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SOUTH TEXAS CONTINENTAL SHELF AND CONTINENTAL SLOPE: LATE PLEISTOCENE/
HOLOCENE EVOLUTION AND SEA-FLOOR STABILITY

(An outline and notes relative to
geologic hazards on the sea floor)

Introduction

In an engineering sense, the geologic aspects of the sea floor are
hazardous to man's activities when and where structures cannot be designed
to withstand the combined stresses of the marine environment. In the most
basic sense, geologic "hazards" relate directly to sea-floor stability,
or the potential of the sea floor for significant movement that would be
damaging to man-made structures placed on the sea floor. Judging the
potential for movement requires descriptive details about the geologic
conditions plus a quantitative understanding of the geologic and related
oceanographic processes that are operative in the region on both short-term
and long-term bases. Recognition and quantification of the geologic processes
and their implications regarding potential hazards must stem from an under-
standing of the geologic history of the area in the recent past, which
requires determining the relative rates and interactions of the two basic pro-

cesses, sedimentation and tectonism, through time.

In an empirical sense certain features on the surface of the sea floor
suggest unstable conditions: irregular or hummocky topography caused by the
sliding or slumping of surficial sediments or diapiric movement, and off-
sets of the sea-floor surface caused by vertical slippage or faulting.

The movements that created such features were a response or readjustment
to some type of instability; the factors that caused the instability may

have been localized or they may have been regional in scope. Furthermore,



the moveuents indicated by the observed features may have been a one-time
event that reestablished equilibrium for a long time to come, or they may
have provided only temporary release of reoccurring stresses that
eventually will cause movement again.

Studies at two levels of detail are needed for the identification and
assessment of geologic conditions of a potentially hazardous nature in
areas where resource production is anticipated: a systematic study of
regional scope and in sufficient detail to describe properly the principal
geologic and envirommental characteristics of the region and to indicate
the scope of their interactions; and follow-up studies as needed for those
specific sites that are in areas where the regional study indicates geologic
conditions are potentially hazardous. Topics of investigation covered by
the systematic regional studies should include: 1) the structural or
tectonic framework, with emphasis on the'pattern and chronology of fault
movements since the late Pleistocene, and the identification of tectonically
active and structurally complex areas; and 2) aspects of sedimentation such
as surficial grain size relations, textural stratigraphy of shallow sub-
surface sediments, extent, thickness and facies of the late Pleistocene and
the Holocene interglacial deposits, rates of sediment deposition during the
Holocene, surface expression of depositional features, and delineation of
areas where the sediments have moved by sliding and slumping and where
significant amounts of gas are indicated at shallow depth beneath the sea-
floor surface.

The outline and notes that follow describe the geologic aspects of a multi-
disciplinary systematic regional environmental survey made of thg Outer Continental
Shelf off South Texas for the Bureau of Land Management that included biology,

geochemistry, and physical oceanography. The outline proceeds from a short



stability and potential hazards. Emphasis has been placed on illustrations
which have been used liberally to document the geologic features discussed.
Investigators interested in a summary of the nature and results of the complete
environmental study are referred to Berryhill (1977) and Berryhill and
others (1977).

Brand names of equipment used are capitalized throughout the text. The

use of a brand name does not imply endorsement of the product.

The Study Plan

I. The systematic and integrated approach
A. Rationale
To investigate all components of the geological environment
in a unified rather than piecemeal manner so that the geologic
features and the processes responsible for them can be better under-
stood and the interactions of the processes quantified to the extent
possible in time and space. The planned and integrated study approach
is based on the premise that the problem of analyzing and understanding
sea~-floor stability is best handled by looking at all related components
of sea-floor geology simultaneously rather than topically and out of
context. Furthermore, in analyzing sea-floor stability in a predictive
sense, the past is the best key to the future.
B. Geologic components studied
1. Geologic framework (tectonic history):
a. Identify the internal structures shaped by crustal movements
within the continental terrace and determine their relations:

folds; faults.



b‘

Determine the chronology of post middle Pleistour:ene
folding and faulting relative to the depositional

sequences identified.

Sedimentation

a.

Determine the distribution of surficial sediments based on

‘grain size.

Determine the distribution of the sand-sized and coarser

fractions of the sediments.

Determine the stratigraphy of shallow subsurface sediments
to a depth of 2-3 m, with emphasis on the distribution of
discrete sand layers and the mechanisms of sand dispersal

over the shelf.

Determine the geochemistry of surficial sediments with
emphasis on key trace metals that indicate patterns of

sediment transport and the organic carbon content.

Relate the types of sediments to the physicgraphic sub-

provinces of the OCS and to 1localized topographic features.

Determine the rates of Holocene sediment deposition and

the thickness of Holocene sediments.



g. Delineate to the extent possible areas of natural gas

seepage and areas where gas is suggested at shallow depths.

h. Document the post middle Pleistocene depositional history of the

region relative to sea level fluctuations caused by glaciation.

II. Methods of study

A.

Geologic framework

High resolution acoustical profiling of two types in traverses
spaced to cover uniformly all physiographic subprovinces of the South
Texas 0CS:
1. 3.5 kHz
2. 900 joule sparker
(See figure 1 for the physiographic nature of the region as revealed by
the bathymetry of the area and figures 2, 2A, and 2B for the spacing of
geophysical track lines used to provide data sufficient to describe the
geologic framework.)
Sedimentation

Sampling methods and acquisition of data:

1. High resolution acoustic reflection profiles: thickness of late
Pleistocene/Holocene sedimentary sequences; and history of sea
level fluctuations.

2. Coring: pipe and box coring for determining textural stratigraphy
and for identifying discrete sands in the cored sediments.

3. Bottom grab samples: grain size analysis; geochemical analysis.

(See figures 3 and 4 for location of bottom sample stations.)

‘Analytical techniques:

1. ZX-radiography—an aid in core logging for identification of
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depositional microstructures in cores and for precise definition of
tops and bottoms of discrete sand layers.

COULTER COUNTER--for textural analysis of the less than 63 jm grain
size component of the sample.

Rapid sediment analyzer--for textural analysis of the greater than
63 ym grain size component of the sample.

Atomic absorption photospectrometer—for analyzing the trace

metals content of the sediments.

LECO carbon analyzer——for analyzing the organic carbon content of

the sediments.

C. Synthesis of data and reporting

All types of data compiled in map form to indicate spatial relation-

ships; initially prepared on transparent base material so that all types

of topical data could be compared in overlay fashion to determine rela-

tionships.

ITI. Geologic characteristics of the region based on synthesis of the analytical

and interpretative data

A. Structural framework of the continental terrace

1.

Folds--series of northeastward-trending folds identified as primary
structures within 'the continental terrace (see figure 5 for loca-

tion and trend of folds).

Faults-—-five types recognized:

a. Tensional breaks formed in the strata above the crests of

anticlines (elongate structures) (fig. 6).
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b. Tensional breaks above diapirs (domal structures) (fig. 7).

c. Deep seated rotational gravity faults in the outer part
of the continental terrace where sediment loading has
caused the rim of the continental terrace to sag- and slide

basinward (fig. 8).

d. Composite tensional and gravity faults, edge of continental

terrace and upper slope (fig. 9).

e. Shallow rotational faults associated with sliding and slumping

of surficial sediments, continental slope (figs. 9 and 10).

B. Evolution of the continental terrace since middle Pleistocene

General depositional history:

1. Three general environments of deposition are recognized: open
shelf, deltaic, and continental slope (fig. 11). Each has

distinctly different sedimentary characteristics.

2. 1In general perspective, the outer edge of the contimnental
terrace has grown progressively seaward as a result of the

large influx of clastic sediments. The principal factor that

15
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has shaped the geomorphic profile of the terrace has been the
climatically controlled fluctuations of sea level. Sea level

has risen and fallen cyclically over a range of some 100 to

150 m during Pleistocene time. The nature of the general
depositional process is shown by figures 12 and 13, which are
adjoining sections from an acoustical profile. The development
of the continental terrace in the western Gulf has been discussed
previously by Lehner (1969), Curray (1960), Moore and Curray
(1963), Sidner (1977), Sangree and others (1976), Tatum (1977),

and Pyle and Berryhill (1977).

The geomorphic extent of open shelf versus deltaic deposition
has varied widely because of the changes in sea level: sedi-
mentation has been principally deltaic during the glacial epochs
when the shelf was exposed as land surface and open shelf during
the interglacial epochs when the sea rose and spread landward
across the shelf. Deposition has been continuous over the slope,
but the amount and type of sediment deposited there has varied

considerably as the result of the migrations of the shoreline.

Previous low stands of sea level are represented on the
acoustical analog records as strong reflecting surfaces that
are irregular and nonconformable to the sediments above and
below. Figures 14 and 15 are sections of acoustical profiles

from different parts of the shelf showing the nature and

21
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Section of an acoustical profile, southern part of the south

Texas continental shelf, showing the nature and subsurface positions of
two paleo surfaces that represent previous low stands of sea level.
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subsurface position of several post middle Pleistocene surfaces

that represent low stands of sea level.

5. The unconformities represented by the strong sound reflecting
surfaces define 4 late Pleistocene/Holocene depositional units
on fhe shelf. The stratigraphic relations of the depositional
units and the unconformities separating them, as constructed
from acoustical profiles, are shown by figures 16, 17, and 18;
figure 16 is the .index map showing the locations of the profiles
shown on figures 17 aﬁd 18. The distribution and thickness of
the units, in essence the depositional history of the shelf for
the time period specified, are shown by the series of isopach
and structure contour maps, figures 19 through 25>taken from
Pyle and Berryhill (1977). The isopach maps show the thickness
of the units; the structure contour maps show the configuration
and depth below sea level of each of the unconformities that

define the depositional units.

Holocene deposition:

1. The Holocene deposits record the transgression of the rising
sea across the shelf from the last low stand. The older
Holocene deposits making up the basal part of the unit
probably represent different enviromments frgm the more

recent open shelf deposits. An interpretation of the types

26 -
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Figure 17. Stratigraphic relations of post middle Pleistocene
depositional units, profiles A, B and C. (From Pyle and

Berryhill, 1977.)

28



PROFILE D

100 H

200

PROFILE E

100

200

TWO-WAY TRAVEL TIME (msec)

PROFILE F

1001

200 A

Figure 18. Stratigraphic relations of post middle Pleistocene
depositional units, profiles D, E and F. (From Pyle and
Berryhill, 1977.) See figure 17 for legend.
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of sediments represented in the basal Holocene deposits is

shown by figure 26.

The overall thickness of the Holocene sediments is related to
the structural fabric of the continental terrace; the structural
grain influences both the directions of sediment transport and
the sites of deposition (see thickness map for unit 1, figure

25).

The nature (composition and grain size) of most of the Holocene
sediments is not known from actual observation, but the seismic
records suggest that, except for the basal deposits that seem

to vary, the makeup probably is similar to that of the shallow
subsurface Holocene deposits penetrated by’gravity cores. The
textural stratigraphy typical of the shallow subsurface sediments
is shown by selected cores (figs. 27 through 30). The several
depositional environments of the shelf are represented by the
cores: inner shelf, mid shelf, outer shelf, and relict deltaic.

(For locations, see figure 4.)

Thin discrete layers of sand are typical of the shallow sub-
surface deposits over the inner half of the shelf. The

stratigraphic recurrence and wide geographic distribution
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EXPLANATION

Deltaic

Principally prograded sediments; shelly sand predominates to the
depth cored. Ruled pattern indicates area where youngest deltaic
sediments are prograded over underlying slumped and contorted
sediments.

Fluvial

Lobate sheet of coalesced fluvial deposits containing numerous
buried stream channels.

Localized fluvial deposits resting on older open shelf deposits.
Area east of dashed line probably contains lagoonal deposits.

Lacustrine?

Area outlinéd on the basis of the acoustical properties of the
sediments. Almost complete attenuation of sound suggests either
a large amount of shallow gas or high organic content.

Carbonates

Isolated reefs surrounded by irregular thin sheet-like deposits that
are believed to be reef debris and small carbonate mounds on the

basis of high acoustical reflectivity. Black dot indicates reef
exposed on sea floor; irregular shaped circle around the dot repre-
sents general extent of the reef platform buried by Holocene sediments.
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Figure 27. Selected cores, northern part of shelf, showing vertical variations
in grain size. Station numbers are at top. Locations are shown by figure 4.
Stippling indicates sand; no pattern indicates mixed silt/clay. Comma-shaped
marks represent shell remains. Column at right indicates degree of textural
modification by bioturbation as determined by Hill, 1976, 1977: full pattern
>60%; half pattern <60%.
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Figure 28. Selected cores, central sector of shelf, showing vertical variations
in grain size. Station numbers are at top. Locations are shown by figure 4.
Box and piston cores from same station shown. Sand indicated by stippling;
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represent shells. Column at right indicates degree of textural modification
by bioturbation as determined by Hill, 1976, 1977: half pattern <60%; square
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eolian- type sand

* Very even-grained
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%% Hard brown clay
with corbonaceous
plant roots

Figure 29. Selected cores from the ancestral Rio Grande delta, southern part
of shelf, showing vertical variations in grain size. Station numbers are at
top. Locations are shown by figure 4. Stippling indicates sand; no pattern
indicates silt/clay. Comma-shaped symbols represent shells; black represents
large amount of carbonaceous mud. Column at right indicates amount of textural
modification caused by bioturbation, as determined by Hill, 1976, 1977; full
stipple >607%.
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of the discrete sands suggest periodic relatively rapid water
movement or high energy conditions over large parts of the
shelf. Hurricane passage may be the principal mechanism by
which the sand is distributed beyond the surf and shoreface
zone. The area of the shelf in which discrete sands occur is

shown by figure 31.

Distribution of surficial sediments by grain size indicates
that silt is the predominant textural component (Shideler,
1976; 1977). Relict deltaic and ancient shoreline deposits
of sand are on the southern and northeastern parts; otherwise
the variations in grain size regionally are what might be
expected on empirical grounds: increase in the sand-sized
fraction shoreward and increase in the clay-sized fraction
seaward. The distribution of the surficial sediments by grain
size and by sand content are shown by figures 32 and 33; the
distribution of the'shallow subsurface sediments by grain
size is similar to the surficial sediments. The shelf as a

whole is a region of typically fine~grained sediments.

Dating of the rates of sedimentation during the past few
hundred years using 210py, a5 the dating agent, indicates
that the highest rates of sedimentation have been at midshelf

in the northern part of the South Texas OCS (see figure 34,
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from Holmes and Martin, 1977). Comparison of figures 34 and
25 demonstrates the northward shift of the Holocene depocenter

in latest Holocene time.

Distribution of trace metals in the surficial bottom sediments
indicates two relationships relative to sediment grain size:
increased abundance in the finer grained sediments; and
increased abundance around certain estuaries where anthropogenic
induction is suspected. The use of barium content of the
sediments in conjunction with 210py, dating indicates that
sediments are being carried primarily from north to south and
obliquely across the South Texas OCS. The barium content of

the sediments began to increase in the 1920's as o0il well

drilling increased. Thus, it is an ideal tracer element for

measuring rates and patterns of sediment movement.

Tectonism:

1.

Most faults are of the growth type; relative offset along the
faults increases downward with increasing subsurface depth,
indicating continued movement through time. Growth-type
faulting is well illustrated by figure 8. Note the increased

offset with depth along individual faults.
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Faulting, though relatively continuous over the broader span
of time from the middle Pleistocene to the present, appears

to have been episodic when viewed in shorter increments of
time, possibly as a result of the cyclicity of the alternating
periods of glacial sea level withdrawal and interglacial depo-
sition. The faults have been plotted relative to two of the
subsurface reflectors already discussed to determine both the
geographic patterns of faulting and the variations in the
intensity of faulting with time. The depths below the sea
floor of the two subsurface reflectors (equivalent to reflectors
B and D respectively, in figures 17-25) is shown by the section
of an acoustical profile, figure 35. The geographic locations
of faults that cut reflector B but not A are shown by figure

36 and those that cut both A and B, by figure 37.

Comparison of the two maps shows that the faulting has migrated

seaward across the shelf during late Pleistocene/Holocene time.

Faulting during the Holocene has been concentrated along the

outer edge of the continental shelf.
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of reflectors A and B, stratigraphic reference horizons used to determine

geographically the extent and intensity of faulting through time.

Figure 35.
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IV. Relative stability of the sea floor
A. General classification of the shelf and slope (figure 38)

Subarea 1

1. Generally stable. No movement apparent over most of the inner
half of shelf in post middle Pleistocene time, but in the
southern part of the OCS recent faults cross the shoreline
from shelf to coastal plain; the faults are expressed at the
sea floor as topographic ridges (see fig. 39).

2. Movements at mid shelf have decreased during the late
Pleistocene, but localized fault movement along the crests
of folds is indicated. At isolated sites, faults reach the

sea floor (see fig. 38).

Subarea 2

1. Generally stable but faulting has been both extensive and
intensive over the outer third of the shelf in the central
sector of the OCS during the Holocene.

2. The faulting along the outer shelf has been caused by the
combination of sediment loading and isostatic adjustment;
subsidence has been countered to a degree by the buttressing
effect of a rising anticline whose crest lies just beyond
the shelf edge beneath the uppermost part of the continental
slope. Figure 8 is a section across the outer shelf and

upper slope showing the structural relationships.
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3.

Gravity slumping of sediments and associated shallow faulting
is evident in the southern and northeastern parts of the 0CS

near the shelf edge and on the adjacent uppermost slope.

Subarea 3

1.

The continental slope has been a mobile area and relative
instability is indicated. Mobility has been primarily of two
types: massive, large scale gravity slumping of relatively
soft sediments down the increased topographic gradient of the
continental slope; and diapiric movement of salt. The charac-
teristic hummocky topography of the slope surface is expressed
by the bathymetry map, figure 1.

Some of the rotational, gravity faulting on the slope does
extend to considerable depth in the subsurface, indicating

the tendency for the entire outer part of the continental
terrace to slide toward the deeper central part of the Gulf

of Mexico because of sediment outbuilding and loading.

The relative instability at the shelf edge and on the con-
tinental slope is primarily a function of the increased
topographic gradient which in turn relates to the adjustments

caused by sediment buildup and overloading.



Analysis of the unstable conditions in Subarea 3, shelf edge and

adjacent continental slope, by geographic segments from south to

north: southern, central, and northeastern

1. Southern
a. Geologic characteristics: edge of ancestral Rio Grande

delta coincides with shelf edge; increase in sea—-floor

gradient; slumped and diapirically deformed sediments of

a generally chaotic nature lie beneath younger prograded

and undeformed sediments;shallow faults are associated with

surficial slumping and sliding; deep-seated gravity faults

are associated also with broader scale basinward slumping.

b. Types of instability and potential hazards:

(Examples shown by 2 sets of figures that are adjoining

sections of acoustical profiles: numbers 40A-40C; 40D-40H).

(1) Buried older slumped and chaotic sediments beneath
prograded undisturbed sediments. Potential for over-
pressured zones and high gas content. Examples across
strike or down the slope are shown by the two adjoining
sections of an acoustical profile shown in figures
40A and 40B and also in the single section, figure 40D.
Examples of the same type of features along strike or
parallel to the edge of the shelf are shown by figures
41A, 41B, and 41C.

(2) Surficially slumped and faulted sediments along edge
of shelf/uppermost slope (figs. 40A, 40C, and 40D).

(3) Primarily surficial, shallow seated sliding and some

slumping on the upper to middle slope (adjoining
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figures 40F-40H). Compare the two sets and note the
difference in the type of deformation.

(4) Large scale slump/folding and faulting on the middle
to lower continental slope involving sediments to
considerable depth below the sea-floor surface

(adjoining sections, figures 42A-42E).

2. Central

a. Geologic characteristics: subsiding edge of shelf being
countered by rising anticlinal ridge that has isolated
diapirs along its trend; many deep seated rotational
faults and tensional faults; increase in topographic
gradient at shelf edge less abrupt than to south and north
and no previous surficial sliding or slumping of the sedi-
ments on the upper slope is indicated. Gas seepage in
association with faults is indicated over the general outer
central sector (fig. 384).

b. Types of instability and potential hazard:
(1) Active anticlinal foléd beneath the upper continental

slope.

(2) Active diapirs: two along the anticlinal crest that

lies beneath the upper slope and at least 6 large
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diapiric masses further seaward beneath the middle and
lower slope. Characteristics of the outermost shelf

and the adjacent continental slope in the central sector
are shown by figures 43A, 43B, and 43C; upper slope, 43A;

mid slope, 43B; and diapiric mound on lower slope, 43C.

3. Northeastern

a.

Geologic characteristics: edge of ancestral Brazos-Colorado

River delta coincides with shelf edge; increase in topographic

gradient at shelf edge relatively abrupt in contrast to the

central sector; slumped and diapiric sediments lie beneath

prograded younger sediments; shallow faults associated with

surficial slumping; hummocky topography caused by slumping

on the continental slope.

Type of instability and potential hazard:

@)

(2)

3)

Slumped and diapirically deformed older sediments
beneath prograded younger sediments (fig. 44A).
Slumped and faulted sediments beneath the steep upper
part of the continental slope (fig. 44B).

Relatively steep and irregular bedding in prograded

sediments along edge of delta (fig. 44A).
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(4) 1Intensely slumped and chaotic sediments forming a
relatively thin skin above older sediments that were
subjected to earlier deep-seated gravity faulting
rather than large scale slumping (figs. 44C, 44D, and

44E) .

Summary:

a.

The edge of the continental shelf has prograded younger
deltaic sediments overlying older slumped sediments of
chaotic structure in the southern and northeastern parts
and an active anticline parallel to the edge in the central
part. TFaulting has been extensive over the seaward half of
the shelf.

The continental slope is a complex of deformed sediments of
various types. (Figure 45 is a map showing the areal rela-
tionship of the various types of deformed sediments.)
Primary factors leading to instability:

(1) 1Increase in the topographic gradient at the edge of
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(2)

3)

(4)

(5)

the continental shelf where it merges with the continental
slope.

Long term and regionally high rates of deposition along
the continental terrace in general which have caused
isostatic adjustments and deep-seated gravity faulting.
More localized high rates of sedimentation caused by
deltaic outbuilding to the edge of the shelf where the
combination of large volumes of unconsolidated sediments
deposited on the increased topographic gradient leads

to intensive slumping and sliding.

Diapirism or the upward movement of less dense material
such as salt and shale from depth. The movement of this
material upward through the thick overlying sediment
causes extensive deformation and the doming of the
sediments above the diapiric material as it nears the
surface.

High gas content in rapidly deposited sediments.
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