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Evaluation of Landsat Multispectral Scanner Images 
For Mapping Altered Rocks 

in the East Tintic Mountains, Utah 

by 

Lawrence C. Rowan, U.S. Geological. Survey, Reston, VA 
Michael J. Abrams, Jet Propulsion Laboratory, Pasadena, CA 

ABSTRACT 

The East Tintic Mountains, Utah consist of folded and faulted 

Paleozoic sedimentary rocks, which are partly covered by Tertiary 

volcanic rocks. Clastic rocks dominate the lower one-third of the 

Paleozoic section, whereas carbonate rocks with subordinate amounts 

of shale and elastic rocks predominate in the remainder. Some of 

the rocks, especially the Tintic Quartzite and some shales, are 

commonly limonitic, an important factor in analysis of Landsat MSS 

images. The volcanic rocks, mainly tuffs, flows, and agglomerates of 

quartz latitic and latitic composition, are limonitic in a few places 

where hematite is present in the groundmass. 

Emplacement of monzonite and biotite monzonite porphyry bodies 

resulted in several types of altered rocks. Most widespread are 

argillized and silicified rocks, which are commonly bleached and limo-

nitic. Locally, the intrusive rocks arc also altered. Hydrothermal 

dolomite is common in the northern part of the area, and in the East 

Tintic mining district, calcitic, chloritic, and weakly argillized volcanic 

rocks and pebble dikes are widespread. Volcanic rocks subjected to an 



early phase of "intravolcanic weathering" in this district are weakly 

altered but commonly limonitic. Barren as well as mineralized veins 

are present throughout the study area. 

In situ spectral reflectance curves representing the most abundant 

altered and unaltered rocks show that the argillized and silicified 

rocks generally have intense ferric-iron and hydroxyl absorption bands 

owing to the presence of iron-oxide and hydroxyl-bearing phases, respec-

tively. These features are generally absent in the unaltered rocks, 

except the limonitic rocks, which have prominent iron absorption hands. 

Both spectral features are weakly expressed in the volcanic rocks 

subjected to accelerated weathering, On the other hand, hydrothermal 

dolomite and calcitic volcanic rocks generally lack both features, and 

thus are spectrally similar to the unaltered rocks. Chloritic rocks 

are of limited distribution and have not been measured spectrally. 

Most of the silicified and argillized areas are apparent in 

Skylab S190B, high altitude-, and low altitude color aerial photographs 

because of the high albedo of these rocks. However, many unaltered 

rocks have similar albedos and therefore are not distinguishable from 

the altered rocks. Moreover, very little color information is available 

in these photographs. These problems are further complicated by 

brightness variations related to topographic slope. 

MSS ratio images were generated to subdue the effects of topographic 

slope and albedo, and combined into several color composite images for 

displaying the spectral reflectance differences between the most wide-

spread altered and unaltered rocks. The most effective combination 



proved to be MSS 4/5, MSS 4/6, and MSS 6/7 using blue, yellow and 

magenta diazo films, respectively, rather than the MSS 4/5, MSS 5/6, 

and MSS 6/7 combination used so successfully in south-central Nevada. 

Consideration of schematic frequency distributions of ratio values for 

these two areas suggests that the lack of enhancement of limonitic 

rocks in MSS 5/6 images of the present study area is due to the higher 

frequency of low ratios representing vegetation. 

Comparison of a limonitic bedrock map produced by scanning the 

optimum color-ratio composite image with a map of the silicified rocks 

shows good agreement, except where they are obscured by vegetation. 

Measurements of vegetation density indicate that shrub cover and. 

juniper, pinyon, and sage cover greater than 40-50 and 33-43 percent, 

respectively, obscure limonitic rocks in these images. Argillized 

rocks, the most widely distributed altered rock type, were consistently 

detected in exposed areas. On the other hand, hydrothermal dolomite 

and calcitic and chloritic volcanic rocks are not portrayed in the 

limonitic bedrock map because of their general lack of limonite. Some 

altered rocks, especially veins and pebble dikes, are too small to be 

detected by the MSS except where they are closely spaced and well 

exposed. 

Another important limitation is that exposures of unaltered 

limonitic sedimentary and volcanic rocks are included in the limonitic 

bedrock map. Analysis of in situ spectral reflectance measurements 

indicates that this limitation can be largely overcome by obtaining 

radiance information in the 2.2 and 1.6 pm regions. 

• i i i 



Introduction 

The East Tintic Mountains are a generally north-trending block 

faulted range in central Utah near the eastern margin of the Great 

Basin (fig. 1). Approximately 30,000 feet of marine sediments of 

late Precambrian to Permian age are asymmetrically folded and transacted 

by several different types of faults. These rocks, mainly carbonate, 

are partly overlain by Oligocene and Miocene volcanic rocks, including 

tuffs, agglomerates, and extensive latitic, quartz latitic, and trachy-

andesitic flows. Dikes, sills, and small stocks of monzonite, quartz 

monzonite, and latite porphyry intrude all of the volcanic series. 

Hydrothermal alteration associated chiefly with the Oligocene volcanic 

activity has affected many of these rocks. Most of the ores of the 

three main mining districts, the Tintic, East. Tintic, and North Tintic, 

occur as lead-zinc-silver replacement bodies in calcareous rocks and 

pyritic-copper-gold vein deposits in quartzite and the monzonite 

porphyry. 

The central part of the East Tintic Mountains (fig. 2) was 

selected as one of three areas for further evaluation of the color-

ratio composite (CRC) technique developed by Rowan and others (1974) 

for mapping limonitic hydrothermally altered rocks in the Goldfield 

region in south-central Nevada. The other areas studied during this 

Landsat follow-on experiment (ID No. 23890) are the Virginia Range 

southeast of Reno, Nevada, andthe northwestern part of the Battle 

Mountain-Eureka mineral belt. 

1 



Figure 1 - Index map of the Great Basin showing locations of study 

areas: 1, East Tintic Mountains, Utah; 2, Virginia Range, 

Nevada; 3, Battle Mountain-Eureka mineral belt; 4, south-central 

Nevada. 
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	Figure 2 Index map of the central part of the East Tintic Mountains 

study area showing locations of cultural and topographic features, 

mines and prospects, and the East Tintic mining district (dashed 

line). 
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which includes Battle Mountain and the Shoshone Ranges in north-central 

Nevada (fig. 1). In addition, detailed studies have continued in the 

part of south-central Nevada previously evaluated by Rowan and others 

(1977). The overall objective of this Landsat Follow-on experiment 

was to determine the effects of several geologic and environmental 

factors on the ability to discriminate hydrothermally altered rocks 

in Landsat Mss images. The most important factors are the mineral 

content and spectral reflectance of the altered rocks and host rocks, 

type, areal density and spectral reflectance of vegetation, size of 

altered areas, and topographic configuration. 

The East Tintic Mountains provide an opportunity to examine a host 

rock assemblage that is substantially different from the dominantly 

volcanic rocks of south-central Nevada and the Virginia Range, and the 

siliceous, commonly ferruginous sedimentary rocks of the Battle Mountain 

and Shoshone Ranges. In addition, the alteration products in the East 

Tintic Mountains include types, such as calcitized flow rocks and hydro-

theImal dolomite, that are not present in the other areas, as well as 

argillized and silicified igneous and sedimentary rocks, which are 

common in the other study areas. Another important factor in the selection 

of this area is the presence of denser vegetation cover than is typical 

of most of the Basin and Range province. 

The pre-Tertiary stratigraphy of the East Tintic Mountains has 

been described in detail by Lindgren and Loughlin (1919), Morris (1957), 

and Morris and Lovering (1961), and the central part of the range is 

covered by 1:24,000 scale geologic maps of the Eureka quadrangle 

2 



	 

		 		 		

						
		

	

	
	 	 	

	

	

	

	
	
			
	
	
						 	
	 		

		
	
	 			  				 		 	

 
 

	

					 	

	

						

	

						

	

 

					

			

			

	 				

		
			

		

	

	

		
	

		 	

	

	

	

	 

	

	 	 	
	  

	
	

	

			 	

 

	

		  

	

	

	  
		

	

				

	

	

		
	

			

	 	
 

	

	

	

	

 
	

	

	 

	

	  
 

	

	

	

	
 

	

	

	

	

	

 

	
 

	
	 	

	

	

	

 

  

	

  

	

	

	

	

	

	  
 

	
		

  

••

,,

--7-• "'ir.'./ ,, , .. :...: . •Al , '•
V 

. 0 C ,t4, kr. ' 

.,1 •,- -. , . ../ SS ., '.., ... •--1, ... •. ,.., 
Iii . -:;c: , ../ ' '•.< 

1-) . ' 'i• ' ''' -;:.i.'''''. :1•',7.7..'1.• Q Ts 
' ( . • 1 V :'*••-•;.--: •••! — ,- -:•• P"' ‘''' .: -"..' • 

\ .-^ f', J --,iis? •- .. , ,... : ,; 
• •E'•DO •••' -.• ' i' ik iNk0'' '!•• 1 s - °‘,..' i •••• ' • Tss'1;-V'- .• ''' ..; ' ,'' ,.--'''... ••1, , &PI 

• \,•-•••••,•••• Li ,--..., ,-, .T..•-",•.,--; ,/ i IS ,--,', MI.„,,,,.,00 Tp \ D O. . •. . • .,':.‘s.cu _ ,••-7. • • i(-;-:,./c . . • . .i T 1 s Tp _ i cm, .......„, , gx.- (7,, % , 0,4 .• .•:.---,r •;) e, 
.: %.,. • . 
vIO • . PACK A •:'.:1 PtAK %-....\„....s_._.1:•)--,. , - ••• ''''' _ 

ri . • . - *. • 23136 M •• • • Tc,•(1 • TO.l'. '''''t, OTS . #7-• 'op • . • • • . •NASt • . •' • • ••••• • , Too Tss'N̂  . • ,•.000 .A.,... ' .- '4' • • .-,' • 
....... .... ... ' . ' ... • •0t . .C°.•'•-• • • • -s ' •• • ...1) / '.'. Z.:- . . 

-; „ ....... •-‘1- r • • • * • • • :\ T Tpc
',): k ''• 'v; cm ,cu 

• 
• -

P 

• 
- • , • 

OTs • • - :.* 0.'••‘• • ..r)*'.; 
- CCU, • '•.‘• , • • ..;fil;..•-•;- -•.• • .f • 

•••..T......ds:‘ 4".••• 

•.• .• 'T1 - • • • .. 

A A' 

.. : Uli ..> 
. :
•. CM-7f' , 
. 6 \ ./-'.. s41,,,4,.--,;: 

C •:(:' 

, : .•t,-, , ••4,, .' 'Li ' : > ' -; (• i c!, /Cm.;;F„...•,,'- S6-UTP): 
4'./AUX ' • • ,:?4'i.) .: j •*. .•:',...A•sin ON ::7;:.MAMMOTH _43 ,,........ ......1.:'. 

( to Eljs:RTETD(.:AmT4i: ...... 
''.. elkIt--c-mr . • sc .‘Z.Ts v ,...... f (.. ,--,,, OfIlkTINTIC ,\,? •...v i cm 

.c.,U / f . ..1.SC ...1786 M -,,,,, lei 
55' 

\-415 iys - • 14/40Tsc .. ••• 
•/?Yo? .....k 1.11/4 . • • fl,. ...A) :••••,\, ty-,,.....4 -4 Tsci'.5N Y.• ' • "vb •' • 

T ).,n 
S 4.,„.. ... l'‘ ,,,, ,,,•.:ScitivuERmc...z.: . 11 rsc.... 3._ ".(;,-,, cs:•••-• 

,,,,,,s,
'..._ 

Z--) , v . ,„ z TtmTsc,,-.)• . N? 
' i l-Ttm'Ll'. ‘.7 Ttm-'• sc.t.a. 0 4..f.s..J c. J--0--441psix.,,,

' (cr.' scLs.,urn nuBY !i.ifrik,L.--1,LiNc..} 1.!,'"., ,,j 'SC Tlrn.... Tops... _.. • Tt m 
S , -2s, ..erki 

r-
r--
rn 
„<. 

y. i ( ' :1 •/c 1./1 (v, ,rrtm(,,..,)? rs- , tm
TSP1Tsp ,--.0s.A.r ,,?7„.-7, 

Tim Tsps 1 
Ttm-c,

(11's 

c.,,Ttm ,.... it TspomiamOND • •"'• 

1.-; r•-•—•44.4 c-3 . — — 
q--Ttm 

Tim 

Tsps 
• ....:(•.:. 
..--J 
l'orTSpS 

v•-•• f-J'---•••••,‘ ,,-•',..,-Tsps 
-;,...;',../...- 7-e. 

C,!? i•-, f3,M 1532 IA 

u}.-Tsps 

6-

OTs 

.. 
„rt.: 

,T t m 

c7.; r\--,^^)./—.S."1.— =----; -
,„ 

0..../.,-• TspP 0,
Tsp 

Tsp 

t 

Ttm t rub
c•-•"....,;(4\\p. Cr — si-10.1 

kktht• 

Ts ps 

C/)
CD 

o . 

•••••cs-' ,.... 

itTli 
-r 

(-1• .- '11 -6(4: h Tsps 

'(Ttm-52: Tsps 
e 

Lu) 

`•"(-` 

OTs 

39 50' 

_ 
_ ,•-$ (../........ 

ciTi.m\,,,,, , Tbp 

,...-...; Ns 

1.../..„...••••,, 
S--..• 

/-) Tim 
ct? , 

Ts 

b h 

•-•••••••,_ 

0 Ts Tbh 
OTs 

Tbh 

• 

Ttm. 

• e-

`---, 
Tsp) 

_rn 
1‘).1, ,•5 

2 
T •f• 
3 

T 
4 

3 - 4 A441% 

https://Tsci'.5N


Figure 3 - Generalized geologic map of the study area (after. Morris 

and Mogensen, 1978). 
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(Morris, 1964a), the Tintic Junction quadrangle (Morris, 1964b), and the 

Tintic Mountain quadrangle and the adjacent part of the McIntyre quad-

rangle (Morris, 1975). This discussion draws extensively from these 

works for lithologic descriptions of the sedimentary and igneous host 

rocks; however, because of- the low spatial resolution of the MSS images, 

reference is made mainly to the generalized 100,000 scale geologic map 

of the study area and a composite columar section shown in figure 3 and 

table 1, respectively (from Morris and Mogensen, 197S). A more detailed 

analysis is presented for the East Tintic mining district, however, 

because of the presence of a large variety of hydrothermal alteration 

products (Lovering, 1949). 

Particular attention is given to variations in surficial limonite 

content because of the common association of limonite with oxidized 

sulfide-bearing altered rocks and its diagnostic spectral reflectance 

in the MSS response range (Rowan and others, 1974; 1977). As used here, 

limonite consists mainly of hydrous iron-oxide minerals. Goethite is 

commonly dominant, but hematite and jarosite are also present; the 

individual mineral names are used where the components can be readily 

identified in the field. Spectral reflectance features at longer wave-

lengths are also considered, as these features may provide a basis for 

overcoming some of the limitations imposed by the MSS. No attempt has 

been made to evaluate the MSS images for structural information, even 

though north to north-northeast-trending faults were important in 

localizing ore minerals (Morris and Lovering, 1961) and some faults 

are quite apparent in the images. 

3 
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