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Abstract

Subsurface thermal measurements are the most effective, least
ambiguous tools for identifying and delineating possible geothermal
resources. Measurements of thermal gradient in the upper few tens of
meters generally are sufficient to outline the major anomalies, but it
is always desirable to combine these gradients with reliable estimates
of thermal conductivity to provide data on the energy flux and to
constrain models for the heat sources responsible for the observed,
near-surface thermal anomalies. The major problems associated with
heat-flow measurements in the geothermal exploration mode are concerned
with the economics of casing and/or grouting holes, the repeated site
visits necessary to obtain equilibrium temperature values, the possible
legal liability associateé with the disturbance of underground aquifers,
the surface hazards presented by pipes protruding from the ground, and
the security problems associated with leaving cased holes open for
periods of weeks to months.

We have developed a technique which provides reliable ''real-time"
determinations of temperature, thermal conductivity, and hénce, of heat
flow during the drilling operation in unconsolidated sediments. A
combined temperature, gradient, and thermal conductivity experiment can
be carried out, by driving a thin probe through the bit about 1.5 meters
into the formation in the time that would otherwise be required for a

coring trip. Two or three such experiments over the depth range of,



say, 50 to 150 meters provide a high-quality heat-flow determination at
costs comparable to those associated with a standard cased ''gradient
hole" to comparable depths. The hole can be backfilled and abandoned
upon cessation of drilling, thereby eliminating the need for casing,

grouting, or repeated site visits.



INTRODUCTION

Many of the alluvial and lacustrine valleys of the western United
States have potential for the exploitation of geothermal energy. Of the
various exploration techniques available, heat-flow drilling is the most
direct and the least ambiguous, and exploration programs involving
drilling patterns of holes to depths of between 10 and 500 meters have
become common methods for discovering and delineating thermal anomalies.
For these purposes, thermal gradients alone generally are sufficient.
However, if the thermal conductivity can be characterized, the temperature
gradients can be ‘converted to heat-flow estimates, which, in turn,
provide valuable information concerning the energy budget, and can be
used to constrain hypotheses on the ultimate sources of the anomalous
heat.

One of the main problems in obtaining useful data on the thermal
conductivity of unconsolidated sediments results from the high cost and
difficulty of recovering suitable core samples. In many prospects,
repeated core runs produce little or no core and what little is recovered
may not be representative of the formation. Even when extreme care is
taken in handling samples, irreversible changes in their mechanical
nature may occur before the conductivity determinations can be made.

The conductivities of the solid component can be measured on drill
cuttings, but reliable values of porosity are necessary to convert these

data into meaningful estimates of formation conductivity.



Another problem in the highly competitive geothermal exploration
industry is that of the security of cased temperature-gradient/heat-flow
holes. These holes must be left for a minimum of a few days and preferably
for several weeks to months, to allow the thermal disturbance introduced
by the drilling process to subside. During this period, it has not been
uncommon to have unauthorized entry and "midnight logs' of holes drilled
for geothermal exploration. A hole that has been left open for a few
days to weeks may become artesian, leading to surface damagé an&/or
contamination of aquifers. Pipes left standing above the ground on
playa surfaces may also present a hazard to fast moving vehicles.

In this report, we describe a downhole heat-flow probe which
eliminates most of the problems outlined above. It gives satisfactory
determinations of both temperature gradient and thermal conductivity and
hence of heat flow, in unconsolidated sediments, essentially in real
time. Because formation temperatures are measured below the bit during
the drilling operation, the hole need not be cased and can be backfilled
immediately upon cessation of drilling. Thermal conductivities are
measured in situ so that mechanical disturbances to the formation are
kept to a minimum.

The first comprehensive field trials of the system were held in the
Black Rock Desert (Figure 1) near Gerlach, Nevada, during September
1978. For all trials, the test medium was a fine-grained unconsolidated

Pleistocene or Holocene lake sediment, typically clay-~rich, but occasionally









GENERAL DESCRIPTION OF THE SYSTEM

Figure 2 illustrates the essential features of a downhole probe
test. At the depth selected for the test, the driller thickens his mud
colum and circulates for a few minutes to flush the cuttings out of the
hole. The bit is then placed on bottom and a wireline pack-off assembly
is connected to the drill string just above the rotar&'tafle. The probe
is lowered into the drill stem until the piston on the driving mechanism
enters the cylinder immediately above the bit (see Appendix C). The
hydraulic pump on the logging truck then is activated, delivering water
from a 150 liter capacity tank to the drill column. At the same time,
the pack-off pump is used to tighten the packer assembly (Figure 2) to
the point where only a small amount of fluid is leaking out of the top
of the pack-off. When the cable moves downward a few cm, the water
pressure is released to allow the return springs to move the ''grabber"
up the probe (Appendix C) and the colum is pressurized again. This
process is repeated until 1.65 m of penetration is achieved or until the
pressures approach the mechanical strength of the probe (v15000 kPa).
During this period, the resistance of each thermistor is monitored at
20-second intervals and converted to temperature by the data-reduction
program (see Appendix D). The temperature-time data are stored on
magnetic tape, and a graph similar to those shown in Figures 3 and 4 is
generated by the digital x-y plotter. The passive temperature record is

run for 1500 seconds, typically allowing 1000 to 1200 seconds for the
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Figure 2. Schematic diagram of field setup for downhole probe experiment.
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decay of the thermal transient resulting from the friction between probe
and formation. This time interval is not nearly sufficient to achieve
thermal equilibrium, but when a smooth record is obtained (as in Figures
3 and 4), the data may be extrapolated to equilibrium values in a manner
similar to that employed for the ''Bullard" type of oceanic heat-flow
probe (see Bullard, 1954; Langseth, 1965). Oﬁe simple extrapolation
scheme involves plotting temperature (T) as a function of 1/t (see
Table 1, Lachenbruch and Brewer, 1959) where t is the eiapsed time
reckoned from approximately the midpoint of the penetration interval
(about 225 seconds for Figure 3). This reduction is illustrated in
Figures 5 and 6 for the corresponding curves in Figures 3 and 4. For
time t large relative to the time taken to penetrate the formation; the
curves should be linear, and indeed they are (Figures 5 and 6). Note
also that even though the final measured temperatures are in reverse
order (i.e., thermistor 3 hotter than 2 hotter than 1), the extrap-
olation to 1/t=0 provides (at least qualitatively) the expected increase
in temperature with depth..

Upon completion of the passive temperature run (Figures 3 and 4) a
constant current of about 100 mA is applied to the heater loop, the
specific resistance of which is about 700Q m !. The heat input to the
formation is thus about 7 watts per meter of probe length. Representative
temperature-log time curves are shown in Figures 7 and 8. The differences
in temperature among the three thermistors are the result of differences

in contact resistance between the heater and probe wall. For the probe
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used in GRH at 61 meters, there is evidently a fairly large air-filled
void in the vicinity of thermistor 3 (Figure 8). The temperatures
plotted in Figures 7 and 8 are not corrected for the rate of downward
drift resulting from the decay of the thermal transients associated with
frictional heating during penetration. The drift rate was calculated at
the mid-point of the conductivity run (t =2000 sec) from the slope of
the T versus 1/t lines (e.g., Figures 5 and 6) and a correction was
applied to the observed temperature. This resulted in a small but
significant increase in the slope of the T versus log t line (e.g.,
Figures 7 and 8) and consequently, a decrease on the order of 1% to 5%

in the conductivity which is calculated from the expression
T(t) = 1%( fnt + 0(%)

where Q is the rate of heating and K, the thermal conductivity (see
Jaeger, 1958; Lachenbruch, 1957; Von Herzen and Maxwell, 1959). Upon
completion of the conductivity test, the probe was removed by raising
the entire drill string until the probe was completely out of the
formation. Thereafter, the probe was raised to the surface by reeling
in the cable and drilling was resumed.

In the first few holes, many probe tests were performed and cores
were obtained to provide comparisons with in situ determinations of

thermal conductivity. As the study progressed, however, we dispensed

16



with coring and settled on a scheme whereby probe tests were made at
depths of 61 and 91 meters (200 and 300 feet). Total time required for
insertion, 25 minute drift test, 15 to 20 minute conductivity test and
retrieval of the probe was about an hour or roughly the time required
for a coring trip at these depths. At one site (GRF, Figﬁre A-6 and
Table B-1), we established that the probe would penetrate fully at ~120

meters (400 feet).

17



COMPARISON OF DOWNHOLE PROBE RESULTS WITH CONVENTIONAL MEASUREMENTS

Comparisons between probe and conventional determinations of
temperatures, gradients, and thermal conductivities are shown in detail
in Appendix B. The temperature comparisons also are summarized in the
graphs of Appendix A. In this section we discuss briefly the various
comparisons - and some of their implications. The gtatistics for the
relation y=Ax where y is the probe value,‘and x the value derived from
conveﬁtionai measurements are shown in Table 1.

Thermal conductivity. Cores corresponding to the depths of the

probe tests were obtained in hole GRZ (the first drilled); then in GRA,
GRB, and GRC. At this stage, we were satisfied that the downhole
conductivities were, in fact, comparable to those obtained conventionally,
and coring was discontinued. The scatter is fairly small (Figure 9).
The coefficient of correlation is 0.96 and downhole probe conductivities
are systematically higher than those measured on core by about 5%

(Table 1). We attribute this difference to slight structural changes in
the core caused by the removal of the core from its enviromnment and thus
we prefer the downhole values (sufficient conductivities were measured
along the axis of the core to confirm that there was no measurable
anisotropy). The most striking example of physical changes occurred in
the core from 30.5 to 32 meters in hole GRA (see Table B-1, Appendix B).
When a hole was drilled into the wall of the core liner to allow access
for the needle probe, there was a "pop'" and a muddy slurry was extruded
from the core. We see in this instance (Table B-1) that needle-probe
conductivities are systematically lower than <n situ values by about

10%.
18



TABLE 1. Coefficients of the least-squares regression line y = Ax

for the comparison between thermal parameters

derived from downhole probe measurements (y) and

those (x) determined by conventional methods*

Correlation

RMS

Parameter - coefficient A residual1L
Conductivity 0.96 1.05 0.12 HCU
Temperature ‘ 1.00 1.00 0.04 °C
One-meter gradients 0.99 0.94 5.6 °C/km
Heat flow (1-m) 0.99 0.96 0.13 HFU
Heat flow :

(neighboring probe rums) 1.00 1.02 0.05 HFU

*'Equilibrium' temperature logs for temperatures and gradients;
needle-probe determinations on core for thermal conductivity.

N

Ty

1/2
1=1(yi-Axi)2/(N-2))

19
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Formation temperatures. Temperatures obtained from all probe runs

by least-squares extrapolation of the later parts of the T versus 1/t
lines (generally for the last 200 to 300 seconds) are plotted against
temperatures at the same depth from the most recent temperature log in
Figure 10._ The correlation is excellent (Table 1) and the value for A
of 1.00 tends to confirm our suggestion (Appendix B) that the temperature
differences are random and are caused primarily by the uncertainty in
depth-measurement.’

Gradients over one meter. The largest source of uncertainty in

obtaining gradients over a one-meter interval results from the ~0.01°C
resolution in relative temperatufes between thermistors. Even though
individual thermistors were calibrated to within a few millidegrees and
the drift rate of each thermistor calibration is slow, small and un-
predictable changes in calibration do occur. Calibrations were checked
in the field by comparing each thermistor to a single thermistor mounted
in a lagged aluminum cylinder. Departures (usually + a few millidegrees)
from calibration were noted and included in the temperature reduction
part of the program so that all thermistor temperatures were relative to
a common datum. Even with these procedures, our maximum possible error
in the gradient over 1 meter is +20°C/km, clearly not accurate enough
for "single point" determinations of regional heat flow, but certainly
sufficiently sensitive to delineate the type of anomaly associated with

possible sources of geothermal energy.
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Although there is a fairly large scatter (Figure 11), one-meter
gradients from the probe experiments correlate very well with those
determined from least-squares fits to the six points from the most
recent temperature log spamning the 1.5 meter interval penetrated by the
probe (Table 1). Only results from complete penetrations were used in
this comparison. Where only two thermistors entered the formation
(Appendix B) the scatter was much greater. This should be expected, as
we are attempting to measure the gradients over only 0.5 m and often the
temperature of the uppermost thermistor (#2) is affected by the invasion
of drilling fluid.

Heat flow. Since, in most instances, the downhole conductivities
were used for both the probe and ''conventional' heat-flow estimates over
one meter, the same comments as those made with respéct to the one-meter
gradient determinations apply to the one-meter heat-flow determinations.
Another approach to heat-flow determinations involves computing gradients
and mean thermal conductivities over one or more intervals between probe
runs. When intervals of a few tens of meters are used, the uncertainties
due to reference levels and the errors of +0.01°C in relative temperatures
become negligible. Only one thermistor need penetrate the formation for
each run, something which was accomplished in every trial. With one
exception (GRG, Figure 12) the heat-flow estimates over the larger
intervals agree very well with those calculated from the most recent
temperature log. The one exception, GRG, Figure A-7 and Table B-7,
suggests that the downhole probe may be the shperior technique quite

apart from its other advantages.
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For the probe test at 61 m in GRG, only two thermistors penetrated
well into the formation (thermistor 3 was perhaps 2 cm, at most, 5 cm
below the bit). When drilling resumed, the driller reported a hard
sandy "'stringer" a few cm thick just below 61 m. Maximum pressures and
a long time (1000 sec) were required to get the probe into the formation.
From the penetration record (Figure 13) thermistor 1 hﬁs repeated episodes
of frictional heating whereas the temperature of thermistor 2 drops
immediately as it enters the‘formation with a cooling curve quite different |
from either 1 or 3. Thermistor 3 is barely in and its decay curve is
probably affected by interaction with the drilling fluid. It is curious
and probably not coincidental that the extrapolated equilibrium temperature
for thermistor 1 lies on the extension of the very smooth profile in the
upper 60 meters (Figure A-7) whereas that for #2 lies precisely on the
most recent témperature log which has some rather suspicious 'bumps."
Since there is no change in lithology between the upper and lower
portions of the hole, it seems plausible that the drill opened a channel
between two intervals with a slight head differenée, and that water has
been moving downward in the annulus since that time; this despite the
fact that the section of the hole with the 'funny profile'' was apparently
grouted off. This explanation might be applicable to other areas in
which, within an apparently uniform lithology, an abrupt change in

temperature gradient is observed.
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SUMMARY AND CONCLUSIONS

A downhole probe capable of precise determinations of formation
temperature and thermal conductivity and rough estimates of the thermal
gradient over one meter can~be inserted through a drill bit into un-
consolidated sediments, activated, and removed in the time normally
taken for a coring run. Two or more penetrations of the probe provide a
heat-flow determination comparable in accuracy to a conventional heat-
flow measurement without the necessity of casing the hole or relogging
it after completion of drilling. The heat-flow determination is made
during the drilling process; thus, there is no time delay in obtaining
data, no surface hazards associated with protruding casing, and no
opportunity for unauthorized entry to boreholes in sensitive and/or
competitive prospects. Because the hole need not be cased, grouted or
visited repeatedly, the technique also is very cost-effective.

Useful information was obtained in all 29 runs in the present
Study, demonstrating the robustness and the reliability of the equipment.
In one hole, data obtained with the downhole probe provided evidence
that the drilling process locally altered the thermal regime by permitting
vertical water movement even though the casing was grouted in.

Many prospectively important geothermal systems are located within
or adjacent to the alluvial and lacustrine sedimentary formations of the
western United States. Using the technique outlined in this report, it

should be possible to obtain 4 or 5 probe runs per day to depths of

28



between 50 and 150 meters in these formations, thus allowing two high-
quality heat-flow data or several reconnaissance heat-flow estimates per

day. Even if the field conditions and program 6bjectives call for

casing the wells, the reliable determinations in situ of thermal conductivity
and the '"real time' estimates of heat flow make the downhole probe a

valuable adjunct to the standard approach.
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APPENDIX A
Temperatures, Gradients, and Thermal Conductivity

In this section, we present temperature and conductivity profiles
for all of the holes in the Black Rock Desert in which downhole probe.
experiments wefe performed (Figure 1). At least two temperature profiles
are given for each hole; one shortly after drilling, another 2 1/2
months or more later, and in some instances a'third profile, at an
intermediate time. The top of the cement colum in the annulus between
casing and borehole wall is easily identified by the positive 'kick' in
the earliest temperature profile (see e.g., Figure A-1 at 50 m). The
individual temperatures determined from the lowermost thermistor (#1)
are plotted as open circles on the diagrams. In the logging mode,
temperatures were measured at intervals of 0.3 m (1 foot) (see Moses and
others, 1979). The gradients shown are sliding averages over 3.05
meters (10 ft). Shown with the gradients are the harmonic mean conductivities®
for the probed intervals. Where cores were obtained, the means for
cored and probed intervals are combined as a single value. For more
details for a given figure number, see the corresponding table in

Appendix B.
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APPENDIX B
Summaries of Downhole Experiments

Summaries of all downhole experiments are tabulated in this section.
For each hole, we presgnt a table showing the results from the downhole
probe compared with conventional measurements. The first three columns
give reference depths; the first, the approximate depth reached by the
bit before the experiment began. The second column refers to the depths
of the probe thermistors assuming that the bit depth is accurate.
Actually, because of shifting reference levels on the rig relative to
the ground surface, the accuracy of the bit-depth estimate is probably
no better than +0.3 m. For penetrations (column three) of less than
1.15 m, only one or two depths are shown depending on how many thermistors
actually penetrated the formation beyond the bit. Temperatures obtained
from linear extrapolation of the temperature versus 1/time curves (see
Figures 5 and 6) are compared with those obtained from the most recent
temperature logs in colums 4 and 5 (see also the corresponding temperature
curves in Appendix A). The closeness of the agreement should be judged
in the light of the +0.3 m uncertainty in bit location already mentioned,
.a similar uncertainty in reference level for the temperature log, and an
uncertainty of +0.01°C in the value of temperature obtained using the
downhole probe. At a temperature gradient of 100°C/km, an unfavorable
éombination of these factors can result in a discrepancy of nearly 0.1°C

between the two temperature colums. In fact, the discrepancy is
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usually much less than this except where there was obviously a dis-
turbance caused by the invasion of drilling fluid.

The comparison between the gradient colums is not so much affected
by difficulties in establishing a surface reference datum. (The ''Log"
gradient was determined by a least-squares fit to six temperature
readings from the most recent log over the 1.5 m interval directly below
the bit.) The main problem here is the insensitivity of the system.
Since each thermistor is only calibrated (relative to the other two) to
+0.01°C, we have a maximum possible error of +40°C/km over 0.5 m or
+20°C/km over a meter. Although this is too coarse a determination for
the usual range of regional background heat flows, it provides sufficient
sensitivity for outlining anomalies of the magnitude (say 100 to 300°C/km)
we might expect in unconsolidated sediments in an area of economic
interest for geothermal exploration. In this context, the agreement in
the gradient columns is quite satisfactory. Furthermore, accuracy can
be improved, and confidence increased by making two or more probe rums
10 or more meters apart as we have done in every case. When we have
f;111 penetration at two locations giving one-meter heat flows which
agree with that estimated over several tens of meters (see e.g., summary
for GRF, Table B-6), then we have sufficient redundancy to give us a
value of stature comparable to that of a conventional heat-flow méasurement

where we have taken two or more separate cores.
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APPENDIX C
Mechanical Construction of Downhole Probe

The probe is essentially a 2.13 meter length of heat-treated 52100
grade steel, 6.4 mm o.d. and 3.2 mm i.d. Figure C-1 illustrates the
main features and dimensions of the probe. A loop of heater wire and
four thermistor leads, all mutually insulated and enclosed in heat
shrinkable tubing are placed in the steel tube, and the voids are filled
with molten woods metal.

The woﬁds metal expands slightly on freezing, thereby facilitating
thermal contact among heater, thermistors, and probe wall. The switching
instrumentation (described in Appendix D) is attached at the toﬁ of the
probe, and the entire probe is mated to the 3/16 inch (4.8 mm) o.d.
four-conductor armored logging cqble by means of a standard Gearhart-
Owen cablehead. A short, smooth-walled 35 mm i.d. drill collar immediately
above the bit acts as a cylinder for the piston on the driving meéhanism
(Figure C-2). The ''grabber" (Figure C-3 and Plates I through III)
consists of a series of ball bearings which roll up a ramped sleeve and
compress the outer wall of the probe. For moderate pressures (up to 500
or 600 psi on the piston), the deformation is elastic, but at higher
driving pressures, circular ''dimples'" are left on the probe wall. As
the driving pressures approach the strength of the probe material, the
dimples take on a teardrop shape (Plates I, II, and III). When the

pressure is released, the grabber balls are free to move up the probe
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under the force of the return spring so that when pressure is again
applied, another increment of the probe can be pushed through the bit.
The length of the stroke can be varied by using different lengths of
return springs. In practice, the most efficient stroke length was found
to be 8 to 10 cm. Shorter springs resulted in long times being required
for penetration. Longer springs tended to buckle‘sideways and bind

against the wall of the cylinder.
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APPENDIX D
Downhole Probe Electronics

The digital monitoring and data-gathering electronic components
located in the logging vehicle are primarily those used in conventional
temperature logs and field determinations of thermal conductivity using
the needle probe (Moses and others, 1979). This system, illustrated
schematically in Figure D-1 initiates and controls all operations
involved in the heat-flow determinations.

Thermistor-resistance measurements are made using a 5 1/2 digit
digital multimeter utilizing a constant current source through the
unknown resistance along with a highly accurate zero and drift-correction
method. Although a true four-wire resistance mode of operation would
normally be used to compensate for cable resistance and/éf changes in
cable resistance with.time, a different concept is édopted here because
we have three thermistors and a heater circuit all serviced by four
conductors (Figure D-2).

Two wires within the four<wire shielded cable extending from the
logging vehicle to the heat-flow probe are used for thermistor-resistance
measurements (Figure D-2). The three thermistors share a common wire
and are sequentially switched across the pair by glass encapsulated reed
relays (Plate IV) which exhibit less than 10 milliohms contact resistance.
Four shielded reed relays are used in the downhole probe; three are used

sequentially to read the individual thermistors; the fourth réed'relay
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places a short circuit across the pair, so cable resistance can be read
and recorded, hence line resistance can be updated and compensated for
on each sweep of measurements. Shorting of the resistance-measuring:
pair also provides thermistor-location synchronization owing to the over
two orders of magnitude reduction of resistance from a thermistor
measurement, a factor easily detected by software in the logging vehicle
calculator (Figure D-1).

The electronics within the heat-flow probe consist of a self-
contained battery-operated unit which is switched on prior to being
lowered downhole (Figure D-2 and Plate IV). The unit incorporates a
binary counter followed by a binary-to-decimal decoder. The binary.
counter is set up with hard wire reset after a count of three (0000
being an initial condition). The counter and decoder are cf the C-MOS
family for low power consumption and high noise immmity (>.45 VDD).

The decimal decoder sequentially energizes four relay drivers.

The requirement to select a starting point for measurements and to
 control the elapsed time between thermistor readings and monitoring time
is accomplished by a programmable timer (Figure D3) in the logging
vehicle. In this operation (Figures D-1, D-2, and D-3)-a pre-programmed
interval pulse is sent down the cable (<1 ms duration) on one resistance-
measurement leg and referenced to the shieid. A signal conditioned,
high Z Schmitt trigger within the probe housing provides the counting

clock for the binary counter.
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. The programmable timer in the logging vehicle can be set to allow
any: number- of thermistor-drift readings (due to penetration friction) 1‘:0
be made until an equilibrium is met or can be calculated by extrapolation
(Figures 5 and 6). At this time, the timer energizes the heater circuit
within the downhole probe by means of a contact closer in the tiﬁme,r.

- The ‘heater-power source ,is derived from a highd?evel constant current
source with excellent stability (+0.01%). This current source is set
approximately to the desired value and is measured and‘ monitored digitally
by the voltage drop across a stable, precision 7wirq,-ygom}d Tesistor wired
in series with the source. The heater circuit is isolated completely
from adjacent conductors and the shield.

Real-time data computation and processing are accomplished with
various components within the logging vehicle (Figure D-1). Look-up
tables are stored and accessed with a programmable c;al;;u.}ator and
applied to the data acquired by the digital multimeter .. Data are stored
on digital tape and on printed paper tape, and resu}j;s are plotted on an
* X-Y plotter. Control signals, data formatting, and deyice handshaking
are accomplished by interface éonq)onents programmed to marry the individual

instruments, details of which are not provided here because the rapid

- .. evolution of microprocessor technology will probably render many (if not

most): of the components used in this study obsolete by the time these
results are published. Off-the-shelf components can be duplicated (or
improved upon) by reference to Figure D-1. The custom-designed components

are shown in greater detail in Figures D-2 and D-3 and in Plate IV.
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