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ABSTRACT

Approximately 91.6 billion barrels of oil-in-place and about 106.2 
trillion cu ft of dissolved/associated and non-associated gas-in-place 
have been discovered in the Permian basin of western Texas and northeastern 
New Mexico. The objectives of this study were to estimate the in-place 
quantities of undiscovered oil, dissolved/associated gas, and non- 
associated gas in the basin and to estimate the size and number of pools 
in which the appraised amounts of oil and gas occur. All assessments 
were initially made by age-depth units; each unit consists of rocks of a 
specific geologic age within a specific depth interval. The age intervals 
used were 1) the Permian System, 2) the Carboniferous systems 
(Pennsylvanian and Mississippian), and 3) the older Paleozoic systems 
(Devonian, Silurian, Ordovician, and Cambrian); the depth intervals used 
were 0-10, 10-20, and 20-30 thousand feet below the surface. Assessments 
were made for each age-depth unit at the 5, 25, 75, and 95 percent 
probability levels. Statistical means for each unit were computed. By 
making the assessments in the small age-depth units and by utilizing 
Monte Carlo aggregation procedures, it was possible to determine total 
quantities of hydrocarbons in the entire basin at all probability levels, 
as well as total quantities by age and by depth.

The following table summarizes our estimates for undiscovered 
hydrocarbons-in-place:

Commodity

Oil 
(billion bbls)

Natural gas 
(trillion cu ft)

Undiscovered in-place resources

Probability

0.95 0.05

3.32 10.43

12.89 33.80

Mean

6.35

21.87

Our estimate of undiscovered oil-in-place at the 95 percent and 5 percent 
probabilities is 4 and 11 percent, respectively, of the known and produced 
oil-in-place. Our estimate of the total gas-in-place at the 95 percent 
and 5 percent probabilities is 12 and 32 percent, respectively, of the 
total known and produced gas in-place.

Our estimates of pool size distributions indicate that undiscovered 
pools in the basin will be, on the average, significantly smaller than 
those discovered to date.

No totally satisfactory method has been developed to determine the 
numbers of pools to be found, and no estimates of these numbers are 
presented.



INTRODUCTION

The Resource Appraisal Group, Branch of Oil and Gas Resources, U.S. 
Geological Survey, was assigned the responsibility for Task I of the 
Interagency Oil and Gas Supply Project. The assignment was to provide:

1. detailed appraisals of undiscovered oil and gas in-place by 
depth of occurrence and by major stratigraphic unit, and

2. estimates of the probability distributions of the size and the 
number of undiscovered pools of oil and gas, regardless of 
economic constraints.

These assessments were to be prepared for three pilot regions: the 
Permian basin of west Texas and southeast New Mexico; the offshore Gulf 
of Mexico, excluding the eastern carbonate province; and the Mid-Atlantic 
offshore province. This report is confined to the assessment of 
undiscovered oil and gas of the Permian basin, as of January 1, 1978.

The Permian basin, which has been producing hydrocarbons for nearly 
60 years, was selected as a pilot study area so that methods for estimating 
undiscovered hydrocarbons in a mature onshore producing province might 
be developed and evaluated.

The study area (fig. 1) includes all or parts of 52 counties, 
approximately 82,000 sq mi., in west Texas and southeast New Mexico. 
Portions of Presido, Brewster, Pecos, Terrell, and Val Verde Counties, 
Texas, are excluded because those regions are outside the Permian 
basin proper.

Only negligible amounts of hydrocarbons have been found in rocks 
younger than Permian; consequently this assessment is concerned exclusively 
with the Paleozoic section. For convenience of analysis and assessment, 
the Paleozoic section of the Permian basin was divided into three 
identifiable stratigraphic units. The three units are the Permian, the 
Carboniferous, and the remaining older Paleozoic systems (fig. 2).

This administrative report presents results of the Permian basin 
study, with sections on the petroleum geology and methods of assessment 
of undiscovered oil and gas. Additional basic data are given in the 
appendix.

Previous resource estimates of this area were considerably more 
optimistic than the present assessment. Though comparisons are difficult 
because the dimensions of the previous area assessed are not identical 
to the areas in question, nevertheless it is clear that the present 
study decreases the estimate of remaining recoverable petroleum 
significantly; in the only previous assessment that permits comparison 
(Miller and others, 1975) approximately twice as much area was considered 
but the assessment was approximately five greater than that of this 
report.

The reasons for this difference are of course complex, but mostly 
are attributable to a significantly different data base, a more thorough 
assessment .of petroleum exploration possibilities, and different assessment 
methodologies. In the Circular 725 assessment, only volumetric/yield or 
areal yield analytical techniques were possible. In this most recent - 
assessment, a comprehensive field and pool data file was available, and 
abundant drilling and finding rate studies were conducted, along with a 
thorough review of the geology on a stratigraphic basis. The net result 
was a more in-depth perspective on the petroleum potential of this 
mature exploration province, and we hope a more reliable estimate.
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Figure 1. Index map of the Permian basin, southeast 
New Mexico, and west Texas.
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Reassessments will always produce changes because ideas change with 
time, and in many areas significant new data will come to light. Those 
new ideas and new data, however, will not necessarily always result in 
decreased assessments. It is not possible, therefore, to extrapolate a 
reduced expectation nationwide from this single-area reassessment.

The Resource Appraisal Group reserves the right to alter any of the 
results in this report in the event that such modifications are considered 
necessary during the preparation of a manuscript for U.S. Geological 
Survey publication.

SOURCES OF DATA AND ACKNOWLEDGMENTS

The geologic and petroleum exploration data used in making the 
appraisals presented in this report were obtained from published 
literature, commercial sources, unpublished data, and oral communications. 
The literature for the area is abundant; the selected bibliography 
includes about 170 references ranging in scope from regional geologic 
studies to engineering descriptions of individual fields and pools. 
Published and unpublished maps, files, and correlation charts of the 
paleotectonic map series of the U.S. Geological Survey (Bachman, 1975; 
Crosby and Mapel, 1975; Mapel and others, 1979; McKee, Oriel, and 
others, 1967; Oriel and others, 1967) were used extensively in our study 
of Permian and Carboniferous rocks.

Maps of exploratory and development wells in the study area, on a 
scale of 1:250,000, were developed using the Petroleum Information 
Corporation Well History Control System. This data file also provided 
counts of the number of exploratory wells completed as oil or gas wells 
or dry holes and the exploratory footage drilled in each county. Selected 
production statistics from the Petroleum Data System in Norman, Oklahoma, 
were also used.

Field and pool data essential to the analysis were obtained from 
Thomas Garland, John Wood, and James Hicks of the U.S. Bureau of Mines 
(now of the Office of Applied Analysis, Department of Energy), Dallas, 
Texas. This compliation consists of 21 data items for each of 5,347 
pools in the study area. Petroleum Information Corporation, through 
Lawrence J. Drew of the U.S. Geological Survey in Reston, Virginia, 
provided annual exploratory footage for 1920 through 1940. Exploratory 
footage for 1940 through 1974 was obtained from records published 
annually by International Oil Scouts Association. The authors are 
indebted to T. S. Dyman and R. J. Cassidy, U.S. Geological Survey, for 
their assistance in providing data retrievals from the computer files.

The authors wish to thank B. M. Miller and K. H. Carlson for making 
available computer-curve fit and Monte Carlo programs for processing the 
probability distributions, for programs utlized in finding-rate projections, 
and for their consultation during this study.

DEFINITIONS, EXCLUSIONS, AND LIMITATIONS

Commodities included in this appraisal are crude oil and natural 
gas. Crude oil is a natural mixture of hydrocarbons occurring underground 
in a liquid state in porous rock reservoirs and remaining in a liquid 
state as it is produced from wells. Natural gas is a mixture of gaseous 
hydrocarbons classified by occurrence into:



Associated gas free natural gas, occuring as a gas cap, in contact 
with and above an oil deposit within the reservoir;

Dissolved gas natural gas dissolved in crude oil within the 
reservoir; and

Non-associated gas natural gas that is not associated with or in
contact with significant amounts of crude oil within a reservoir, 

Natural gas normally includes small quantities of various non- 
hydrocarbons and in the Permian basin these contaminants, particularly 
carbon dioxide, can run as high as 99 percent of the gas. Our estimates 
of undiscovered natural gas exclude carbon dioxide, except as normal 
background (less than 5 percent by volume). Condensate and other natural 
gas liquids are reported as part of the natural gas volume.

Occurrences of oil and gas specifically excluded from this study 
are heavy oil deposits., tar deposits, oil shale, and impermeable ("tight") 
gas reservoirs. All of these occurrences have characteristics that 
preclude the extraction of hydrocarbons by conventional methods.

The basic unit of hydrocarbon accumulation used in this report is 
the pool which is, in general, equivalent to the reservoir. A pool or 
reservoir may be defined as a porous and permeable underground rock 
containing an individual and separate natural accumulation of hydrocarbons, 
It is confined by impermeable rock or water barriers and is 
characterized by a single natural pressure system (American Petroleum 
Institute, 1976, p. 7). Pools may contain either oil or gas or both. 
However, for purposes of this study, any pool producing any amount of 
oil was considered an oil pool, regardless of the amount of 
dissolved/associated gas contained or produced.

A field consists of a single pool or multiple pools all grouped on, 
or related to, the same individual geological structural feature and 
(or) stratigraphic condition. In a field there may be two or more pools 
that are separated vertically by intervening impervious strata, or 
laterally by local geologic barriers, or by both (American Petroleum 
Institute, 1976, modified). The Texas Railroad Commission, however, 
defines each pool as a separate field.

A new field is a discovery of oil or gas with accumulation being 
controlled by a separate structural feature and (or) stratigraphic 
condition to the extent that the new discovery is not considered a new 
pool, or an extension of a pool, in a preexisting field (American 
Petroleum Institute, 1976). In the present study, undiscovered pools 
that occur as independent accumulations controlled by separate structural 
features and (or) stratigraphic conditions are considered separate 
fields even though they may occur at depth below preexisting fields. 
Such undiscovered accumulations are not considered as part of future 
additions to known fields (such as inferred reserves, fig. 3 and Appendix 
A, p. A-l), but are estimated as a part of the overall undiscovered oil 
or gas in-place.

All amounts of oil and natural gas estimated in this report are 
undiscovered hydrocarbons in-place, limited only by the arbitrary lower 
limits of pool size used in this study. Oil or gas in-place is defined 
to include all oil or gas in-place without qualification as to what 
portion, if any, may be considered either currently or potentially 
extractable. Amounts of known oil or gas in-place refer to the estimated 
number of stock tank barrels of crude oil or standard cubic feet of gas
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(14.73 Ibs. per sq. in. atmosphere-psia-and 60° F) in reservoirs prior to 
any production (American Petroleum Institute, 1970, pi. 19). Because our 
assignment was to assess the amounts of hydrocarbons remaining in the 
Permian basin regardless of economic constraints, we should, theoretically, 
have assessed all accumulations of oil, no matter how small. However, 
this is not practical because the historic data include very few 
accumulations below 1,000 bbls of oil although many such accumulations 
must exist. We arbitrarily chose 1,000 bbls of oil and 1,000,000 cu ft 
of gas as lower limits for our study, realizing that although such a low 
level may seem unrealistic, there is the historic precedent of reported 
pools at or near this size.

Non-associated gas is reported and assessed separately from 
dissolved/associated gas. Separate associated gas and dissolved gas 
statistics are reported for known oil pools, but are given as one quantity, 
dissolved/associated gas, in the assessments of undiscovered resources. 
Such gas is not combined with the crude oil into oil equivalents. 
Condensate and natural gas liquids are treated in the assessments as part 
of the natural gas.

Resources, (fig. 3) as defined by the U.S. Bureau of Mines and U.S. 
Geological Survey (1976, p. A2) are "...concentrations of naturally 
occurring solid, liquid, or gaseous materials in or on the Earth's crust 
in such form that economic extraction of a commodity is currently or 
potentially feasible." 1 In-place quantities, however, may include 
accumulations that are either too small, dispersed or remote to be 
recoverable, or portions of economic deposits which are potentially or 
actually non-extractable in an economic or technologic sense. The assessed 
amounts of undiscovered oil and gas in-place fall in the right-hand 
hachured column of the resource diagram, figure 3.

Estimates of undiscovered crude oil and natural gas were made as of 
January 1, 1978.

PETROLEUM GEOLOGY OF THE PERMIAN BASIN 

Geologic Framework

The Permian basin is a large asymmetric structural depression in the 
Precambrian basement of the southern margin of the North American craton 
that has been filled primarily with Paleozoic sediments. It acquired its 
present structural form (fig. 4) by Early Permian time although it has 
been modified by subsequent tectonic activity. Rocks of all Paleozoic 
systems are present and attain a maximum combined thickness in excess of 
25,000 ft (fig. 5). Complete sequences of Paleozoic strata are not 
present because sedimentation was interrupted, locally and regionally, by 
erogenic movement and structural deformation; this was accompanied by 
erosion or nondeposition. A generalized stratigraphic and lithologic 
column is shown in figure 2.

Structurally, that part of the Permian basin included in this 
report is bounded on the south by the Marathon-Ouachita fold belt, on the

1 The other terms shown in figure 3 are not used in this report. For 
definitions, see Appendix A.
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west by the Diablo Platform and Pedernal Uplift, on the north by the 
Matador Arch, and on the east by the Eastern Shelf and west flank of the 
Bend Arch (fig. 6)\ The region is readily divisible into several distinct 
tectonic elements. They are the Central Basin Platform and the Ozona 
Arch, which separate the Delaware and Val Verde Basins from the Midland 
Basin; the Marfa Basin, separated from the Delaware Basin by the Diablo 
Platform; the Northwestern Shelf; and the Eastern Shelf.

Stratigraphic and structural relationships within the Permian basin 
are generalized on cross-section A-A f (fig. 7). From Cambrian through 
Mississippian time the area was relatively stable, developing from a 
broad marine shelf into a marine basin with associated shelves. This 
basin, the Tobosa basin of Galley (1958), was the site of extensive 
carbonate and subordinate fine clastic sedimentation. Its deepest part 
was in the approximate vicinity of the present Delaware Basin. Only 
mild structural movement and deformation occurred during this early 
period, producing local unconformities and structural anomalies of low 
and broad relief. The deeper basins accumulated fine clastic sediments 
with some interbedded limestones in Mississippian time.

From Early Pennsylvanian into Early Permian time, the region was 
subjected to intense structural deformation and orogenic movement which 
culminated in the development of the present tectonic elements (fig. 6), 
and which provided a depositional setting totally different from the 
relatively stable basin that existed earlier. These tectonic elements 
include platforms (Diablo and Central Basin), deep basins (Delaware, Val 
Verde, Midland), and surrounding shelves (Northwestern and Eastern). 
Sedimentation varied according to the tectonic setting. In Pennsylvanian 
time, coarse clastic sediments were deposited near the shorelines of the 
basins and limestones seaward of those elastics. Reef developments make 
up a large percentage of the limestone. In Late Pennsylvanian only thin 
marine shales were deposited in the deeper basins. Pennsylvanian rocks 
are absent in many localities due to erosion or nondeposition, particularly 
along the trend of the Central Basin Platform.

In Permian time, sedimentation continued to build in the tectonic 
setting developed in Pennsylvanian time. Permian reefs expanded to 
become the most striking feature of the Permian basin. The reefs generally 
developed at the basin hingelines and separated the clastic and thin 
limestone deposition of the basins from the back-reef lagoonal deposits 
of interfingering layers of sandstone, mudstone, carbonate and anhydrite.

Oil and Gas Occurrence

The Permian basin, one of the most prolific petroleum provinces of 
North America* is now in a mature stage of petroleum exploration and 
development. Oil and natural gas have been found in rocks ranging in age 
from Cambrian to Cretaceous (table 1); however, virtually all of the 
known hydrocarbons have been found in rocks of Paleozoic age. The 
Paleozoic reservoirs here produce oil from depths of less than 500 ft 
to slightly more than 14,000 ft, and natural gas from depths of less 
than 500 ft to more than 21,000 ft (fig. 8).

Although almost the entire Permian basin is productive, discovered 
hydrocarbons show pronounced distributional patterns. Permian rocks, at 
relatively shallow depths, have accounted for approximately 71 percent

11
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Table 1. Discovered oil and gas in-place, Permian basin (1921-1974)*

Geologic 
System

Post-Permian

Permian

Carbonif er ous

Older Paleozoic

Undifferentiated 

Total

Oil in-place 
(billions 
of bbls)

0.184

65.070

11.926

14.368

Paleozoic . 003

91.551

Associated
gas in-place 
(trillions 
of cu ft)

0

2.414

0.352

1.167  

0

3.933

Dissolved
gas in-place 
(trillions 
of cu ft)

0.006

30.323

10.228

16.284

.001

56.842

Non-associated
gas in-place 
(trillions 
of cu ft)

trace

6.268

7.721

233.636 .

0

247.625

1Based on 1974 Bureau of Mines (now Office of Applied Analysis, Department 
of Energy) estimates of initial hydrocarbons-in-place, unadjusted for future 
growth.

2Includes 2.184 TCF carbon dioxide gas in natural gas fields with C02 
concentrations greater than 5 percent.
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of the oil and dissolved/associated gas discovered to date. In contrast, 
the older sequence of pre-Mississippian rocks has contained the major 
quantities of non-associated gas. The Central Basin Platform is the 
major productive tectonic element for both oil and dissolved/associated 
gas, producing principally from the Permian Capitan reef and back reef 
complex and from lower Paleozoic reservoirs. The Midland Basin is an 
important oil and dissolved gas producing area while the Northwestern 
Shelf and the Eastern Shelf produce oil and dissolved/associated gas in 
smaller quantities. The western part of the Permian basin, particularly 
the Delaware and Val Verde basins, and western parts of the Northwestern 
Shelf have produced most of the non-associated gas.

The oil and gas discovered through 1974 in rocks of Paleozoic age 
occurred in 4,437 oil pools and 888 non-associated gas pools. The 
frequency distributions of these pools are shown in figures 9 and 10. 
Individual pools range in size from subeconomic to giant accumulations. 
The distributions of "fields", which group the pools into producing 
units, are shown in figures 11 and 12. Many of the larger fields 
consist of multiple pools, whose ages range from Ordovician through 
Permian. The maximum number of pools in a single oil field is 22 
and in a single non-associated gas field is 7; however, multiple pool 
fields generally possess a principal reservoir from which most of the 
production is obtained. The average number of pools per field is 1.6 for 
oil, and 1.3 for non-associated gas.

Permian rocks, which account for the majority of the oil discovered 
in the basin, also provide some of the largest individual pools and 
fields. The most outstanding of these are located in the Guadalupian 
Capitan reef complex of the Central Basin Platform where Permian production 
extends over large areas. Some of these giant fields contain three or 
more separate Permian reservoirs. These Central Basin Platform Permian 
fields, which are primarily controlled by stratigraphy, locally overlie 
older pools which are separately trapped in deeply buried structures. 
The Spraberry Trend, which produces in the Midland basin from fractured 
siltstones of Leonardian age, is essentially independent of producing 
structures in underlying rocks.

The Paleozoic Systems

The Paleozoic section of the Permtan basin was divided for this 
study into three unique and identifiable stratigraphic units (fig. 2). 
These three units, separated in many places by natural boundaries 
within the stratigraphic column, are the Permian, the Carboniferous, 
and the remaining older Paleozoic systems. For convenience, the 
Mississippian-Devonian Woodford Shale is treated as part of the 
older Paleozoic sequence.

Older Paleozoic Systems

The older Paleozoic pre-Carboniferous rocks occupy an area or^more 
than 73,500 sq mi within the region of study and include Cambrian, 
Ordovician, Silurian, and Devonian sediments. Their combined thickness 
ranges from 0 to 4,700 ft and their sediment volume is about 25,000 cu 
mi, of which approximately 85 percent occurs between the depths of 5,000 
and 20,000 ft.
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With the exclusion of the Devonian-Mississippian Woodford Shale, 
principal lithologies in the older Paleozoic rocks are limestone (40 
percent), dolomite (30 percent), shale (20 percent), and sandstone (10 
percent). The sequence consists of basal Cambrian elastics unconformably 
deposited on the Precambrian cystalline basement, followed by Ordovician 
Ellenburger carbonates which were deposited on a shallow stable marine 
shelf, in turn followed by younger Ordovician, Silurian and Devonian 
carbonates and elastics deposited in the Tobosa Basin and on the surrounding 
shelf. The Tobosa basinal setting persisted throughout mid-Ordovician, 
Silurian, and Early Devonian time with only minor periods of uplift and 
erosion. From Late Devonian through Early Mississippian time, a widespread 
quiescent, euxenic, marine environment promoted the extensive deposition 
of black mud and siliceous ooze. These organic-rich muds, now represented 
by the Woodford Shale, are considered to be important source rocks (Hill, 
1971, p. 745; Salisbury, 1968, p. 1443). Although the principal indigenous 
lower Paleozoic source rock appears to be the Woodford shale, hydrocarbons 
may also have been derived from shales of the Simpson Group equivalents 
and from younger rocks (Frenzel 1968; Williams and Coester 1968; Holmquest 
1966; Kvenvolden, 1967).

The pre-Mississippian sequence produces oil and gas from rocks as 
old as Cambrian. Principal oil reservoirs are in the Devonian and in the 
Ordovician Ellenburger Group, each providing approximately 44 percent of 
the older Paleozoic discovered oil and dissolved/associated gas-in-place, 
and 28 and 52 percent respectively of the discovered non-associated gas. 
Less important reservoirs are in the Silurian Fusselman Dolomite, Ordovician 
Montoya Dolomite, Simpson Group equivalent rocks, and Cambrian formations.

Older Paleozoic oil and natural gas are not evenly distributed 
throughout the Permian basin. The Central Basin Platform accounts for 60 
percent of the discovered oil in-place (8.6 billion bbls), followed by 
the Midland Basin with 24 percent. In contrast, the Delaware-Val Verde 
Basin accounts for about 80 percent of the discovered non-associated gas 
in-place (27.6 trillion cu ft), followed by the Central Basin Platform 
with about 11 percent, and the Midland Basin with less than 10 percent. 
Most of the "dry" gas fields of the Delaware and Val Verde basins also 
produce appreciable condensate. Dissolved/associated gas/oil ratios 
increase toward the southern end of the Midland Basin and Central Basin 
Platform and Salisbury (1968) has noted an area of gas condensate or 
"wet" non-associated gas production in the southern Midland Basin. Most 
of the discovered oil and dissolved/associated gas are found at depths 
between 8,000 and 14,000 ft; non-associated gas is concentrated between 
depths of 9,000 and 22,000 ft (fig. 8).

Lithologically, the older Paleozoic reservoirs are primarily 
carbonates. Dolomites make up 67 percent of oil reservoirs and 86 
percent of non-associated gas reservoirs; limestones 21 percent and 9 
percent, respectively. The other reservoirs are sandstone, chert, and 
tripolitic. chert. Individual reservoir thicknesses range from as little 
as 10 ft for the sandstone reservoirs of the Simpson Group equivalent 
rocks, to more than 1,000 ft for dolomites of the Ellenburger. Reservoir 
properties of the principal producing carbonates vary considerably. 
Intergranular matrix porosity of the Ellenburger dolomite reservoirs 
usually ranges from 1 to 7 percent; however, joints and fractures augment 
this intergranular porosity and provide permeability, especially on
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tightly folded anticlines. Porosity of the Silurian and Devonian limestone 
and dolomite reservoirs is usually between 4 and 25 percent, and may even 
become locally cavernous; however, permeability is often low. In these 
reservoirs also, fracturing over anticlinal structures is an important 
factor in reservoir performance. Recovery factors of the older Paleozoic 
reservoirs average 26 percent for oil and 70 percent for non-associated 
gas.

Older Paleozoic reservoirs are found productive in anticlinal traps, 
most of which are faulted. Many of these structures produce from several 
older Paleozoic pools as well as overlying pools. Structural 
closure of several hundred feet is common; closure of more than 1,000 ft 
is reported in several major fields. Although structural traps account 
for more than 80 percent of all pools, stratigraphic and combination 
traps are also significant. Locally, Devonian and older rocks are 
absent from the tops of anticlinal features as a consequence of early 
growth and erosion, but may be present and productive in truncation traps 
on the flanks. Elsewhere, erosion is more regional in character and 
produces truncation traps in Ordovician, Silurian, and Devonian reservoirs. 
Reservoirs seals are primarily shales and impermeable carbonates.

Oils in the older Paleozoic rocks range from 31° to 56° API gravity; 
however, higher gravity condensates are found with natural gas. The 
crude oil tends to be napthenic to paraffinic and of low sulfur content.

Non-associated gas in the Permian basin generally increases in 
methane content to the south and west. Substantial C02 gas content is 
encountered in the Delaware Basin and increases to the south and west 
(Holmquest, 1967). This contaminant appears to be associated with known 
Tertiary intrusive activity, either as a product of thermal decomposition 
of carbonate rocks or as a late stage product of the thermal decomposition 
of organic material containing oxygen.

Carboniferous Systems

Carboniferous rocks (Mississippian and Pennsylvanian) occupy an area 
of about 74,000 sq mi within the region of study. The thickness of 
Mississippian rocks ranges from 0 to 2,600 ft, and that of Pennsylvanian 
rocks from 0 to 3,050 ft. Rock volume of the Mississippian is approximately 
6,000 cu mi, and that of the Pennsylvanian is approximately 14,000 cu mi. 
About 85 percent of all Carboniferous rocks occur between depths of 5,000 
and 15,000 ft.

Mississippian rocks consist of about 60 percent shale, 40 percent 
limestone, and minor amounts of chert. The shale and- chert are generally 
confined to the southern half of the Permian basin and the limestone to 
the north. The authors believe that the organic-rich shales of the Upper 
Mississippian are probably hydrocarbon source beds. The depositional 
environment through Late Mississippian time was a continuation of that 
established during the older Paleozoic, a shallow marine environment with 
carbonate deposition occupying the gently dipping shelf of the Tobosa 
Basin. Marine shales were deposited in the deeper"southern part of the 
shelf and basin. Mississippian sediments are absent either due to non- 
deposition or erosion over a large part of the present northwest, southwest, 
and southeast portions of the Permian basin.
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Pennsylvania!! rocks consist of about 48 percent limestone, 42 
percent shale, and minor quantities of sandstone and siltstone. Reefs 
make up a large percent of the limestone. The shales are important 
hydrocarbon source beds for Pennsylvanian accumulations.

The depositional sequence of the Pennsylvanian is strongly influenced 
by active tectonism that began in the Late Mississippian and continued 
with varying degree of intensity throughout the Pennsylvanian. This 
tectonism resulted in basins, shelves, and platforms that formed a 
depositional setting totally different from the relatively stable Tobosa 
Basin which existed prior to this time. Coarse sediments were confined 
to the peripheries of the basins. Seaward, the elastics grade into shelf 
limestones with active reefs on the shelf edges. Only thin marine 
shales were deposited in the deeper parts of the basins. Pennsylvanian 
rocks are absent in many localities due to erosion or non-deposition, 
particularly along the trends of the Central Basin and Diablo Platforms.

By the end of 1974, rocks of Carboniferous age were producing or had 
produced oil from 1,331 pools of Pennsylvanian age and from 50 pools of 
Mississippian age. At the same time, non-associated gas had been discovered 
in 383 pools of Pennsylvanian age, and in 10 pools of Mississippian age. 
The Pennsylvanian contains more than 99 percent of hydrocarbons discovered 
in Carboniferous rocks.

Oil and gas occur in both structural and stratigraphic traps, and in 
combinations of both. Structural trap types include anticlines, fault- 
bounded anticlines, plunging structural "noses", and faultbounded 
monoclines. Stratigraphic-trap types include reef mounds, bioherms and 
atolls, sandstone bodies deposited in littoral and nearshore marine 
environments, and carbonate porosity and permeability traps. Local 
porosity has developed in weathered cherty limestone beds of Mississippian 
age. The seals for all Carboniferous traps are either shales or impervious 
limestone beds. The oils produced from Carboniferous rocks in the 
Permian basin include paraffinic, napthenic, and asphaltic crudes having 
gravities ranging from a low of 22° API to a high of 55° API. The sulfur 
content ranges from 0.05 to 0.5 percent. Either associated or dissolved 
gas is produced from 1,331 of the 1,361 oil pools. Reported gas-oil 
ratios range from 31:1 to 12,432:1.

Both dry and condensate-bearing non-associated gases are produced 
from Carboniferous rocks. All of the gases are 75 or more percent 
methane and low in hydrogen sulfide. Inert gases found are nitrogen, 
carbon dioxide, helium, and argon, in decreasing order of occurrence. 
They make up less than 8 percent, and in most analyses less than 5 
percent, of the non-associated gas.

Permian System

Permian rocks cover practically the entire study area. They are 
divided into the Wolfcampian, Leonardian, Guadalupian, and Ochoan Provincial 
Series. The thickness of the Permian ranges from 0 to over 17,000 ft. 
Sediment volume is about 118,000 cu mi, of which 99 percent occurs at 
depths of less than 15,000 ft.

Permian rocks are extremely varied, generally grading upward from a 
clastic-carbonate sequence into an evaporite-red bed sequence. The 
combined Guadalupian, Leonardian, and Wolfcampian consist of approximately 
48 percent limestone, 24 percent shale, 20 percent sandstone, and 8 
percent evaporite. The Ochoan is about 65 percent evaporite with some
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limestone, shale, and sandstone. The organic shales and shaly limestones 
of the Permian are considered to be important indigenous hydrocarbon 
source beds (Landis, 1970, p. 329, 336). The depositional history was 
marked in Early Permian time by the conclusion of the intense orogenic 
movement and tectonism which had begun in the Early Pennsylvanian and had 
resulted in extensive faulting, folding and mountain building. After 
tectonism had ceased, the area became tectonically stable and was 
characterized by deep marine basins that shrank in area as they filled 
with sediment. Clastics were deposited in these basins which were 
surrounded by reefs and carbonate shelves that graded shoreward into 
evaporitic lagoons. By Late Permian time, evaporitic sabkha conditions 
existed over the entire area of deposition.

By the beginning of 1975, 2,188 pools in Permian rocks accounted for 
more than 65 billion bbls of discovered oil in-place, or 71 percent of 
the total oil found in the Permian basin. Oil reservoirs of Permian age 
also accounted for 30.3 trillion cu ft of dissolved gas in-place, which 
is 39 percent of all the gas found to date in the Permian basin.

In Permian rocks more than 99 percent of the oil in-place and more 
than 97 percent of the total gas in-place have been found at depths of 
less than 10,000 ft and most of it at depths less than 5,000 ft.

As the figures in table 1 indicate, there is relatively little known 
non-associated gas in Permian strata. Most Permian gas occurs dissolved 
in the crude oil and is produced with it. For many years, such gas was 
flared, and estimates of amounts flared are probably minimal.

The four provincial series of the Permian do not contain hydrocarbons 
in equal amounts. The largely evaporitic Ochoan rocks have accounted for 
only about 6 million bbls of discovered oil in-place, less than 0.01 
percent of the Permian's 65 billion bbls. Therefore, the Ochoan rocks 
are not considered to have significant potential and are excluded from 
this analysis.

By contrast, the Guadalupian has accounted for 67 percent of all 
Permian oil found and 62 percent of all Permian gas. The Leonardian 
follows with 28 percent of the oil and 32 percent of the gas. The 
Wolfcampian contains 5 percent of the oil and 10 percent of the total 
Permian gas. These amounts are directly related to the progressive 
development of reefs and back-reef lagoons beginning in the Wolfcampian, 
increasing in the Leonardian, and culminating in the development of the 
Gapitan Reef complex in the Guadalupian.

Hydrocarbon traps in Permian rocks are largely a combination of 
stratigraphic and structural types, although each type does occur alone. 
The intricate stratigraphic interfingering of lithologies responsible for 
trapping much of the Permian oil has resulted largely from the constantly 
shifting reef and back-reef sedimentary environments. Primary sealing 
mechanisms are porosity and permeability barriers of carbonate, evaporite 
or shale.

About" 40 percent of the reservoirs are limestone, 29 percent are 
dolomite and 29 percent are sandstone. Porosities range from 1.5 to 25 
percent and reservoir permeabilities from 0.02 to 200 millidarcies.

Recovery factors range from a low of 7.6 percent to a high of 47.5 
percent. The fractured siltstone Spraberry reservoir of the Midland 
Basin has a very low recovery factor, although the volume of oil in-place 
is the largest of any single Permian pool. The average recovery factor 
for the Permian System is 25 percent.
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DATA ANALYSIS

The subjective probability assessments contained in this report are 
based on a rigorous analysis of Permian basin data. Each major 
stratigraphic unit Permian, Carboniferous, and older Paleozoic was 
subjected to independent analysis by a team of geologists. Because of 
restrictions imposed by the physical characteristics of each unit, 
specific methods of data preparation and treatment in each unit varied. 
However, the goal of the analysis of all three units is the same, an 
assessment of the undiscovered in-place hydrocarbons and of the pool 
sizes containing these hydrocarbons; hence the methods applied to all 
three units are similar. Available geologic, drilling, reservoir 
engineering, and related physical data were entered in data forms by the 
three major stratigraphic units. Those compilations were basic to the 
estimations.

The Office of Applied Analysis, Bureau of Mines, (now the Department 
of Energy), supplied data concerning known oil and gas reserves, initial 
oil and gas in-place, estimates of ultimate recovery, amounts of associated 
and dissolved gas, field and pool sizes, discovery dates, age of productive 
units, depths of production, and general reservoir characteristics for 
all pools in the study area. Basic drilling information was derived 
from the Petroleum Information Corporation's Well History Control System 
and was used to establish exploratory well density, penentration depths, 
identification of stratigraphic units penetrated, and historical success 
records. Literature provided information on porosities, permeabilities, 
reservoir lithologies, thicknesses of net pay sections, gas-oil ratios, 
hydrocarbon properties, trapping mechanisms, and types of reservoir 
seals. Permian basin literature, as well as the files and unpublished 
maps of the U.S. Geological Survey, also provided isopach, lithofacies, 
structure, and subsurface contour maps. Geophysical investigations were 
not available.

Certain limitations were strictly adhered to in the analysis. 
Assessments of hydrocarbons were confined to in-place undiscovered 
amounts. Furthermore, pool sizes were restricted by the arbitrary lower 
limit of 1,000 bbls of oil in-place or 1 million cu ft of gas in-place, 
without regard to economic feasibility of extraction.

Subsurface Geologic Maps

To assist in estimating the spatial and geographic distribution of 
undiscovered oil and gas, geologic maps were prepared at 5,000-ft depth 
intervals below ground surface (figs. 13-17). These maps demonstrate 
the diminishing areal distribution of Paleozoic sedimentary rocks with 
depth in the Permian basin. Most of the sedimentary rocks are found 
above 15,000 ft. At 25,000 ft, only rocks of older Paleozoic age are 
present and these are limited to the southeastern part of the Delaware 
Basin. Major structural elements are clearly defined, such as the 
Central Basin Platform which appears as a large positive uplift beneath 
younger Permian rocks (fig. 13 and 14).
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Areas and Volumes of Sedimentary Rocks

Areas of the various stratigraphic units were calculated by 
planimetric measurement of surface and subsurface geologic maps. Using 
these measurements in conjunction with structure and isopach maps 
(McKee and Oriel, 1967; Kill, 1971; Crosby and Mapel, 1975; Mapel and 
others, 1979), volumes of sedimentary rock were determined. In some 
instances, geometric models and derivatives of standard formulae were 
used to obtain close approximations of true volumes. Because of the 
overall basin configuration, rock units by depth were assumed to represent 
frustums of an irregular and distorted solid cone or pyramid; based on 
this assumption, sediment volumes can be obtained.

Total volumes of sediment in each major stratigraphic unit were 
partitioned on the basis of their vertical and areal distributions. 
Individual isopach and subsurface contour maps were used to calculate 
the volume of rock occurring within the depth intervals 0 to 10, 10 to 
20, and 20 to 30 thousand ft. The entire areal extent of each unit was 
divided according to identifiable geologic trends, or into regions 
characterized by unique tectonic features that influenced sedimentation 
patterns or subsequent hydrocarbon, entrapment.

Drilling Density Maps

Drilling density maps (figs. 18-21) were prepared from data in the 
Petroleum Information Well History Control System. The locations of 
exploratory wells (new field wildcats only), identified as having been 
drilled through or into specific stratigraphic horizons, were combined 
with maps of oil or gas fields producing from the same stratigraphic 
unit or older. The exclusion of exploratory test classes other than 
"new field wildcats" from these maps was mandated by the map scale and 
by use of pool outlines, which were assumed to include within their 
immediate peripheries most exploration tests of other classes. The 
original detailed work maps were at a scale of 1:250,000. The combined 
maps of exploratory wells and producing fields were then contoured on 
the basis of well density.

Three categories were defined for each geologic unit, maturely 
drilled areas containing 12 or more wells per 25 sq mi, immaturely 
drilled areas containing less than 12 wells per 25 sq mi, and totally 
undrilled areas. The value of 12 wells or more for every 25 sq mi 
(approximately 1 well per two sq mi) was assumed to be a well density 
representative of mature drilling in the Permian basin (Hendricks 1965, 
p. 7-8). However, maturity is a highly subjective and critical variable 
in the analysis. These maps undoubtedly under-represent the degree of 
drilling because of the limited exploratory well class used and data 
omissions resulting from unreported tests or tests that report no tops.

These maps clearly demonstrate the extent to which the younger 
rocks have been much more heavily explored by drilling than the deeper 
older rocks. For example, approximately 60 percent of the Permian rocks 
(fig. 18), but only 20 percent of the older Paleozoic rocks (fig. 21) 
are considered to be maturely drilled.
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Volumetric and Areal Yield Methods of Analysis

Information from the drilling density maps was combined with 
volumetric or areal data for each geologic unit. This produced a data 
matrix of the total sedimentary rock volume or area within a defined 
area or region, the amount of that rock existing within specified depth 
intervals, and the division of that rock volume or area into the three 
classes of drilling maturity.

A yield 1 factor, the amount of oil or gas produced per cubic mile 
or square mile of sedimentary rock, was calculated for each maturely 
drilled area within each depth interval for each stratigraphic or 
tectonically defined element.

To gain some idea of the possible range of undiscovered oil and 
gas-in-place, known yield factors were applied to the gross volume or 
area of immaturely drilled and undrilled rock. They were also applied 
on a smaller scale to individual tectonic elements, regions, or trends. 
To calculate a possible "high" amount of undiscovered oil or gas for any 
one area, it was assumed that geologic and reservoir conditions in the 
inmaturely drilled or undrilled areas were similar to those existing in 
the maturely drilled producing area from which the yield factor was 
derived. Such conditions include lithology, porosity, permeability, 
trap types, sealing mechanisms, and source rocks. A "low" amount was 
calculated variously by: (1) reducing the total area or volume of 
imnaturely drilled sedimentary rock by the quantity assumed tested by 
dry exploratory wells; (2) by discounting undrilled sedimentary rock in 
direct proportion to the success ratio established in the maturely 
drilled producing area before applying the yield factor; or (3) by 
discounting either the undrilled sedimentary rock volume or the historic 
yield factor, assuming particularly unfavorable geologic conditions. 
Yield factors were directly lowered in some instances to reflect a 
reduced probability of occurrence of additional giant fields.

The amount of undrilled sedimentary rock to be assessed depends 
heavily on the assumed sphere of influence of an unsuccessful exploratory 
well. For this analysis, we assume that a dry exploratory well has 
tested the rock column underlying a 2 sq mi area around the well (see p. 
31). In addition, the space available for postulated undrilled traps 
must be taken into account. This is especially true in areas containing 
relatively high concentrations of exploratory dry holes.

Analog models were also applied to major tectonic elements within 
the Permian basin, using known hydrocarbon yields from other major 
elements within the basin, such as the highly productive Midland Basin 
or Central Basin Platform. Such analog calculations produced values of 
undiscovered oil and gas that were useful as scaling factors and 
supplemented the other analytical, procedures.

1 yield, as used in this report, applies to in-place rather than recoverable 
quantities.
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Finding Rates

Finding-rate studies were informative analyses involving the 
relationship between discovered volume of pools and exploratory effort. 
Exploratory effort was measured in terms of footage drilled for exploratory 
wells of all classes. No statistically sound method has been devised 
for consistently differentiating the intent of historical exploratory 
drilling between oil and gas. Consequently, the aggregate exploratory 
drilling footage was applied to discovered volumes of both oil and non- 
associated gas.

The exploration footages and discovered volumes were compiled for 
the years following 1920, inasmuch as earlier data are incomplete and 
footage amounts negligible. All data were compiled on an annual basis 
and then combined into units of 10 million feet of exploratory effort. 
Source of the data for the period 1920 to 1940 was the Petroleum 
Information Well History Control System and that for the period 1940 to 
1974 was the International Oil Scouts Assocation annual statistical 
summaries.

The volumes of oil or gas in-place of the discovered pools were 
classified by their discovery dates into the sequential units of 
exploratory effort. This linkage of discovered volumes to appropriate 
units of exploratory drilling effort smooths the annual and short-term 
fluctuations of exploration activity. The general methodology follows 
that developed by Miller (1976).

The data from the U.S. Bureau of Mines (now Office of Applied 
Analysis, Department of Energy) have some specific characteristics which 
may have had a small effect upon the finding-rate results and their 
interpretation. Pool volumes are not adjusted for future growth, and 
are therefore, somewhat understated. Although pool discovery dates are 
used, pools might best be dated back to year of initial field discovery 
when this is earlier. The above limitations in these data do not 
significantly affect the overall finding-rate trends for the basin.

Plots of discovered volumes by unit of exploratory effort are shown 
in figures 22 and 23. These figures summarize historic finding rates 
for rocks of the three major stratigraphic units analyzed. The dramatic 
decline in the amount of oil discovered with progressive drilling effort 
is immediately apparent (fig. 22). For example, in the first 10 million 
ft of exploratory drilling (prior to 1941), nearly 40 billion bbls of 
oil in-place were discovered;, this is almost half of the oil discovered 
through 1974. In the first 40 million ft of exploratory drilling 
approximately 80 percent of the total oil was discovered. In contrast, 
the last 10 million ft of exploratory drilling, out of a total of 
approximately 160 million ft, has yielded less than one-half billion 
bbls. Note, too, the decreasing contribution of Permian reservoirs. The 
crude oil finding-rate data are also plotted on a cumulative basis, 
(fig. 24) s

Finding rates for non-associated gas present a different picture 
(fig. 23). No regular decline can be seen. The observed discovery rate 
may have been affected by economic considerations involving the exploration 
and marketing of natural gas. Natural gas was a commodity with little 
market value during early exploration in the Permian basin; however, 
strong demand in recent years has caused exploration to be directed
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specifically toward the development of natural gas reserves. Finding 
rates show two modes: the first reflects the initial discoveries of the 
major deep older Paleozoic "dry" gas fields of the Delaware and Val 
Verde Basins in the early 1950*s; and a second more recent mode reflects 
additional exploration in the same area. This second mode, however, 
does appear to decline.

Finding-rate analyses also were made for several pool-size classes 
in the three major stratigraphic units. These studies (not illustrated 
here) indicate that oil is no longer being found invthe larger size 
classes which historically have contributed the major quantities of 
discovered resources. Even the larger components of the smallest size 
class are being found in decreasing numbers. No clear finding-rate 
trend can be identified for non-associated natural gas pool sizes.

SUBJECTIVE PROBABILITY ASSESSMENTS 

Assessment of Undiscovered Oil and Gas

The procedures for estimating the volumes of undiscovered oil and 
natural gas in the Permian basin involved: (1) an intensive review and 
analysis of geologic and historic data by major stratigraphic unit; and 
(2) the application of subjective probability procedures for the actual 
assessments of resources in each major stratigraphic unit. The probability 
methods were modified from those described in Miller and others (1975).

The review of the geology, discussion of the hydrocarbon potential, 
and mathematical and statistical analyses of each major stratigraphic 
unit were presented to a committee of geologists within the Resource 
Appraisal Group. Following the presentation, each member of the committee 
individually made subjective estimates of oil in-place and 
non-associated gas in-place. These judgments were estimates of the 
least quantity of oil or gas associated with the 95, 75, 25, and 5 
percent probabilities and a modal estimate associated with the highest 
probability of occurrence. Separate estimates were generated for the 
depth increments 0 to 10,000, 10,000 to 20,000, and 20,000 to 30,000 
feet within each stratigraphic unit. The mean depths of occurrence for 
oil and non-associated gas were also estimated within .each depth class.

Two, and in some cases three, separate iterations of the above 
probability procedures were made, following the introduction of new or 
recast data. Each repetition included an independent subjective 
probability assessment by each member. The estimates from the final 
iteration were arithmetically averaged at each probability level and at 
the modal estimate, and these averages 1 were statistically analyzed as 
described below.

Methodology for Processing Probabilistic Assessments

Statistical analsis of the average probability and modal estimates 
followed a modification of the procedure for computing and aggregating 
lognormal probability distributions developed for the United States 
Geological Survey by Gordon M. Kaufman of the Massachusetts Institute

raw estimates are provided in tabular form in Appendix C and 
graphically in Appendix B.
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of Technology, (Miller and others, 1975, p. 22). Using this procedure 
we computed and report lognormal probability distributions for the 
individual hydrocarbon assessment for each depth increment within each 
major stratigraphic unit.

Because of existing computer program constraints, only quantities 
associated with the 5 and 95 percent probability estimates and the modal 
values were used in developing the lognormal probability cureve fits to 
the original estimates. Work to date suggests that functions fit to all 
assessed probabilites should provide more representative distributions 
than a lognormal fit to the 5 and 95 percent fractiles and modal values. 
The use of functions other than lognormal will be explored in future 
work.

Monte Carlo aggregation techniques were applied to the above 
lognornal curves to derive the summary probability distributions for 
undiscovered oil and gas for rocks of all ages within each depth increment, 
for each major stratigraphic unit, and for the basin as a whole.

Descriptive statistics such as mean, mode, and standard deviation, 
are calculated for each lognormal probability distribution as well as for 
the aggregated probability distributions.

Probability Estimates of Undiscovered 
Pool Sizes and Statistical Methodology

Probablity distributions of the pool sizes in which the assessed 
undiscovered oil and gas in-place occurs were generated for each depth 
interval in each of the major stratigraphic units. Pool sizes were 
estimated as in-place quantities of oil and non-associated gas. 
Dissolved/associated gas occurrences were treated separately as products 
of the oil pools with which they are associated. Data for pool-size 
assessments were compiled as an integral part of the overall data 
collection and analysis. Particular emphasis was placed on establishing 
the spatial, stratigraphic, size, and discovery-time relationships of 
known pools.

Historic pool data were subjected to several analyses within each 
major stratigraphic unit.

1. Histograms were prepared for all pool-size classes by depth
intervals and by sequential units of exploratory effort, each 
unit consisting of 40 million ft of exploratory drilling.

2. Cumulative frequency distributions were calculated and siplayed 
as smoothed curves for the entire historic period and for the 
last two 40-million-foot periods of exploratory effort. 
Descriptive statistic for these distributions were calculated.

3. A linear regression was fitted to the historic cumulative
frequency distribution of pool size in an attempt to project 
cumulative frequencies of pools in the very small classes. 
Statistics for these distributions were calculated.

4. Finding-rate curves were calculated for various pool-size 
classes.

Figures 25 and 26 show pool-size finding rates for all ages and depths 
in the Permian Basin.
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Pool sizes for undiscovered oil and non-associated gas were estimated 
by subjective probability methods. Estimates were made of at least a 
certain size of pool corresponding to the 0.95, 0.75, 0.25, and 0.05 
probabilities. For example, the estimate given at the 0.05 probability 
represents the pool size where 5 percent of the pools are at least of 
that size. A modal value was also estimated. These distributions 
represent integrated estimates of the probability distribution of pool- 
sizes accompanying all ranges of undiscovered hydrocarbons previously 
assessed in a given unit.

Three iterations of the process for probability estimation of pool- 
size distributions were made and estimates of all assessors from the 
final iteration at each probability were arithmetically averaged. 1 A 
lognormal curve was fit to the averaged 95 and 5 percent probability 
estimates. However, the data may not be strictly lognormal in distribution, 
and means of lognormal curves fit to historic pool-size data are notably 
large when compared with the actual means calculated from those data. 
The lognormal distributions reported here should be viewed only as 
approximations of undiscovered pool size distributions.

Pool-size assessments were made by depth interval within the major 
stratigraphic units; however, aggregation of these distributions into a 
basin total or major stratigraphic unit total was not achieved. Programs 
for such aggregation are being developed.

Methodology for the Assessment of Dissolved/Associated Gas

Undiscovered dissolved/associated gas quantities were estimated by 
means of depth-related historic gas-oil ratios. Amounts of discovered 
in-place dissolved/associated gas and oil were assembled by 1,000 ft 
depth increments (fig. 8). From these data, the ratio of 
dissolved/associated gas to oil was established for each stratigraphic 
unit by depth interval (fig. 27). Substantial differences do not appear 
between stratigraphic units at equal depths in these plots, with the 
exception that the Permian System gas-oil ratios for part of the data set 
are somewhat low. This may be the result of an.underestimation of 
flared gas. To derive undiscovered dissolved/associated gas quantities, 
the gas-oil ratios at the various mean depths of oil occurrence were 
applied to the assessed quantity of undiscovered oil at that depth.

UNDISCOVERED OIL AND GAS 

Permian System

Only the three oldest Permian provincial series the Wolfcampian, 
Leonardian, and Guadalupian are considered significant for hydrocarbon 
potential,.and in these over 65 billion bbls of oil and over 39 trillion 
cu ft of natural gas have already been discovered (table 1, p. 14).

Estimates of volumes of undiscovered hydrocarbons in-place for 
Permian rocks at the various depths and probability levels are shown in

1 These averages are shown in Appendix C, tables 16 and 17, and in 
Appendix B, figures 53-58.
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table 2. The probability distributions for these estimates are in 
Appendix B, figures 28, 29, 36, 37, 44, and 45.

The estimates in table 2 indicate that at the 95 and 5 percent 
probabilities, 1.0 to 6.0 billion bbls of oil in-place (1.5 to 9.2 
percent of the discovered Permian crude oil) remain undiscovered, while 
0.7 to 4.1 trillion cu ft of dissolved/associated gas in-place (2.2 to 
12.4 percent of the discovered dissolved/associated gas) remain 
undiscovered. Finally, 0.2 to 0.6 trillion cu ft non-associated gas in- 
place (3 to 21 percent of the discovered non-associated gas) remain 
undiscovered. Most of these undiscovered in-place hydrocarbons occur 
above 10,000 ft. The estimates of mean depths of occurrence of 
undiscovered oil and gas are shown in table 3.

These undiscovered amounts will probably occur in circumstances 
similar to known fields and pools with respect to reservoir characteristics, 
seals, source beds, and nature of the hydrocarbons. Traps will probably 
be predominantly stratigraphic. The undiscovered deposits are likely to 
be distributed in undrilled areas surrounded by or flanking known 
production. Such flanking areas are in the western part of the 
Northwestern Shelf, the western areas of the Delaware Basin, and the 
southern and western parts of the Val Verde Basin.

Probability distributions of pool sizes containing these appraised 
amounts of hydrocarbons in-place are given in table 4. The full 
probability distributions are shown graphically in Appendix B, figures 
53 and 56.

Results indicate that undiscovered pool sizes are small; only at 
the 5 percent probability is there a chance of occurrence of an oil pool 
of 16 million bbls or larger, or a non-associated gas pool of 24 billion 
cu ft or larger.

Carboniferous Systems

Rocks of the Carboniferous systems account for approximately 12 
billion bbls of discovered oil in-place and 18 trillion cu ft of discovered 
non-associated gas in-place, of which more than 99 percent has been 
found in Pennsylvanian rocks.

Estimates of the amounts of undiscovered in-place oil, dissolved/ 
associated gas, and non-associated gas remaining in Carboniferous rocks 
are in table 5. Probability distributions for these estimates are shown 
graphically in Appendix B, figures 30, 31, 38, 39, 46, and 47. More 
than 85 percent of the undiscovered oil in-place in Carboniferous rocks 
is expected to occur between depths of 0 to 10,000 ft. Estimates of 
undiscovered non-associated gas in-place indicate that more than 70 
percent will occur in the depth interval 0 to 10,000 ft, more than 27 
percent in the interval 10,000 to 20,000 ft, and less than 2 percent in 
the interval 20,000 to 30,000 ft. The mean depths of occurrence of 
undiscovered -oil and non-associated gas are shown in table 6. Most of 
the undiscovered oil and gas is anticipated to be found in the 
Pennsylvanian portion of the sequence.

Estimates of the probability distributions of the pool sizes likely 
to contain these amounts of hydrocarbons are given in table 7. Graphs 
of these distributions are shown in Appendix B, figures 54 and 57. The 
results indicate that greatest probability of large size pools occurs
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Table 2. Estimates of undiscovered hydrocarbons, Permian System 
[The values shown are the estimates corresponding to the probability 
that there is at least that amount. Values shown are derived from 
lognormal curve fits to estimates at the 0.95 and 0.05 probability 
levels and the modal value. Leaders (  ) indicate not calculated; 
negl = negligible.]

Depth interval 
(ft)

Probability
0.95 0.75 0.25

Oil in-place (billion

0-10,000

10,000-20,000

Total

0.89

.06

1.03

1.58

.10

1.69

Dissolved/ associated

0-10,000

10,000-20,000

Total

0.57

.07

.74

1.01

.13

1.18

Non-associated gas

0-10,000

10,000-20,000

20,000-30,000

Total

0.17

.01

negl.

.19

0.31

.02

negl.

.33

3.46

.21

3.50

gas in-place

2.21

.26

2.38

0.05 Mean

bbls)

6.10 2.77

.36 .17

6.02 2.94

(trillion cu ft)

3.90 1.77

.44 .21

4.07 1.98

Standard 
deviation

1.76

.10

1.68

1.12

.12

1.12

in-place (trillion cu ft)

0.72

.04

negl.

.72

1.33 0.57

.08 .03

negl.   

1.31 .60

0.40

.02

  

.38
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Table 3. Estimates of mean, depths of undiscovered hydrocarbons. 
Permian system

Mean depth of occurrence (ft)
Depth interval (ft) " Oil Non-associated gas

0-10,000 5,100 4,000

10,000-20,000 10,500 10,800

20,000-30,000 None None

Total 5,400 4,300
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Table 4. Probability estimates of undiscovered
pool sizes, Permian system

[The values shown correspond to the probability of occurrence of 
a pool of at least that size. Values are derived from a log- 
normal curve fit to estimates at the 0.95 and 0.05 probabilities.]

Depth interval ________________Probability___________________
(ft) 0.95 0.75 0.25 0.05

Oil in-place (million bbls)

0-10,000 

10,000-20,000

0.002 

.001

0.027 

.016

1.08 

.48

15.48 

5.76

Non-associated gas in-place (billion cu ft)

0-10,000 0.003 0.044 1.72 24.04 

10,000-20,000 .002 .031 1.06 13.67
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Table 5. Estimates of undiscovered hydrocarbons, Carboniferous systems 
[The values shown are the estimates corresponding to the probability 
that there is at least that amount. Values shown are derived from 
lognormal curve fits to estimates at the 0.95 and 0.05 probability 
levels and modal value.]

Depth interval 
(ft)

Probability
0.95 0.75 0.25

Oil in-place (billion

0-10,000

10,000-20,000

Total

0.25

.03

.36

0.54

.07

.68

Dissolved/associated

0-10,000

10,000-20,000

Total

0.20

.04

.33

0.43 '

.09

.61

Non-associated gas

0-10,000

10,000-20,000

20,000-30,000

Total

0.27

.12

.01

.64

0.59

.25

.02

1.07

1.60

.24

1.74

gas in-place

1.29

.30

1.49

0.05

bbls)

3.51

.59

3.54

(trillion

2.82

.74

2.98

in-place (trillion cu

1.75

.67

.07

2.35

3.81

1.38

.20

4.34

Mean

1.28

.20

1.48

cu ft)

1.03

.25

1.28

ft)

1.40

.53

.06

1.99

Standard 
deviation

1.23

.23

1.19

0.99

.29

.97

1.33

.46

.08

1.31
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Table 6. Estimates of mean depths of undiscovered hydrocarbons, 
Carboniferous systems

Mean depth of occurrence (ft)
Depth interval (ft) Oil Non-associated gas

0-10,000 6,600 7,300

10,000-20,000 10,900 12,400

20,000-30,000 None 21,200

Total 7,200 9,100
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Table 7. Probability estimates of undiscovered
pool sizes, Carboniferous systems

[The values shown correspond to the probability of occurrence 
of a pool of at least that size. Values are derived from 
a lognormal curve fit to estimates at the 0.95 and 0.05 
probabilities.]

Depth interval 
(ft)

0-10,000 

10,000-20,000

0.95

Oil in-place

0..002 

.002

Probability
0.75 0.

(million bbls)

0.024 0. 

.020

25

84 

66

0.05

11.12 

8.34

Non-associated gas in-place (billion cu ft)

0-10,000 

10,000-20,000 

20,000-30,000

0.003 

.003 

.001

0.057 3. 

.052 2. 

.027 1.

02 

69 

65

53.08 

46.80 

32.11
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above 10,000 ft. The average undiscovered pool size is estimated to be 
smaller than the average historic pool size.

The Eastern Shelf, Northwestern Shelf, and the Midland Basin, in 
that order, are the most favorable areas for undiscovered oil. The 
Northwestern Shelf, Delaware-Val Verde Basins, Eastern Shelf, and possibly 
the Marfa Basin, in that order, appear to be the most favorable areas 
for undiscovered non-associated natural gas. The Marfa Basin, a 
geologically complex area essentially concealed under a volcanic cover, 
is a high-risk area of speculative potential.

Undiscovered traps in the Carboniferous will be primarily combinations 
of favorable stratigraphy and structure, with stratigraphy being more 
important, particularly in reef developments with flanking porosity and 
permeability lenses. Reservoir lithology will be predominantly limestone, 
followed by sandstone, siltstone, and cherty conglomerate.

Older Paleozoic Systems

Rocks of early Paleozoic age, although moderately well explored, 
are believed to contain substantial quantities of undiscovered oil and 
natural gas, (table 8). Probability distributions for these estimates 
are shown graphically in Appendix B, figures 32, 33, 40, 41, 48, and 49.

Undiscovered oil in the older Paleozoic is estimated to be almost 
equally distributed above and below the 10,000 ft depth; however, 
approximately 74 percent of the undiscovered non-associated gas is 
estimated to occur in the interval 10,000 to 20,000 ft. Although 
significant non-associated gas occurs at depths greater than 20,000 ft, 
the limited distribution of rocks there is an important constraining 
factor. No oil is anticipated below 15,000 ft and little above 5,000 
ft. The mean depths of occurrence of undiscovered oil and 
non-associated gas are shown in table 9.

The Midland basin and the Northwestern shelf have the greatest 
undiscovered oil and dissolved gas potential. Exploration on the highly 
productive Central Basin Platform, however, has progressed to a point 
where relatively few significant new accumulations can be anticipated. 
Remaining potential for non-associated gas is principally in the Delaware 
and Val Verde basins, deeper parts of the Midland basin, and portions of 
the Northwestern Shelf. The southwestward increase of carbon dioxide 
content in natural gas in the older Paleozoic reservoirs of the Delaware 
Basin is an important factor. The abundance of this contaminant appears 
to effectively limit the distribution of hydrocarbon natural gas in that 
direction and may preclude the occurrence of hydrocarbon gas in the 
Marfa Basin.

Probability distributions of pool sizes containing these assessed 
quantities are given in table 10 and shown graphically in Appendix B, 
figures 55 and 58. These indicate that undiscovered pool sizes will be 
smaller than'historic pool sizes.

Undiscovered oil and gas pools probably occur in traps comparable 
to those already discovered, except that undrilled structural traps are 
estimated to be smaller on the average. Truncated reservoir beds along 
pre-Woodford, Pennsylvanian, or Permian unconformities will continue to 
be as important as stratigraphic traps. Traps involving possible shelf
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Table 8. Estimates of undiscovered hydrocarbons, older Paleozoic systems 
[The values shown are the estimates corresponding to the probability 
that there is at least that amount. Values shown are derived from 
lognormal curve fits to estimates at the 0.95 and 0.05 probability 
levels and modal value.]

Depth interval 
(ft)

Probability
0.95 0.75 0.25

Oil in-place (billion

0-10,000

10,000-20,000

Total

0.30

.26

.78

0.54

.49

1.22

Dissolved/associated

0-10,000

10,000-20,000

Total

0.30

.37

.94

0.54

.69

1.46

Non- associated gas

0-10,000

10,000-20,000

20,000-30,000

Total

0.42

3.30

.71

6.16

0.75

5.81

1.26

8.96

1.25

1.16

2.30

gas in-place

1.26

1.65

2.76

0.05

bbls)

.29

2.19

3.60

(trillion

2.30

3.10

4.37

in-place (trillion cu

1.68

12.68

2.79

16.11

3.00

22.29

4.94

25.45

Mean

1.00

.93

1.93

cu ft)

1.00

1.31

2.31

ft)

1.34

10.14

2.23.

13.71

Standard 
deviation

0.68

.67

.91

0.68

.95

1.14

0.88

6.39

1.43

6.51
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Table 9. Estimates of mean depths of. undiscovered hydrocarbons, 
older Paleozoic systems

Mean depth of occurrence (ft)
Depth interval (ft) Oil Non-associated gas

0-10,000 8,500 9,500

10,000-20,000 12,300 15,600

20,000-30,000 None 21,600

Total 10,300 16,000
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Table 10. Probability estimates of undiscovered 
pool sizes, older Paleozoic systems

[The values shovn correspond to the probability of occurrence 
of a pool of at least that size. Values are derived from 
lognonnal curves fit to estimates at the 0.95 and 0.05 
probability levels.]

Depth interval ________________Probability______________ 
(ft) 0.95 0.75 0.25 0.05

Oil in-place (million bbls)

0-10,000 

10,000-20,000

0.002 

.002

0.025 

.025

1.07 

1.04

16.12 

15.46

Non-associated gas in-place (billion cu ft)

0-10,000

10,000-20,000

20,000-30,000

0.004

.007

.005

0.115

.200

.141

10.90

19.38

14.42

293.34

528.74

409.68
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margins or biohermal buildups in Silurian and Devonian rocks may also 
contain hydrocarbons.

Undiscovered oil and gas pools are estimated to be in reservoirs 
similar to those already found. The Ordovician Ellenburger and the 
Devonian carbonates will continue to predominate as reservoir rocks, 
particularly for non-associated gas pools.

Total Undiscovered Oil and Gas

Quantities of undiscovered oil and gas. for the entire Paleozoic 
section of the Permian basin, as distributed by depth, are given in table 
11 and shown graphically in Appendix B, figures 34, 42, and 50. These 
amounts represent statistical aggregations of the individual stratigraphic 
elements discussed in the preceding section. All undiscovered oil and 
dissolved/associated gas is anticipated to occur at depths less than 
15,000 ft, and 80 percent of it at depths less than 10,000 ft. Eighty 
percent of the undiscovered non-associated gas, however, is estimated to 
occur at depths greater than 10,000 ft, with the bulk of it between 
10,000 and 20,000 ft. Mean depths of occurrence are given in table 12.

Our overall estimate of undiscovered oil in-place, 3.3 to 10.4 
billion bbls at the 95 and 5 percent probability levels, is equivalent to 
4 to 11 percent of the known oil in-place, with the mean of 6.4 billion 
bbls equal to 7 percent of that discovered. Likewise, the estimate for 
total gas in-place is 12.9 to 33.8 trillion cu ft at the 95 and 5 percent 
probability levels, 12 to 32 percent of the total discovered gas in- 
place. 1 Of the total gas, 8.24 to 28.3 trillion cu ft will occur as non- 
associated gas, 17 to 59 percent of the already discovered non-associated 
gas. Probability distributions for these total estimates are shown in 
Appendix B, figures 35, 43, 51, and 52.

Estimates of the probability distributions of undiscovered pool 
sizes for all Paleozoic systems are summarized in table 13. These 
assessments were never aggregated into basin totals. Analysis of the 
historic data suggests that much of the undiscovered oil and gas will 
occur in multiple pool deposits. The historic ratio averages 1.6 
pools/field for oil and 1.3 pools/field for non-associated gas. Such 
fields may contain pays ranging in age from Ordovician to Permian.

Includes 2.2 trillion cu ft of carbon dioxide,
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Table 11. Estimates of undiscovered hydrocarbons, Permian basin
[The values shown are the estimates corresponding to the probability
that there is at least that amount. Values shown are derived from
aggregated lognormal probability distributions.]

Depth interval
(ft) 0.95

Probability
0.75

Undiscovered

0-10,000

10,000-20,

Total

0-10,000

10,000-20,

Total

2.31

000 .51

3.32

Undiscovered

1.76

000 . 68

2.99

3.37

.79

4.53

0.25

oil in-place

5.91

1.52

7.22

dissolved/associated gas

2.58

1.07

4.06

4.42

2.08

6.31

0.05

(billion bbls)

8.87

2.56

10.43

Mean

5.05

1.30

6.35

in-place (trillion cu

6.70

3.53

8.83

Undiscovered non-associated gas in-place (trillion

0-10,000

10,000-20,

20,000-30,

Total

1.43

000 3.73

000 .75

8.24

2.16

6.17

1.28

11.38

Total gas.

3.83

12.74

2.73

18.80

5.98

21.90

4.86

28.27

3.80

1.77

5.57

cu ft)

3.31

10.70

2.29

16.30

Standard 
deviation

2.18

.69

2.29

ft)

1.56

.97

1.85

1.52

6.15

1.38

6.58

in-place (trillion cu ft)

Total ' 12.89 16.50 24.29 33.80 21.87 6.74
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Table 12. Estimates of mean depths of undiscovered hydrocarbons, 
all Paleozoic systems

[N.A.=not applicable.]

Mean depth of occurrence (ft)
Depth interval (ft) Oil Non-associated gas

0-10,000 6,100 7,600

10,000-20,000 11,800 15,400

20,000-30,000 N.A. 21,500

Total 7,300 14,700
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Table 13. Estimates of probability distributions of undiscovered
pool sizes, all Paleozoic systems, Permian basin 

[The values shown correspond to the probability of occurrence 
of a pool of at least that size. Values are derived from 
lognormal curves fit to estimates at the 0.95 and 0.05 
probability-levels.]

Depth interval
(ft)

Permian
0-10,000

10,000-20,000

Carboniferous
0-10,000

10,000-20,000

Older Paleozoic
0-10,000

10,000-20,000

Probability
0.95

Oil

0.002

.001

.002

.002

.002

.002

0.75

in-place (million bbls)

0.027

.016

.024

.020

.025

.025

Non-associated gas in-place (billion

Permian
0-10,000

10,000-20,000

Carboniferous
0-10,000

10,000-20,000

20,000-30,000

Older Paleozoic
0-10,000

10,000-20,000

20,000-30,000

0.003

.002

.003

.003

.001

.004

.007

.005

0.044

.031

.057

.052

.027

.115

.200

.141.

0.25

1.08

.48

.84

.66

1.07

1.04

cu ft)

1.72

1.06

3.02

2.69

1.65

10.90

19.38

14.42

0.05

15.48

5.77

11.12

8.34

16.12

15.46

24.04

13.67

53.08

46.80

32.11

293.34

528.74

409.68
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APPENDIX A 

Resource Terms

The following list defines the terms used in figure 2 and used, in 
part, in this study. Some are modified from published definitions 
(Miller and others, 1975; McKelvey, 1973; U.S. Bureau of Mines and U.S. 
Geological Survey, 1976; Sheldon, 1976; American Petroleum Institute, 
1976) in order to apply specifically to conventional hydrocarbon deposits.

Resources Concentrations of naturally occurring solid, liquid, or 
gaseous materials in or on the Earth T.s crust in such form that 
economic extraction of a commodity is currently or potentially 
feasible.

Economic resources Those resources, both identified and undiscovered, 
which are estimated to be economically recoverable.

Subeconomic resources Identified and undiscovered resources that 
are not presently recoverable because of technologic and 
economic factors, but which may be recoverable in the future.

Identified resources Specific accumulations of economic resources 
whose location, quality, and quantity are estimated from 
geologic evidence supported in part by engineering measurements.

Identified subeconomic resources Known resources that may become
recoverable as a result of changes in technologic and economic 
conditions.

Undiscovered resources Resources estimated to exist outside of 
known fields on the basis of broad geologic knowledge and 
theory.

Reserves That portion of the identified resource which can be 
economically extracted.

Measured reserves That part of the identified resource which can be 
economically extracted using existing technology, and whose 
amount is estimated from geologic evidence supported directly 
by engineering measurements. In this study, they are considered 
to be equivalent to American Petroleum Institute-American Gas 
Association proved reserves and U.S. Bureau of Mines proved 
reserves .

Indicated reserves Reserves that include additional recoveries in 
known reservoirs (in excess of the measured reserves) which 
engineering knowledge and judgment indicate will be economically 
available by application of fluid injection, whether or not 
such a program is currently installed. In this study, indicated 
reserves are equivalent to API indicated additional reserves 
(American Petroleum Institute, 1976).

Demonstrated reserves A collective term for the sum of measured and 
indicated reserves.

Inferred reserves Reserves in addition to demonstrated reserves 
eventually to be added to known fields through extensions, 
revisions, and new pays.

Oil or gas in-place Concentrations or deposits of oil or natural 
gas which exist in nature, here defined to include all oil or 
gas in-place without qualification as to what portion may be 
considered either currently or potentially extractable as a
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resource. Oil or gas in-place refers to the estimated number 
of stock tank barrels of crude oil or standard cu ft of gas 
(14.73 Ibs/sq in. atmosphere psia and 60°F) in reservoirs 
prior to any production (American Petroleum Institute, 1970).

Undiscovered oil or gas in-place Undiscovered oil or gas in-place 
is parallel in definition to undiscovered resources; that is, 
it refers to quantities of oil and gas estimated to exist 
outside of known fields on the basis of broad geologic knowledge. 
In this report no qualification is made to that portion which 
may be considered either currently or potentially economically 
extractable.

Undiscovered pools that occur as independent accumulations 
controlled by separate geological structural features and (or) 
stratigraphic conditions are considered in this study as 
separate deposits, even though they may occur beneath or above 
preexisting pools. They are not considered as part of future 
additions to known fields or as inferred reserves, but are 
estimated as a part of the overall undiscovered oil or gas in- 
place .

Field A field consists of a single pool (reservoir) or multiple 
pools (reservoirs) all grouped on, or related to, the same 
individual geological structural feature and(or) stratigraphic 
condition. There may be two or more reservoirs in a field 
which are separated vertically by intervening impervious 
strata, or laterally by local geologic barriers, or by both 
(modified from API, 1976).

A new field is a discovery of oil or gas with accumulation 
being controlled by a separate geologic structural feature 
and (or) stratigraphic condition to the extent that the new 
discovery is not considered a new pool, or an extension of a 
pool, in a preexisting field (API, 1976).

Pool In general, the term "pool" is synonymous with the term
"reservoir" and is so used here; however, in certain situations, 
a pool may consist of more than one reservoir. The Texas 
Railroad Commission, however, defines each pool as a separate 
field.

.Reservoir A reservoir is a porous and permeable underground formation 
containing an individual and separate natural accumulation of 
hydrocarbons (oil and (or) gas) which is confined by impermeable 
rock or water barriers and is characterized by a single natural 
pressure system.
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APPENDIX B

Appendix B consists of the probability distribution curves for 
assessments reported in the text for 1) undiscovered oil and gas, and 2) 
pool sizes. The curves are further organized by commodity and by age as 
listed in the following table of contents for Appendix B.
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probability distributions of non-associated gas in-place 
for the 0-10 and 10-20 thousand foot depth intervals. 
Dots represent the origional probability estimates to 
which the curve is fit.
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Figure 53   Permian oil pool-size: lognormal probability distributions 
of the pool-sizes of undiscovered oil in-place for the 
0-10 and 10-20 thousand foot depth intervals. Dots repre­ 
sent the original probability estimates to which the curve 
is fit.
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represent the original probability estimates to which the 
curve is fit.

B-31



1.00

0.80

0.60

§tr o.4o
Ok

0.20

0.00

0 - 10,000 FEET

PROBABILITY 
0.95 - 0.002 
0.05 - 16.121

POOL SIZE - MILLION BARRELS

1.00

0.00

10 - 20,000 FEET

PROBABILITY 
0.95 - 0.002 
0.05 - 15,456

5 10

POOL SIZE - MILLION BARRELS

15 20

Figure 55.   Older Paleozoic oil pool-size: lognormal probability 
distributions of the pool-sizes of undiscovered oil 
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APPENDIX C

Appendix C consists of the averaged raw probability estimates for 
amounts of undiscovered oil in-place and non-associated gas in-place and 
for pool-size distributions of oil and non-associated gas. These are the 
estimates to which lognormal curves were computer fitted.

The averaged raw probabilities presented in the following tables are 
also shown as points on the appropriate graphs in Appendix B.
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Table 14. Original probability estimates of undiscovered oil in-place. 
All quantities are averages of estimates made by several 
people

Age and depth 
(in feet)

Permian

0 - 10,000

10 - 20,000

Carboniferous

0 - 10,000

10 - 20,000

Older Paleozoic

0 - 10,000

10 - 20,000

Undiscovered oil in-place 
(billion barrels)

Probability

1Q.95 0.75 0.25 10.

0.896 1.688 3.806 6.

.061 .090 .186

.246 .462 1.693 3.

.028 .081 .269

.297 .552 1.340 2.

.259 .499 1.288 2.

05

081

354

492

584

277

182

Estimates at the 0.95 and 0.05 probability were the quantities 
used to compute the lognormal probability curves (see p. 41).
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Table 15. Original probability estimates of undiscovered
non-associated gas in-place. All quantities are 
averages of estimates made by several people.

Non-associated gas in-place 
(trillion cubic feet)

Probability

Age and depth . 
(in feet) 0.95 0.75

Permian

0 - 10,000 0.169 0.282

10 - 20,000 .011 .019

Carboniferous

0 - 10,000 .272 .523

10 - 20,000 .120 .225

20 - 30,000 .007 .016

Older Paleozoic

0 - 10,000 .420 .701

10 - 20,000 3.312 5.717

20 - 30,000 .713 1.243

0.25 1Q.05

0.788 1.322

.046 .077

1.800 3.793

.683 1.369

.099 .197

1.808 2.993

13.467 22.216

2.983 4.923

to compute the lognormal probability curves (see p. 41).
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Table 16. Original probability estimates of the pool sizes of undiscovered 
oil in-place. All pool sizes are averages of estimates made by 
several people

Undiscovered oil pool size 
(million barrels)

Age and depth 
(in feet)

Permian

0 - 10,000

10 - 20,000

Carboniferous

0 - 10,000

10 - 20,000

Older Paleozoic

0 - 10,000

10 - 20,000

Probability

1Q.95 0.75 0.25

0.0019 0.021 1.120

.0013 .012 .630

.0018 .018 .850

.0016 .013 .660

.0017 .021 1.660

.0017 .017 1.590

^.OS

15.130

5.650

10.880

8.160

15.750

25.100

Estimates at the 0.95 and 0.05 probability were the pool sizes used to 
compute the lognormal probability curves (see p. 45).
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Table 17. Original probability estimates of the pool sizes of 
undiscovered non-associated gas in-place. All pool 
sizes are averages of estimates made by several people

Undiscovered non-associated gas-pool size 
(billion cubic feet)

Probability

Age and depth , 
(in feet) LQ.95

Permian

0 - 10,000 0.003

10 - 20,000 .002

Carboniferous

0 - 10,000 .003

10 - 20,000 .003

20 - 30,000 .001

Older Paleozoic

0 - 10,000 .004

10 - 20,000 .007

20 - 30,000 .005

0.75 0.25  ' O.OS

0.038 2.270 23.500

.026 1.620 13.380

.062 5.380 51.750

.052 4.190 45.630

.020 2.590 31.260

.043 14.030 284.380

.145 26.130 512.500

.065 20.750 396.880

Estimates at the 0.95 and 0.05 probability were the pool sizes used to 
compute the lognormal probability curves (see p. 45).
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