UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

International Geological Correlation Program

PROJECT 98 - COGEODATA WORKSHOP ON

COMPUTER APPLICATIONS IN MINERAL RESOURCE PROBLEMS

Ву

R.B. McCammon¹, J.M. Botbol¹, A.L. Clark¹,
R. Sinding-Larsen², and A.C. Olson¹

Assisted By

K. Lee³, N.A. Wright¹, J.T. Hanley¹, and R.M. Turner¹

Open-file Report 78-865 1978

U. S. Geological Survey
OPEN FILE REPORT
This report is preliminary and has
not been edited or reviewed for
conformity with Geological Survey
standards or nomenclature.

 ¹U.S. Geological Survey, Reston, Virginia 22092
 ²Norway Geological Survey, Trondheim, Norway
 ³Korea Geological Survey, Seoul, South Korea

Table of Contents

		Page
Preface		1
Example	I. Data Base Construction	3
Example	II. Utilization of a Mineral Deposit	14
	Data Base	
Example	III. Decision Modeling	23
Example	TV. Toromocho Porphyry Copper Model	40
Example	V. Computer Applications Software for the	57
	National Coal Resources Data System	

List of figures

· . . .

			Page
Figure	1	Sample of original data document	5
Figure	2	Unit records of raw data	7
Figure	3	Reformatted unit records	9
Figure	4	Ancillary files for CONVERT to GRASP	11
Figure	5	Dump of records from GRASP	13
Figure	6	GRASP commands	16
Figure	7	Examples of GRASP retrievals	18
Figure	8	More examples of GRASP retrievals	20
Figure	9	Map display of selected Korean	22
		mineral deposits	
Figure	10	Known mineralized area in central Norway	24
Figure	11	Variable selection	27
Figure	12	Associations of variables .I.	29
Figure	13	Associations of variables .II.	31
Figure	14	Selection of subsets of variables	32
Figure	15	Weight calculation	35
Figure	16	Degrees of association	36
Figure	17	Similarity map	39
Figure	18	Initiation of "GRASP" scenario, selection of	42
		data base, and display of stored variables	
Figure	19	Definition of new variables, selection of	44
		retrieval conditions, and establishment of	
		logical relations between variables	
Figure	20	Data base search, retrieval and output list	46
		specification	

List of figures (continued)

		Page
Figure 21	GRASP exit to multics and PLOTEM initiation	48
Figure 22	Selection of file to be processed, variables to	50
	be evaluated and type of map to be generated by	
	PLOTEM	
Figure 23	Grade/tonnage curve	52
Figure 24	Selection of contour intervals and frequency	54
	distribution generation	
Figure 25	Plan map of data values	56
Figure 26	Contour plot of a topographic surface	59
Figure 27	Structural contour map of a coal bed	61
Figure 28	Coal isopach map	63
Figure 29	Thickness of overburden map	65
Figure 30	Ratio of thickness of overburden to coal	67
	thickness map	
Figure 31	Example of coal resource map with eroded	69
	region excluded	
Figure 32	Coal resource map which satisfies specified	71
	conditions	
Figure 22	Tanagnaphia contour man of USCS 71 minute augdmangle	72

Preface

The purpose of the workshop is to provide an overview of the methodology for creating geologic data bases and the subsequent utilization of the data via interactive computation and computer graphics for resolving specific resource problems. To meet this overall objective, the workshop has been organized to follow from the creation of a mineral resource inventory file through specific resource applications. The workshop is made up of examples which illustrate the nature of this activity. The examples are:

- I. <u>Data-Base-Construction.</u> A step-by-step explanation of the development of a computer-based mineral deposit inventory beginning with the conversion of a "needle-sort" card file to GRASP using CONVERT. Emphasis is placed on the principles of data base construction and the general applicability of interactive files.
- II. <u>Utilization of a Mineral Deposit Data Base.</u> Demonstration of interactive data retrievals using GRASP. The example illustrates the relationships between the data retrieved, its use, and subsequent display. An application of computer graphics is included.
- III. <u>Decision Modeling.</u> Demonstration of decision modeling applied to mineral deposits in Central Norway. Included are syntheses of remote sensing, geologic, structural and geophysical data for the purpose of identifying favorable areas of search for future exploration.
- IV. Toromocho Porphyry Copper Model. A detailed analysis of the application of computer graphics to a geologic data base for the Toromocho porphyry copper deposit in Peru. Primary emphasis is placed on

the use of computer graphics in resolving specific economic, policy and engineering problems.

V. Computer Applications Software for the National Coal Resources

Data System. - An example of a large "custom-tailored" data retrieval
system and the subsequent treatment processes presently used for the
coal resources program of the United States Geological Survey. In this
system, the data attributes and the user community are prime considerations.
Computer graphics are utilized to meet specific requirements in coal
resource estimates.

EXAMPLE I

Data Base Construction

Existing worldwide mineral deposits data far surpass the resources of any organization to properly handle on a day-to-day basis. The increasing demand for data on short notice in varying formats literally demands that the data be stored in a computer processible form. For data stored on cards, sheets of paper or other forms which require manual retrieval, the need to convert to a computerized form is obvious. The following illustrations provide a step-by-step explanation of a conversion of a "needle-sort" card file on mineral deposits in Korea into a fully processible computer-based data file. The steps outlined in the following five figures provide a general guideline as to how data bases can be constructed.

Sample of original Korean mineral deposit data document

The original data document in figure 1 is not unlike much of the original data which exist on mineral deposits in current files worldwide. There is no doubt that this kind of information is valuable; in its present form, however, any use of information of this type either for reporting purposes or for analysis is all but impossible. Clearly, here is a situation where a computerized system for storage and retrieval of data is justified. With such a system, data could be retrieved, manipulated, and displayed in any desired format. Furthermore, the existing data could be updated without serious difficulty. Let us consider, therefore, constructing a mineral deposit data file using GRASP (Bowen, R.W. and J.M. Botbol, 1975). The data for the example are based on Korean mineral deposit records on file at the U.S. Geological Survey.

P %d Ot Ppd Ppd Ppd FM 175	100's tens LOT NUMBER units	I W Fos.P. m . ch 1 U C N Fos. ch s o col. mouns Unit WESTERN PHOSPHATE PROJEC	
113	em Changou Mo		Cp Bed no. 1569
	Sample no. Unit description:	175m Jeep.	Fos. col. so.
	Subunits Disau. Spi. 1915 So country to intended by diver Change wine is in a Divid	SECTION STE NIGHT	Th. of bedding H Color C epilo. 50-55W. ole lench 50m
· Denniers	Abd. of Size (Phi) Pollat	felia ed maries of mi	oly abindant massive
	pellets, etc. L. Av. U. struct.	Minerals 15 m, below train 0,170-	Density

6721-III

								_									_				-	5638X	_	
	HD.	.0	DA	(tH9)	SERIN SIZE	1301	ATZ	H		TOO A	3				STYL	WINE			DENSITY	VELYSES SECIAL	NV IS		1	
	8	A		Mar.	.vA	80	4	A	9 '6	1.2	€.0	P	63	44	p	u	•		8.5.2.5.5.2		81	ı		
-,,-	*	L H-	**				ad	MY	٧<	1.4	,<			•	Pŧ	су	4	þ	8.5 < 8.5 - 5.5	od	41	Z	<u>-</u> د	-,
į				1		1							7	i	فيت	,								J

FIGURE 1

Sample of original Korean mineral deposit data document

Unit records of raw data

For the Korean mineral deposit data, the type of structure most suited for storage and retrieval is a relational data structure. For relational structure, the concept is that of a group or table of RELATIONS. The columns represent the attributes and the rows the entities. For the Korean example, the entity is the mineral deposit and the attributes are the descriptive elements of the deposit. A unit record consists of a set of descriptions for a mineral deposit. The file is the set of unit records.

The coded form of figure 1 is shown as unit record 0001 in figure 2. Note there are different data type entries; for example, "changsu mine" (name) = variable length character string, "1915" (year of discovery) = integer, and "0.1" (Mo%) = floating point. Under GRASP, there are six different data types allowed.

RAW DATA

Offichangse mine	changsu	cp 3543521273918vein type	n tube	noth	qz.or,ti.cpy	1915	15002.25
6 9. 1	1000 1926-	1926-1945					
yg country rx is in	traded by peg	yg country rx is intruded by peg dikes, qat porph, porphyrites. str'n19-154 dip 80-854. belowth	prites. str	.n10-15w dip 80-85w	.belouth		
0002unsu mine	korying	ksp3548031281754vein type	a type	gold,silver	2	*	380 6.20
		0.004131941					
velns are in fault fir	fissures in gr	isures in granite, strike n dip 70m, nativeform of gold, sulfide minarals are rare.	w. nativef	orm of gold. sulfid	o minarals are ra	ë.	
0003tukchas mine 1 1 1c5	suncheon	cn 3458121271606fissure fillinggold, silver	sure fills	nggold, at lver	Ades Ad		106 0.5 12
		16.8 28 1959		42 1959			
metasediments(sch, h	ornfals,qzt) i	metasediments(sch,hornfels,qzt) intruded by granite. str n dip 65e	rn dip 65	•			
0004heren mine 1	heren	ksn3511231282324vein type	a type	rdo	Lind 'Ad 'Ades		9.45
••		v•					
oldest mine. consists		of 6 workings, str n dip 70m, yeonnek prod 5 tons co	nnok prod	5 tons co			
00051 lguang mine	tongnas	ksn3518131291331breccia pipe	ccis pips	cu,gold,silver	aspy, Fyrr, py	1931	
37.	371800 1938-19450.12	50.12		9.00			
ountry rx is grano serves of %c low grade.	diorite stockm	granodiorite stockwork of veinlets of q associated ore minerals. alteration is characteristic.	.sociated	ore minerals. altere	ition is cherecter	ristic.	large re

7

Reformatted unit records

To provide ready access for GRASP, the unit records in figure 2 are reformatted for use in the CONVERT program (Bowen, R.W., 1977) which is used to generate the files expected by GRASP. In this instance, a fixed record length of 80 characters per line is specified. The columns are divided into fields and within each field is a number, a character string or a blank which represents the value of the respective attribute.

REFORMATTED DATA FILE

commodity	ñ}o∎
	edha 1
type	ر و ب د ب
Latitude-Longitude type	changsu cp 3543521273918vein J 1915 15002.25 Disc.Date
	.25°
	15002
Location	changsu 1915 Disc.Date
•	0001changsu mine qz,or,ti,cpy Assoc.Minerals
Rec.No. Name	0001ch 42

	is intruded by peg dikes,qzt porph,porphyrites. str ni0-15w dip 80
	وي و
•	h, porphyrites.
945	orpl
26-1	ب ب ب
102	9 ,8
1000 1926-1945	peg dike
	þĝ
	intruded
9.1	13
	yg country rx -85w.belouth

gold, silver	
korying ksp3548031281754vein type	0.20
ging	4 380
athe 1	5d
900	

0.004131941

9

veins are in fault fissures in granite. strike n dip 70w. nativeform of gold. su liide minerals are rare.

n cn 3458121271606fissure fillinggold, silver 100 0.5 12 15 suncheon 0003tukchae mine fidse'fid

16.8

metasediments(sch,hornfels,qzt) intruded by granite. str n dip 65e

FIGURE 3

Ancillary files for CONVERT to GRASP

In addition to the raw data file in figure 3, the CONVERT program requires files which contain information on the structure of the raw data file. The data definition (DD) file contains the name of each variable, the data type and the position of the field in the input records of the raw data file. The first record of the DD file contains the total number of fields, the total number of characters in each record of the raw data file, and the number of lines (that is, 80-character groups) to skip before processing begins. The mask file contains the name of each variable and the data type. The definitions file contains this same information together with the complete description of each variable.

Once these files and two others have been generated, the CONVERT program is executed. It is at this stage that the data are compressed and stored for later retrievals by GRASP.

Q	ATA DI	EFINITI	DATA DEPINITION PILE	MAS	MASK FILE		DEFINITIONS FILE
764 18 .	0		•	87			
recno	-	•		recno 1	•	entire .	
name 6	~	-		9 96 0		/8 -	
county 6	20	*		county 6		ויינים	•
state 6	35	m		state 6	•		
Latdy	20 C	Š.		50101			
[1000]	9;					latdo	
19180	*			1 20101	-	Later	
60600	7.7					Letsc	
Lonesc 1	3			Longsc		Longua	longitude, degrees
dept yp 6	51					Longer	
Oremin 6	99			oremin 6		Shuol	, C
assmin 6	86			essmin 6		deptyp	
yrdisc 1	101			yrdisc 1	•	Clearo	_
SUAO			•	novns 1		C1 25 20	197
داء			•	avin 2		7 23 50	year of discovery
5				2 1300			3
•				avtnk 2			
				Maxin C		****	
				7 - 3 - 3 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5		Class	× • • •
				bix 2		Baxen	vein
204				biapr 2		Baxth	. sexisos vein thickness
707				biyror 1		b) 4	
				bicp 2		Diapr	
icpyr				bicpyr 1		סוארם	
						DICD	ונח כנישטופר
				Oapr		01097	year of Dismuth cum, prod.
ŗ				COYFDT 1		COAD	
				2 0000		COVED	1000
cocpyr 1	100	203		ni:		2 0000	1 C C B C
100				niepr 2		COCDYF	year of cobalt cum.orod.
1014				nivror 1		2 7 10	2553Y
100				nicp 2	•	ב ביי	nicket ennuet production
) y C				nicpyr 1		. niyror	_
, ex				tek		2010	STOKEL COMCLETIVE DIOCECTION.
				feapr 2		- 7400 CA	year of mickel complative product
eyror				Teyrpr		fean	1 40000
				7 000		feyror	of iron
				as 4 2 2		fecu	cumulative prod
FOES				asapr 2		fecpyr 1	
Syrpr				asyrpr 1		2 %50	C ASSAY
scp				ascp 5		a Sapr C	c annual pro
7.				ascoyr		7	bronding compatibation production
				707		3 2204	and the second
Doepr c					•	5 2 2 dd	8 S S B Y
				obco 2		Jospe . 2	
ŕ				pbcpyr		pbyrpr	
				2 242		ppcp 5	cumulative production
znapr 2				znapr 2	•	pbcpyr	of lead
ŗ				Znyrpr 1		2 707.07	
				zucb	FIGURE 4	Zuapr 2	annual producti
7,40				zacovi i		6. 0344	SAN COMMENT AND CONTRACTOR
				2 200	Anothlam files for	4	
				7 10000	Contract the contract	2 2 2 2	
raryon					CONVERT to GRASP		

Dump of records from GRASP

Using GRASP, the entire contents of each unit record can be displayed. In this instance, the contents of the first two records of the Korean mineral deposit data base are shown in figure 5. The first record can be compared with the original data document in figure 1. In the next example, a variety of GRASP retrievals are presented.

References

- Bowen, R.W. and Botbol, J.M., 1975, The geologic retrieval and synopsis program (GRASP). U.S. Geol. Sur. Prof. Paper 966, 84 p.
- Bowen, R.W., 1977, >udd>GRASP>grasp.info., U.S. Geol. Sur. Honeywell Reston Multics System, 4 p.

ENTER NUMBER OF LINES-PAGE: 80

```
Continued to the property of t
```

13

EXAMPLE II

Utilization of a Mineral Deposit Data Base

In the previous example, it was demonstrated step-by-step how a mineral deposit data base can be constructed. In this example, it is shown how such data are retrieved, manipulated and displayed. The retrievals are made through GRASP.

The following four figures illustrate some of the many possible GRASP retrievals.

GRASP commands

GRASP is a program to provide retrieval and manipulative capabilities for two-dimensional relational data bases. Intended for use in a time-share computing environment, GRASP communicates with the user through a series of commands which are listed in figure 6. Once the user masters these 15 commands, the user commands GRASP. In figure 6, the help command has been executed. A GRASP session consists of a series of such commands.

GRASP commands

ENTER COMMAND: help

ENTER COMMAND

INITIATES THE REQUEST FOR RETRIEUAL CRITERIA TO BE ENTERED IN THE FORM: NAME REL UALUE cond-

THE COMMANDS WHICH MAY BE ISSUED (AND THEIR MEANING) ARE LISTED BELOU:

INITIATES THE REQUEST FOR A LOGICAL EXPRESSION TO BE ENTERED - 1 Bol

USING LOGICAL OPERATORS. INITIATES THE SEARCH OF A FILE BASED UPON PREUIOUSLY ENTERED CONDITIONS AND LOGIC. Sear

ALLOWS THE USER TO LIST SELECTED VALUES (VARIABLE NAMES WILL BE ASKED FOR) IN A FILE. list-

USED. ALLOWS THE USER TO SELECT OR CHANGE THE DATA BASE TO BE file-

TERMINATES THE SYSTEM. quitUSED TO PRINT ITEM NAMES, THEIR TYPES AND DEFINITIONS IN SELECTED SET OF GROUPS.
USED TO OBTAIN THE ABOUE COMMAND DEFINITIONS. -DERL

LISTS THE FILES WHICH HAVE BEEN USED AS WELL AS THE CONDITIONS AND LOGIC ENTERED. revi-

PRINTS ALL ITEMS PRESENT FOR EACH RECORD IN A SELECTED FILE. dunp-

A DATA PROVIDES FOR THE COMPUTATION OF FUNCTIONS ON ITEMS IN WAITS AFTER EACH N LINES func-

SET (OR FILE). USED TO DEFINE NEW VARIABLE NAMES IN TERMS OF ORIGINAL ITEM NAMES (NAME=EXPRESSION) defi-

USED TO APPEND ONE GRASP FILE TO ANOTHER. THE TWO FILES MUST EXECUTES THE CONVERT PROGRAM. HAVE IDENTICAL STRUCTURE appe-Longo

PERMITS EXECUTION OF MULTICS COMMANDS. 用なしたー

Examples of GRASP retrievals

A broad spectrum of retrieval and data manipulative capabilities are possible using GRASP. In figure 7, a few of the possibilities are shown. The function command provides for the computation of functions for items in the data base. In the example, the mean statistics are requested for the annual Cu, Zn and Pb production, respectively. Only a few records contained information on production; however, the results are reported even if the information is available only for a single record. The conditions command initiates the request for retrieval criteria. In the example, the conditions are that the annual production for Cu, Pb, Au and Zn be greater than zero. The logic command initiates the request for a logic operation. In the example, the conditions are combined by a logical .OR. relation. The search command initiates a search of the data base based on the previously defined logic. The user can create a file of the output of a search. In this case, the output file is given the name "sample" and contains the 11 records which satisfied the request. The list command allows the user to list selected values in a file. In the example, the type of deposit, name of mine and the ore mineral of the 11 records in "sample" are requested. The items can be listed by column or by row as shown in figure 7 and continuing in figure 8.

ENTER CORRANDS CURCLEON	enter command: List
ENTER NAME OF FILE! FUNCTIONS AUAILABLE AT THIS TIME ARE!	ENTER NAME OF FILES sample
ENTER FUNCTION NAMES AND CORRESPONDING ARGUMENTS.	ENTER MUMBER OF LIMES/PACE! AT EACH PAUSE PRESS OR KEY TO CONTINUE. TO ABORT ENTER M.
1. meen cuapr, inapr, phapr	3 TYPES OF LISTING ARE POSSIBLE: C - COLUMN TYPE (DEFAULT FORMAT)
ໍ	U - COLURN TYFE (USER FORMAT) R - ROLI TYPE
MEAN STATISTICS FOR CUBBY UITH 3 ITEM(S). NIN- 9.59600 MAX- 51.5020 MEAN- 31.0653	SELECT C, U, OR R! c
UARIANCE 435.789	WOULD YOU LIKE OUTPUT TO BE TO DISK? (y OR m): A
NO UALUES PRESENT FOR INAPT	BOULD YOU LIKE THE OUTPUT SCRTED? (4 OR m)! M
REAN STATISTICS FOR PARPY WITH 1 ITEM(S).	ENTER THE LIST OF ITEM NAMES.
	1. deptyp
	3. oresin
ENTER CONTAND: conditions	
A. cuapr gt 6	
B. phapm gt 0	
C. scapy at 6	og un
	typ seogyon
,	typ kimjao m
ان 8ــــــــــــــــــــــــــــــــــــ	cera cyp nengoir chy
	٠٤٠ و دريا
	ピューロ ひにゅう D にゅう B にゅう B にゅう B にゅう B にゅう B にゅう
ENTER COMMAND: Logic	
ENTER LOGIC: a.cr.b.or.c.or.d	
	ENTER.COMMAND: 113t
ENTER COMMAND! sear	ENTER MANE OF FILE! sample
ENTER IMPUT FILE NAME: kormf	ENTER NUMBER OF LINES/PAGE:
ENTER OUTPUT FILE MARE: sample ALL 69 RECÓRES OF kermf SEARCHED. 11 RECORES FOUND UNION SATISFY THE REQUEST. THEY MANE BEEN STORES IN Sample	AT EACH PAUSE PRESS OR KEY TO CONTINUE. TO ABORT ENTER A. 3 TYPES OF LISTING ARE POSSIBLE: C - COLUMN TYPE (BEFAULT FORMAT) U - COLUMN TYPE (USER FORMAT) D - DOLL TYPE (USER FORMAT)

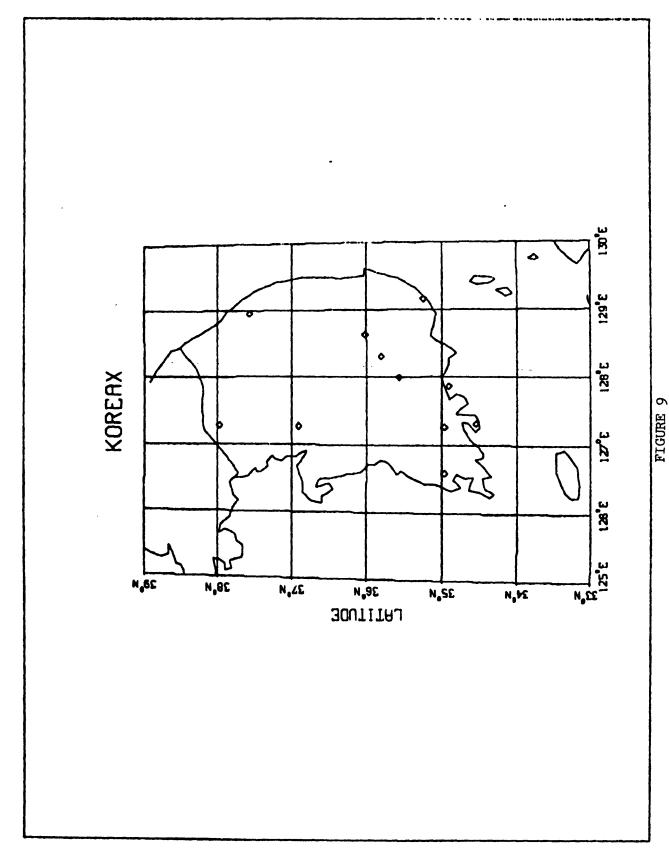
SELECT C, U, OR RI P

More examples of GRASP retrievals

The define command is used to define new variable names in terms of the original variables. In the example, the variables longdec and latdec are defined and represent longitude and latitude expressed decimally, respectively. The purpose is to generate a graphic display of selected mineral deposits. In order to determine the area to be displayed, the mean statistics of the latitude and longitude of the deposits to be plotted are calculated using the function command. The multics command permits execution of multics commands, that is, commands outside GRASP. In the example, the multics command map is executed and the appropriate input data provided. Not shown in the example was the creation of the file named "koreax" which contains the values of longdec and latdec for the deposits to be plotted.

Enter name of file with grasp-list coordinatesikoreax

Enter latitude min, max, and step size:33.,39.,1.


Enter coastline file desiredicoastlines Enter political file desiredipassa

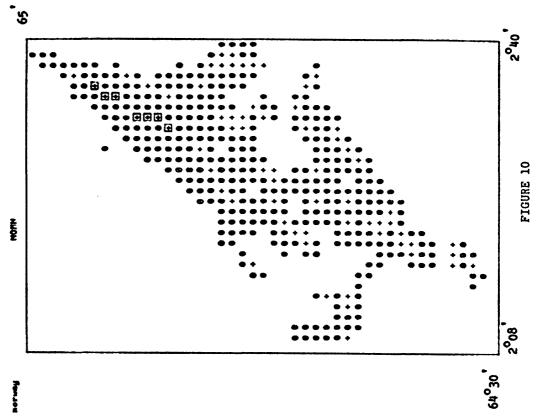
ENTER COMMAND: define

DO YOU UISH TO ENTER A NEU LIST OF NAMES? (y OR m)! n	ENTER LIST OF NEW VARIABLE DEFINITIONS (OR help for MORE INFORMATION)
	1. longdec=longdg+longmn/68+longsc/3688
•	2. letdec.letdg+latmn/60+letsc/3600
deptyp vein type nese unsu eine oreein gold, silver	ř
ATTACHMENTATION OF THE STATE OF	
DERIG - COCKTNE BING	ENTER COMMANDI function
stratestificatestratests deptyp	ENTER NAME OF FILE: SEMPLO FUNCTIONS AUGILABLE AT THIS TIME ARE!
, y	eean Enter function names and corresponding arcuments.
deptyp evera type name everage anno-	1. mean latso latso IS AN INUALID NAME. RE-ENTER LINE.
CTRACTOR STATE OF STA	1. mean latder, lond#gder
	ຸດ
onto discontinuos de la contra del la contra della contra	MEAN STATISTICS FOR Laided UITH 11 ITEM(S).
DARC COLLON SULES	SUM- 394.484 UARIANCE- 1.32038 STD DEUIATION- 1.14908
ARTHER WEIGHT AND THE STATE OF	MEAN STATISTICS FOR longdec LITH 11 ITEM(S). MIN. 126 EGE MAY. 128 167 MEAN. 127 876
	SUN- 1406.62 UARIANCE660435 STD DEVIATION812671
party with the state of the sta	
manage opposite management of the management of the first opposite the management of	ENTER COMMAND: multics
depty seem types	YOU MAY EXECUTE ANY MULTICS COMMAND, SO BE CAREFUL. ENTER GRASP SYSTEM.
	ENTER MULTICS COMMAND: map
deptyp =vein type neme = rcholme	
=	Enter desired projection:lembert
	Enter appropriate title and end with a Sikoreaxs
orion in the contraction of the	Enter longstude min, max, and step size:125.,130.,1.

Map display of selected Korean mineral deposits

From the information provided to the entry requests of the multics map command such as the desired projection, title, map area, boundaries and so forth, the map in figure 9 was produced. The data shown plotted on the map are the 11 mineral deposits having coordinate references in the data base. In a matter of minutes, therefore, a special purpose map was produced which could have been used to satisfy an immediate request, to explore some newly discovered relationship in the data base or else to provide a quick-look before proceeding with a finished product. In every case, the user is in touch with a system with dynamic flexibility and ease of operation, two very important human requirements in computing.

Map display of selected Korean mineral deposits


EXAMPLE 111

Decision Modeling

Rarely does the geologist have sufficient data to guarantee success in exploration. In part, this is due to lack of sufficient areal coverage. Considering the size of most exploration targets in relation to the area of search, it is not surprising that insufficient data are usually collected. In greater part, however, it is the limited understanding of the significance of observations relative to a particular deposit model which gives rise to the greatest uncertainty in exploration. As a partial remedy, decision modeling has been developed to assist the exploration geologist in reducing this uncertainty. Decision modeling is a computer-based method which allows the exploration geologist to create, test and apply deposit models based on multivariate data. Using decision modeling, the favorability of a region with respect to a wide variety of models is readily evaluated. Decision modeling is performed in a time share computing environment. As a result, modeling and regional evaluations are performed dynamically allowing full flexibility in model formulation and characterization of regions. A full account of the method in this workshop is inappropriate. However, the method can be demonstrated by taking an example using mineral deposit data from the Grong area of central Norway. In central Norway, massive sulphide deposits occur in rock types and geologic structures which have been mapped extensively. Remote sensing data are available also.

Known mineralized area in central Norway

Using the program, a display of the known mineralized locations in central Norway is shown. The plus (+) sign indicates that at least one ore deposit occurs within the respective cell. Each cell measures 1.25 km on a side. The zeroes (0) indicate areas in which deposits could occur based on the geology. The blank cells are considered outside the area of interest. The cells with enclosed squares represent the chosen model. The model represents an area characterized by massive sulfide deposits in a particular geologic setting. By an appropriate choice of variables, it will be demonstrated how areas of similar geologic setting outside the model area can be identified.

Variable selection

The selection of variables in decision modeling is accomplished by inspecting the observed associations among all variables. In figure 11, the 24 variables to be considered are listed. Variables 1 through 13 were derived from remote sensing data and represent density slices and the averages for bands 4 and 7. Variable 14 shown in figure 10 represents the presence or absence of mines within a given cell. Variables 15 through 19 represent the percentage within each cell of different rock types. The latter information was obtained from geologic maps prepared at a scale of 1:100,000. Variables 20 and 21 refer to distances from prominent structural features in the area. Variables 22 and 23 refer to computed values based on aeromagnetic data collected for the region. Variable 24 is a discriminant index constructed from control data outside the map area. Thus, the variables to be considered represent information from remote sensing, geologic, structural and geophysical data. For each variable, a plus (+) sign for a cell indicates a value which is anomalously greater than the values in neighboring cells. A minus (-) sign indicates a value which is anomalously lower than the values in neighboring cells. A zero (0) indicates that the value is neither higher or lower than the values in neighboring cells and a blank indicates missing data. For non-missing data, therefore, the possible values of each variable form a ternary array expressed as (1, 0, -1).

ncharan operation 3. Selection/Delation of variables.

Mext move??

Next sove??

. Vou are about to begin... Step 2. Addition/Deletion of variables to the list of selected ones.

Enter:
1 to ADD variables,
2 to DELETE variables,
CR to return to the variable selction atream.

•

Enter r to read wars. from a file, d for direct entry, CR for local atream. d

Enter the variable numbers. 1-24,X

Next sove?? 5

You are about to begin... Step 5. Return to "ncharan". CONCRATULATIONS!!! You have a consistent model.

33

FIGURE 11

Variable selection

Associations of variables .I.

For the 7 cells selected as the model, the associations among all 24 variables are shown in figures 12 and 13. In figure 12, the product matrix is displayed. The product matrix is defined as the product of the transpose of the 7x24 data matrix times the data matrix. The diagonal elements represent the difference for each variable pair between the number of positive-positive or negative-negative matches and the number of positive-negative or negative-positive matches. The highest possible value along the diagonal is 7 which happens for variable 14. Associations of the other variables with variable 14 can be seen by inspection.

```
read user-supplied weights from a file or the keyboard compute product, tally, and probability matrices print the matrices select a method and compute weights print the weights as the return to cherm a file return to cherm
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Next move??
Probability calculation:
Enter CR to bypass, 1 to use sampling-without-replacement model
or 2 to use asmpling-with-replacement model
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Document to print the product with the product with the print to print the product with the print to print the print to print the product with the product with the print to print the product with the product with the print to print the print t
"acheran" eperation 5. Computation of weights.
weight calculation steps are as fellows?
step function
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              metr1x77
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              print the telly
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1
Enter CR to execute step 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         es yesta
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Next sove??
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Ş
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         å
```

TGURE 12

Associations of variables .II.

In figure 13, the tally matrix and the probability matrix for the 24 variables are displayed. The upper right triangular portion of the tally matrix contains the number of positive-positive matches and the lower left triangular portion contains the number of negative-negative matches for each variable pair. The diagonal element of the tally match contains the number of +1's for each variable. The upper right triangular portion of the probability matrix contains the number of positive-positive or negative-negative matches for each variable pair and the lower left triangular portion contains the probability expressed as a percentage that this number is not due to chance.

By studying the associations revealed in the product, tally and probability matrices, it is possible to select an appropriate subset of variables. In the example, it is seen that variables 5, 9, 18 and 24 are anomalous in over half the 7 cells in the model and are mutually related. Thus, these 4 variables are selected as the components of the model.

000-N00-N000000000000000	
\$ \$ ** ** \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
◇ ◇ → N → ◇ ◇ ♦ → N ◇ ◇ N ™ ⊕ ● ⊕ N ◆ ◇ ♥ ™ ◇ ♦	& & → M → d & & → M & & M & & & & & & & & & & & & &
	●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
\$\$\$\$\$#\$\$\$#\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$	@ @ @ @ ~ N @ ~ ~ @ @ ~ @ ~ @ @ @ @ @ @

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆	- 6 W 6 6 6 6 6 W W 6 6 W W 6 6 W 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	######################################
000000000000000000000000000000000000000	••••••••••••••••••••••••••••••••
● ●ののは、100000000000000000000000000000000000	
# © ~ ~ ~ © D © © © © © © © © © © © © © ©	©
0000000000000000000000	••••••••
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0446600046666666664664
\$\$ ~~~\$\$\$\$ \$\$ \$\$ \$\$ \$\$	######################################
• • • • • • • • • • • • • • • • • • •	
	⊕ ഗ~๑ฅ๛๑๑๑๑ฅ๑๑๑๑๑๓๓๑๓๓๑๑๓
× × × × × × × × × × × × × × × × × × ×	• • • • • • • • • • • • • • • • • • •
3	9 G R R R
\$000AHHHH00H000000000000000000000000000	● 8 ± 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
00000000000000000000000000000000000000	68 8400 800 800 800 800 800 800 800 800 800
••••••••••••••••••••••••••••••••••••••	
به .	.
	ESSTREEM STATE OF THE STATE OF
<u>.</u>	7 U
	ii → uu → u o c m o o o o o o o o o o o o o o o o o
åi	\$ <u> </u>

31

Selection of subsets of variables

Returning to the variable selection step in the decision modeling program, the subset of variables selected for the model is now specified. The selection of variables numbered 5, 9, 18, and 24 is shown in figure 14.

"acharan" operation 3. Selection/Deletion of variables.

Next sourch

8499 6 87AV 13 DINU 20 #413 5 #480 12 @KSU 19

Maxt move??

You are about to begin... Step 2. Addition/Deletion of variables to the list of selected ones.

1 to ADD variables, 2 to DELETE variables, CR to return to the variable seletion stream. Enters

Enter r to read wars. from a file, d for direct entry, CR for local stream.

Enter the variable numbers. 5,9,18,24,1

Next sove?? 4

You are about to begin... Step 4. Print a list of current selected variables. The following are the SELECTED variables: \$413 S \$716 9 GNST 18 DISC 24

Mext sove??

You are about to begin... Step 5. Return to 'ncharan'. CONGRATULATIONS!!! You have a constatent model.

Weight calculation

For the four variables selected for the model consisting of seven cells, the product, tally and probability matrices clearly show the associations among the four variables. The variable weights are calculated as the first principal component of the product matrix. The weights are expressed in terms of a unit vector. In the example, variable 18 which represents the rock type greenstone has the highest weight and is considered the most important attribute of the model.

Of second importance is variable 24 which represents the discriminant index. Of third, and of equal importance, are variables 5 and 9 which represent different fractiles of spectral bands 4 and 7. Using the weights obtained for these four variables, it is possible to evaluate all cells in the area relative to the model.

```
Enter CR or the filename on which weights are to be saved
Enter CR to execute step 7
                                                                                                    Enter CR to execute step 6
9.0000
9.0000
9.0000
9.0000
9.0000
9.0000
                         #413
#716
GNST
DISC
                                                                                                                                                Next move??
                                                                                                                                                                                                                                                  Next move??
                                                                                                                                                                                                                                                                                            777
                                                                                                                       read user-supplied weights from a file or the keybeard compute product, tally, and probability matrices print the matrices select a method and compute weights print the weights and the weights in a file
                                                                                                                                                                                                                                                                                                                                   probability calculation:
Enter CR to bypass, 1 to use sampling-without-replacement model
or 2 to use sampling-with-replacement model
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Next move??

select a method of weight calculation

1 Printlive method

2 1 lat principal component of product matrix

3 1 lat principal component of probability matrix
or to bypass weight calculation
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Do you wish to print the probability matrix?? yes probability matrix veriable name
                                                          operation 5. Computation of weights. culation steps are as follows:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Do you wish to print the product matrix?? yes product entrix veriable name
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Do you wish to print the tally matrix?? yes tally matrix veriable name
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Enter 1, 2, 3, or CR to bypass 2
Enter CR to execute step 5
                                                                                                                                                                                                                                                                                                                                                                                                                                            Enter CR to execute step 3
                                                                                                                                                                                                                                                        7 return to charan
Enter CR to execute step 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Enter CR to execute step
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    B413 100
B716 10
GMST 61
DISC 50
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Mext move??
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Mext sous??
```

to you wish to print the weights?? yes

variable name

Degrees of association

As a prelude to mapping the similarity of cells to the model, a histogram of the computed values of similarity for the model cells and non-model cells is generated and shown in figure 16. The frequency and percent frequency are tabulated by class interval. In the example, there are seven non-model cells associated with the two model cells with the highest similarity values and it is these seven cells which are of most interest. By selecting a cutoff value of 0.72, it is possible to divide the distribution into two classes in which one class of cells is considered as being similar and one class of cells dissimilar to the model.

"ncheran" operation 6. Computation of degrees of association.

	53	class interval	node!	cetts pet	non-mod freq	non-model cells freq pct
			•	•	4	1.54
		-9.50	•	.	•	9.0
		-0.43	•	• •	\$	
		-0.36	•	90.0	••	9.38
		-6.30	•	9.60	•	6 .9
666 M 6 1 0 1 0 6 6 6 1 0 6 1 0 1 0 1 0 1 0 1		-8.53	•	90.	72	5.77
		-0.16	•	00.0	~	2.69
		-0.03	•	9.00	11	4.83
		-0.05	•	90.	9	2.31
		9.0	N	28.57	168	41.54
		6.11	•	0.00	80	3.68
		9.18		14.29	4	1.54
		8.25	0	80.0	E	5.96
		6.38	-1	14.29	92	10.00
		9.38	6	0.0	C)	8.46
		0.45		0.0		9.38
		6.58	•	90.0	6 0	3.08
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		6.59	•	0.00	m	1.15
1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		99.0		14.29	w	8.31
1 14.29 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		6.73	•	99.9	•	90.0
1 14.29 6 6 0.00 6 1 1 14.29 7		88.0	•	90.0	æ	9.77
0 0.00 1 14.29 1 7 260		9.86		14.29	9	P.31
1 14.29 1		9.93	•	90.0	•	9.69
569		1.00	-1	14.29	-	0.38
			7		269	7

"acharan" operation 7. Dispiny of computed values and/or raw data.

Next move??? 2 You are about to plot the degrees of association. Enter: Enter: CR to proceed with a plot of the degrees of association, or the number of the step to which you wish to branch.

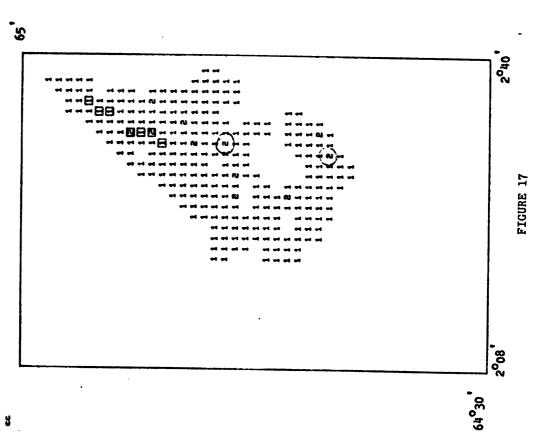

Enter CR to plot current data, or, enter name of file to be plotted. Do you wish to plot the grid(y or n)? y Do you wish to plot training cell outlines (y or n)? y Enter the desired map type. 1 Enter the boundaries in ascending order, separated by commas, and all on one line. Exclude the upmost and lowest boundaries. .72

FIGURE 16

Similarity map

Based on a cutoff value of 0.72 for the histogram data in figure 16, a map showing the distribution of the two classes of similarity is presented in figure 17. Cells with the number 1 are judged as being dissimilar. Cells with the number 2 are judged to be similar to the model. Blank cells indicate missing data. By comparing figure 17 with figure 10, it can be determined that two of the seven cells judged similar (circled in figure 17) contain known deposits. Of the 260 non-model cells for which data are available, 34 contain known deposits. Thus, even if no new deposits are discovered in the five non-model cells judged similar to the model, the number of cells with deposits "discovered" by the model is twice the number expected by chance. Such a result clearly demonstrates the value of decision modeling for exploration. Moreover, the non-model cells judged similar to the model and which do not contain known deposits are considered favorable for purposes of resource appraisal.

EXAMPLE IV.

Toromocho Porphyry Copper Deposit, Peru

In the case of the Toromocho porphyry copper deposit, the original data consisted of comprehensive conventional engineering maps, geologic maps, and assay data for 12 elements. Surface samples, samples for underground workings, and 2000 samples from approximately 150 drill holes were assayed. All data were computerized and recorded on magnetic tape.

On the basis of the area of influence of the known data, the deposit was divided into 26,000 blocks 45 m wide x 45 m long x 15 m thick. The original data set included assays for 12 elements; total copper, copper oxide, lead, zinc, silver, gold, molybdenum, bismuth, tungsten, arsenic, and antimony. It was determined that the most significant elements were total copper, lead, zinc, silver, and molybdenum. These elements were used as the basis for an "interpolated" (or "predicted") model of the mine. Using the method of Kriging, a mine model of assay values was constructed from the blocks of known metal content. This model was transformed into GRASP form for subsequent computer processing.

The following figures present a GRASP scenario which encompasses the retrieval analysis and display of the Toromocho mine model data. The scenario was executed on a Tektronix 4014 CRT (cathode ray tube) computer terminal. Due to the fact that the terminal is of the "storage tube" type display, image scrolling was not possible, and the scenario was interrupted each time the screen was filled. During each interruption, a hard copy was made off the screen image, the screen was cleared, and the scenario resumed. Thus, the eight figures that follow present a single scenario. In the figures, the user's response is underscored. Where the response is a carriage return, (CR) is indicated.

Initiation of "GRASP" scenario, selection of data base, and display of stored variables

Following the login to the computer, GRASP is initiated by typing grasp. This places the user in GRASP. The data bases available on the user's account are first displayed. In this case, there are six, and amigo is the data base selected. Amigo contains the Toromocho mine model data. The names command invokes a display of the variables that comprise amigo.

For the Toromocho model, the unit record contains the data for each mine block which has six variables; index number, total copper, lead, zinc, silver, and molybdenum. The index number is a 6-digit integer (type code = 1) in which the first two digits represent the block number in an E-W direction, the second two digits represent the block number in a N-S direction, and the third two digits represent the block number in a vertical direction. The other five variables are real numbers (type code = 2) and represent the assay values for copper, silver, lead, zinc, and molybdenum, respectively.

grasp Welcome to the usgs grasp retrieval system. At the current time the following data bases are available:

- kriged metal values for toromocha amigo

corridas- toromocha runs for all holes

- an initial RASS file moved from IBM rassfl

- Michigan Oil & Gas pools michop

- Nickel records from the CRIB file on IBM cribni

- Edited Uganda data from the BGR Uganda BEFORE ANY OF THESE DATA BASES MAY BE ACCESSED, A DATA BASE FROM THE ABOUE LIST MUST BE SELECTED.

ENTER DATABASE NAME: SMIGO

ENTER COMMAND: names

9 WOULD YOU LIKE TO SEE MEANING OF TYPE CODES?

CATEGORY: entire record NAME TYPE DESCRIPTION

1

1

Bogo

FIGURE 18

Initiation of "GRASP" scenario, selection of data base, and display of stored variables

Definition of new variables, selection of retrieval conditions, and establishment of logical relations between variables

By using the define command, the original six variables are transformed to a set of 11 new variables for use during the computer retrieval session. These 11 temporary variables are shown in figure 19.

Note that the first user entry in the define list is "read joe". This is a message to GRASP that says "a new definition list has already been created and is in a file called 'joe'; please read that file and load the definitions into the appropriate part of GRASP". Inasmuch as "read joe" is not a definition, GRASP does not begin numbering until the first definition entry of the file is actually read.

The new variable level is the height (in meters) of a block above sea level. It is calculated using the rightmost two digits of index. The mod function is used to decode index. In the context of the GRASP define command, mod is the remainder of a number divided by 10. Consider the following example:

Similar calculations are performed in the conversion of index into a northing and an easting.

The formulas for converting assays to \$/ton of rock are stored in a file called "dolval". To compute \$/ton of rock from an assay value, the following formula is used:

```
$/ton = (volume) x (specific gravity) x (price/ton) x assay value
where
volume = 15 m x 45 m x 45 m
and
specific gravity = 2.7
```

Once the 11 new variables are defined, the next step is to specify the criteria for retrieval. In the example, the conditions specified are: (A) mine level = 4545 m., and (B) copper assay greater than 0.5%. The .and. relation between conditions (A) and (B) is specified by executing the logic command. This is invoked at the bottom of figure 19, and completed in figure 20. Thus, every mine block at the 4545 m level in which the copper content is greater 0.5% is to be retrieved.

FIGURE 19 Definition of new variables, selection of retrieval conditions, and

establishment of logical relations between variables

INTER COMMAND: define ENTER LIST OF NEW MORE INFORMATION)

read joe level=((mod(index)+mod(index/10)*10)-1)*15+4200. y=mod(index/100)+mod(index/1000)*10 x=mod(index/10000)+mod(index/100000)*10 north=(y-1)*45+3328.91 east=(x-1)*45+1776.91

6. \$zn=zngd*7.44*1.1023
7. \$pb=pbgd*3.1972*1.1023
8. \$mo=mogd*40.*1.1023
9. \$cu=cugd*10.28*1.1023
10. \$ag=aggd*4.49*1.1023
11. \$tot=\$zn+\$pb+\$cu+\$ag+\$mo

read dolval

12.

ENTER COMMAND: conditions

A. level eq 4545

B. cugd gt 0.5

۲

ENTER COMMAND: logic

Data base search, retrieval and output list specifications

After the conditions and logic commands are executed, the search of data is begun. GRASP does not require the name of the input master file to be specified, so a <u>CR</u> defaults the input file name to the name of the master file (that is, amigo). The name of the file into which the retrieved data are put is xxx.

GRASP indicates that it searched 25,578 records and found 259 blocks at level 4545 which had copper assay values above 0.5%.

To process the data further, a program called PLOTEM is used.

The input to PLOTEM is a character file which is the output from GRASP written in columnar form. The list command is executed on the file xxx and the disk output option selected.

ENTER LOGIC: a.and.b

ENTER COMMAND: search

ENTER INPUT FILE NAME:

SEARCHED. SATISFY THE REQUEST. ENTER OUTPUT FILE NAME: xxx ALL 25578 RECORDS OF Amigo 259 RECORDS FOUND WHICH THEY HAVE BEEN STORED IN xxx

ENTER COMMAND: 11st

ENTER NAME OF FILE: xxx

ENTER NUMBER OF LINES/PAGE:
AT EACH PAUSE PRESS CR KEY TO CONTINUE. TO ABORT ENTER A.
3 TYPES OF LISTING ARE POSSIBLE:
C - COLUMN TYPE (DEFAULT FORMAT)
U - COLUMN TYPE (USER FORMAT)
R - ROW TYPE

SELECT C, U, OR R: c

WOULD YOU LIKE OUTPUT TO BE TO DISK? (y OR n): yes

FIGURE 20

Data base search, retrieval and output list specifications

GRASP exit to multics and PLOTEM initiation

When xxx is output to disk as a character file, it requires a name so that it can be identified later by PLOTEM. The assigned name in figure 4 is 14545. The variables to be written onto disk for the example are the easting, northing, copper assay, and "\$ value of copper/ton of rock".

Once the data set 14545 is created, a multics command can be executed because GRASP permits access to any programs at the systems level. In this case PLOTEM is selected.

When initiating interactive graphics, it is necessary to specify the CRT terminal transmission rate. In this instance, the terminal is operating at a speed of 960 characters/sec (9600 baud).

GRASP exit to multics and PLOTEM initiation

I. east

2. north

· cugd

. Scu

'n

ENTER COMMAND: multics YOU MAY EXECUTE ANY MULTICS COMMAND, SO BE CAREFUL. ENTER grasp TO RETURN TO THE GRASP SYSTEM.

ENTER MULTICS COMMAND: plotem enter transmission rate in characters/second

960

Selection of file to be processed, variables to be evaluated and type of map to be generated by PLOTEM

PLOTEM asks for the name of the file to be processed (in this case, 14545), the number of variables and the positions in the record of the variables that correspond to the x and y directions of the map. A plan map is selected as the type of map to be plotted, and variable 3 (copper assay) is selected as the variable to be mapped.

For the variable, PLOTEM determines the range of the copper assay values, and prompts the user on whether or not to generate also a grade/tonnage curve. In this case, a grade/tonnage curve is desired and PLOTEM waits for the user to copy the screen and enter a <u>CR</u> to proceed.

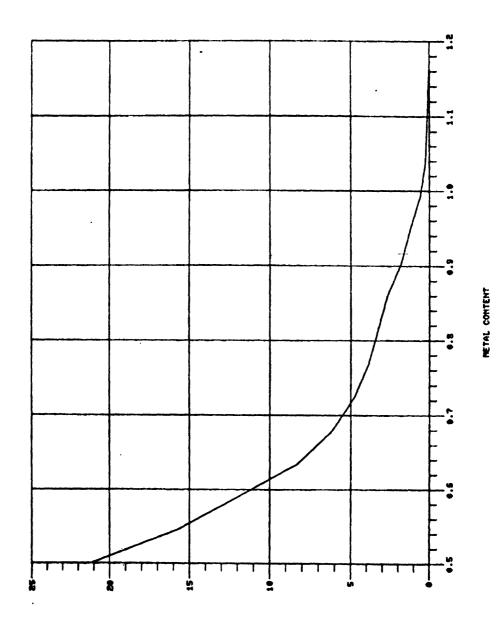
enter the number of variables, and the field nos. of the x and y coords of the plot desired please enter the name of the file to be plotted.

please enter 1 if you want a plan map 2 if you want an e-w cross section looking n 3 if you want a n-s cross section looking e.

enter the variable number that you wish to plot. 0.500. 1.172 to data values range from

enter 1 for grade/tonnage curve, 2 to bypass.

enter cr to continue


PT GIRE 22

Selection of file to be processed, variables to be evaluated and type of map to be generated by PLOTEM

Grade/tonnage curve

PLOTEM clears the screen and draws the grade/tonnage curve shown in figure 23. It should be noted these are the data that were retrieved originally and stored in xxx and then transformed to 14545. Thus, the grade tonnage curve reflects only those data. The ordinate is scaled to million metric tons of rock because each 45 m x 45 m x 15 m block contains approximately 82,000 tonnes.

Once the curve is drawn, PLOTEM waits for a CR to continue.

RHUJURE REFERRE FORS OF ROOK

Selection of contour intervals and frequency distribution generation

PLOTEM asks for the number of intervals into which the data will be divided, in this instance, four. Next, the five boundaries of the four intervals are specified, and the frequency distribution printout option is selected.

PLOTEM prints the computer system clock time and this is followed by the frequency distribution. The time serves as a unique screen image identifier that can be used to sort the distributions (and their associated maps) generated during an active session.

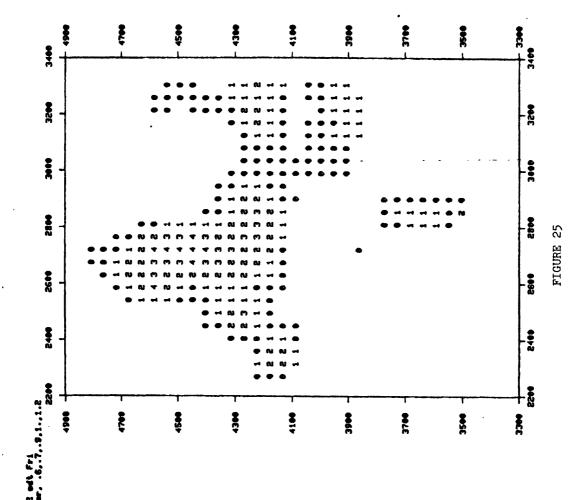
PLOTEM asks for a title of the map to be plotted, pauses to allow for copying, and expects a CR to continue.

Selection of contour intervals and frequency distribution generation

enter the number of contour levels in the freq. dist. enter in ascending order, level boundaries.
.6,.7,.9,1.,1.2
enter 1 if you want a frequency distribution,
2 if you wish to bypass printout.

08/11/78 0816.2 edt Fri

million me of rock	5.987 3.689 1.312 8.656
the the	51.77 31.21 11.35 5.67
	644 8
y dis	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
frequency class interval	6.50 6.70 1.90


enter title Toromocho, copper, .6,.7,.9,1.,1.2

enter cr to continue

Plan map of data values

The final PLOTEM product is a plot of the values tabulated in the frequency distribution in figure 24. The numbers refer to the class in the frequency distribution. For example, "1" indicates that a block contains between 0.6 and 0.7% copper, "2" that a block contains between 0.7 and 0.9% copper, and so forth. "0" indicates that a block contains less than 0.6% copper which is the specified lower boundary for this particular run. The system clock time is printed also.

Plan maps such as the one shown in figure 25 are valuable aids in mine planning and for economic evaluation of mineral depostis. The dynamic flexibility, ease of calculation and subsequent graphic display afforded by GRASP coupled with PLOTEM offer a new dimension for the mining engineer or geologist. It is anticipated this approach will become commonplace within a few years.

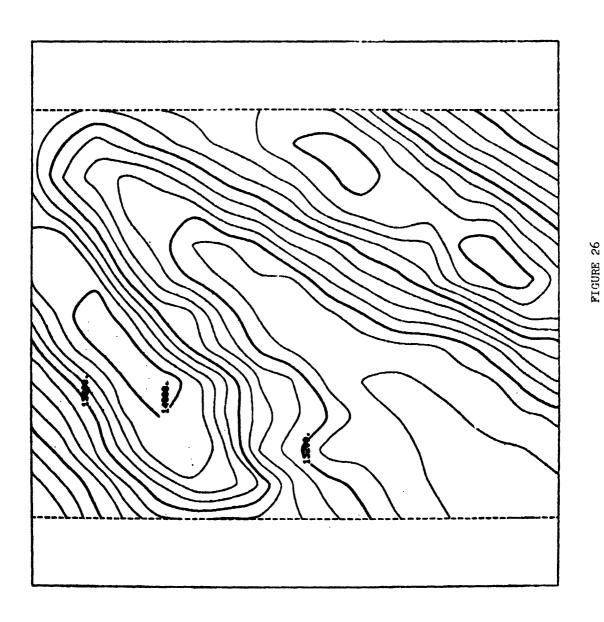
Plan map of data values

EXAMPLE V Computer Applications Software for the National Coal Resources Data System

Software for the National Coal Resources Data System has been developed in two phases. Phase I software provides interactive retrieval and editing capability for access to, and modification of, the National Coal Resources Data Base. Results of retrievals can be summarized and tabulated in formats compatible with published coal resource documents. This part of the system has been operational for two years.

The Phase II software called GARNET is a set of interactive programs developed to aid the commodity geologist in analyzing and evaluating resources when dealing with irregularly-spaced, point-located field data. With this system of programs, the geologist can generate an interpolated grid surface based on measured values at each of a set of observation points. From these interpolated surfaces, the geologist can produce structure maps, coal thickness maps, maps showing the ratio of thickness of overburden to bed thickness maps, and resource maps.

Outcrop and political boundaries can be added to the data set by means of a digitizer. Thickness, overburden, or chemical concentration boundaries can also be added. The program allows for a variety of different combinations for computation. The resource maps produced are based on the standard reliability category distances from the point of field observation. Volume and tonnage values are computed for each reliability category and for each set of boundary constraints.


The calculations and subsequent map displays can be accomplished during a single session at an interactive graphics terminal. An option is provided, however, for creating a plot tape to produce maps off-line on a plotter if it is desired.

GARNET was designed to meet the growing need for more accurate and more rapid computation of coal resource inventories. It automates, in effect, those time-comsuming tasks that heretofore the geologist performed manually.

The following eight figures illustrate the applications for which GARNET was designed. A simplified set of data are used for the purpose of this workshop.

Contour plot of a topographic surface

Figure 26 is an illustrative example of a contour plot of a topographic surface. In the future, gridded data for actual surfaces will be provided by the Topographic Division in the U.S. Geological Survey and will be compatible with published $7\frac{1}{2}$ minute quadrangle topographic maps.

59

Structural contour map of a coal bed

Figure 27 demonstrates the ability of GARNET to generate a contour map given a set of irregularly-spaced data points with the corresponding structural elevations of a coal bed. The irregularly-spaced points are processed by GARNET to produce a gridded data set. The gridded data are then used by GARNET to produce the contour map shown in the figure.

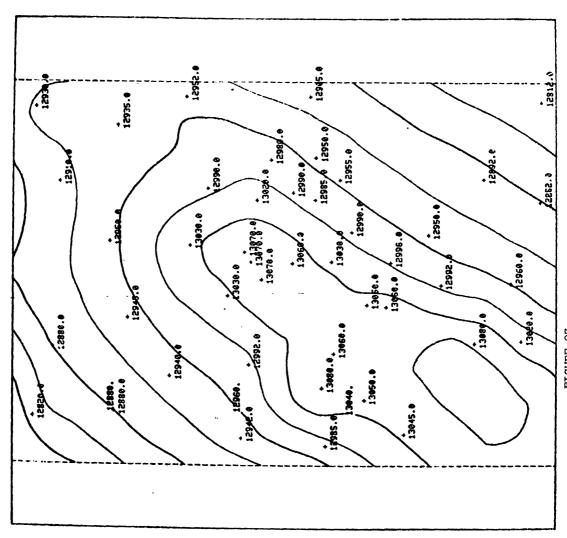


FIGURE 27 Structural contour map of a coal bed

61

ELEVATION MAP OF COAL

STRUCTURE SURFACE

Coal isopach map

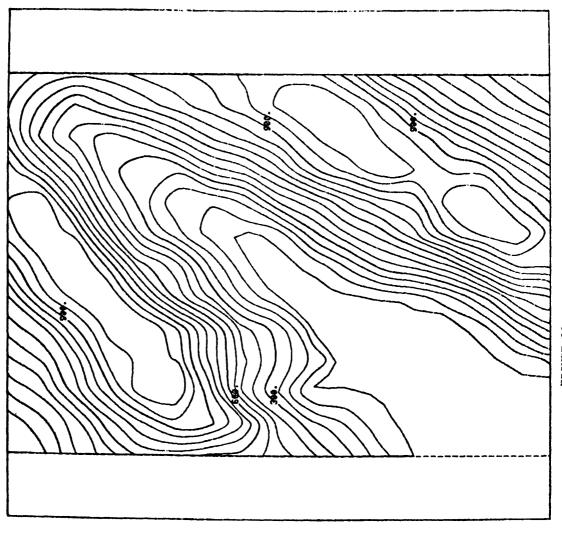

Similarly, a contour map of coal thickness can be generated from the irregularly-spaced thickness measurements.

FIGURE 23 Coal isopach map

BED THICKNESS MAP

Thickness of overburden map

Figure 29 demonstrates the capability of GARNET to produce a contour map of the thickness of overburden obtained by subtracting the grid values of the structural elevation of a bed from the corresponding grid values of the topographic surface.

MAP OF OVERBURDEN DEPTH.

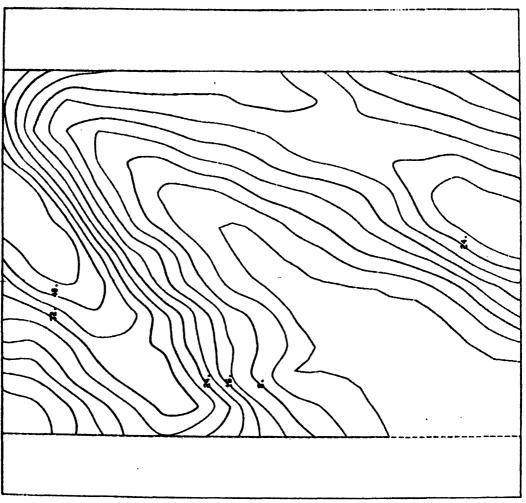
(TOPOGRAPHIC ELEVATIONS MINUS

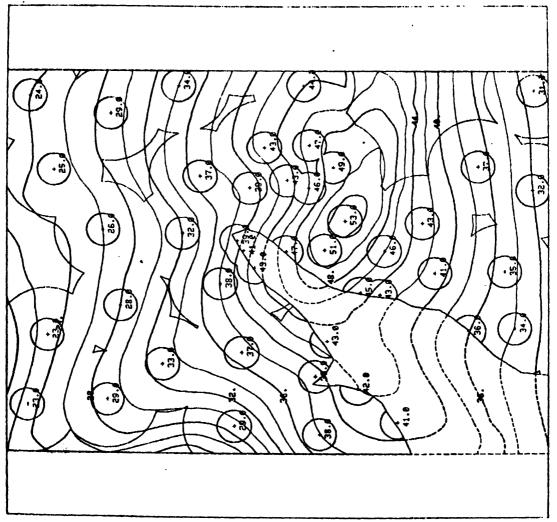
THE STRUCTURE ELEVATIONS)

FIGURE 29
Thickness of overburden map

Ratio of thickness of overburden to coal thickness map

Figure 30 is a contour map of the ratio of the thickness of overburden to coal thickness, obtained by dividing the grid values from the previously obtained thickness of overburden map by the corresponding grid values for the coal thickness map.




FIGURE 30

Ratio of thickness of overburden to coal thickness map

OVERBURDEN-TO-THICKNESS RATIO MAP

Example of coal resource map with eroded region excluded

Figure 31 is an example of a coal resource map consisting of an overlay of the coal thickness contours together with the observation points. A digitized boundary of the coal outcrop is used to exclude resource calculations for the eroded region (shown with the dashed contours). Resource volumes (and, hence, tonnages) computed for a radius of one quarter mile from the observation point (note smaller circles) define the measured resource category. Resource volumes computed from a radius of one quarter mile to a radius of 3/4 miles (note larger circles) from the observation point define the indicated resource category.

RESOURCE MAP WITH ERODED

REGION EXCLUDED

FIGURE 31

Example of coal resource map with eroded region excluded

Coal resource map which satisfies specified conditions

With GARNET it is possible to delimit regions satisfying specified conditions. For example, it is possible to delimit regions for which coal thickness is greater than 28 feet. If another region is delimited by a different condition, that is, a thickness of overburden to coal thickness ratio greater than 30, it is possible to combine these two regions into one which satisfies both criteria. An example of a resource map satisfying both of these conditions is shown in figure 7.

GREATER THAN 28 FEET AND
OVERBURDEN-TO-THICKNESS RATIO
GREATER THAN 30.

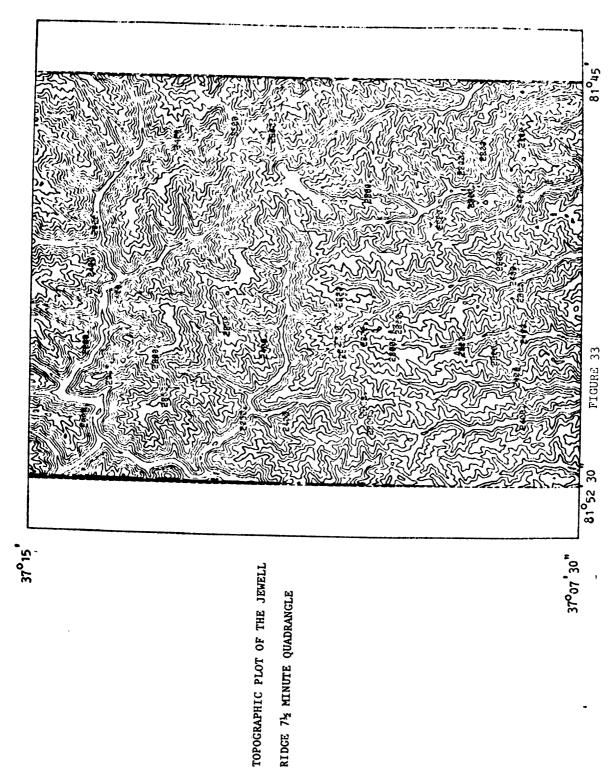

RESOURCES MAPPED FOR THICKNESS

FIGURE 32

Coal resource map which satisfies specified conditions

Topographic contour map of USGS $7\frac{1}{2}$ minute quadrangle

Figure 33 shows a topographic contour plot computed from gridded elevation data supplied by the Topographic Division of the USGS for the Jewell Ridge Quadrangle. This file contains 62,272 gridded data points with a corresponding ground separation of 164 feet between grid points.

Topographic contour map of USUS 75 minute quadrangle