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SUMMARY 

This report describes how strong-motion records obtained from the 

earthquake-induced motions of highway bridges may be analyzed for use 

in the evaluation of bridge designs and bridge design procedures. 

This report is divided into five principal sections. The first 

section describes strong-motion instrumentation and strong-motion 

records. In the second section, a mathematical model for the dynamic 

response of bridges to strong ground shaking is formulated. The third 

section describes how analog records scaled by hand can be analyzed. 

Force levels throughout bridges and mathematical model parameters are 

found from hypothetical strong motions for two example bridges. The 

fourth section describes how digitized records can be analyzed. A 

linear least-squares fitting procedure in the time domain for identifying 

mathematical model parameters from recorded strong motions is described. 

Hypothetical motions for three example bridges are analyzed using this 

procedure to yield best-fit mathematical models. The last section 

consists of appendices. Included are a more extensive introduction to 

dynamics of structures and listings of the programs used to identify 

the best-fit mathematical models. 
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INTRODUCTION 

This manual describes some standard, general methods to analyze 

strong-motion accelerograph records of highway bridge motions. These 

analysis methods are appropriate for typical highway grade separation 

bridges. These bridges may be steel or concrete, simple spans or 

continuous, straight or curved, but are restricted to being moderate in 

length. The assumption that all bridge support motions are identical 

requires that bridge lengths be moderate. 

Methods are described for the analysis of analog records visually 

without the need of a high-speed digital computer and for the analysis of 

digitized data with the use of a computer. The objectives of both types of 

analysis are (1) to find force levels throughout the bridge for a particular 

earthquake, and (2) to find parameters of a mathematical model which best 

describes the measured response. There are many secondary objectives that 

may be considered also, but for brevity only these two primary objectives 

are considered here. 

The analyst is assumed to be familiar with structural engineering and 

to have some knowledge of structural dynamics. Appendix B includes a 

section on structural dynamics in which those concepts that are needed for 

the specific analysis procedures outlined here are developed. A greater 

understanding of structural dynamics may be obtained from standard texts 

(Biggs, 1964; Clough and Penzien, 1975; Hurty and Rubinstein, 1964). 

A few words of caution are in order about the use of this manual. 

There are few uncertainties in obtaining force levels in bridges from 

strong-motion records. Force levels are computed from an extension of the 

expression 

(Force) = (Mass)(Acceleration) 

1 



Masses can be estimated quite accurately from drawings, and accelerations 

can be measured accurately at specific points. There are always 

uncertainties in describing complete bridge accelerations from the 

accelerations of a few points, but with the judicious selection of 

instrument locations these uncertainties can be minimized. Therefore, force 

level analyses can be performed with confidence. 

On the other hand, when strong-motion records are analyzed to obtain 

model properties, many uncertainties exist. In this manual properties are 

sought for only a linear mathematical model. This model is chosen because 

it is commonly used in structural dynamics, because general solution methods 

exist to solve the resulting set of equations, and because that solution is 

relatively easy to obtain. This model is not selected because it happens to 

be the best, although fortunately it is quite good for non-damaging levels 

of motion. It may not be appropriate for high-level damaging motions or for 

motions involving significant foundation compliance. 

It is beyond the scope of this manual to discuss higher order 

mathematical bridge models, which are appropriate for nonlinear or inelastic 

response. It would also be very difficult since there is no single, general 

higher order model; there are many. This whole field of nonlinear higher 

order, model identification from strong-motion records is in an early stage 

of development. Even the methods suggested here to identify model 

properties for the linear model are not well established at this time. 

Rapid advancement is expected in the next few years, particularly with 

regard to the automatic analysis of digitized records on high speed digital 

computers. 

2 



I. STRONG-MOTION INSTRURENTATION AND RECORDS 

A strong-motion record is defined here as the record of structural 

motion caused by a relatively large earthquake. This strong motion may be 

recorded in a number of ways. It may be a light trace on film, a line on a 

strip of paper, or an analog or digital signal on magnetic tape. In all 

cases the motion is recorded as a function of time. 

The motion recorded is that for a point moving along a single axis and 

may have dimensions of displacement, velocity, or acceleration. Most often 

acceleration is recorded. The motion is recorded as an electrically or 

mechanically generated signal which is proportional to the motion within 

some acceptable error. 

The adjective "strong" is included to differentiate these recordings 

from recordings taken with other comuon seismographs used to determine 

earthquake magnitudes and epicentral distances. Such seismographs are 

capable of detecting earthquakes almost anywhere in the world, and are 

necessarily very sensitive. Strong motions would cause these seismograph 

recordings to be off scale. In general, strong motions could cause damage 

to structures, and are recorded near earthquake epicenters. The actual 

level of ground motion above which motions are "strong" is not well defined. 

Typically, ground motions with a peak acceleration greater than 0.01 a 

trigger strong-motion accelerometers, those greater than 0.05 a are of 

structural interest, and those greater than 0.10 Rare potentially damaging. 

In the United States, strong-motion records are normally recorded on 

accelerographs. The accelerographs are of two general types: analog or 

digital. In either case, acceleration is sensed by accelerometers and 

recorded as a continuous function of time. In the analog instrument, it is 

recorded on light-sensitive film or paper and in the digital instrument, it 
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is recorded in digital form on magnetic tape. Both instrument types are 

powered by batteries, are triggered into operation by the strong motion 

itself (i.e., motion having an acceleration equal to or greater than a 

pre-set triggering level, commonly 0.01 q, and are available either as 

self-contained triaxial instruments or remote accelerometer/central recording 

instruments. In the self-contained variety, all major components--accelero-

meters, recorder, and trigger--are housed in one container, whereas in the 

remote recording type, these elements can be physically separated but are 

interconnected by low-voltage data cable. 

A typical analog film record from a three-component self-contained 

accelerograph is shown in figure 1 (records from remote accelerometer/central 

recording systems are similar although they normally contain more data 

traces). The record contains time ticks, two fixed traces, three accelera-

tion data traces and a WWVB time code. The time ticks denote film speed 

and normally appear every half second; each fixed trace is a reference 

'WWVB Time Code 
Beginning of record 

; 
Acceleration trace 

' ,-Fixed trace 
~AcceleratIon trace 

Fixed trace 
,' Acceleration trace 

\N Time ticks (internal time trace) 

Figure 1.- Copy of a typical three-component strong-motion accelerograph record. 
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trace that is used to extract long-period errors from the data due to film 

distortion or the film drive mechanism; and the WWVB time code is used to 

identify when the event occurred. The most important elements of the record, 

the acceleration data traces, have values of amplitude that are approximately 

proportional to real values of recorded acceleration. For most instruments 

in present use, the sensitivity of the acceleration traces is on the order 

of 1.90 cm/g. The sensitivity is calibrated during or before installation 

and should appear on the record or accompany it. Other relevant information 

that should accompany the record includes orientation, location, natural 

frequency, damping of each accelerometer, film speed, instrument serial 

number, and location of the recorded earthquake. If such information does 

not accompany a record, most of it should be available either from the 

instrument owner, the manufacturer, or the agency or organization maintaining 

the instrument. 

Records from a typical digital instrument are normally recorded in 

digital form on one- or four-track cassette tape and are not immediately 

available in analog form. Analog records are made from a digital instrument 

by processing the digital data with a digital-to-analog converter and 

plotter. Hardware of this type has been developed by the firms that 

manufacture the digital instruments and should be available either through 

these firms or the agency or organization that maintains the instrument. 

In order to convert both the analog film and digital cassette records 

into a digital form that can be processed on high-speed digital computers, 

additional processing is required. Analog records are converted into 

digitized form on systems known as digitizers. In such a system, a handheld 

cursor or automatic scanning device is used to follow the trace and assign 

numerical coordinate values (normally Cartesian) to all points of interest. 

5 



Such points are normally selected at equal intervals or at all peaks, 

valleys and points of inflection. The numerical values are recorded on 

computer-compatible cards or on magnetic tape. Data from a digital 

strong-motion instrument is immediately available in digitized form on 

cassettes but requires processing for conversion into a computer-compatible 

format. The processing is handled by hardware designed by the instrument 

manufacturer. Its availability should be known by the strong-motion 

instrument manufacturer or the agency or organization maintaining the 

instrument. 

After conversion into a high-speed-computer-compatible format, the 

digitized data can be corrected to extract errors introduced during the 

recording and digitization process and to account for the dynamic 

characteristics of the recording instrument. Procedures for correcting the 

data are well established (Brady and Perez, 1976; Miklofsky and Mancini, 

1977; Trifunac and Lee, 1973) and are presently performed routinely by the 

U.S. Geological Survey. When the processing is completed, the digitized 

data are then ready for analysis. Procedures for standardized analysis of 

three-component ground motion records are also well established (Brady and 

Perez, 1976; Trifunac and Lee, 1973) and are routinely performed. The 

analysis of a set of earthquake records from a particular bridge, however, 

is not yet a routine procedure. The methodology described below has been 

designed for that purpose. 

6 



II. FORMULATION OF A MATHEMATICAL MODEL 

FOR THE DYNAMIC BEHAVIOR OF BRIDGES 

As indicated above, the two primary objectives in the analysis of 

strong-motion records are: (1) to verify, modify, or improve the 

mathematical models used to design a bridge to resist earthquake motion and 

(2) to find force levels throughout a bridge. If a number of analyses lead 

to a consistent set of modeling assumptions, then this set of assumptions 

can be used with confidence in the design of new bridges. It is hoped that 

the analyses verify rather than modify the initial design assumptions. 

A mathematical model of the bridge is formulated from the initial 

design of the bridge. Numerous assumptions are made in the formulation of 

this model and these assumptions are to be verified from the measured 

records. The bridge response motions, or output motions, are computed using 

the mathematical bridge model and a given design earthquake. From these 

output motions force and stress levels at selected points in the bridge are 

computed. These force and stress levels are then compared with allowable 

levels. If the computed levels exceed the allowable levels, then the bridge 

design must be modified and reanalyzed after a new mathematical model has 

been formulated. 

Experimentally it is desirable to measure the input ground motions and 

a sufficient number of bridge response motions to describe the complete 

bridge motion to within some acceptable error. From the output motions 

alone, the force and stress levels throughout the bridge may be computed and 

compared with corresponding acceptable levels. The force levels for a 

specific earthquake are not of general interest because that particular 
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earthquake or any scale multiple of it is never likely to repeat itself. Of 

far greater general interest is to identify the mathematical model that 

would have duplicated the measured output motions for the measured input 

motions. A comparison of this model and the model used to design the bridge 

will test the assumptions made to formulate the model for design. 

In general, mathematical models of dynamic bridge behavior are 

formulated during the design process to predict what distortions are 

expected relative to the ground when a bridge is subjected to an earthquake. 

It is important,to recognize that these distortions are in addition to the 

absolute displacements of the bridge following the ground motions. If there 

are no distortions (the bridge is essentially rigid) there will still be 

significant earthquake forces in the bridge equal to the products of bridge 

masses and ground accelerations. We hope to learn from the dynamic model of 

the bridge whether or not these distortions are significant relative to the 

absolute ground displacements. In some cases the distortions are very small 

relative to the absolute displacements of the bridge. For such cases, the 

accuracy of the dynamic model is unimportant because the contribution to the 

total inertial load from the flexible distortions is so small. For certain 

loads, the bridge may "resonate" producing very large distortions from a 

relatively small input. Such vibrations rarely result from earthquakes. For 

very flexible structures, distortions one to four times the absolute ground 

displacements may be expected (Newmark and Rosenblueth, 1971; Wiegel, 1970). 

For relatively rigid bridges, distortions much less than the absolute ground 

motion are likely. 

The importance of the mathematical model of dynamic behavior depends 

upon the bridge being analyzed. Therefore, there is no absolute measure of 

8 



the accuracy of mathematical models for all bridges, but it must be 

evaluated for each class of bridges. 

A few fundamental assumptions, generally made in the formulation of a 

dynamic mathematical model, will be made in this report. It is first 

assumed that a linear elastic model may describe adequately the dynamic 

distortions of the bridge. Forces are assumed to be linearly related to 

bridge displacements and velocities relative to the ground, and linearly 

related to absolute bridge accelerations. The second fundamental 

assumption is that all supports of the bridge are subjected to the same 

ground motion at the same time. For this assumption to hold, the bridge 

length must be small with respect to the wave lengths of the ground motion 

waves which produce the most significant bridge response, presumably at the 

lower natural frequencies of the bridge. This assumption seems reasonable 

for typical highway bridges on firm foundation material, but may be 

erroneous if the foundation material varies significantly from one end of 

the bridge to the other. 

Both of these assumptions are made not necessarily because they will 

lead to the most accurate model, but because they will lead to mathematical 

equations that can be solved with comparative ease. Once these assumptions 

are made the mathematical model is well defined and the model parameters may 

be determined from the response of the structure. If the model is not 

assumed to be linear, the problem is not well defined and there is no end to 

the possible forms that the model may take. 

Ultimately, these two modeling assumptions must be evaluated by 

analyzing actual strong-motion records. If model parameters can be found 

with accuracy such that a mathematical model, based upon the above two 

9 



	

	

	

	

	

	

	

	

	

assumptions, can duplicate the measured response well, then it can be 

deduced that the two assumptions are reasonable. If model parameters cannot 

be found, then the assumptions are poor. It is beyond the scope of this 

report to suggest higher order models that may be evaluated. For 

information on higher order models the reader should consult Clough and 

Penzien (1975) and Hurty and Rubinstein (1964). 

Within the context of these two assumptions, the mathematical model 

will take one of three forms depending upon the coordinate system chosen to 

describe the bridge distortions. 

The first and most common form of mathematical model is 

[M]ii11+[C]{il}+[K]{u} = -{Mx }Oxg-{My yg-fMz1Uzg (1)
}U 

where 

{u} is a vector of bridge displacements relative to the 

ground at a finite number of preselected points, 

is a matrix of masses lumped at, and corresponding[M] 

to, the physical coordinates chosen to describe the 

bridge distortions, 

[C] is a damping matrix, 

[K] is a stiffness matrix, 

are mutually orthogonal ground accelerations,
Uxg' 6yg' Uzg 

(*)--d/dt is differentiation with respect to time, and 

{Mx}, {My}, {Mz} are vectors of participation factors corresponding 

to the ground motions ijxg, Uyg, Uzg, respectively. 

The participation factor M is the quasi-static force in the ith coordinate
Xi 

direction produced by a unit acceleration, Uxg(t)=1. Similar definitions 

hold for the participation factors Myi and Mzi. 

10 



		

	

	

	

	

This mathematical model is called a lumped-mass model in physical 

coordinates. It can be used to identify mathematical models for short 

simple-span bridges and very long multi-span continuous bridges. It is 

called a lumped-mass model because the mass of the bridge is typically 

lumped (for analysis purposes) at a selected number of points. The 

coordinates are physical because they are translations and rotations at 

selected points which are measureable. 

For many bridges, particularly short continuous bridges, it may be more 

appropriate to describe the bridge distortions in generalized coordinates. 

This is the second form of mathematical model. In this coordinate system, 

bridge distortions are expanded in terms of a set of r assumed distorted 

shapes. 

r 
= .(s)a.(t) (2)

1 
1=1 

where 

iJ(s,t) is a vector of bridge distortions as a function of 

time, t, and s, the distance along the centerline of 

the bridge element (bridges typically can be modeled 

as a collection of one-dimensional elements), 

ITi(s) is a vector description of the ith assumed distorted 

shape and 

ai(t) is a time-dependent, generalized displacement 

associated with the ith assumed distorted shape. 

At any time the vector of distortions at a location s is given by 

= u (s,t)T+u (s,t)3+u (s,t)1( (3)x z 

where 1, j, and k are unit vectors in the mutually perpendicular directions 
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x, y, z respectively parallel to the recorded ground accelerations U (t),
xg 

6 (t), ti (t). The vector description of the assumed distorted shapes,zgY9 

teT)i(s), similarly can be written in terms of its orthogonal components in the 

x, y, and z directions. Note that the generalized displacements, ai(t), 

cannot be measured directly, but must be computed from displacements in 

physical coordinates, ui(t), by the inverse of the transformation 

{u(t)} = M{a(t)} (4) 

The matrix element ij is the displacement in the ith physical coordinate 

direction for the jth assumed distorted shape. 

The mathematical model describing the dynamic bridge distortions can 

now be given by 

[m]{Ci}+EcECc}=[k]{a} = -{mx}ijxg-{my}0yg-fmzliizg (5) 

The inertial terms, integrated over all elements of the bridge, are 

mij = fM(s) i(s).ip'j(s)ds (6) 

m = fM(s) i(s).Tds- (7)xi 

m = fM(s)Ipi(s).3ds (8)yi 

mzi = IM(s)Ti(s)jds (9) 

and typically are computed from material properties, the geometry of the 

bridge being analyzed, and the assumed deflected shapes. The quantity M(s) 

is an inertia per unit length of bridge (a mass when (s) is a displacement 

_ 
and a rotational inertia when i(s) is a rotation). Analytical expressions 

for the damping coefficients, c and stiffness coefficients k can also 
ij ij' 

be formulated. However, these are the unknowns to be obtained from the 

strong-motion records. 

Although this formulation, in terms of generalized coordinates, ai(t), 
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looks identical to the model formulation in terms of physical coordinates, 

u.(t), there is one significant advantage for most short continuous bridges. 

To achieve the same degree of accuracy describing structure distortions, it 

will require fewer coordinates a.(t) than u(t). Since one transducer is 

needed to record each distortion, in either coordinate system, the system 

with the fewer coordinates required will require fewer transducers. Another 

way of interpreting this advantage is that the coordinate system requiring 

the fewest number of coordinates to describe the bridge distortions for a 

given accuracy will describe the bridge distortions most accurately for the 

same number of transducers. 

For all bridges, distortions can be described most accurately, with the 

fewest number of coordinates, if normal coordinates are used (Clough and 

Penzien, 1975). This is the third form of the mathematical model. Here 

bridge distortions are expanded in terms of normal mode shapes 

n 
= J1 cti(s)fli(t) (10) 

where 

)(s) is the ith normal (or natural) mode shape, and 

n.(t) is a displacement in normal coordinates associated 

with the ith normal mode shape. 

In normal coordinates, the matrix equation of motion describing structure 

distortions takes the unique form 

[M]{ii}+[C]f;14-[K]{n}=-{Mx}i/xg-{My}jyg-{Mz zg (11)
}u 

where all off-diagonal terms of [M], [C], and [K] equal zero. The inertial 

terms, integrated over elements of the bridge, are again given by 

Mi = fM(s)7i(s)qi(s)ds (12) 

Mxi = 111(s) i(s).ids (13) 
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M= (14)
Yi 

M = fM(s)7/).(s)4ds ( 1 5 )zi 

It is particularly advantageous to describe bridge motions in terms of 

normal coordinates because the individual equations in the matrix equation, 

equation 11, are uncoupled. Specifically, each normal displacement is 

governed by the single equation of motion (here for example, the ith) 

M+C T.1 +K = -M ti -M L1 -M (16)
i i xi xg yi yg zizg 

Typically these equations are normalized to have modal masses, Mi , equal 

unity (Clough and Penzien, 1975). For such a normalization, equation 16 

takes the form 

I 6 (17)
11111 xiUxg Iyi Uyg zi zg 

in terms of the common dynamic response characteristics 

wi = /K /M a natural circular frequency of 

vibration (radians/sec), 

ci Ci/2/Ki Mi a modal viscous damping ratio, and 

renormalized participation factors:Y I Y -xi yi zi 

Mxi/Mi, Myi/Mi and Mzi/Mi respectively. 

In this form, a participation factor is a measure of the degree to which a 

mode of vibration is excited by a ground motion relative to the response of 

a simple spring-mass oscillator having the same natural frequency and 

damping ratio. 

It is desirable to describe the distortions of all bridges in terms of 

normal modes because the fewest coordinates are needed for a given accuracy. 

Similarly, for a given number of normal coordinates there are the fewest 

unknown model parameters to be determined from the strong-motion records 
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because all off-diagonal terms of [M], [C], and [K] by definition equal 

zero. Unfortunately, when model parameters are to be determined from 

strong-motion records as they are in this report, bridge distortions cannot 

be described in normal coordinates before analysis because the normal mode 

shapes :,62 1(s) are unknowns that are to be determined from the analysis of the 

strong-motion records. These mode shapes must be known to compute the 

normal displacements, ni(t). Again the normal displacements gi(t) are not 

directly measureable, but must be computed by the inverse of the 

transformation 

iu(t)1=[(pEn(t)} (18) 

where c¢ij is the displacement of the jth normal mode shape in the ith 

physical coordinate direction. 

Therefore, for the methods of analysis described here, bridge 

distortions must be described in either physical or generalized coordinates. 

The lumped-mass model in physical coordinates should be used for simple span 

or long multi-span bridges, whereas the model in generalized coordinates is 

more appropriate for short continuous bridges. Once model parameters are 

identified from the strong-motion records, the identified mathematical model 

can be transformed readily from physical or generalized coordinates 

(equations 1 or 5) to the decoupled form in normal coordinates (equation 

17). Methods to make this transformation from either physical or 

generalized coordinates to normal coordinates can be found in any text on 

structural dynamics (Biggs; 1964, Clough and Penzien, 1975; Hurty and 

Rubinstein, 1964). 

If the reader is interested in a more complete development of the 

equations presented above, Appendix B should be consulted or the referenced 

texts on structural dynamics. Gere and Weaver, 1965, give a complete 

development of matrix algebra. 
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CONCLUDING REMARKS 

This report has discussed methods of analyzing strong-motion records 

obtained from highway bridges. There have been two objectives of the 

analyses: (1) obtain maximum force levels throughout the bridge, and (2) 

identify a mathematical model which best describes the observed dynamic 

behavior. There are few uncertainties regarding the calculation of maximum 

force levels, and few assumptions needed to be made. On the other hand, 

many uncertainties are associated with the identification of the best-fit 

mathematical model. Some of those uncertainties and additional limitations 

are discussed here. 

This report has one procedure to identify one mathematical model of 

observed dynamic behavior. Two fundamental assumptions have been made about 

that model: (1) the model is linear, and (2) all support motions are 

identical and in phase. These assumptions may seem overly restrictive since 

it is well known that bridge response can be highly non-linear, and support 

motions can vary significantly, particularly if the foundation material 

differs from one support to another. Unfortunately, the ability to identify 

non-linear models with variable support motions lags far behind the ability 

to formulate such models and generate acceptable response. In fact, it is 

almost beyond the state of the art to identify linear mathematical models 

with identical support motions when the natural frequencies of the bridge are 

closely spaced. Unfortunately, this is often the case for highway bridges. 

The procedure described in this report will yield adequate results for 

structures that do or do not have closely spaced frequencies. In fact, it 

was developed with that purpose in mind. 

Any non-linear model can be interpreted as a linear model with time-
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dependent parameters. Since the identification procedure described in this 

report can identify a best-fit linear model over a small time slice, 

variations in the best-fit linear models identified can be analyzed as 

non-linearities in the bridge behavior. Bridge motions with variable 

support motions can also be analyzed with this identification procedure. 

In many cases, embankment motions could be interpreted not as input motions 

to the bridge but as response motions to bedrock motion. If it is 

appropriate to assume that column base motions are identical to bedrock 

motions under an embankment, then embankment motions can be included 

with other bridge motions as response motions, and can be analyzed using 

the procedure described in this manual. Bridge motions produced from 

ground motions propogating from one support to another, however, cannot 

be analyzed using this procedure. 
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APPENDIX A 

GLOSSARY OF TERMS 

{B(t)} 

{b(t)) 

C 

[C] 

[C] 

[c] 

c 

E 

Ti(t) 

F t)
J ' 

Fci 

Fki 

F
mi 

fci 

fki 

fmi 

I(x) 

i,j 

1,j,k 

[K] 

vector of known inertial time histories in physical 

coordinates 

vector of known inertial time histories in generalized 

coordinates 

constant 

damping matrix in physical coordinates 

damping matrix in normal coordinates 

damping matrix in generalized coordinates 

half of deck width 

squared error 

th 
force on i lumped mass 

th
Force per unit length for the j generalized (normal) 

shape 

damping force in physical coordinates 

elastic force in physical coordinates 

inertial force in physical coordinates 

damping force in generalized coordinates 

elastic force in generalized coordinates 

inertial force in generalized coordinates 

rotational inertial per unit length 

indeces 

unit vectors in the Cartesian coordinate directions 

x,y,z respectively 

stiffness matrix in physical coordinates 

146 



	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

[K] 

[k] 

L 

M(x) 

Mx'My'Mz 

[M] 

{Mx},01y1,{Mz} 

{1'4] 

{Mx},{My},{Mz} 

[m] 

{m  },{m 1,{111x y' z } 

N x 

n 

Qi 

R.(t) 

Rij 

R ,R ,R
iX iy iZ 

Rtx'Rty R t z 

stiffness matrix in normal coordinates 

stiffness matrix in generalized coordinates 

length of bridge 

mass per unit length 

internal bending moments in bridge deck 

mass matrix in physical coordinates 

vectors of participation factors in physical 

coordinates 

mass matrix in normal coordinates 

vectors of participation factors in normal 

coordinates 

mass matrix in generalized coordinates 

vectors of participation factors in generalized 

coordinates 

internal axial force in bridge deck 

number of lumped masses 

generalized force 

th 
i reaction 

th 
.th reaction to a unit j generalized (normal) 

acceleration 

.th reaction to unit rigid-body accelerations in 

the x-, y-, and z- directions respectively 

total reaction in the x-, y-, and z- directions due 

to unit rigid-body accelerations in the x-, y-, 

and z- directions respectively 
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R Rtjx' tjy'Rtjz 

i(s) 

Sa(w) 

T 

t 

U(t)} 

Uxg(t),[jyg(t),Uzg(t 

u(t)} 

Yx} Yy},{ Yz} 

total reaction in the x-, y-, and z- directions 

respectively due to a unit jth generalized 

(normal) acceleration 

vector of distortions due to a unit displacement 

corresponding to the ith reaction 

spectral acceleration 

coordinate along the principal axis of the bridge 

natural period (=27/w) 

temporal coordinate 

vector of absolute bridge displacements 

ground accelerations in x-, y-, and z- directions 

respectively 

vector of bridge distortions relative to the ground 

vector distortion relative to the ground of point on 

bridge axis 

internal shears on bridge deck 

Cartesian coordinates 

vector of bridge distortions in generalized 

coordinates 

vectors of participation factors in normal coordinates 

when masses are normalized to unity 

virtual displacement 

vector of bridge distortions in normal coordinates 

transformation matrix from normal to generalized 

coordinates 
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{0 vector of modal viscous damping ratios 

[q] transformation matrix from normal to physical 

coordinates 

ith normal mode shape 

transformation matrix from generalized to physical 

coordinates 

ith generalized shape 

{w} vector of natural circular frequencies of vibration 

[ ] 

E 

brackets denoting a matrix quantity 

transpose of a matrix 

} braces denoting a vector quantity 

summation 

(*)--- d/dt differentiation with respect to time 

(—) symbol of a vector quantity 
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APPENDIX B 

INTRODUCTION TO STRUCTURAL DYNAMICS OF BRIDGES 

Before any mathematical model of dynamic bridge behavior can be made, a 

coordinate system must be established which can describe the bridge motions 

accurately. The number and location of the coordinates to describe the 

bridge motion is purely arbitrary. To describe the bridge motion exactly 

requires an infinite number of coordinates. If the coordinates are chosen 

judiciously, however, only a few coordinates are necessary to describe the 

complete bridge motion with acceptable accuracy. In the case of a curved 

highway grade separation bridge, for example, there are many possible 

coordinate systems that may be chosen to describe the horizontal motion of 

the bridge. If vertical and twisting motion of the bridge deck are ignored 

(such motions may be very important but are not considered here in order to 

simplify the discussion), then the bridge deck motions and ground motions 

can be described by the coordinates shown in figure 49, for a total of 

twenty coordinates. The number of required coordinates can further be 

reduced if it is possible to make some additional assumptions. For most 

bridges, or isolated segments of bridges, it is reasonable to assume that 

bridges are inextensible in their longitudinal directions (the s direction 

for the bridge shown). 

In many cases, it is also reasonable to assume that the ground motion 

exciting the bridge is identical under each support. This assumption is 

reasonable for short span bridges on firm foundation material. For long 

span bridges (such as the San Francisco Golden Gate Bridge), it is of course 

unreasonable to assume that the earthquake motion at one end is identical to 

the earthquake motion at the other end. It may also be erroneous to make 
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Plan View 

Deck Instrumentation 

U g2 

Ground Instrumentation 

Figure 49.- Example curved bridge with complete instrumentation. 
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this assumption for a simple highway bridge if a central pier rests on firm 

rock, while the end abutments rest on fill. In any case the mathematical 

modeling assumptions are made primarily for mathematical convenience, and 

be evaluated from the analysis of the strong-motion records.
each should 

When the two assumptions described above are made, the bridge motion 

be described accurately by the reduced coordinates shown in figure 50. 
may 

In this case, the bridge and ground motions are described by a total of only 

eight coordinates. The five lateral motion coordinates at the bridge deck 

describe accurately the motions of those five points only. The lateral 

motions of the deck must be assumed for all locations between coordinate 

For typical highway bridges, significant motions involving more 
points. 

than a half wave length per span are not expected. 

Instead of approximating the bridge displacements with the 

displacements of a few selected points, the bridge displacements can be 

approximated by a linear combination of assumed independent shape functions. 

For the assumed shapes shown in figure 51 and corresponding coordinates 

(t), the total lateral bridge deck displacement relative 
al(t), a2(t), and a3 

to the ground can be given by 
(6-1) 

17)1(s)al(t)+Z)2(s)a2(t)+71)3(s)0,3(t) 

i(t) are not in themselves 
The displacements in these coordinates a 

i(t) by the 
measurable quantities but are related to measurable quantities u 

(s). The bridge is not expected to vibrate
--)iassumed deflected shapes 1 

3(s), but this assumedto any significant extent, in a mode like 17)
freely, 

shape should be included nonetheless to improve the description of the 

actual lateral bridge deck motion, otherwise described entirely by the 

assumed shapes 17)1(s) and i)2
(s). 
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Deck Instrumentation 

Ground Instrumentation 

Figure 50.- Example curved bridge with reduced instrumentation. 



i(s) 

P2(s) 

Figure 51.- Example curved bridge, assumed deflected shapes. 



	

 

 

In addition to the three coordinates that describe the lateral bridge 

motion, a single longitudinal coordinate and two ground motion coordinates 

are also required. It is unlikely that fewer coordinates could describe the 

horizontal bridge motion with equal accuracy. It is also very important 

that significant bridge motions, yielding significant force levels are not 

lost when coordinates are hastily removed for the sake of simplicity and 

reduced cost. Once the information is lost, it can never be regained from 

the remaining coordinates. 

The mathematical model used to describe the dynamic behavior of a 

bridge consists of a set of equations of motion. There will exist one 

equation for each unknown bridge displacement. For the coordinate system 

described above there will exist four equations of motion. Each equation of 

motion is nothing more than an equation of dynamic equilibrium including all 

forces acting on the bridge in that particular coordinate "direction". 

Forces acting in a coordinate direction that is not directly measurable will 

be defined later. 

Specifically, there will exist inertial forces, damping forces (forces 

that damp the motion by dissipating energy), elastic forces, and externally 

applied forces. For the ith coordinate direction, the equation of dynamic 

equilibrium can be written 

(B-2)
fmi + fci + fki c fpi 

where 

fMi 
= inertial force, 

fci 
= damping force, 

fki 
= restoring force, and 

• 
fP1 

= applied force. 
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•• •• •• 

A generally accurate assumption for non-damaging motion is that the 

above inertial, damping, and elastic forces are proportional to the 

coordinate accelerations, velocities, and displacements respectively. This 

assumption of linear behavior is one of the fundamental assumptions to be 

checked by the experimental data. The assumption of linear behavior is not 

made primarily because linear models are best but because linear models can 

be solved in closed form using general solution methods. The same cannot be 

said for non-linear equations. Whether or not a linear equation is the best 

to simulate bridge motion is to be evaluated by the experimental data. 

Like 5(s,t) the displacements ai(t) are defined as displacements 

relative to the ground. Relative coordinates are important because force 

levels in bridges are proportional to relative displacements; damping forces 

are proportional to relative velocities. Inertial forces, on the other 

hand, are proportional to absolute accelerations. 

In terms of constants of proportionality the inertial force in the ith 

coordinate direction can be expanded in the most general, linear manner to 

(B-3)fmi = mill+ min.cienxiOxelnyii-lyg+mzjIzg 

where Uxg, Uyg, and Uzg are the three mutually perpendicular ground accel-

erations (the definitions and significance of mil, ..., min, mxi, myi, and 

mzi are discussed below). Similarly, by definition, the damping force in 

the ith direction is given by 

fdi c.1014"ci2&2 +ciOn 

and the elastic force 

fki = kilal+ki2a2+ +kinan 

where 

et.J = daj./dt 
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• • • • • 
• • • • • • • • • 

• • • 
• • • • 

. 2 2 
ct../dt (B-7) 

Earthquakes do not apply forces directly to bridges, so for all i, 

fpi.O. All of the forces induced by earthquakes initially are inertial. 

Then, only after relative motion between the bridge and ground occurs, are 

damping and elastic forces developed. 

The ith of n equations of motion can then be written as 

m a + +1fl +c. + +c a +ka+.+k a
il 1 inn 1 in n 1 in n = 

-m -m -m (B-8)
xi xg yi yg zi zg 

For bookkeeping reasons, these n equations of motion can be regrouped in 

matrix form (Gere & Weaver, 1965). 

cli ci2 cln 
m11 m12 "' min 

c c ... c 
m21 m22 "' m2n 21 22 2n 

• 

mnl mn2 mnn cnlcn2 c nn 

k11 k12 ..' kln 

k21 1(22 k2n 

U• xg• 

kni kn2 knn 

mm
y2 z2 

.1 • U 
Y9 •• zg 

• 

myn mzn 

In simpler form this can be written as 

[m]fal+M{171}-11Q{a} = -{mx}Ux9{my}UA{mdUzg 
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The physical significance of the terms mij, cij, and kij can best be 

obtained from equations B-3, 8-4, and 8-5. Specifically the term mij is 

the force in the i coordinate direction due to a unit acceleration in the j 

direction only. The term cij is the force in the i coordinate direction due 

to a unit velocity in the j direction only. The term kij is the force in 

the i coordinate direction due to a unit displacement in the j direction 

only. Similarly the terms mxi , myi, and forces in the i coordinate
mziare 

direction due to unit ground accelerations Uxg, Uyg, and Uzg respectively, 

with all relative bridge motions fixed. 

The numerical evaluation of these terms is possible from the 

definitions above and with use of the theorem of virtual work (Clough and 

Penzien, 1975). Only the inertial terms will be evaluated using this 

theorem as they are the only terms that need to be evaluated from the 

weights and dimensions of the bridge for the analysis procedures that have 

been described in this report. The damping and elastic terms, in one form 

or another, are those modeling parameters that are to be identified from the 

bridge records. Formal procedures for their theoretical formulation are 

available in any of many texts on structural dynamics (Biggs, 1964, Clough 

and Penzien, 1975, Hurty and Rubinstein, 1964). 

The theorem of virtual work is stated as follows (Clough and Penzien, 

1975): "If a structure which is in static or dynamic equilibrium under the 

action of a set of forces is subjected to a virtual displacement, the total 

work done by those forces equals zero." 

For the determination of mij consider the bridge subjected to a unit 

acceleration in the j coordinate direction only. All velocities and 

displacements are assumed to equal zero. Considering now the bridge to be 

composed of many line elements (including the deck as well as piers), the 
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•• 

acceleration at any point on the bridge is given by 

d2U(s,t)/dt2 1T.(s)a.(t) ipj(s) (B-11)
J J 

where the last equality is due to the assumption that ai(t) = 1. The 

acceleration u and assumed deflected shape are in general vector 

quantities having components in directions other than normal to the 

longitudinal axis s. For any element of the bridge, As, the inertial force 

due to that unit acceleration is given by 

d(s) = M(s) j(s)as (B-12) 

where M(s) is the mass per unit length of bridge element. 

Let Q be a force corresponding to the k coordinate. For a set of
k 

virtual displacements Kik = ITOak(k=1, 2, ..., n) the total work produced by 

the Q (Sa plus the total work produced by the inertial forces undergoing the
k k 

virtual displacements must add to zero by virtue of the theorem of virtual 

work: 

Mai+ ... +Qi6ai+ +Qn6an+fM(s)i-pi(s)*(511(s,t) ds 

+...+fM(s) i(s)*(5Di(s,t)ds+...+IM(s)t-pi(s)*ain(s,t)ds = 0 (B-13) 

where the integrations are over the entire bridge. There are likely to 

exist many other forces, such as reactions, that result from the unit 

acceleration. However, since motions of the bridge are described completely 

by the coordinates, ak, at least to within an acceptable error, none of 

those reactions or other forces will produce work. 

If all but the ith virtual displacements equal zero, then 

-Qi dai = IM(s)ali(s,Wys)ds (B-14) 

Since 6.(s,t) i.(s)6ai and since (Sal is non-zero, 6ai can be divided from 

both sides of equation B-l4 to yield 

-Qi = fM(s)1Ti(s)*ys)ds (B-15) 

159 



	

	

	

	

	

	

	

Instead of considering the force in the i coordinate direction resisting the 

acceleration, consider the equivalent force in the i coordinate direction 

produced by the unit acceleration. By definition this force is mij, and 

therefore 

mij = fM(s) i(s)'iki(s)ds (B-16) 

In a similar manner the inertial terms mxi, myi, and mzi can be found. 

Assume that 0 =1, while holding U  and U and all relative bridgexg zgY9 

accelerations fixed. For i equal to the unit vector in the 0x, direction, 

an elemental inertial force due to this unit ground acceleration is 

AF(s) = M(s)TAs (B-17) 

If the bridge is subjected to the single virtual displacement (Sili(s,t), then 

from the theorem of virtual work, 

Qi dai+fhl(s)ni(s,Wids = 0 (B-18) 

or again, 

Qi+.01(s) i(s)*Tds = 0 (B-19) 

By definition, mxi is the force in the i coordinate direction produced by a 

unit acceleration 0  ; therefore 
xg 

mxi = fM(s)lpi(s)*ids (B-20) 

In an analogous manner, 

myi = 111(s)1Ti(s)'3ds (B-21) 

and 

= fM(s) .(s)*ids (B-22)mzi 1 

where 3 and k are unit vectors in the directions of Uyg and 0 ,zg 

respectively. 

Equation 8-9 rewritten is again 



	

 

	
	

	
	

	

	

[m]{a}+[c]{(X}+[k]{a} = -{mx}ijxg-{my}.0yg-fmz1Uzg (B-23) 

where the inertial terms are defined by equations B-16, B-20, B-21, and B-22 

in terms of the assumed deflected shapes i(s). In practice the terms kij 

can also be found in a similar manner. The terms c are rarely found in
ij 

this form. 

In general, all elements of the mass matrix [m], the damping matrix 

[c], and the stiffness matrix [k] are non-zero, making the solution 

difficult. There does exist a special set of deflected shapes, 1(s), 

called normal mode shapes, and corresponding coordinates fli(t) that greatly 

simplify the solution of equation B-10. Instead of expanding the 

displacement 

11(s,t) = ipl(s)al(t)+ + n(s)an(t) (B-24) 

expand it in terms of normal modes: 

= gyshi(t)+ -in(s)nn(t) (B-25) 

Then all off diagonal masses 

mij = fM(s)ci;i(s).4;(s)ds (B-26) 

equal zero for ij, as well as all off-diagonal terms of [C] and [K]. It 

can be shown that for all real, symmetric, positive definite mass and 

stiffness matrices for stable structural systems a set of normal modes can 

in fact be found such that all Mii = 0 and Kij . 0 for i j (Biggs, 1964; 

Clough and Penzien, 1975; Hurty and Rubinstein, 1964). In general, the 

off-diagonal terms Cij may not be zero but quite often are very small. In 

such cases it is usual to assume that they are zero so that all matrices 

[M], [C], and [K] are diagonalized by the coordinate selection. 

Standard methods to find these normal coordinates are outlined in texts 

on structural dynamics (Biggs, 1964; Clough and Penzien, 1975; Hurty and 
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Rubinstein, 1964) and will not be considered further here. To analyze the 

vibration records it is enough to know that normal modes exist, and there is 

no special need to know how to find them analytically. 

For the specific set of normal coordinates, equation B-10 is written 

[M]{fi}+[C]{;}+[K]{n} = -{Mx}Uxg-{My}Uyg-{MdUzg (B-27) 

where [M], [C], and [K] are diagonal matrices (having all off-diagonal terms 

equal to zero). Because of the special diagonal form of all matrices, the n 

equations of motion can be written as n uncoupled single-degree-of-freedom 

simple-oscillator equations of motion, the ith of which is 

M Ti +C ;+K n = 4 U -M U 4 U (B-28)
i i i i i i xi xg yi yg zi zg 

where the inertial terms are defined by 

= IM(s)(1)(s)' cp-.i(s)ds (B-29)Mi 

Mxi = IM(s)Cp-i(s)qds (B-30) 

Myi = fM(s) i(s)'3ds (B-31) 

and 

Mzi = fM(s)fi(s)1(ds (B-32) 

Again, all integrals are over all elements of the bridge. 

If equation 6-28 is divided by Mi then this modal equation of motion 

can be written in the alternate form 

• 2 _ __ .fl .., iii ..- ilz (B-33)
fli+2Ciwini+wini - lxi uxg Ty 'yg 'z' g 

where the obvious definitions are made 

Ci C /2,/k M (damping ratio)
i i i 

= A./M. (natural undamped circular frequency of vibration)
wi 1 

y = M M
Xi Xi i 

y M M (participation factors)
yi yi 1i 
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Yzi = Mzi/Mi 

The wi have the physical significance that wi.27fi where fi is the 

approximate natural frequency of vibration (in Hz) of the ith mode. It is a 

property of the mode that if the mode could be perturbed alone, it would 

vibrate solely at that frequency. The damping ratio i also has the 

physical significance of equaling the ratio of damping in the bridge 

(capability of dissipating energy) to the value of critical damping. 

Critical damping is defined as the minimum damping for which a perturbed 

shape will return to its initial shape exponentially rather than in an 

oscillatory manner. In practice, most bridges are very lightly damped 

having <0.1. 

Finally it can be said that a mathematical model of a bridge, if 

formulated under the assumptions presented here, can be characterized by the 

natural frequencies wi , the modal damping ratios Fi, and the participation 

factors and yzi. The participation factors are solely functions 

of the mass distribution M(s) and mode shapes ;i6i(s), the usual third modal 

parameter. The normal mode formulation of the problem is powerful because 

typical bridge responses may be very accurately described in terms of a very 

few normal coordinates. 
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APPENDIX C 

COMPUTER PROGRAM LISTINGS 

Subroutine FIT 

Subroutine FIT solves for the best-fit values of A(I,J) such that 

the left side of 

[A]{F(t)} . {B(t)} 

fits the right side in a least-squares sense. {F(t)} and {B(t)} 

are known time histories. 

OUTPUT 

A(NN,NM) Matrix of unknown coefficients to be found 

[A] = [[C][K]] 

INPUT 

B(NN,NP) Vector of known time histories 

F(NM,NP) Vector of known time histories 

IJ(NN,NM) Array of unknown coefficient indices: 

IJ(K,L) is the unknown coefficient index for 

the term A(K,L) 

NE Number of independent unknown coefficients 

in [A] 

NM Twice NN 

NN Number of system degrees of freedom 

NP Number of points in known time histories 

NS Starting index of known time histories 

NF Finishing index of known time histories 

P(NE,NE) Scratch array 

Q(NE) Do. 

R(NE) Do. 
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subroutine fit(a,b,f,p,q,r,ij,ne,nm,nn,np,ns,nf,err) 
dimension a(nn,nm),b(nn,np),f(nm,np),ij(nn,nm) 
dimension p(ne,ne),q(ne),r(ne) 
do 10 i=1,ne 
q(i)=0. 
do 10 j=1,ne 

10 p(i,j)=0. 
do 50 1=1,ne 
do 50 i=1,nn 
do 40 j=1,nm 
if (ij(i,j).ne.1) go to 40 
do 20 k=1,nm 
m=ij(i,k) 
do 20 n=ns,nf 

20 p(1,m)=p(1,m)+f(k,n)*f(j,n) 
do 30 n=ns,nf 

30 q(1)=q(1)+b(i,n)*f(j,n) 
40 continue 
50 continue 

call solve(p,q,r,ne) 
do 60 i=1,nn 
do 60 j=1,nm 
k=ij(i,j) 

60 a(i,j)=r(k) 
err=0. 
cbb=0. 
do 80 i=1,nn 
do 80 n=ns,nf 
dum=b(i,n) 
cbb=cbb+dum*dum 
do 70 j=1,nm 

70 dum=dum-a(i,j)*f(j,n) 
err=err+dum*dum 

80 continue 
err=sqrt(err/cbb) 
return 
end 
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Subroutine SOLVE 

Subroutine SOLVE solves the system of n linear equations 

[A]{X} = {6} for the vector of unknowns, {X}, using the Gaussian 

elimination procedure. The matrix [A] and vector {B} are destroyed 

in the process. 

OUTPUT 

X(N) Vector of unknowns 

INPUT 

A(N,N) Matrix of coefficients 

B(N) Vector of knowns 

N Number of equations to be solved 



subroutine solve(a,b,x,n) 
dimension a(n,n),b(n),x(n) 

c subroutine solve solves the set of linear equations of order n 
c [a][x].=[b] 

do 50 k=2,n 
m=k-1 
nn=0 

5 if(a(m,m)) 40,10,40 
10 nn:nn+1 

if(nn.gt.n) go to 200 
do 20 j=1,n 
ad=a(m,j) 
a(m,j)=a(m+nn,j) 

20 a(m+nn,j)=ad 
bd=b(m) 
b(m)=b(m+nn) 
b(m+nn):bd 
go to 5 

40 do 50 i=k,n 
c=a(i,m) 
b(i):b(i)-b(m)*c/a(m,m) 
do 50 jr.m,n 
a(i,j).---a(i,j)-a(m,j)*c/a(m,m) 

50 continue 
x(n)=b(n)/a(n,n) 
1=n-1 
do 70 kr-1,1 
m=n-k 
dum=0. 
do 60 j=m,1 

60 dumr-dum+a(m,j+1)*x(j+1) 
70 x(m)=(b(m)-dum)/a(m,m) 

go to 300 
200 write(6,210) 
210 format(//," singular matrix") 
300 continue 

return 
end 
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APPENDIX D 

CONVERSION FACTORS TO SI METRIC UNITS 

inches (in) 
inches in 
inches in 

feet (ft) 
yards (yd) 
miles (mi) 

degrees (°) 

acres (acre) 
acre-feet (acre-ft) 
gallons gal) 
gallons gal) 

pounds (lb) 
tons (ton, 2000 ib) 

pound force (lbf) 
pounds per sq in 
(psi) 

pounds per sq ft 
(psf) 

foot-pounds (ft-lb) 
horsepowers (hp) 
British thermal units 
(Btu) 

British thermal units 
(Btu) • 

Definitions 

meters (m) 
centimeters cm 
millimeters mm 

meters (m) 
meters (m) 
kilometers (km) 

radians (rad) 

hectares (ha) 3 
cubic meters (m )

3
cubic meters (m ) 
liters (1) 

kilograms (kg) 
kilograms (kg) 

newtons (N) 
newtons per sq m 
(N/m2) 

newton per sq m 
(N/m) 

joules (J) 
watts (W) 
joules (J) 

kilowatt-hours (kWh) 

Conversion Factor 

0.0254 
2.54 
25.4 

0.305 
0.914 
1.609 

0.0174 

0.405 
1233 

-3
3.79 x 10 

3.79 

0.4536 
907.2 

4.448 
6895 

47.88 

1.356 
746 

1055 

-4
2.93 x 10 

newton - force that will give a 1-kg mass an acceleration of 1 m/s 
joule - work done by a2force of 1 N over a displacement of 1 m 
1 newton per sq m (N/m ) = 1 pascal 
1 kilogram force (kgf) = 9.807 N 2 
1 gravity accelerAtion (g) = 9.807 m/s 
1 are (a) = 100 m4 2 
1 hectare (ha) = 10,000 m 
1 kip (kip) = 1000 lb 
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