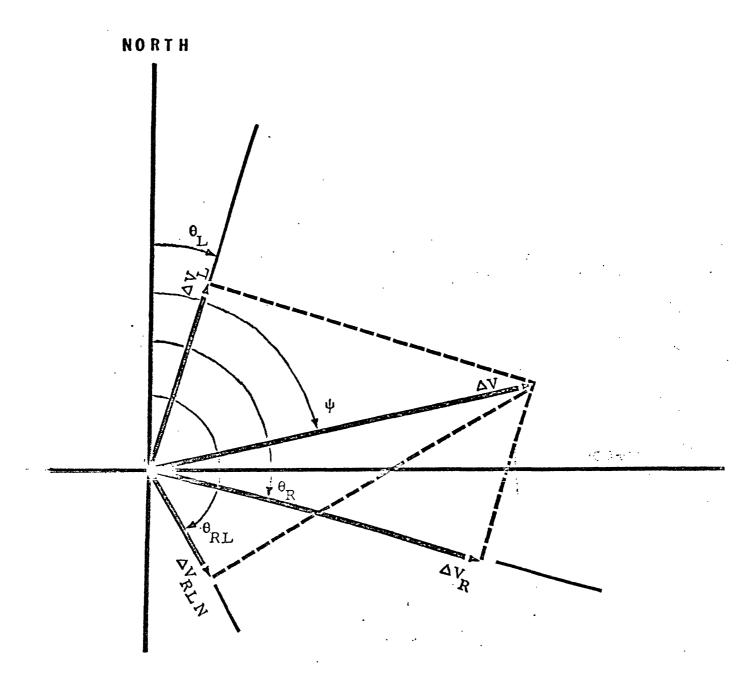


Figure 3.--Diagram showing relation between total field vector and its components.

$$x = \frac{A0^2 - B0^2}{4L}, \qquad (16)$$

$$y = \pm \sqrt{A0^2 - (\frac{A0^2 - B0^2}{4L} + L)^2} . \tag{17}$$

Thus, if x and y are given, then we compute AO and BO from (14) and (15), whereas if AO and BO are given then we compute x and y from (16) and (17).

(2) Computation of $\Psi_{0}(N)$

The angle, ψ_{o} , of the bipole primary electric field is computed from (Zohdy, 1973; Zohdy and Stanley, 1974)

$$\psi_{0} = \tan^{-1} \left[\frac{\frac{y}{A0^{3}} - \frac{y}{B0^{3}}}{\frac{x + L}{A0^{3}} - \frac{x - L}{B0^{3}}} \right]$$
 (18)

This angle is measured positive in the <u>counterclockwise</u> direction. The angle $\psi_{0}(N)$ (which is the azimuthal value of ψ_{0} measured positive, from 0^{0} to 360^{0} , in a <u>clockwise</u> direction with respect to geographic North) is calculated from a knowledge of the quadrant in which the measuring station is located and from the angle of declination, β , of the bipole axis with respect to north. The proper manipulations for evaluating $\psi_{0}(N)$ will not be discussed here. The reason for evaluating $\psi_{0}(N)$ is to compare it directly with $\psi(N)$ which is also referred to the geographic North.

(3) Computation of $\psi(N)$

The algebraic signs of ψ and ΔV which are obtained from program I are used to evaluate $\psi(N)$, which expresses the value of ψ from 0° to 360° in the clockwise direction from geographic North. Thus for

$$+\psi, + \Delta V; \qquad \psi(N) = \psi$$

$$+\psi, - \Delta V; \qquad \psi(N) = \psi + 180^{\circ}$$

$$-\psi, + \Delta V; \qquad \psi(N) = 360 + (-\psi)$$

$$-\psi, - \Delta V; \qquad \psi(N) = 180 + (-\psi)$$

(4) Computation of apparent resistivities:

The simple total field, $\bar{\rho}_{|E|}$, the primary field, $\bar{\rho}_{E_0}$, and the complete total field, $\bar{\rho}_{E}$, apparent resistivities are calculated from the following equations (Zohdy, 1973; Zohdy and Stanley, 1974; Zohdy, 1978):

$$\overline{\rho}_{|E|} = \frac{2\pi}{MN \left\{ \left\{ \frac{x + L}{AO^3} - \frac{x - L}{BO^3} \right\}^2 + \left\{ \frac{y}{AO^3} - \frac{y}{BO^3} \right\}^2 \right\}^{1/2}} \cdot \frac{\Delta V}{I} \quad (20)$$

$$\overline{\rho}_{E_0} = \overline{\rho}_{|E|} \cdot \cos \delta \quad , \quad (21)$$

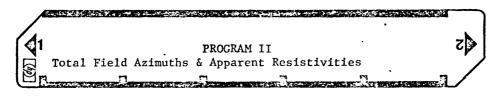
$$\overline{\rho}_{E_1} = \overline{\rho}_{|E|}/\cos \delta \quad , \quad (22)$$
where $\delta = \psi(N) - \psi_0(N) = \text{angle of rotation.}$

VI. APPENDIX

A summary of user instructions and program listings for Programs I and II are given on the following pages. Note that the given key codes are for the HP 97. The key entries of SPC (space) may either be deleted or replaced by PAUSE for HP 67 users.

User Enstructions

PROGRAM I Azimuth (ψ) and Magnitude (ΔV) of Total Field


STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
0	Load sides 1 and 2		.[]	·
	INPUT			
1	Store $\theta_{_{ m I}}$ in Register 1	degrees	STO 1	
2	Store $\theta_{\rm p}$ in Register 2	degrees	STO 2	
3	Store ΔV in Register 3	mv	STO 3	
4	Store ΔV_p in Register 4	mv	STO 4	
5	Store $\Delta V_R^{}$ in Register 4 Store $\Delta V_{RL}^{}$ in Register 5	mv	STO 5	
6	Press A			
	Repeat steps 1 through 6 for each station			
	NOTE: (1) Store observed (unnormalized) value of ΔV_{RL} in Register 5	•		
 	(2) If ΔV_L , ΔV_R or $\Delta V_{RL} \approx 0$; or if any	,		
	one of these values was not measured			
	press (CLx) to obtain zero and store			
	in corresponding register.			
	OUTPUT			
	ψ_1 = azimuth from left and right dipoles			degrees
	ψ_2 = azimuth from left and right left dipoles			degrees
	ψ_{2} = azimuth from right and right left dipoles			degrees
	ψ_{AV} = average azimuth			degrees
	ΔV_1 = magnitude from left and right dipoles			mv
	ΔV_2 = magnitude from left and right left dipole	es		my
	ΔV_3 = magnitude from right and right left dipo	es		mv
	ΔV_{AV} = average magnitude			mv
	AV			
	NOTE: No average is given if only two component	S		
	are used. Printed zeros designate "no			
	data" not zero values.			
	·			

STE	P KI	EY ENTRY	KEY CODE	COMMENTS	STEP KEY	ENTRY	KEY CODE	COMMENTS
1	001 002	*LōLA 1	21 11 01	Store 180° in Rel	657	RCL1	36 Bi	compute 4 from
!	002	. 8	0 8	and add 0.01 to	65 <i>8</i> 85 <i>8</i>	COS . RCL4	42 36 84	compute 4 from equation (12) using
í	004 005	9	00 == 15	Pi to avoid division	660	X=0?	16-43	DV and DVR.
<u>;</u>	005 006	STUE RCL1	35 15 36 01	θ_L to avoid division by zero in equation (2) in case $\theta_L = 45^{\circ}$ and $\theta_R = 135^{\circ}$ or	661	6705	22 85	
} :-	007	,	62	(2) in case 0 = 45°	962 963	X CHS	-35 -22	Otherwise store
	868 666	0 1	. 88	and 0 = 1350 or	864	t	-55	zero in Rg.
	<i>003</i> 010	+	01 -55	Q = 225° and 9 = 315°.	965 966	RCL1 SIN	36 61 - 41	
:	811	ST01	35 Ø1		067 _.	RCL4	36 B4	
•	012 013	COS RCL2	42 36 02 .		668	X	-35	
<u>;</u> .	014	COS	42		669 676	RCL2 SIN	36 02 41	
:	615	- pel 3	-45	Compute θ_{RL} from equation (2)	071	RCL3	36 83	
	016 217	RCL2 S]N	36 02 41	- 22	972 973	CHS '	35 -22	
•	618	RCL1	36 01	equation (2)	874	+	-5 <i>5</i>	• .
) 	619 826	SIN -	41 -45		875	÷	-24	•
	621	- ÷	-24		976 977 *	Tan-i ILBL5	16 43 21 85	,
	- 822	TAN-I	16 43		0 78	5708	35 08	
	823 834	2 7	82 07			PRTX	-14 76.65	
	825	Ö	56		080 681	RCL6 . COS	36 66 42	Check if BV or BV = 0, if not compute Ye from equation (12 using BV and BV . Okerwise RLW
	026 0 27	RCL2	55 - 36-82		682	RCL3	36 93	= 0 , if not compute
	028	RCLE	36 15	Compute On from	8 8₹ 8 94	X=9? \$T05	16-43 22 06	4 from equation (12
	6 29	1	-55	compare RL 0	0 85	x -	-35	seeing av and
	030 631	X>Y? XIY	-41 16-34	Compute Ope from		RCL1	36 01	DV . OKerwise
	832	6703	22 83	,		COS 1	42 36 87	RLN . D
1	833	ROLE	36 15 -45		- 089	X=0? `	16-43	store zero in Rq
	034 035	*LBL3	21 83		090 091	€T05 ×	22 96 -35	,
	035	STC6	35 <i>06</i>		892	∂ĤS	-22	
	837 838	ROL1 ROL2	36 01 36 02		693	+	-55	
1	e39	RULE -	-45		094 095	ROL1 SIN	36 01 41	
	348	COS	42			ROL7	36 07	
	041 042	CHS 1	-22 61	Compute DV RLN		X=0?	16-43	
	643	+	55		098 695	6706 X	22 86 -35	
	044 845	2 *	02 35	from equation (6)	188	RCL6	36 65	,
	045 045	îx.	54		. 101 102	SIN RCL3	41 36 83	
	647	1/X	·~· 5ž		103	X	-35	
	048 049	ROL5 .	36 05 -33		184	сня	22	
	050	STOT	35 67		105 106	† ÷	-55 -24	
1	051	RCL2	36 62		167	TAN-	16 43	
	652 653	COS RCL3	42 36 03	Chack if AV or		LBL6 ST0 9	21 06 35 05	•
	854	X=3 ?	16-43	Check if ΔV_L or $\Delta V_R = 0$, if not		PRTX	-14	
	0 55 056	6105 ×	22 05 35	DVR = 0, 17 not	111	RCL6	- 36 66 . j	
			<u> </u>		112 TERS	COS	42	
0		1 θ_{L}	² Θ _R	$ ^3 \Delta V_L ^4 \Delta V_R ^5$		θ_{RL}	7 DVRLN	8 9
S0		S1	S2		55 S6		S7 S7	S8 S9
A		l	<u> </u>			E	J	Ţ.
L		l			*			

Program Listing

	STEP	KE	Y ENTRY	KEY CODE	COMMENTS	STEP	KE	YENTRY	KEY CODE	COMMENTS
	:	113	RCL4	36 64	check if DV or		:63	RCL1	36 61	check if Rg = 0,
,		114 115	X=0 ? 6707	16-43 22			176 171	RCL9 X=8?	36 05 . 16-43	if not compute DV2
		116	X	-35 36,60	DVRLN = 0, if not		172	GTOD .	22 14	from equation (13).
		117 118	RCL2 COS	36 02 42	compute of from.		173 174	¢os	45 42	from equation (13). Otherwise, store
		119	RCL7	36 07	compute of from. equation (12) using		175	1/X	52	zero in Ra .
l		128 121	X=89 6707	16-43 22-87			176 177	RCL3 X	36 03 -35	
		122	x	-35	BY and DVELN.	ļ .	179	#LSLD	21 14	
		123 124	CHS +	-22 -55	Otherwise store zero		179 180	PRTN STOB	-14 35 12	
`		125	ROLE	36 a2	in Ro.		181	RCL2	36 J2	11112
ŀ		126 127	SIN RCL7	41 36 87	100		182	RCL0	36 00	Check if Ro = 0,
ı		128	×	-35	·		163 184	. X ∓6 ? GTO E	16-43 22-15	if not compute Diz
ŀ		129 130	F.CL6 Sin	36 05. 41			185	- Shop	-45	from equation (13). Otherwise, print zero
1		131	RCL4	36 84	,		186 187	~009 1/X	42 52	Otherarie, printzero
		132 133	X CHS	-35 -22			188	RCL4	36 84	
ŀ		134	tne +	-55		1	189 190	× *LBLE	-35 21 15	•
		135 136	÷ TAN-1 =	-24			191	PRIX	-14	
			*LBL7				192 193	H=0? GTO9	16-43 22 09	check if DV3, RA,
		138	570 0	35 9 <i>0</i>		1	194	ROLA	35 11	or RB = 0 sifnot
1		139. 148 '	PRTX RCL8	-14 . - 36 38	,		195 196	X=0? G TO9	16-43 ; 22 69 ;	compute BV.
ı		141	X=0?	16-43	check if Rg, Rg,	1	97	+	-55 🚶	
		142 143	sto8 RCL 9	. 22 38 3€ 85	or Ro = Osif		198 199	ROLB X=6?	36 12 1 16-43	Otherwise restore
İ		144	X=0?	16-43	f note 11	2	200	·6763	22 09	Of to original value
1		145 146	€7 08 ÷	22 88 -55	not compute 4.		01 02	+ 3	-55 83	and return.
ł		147	ROLO	<i>36 00</i>	•	2	283	÷	-24	
-		148 149	X=0? 0708	16-43 22 08		ž.	204 205	SPC PKTX	16-11 -14	
ł		150	+	-55		2	206	*LBLF	21 69	
ŀ		151 152	3 . ÷				207 288	RGL1	36 81 -62	•
1		153	SFC	16-11		2	99	ė	6 8	
		154 155	. FRTX SP C	-14 16-11			210 211	<u>.</u>	01 -45	
-		156	*LBL8	21 20	4 24 4		12	STG1	35 01	
		157 158	ROLI RO L8	36 01 36 08	check if Rg = 0, if not	2	213 214	CLX RTN	-51 24	
ł		159	8=69	16-43	compute DV, from	2	15	R/S	51 -	
·		160 161	STCa.	22 1€ 11 45	ageration (13) . Otherwise					
ŀ		162	cos	42	check if $R_8 = 0$, if not compute ΔV_1 from equation (13) . Otherwise store zero in R_A		 			
		163 164	17X RCL3	52 36 <i>8</i> 3						•
		165	X	-35		220				
1		166 167	PRIX	21 16 11 -14	·					
1		168	STOA	35 11					·	•
Ţ			В	(C	LABELS ID IE		0	FLAGS		SET STATUS
							- -		FLAGS ON OFF	TRIG DISP
L	3		b	c	d e		1	•		DEG . [] FIX []
10	, 		6	7	8 9		3		1 0 0	GRAD [] SCI [] RAD [] ENG []
Ţ	,		<u> </u>	<u>l′</u>	0 3		<u></u>		3 [] []	n

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	USE EITHER INPUT (A)			
1	Store x in Register 1	miles	STO 1	
2	Store y in Register ?	miles	STO 2	
_3	Store L in Register 3	miles	STO 3	
4	Store I in Register A	Amps	STO A	
5	Store AV in Register B	mvolts	STO R	
6	Store ψ in Register C	degrees	STO C	
7	Store MN in Register D	feet	STO D	
8	Store B in Register E	degrees	STO E	
	PRESS A			
	OR USE INPUT (B)			
1	Store AO in Register 1	miles	STO 1	
2	Store BO in Register 2	miles	STO 2	
3	Store L in Register 3	miles	STO 3	
4	Store 1 or 2 in Register 4*		STO 4	
5	Store I in Register A	amps	STO A	
6	Store AV in Register B	mvolts	STO B	
7	Store ψ in Register C	degrees	STO C	
8	Store MN in Register D	feet	STO D	
9	Store β in Register E	degrees	STO E	
	PRESS B		В	
	*Note: side "l" is for y +			
	side "2" is for y -			
	OUTPUT FOR INPUT (A) OR (B)			
				•
	x	;		miles
	У			miles .
	AO ·			miles
	во			miles
	$\Psi_{\mathbf{O}}(\mathbf{N})$ (0-360° CLOCKWISE from North)			degrees
	ψ(N) (0-360° CLOCKWISE from North)			degrees
	- ρ E			ohm-m
	ρ _E			ohm-m
	U			
	P _E			ohm-m

·STEP	, KI	EY ENTRY	KEY CODE	COMM	IENTS	STEP	KE	Y ENTRY	KEY CO	DE	CON	MENTS
	631	+LBLA	I. 11			1	e57	Pi	16-24			
	8öZ	RCL1	36 31	×		1	058	×	-35			
l	865 624	PRIX	-14 70 07	Print x	<u> </u>	l	<i>059</i>	8	6 8			
	004 005	FCL3 +	36 63 -35	L	δ.		060 061	· 4	84 89			
	805	ST04	35 04	x+L	V.	1	062	7	0 <i>3</i>			
	607	χż	53	(X+L)2	Å	ł	063	•	-62			
	988	P.CL2	36 88	- W	g		654	3	93	- }		
	6 09	PRTX	-14	Prin'y	G E		865	3	03			
1	010 011	3PC \ X2	16-11 55	بالاین	•		866	6	86	1		
1	813	. +	-55	Ast(x+r),	\$.		067 068	X RGLD	35 36 14	MIN	/	
	013	√X	54	AO	ž .		65.	÷	-24	1		
	e 14	PRTY	-14	Print AD	2 m		878	ROLA	35 11	I		
	615	3	8 3		9 8	1	071	÷	-24			
	016 017	yx \$105	31 35 35	A03	7	1	072 073	ROLB	36 12 16 71	67		
	018	RCL2	36 82	ů	of g	1	674 674	ABS X	16 31 -35	1		
	815	χ²	53	y y y			0 75	₽≢S	16-51	1_		
1	020	RCL1	3 <i>6 01</i>	X L	0 m c		876	\$702	35 02	1 P	Εl	•
	821	RCL3	36 93 	L	A A	l	077	P#8	15-51			
-	922	CTAC	-45 75 60	x-L	\$		0 78	ROLE	36 00	100	mpute 4	from
.	023 024	\$1 06	35 <i>6</i> 6 53	^	2 4		0 79 080	RCL9 ÷	36 09 -24	c	quation	(18)
·	025	+	-55				0 81	THN-	16 43	17		· •
	€26	1X	54		Compute Als com		882	CHS	-22			
	027	PRIX	-14	Print BO	Ď.		$\theta \bar{\epsilon} \bar{s}$.8701	35 46	1-4	, •	
l	6 28	SPC	16-11		Com		064	1				*
	0 29 0 39	3 үк	03 31		0 8		825 002	8	86	ļ		Ų.
	035	STO7	35 <i>87</i>	803			086 087	0 5709	66 35 J <i>ð</i>	180		\$
	932	1/X	52				088 088	2	00 00	1′′′		with respect
	833	CHS	-22				689	X	-35	1		ž
	834	RCL5	35 <i>0</i> 5				0 98	ST05	35 69	360		
	035	1/X	52				091 000	RCL1	36 01	×		3.0
	036 637	+ RCL2	-55 36 02		~		09 2 0 93	RCL2 X	36 92. -35	16		×.
	639	X	-35		Lin (20)		694	Ê	00	×y		•
	035	STO@	35 8 8	4 (1 - 1 BO3	\ \&		095	X ∠Y ?	16-35	1		~ pr
	848	Χ²	53	A03 B03	2		<i>096</i>	8701	22 01	1		of soft
	841	3708	3 5 88		13		0 97	£	88]		, ź.
·	042 043	ROL4 ROL 5	36 04 35 85		8		098 0 99	ROL 1 X 4 Y9	36 46 16-35	4		G (N) & who will
	844	**	-24	x+L	å-		033 108	GTO3	22 03	- {		\$
	045	RCL6	35 06	A02	om epa		101	#LEL4	21 94	1		\$ \$
	045	RCL7	36 07	x-L			162	RCLB	3€ 08	1		1 5
	847 848	÷ -	-24 -45	B03	70		183	+ 0700	-55]		\$. *
	048 045	STOS	-45 35 09	X+L X-L	10. 1E1		104 105	6702 ≉LBL3	22 02 21 03	1	٠.	d b
	05 9	%2	53	X+L - X-L	10.74		186	P.CL9	36 <i>89</i>	4		`
	851	RCLS	36 86	•	Į v		107	+	-55	1		
	052	+	-55		Gapute			*LEL2	21 62	1		
	8 53	√X 1.4¥	54 50		Q		189	ROLE	36 15] ß		
	054 055	1/X 2	52 . 62		· 0		116 111	RCL9	-55 36 03	4		
	65E	x	- 35		į		112 112	XZY	30 03 -41	1		
					REGIS				•			
0 _	,	1 x or A	O gor BO	3 L.		5 Ao3	3	Û X-L	1 BC	3 8 3	(1 - 1/2 1)	9
S0		S1	S2	S3		95		S6	S7	S8	· (E).)	S 9
~~~~~												
Α	I		B ΔV	С	Ψ	D	MN		E /3		I	
	<u></u>	l			<u> </u>		1/0		/~			

Program Listing

	STEP	KE	Y ENTRY	KEY CODE	COMMENTS	STEP	KE	Y ENTRY	KEY CODE	COMM	ENTS
1		113	X£Y?	.6-J5			165	P\$S	16-51		
1		114	6705	22 05			170	5701	35 Bi	L	
J		115	X≇Y	-41			171	RCLS	35 BZ	PIEI 104	
		116	ar no E	-45			172	FRTX	-14 -75	TE TOWN	امين
		117 118	xLBL5 STGI	21 05 35 46		-	173 174	<b>X</b> PETW	-35 -14	F &	
.		119	PRTX	-14	_		175	RCL2	36 02	Fo low	and
- 1		128	etch.	22 16 12			176	RCL1	36 81	1	T-3
		121	*LBL!	21 0:			177	ŧ	-24	add Comparte	and prin.
		122	ROL1	36 01			178	PRTX	-14	PE &	2 °
		123	X=0?	16-43	4.644		179	₽∓S	16-51	ं ं	الله الله
<b>、</b>		124	6792	22 02	station an equatorial axis		188	RTN	24		
.		125	RCL2	36 E2			181 192	*LBLB RCL1	21 12 36 01		
		126 127	x=0? 6707	16-43 22 07	Station on poloraxis		192 183	X2.	55 51 53	1	·
		128	RCLI	36 46	3,2,,,,		184	RCL2	36 82	/amput	e x and
ł		129	XXC?	15-44			185	χ²	53		ہیں۔
		130	6702	22 82			186	-	-45	I from	· equations
		131	6734	22 64			187	ROLE	36 03	(() 4	(17)
		132	#LBL7	21 67			188	÷	-24	] 1/67 55.55	
J		133	ROL3	36 83 36 6:			189	<u>.</u> 4	. 04	using	AO, BO,
1		134 135	RCL1 ABS	36 01 16 31		•	196 191	÷ \$705	1 −24 35 85	1 20	e x and copartiess of (17) A0,80,
		136 136	8219	16-31 16-34			151 152	RC11	35 61	anal	•
		137	STUC	22 16 13			153	χ2	53	1	
-		138	RCLI	36 46			134	RCL5	36 <b>0</b> 5 1	1	
		139	<b>ET02</b>	22 02			195	ROL3	36 23	1	
.		148	*LELC	21 16 13			15€	+	-55	1	
		141	ROLI	36 46			197 198	ye -	53 -45	Į	
- 1		142 143	∂TO4 ¥LBLb	22 84 21 16 12			199 199	1X	-43 54	ł	
ı		144	RCLE	36 12			280	ST9 <b>6</b>	35 86 ·	ļ	
- 1		145	X>89	16-44	\S_2 .		201	ROL4	36 84	1	
- 1		146	8073	22 68	ise. 4 with		202	1	0i -		
- [		147	RCLC	36 13	4 wil		283	Y= V ?	16-33		
- 1		146	ROL <b>0</b>	36 88 55	3-2		284	6706 8016	22 06 · ·	]	•
- [		149	+ PRTX	-55 -14	y(N) sie, geographie		265 266	RCL6 CHS	36 66		1
- 1		150 151	SPC	- 16-11	1874		207 207	310 <b>6</b>	35 Ø6 ·	ł	
		152	<b>6</b> 709	22 89	~ &		288	#LEL6	21 06 -		
1		153	*LEL8	21 88	5 %		209	RCL5	36 85	1	
		154	RCLC	36 13			210	ST0 <b>1</b>	`35 <i>01</i>	1	-
.		155	X<0?	16-45	9 6		211	RCL6	36 06   -		
		156		22 16 11	to		212 213	S70 <b>2</b>	35 62 - 22 11 -	j	
1	•	157 158	FRTX SPC	-14 1€-11	1 - 1		213 214	GTOA E25	51 -		1
		155 155	etos	22 09	compute		~ · · ·	1000	¥ -		
.		160	*LE_a	21 16 11	3,00		+				
- 1		161	RCL9	36 B9			+-			·	
		162	+	-55	1 99		1			1	
		163 164	PRTX SPC	-14 16-11							
-		165 165	*LBLS	21 89		220					
		166	ROLI	36 45	1 mite con 5		╂				
J		1 <i>67</i>	-	-45	Company of the		+				
		168	COS	43	Compute cos δ 5 = ψ(N) - ψ(N)						
Į	A		10	E.	LAGELS		1	FLAGS		SET STATUS	
L	A	<u>.                                    </u>		in c	D E		0.		FLAGS	TRIG	DISP
1	a		b	c	d e		1		ON OFF	DEG 🗆	FIX 🗆
1	0		1	2	3 4	······	2			GR∧D □	SCI 🗆
	5		6	7	8 9.		3		-  2 🗆 🗆	RAD 🗆	ENG 🗆
1			т	l					3 [] []		

#### References

- Zohdy, A. A. R., 1973, Total field resistivity mapping [abstract]: Geophysics, v. 36, p. 1231.
- Zohdy, A. A. R. and W. D. Stanley, 1974, A computer program for the calculation of bipole-dipole apparent resistivity maps over horizontally stratified media: NTIS (Natl. Tech. Inform. Serv., PB-232 727, Springfield, Va. 22151.
- Zohdy, A. A. R., 1978, (in press), Total field resistivity mapping and sounding over horizontally layered media: Geophysics, v. 43, p. (?).