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Introduction 

The purpose of this report is to derive several of the basic equa-

tions for a paper on folding and folding of idealized rock (Johnson, 

1979). That paper is based on constitutive equations for an ideal, 

strain-hardening material defined by Hill (1950, p. 30) and generalized 

to include Coulomb behavior and dilatancy by Rudnicki and Rice (1975). 

The most attractive feature of the theory is that folding and faulting, 

which are intimately related in nature, are different responses of the 

same material to different boundary conditions. In the paper by Johnson 

(1979) it is shown that single layers of sedimentary rocks are unlikely 

to fold, rather they will fault, because of low contrasts in elasticity 

and strength properties of sedimentary rocks such as layers of dolomite, 

limestone, sandstone, or siltstone in media of shale. Further, multi-

layers of these same rocks will fault rather than fold if contacts are 

bonded, but they will fold readily if contacts between layers are fric-

tionless, or have low yield strengths, for example due to high pore-water 

pressure. These conclusions are based on solutions of the equations pre-

sented in the following pages, using experimental stress-strain curves 

for various rock types. 

Results 

First,' will define some symbols (Malvern, 1969; Fung, 1965). Let 

Q be Cauchy stress(Fung, 1965, p. 439). Let x be a Cartesian coordinate
i 

of a point in a body of the current state, 111 be a component of the dis-. 

placement field, and v be a component of the velocity field associated 

with the coordinates (Euler description of flow). Then D1j is the rate 

of deformation tensor, 

D = (1/2)[(9vj /)ci )+(Bv  /bc )] (1)
ij i j 

is the rate of spin tensor,
ij 

2 (1/2)[(ay./9x )-(Dv /)( )]* ij=1 2 (2)
ij J 



 

 

 

 

and infinitesimal Green strains are 

Eij = (1/2)[(au./xi )+(au./Dx.)] (3)1 

Now let us derive the basic equations for incompressible, isotropic, 

elastic, strain-hardening plastic materials. We shall assume that both 

the elastic and the plastic strains are infinitesimal so that they can 

be superimposed; otherwise the analysis becomes much more complicated 

(Lee, 1969; Wang, 1973). The elastic strains are 

(e) 
= a V2G (4a)

ij i 

where the deviatoric stresses are 

(4b)
Gij = Gij (1/3)GkOij 

and G is the elasticity shear modulus. 

Also, the material is incompressible, so that 

(e)
= = 0

Ekk Ekk 

The total strains are 

Eij = (p) + a/2G (4c) 

where Eip) is the plastic strain. 

Most of the remainder of this paper will be devoted to the deri-

vation of an expression for the plastic strain in eq. (4c). We first 

formulate the response of the material in terms of rates of stress and 

rates of deformation. Then we integrate the equations with respect to 

time in order to derive stress-strain relations. 

We assume that the plastic material is a von Mises plastic, the 
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yield condition for which is 

J2 < k2 (5a) 

where 

J is the second invariant of the deviatoric stresses,
2 

J = (1/2) a aid (5b)2 i 

and k is the shear strength of the material (Kachanov, 1974). The 

material we are considering strain hardens (or softens), however, so 

that k is a function of the total plastic strain. If the material hardens 

isotropically, 

k = = HIJW-Mdt] (6a)
2 

where HI ] is a function of the logarithmic plastic strain through the 

invariant 

I(p) 2D(P)D(P)= (6b)
2 ii ii 

and t is time. Eq. (6a) apparently is equivalent to a relationship defined 

by Hill (1950, p. 30), who should be consulted for further details. 

We shall now derive the following relation between rate of plastic 

deformation and the function H: 

(P)- dt = fail/( /I2h)] d().T) (7a)2 

where h is the hardening modulus, 

h.= d(ia- )/(11- (0dOE cui/()Y2(P)dt) (7b)
2 2 



 

Two basic equations are needed in addition to those already presented: 

First, according to the Saint Venant-von Mises theory of plasticity 

(Kachanov, 1974, p. 51), an increment of plastic deformation is pro-

portional to the deviatoric stress, 

(D(p)dt/a = (D )dt/al ) = (D00)dt/a ) 6, (8)
ij xx xx xz xz 

where A is some parameter. Second, the increment of plastic work, dW(P), 

is defined as 

(P)dW = a'D(p)dt (9) 

because the mean stress does no work. 

Using eq. (8), we can write eq. (9) in terms of the invariants, 

J and I(P) For example, eliminating D( )dt in eq. (9) with eq. (8),
2 2. ij 

dW(P) = a g dA = 2J dX 
ijij 2 

Similarly, we can eliminate in eq. (9) with eq. (8) and show that
i 

2 (p) 2
4„T (dA) = I (dt)
2 2 

or 

dA = (1/2))/(IT/J2) dt (10) 

Equating (8) and (10), 

D(P) (1/2)a i(I()/J2 )2 

(p)I(2)with 

the differentiation of p/J2 indicated in eq. (7a), 

Finally, eliminating I with eq. (7b) we derive eq. (7a). 

61,77- (1/2)a' (1/2)a' du /1Y-
2 kk dala2 kl kk 2 



 

 

 

 

we derive 

p)D = Ia'a /(410 )](do/dt)i 2 

The remaining problem is to provide a proper form for the time 

derivative, dalet/dt. The rate of deformation tensor, is a well-

behaved measure of rate of deformation; it vanishes if the body is sub-

jected solely to rigid-body spin. We require a measure of stress rate 

that is similarly insensitive to spin of the body; otherwise, eq. (11) 

would be nonsense. The measure of the rate of change of stress usually 

employed is the Jaumann rate, the rationale of which is explained clear-

ly by Fung (1965). The Jaumann stress rate is defined as 

v a = Da /Dt -0 - a (12)ij iP Pi P0ij iP Pi 

where D is the material time derivative and 0 is the spin tensor
ij 

defined in eq. (12). 

For plane deformation, which we assume in folding analyses, the 

Jaumann stress rates are 

Q =Do /Dt + 2a 0 (13a)
xx xx xz xz 

=Du /Dt -2a 0 (13b)zz xz xzzz 

a = Da IDt + (a -a )0 (13c)
xz xz zz xz 

where 

D /Dt 1. 3 /at + 49 /9x + *3 /az (13d) 

in which A and * are components of velocity in the x- and z- directions, 

respectively. 

Now we can write eq. (11) in the final form, 

D(P) B= [a Q /(4h,T )]0' (14)
ij ij kY 2 V. 
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which is equivalent to a special case of relations derived by Rudnicki 

and Rice (1975, p. 10). Further, if we take appropriate time derivatives 

of eq. (4c), we can write the expression for the total rate of deforma-

tion of the strain-hardening material. From eqs. (4c) and (14), 

(p) V
D = D + /2Gij ij ij 

so that 

D 
ij 

V
= (G '/2G) + [a' a' /(4hJ

ij 2 
v 
k i 

(15) 

This completes the derivation of the basic equation for the elastic, 

strain-hardening (or softening) plastic material. 

In order to solve problems in folding theory we linearize eq. 
ti 

(15)by considering a mean flow, 161j, and a perturbing flow, D.. and 

Q..1.] , so that, 

ti 
D =Dij + Dij 

ti 

. = .
i3 i3 

Similarly, 

G = 
ij 

aij 

The mean flow and associated stresses are homogeneous, so that they are 

independent of position. Further, the perturbing flow and associated 

perturbing stresses are small excursions from the mean state. They are 

in general inhomogeneous. In folding, for example, the mean flow is the 

uniform shortening of a layer and the perturbing flow is the flow associ-

ated with the growth of folds in the layer. We shall substitute eqs. 

(16)into eq. (15), maintaining terms to first order in the perturbing 

stresses and deformatiOns. To first order, 
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where 

2 (1/2) (17a) 

(17b)3e2 

If the mean flow involves zero shear, a = 0 D 
xz -xz' 

h = + (17c) 

where 

E = imbrc(P)citi ; at constant VP) (17d) 

= Idh/IY-(P)dt)2b(P) (P)dt/ii--(P)]; at constant T(P) (17e)
2 xx xx 2 2 

Af2(P)) 21.15)1 (17f)
' xx 

In Johnson (1979) the bar over the h defined in eq. (17d) has been 

dropped for simplicity. 

Two forms of linearized equations can be derived now, depending 

upon what assumptions are made concerning the state of mean stress. 

If the mean stress is time dependent, the expressions for the perturbed 

Jaumann stress rates can be derived from: 

= (rf '/GN ) - (2<;/V) (18a)
xx xx 

D = -D ; QV' = -aV' (18b) 
zz xx zz xx 

= xz /G) + (&' /0 ) (18c)
xz xx xx xz 2 

where 

G [(1/G) + (1/h)) = GERG+E) = E (18d)
N tan 

and the expressions for the mean Jaumann stress rates are 

-V, -V, -V a = -a = 2GD  a ' = 0 (18e)
xx zz A xx; xz 



These equations are somewhat difficult to deal with because they contain 

a mixture of perturbed stress and stress rates and strain and strain 
ti 

rates. The second term in eq. (18a) contains h, which, according to 
%(P)eq. (17e), contains an increment of perturbed plastic strain, D dt =c%(p)'
- xx-- xx 

and the second term in eq. (18c) contains the perturbed shear stress. 

We can derive a second form for the linearized equations by assuming 

that the mean stresses are time independent. This form of equations is 

used in Johnson (1979) to solve buckling problems; problems where there 

may be two equilibrium forms of a layer, a uniformly shortened layer 

and a folded layer. These equations are exact to first order, yet they 

avoid the complications associated with the solution of eqs. (18). 

Thus, we assume that 

av y = 0 = D 
ij ij 

and in this case eq. (15) becomes, to first order, 

% 
D = aV/2G + (a' a' /4hJ %V' )a
ij ij ij kk 2 kk 

so that, for example, 

% 
D = (1/2GN)a
xx xx 

where G is defined in eq. (18d).
N 

Further, the strains are infinitesimal, so that 

6 = D t 
xx xx 

ti %V 
a = t 
xx xx 

and 

= 2G Ea;x N zz (19a) 

Similarly, 

a - 2G c (19b)
Izz N zz 



 

 

For shearing, 

- qA7 fV7= a  /2G + (1/4hJ2)a  [(E' + a' )(a -a )]xz xz xz xx xx xx zz 

so that, to first order, 

•a - 21)xz xz 

Using the definition of the Jaumann stress rates in eqs. (13), 

/at = 2a
xz xz + xx zz xz-a )? 

and 
- rx, 

a  = 2Ge +(a -a )w (19c)•xz xz xx zz xz 

ti 
where w is the rotation, 

xz 

= (1/2)[(aw/ax) - (au/az)] (19d)
•wxz 

in which u and w are displacements in the x- and z-directions, respec-

tively. This completes the derivation of the basic linearized equa-

tions used to solve folding problems. 

Now I will briefly explain how one extracts the parameter h from 

experimental data. The parameter is the slope of the stress-strain 

curve for pure shear. According to eq. (7b), 

h dia—/11—(P)dt
2 2 

For pure shear, 

J (1/2)a' a' -
2 = T2 

2 ij ij axz 

Thus, 
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Also, 

I(p) D(P) 2 i,(P) 2= 2D(P) = 4( (P)) = ( )2 ii ij xz 

Y E 26 
xz 

so that 

il-(13)dt = Idy(P)1
2 

and 

h = dT/dy(p) (20) 

as shown in Fig. 4C of Johnson (1979). 

For triaxial loading, where a is axial stress, a is confining
s c 

pressure and E is axial strain, 
a 

= A1/3)IG  - a  12 a c 

if-(P) = a (P)1 
' 

so that 

h = (1/3)d(a -G )/dc (21)a c a 

Expressions (20) and (21) are valid if plastic strains are infinitesimal. 

If the strains are finite, the strain is replaced by the logarithmic 

strain, as explained by Hill (1950, p. 31). 

Finally, I want to show that eqs. (19) reduce to the expressions 

for an incompressible, Mooney material if both the mean and perturbing 

strains are infinitesimal. I must assume that the reader is familiar 

with notation presented elsewhere (Johnson, 1977, p. 340) in order to 

keep the discussion brief. According to the analysis of buckling of 

an elastic material (Johnson, 1977, p. 347), the perturbing stresses, 

s, are 

2 
s = 2G(3u/ax)A
xx x 



 

 

szz = 2G(9w/Dz)22 

2 2
s xz = G[(3w/9x)Xx + (9u/9z)X ] 

where 

X
x 

= 1 + 3U/DX.
'
XZ - 1 + 31,7/3Z 

are the finite strains and U and W are displacements associated with the 

mean deformation. If normal strains are infinitesimal, (3u/9x)(DU/9X) = 0, 

for example, and if rotation can be moderate, (aw/ax)(aU/X) 0, for 

example. Thus, to the order of accuracy indicated above, 

s = 2G9u/3x (22a)xx 

s = 2G9w/9x (22b)
zz 

sxz = G(9w/9x + au/ax) + 2G(9U/9X)(9w/9x - 9u/9z) 

because 9U/9X = - 3W/9Z. 

Using our notation for mean stress, 

U - U = 4G3U/3X
xx zz 

so that 

s = G(9w/3x + 9u/9z) + - )w (22c)
xz xx zz xz 

Equations (22) are equivalent to eqs. (19) if the hardening 

modulus, h, approaches infinity. Thus, eqs. (19) are exact to first 

order if both the mean strains and the perturbing strains are infin-

itesimal. This qualification will allow us to apply the analysis to 

folding of sedimentary rocks, where typical strains at peak stresses 
-4 -2 

are in the range 10 to 10 . 
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