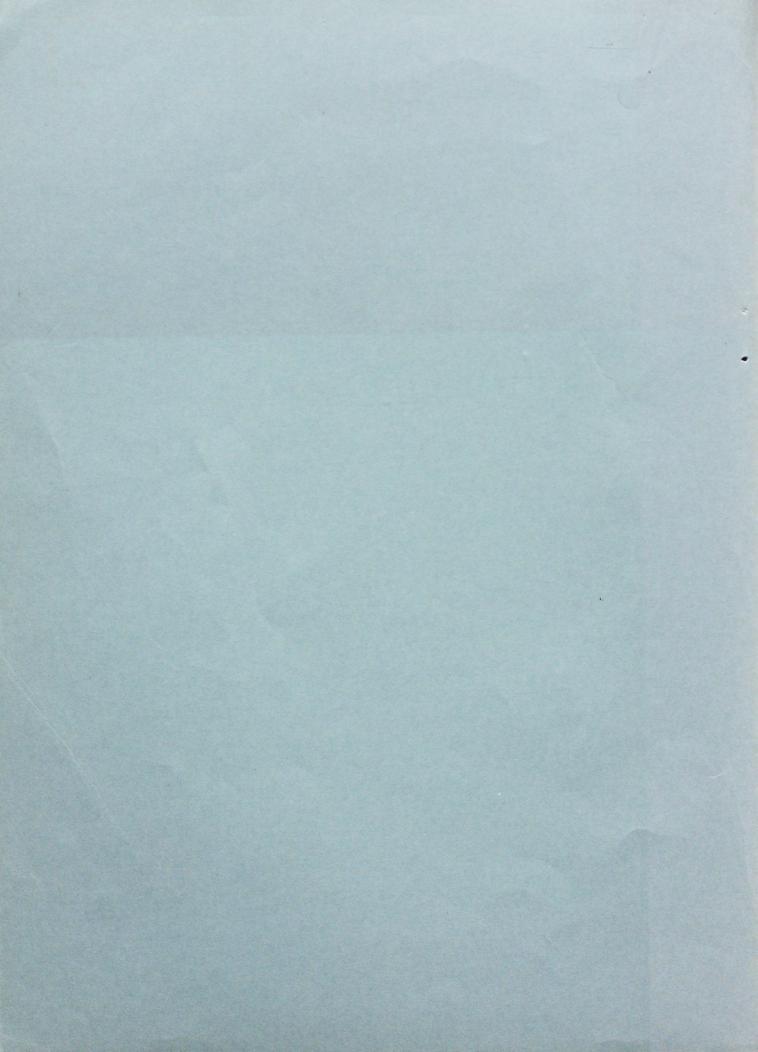

(200) R290 no,79-924

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY



WATER-RESOURCES APPRAISAL OF THE SOUTH-ARKANSAS LIGNITE AREA

Open-File Report 79-924

Prepared in cooperation with the ARKANSAS GEOLOGICAL COMMISSION

(200) P296 No.79.924

UNITED STATES

DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY.

3 1818 00073395 4

THemale

WATER-RESOURCES APPRAISAL OF THE SOUTH-ARKANSAS LIGNITE AREA

Open-File Report 79-924

Prepared in cooperation with the Arkansas Geological Commission

298062

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

WATER-RESOURCES APPRAISAL OF THE

SOUTH-ARKANSAS LIGNITE AREA

By J. E. Terry, C. T. Bryant, A. H. Ludwig, and J. E. Reed

Open-file Report 79-924

Prepared in cooperation with the Arkansas Geological Commission

Little Rock, Arkansas May 1979

CONTENTS

	Page
Abstract	1
Introduction	2
Lignite in Arkansas	2
Location of project area	4
Purpose and scope of investigation	4
Previous investigations	6
Appraisal of the water resources	7
Water use	7
Surface water	11
Flow duration	11
Low-flow frequency	16
Flood frequency	27
Flood stage	31
Quality of surface water	35
Red River	37
Sulphur River	40
Bayou Dorcheat	40
Cypress Creek	45
Bodcau Creek	47
Ouachita River	47
Little Missouri River	58
Smackover Creek	60
Moro Creek	60
Saline River	64

CONTENTS

į.	Page
Appraisal of the water resourcesContinued	
Quality of surface waterContinued	
Hurricane Creek	64
Bayou de Loutre	69
Cornie Bayou	73
Three Creeks	73
Ground-water occurrence and quality	76
Nacatoch Sand	88
Midway Group	94
Wilcox Group, undifferentiated	96
Carrizo Sand	100
Cane River Formation	109
Sparta Sand	113
Cook Mountain Formation	121
Cockfield Formation	127
Jackson Group, undifferentiated	136
Deposits of Quaternary age	136
Impact of lignite development	148
Summary and recommendations	156
Defenences	150

ILLUSTRATIONS

[Plate is in pocket]

Plate	1.	Map showing	land-surface	contours	in	south-
		Arkansas	lignite area			

		Pane
Figure 1-4.	Map showing:	
	1. Location of the project area	3
	2. Water used, by county, in the project	
	area, 1975	8
	3. Average annual streamflow per square mile	
	in the project area	13
	4. Locations of regular-gaging stations and	
	low-flow partial-record stations in the	
	project area	26
5.	Graph showing relation between flood ratios and	
	main-channel slope	32
6.	Graph showing elevation of 50-year floodflow	
	minus elevation of 50-percent duration flow	
	(ΔD) versus drainage area for the project area	34
7.	Map showing water-quality data-collection network	
	in the project area	36
8.	Composite example of an electric log	78
9.	Map showing locations of geologic cross sections	79
10.	Geologic cross sections in the project area	80
11-12.	Map showing:	
	11. Structural contour of the top and areas	
	of use of the Nacatoch Sand	89
	12. Thickness and percentage of sand of the	
	Nacatoch Sand	90

ILLUSTRATIONS

			Page
Figure 13-25.	Map sh	owing:	
	13.	Potentiometric surface of the Nacatoch	
		Sand	91
	14.	Structural contours of the top of the	
		Midway Group	95
	15.	Structural contours of the top and areas of	
		use of the Wilcox Group, undifferentiated	98
	16.	Thickness and percentage of sand of the	
		Wilcox Group, undifferentiated	99
	17.	Structural contours of the top and areas	
		of use of the Carrizo Sand	103
	18.	Thickness and percentage of sand of the	
		Carrizo Sand	105
	19.	Potentiometric surface of the Carrizo Sand	106
	20.	Specific-conductance contours for the	
		Carrizo Sand	108
	21.	Structural contours and areas of use of	
		the Cane River Formation	110
	22.	Thickness and percentage of sand of the	
		Cane River Formation	111
	23.	Potentiometric surface of the Cane River	
		Formation	112
	24.	Specific-conductance contours for the Cane	
		River Formation	116
	25.	Structural contours of the top and areas	
		of use of the Sparta Sand	117

ILLUSTRATIONS

			Page
Figure 26-37.	Map sh	owing:	
	26.	Thickness and percentage of sand of the	
		Sparta Sand	118
	27.	Potentiometric surface of the Sparta Sand	120
	28.	Specific-conductance contours for the Sparta	
		Sand	126
	29.	Structural contours of the top and areas of	
		use of the Cockfield Formation	129
	30.	Thickness and percentage of sand of the	
		Cockfield Formation	130
	31.	Potentiometric surface of the Cockfield	
		Formation	131
	32.	Specific-conductance contours for the	
		Cockfield Formation	135
	33.	Distribution of Quaternary deposits	140
	34.	Thickness of Quaternary deposits	141
	35.	Distribution of dissolved solids in the	
		Quaternary aquifers	145
	36.	Saturated thickness of Sparta Sand and	
		Cockfield Formation in outcrop areas	151

			Page
Table	1.	Use of surface water, by county, in the project area,	
		1975	9
	2.	Withdrawals of ground water, by county, from aquifers	
		in the project area, 1975	10
	3.	Drainage areas and mean flow for continuous-record	
		gaging stations in the project area	12
	4.	Flow duration at continuous-record gaging stations in	
		the project area	14
	5.	Estimates of low-flow frequency and flow duration at	
		partial-record stations	17
	6.	Low-flow frequency at continuous-record gaging stations	
		in the project area	21
	7.	Characteristics of annual floods for gaging stations	
		in the project area	28
	8.	Regression equations applicable within the project	
		area	30
	9.	Water-quality statistical summary for station 07336860,	
		Red River near Foreman, Ark	38
	10.	Water-quality statistical summary for station 07344350,	
		Red River near Spring Bank, Ark	39
	11.	Water-quality standards and recommended water-quality	
		limits	41
	12.	Water-quality statistical summary for station 07344275,	
		Sulphur River south of Texarkana, Ark	42

	Page
Table 13. Water-quality statistical summary for station 0734	8650,
Bayou Dorcheat near Taylor, Ark	43
14. Water-quality statistical summary for station 0734	8700,
Bayou Dorcheat near Springhill, La	44
15. Water-quality statistical summary for station 0734	8705,
Cypress Creek at Arkansas-Louisiana State line	46
16. Water-quality statistical summary for station 0734	9440,
Bodcau Creek near Lewisville, Ark	48
17. Water-quality statistical summary for station 0734	9445,
Bodcau Creek near Taylor, Ark	49
18. Water-quality statistical summary for station 0735	9500,
Ouachita River near Malvern, Ark	50
19. Water-quality statistical summary for station 0735	9580,
Ouachita River near Donaldson, Ark	51
20. Water-quality statistical summary for station 0736	0162,
Ouachita River near Sparkman, Ark	52
21. Water-quality statistical summary for station 0736	2000,
Ouachita River at Camden, Ark	53
22. Water-quality statistical summary for station 0736	2065,
Ouachita River below Camden, Ark	54
23. Water-quality statistical summary for station 0736	2400,
Ouachita River at Lock and Dam 8, near Calion, A	rk 55
24. Water-quality statistical summary for station 0736	4080,
Ouachita River near Felsenthal, Ark	56

	Page
Table 25. Water-quality statistical summary for station 073616	00,
Little Missouri River near Boughton, Ark	59
26. Water-quality statistical summary for station 073621	10,
Smackover Creek north of Smackover, Ark	61
27. Water-quality statistical summary for station 073622	200,
Smackover Creek near Norphlet, Ark	62
28. Water-quality statistical summary for station 073625	550,
Moro Creek near Banks, Ark	63
29. Water-quality statistical summary for station 073630	002,
Saline River west of Benton, Ark	65
30. Water-quality statistical summary for station 073630	080,
Saline River near Tull, Ark	66
31. Water-quality statistical summary for station 073635	500,
Saline River near Rye, Ark	67
32. Water-quality statistical summary for station 073640	012,
Saline River near Fountain Hill, Ark	68
33. Water-quality statistical summary for station 073632	270,
Hurricane Creek near Sardis, Ark	70
34. Water-quality statistical summary for station 073633	300,
Hurricane Creek near Sheridan, Ark	71
35. Water-quality statistical summary for station 073646	500,
Bayou de Loutre near El Dorado, Ark	72
36. Water-quality statistical summary for station 073658	300,
Cornie Bayou near Three Creeks, Ark	74
37. Water-quality statistical summary for station 073659	
Thron Crooks noon Thron Crooks Ank	75

Pag	ge
Table 38. Generalized geologic column in the lignite area of	
southern Arkansas 7	77
39. Test holes and wells used in defining cross sections 8	34
40. Chemical analyses of samples taken from wells tapping the	
Nacatoch Sand	92
41. Chemical analyses of samples taken from wells tapping the	
Clayton Formation (Midway Group))7
42. Chemical analyses of samples taken from wells tapping the	
Wilcox Group, undifferentiated 10)1
43. Chemical analyses of samples taken from wells tapping the	
Carrizo Sand 10)7
44. Chemical analyses of samples taken from wells tapping the	
Cane River Formation 11	14
45. Chemical analyses of samples taken from wells tapping the	
Sparta Sand 12	22
46. Chemical analyses of samples taken from wells tapping the	
Cook Mountain Formation 12	28
47. Chemical analyses of samples taken from wells tapping the	
Cockfield Formation 13	32
48. Chemical analyses of samples taken from wells tapping the	
Jackson Group, undifferentiated 13	37
49. Chemical analyses of samples taken from wells tapping the	
alluvium 14	43
50. Chemical analyses of samples taken from wells tapping	
terrace deposits of Quaternary age 1	46

ABBREVIATIONS

Btu/lb British thermal unit per pound

Mgal/d Million gallons per day

ft³/s cubic feet per second

mi² square miles

 $(ft^3/s)/mi^2$ cubic feet per second per square mile

Jtu Jackson turbidity unit

mg/L milligrams per liter

mi mile

μg/L micrograms per liter

ft feet

°C degree Celsius

cm⁻¹ per centimeter (1/centimeter)

umho micromho

gal/min gallons per minute

in. inches

MW megawatts

(ft³/s)/MWe cubic feet per second per megawatts electricity

scf standard cubic feet

WATER-RESOURCES APPRAISAL OF THE SOUTH-ARKANSAS LIGNITE AREA

By J. E. Terry, C. T. Bryant, A. H. Ludwig, and J. E. Reed

ABSTRACT

The feasibility of developing lignite resources in south-central Arkansas is an important question at the present time (1978). Part of the concern is related to the possible impacts that mining and processing of lignite will have on water resources. Not only will the disturbance caused by excavating affect the quantity and quality of surface and ground water but, the mining, processing, and conversion processes will require the use and consumption of significant quantities of water.

In order to assess the magnitude of the effects of strip mining upon both surface and ground water, baseline conditions (hydrologic conditions in the area prior to mining) must be well defined. A thorough data file and literature search was made so that baseline conditions in the area could be defined. In addition, data-collection networks have been established for the collection of quantitative and qualitative information on streamflow and water levels in the aquifers. Data collected to date at these sites are included in the report. Collection of data at these sites will continue through at least September 1979.

Information presented in this report can be used to estimate the quantities of water available for use and the possible effects of mining and associated dewatering on water resources.

INTRODUCTION

Lignite in Arkansas

Lignite occurs in Arkansas principally in the deposits of Eocene age. These deposits are at the surface and in the subsurface southeast of a line approximately from Texarkana, northeastward through Arkadelphia, Little Rock, Bald Knob, and Pocahontas, to the Missouri State boundary. This line coincides roughly with the western boundary of the Coastal Plain in Arkansas (fig. 1). The area southeast of this line, which is almost one-half of the State, can be divided into three subareas with differing characteristics. The first subarea is a linear upland area called Crowleys Ridge which extends from the Missouri State boundary, north of Piggot, south to Helena. Deposits of Eocene age occur along this ridge. In many places, these deposits of Eocene age are covered by a substantial thickness of younger loess, silt, sand, or gravel. The second subarea is a part of the Mississippi Alluvial Plain, an area of flat terrain suited to agriculture. This area is of interest to lignite producers. However, in the Mississippi Alluvial Plain, the deposits of Eocene age are covered by 100 to 200 ft of alluvial deposits, which underlie the flood plains and terraces of the Arkansas, White, St. Francis, Mississippi, and other rivers. The sand and gravel in the lower part of the alluvial deposits constitute a productive aquifer that furnishes water to thousands of irrigation wells. Removing 100 ft or more of overburden, and pumping large quantities of water from strip mines, will increase the cost of producing lignite in the Mississippi Alluvial Plain. The third subarea includes all or parts of 20 counties in south-central Arkansas that contain outcrops of the deposits of Eocene age. Much exploration by several energy companies has taken place in this area, which contains several prospective lignite mining localities. These 20 counties constitute the most prospective area for development of the lignite resource at the present time.

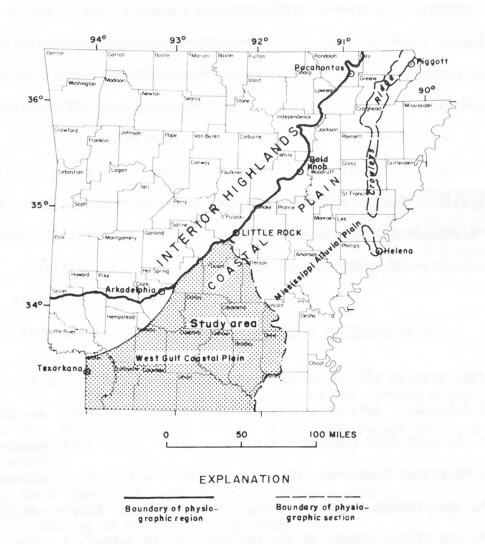


Figure 1.—Location of the project area.

Lignite found in Arkansas has a heating value of approximately 10,000 Btu/lb in dry form or 6,000 Btu/lb as mined. Lignite has a high moisture and volatile content. The high volatile content makes it readily convertible into gas or liquid form; however, the high moisture content and susceptibility to spontaneous combustion present problems in transportation and storage. Arkansas lignite is also low in sulfur content, ranging from 0.3 to 0.8 percent, making it desirable fuel for steam-electric generating plants.

Because it is not economically feasible to transport Arkansas lignite long distances, it will probably be utilized in near mine-mouth operations. Possible uses would include steam-electric generation, gasification, distillation of liquid hydrocarbons, and extraction of waxes.

Location of Project Area

The project area is all or parts of the above-mentioned 20 counties in south-central Arkansas. This area lies within and shares a common eastern boundary with the West Gulf Coastal Plain (fig. 1). East of this boundary, thick, highly saturated Quaternary deposits overlie the Eocene formations. To the northwest, the project boundary is the base of rocks of Eocene age (contact between Midway and Wilcox Groups on the geologic map of Arkansas). The southern and western boundaries are the State boundaries between Arkansas, Louisiana, and Texas.

Purpose and Scope of Investigation

The primary purpose of this investigation is to establish a data base defining hydrologic conditions in the project area prior to lignite mining.

Such an assessment is vital if the possible impacts of strip mining and lignite utilization upon water resources are to be evaluated.

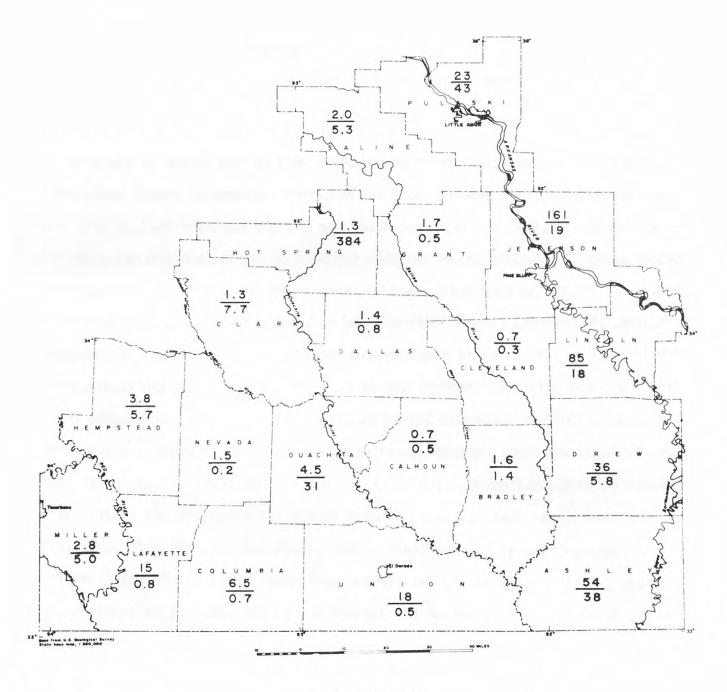
Inevitably, environmental questions will be raised about the mining and utilization of lignite. Along with the more obvious effects on quality and quantity of surface water, strip mining of lignite could have an impact on ground water, both in the vicinity of the mine and at updip and downdip locations. Industries which use the lignite, either as a fuel or as a source for other products, will use and consume certain quantities of water. It is vital to have hydrologic information that can be used to answer both water use and environmental questions and to develop countermeasures to problems that may arise. Establishment of a data base defining predevelopment conditions in the project area is an important goal.

The information that must be contained in such a data base includes the following:

- 1. The availability and quality of ground and surface water.
- 2. The location and areal extent of the significant aquifers and their outcrops.
 - 3. Water-level altitudes in the Tertiary aquifers.
 - 4. Thickness of the Tertiary aquifers.
- 5. The areal extent and thickness of Quaternary deposits overlying the Tertiary beds.

This report presents the above-mentioned information for the project area.

Additional studies in the south-Arkansas lignite area will use the information presented in this report as indicators of the kinds of additional data needed to further define the hydrology in the area and as part of the input to a digital model which will be used to predict the impacts of mining upon the ground-water regime.


Previous Investigations

Many reports cover one or several facets of the water resources of part or all of the lignite area of south Arkansas. Reports dealing with surface water include reports on low flow (Hines, 1975), storage requirements (Patterson, 1967), and floods (Patterson, 1971). Ground-water investigations encompassing all of the south-Arkansas lignite area include reports on the aquifers of Tertiary age (Hosman and others, 1968), aquifers of Quaternary age (Boswell and others, 1968), aquifers of Cretaceous age (Boswell and others, 1965), and the base of freshwater (Cushing, 1966). Areal ground-water investigations within the project area include reports covering Ashley County (Hewitt and others, 1949), Bradley, Calhoun, and Ouachita Counties (Albin, 1964). Columbia County (Tait and others, 1953), Drew County (Onellion, 1956), the El Dorado area in Union County (Baker and others, 1948), Jefferson County (Klein and others, 1950), and Lincoln County (Bedinger and Reed, 1961). Water-resources investigations of areas within the project area include reports covering Clark, Cleveland, and Dallas Counties (Plebuch and Hines, 1969), Grant and Hot Spring Counties (Halberg and others, 1968), Hempstead, Lafayette, Little River, Miller, and Nevada Counties (Ludwig, 1972), and Pulaski and Saline Counties (Plebuch and Hines, 1967).

APPRAISAL OF THE WATER RESOURCES

Water Use

In 1975, the combined use of ground water and surface water in the 20 counties containing the project area was 991 Mgal/d (Halberg, 1977). Surface-water use was 569 Mgal/d and ground-water use was 422 Mgal/d. The use of ground water and surface water for 1975 for each of the counties is shown in figure 2. Of the surface-water use, 70 percent was for cooling at thermo-electric powerplants. Substantial amounts of surface water were used for public supply, self-supplied industry, irrigation, and fish farms. The largest use of surface water (384 Mgal/d) was in Hot Spring County, and the smallest use (0.2 Mgal/d) was in Nevada County (table 1). Most of the ground-water use (table 2) was from the deposits of Quaternary age (312 Mgal/d) and from the Sparta Sand (92 Mgal/d).

EXPLANATION

36 Ground water
5.8 Surface water (million gallon per day)

Figure 2.—Water used, by county, in the project area, 1975 (from Halberg, 1977).

Table 1.—Use of surface water, by county, in the project area, 1975

[Million gallons per day]

County	Public supply	Self- supplied industry	Live- stock	Irri- gation and fish farms	Wild- life impound- ments	Thermo- electric energy	County total
Ashley		35.71	0.14	2.53			38.38
Bradley			.08	1.30			1.38
Calhoun		.38	.05	.08			.51
Clark	1.28	1.41	.23	4.80			7.72
Cleveland			.06	.21			.27
Columbia		.12	.22	.37			.71
Dallas			.05	.78			.83
Drew			.17	5.65			5.82
Grant	.05	.03	.07	.30			.45
Hempstead		.03	.38	1.76	3.57		5.74
Hot Spring	1.09	3.84	.18	2.99		376.07	384.17
Jefferson		.51	.14	18.19			18.84
Lafayette		.05	.21	.51			.77
Lincoln			.12	18.11			18.23
Miller	2.08	.49	.37	2.10			5.04
Nevada			.23				.23
Ouachita	1.88	8.11	.08	.10		20.60	30.77
Pulaski	37.97	1.30	.28	3.45			43.00
Saline	1.82	3.02	.17	.27			5.28
Union		.35	.07	.06			.48
Total	46.17	55.35	3.30	63.56	3.57	396.67	568.62

Table 2.—Withdrawals of ground water, by county, from aquifers in the project area, 1975
[Million gallons per day]

County	Deposits of Quaternary age	Jackson Group	Cockfield Formation	Sparta Sand	Cane River Formation	Carrizo Sand	Wilcox Group	Clayton Formation	Tertiary System, undiffer- entiated	Nacatoch Sand	Older geologic units	Total for county
Ashley	53.27		0.50									53.77
Bradley		0.02	.27	1.34								1.63
Calhoun			.26	.47								.73
Clark	.13						0.19			0.64	0.31	1.27
Cleveland	.02	.06	.44	.16								.68
Columbia			.34	6.02	0.10							6.46
Dallas			.07	1.19	.13							1.39
Drew	32.10	.26	.21	2.97								35.54
Grant	.12	.01	.19	1.41								1.73
Hempstead						0.09	.08			1.44	2.15	3.78
Hot Spring	14			.15	.08	.06	.29	0.05			.53	1.3
Jefferson	- 106.79	.03	.17	53.82								160.8
Lafayette	- 12.19			.24	2.47							14.90
Lincoln	- 83.92	.07	.07	1.20								85.2
Miller	1.74			.35	.42	.08	.14			.04		2.7
Nevada				.13	.13	.04	.07			.55	.55	1.4
Ouachita				4.28	.15	.06						4.4
Pulaski	- 21.69			.20			.47				1.07	23.4
Saline	.12			.18			.18	.76	.12		.65	2.0
Union			.67	17.40								18.0
Total	- 312.23	.45	3.19	91.51	3.48	.33	1.42	.81	.12	2.67	5.26	421.5

Surface Water

The largest source of surface water in the project area is the Red River, which had an average flow at Fulton of 17,730 ft³/s for the period 1927-76. The Ouachita River at Camden, where it has a drainage area of 5,391 mi², had an average flow of 7,562 ft³/s for the period 1928-75. These and other mean flows for several streams in the lignite area are shown in table 3. Downstream, at the Arkansas-Louisiana State boundary, where the Ouachita River's drainage area is 10,835 mi², it has an estimated average flow of about 14,800 ft³/s. The average flow in a stream is related to its drainage area. The relationship between average annual streamflow and drainage area for streams in Arkansas has been shown in map form by Patterson (1967, fig. 15). The part of his map that includes the lignite project area is shown in figure 3. The range for the lignite area is from (0.9 ft³/s)/mi² to (1.3 ft³/s)/mi².

Flow Duration

Flow-duration data, as shown in table 4, for regular-gaging stations in the project area indicate for a particular stream the discharge that is equaled or exceeded for a given percentage of time. Flow duration ignores the characteristics of individual events but combines all events into one relationship for the stream. If the period for which the flow-duration data were collected is representative, the flow-duration relationship should apply in the future as long as hydrologic conditions do not change. Regulation of streamflow usually changes the flow-duration relationship. Some of the stations shown in table 4 have flow-duration data for both preregulated and regulated flow. Variation in flow, as reflected in flow duration, is a function of climate and the hydrologic characteristics of the drainage basin. Regulation of flow

Table 3.—Drainage areas and mean flow for continuous-record gaging stations in the project area

	Station	Period of record	Drainage area	Mean flow
Number	Name	(water years)	(mi ²)	(ft ³ /s)
07341500	Red River at Fulton	1928-76	52,380	17,730
07349430	Bodcau Creek at Stamps	1959-70	234	207 -
07359500	Ouachita River near Malvern	1925-26 1928-76	1,562	2,376
07360000	Ouachita River at Arka- delphia.	1905-6, 1929-75	2,311	3,558
07361600	Little Missouri River near Boughton.	1937-42, 1945-75	1,068	1,548
07362000	Ouachita River at Camden	1929-75	5,391	7,562
07362100	Smackover Creek near Smack-	1962-76	377	399
07362500	over. Moro Creek near Fordyce	1952-76	216	227
07363000	Saline River at Benton	1951-76	569	422
07363200	Saline River near Sheridan	1971-76	1,129	1,813
07363300	Hurricane Creek near	1962-76	204	232
07363500	Sheridan. Saline River near Rye	1938-76	2,062	2,591
07365800	Cornie Bayou near Three	1957-76	180	183
07365900	Creeks. Three Creeks near Three Creeks.	1957-71	50.3	49.5

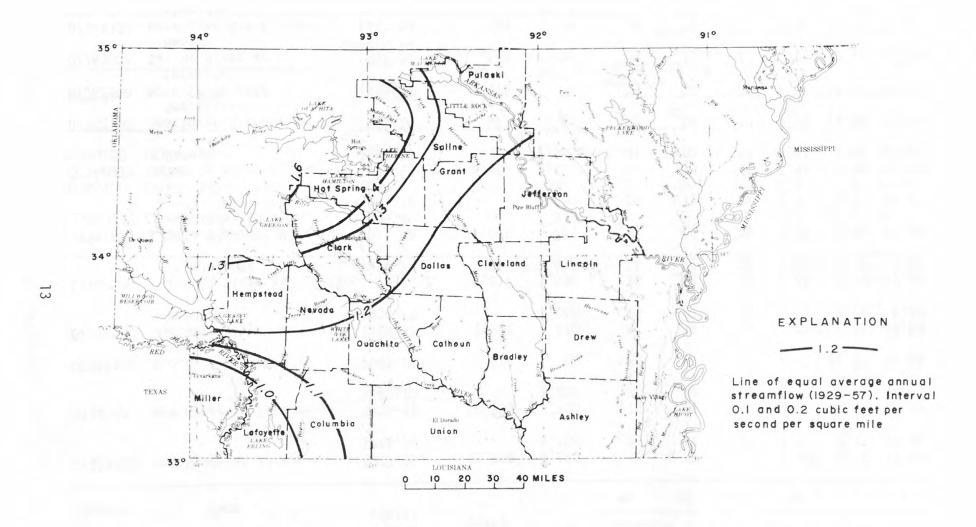


Figure 3.—Average annual streamflow per square mile in the project area (modified from Patterson, 1967).

14

Table 4.—Flow duration at continuous-record gaging stations in the project area

Station		Period of record area (mi²)	Median flow							
Number	Name	years) (""	(/		98	90	70	30	10	2
07337000	Red River at Index	1937-43, 1945-70	48,030	5,450 5,200	0.10	0.17	0.51	1.98 1.78	6.04 5.87	17.80 13.46
07341500	Red River at Fulton	1928-43, 1945-70	52,380	7,700 7,200	.10	.19	.52	1.96 2.18	6.04 6.36	13.38 13.61
07349430	Bodcau Creek at Stamps.	1961-70	234	52	.00	.01	.19	4.00	12.12	28.85
07359500	Ouachita River near Malvern.	1929-52, 1954-70	1,562	970 1,440	.09	.14	.39	2.34 1.72	5.41 2.79	19.59 6.63
07360000	Ouachita River at Arkadelphia	1906, 1930-52, 1954-70	2,311	1,530 1,910	.10	.16	.38	2.01	5.10 3.17	17.32 7.85
07361600	Little Missouri River near Boughton.	1938-42, 1946-49,	1,068	405	.03	.06	.29	2.99	9.93	27.90
	near boughton.	1951-70		520	.09	.19	.54	1.81	6.12	18.27
07362000	Ouachita River at Camden.	1929-52, 1954-70	5,391	2,580 2,980	.09	.16	.40	2.52 1.81	7.98 5.03	20.08
07362100	Smackover Creek near Smackover.	1962-70	377	63	.02	.08	.32	2.70	14.68	39.05
07362500	Moro Creek near Fordyce.	1952-70	216	9.6	.00	.00	.08	7.92	59.38	188.54
07363000	Saline River at Benton.	1951-70	569	192	.05	.15	.41	2.23	7.76	34.64
07363300	Hurricane Creek near Sheridan.	1962-70	204	26	.04	.12	.35	4.00	15.77	73.85

Table 4.—Flow duration at continuous-record gaging station in the project area—Continued

Station Number Name		record (water	Drainage Median (mi ²)	Flow, expressed as a ratio to medium flow, which was equaled or exceeded for percentage of time indicated in column subheads						
Mulliber	Nume				98	90	70	30	10	2
07363500	Saline River near Rye.	1938-70	2,062	556	0.03	0.10	0.36	3.87	12.68	28.96
07365800	Cornie Bayou near Three Creeks.	1957-70	180	25	.00	.08	.38	3.12	14.92	53.60
07365900	Three Creeks near Three Creeks.	1957-70	50.3	5.5	.04	.13	.42	2.73	20.91	94.55

by reservoirs reduces flow variation. Flow-duration relationships at each station were defined by the percentage of time, during the period of record, that the daily mean flow was greater than a specified value. "The daily mean flow values for the period of record at each gaging station were sorted by computer into about 30 classes. Each class represents a range in daily-mean flow. These classes include the highest and lowest daily flows and are uniformly distributed throughout the range of daily flow. Each daily-mean flow for the period of record was included in its appropriate class. The number of days thus represented in each class were accumulated, beginning at the highest daily-mean flow class, and the percentage of days when the flow was greater than the lower limit of each class in the accumulation was computed" (Hines, 1975). Flow duration is a cumulative frequency obtained by summing the class frequencies beginning with the class of highest flow.

Flow duration was estimated at low-flow partial-record stations and the estimated flows at 99- and 90-percent duration are shown in table 5.

These flows were estimated by correlation with flows at continuous-record gaging stations. They are not as accurate as data for continuous-record stations but do indicate hydrologic conditions existing at partial-record sites.

Flow-duration data can be plotted on logarithmic-probability paper if a graphical presentation is desired. The slope of the duration curve reflects variations in flow caused by the hydrologic and geologic characteristics of the river basin upstream from the station. The slopes of the curves for streams that have large low-flow yields are flatter than those for streams that have small low-flow yields. Thus, the flow-duration data are useful for comparing the flow characteristics of different streams.

Low-Flow Frequency

Low-flow frequency for regular-gaging stations was computed from annual events occurring during the period of record. The events were the

Table 5.—Estimates of low-flow frequency and flow duration at partial-record stations

		Drainage area (mi²)	Period of record	per second, fo	y, in cubic feet or 7 consecutive rrence intervals column heads	Daily mean flow, per second, tha equaled or exce cated percentag	t will be eded the indi-	
Number	Maniece Bayou near Canfield McKinney Bayou near Garland City Bayou Dorcheat at Buckner Whetton Branch near Bodcaw Prairie Bayou near Social Hill	Name			2-year	10-year	99	90
07341690	Bois D'Arc Creek near Hope	36	1963-67, 1977	1.0	0.3	0.5	1.7	
07342151	Maniece Bayou near Canfield	109	1958-63	.6			1.4	
07342350	McKinney Bayou near Garland City	169	1956-61, 1977	<.1			.3	
07348600	Bayou Dorcheat at Buckner	101	1958-63, 1977	.1			.4	
07349420	Whetton Branch near Bodcaw	13.3	1963-67, 1977	.3	.2	.2	.4	
	Prairie Bayou near Social Hill	28.0	1967, 1977	.16	1.08		.22	
	DeLisle Creek near Friendship	27.0	1967, 1977	1<.1	0		0	
	DeRoche Creek near Friendship	39	1967-77	1<.1	0		.01	
	Whiteoak Creek near Witherspoon	33	1967, 1977	1.03	1.01		1.08	
	Saline Bayou near Arkadelphia	39	1967, 1977	.09	< .01		.22	
07359590	Tenmile Creek near Donaldson	7.49	1964-67, 1977	<.1	<.1	<.1	<.1	
07360100	L'Eau Frais Creek near Joan	79.4	1958-67, 1977	2.6	.7	1.3	4.2	
07360160	Cypress Creek at Manning	59.6	1964-67, 1977	1.3	.1	.3	2.4	
07350161	Cypress Creek near Sparkman	82.4	1977	.71	.31		1.3	
07361160	North Fork Ozan Creek near McCaskill	72.3	1963-67	.1			.4	
07361630	Terre Rouge Creek near Hope	37.4	1964-67, 1977	.9	.2	.3	1.8	
07361640	Little Terre Rouge Creek near Emmet	38	1963-67, 1977	.2	<.1	<.1	.6	
07361650	Terre Rouge Creek near Prescott	231	1958-62, 1977	1.1	.2	.4	2.5	
07361700	Caney Creek near Bluff City	167	1958-62, 1977	.1			.5	
07361800	Terre Noire Creek near Gurdon	250	1958-66, 1977	.5			1.7	

¹Estimated.

Table 5.—Estimates of low-flow frequency and flow duration at partial-record stations—Continued

	Station		Period of record	per second, fo	w, in cubic feet or 7 consecutive rrence intervals column heads	Daily mean flow, per second, tha equaled or exce cated percentag	t will be eded the indi-
Number	Name	area (mi²) - 115 - 140 - 120 - 152 - 94.8 - 1110		2-year	10-year	99	90
	Brushy Creek near Sparkman	115	1968-77	<0.03			10.7
	Tulip Creek near Manning	140	1968, 1977	.8			1.6
	East Tulip Creek near Princeton	120	1968, 1977	1.1			1.3
07361850	Tulip Creek near Pine Grove	152	1968, 1977	1.5	0.5	0.7	2.7
07361900	Bayou Freeo near Eagle Mills	94.8	1968, 1977	.4	<.1	.1	.8
07362060	Two Bayou at Camden	1110	1963-67, 1977	<.1		<.1	.4
07362070	Locust Bayou at Locust Bayou	181	1963-67, 1977	0	0	0	0
7362080	Gum Cræk near Stephens	137	1959-67, 1977	.1		<.1	.3
07362090	Camp Creek near Smackover	46	1963-67, 1977	.2		.1	.7
07362300	Champagnolle Creek at Hampton	86	1958-61, 1977	0	0	0	0
07352540	Whitewater Creek near Tinsman	125	1963-67, 1977	0	0	0	0
07362550	Moro Creek near Banks	374	1946-62, 1977	0	0	0	0
07362600	Alum Fork at Crows	123	1966, 1977	1.2			2.5
07362700	Middle Fork at Crows	109	1966, 1977	3.6			6.4
07362900	North Fork near Benton	132	1957-63, 1977	.6	<.1	.1	1.8
	South Fork near Nance	1115	1966, 1977	1.3			2.1
7363100	Francois Creek near Poyen	84.1	1958-63, 1977	.1	<.1	<.1	.1
07363110	Big Creek at Poyen	32.1	1964-67, 1977	.7			1.1
7363180	Lost Creek near Sheridan	68.2	1964-67	0	0	O	0
07363440	Derriesseaux Creek near Rison	144	1964-67, 1977	0	0	0	0

¹Estimated.

19

Table 5.—Estimates of low-flow frequency and flow duration at partial-record stations—Continued

Station		Drainage area (mi ²)	Period of record	per second, fo	v, in cubic feet or 7 consecutive rrence intervals column heads	per second, that will be		
Number	Name			2-year	10-year	99	.90	
07363460	Big Creek near Pine Bluff	14.8	1964-67	0	0	0	0	
07363465	Big Creek near Pansy	157	1964-67, 1977	0	0	0	0	
07363700	Hudgin Creek near Pansy	90.3	1958-66, 1977	<.1	<.1	<.1	<.1	
07364010	Brown Creek near Lacey	114	1964-67, 1977	0	0	0	0	
07364020	L'Aigle Creek at Hermitage	167	1958-62, 1977	0	0	0	0	
07364060	Bayou Lapile at Strong	93.3	1958-63, 1977	.4	<.1	.1	.8	
07364170	Cutoff Creek near Selma	88.4	1958-62, 1977	<.1		<.1	<.1	
07364250	Chemin-a-Haut Creek near Berlin	216	1958-62, 1977	.2		<.1	.8	
07364600	Bayou De Loutre near El Dorado	78.4	1958-63, 1977	2.7	.8	1.4	4	
07366100	Little Cornie Bayou near Junction City	98.2	1958-63, 1977	1.1		.2	2	

¹Estimated.

lowest mean discharges for 1-, 7-, 14-, 30-, 60-, and 120-day periods during each year. The recurrence interval for these events was determined by either fitting a mathematical-frequency distribution to the data or by plotting the data on a graph and drawing a smooth curve through the data points (Hines, 1975). The resulting annual low flows for given recurrence intervals are shown in table 6 for streams in the project area.

Estimates of low-flow characteristics at partial-record stations were made by comparing measurements of low flow at the partial-record station with concurrent daily-mean discharge at a continuous-record gaging station. These continuous- and partial-record gaging stations are shown in figure 4. The criteria for selecting a continuous-record station for comparison were that it should have a long-term record, be near the partial-record station, and reflect similiar hydrologic conditions as the partial-record station. If a curve relating discharge at the two stations could be found, estimates of low flow at the partial-record station could be made based on corresponding frequency values, at the continuous-record station. Estimates of low-flow frequency obtained by the preceding method, for partial-record stations in the lignite area, are shown in table 5.

Low-flow frequency is important in determining the water-supply potential at a given site on a stream. Draft rates in excess of expected low flow must be supplied from storage. Storage requirements for streams in the lignite area are included in a report by Patterson (1967). Another use for low-flow data is in determining the waste-assimilation capacity of streams, such as the study by Jennings and Bryant (1974).

Many streams in south Arkansas would be classified as not having sustained base flow (Hines, 1975, fig. 7). The only part of the project area where streams have sustained base flow is the drainage of the Ouachita River upstream from Camden (Hines, 1975, fig. 7).

Table 6. - Low-flow frequency at continuous-record gaging stations in the project area [This table includes data for both regulated and unregulated streams. From Hines, 1975]

Station		Drainage area	Period of record	Consec- utive	for re	currence	in cubic interval, subheads		
Number	Name	(mi ²)	(water years)	days period	2	5	10	20	50
07337000	Red River at Index	¹ 48,030	1938-43, ² 1946-70	1 7 14 30 60 120	1,750 2,100 2,390 2,860 3,400 4,300	1,210 1,390 1,600 1,940 2,230 2,550	917 1,030 1,160 1,410 1,600 1,870	695 758 839 1,000 1,140 1,420	482 508 542 633 640 1,010
07341500	Red River at Fulton	¹ 52,380	1929-43	1 7 14 30 60 120	1,030 1,140 1,240 1,380 1,930 4,140	646 696 739 808 1,140 2,310	508 539 566 615 875 1,670	418 437 455 494 708 1,270	(336) (346) (358) (388) (550) (918)
			1946-70	1 7 14 30 60 120	2,190 2,610 2,910 3,440 4,000 5,480	1,440 1,710 1,940 2,250 2,620 3,200	1,060 1,220 1,380 1,610 1,950 2,330	777 870 962 1,150 1,460 1,760	520 551 590 730 1,020 1,250
07349430	Bodcau Creek at Stamps.	234	1962-70	1 7 14 30 60 120	0 <.1 .3 .8 1.7 9.2	0 <.1 .2			

 $^{^{1}}$ 5,936 mi 2 probably noncontributing. 2 No frequency analysis for this period.

Note. - Values shown in parentheses were obtained by extrapolation

22

Table 6.—Low-flow frequency at continuous-record gaging stations in the project area—Continued

Station		Drainage — area	Period of record	record	Consec- utive	for re	low flow, ecurrence in column	in cubic interval, subheads	feet per in year	second, s, indi-
Number	Name	(mi ²)	(water years)	days period	2	5	10	20	50	
07359500	Ouachita River near	1,562	1929-51	1	81	56	48	42	36	
	Malvern.			7	133	90	73	62	52	
				14	159	101	81	69	57	
				30	200	128	100	81	64	
				60	255	158	120	95	72	
				120	400	216	160	125	94	
			1955-70	1	203	134	104	83	(62)	
				7	320	248	217	193	(169)	
				14	355	266	230	203	(179)	
				30	453	293	237	210	(188)	
				60	646	370	282	227	(198)	
				120	960	584	450	362	(283)	
07360000	Ouachita River at	2,311	1930-51	1	150	106	88	76	66	
	Arkadelphia.			7	190	133	110	95	81	
				14	227	152	124	105	88	
				30	265	172	140	117	96	
				60	332	220	178	150	124	
				120	565	312	240	190	150	
			1955-70	1	310	223	195	178	(160)	
			15000	7	420	280	237	208	(185)	
				14	480	312	262	230	(200)	
				30	640	385	308	260	(220)	
				60	870	480	360	300	(255)	
				120	1,120	600	450	370	(365)	

Note. — Values shown in parentheses were obtained by extrapolation.

2

Table 6.—Low-flow frequency at continuous-record gaging stations in the project area—Continued

Station		- area record	Consec- utive	Annual low flow, in cu for recurrence interva cated in column subhea			, in years, indi-		
Number	Name	(mi ²)	years)	days period	2	5	10	20	50
07361600	Little Missouri River near Boughton.	1,068	1951-70	1 7 14 30 60 120	46 74 87 131 202 302	28 38 46 71 110 175	23 27 34 51 78 126	19 20 27 38 58 94	16 17 21 28 41 65
07362000	Ouachita River at Camden.	5,391	1930-52	1 7 14 30 60 120	259 312 349 413 512 768	182 212 230 260 327 458	156 175 188 206 264 362	138 151 160 171 223 302	123 129 135 138 187 251
			1955-70	1 7 14 30 60 120	719 911 994 1,200 1,510 2,030	545 639 683 794 992 1,330	471 531 564 642 798 1,050	418 456 483 541 668 847	(366) (385) (407) (447) (546) (658)
07362100	Smackover Creek near Smackover.	377	1963-70	1 7 14 30 60 120	1.7 2.5 3.5 5.3 9.6	.3 .5 .6 1.0 2.9 5.6	(<.1) (.1) (.2) (.4) (.9) (2.5)		

Note. — Values shown in parentheses were obtained from extrapolation.

2

Table 6. - Low-flow frequency at continuous-record gaging stations in the project area- - Continued

Station		area	Period of record (water-	utive days	for recu	Annual low flow, in cubic feet per se for recurrence interval, in years, cated in column subheads						
Number	Name	(mi ²)	years)				period	2	5	10	20	50
07362500	Moro Creek near Fordyce.	216	1953-70	1 7 14	0 0 0							
				30 60 120	0 .1 .7	0 < .1						
07363000	Saline River at Benton.	569	1952-70	1 7 14 30 60 120	11 14 18 27 48 89	2.8 3.7 5.4 8.4 15	.7 1.1 1.9 3.6 6.7	<.1 .2 .6 1.3 2.5 7.8	0 (<.1) (.2) (.5) (3.3)			
07363300	Hurricane Creek near Sheridan.	204	1963-70	1 7 14 30 60 120	1.6 2.0 2.6 3.9 7.6	.1 .5 .7 1.1 1.9 4.1	(0) (.1) (.2) (.5) (.7) (1.8)					
07363500	Saline River near Rye.	2,062	1939-70	1 7 14 30 60 120	34 37 41 50 71	16 17 19 21 29 67	10 11 12 14 18 45	7.3 7.9 8.5 9.6 12 32	4.8 5.3 5.6 6.3 8.2			

Note. — Values shown in parentheses were obtained from extrapolation.

Table 6.—Low-flow frequency at continuous-record gaging stations in the project area—Continued

Station		Drainage area (mi²)	Period of record (water-	Consec- utive (water-	Annual low flow, in cubic feet per second, for recurrence interval, in years, indicated in column subheads					
Number	Name	(1117)	years)	years)	2	5	10	20	50	
07365800	Cornie Bayou near Three Creeks.	180	1957-69	1 7 14 30 60 120	0.6 .9 1.2 2.1 4.6 8.9	0 <.1 .3 1.1 2.0	 0 .5	0.2	(<0.1)	
07365900	Three Creeks near Three Creeks.	50.3	1957-70	1 7 14 30 60 120	.2 .3 .5 .8 1.4 2.6	0 <.1 .1 .2 .5	 0 .1 .3 .6	 <.1 .2 .4	(<.1)	

Note.— Values shown in parentheses were obtained from extrapolation.

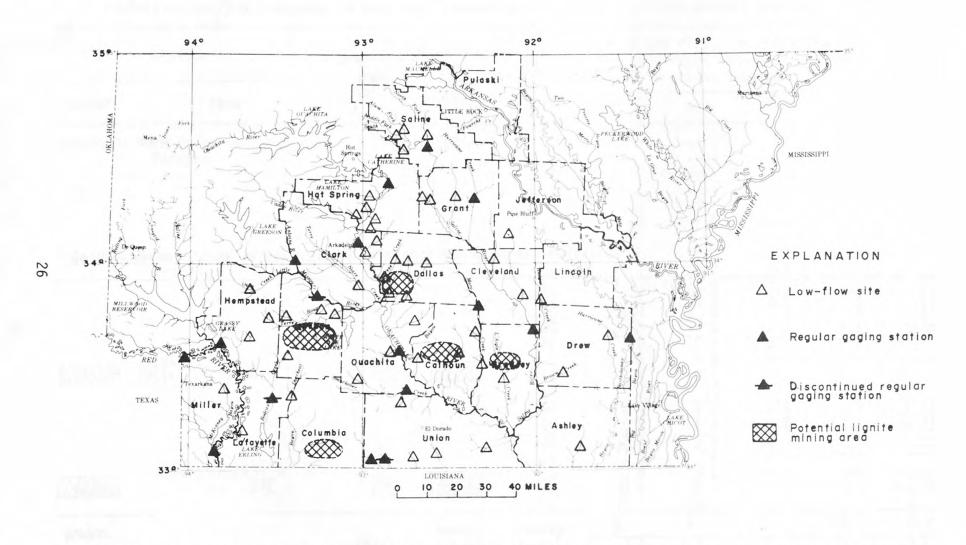


Figure 4.—Locations of regular-gaging stations and low-flow partial-record stations in the project area.

Flood Frequency

Flood frequency is often used as an indicator of the use that could be made of the flood plains of streams, the design characteristics of structures that must occupy the flood plain, and flood-insurance rates for developed areas of flood plains. The best method, at present, for estimating future flood events is by the analyses of past flood events. Flood frequency at points on a stream is determined from annual peak events for the period of record. The annual flood is the highest instantaneous discharge that has occurred during a year of record. A recurrence interval is determined from these annual floods, either by fitting them to a frequency distribution or by plotting the flood-data points and drawing a smooth curve through them.

An analysis of floods in Arkansas was made by Patterson (1971). His report (p. 3) has a description of methods for determining recurrence interval from gaging-station records by either the log-Pearson Type III frequency distribution or by graphical methods. Characteristics of annual floods, as determined by Patterson (1971), for sites in the project area are given in table 7.

The results of frequency analysis for gaging stations were expanded to include ungaged sites through the use of regression analysis (Patterson, 1971). Patterson related annual peak flow to hydrologic characteristics of the streams. Significant characteristics were found to be drainage area, main-channel slope, annual precipitation, and mean basin elevation for streams within the lignite area. Patterson's equations are given in table 8 for the parts of Arkansas that include the lignite area. The simplest equations require only information on the drainage area upstream from the site. However, the equation relating peak flow to drainage area also has the largest standard error. Better estimates of peak flow require more information on characteristics of the drainage basin. If increased accuracy is desired, one or more equation variables, in addition to drainage area, must be defined.

Table 7.—Characteristics of annual floods for gaging stations in the project area [Type: P, partial-record station; D, continuous-record gaging station. Modified from Patterson, 1978]

		Station				t per second erval, in ye	
Number	Type	Name	2	5	10	25	50
07344320	Р	Mill Creek tributary near Fouke	*270	*384	*460		
07346800	Р	East Fork Kelly Bayou tributary at Kiblah.	*17	*45	*68		
07348630	Р	Barlow Branch tributary near McNeil	*32	*69	*93		
07359500	D	Ouachita River near Malvern	54,600	88,700	111,000	138,000	157,000
07359520	Р	Ouachita River tributary near Malvern.	*360	*860	*1,300		
07360150	Р	Pearson Creek tributary near Dalark	*90	*146	*184		
07362050	Р	Ross Creek near Camden	*570	*1,250	*1,750		
07362100	D	Smackover Creek near Smackover	6,200	12,200	16,800	23,000	27,900
07362450	Р	Cooks Creek near Fordyce	*750	*1,530	*2,050		
07362500	D	Moro Creek near Fordyce	4,680	8,770	12,300	17,700	22,600
07363000	D	Saline River at Benton	*30,600	*47,600	*63,000	*84,000	*100,000
07363050	Р	Holly Creek tributary near Benton	*230	*420	*550		
07363200	D	Saline River near Sheridan	*32,100	*44,200	*51,000	*61,000	*70,000
07363330	Р	West Fork Big Creek at Sheridan	*430	* 970	*1,400		

^{*}Obtained from graphical frequency curve.

Table 7.—Characteristics of annual floods for gaging stations in the project area—Continued

Station						feet per second, for interval, in years		
Number	Туре	Name	2	5	10	25	50	
07363430	Р	East Fork Derrieusseaux Creek near Pine Bluff.	*112	*205	*266			
07363500	D	Saline River near Rye	26,000	43,700	55,900	71,600	83,500	
07364110	P	Nevins Creek tributary near Pine Bluff.	*125	*178	*215			
07364550	Р	Caney Creek tributary near El Dorado.	*60	*114	*150			
07365800	D	Cornie Bayou near Three Creeks	3,960	8,000	11,600	17,200	22,300	

^{*}Obtained from graphical frequency curve.

Table 8.—Regression equations applicable within the project area

[Drainage area: 0.1 mi² to 3,000 mi². Model is $Y = aA^{b_1}S^{b_2}E^{b_3}P^{b_4}$; where S is greater than 30 ft/mi, use 30. From Patterson, 1971]

	Peak-flow	Regression	E	Standard error of estimate, percent				
Equation number	character- istic, Y	constant,	Drainage area, A	Main channel slope, S	Mean basin eleva- tion, E	Mean annual precipitation minus 30, P	Areas 25 mi ² or more	Areas less than 25 mi ²
9(a)	Q_2	4.99	0.72	0.32	0.20	0.59	25	46
(b)	Q	58.1	.77	.46			30	45
(c)	Q ₂	276	.68				41	50
10(a)	Q_5	11.8	.72	.35	.21	.43	22	40
(b)	Q ₅	91.8	.78	.50			26	36
(c)	Q ₅	498	.68				40	40
11(a)	Q ₁₀	17.2	.73	.37	.21	.36	22	40
(b)	Q ₁₀	112	.78	.52			26	36
(c)	Q ₁₀	653	.68				40	40
*12(a)	Q ₂₅	10.8	.62	.29	.36	.55	23	
(b)	Q ₂₅	65.6	.69	.45	.22		24	
(c)	Q ₂₅	117	.77	.63			26	
(d)	Q ₂₅	2,680	.48.				40	
*13(a)	Q ₅₀	21.9	.62	.33	.31	.45	25	
(b)	Q ₅₀	96.4	.68	.46	.20		26	
(c)	Q ₅₀	164	.75	.63			27	
(d)	Q ₅₀	3,620	.46				41	-

^{*}Not applicable for drainage areas less than 25 mi².

For small drainage areas, generally less than 25 mi², frequency relations are not defined for recurrence intervals of more than 10 years. Therefore, for drainage areas of this size, equations 12 and 13 in table 8 are invalid and should not be used. Patterson developed a method for estimating the Q_{25} and Q_{50} for drainage areas less than 25 mi². He determined values for the ratios Q_{25}/Q_{10} and Q_{50}/Q_{10} for long-term gaging stations throughout the State. These values were then related to basin parameters and a reasonably good correlation was obtained using main-channel slope as an independent variable. The relation curves shown in figure 5 reflect the results of this analysis. Peak flows for recurrence intervals of 25 and 50 years for small drainage areas in the project area can be estimated by first determining the 10-year flood and then multiplying by the appropriate value from the relation curves in figure 5.

Flood Stage

The elevation of the water surface, as well as the discharge, is important for planning purposes in the construction of structures or earthworks in the vicinity of streams. Methods requiring extensive field surveys are available to accurately determine the elevation and peak flow of design floods and should be used if extreme accuracy is required. However, the following procedure may be used in the absence, or in support, of other streamflow data to obtain an approximation of the elevation of the 50-year flood for any gaged or ungaged sites on streams in the project area. The procedure developed by Hines (1977) enables the determination of the elevation of the 50-year flood using a stage increment (ΔD) representing the surcharge produced by the 50-year flood discharge over the 50-percent-duration (median) flow.

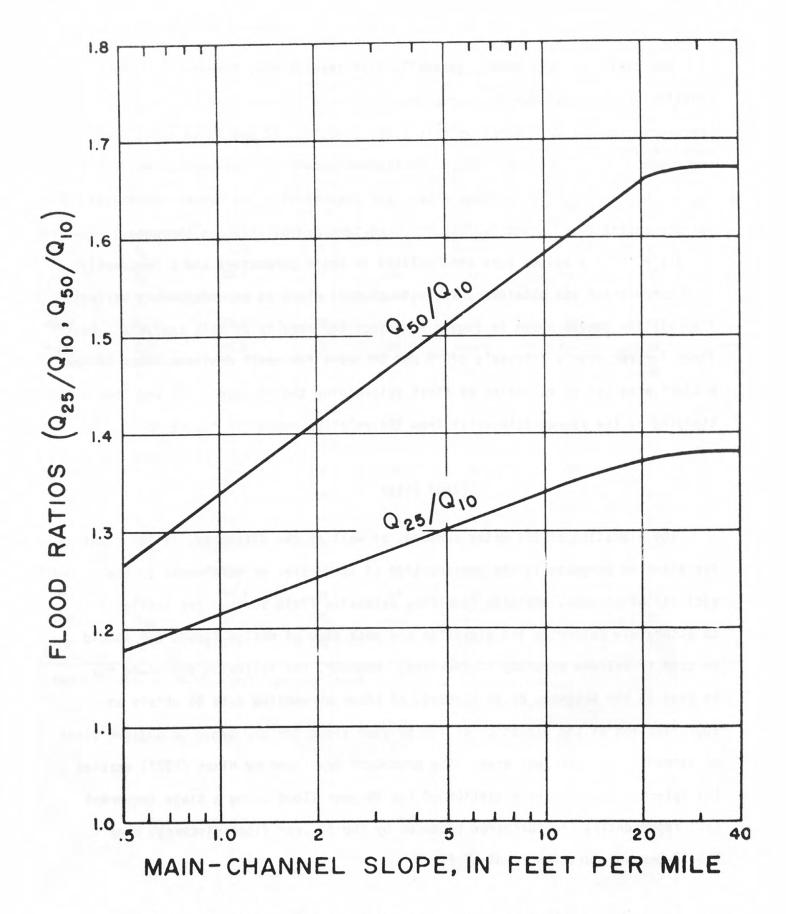


Figure 5.—Relation between flood ratios and main-channel slope.

For the project area, the increment of stage (ΔD) applicable to drainage areas of from 80 to 1,000 mi² is shown in figure 6. To use the graph, it is first necessary to determine the elevation of the median flow, either from topographic maps or from field observations, and second to add the ΔD value for the particular drainage area from the graph to that elevation. A reasonable assumption is that the contour "turnbacks" on streams (where the contour lines cross the streams) are at the elevation of the median flow.

Figure 6.—Elevation of 50-year floodflow minus elevation of 50-percent duration flow (ΔD) versus drainage area for the project area (from Hines, 1977).

Quality of Surface Water

One of the concerns of large-scale strip mining is the potential degradation of environmental quality, especially surface-water quality.

A part of this study is to determine water-quality conditions of streams in the south-central Arkansas lignite area prior to mining activities.

To determine background (present) water quality, data for a number of stations, which are located on selected streams in the study area, were evaluated (fig. 7). The data were collected by the Arkansas Department of Pollution Control and Ecology and by the U.S. Geological Survey in cooperation with the Arkansas Geological Commission. A few of the stations are inactive.

The results of statistical analysis of selected water-quality parameters for these stations are presented in tabular form. The results are for a period of 2 or more years and are based on data collected between 1967 and 1977.

In addition to current and historic water-quality stations, a number of sampling sites have been established downstream from probable mining areas (fig. 7). These sites include: 07348590, Bayou Dorcheat near Falcon; 07349415, Little Bodcau Creek at Bodcaw; 07360161, Cypress Creek near Sparkman; 07360182, Brushy Creek near Ouachita; 07361650, Terre Rouge Creek near Prescott; 07361660, Little Missouri River near Whelen Springs; 07361700, Caney Creek near Bluff City; 07361805, Terre Noire Creek at Vaden; 07361850, Tulip Creek near Pine Grove; and 07364035, L'Aigle Creek near Ingalls.

In addition, water-quality stations 07363300, Hurricane Creek near Sheridan, and 07363500, Saline River near Rye, have been reactivated for this study.

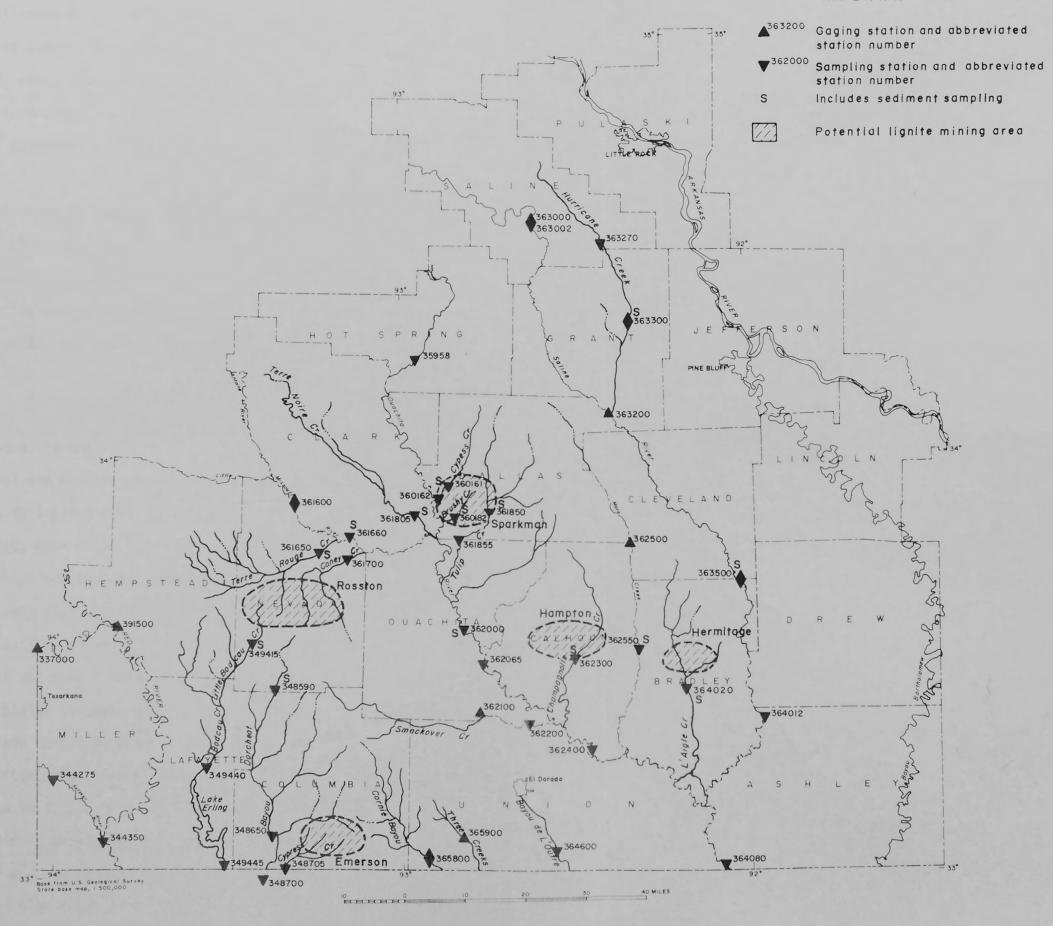


Figure 7 - Water-quality data-collection network in the project area.

Samples collected at all water-quality stations are analyzed for the common ions, organic carbon, suspended sediment, trace metals, dissolved oxygen, temperature, pH, conductivity, and benthic organisms. Organic carbon, sediment data, and benthic organisms are also being collected at continuous-record streamgaging stations 07359500, Ouachita River near Malvern, and 07362550, Moro Creek near Banks.

Samples collected by the Geological Survey were analyzed using the techniques given in Brown, Skovgstad, and Fishman (1970). Analytical procedures used by the Arkansas Department of Pollution Control and Ecology include methods published by the American Public Health Association (1976), the American Society for Testing and Materials (1974), and the U.S. Environmental Protection Agency (1974).

Red River

Two water-quality sampling stations operated by the Arkansas Department of Pollution Control and Ecology are located on the Red River in Arkansas. One station, 07336860, is located near where the river enters Arkansas and the other station, 07344350, near where the river leaves Arkansas (fig. 7). Statistical summaries for these stations are shown in tables 9 and 10. The Red River is characterized by a very high concentration of suspended sediment, as evidenced by excessive turbidity concentrations and total nonfilterable residue (the suspended matter that will not pass through a 0.75-1.25 micrometer glass fiber filter) (table 9). Turbidity concentrations at times exceed the Arkansas State standard of 50 Jtu (Jackson turbidity unit). The annual sediment load of the Red River at a long-term monitoring station at Index, Ark., averages 520 tons per square mile of drainage area (U.S. Army Corps of Engineers, New Orleans District, 1966, p. I-23). Most of the sediment originates in the upper Red River basin where red, sandy soils are predominant and are subject to erosion. The iron-bearing, red soil probably accounts for the high total iron concentrations shown in table 9.

Table 9.—Water-quality statistical summary for station 07336860, Red River near Foreman, Ark.

	VARIABLE	LABEL	N	MEAN	MINIMUM VALUE	MAXIMUM VALUE
	P00095	SPECIFIC CONDUCTANCE (MICROMHOS)	25	915.59840820	286.99951172	1439.9975586
	P00400	PH (UNITS)	25	7.94159149	6.72999287	8.3299913
	P00010	TEMPERATURE (DEG C)	25	19.75997021	5.99999332	29.9999542
	P00070	TURBIDITY (JTU)	25	88.11986992	9.99998569	599.9990234
	P00300	DISSOLVED OXYGEN (MG/L)	25	8.78999035	5.99999332	11.7699852
	P00310	BIOCHEMICAL OXYGEN DEMAND 5 DAY (MG/L)	25	2.50719700	0.95999902	5.2999945
	P00915	DISSOLVED CALCIUM (CA) (MG/L)	7	67.99991499	40.99993896	83.9998932
	P00925	DISSOLVED MAGNESIUM (MG) (MG/L)	7	20.28568459	8.99999046	24.9999695
	P00929	TOTAL SODIUM (NA) (MG/L)	9	110.25539970	7.39999199	163.7997284
	P00937	TOTAL POTASSIUM (K) (MG/L)	9	5.92221578	2.99999619	8.4999914
	P00440	BICARBONATE (HCO3) (MG/L)	9	144.33312141	80.99989319	169.9997406
	P00445	CARBONATE (CO3) (MG/L)	9	0.00000000	0.00000000	0.000000
	P00945	DISSOLVED SULFATE (SO4) (MG/L)	18	145.11089918	28.99995422	329.9995117
	200940	DISSOLVED CHLORIDE (CL) (MG/L)	15	181.39973450	41.99993896	259.9995117
)	P70300	DISSOLVED SOLIDS (RESIDUE AT 180 C) (MG/L)	0		•	
)	P00515	TOTAL FILTRABLE RESIDUE (MG/L)	26	613.76835515	236.99969482	850.9987793
	P00530	TOTAL NONFILTRABLE RESIDUE (MG/L)	26	132.69211226	18.99996948	498.9992676
	P00620	TOTAL NITRATE (N) (MG/L)	26	0.39999954	0.09999985	1.9499979
	P00665	TOTAL PHOSPHORUS (P) (MG/L)	26	0.11461523	0.02999996	0.3499996
	P00600	TOTAL NITROGEN (N) (MG/L)	0			
	P01000	DISSOLVED ARSENIC (AS) (UG/L)	0		•	•
	P01002	TOTAL ARSENIC (AS) (UG/L)	17	8.05881366	2.99999619	88.9998932
	P01025	DISSOLVED CADMIUM (CD) (UG/L)	0			
	P01027	TOTAL CADMIUM (CD) (UG/L)	19	5.31578265	0.00000000	9.9999857
	P01030	DISSOLVED CHROMIUM (CR) (UG/L)	0	•	•	•
	P01034	TOTAL CHROMIUM (CR) (UG/L)	17	0.52941109	0.00000000	2.9999962
	P01040	DISSOLVED COPPER (CU) (UG/L)	0	•	•	•
	P01042	TOTAL COPPER (CU) (UG/L)	24	9.62498625	0.00000000	29.9999542
	P01046	DISSOLVED IRON (FE) (UG/L)	0			
	P01045	TOTAL IRON (FE) (UG/L)	24	3286.91033427	189.99975586	15999.9648438
	P01049	DISSOLVED LEAD (PB) (UG/L)	0		•	
	P01051	TOTAL LEAD (PB) (UG/L)	17	28.47054700	0.00000000	119.9997864
	P01056	DISSOLVED MANGANESE (MN) (UG/L)	0	•	•	
	P01055	TOTAL MANGANESE (MN) (UG/L)	24	198.83303324	52.99993896	619.9990234
	P71890	DISSOLVED MERCURY (HG) (UG/L)	0	•	•	•
	P71900	TOTAL MERCURY (HG) (UG/L)	0	•	•	•
	P01090	DISSOLVED ZINC (ZN) (UG/L)	0		•	
	P01092	TOTAL ZINC (ZN) (UG/L)	24	19.16664158	0.00000000	79.9999084

8

VARIABLE	LABEL	N	MEAN	MINIMUM VALUE	MAXIMUM VALUE
P00095	SPECIFIC CONDUCTANCE (MICROMHOS)	43	507.27827170	150.99977112	1190.99780273
P00400	PH (UNITS)	42	7.82927745	7.41999245	8.19999123
P00010	TEMPERATURE (DEG C)	42	19.57140001	4.99999523	31.99995422
P00070	TURBIDITY (JTU)	42	132.23790369	14.99998093	699.99902344
P00300	DISSOLVED OXYGEN (MG/L)	43	8.25161881	4.86999512	11.00998497
P00310	BIOCHEMICAL OXYGEN DEMAND 5 DAY (MG/L)	42	1.84666422	0.91999906	4.39999485
P00915	DISSOLVED CALCIUM (CA) (MG/L)	11	42.81812494	20.99996948	72.99990845
P00925	DISSOLVED MAGNESIUM (MG) (MG/L)	11	12.27270993	3.99999523	29.99995422
P00929	TOTAL SODIUM (NA) (MG/L)	9	62.58880276	21.49996948	179.39973450
P00937	TOTAL POTASSIUM (K) (MG/L)	9	4.62221697	1.59999752	6.99999237
P00440	BICARBONATE (HCO3) (MG/L)	8	142.12478638	86.99989319	269.99951172
P00445	CARBONATE (CO3) (MG/L)	9	0.00000000	0.00000000	0.00000000
P00945	DISSOLVED SULFATE (SO4) (MG/L)	22	64.79536273	5.49999428	149.99978638
P00940	DISSOLVED CHLORIDE (CL) (MG/L)	32	75.43739858	11.49998188	254.99967957
P70300	DISSOLVED SOLIDS (RESIDUE AT 180 C) (MG/L)	0			•
P00515	TOTAL FILTRABLE RESIDUE (MG/L)	31	369.16072673	149.99978638	784.99877930
P00530	TOTAL NONFILTRABLE RESIDUE (MG/L)	31	172.93523825	30.99995422	722.99902344
P00620	TOTAL NITRATE (N) (MG/L)	29	0.45758567	0.09999985	2.99999619
P00665	TOTAL PHOSPHORUS (P) (MG/L)	29	0.17931012	0.02999996	0.89999908
P00600	TOTAL NITROGEN (N) (MG/L)	0			
P01000	DISSOLVED ARSENIC (AS) (UG/L)	0	•	•	•
P01002	TOTAL ARSENIC (AS) (UG/L)	23	7.30433928	2.99999619	95.99989319
P01025	DISSOLVED CADMIUM (CD) (UG/L)	0		•	
P01027	TOTAL CADMIUM (CD) (UG/L)	24	4.33332737	0.00000000	10.99998283
P01030	DISSOLVED CHROMIUM (CR) (UG/L)	0		•	
P01034	TOTAL CHROMIUM (CR) (UG/L)	23	9.30433460	0.00000000	99.99983215
P01040	DISSOLVED COPPER (CU) (UG/L)	0		•	•
P01042	TOTAL COPPER (CU) (UG/L)	23	16.08693285	0.00000000	169.99974060
P01046	DISSOLVED IRON (FE) (UG/L)	0			•
P01045	TOTAL IRON (FE) (UG/L)	24	2567.95330811	325.99951172	5719.98828125
P01049	DISSOLVED LEAD (PB) (UG/L)	0	•		
P01051	TOTAL LEAD (PB) (UG/L)	23	29.17387087	0.00000000	119.99978638
P01056	DISSOLVED MANGANESE (MN) (UG/L)	0	•		•
P01055	TOTAL MANGANESE (MN) (UG/L)	24	228.74967257	81.99990845	763.99902344
P71890	DISSOLVED MERCURY (HG) (UG/L)	0	•	•	
P71900	TOTAL MERCURY (HG) (UG/L)	3	0.30666631	0.09999985	0.67999929
P01090	DISSOLVED ZINC (ZN) (UG/L)	0	•		•
P01092	TOTAL ZINC (ZN) (UG/L)	24	16.24997703	0.00000000	35.99995422

The stream is further characterized by the predominance of sodium, bicarbonate, sulfate, and chloride ions. These ions decrease in concentration from the upstream station (07336860) to the downstream station (07344350), probably due to dilution from tributaries between the stations. Chloride concentrations in the Red River sometimes exceed the U.S. Public Health Service standard of 250 mg/L (milligrams per liter) for drinking water (table 11).

Sulphur River

A sampling station on the Sulphur River (07344275) has been operated by the Arkansas Department of Pollution Control and Ecology since 1968. Water in the Sulphur River is a calcium bicarbonate type and occasionally contains high concentrations of iron (table 12) which often exceed U.S. Public Health Service standards. The stream is overloaded with wastes from municipal and industrial discharges resulting in dissolved-oxygen concentrations often in violation of the Arkansas standard of 5.0 mg/L (table 11).

Bayou Dorcheat

Statistical data are presented for two sampling stations on Bayou Dorcheat (tables 13 and 14). The stations are operated by the Arkansas Department of Pollution Control and Ecology. The station near Taylor (07348650) has been operated since April 1974. The other station (07348700) 10 mi downstream and located near Springhill, La., was operated from March 1968 to September 1974. Bayou Dorcheat receives municipal and industrial wastes through some of its tributaries and also receives some impact on its quality from oil-field brines (Arkansas Department of Pollution Control and Ecology, 1973, 1975).

Table 11. - Water-quality standards and recommended water-quality limits

Water-quality parameter	Arkansas standard	Public Health Service limit	National Academy of Science and National Academy of Engineering 1974, recommended limits			
			Public water supply	Livestock		
Arsenic	(1) (1) (2) (1 3) (1) (2) 4 5.0 mg/L (1) (1) (1) (1) (1) (1) (1) (2) 5 50 JTU (1)	50 μg/L 10 μg/L 250 mg/L 50 μg/L 1,000 μg/L 500 mg/L 300 μg/L 50 μg/L 50 μg/L 100 μg/L 250 mg/L	100 μg/L 10 μg/L 250 mg/L 3 50 μg/L 100 μg/L 300 μg/L 50 μg/L 50 μg/L 2 μg/L 5.0-9.0 250 mg/L	200 µg/L 50 µg/L 1,000 µg/L 500 µg/L 100 µg/L		

¹Standards are based on 96-hour Median Tolerance Limit. See "Arkansas Water Quality Standards, Regulation No. 2, as Amended," September 1975.

²Standards are set for individual streams. See "Arkansas Water-Quality Standards, Regulation No. 2, as Amended," September 1975.

³Hexavalent (Cr+⁶).

⁴Minimum of 5.0 mg/L, except for natural conditions.

Minimum of 6.0 mg/L for thout and small mouth base streams.

Minimum of 6.0 mg/L for trout and small-mouth bass streams. 5For trout or small-mouth bass streams, the standard is 10 Jtu.

Table 12.—Water-quality statistical summary for station 07344275, Sulphur River south of Texarkana, Ark.

VARIABLE	LABEL	N	MEAN	MINIMUM VALUE	MAXIMUM VALUE
P00095	SPECIFIC CONDUCTANCE (MICROMHOS)	255	199.89774810	59.99992371	899.99877930
P00400	PH (UNITS)	247	7.17914220	2.89999676	8.50999069
P00010	TEMPERATURE (DEG C)	267	16.92068692	1.22999763	33.49995422
P00070	TURBIDITY (JTU)	46	43.80646231	5.09999466	209.99971008
P00300	DISSOLVED OXYGEN (MG/L)	267	7.55665798	2.29999733	13.49998379
P00310	BIOCHEMICAL OXYGEN DEMAND 5 DAY (MG/L)	47	1.96957190	0.51999944	4.34999466
P00915	DISSOLVED CALCIUM (CA) (MG/L)	13	21.15381446	8.99999046	29.99995422
P00925	DISSOLVED MAGNESIUM (MG) (MG/L)	13	3.15384227	1.99999714	5.99999332
P00929	TOTAL SODIUM (NA) (MG/L)	8	12.94998133	4.99999523	20.99996948
P00937	TOTAL POTASSIUM (K) (MG/L)	9	7.05554718	1.79999733	38.99995422
P00440	BICARBONATE (HCO3) (MG/L)	9	67.33325026	25.99996948	98.99987793
P00445	CARBONATE (CO3) (MG/L)	9	0.00000000	0.00000000	0.00000000
P00945	DISSOLVED SULFATE (SO4) (MG/L)	26	19.46920355	7.99999142	59.99992371
P00940	DISSOLVED CHLORIDE (CL) (MG/L)	35	20.08568709	6.49999332	61.99992371
P70300	DISSOLVED SOLIDS (RESIDUE AT 180 C) (MG/L)	1	24.99996948	24.99996948	24.99996948
P00515	TOTAL FILTRABLE RESIDUE (MG/L)	34	145.76448957	62.99992371	266.99951172
P00530	TOTAL NONFILTRABLE RESIDUE (MG/L)	35	57.65706280	3.99999523	275.99951172
P00620	TOTAL NITRATE (N) (MG/L)	36	0.90277663	0.09999985	15.99997902
P00665	TOTAL PHOSPHORUS (P) (MG/L)	35	0.11057127	0.01999998	0.21999973
P00600	TOTAL NITROGEN (N) (MG/L)	0			
P01000	DISSOLVED ARSENIC (AS) (UG/L)	1	9.99998569	9.99998569	9.99998569
P01002	TOTAL ARSENIC (AS) (UG/L)	25	4.71999344	2.99999619	26.99995422
P01025	DISSOLVED CADMIUM (CD) (UG/L)	0			
P01027	TOTAL CADMIUM (CD) (UG/L)	24	3.41666226	0.00000000	9.99998569
P01030	DISSOLVED CHROMIUM (CR) (UG/L)	1	19.99996948	19.99996948	19.99996948
P01034	TOTAL CHROMIUM (CR) (UG/L)	24	15.45831048	0.00000000	136.99978638
P01040	DISSOLVED COPPER (CU) (UG/L)	0			
P01042	TOTAL COPPER (CU) (UG/L)	25	8.15998805	0.00000000	29.99995422
P01046	DISSOLVED IRON (FE) (UG/L)	3	489.99932353	241.99967957	677.99902344
P01045	TOTAL IRON (FE) (UG/L)	28	1684.96121270	239.99964905	4946.98828125
P01049	DISSOLVED LEAD (PB) (UG/L)	0			
P01051	TOTAL LEAD (PB) (UG/L)	25	29.99996115	0.00000000	86.99989319
P01056	DISSOLVED MANGANESE (MN) (UG/L)	2	86.99987793	60.99992371	112.99983215
P01055	TOTAL MANGANESE (MN) (UG/L)	27	163.74049490	42.99993896	449.99926758
P71890	DISSOLVED MERCURY (HG) (UG/L)	2	0.34999961	0.29999965	0.39999956
P71900	TOTAL MERCURY (HG) (UG/L)	5	0.40999956	0.13999981	0.69999927
P01090	DISSOLVED ZINC (ZN) (UG/L)	3	18.66663965	9.99998569	29.99995422
P01092	TOTAL ZINC (ZN) (UG/L)	27	19.96293370	0.00000000	141.99978638

Table 13.—Water-quality statistical summary for station 07348650, Bayou Dorcheat near Taylor, Ark.

VARIABLE	LABEL	N	MEAN	MINIMUM VALUE	MAXIMUM VALUE
P00095	SPECIFIC CONDUCTANCE (MICROMHOS)	27	207.22190744	71.99990845	401.99926758
P00400	PH (UNITS)	27	6.53628929	5.97999382	6.99999237
P00010	TEMPERATURE (DEG C)	27	18.03701044	6.99999237	27.99995422
P00070	TURRIDITY (JTU)	27	16.40738487	5.99999332	39.99995422
P00300	DISSOLVED OXYGEN (MG/L)	27	6.46517824	3.19999599	9.69999027
P00310	BIOCHEMICAL OXYGEN DEMAND 5 DAY (MG/L)	26	1.21269063	0.24999976	3.19999599
P00915	DISSOLVED CALCIUM (CA) (MG/L)	7	7.57141931	4.99999523	10.99998283
P00925	DISSOLVED MAGNESIUM (MG) (MG/L)	7	3.57142421	1.99999714	6.99999237
P00929	TOTAL SODIUM (NA) (MG/L)	9	26.61107551	5.59999371	39.89994812
P00937	TOTAL POTASSIUM (K) (MG/L)	9	2.18888601	1.19999790	3.59999561
P00440	BICARBONATE (HCO3) (MG/L)	8	16.62497485	9.99998569	33.99995422
P00445	CARBONATE (CO3) (MG/L)	8	0.00000000	0.00000000	0.00000000
P00945	DISSOLVED SULFATE (SO4) (MG/L)	16	10.49998517	0.99999869	30.99995422
P00940	DISSOLVED CHLORIDE (CL) (MG/L)	15	59.96658529	23.99995422	99.99983215
P70300	DISSOLVED SOLIDS (RESIDUE AT 180 C) (MG/L)	0		•	
P00515	TOTAL FILTRABLE RESIDUE (MG/L)	26	164.69205592	95.99989319	
P00530	TOTAL NONFILTRABLE RESIDUE (MG/L)	26	20.92304820	3.99999523	44.99993896
P00620	TOTAL NITRATE (N) (MG/L)	26	0.34923038	0.10999984	0.86999911
P00665	TOTAL PHOSPHORUS (P) (MG/L)	26	0.29538426	0.06999987	1.69999790
P00600	TOTAL NITROGEN (N) (MG/L)	0		•	
P01000	DISSOLVED ARSENIC (AS) (UG/L)	0	•	•	•
P01002	TOTAL ARSENIC (AS) (UG/L)	17	8.64704805	2.99999619	98.99987793
P01025	DISSOLVED CADMIUM (CD) (UG/L)	0	•	•	•
P01027	TOTAL CADMIUM (CD) (UG/L)	17	3.94117134	0.00000000	9.99998569
P01030	DISSOLVED CHROMIUM (CR) (UG/L)	0	•	•	•
P01034	TOTAL CHROMIUM (CR) (UG/L)	17	0.52941109	0.00000000	2.99999619
P01040	DISSOLVED COPPER (CU) (UG/L)	0	•		
P01042	TOTAL COPPER (CU) (UG/L)	17	7.76469517	0.00000000	19.99996948
P01046	DISSOLVED IRON (FE) (UG/L)	0			
P01045	TOTAL IRON (FE) (UG/L)	17	2087.70229205	819.99877930	4577.99218750
P01049	DISSOLVED LEAD (PB) (UG/L)	0	•	•	
P01051	TOTAL LEAD (PB) (UG/L)	17	36.58818391	0.00000000	109.99981689
P01056	DISSOLVED MANGANESE (MN) (UG/L)	0		•	
P01055	TOTAL MANGANESE (MN) (UG/L)	17	416.35227158	69.99992371	1799.99658203
P71890	DISSOLVED MERCURY (HG) (UG/L)	0	•	•	•
P71900	TOTAL MERCURY (HG) (UG/L)	0	•	•	•
P01090	DISSOLVED ZINC (ZN) (UG/L)	0			20 00005:00
P01092	TOTAL ZINC (ZN) (UG/L)	17	18.29409050	0.00000000	39.99995422

Table 14.—Water-quality statistical summary for station 07348700, Bayou Dorcheat near Springhill, La.

VARIABLE	LABEL	N	MEAN	MINIMUM VALUE	MAXIMUM VALUE
P00095	SPECIFIC CONDUCTANCE (MICROMHOS)	61	744.44264847	74.99990845	4229.99609375
P00400	PH (UNITS)	60	6.32066507	1.19999790	7.70000362
P00010	TEMPERATURE (DEG C)	61	17.39179925	3.99999905	31.00003052
P00070	TURBIDITY (JTU)	17	18.11174146	5.39999390	54.99992371
P00300	DISSOLVED OXYGEN (MG/L)	15	6.30532633	2.49999714	10.89998436
P00310	BIOCHEMICAL OXYGEN DEMAND 5 DAY (MG/L)	17	1.28058656	0.72999924	2.79999638
P00915	DISSOLVED CALCIUM (CA) (MG/L)	47	28.22554260	3.09999943	139.99998474
P00925	DISSOLVED MAGNESIUM (MG) (MG/L)	47	7.11915159	0.00000050	33.00003052
P00929	TOTAL SODIUM (NA) (MG/L)	0		•	
P00937	TOTAL POTASSIUM (K) (MG/L)	0			*.
P00440	BICARBONATE (HCO3) (MG/L)	43	33.65120273	0.00000000	144.00047302
P00445	CARBONATE (CO3) (MG/L)	43	0.00000019	0.00000000	0.00000050
P00945	DISSOLVED SULFATE (SO4) (MG/L)	49	8.40816590	0.60000038	34.00003052
P00940	DISSOLVED CHLORIDE (CL) (MG/L)	58	211.23292326	14.99999714	1329.99951172
P70300	DISSOLVED SOLIDS (RESIDUE AT 180 C) (MG/L)	34	367.44111588	78.99998474	2469.99975586
P00515	TOTAL FILTRAGLE RESIDUE (MG/L)	6	173.83310699	93.99989319	375.99951172
P00530	TOTAL NONFILTRABLE RESIDUE (MG/L)	6	19.99997282	8.99999046	47.99993896
P00520	TOTAL NITRATE (N) (MG/L)	9	0.25111082	0.01999998	0.79999918
PC0665	TOTAL PHOSPHORUS (P) (MG/L)	6	0.35499950	0.04999995	1.68999767
P00600	TOTAL NITROGEN (N) (MG/L)	0	•	•	•
F01000	DISSOLVED ARSENIC (AS) (UG/L)	0	•	•	
P01002	TOTAL ARSENIC (AS) (UG/L)	6	4.49999475	2.99999619	8.99999046
P01025	DISSOLVED CADMIUM (CD) (UG/L)	0	•	*	
P01027	TOTAL CADMIUM (CD) (UG/L)	6	4.16666142	0.00000000	9.99998569
P01030	DISSOLVED CHROMIUM (CR) (UG/L)	0			
P01034	TOTAL CHROMIUM (CR) (UG/L)	6	32.33328692	0.00000000	99.99983215
PC1040	DISSOLVED COPPER (CU) (UG/L)	0	•		
P01042	TOTAL COPPER (CU) (UG/L)	6	12.83331474	5.99999332	19.99996948
P01046	DISSOLVED IRON (FE) (UG/L)	0			
P01045	TOTAL IRON (FE) (UG/L)	6	854.33190918	389.99926758	1609.99682617
P01049	DISSOLVED LEAD (PB) (UG/L)	0	•		
P01051	TOTAL LEAD (PB) (UG/L)	6	41.49994040	0.00000000	99.99983215
P01056	DISSOLVED MANGANESE (MN) (UG/L)	0	•		*************
P01055	TOTAL MANGANESE (MN) (UG/L)	6	244.83295186	0.00000000	634.99902344
P71890	DISSOLVED MERCURY (HG) (UG/L)	0	. 21000074	* 10000074	0 3/00003/
P71900	TOTAL MERCURY (HG) (UG/L)	2	0.21999976	0.18999976	0.24999976
P01090	DISSOLVED ZINC (ZN) (UG/L)	0			71 0000000
P01092	TOTAL ZINC (ZN) (UG/L)	6	32.16662280	11.99998093	71.99990845

Water in Bayou Dorcheat, at the upstream site near Taylor, 07348650, does not meet State water-quality standards (table 11). Dissolved oxygen concentrations are often less than the minimum recommended 5.0 mg/L. Iron and manganese concentrations are generally high at this location and exceed recommended maximums for drinking water. Lead concentration, at times, also exceeds standards.

Data for the downstream site near Springhill, 07348700, show some additional degradation in quality occurring between the two sites. For example, the average chloride concentration increased almost fourfold, probably because of oil-field brines.

No sediment data are available for this stream. Benthic organisms were collected at the station near Taylor, 07348650, in 1973, and the findings were published by the Arkansas Department of Pollution Control and Ecology (1976). A good benthic population was found.

Cypress Creek

Cypress Creek is a tributary to Bayou Dorcheat and drains a potential mining area in the vicinity of Emerson. A water-quality station, 07348705, was operated by the Arkansas Department of Pollution Control and Ecology at the Arkansas-Louisiana State line from March 1968 to April 1974. This stream is in a low, marshy area and has infrequent flow and low velocity, that makes it difficult to interpret its water quality. Chromium, lead, iron, and manganese concentrations have exceeded water-quality standards (table 15). In 17 samples, the maximum chloride concentration was 1,330 mg/L which indicates oil-field pollution. The dissolved-oxygen concentration has been less than the State's standard of 5.0 mg/L. No benthic or sediment data are available for this stream.

Table 15.—Water-quality statistical summary for station 07348705, Cypress Creek at Arkansas-Louisiana State line

VARIABLE	LABEL	N	MEAN	MINIMUM VALUE	MAXIMUM VALUE
P00095	SPECIFIC CONDUCTANCE (MICROMHOS)	17	168.29387440	70.99990845	299.99951172
P00400	PH (UNITS)	17	6.26999322	5.79999352	6.92999268
P00010	TEMPERATURE (DEG C)	17	16.05880143	4.99999523	24.99996948
P00070	TURBIDITY (JTU)	17	25.05878830	10.99998283	54.99992371
P00300	DISSOLVED OXYGEN (MG/L)	17	6.92881584	3.59999561	10.20998383
P00310	BIOCHEMICAL OXYGEN DEMAND 5 DAY (MG/L)	17	1.74705649	0.75999922	2.64999676
P00915	DISSOLVED CALCIUM (CA) (MG/L)	3	6.99999237	6.99999237	6.99999237
P00925	DISSOLVED MAGNESIUM (MG) (MG/L)	3	3.33332920	2.99999619	3.99999523
P00929	TOTAL SODIUM (NA) (MG/L)	0	•		
P00937	TOTAL POTASSIUM (K) (MG/L)	0	•		
P00440	BICARBONATE (HCO3) (MG/L)	0			
P00445	CARBONATE (CO3) (MG/L)	0			
P00945	DISSOLVED SULFATE (SO4) (MG/L)	5	6.39999294	1.99999714	8.99999046
P00940	DISSOLVED CHLORIDE (CL) (MG/L)	17	43.61759130	13.99998283	82.99990845
P70300	DISSOLVED SOLIDS (RESIDUE AT 180 C) (MG/L)	0	•		
P00515	TOTAL FILTRABLE RESIDUE (MG/L)	5	128.39981995	88.99989319	153.99978638
P00530	TOTAL NONFILTRABLE RESIDUE (MG/L)	5	38.99994812	22.99996948	82.99990845
P00620	TOTAL NITRATE (N) (MG/L)	5	0.39199957	0.19999975	0.59999937
P00665	TOTAL PHOSPHORUS (P) (MG/L)	5	0.06199992	0.02999996	0.09999985
P00600	TOTAL NITROGEN (N) (MG/L)	0	•		
P01000	DISSOLVED ARSENIC (AS) (UG/L)	0	•		
P01002	TOTAL ARSENIC (AS) (UG/L)	5	3.59999561	2.99999619	5.99999332
P01025	DISSOLVED CADMIUM (CD) (UG/L)	0			
P01027	TOTAL CADMIUM (CD) (UG/L)	5	2.59999695	0.00000000	6.99999237
001030	DISSOLVED CHROMIUM (CR) (UG/L)	0	•	•	
P01034	TOTAL CHROMIUM (CR) (UG/L)	5	18.79997787	0.00000000	79.99990845
P01040	DISSOLVED COPPER (CU) (UG/L)	0			
P01042	TOTAL COPPER (CU) (UG/L)	5	17.19997768	0.00000000	39.99995422
P01046	DISSOLVED IRON (FE) (UG/L)	0	•	•	
P01045	TOTAL IRON (FE) (UG/L)	5	1248.19765625	659.99902344	1849.99633789
P01049	DISSOLVED LEAD (PB) (UG/L)	0			•
P01051	TOTAL LEAD (PB) (UG/L)	5	27.59996490	0.00000000	56.99992371
P01056	DISSOLVED MANGANESE (MN) (UG/L)	0			•
P01055	TOTAL MANGANESE (MN) (UG/L)	5	180.59972229	0.00000000	289.99951172
P71890	DISSOLVED MERCURY (HG) (UG/L)	0	•		•
P71900	TOTAL MERCURY (HG) (UG/L)	2	0.51999944	0.25999969	0.77999920
P01090	DISSOLVED ZINC (ZN) (UG/L)	0		•	•
P01092	TOTAL ZINC (ZN) (UG/L)	5	17.59997711	6.99999237	25.99996948

46

Bodcau Creek

Statistical data are presented for two stations on Bodcau Creek (tables 16 and 17). The station near Lewisville (07349440) drains a low, marshy area resulting in a summertime stratification of the water. Dissolved-oxygen concentrations range from 0.0 mg/L near the bottom of the stream to 5.0 mg/L near the surface.

As with other streams in the area, iron, manganese, and lead concentrations are high at times, exceeding standards for drinking water (table 16). In 1973, upstream from this station and 5 miles downstream from where the Stamps sewage-treatment plant effluent enters the stream, the Arkansas Department of Pollution Control and Ecology found a good benthic community in the stream with a diversity index of 2.5947, an indication that the stream is in good condition, with the exceptions noted previously.

The station near Taylor (07349445) is downstream from Lake Erling, and water quality at this site shows some improvement after the water moves through the lake. The dissolved-oxygen concentration remains above 5.0 mg/L (table 17). Iron concentration is less, but lead and manganese concentrations are a little higher than concentrations upstream from the lake. Chromium concentration is noticeably higher downstream from Lake Erling and exceeds drinking-water standards. The source of the chromium is not known.

No recent benthic sampling has been done at either site. However, as mentioned above, in 1973, a good benthic population was found 5 miles downstream from where the Stamps waste effluent enters the stream. No sediment data are available for Bodcau Creek.

Ouachita River

Statistical data are presented for seven water-quality sampling sites on the Ouachita River (tables 18 through 24). These sites are: Station 07359500,

Table 16.—Water-quality statistical summary for station 07349440, Bodcau Creek near Lewisville, Ark.

VARIABLE	LABEL	N	MEAN	MINIMUM VALUE	MAXIMUM VALUE
P00095	SPECIFIC CONDUCTANCE (MICROMHOS)	28	158.35692378	60.99992371	435.99926758
P00400	PH (UNITS)	28	6.39356504	5.78999424	6.99999237
P00010	TEMPERATURE (DEG C)	28	18.46426109	5.99999332	27.99995422
P00070	TURBIDITY (JTU)	27	16.11108949	5.99999332	84.99989319
P00300	DISSOLVED OXYGEN (MG/L)	28	5.86142254	3.49999619	9.47999001
P00310	BIOCHEMICAL OXYGEN DEMAND 5 DAY (MG/L)	27	1.36444260	0.53999943	3.19999599
P00915	DISSOLVED CALCIUM (CA) (MG/L)	8	6.76249337	4.99999523	9.99998569
P00925	DISSOLVED MAGNESIUM (MG) (MG/L)	8	3.01249719	1.99999714	5.99999332
P00929	TOTAL SODIUM (NA) (MG/L)	9	19.43330563	8.29999161	42.99993896
P00937	TOTAL POTASSIUM (K) (MG/L)	9	1.93333085	1.19999790	3.49999619
P00440	BICARBONATE (HCO3) (MG/L)	9	13.66664738	9.99998569	27.99995422
P00445	CARRONATE (CO3) (MG/L)	10	0.00000005	0.00000000	0.00000050
P00945	DISSOLVED SULFATE (SO4) (MG/L)	18	6.26110380	0.99999869	15.99997902
P00940	DISSOLVED CHLORIDE (CL) (MG/L)	16	43.87494755	18.49996948	98.99987793
P70300	DISSOLVED SOLIDS (RESIDUE AT 180 C) (MG/L)	1	138.00047302	138.00047302	138.00047302
P00515	TOTAL FILTRABLE RESIDUE (MG/L)	26	128.99980927	39.99995422	264.99951172
P00530	TOTAL NONFILTRABLE RESIDUE (MG/L)	26	17.99997464	0.99999869	45.99993896
P00620	TOTAL NITRATE (N) (MG/L)	26	0.31153811	0.09999985	0.94999903
P00665	TOTAL PHOSPHORUS (P) (MG/L)	26	0.13692290	0.03999996	0.31999964
P00600	TOTAL NITROGEN (N) (MG/L)	0			
P01000	DISSOLVED ARSENIC (AS) (UG/L)	0			
P01002	TOTAL ARSENIC (AS) (UG/L)	17	4.05881814	2.99999619	20.99996948
P01025	DISSOLVED CADMIUM (CD) (UG/L)	0	•		•
P01027	TOTAL CADMIUM (CD) (UG/L)	17	3.82352403	0.00000000	19.99996948
P01030	DISSOLVED CHROMIUM (CR) (UG/L)	0	•		•
P01034	TOTAL CHROMIUM (CR) (UG/L)	17	0.52941109	0.00000000	2.99999619
P01040	DISSOLVED COPPER (CU) (UG/L)	0	•	•	•
P01042	TOTAL COPPER (CU) (UG/L)	17	8.64704744	0.00000000	59.99992371
P01046	DISSOLVED IRON (FE) (UG/L)	0	•	•	•
P01045	TOTAL IRON (FE) (UG/L)	17	1852.64375574	349.99951172	3286.99414063
P01049	DISSOLVED LEAD (PB) (UG/L)	0	•	•	•
P01051	TOTAL LEAD (PB) (UG/L)	17	17.05879991	0.00000000	59.99992371
P01056	DISSOLVED MANGANESE (MN) (UG/L)	0			•
P01055	TOTAL MANGANESE (MN) (UG/L)	18	249.88855998	78.99990845	543.99926758
P71890	DISSOLVED MERCURY (HG) (UG/L)	0		•	•
P71900	TOTAL MERCURY (HG) (UG/L)	0	•	•	•
P01090	DISSOLVED ZINC (ZN) (UG/L)	0			
P01092	TOTAL ZINC (ZN) (UG/L)	17	10.94116108	0.00000000	19.99996948

Table 17. - Water-quality statistical summary for station 07349445, Bodcau Creek near Taylor, Ark.

VARIABLE	LABEL	N	MEAN	MINIMUM VALUE	MAXIMUM VALUE
P00095	SPECIFIC CONDUCTANCE (MICROMHOS)	16	103.43736839	43.99993896	247.99964905
P00400	PH (UNITS)	16	6.68311787	6.29999352	7.09999275
P00010	TEMPERATURE (DEG C)	17	17.17644534	4.99999523	28.99995422
P00070	TURRIDITY (JTU)	17	15.61762726	3.29999638	32.99995422
P00300	DISSOLVED OXYGEN (MG/L)	17	8.88234217	6.07999325	10.99998283
P00310	BIOCHEMICAL OXYGEN DEMAND 5 DAY (MG/L)	17	1.44352744	0.64999932	3.38999653
P00915	DISSOLVED CALCIUM (CA) (MG/L)	3	5.66666063	3.99999523	7.99999142
P00925	DISSOLVED MAGNESIUM (MG) (MG/L)	4	2.74999657	0.99999869	3.99999523
P00929	TOTAL SODIUM (NA) (MG/L)	0			
P00937	TOTAL POTASSIUM (K) (MG/L)	0	•		٠.
P00440	BICARBONATE (HCO3) (MG/L)	0			
P00445	CARBONATE (CO3) (MG/L)	0			
P00945	DISSOLVED SULFATE (SO4) (MG/L)	7	5.32856546	2.99999619	
P00940	DISSOLVED CHLORIDE (CL) (MG/L)	17	23.36467524	10.99998283	58.99992371
P70300	DISSOLVED SOLIDS (RESIDUE AT 180 C) (MG/L)	0	•		
P00515	TOTAL FILTRABLE RESIDUE (MG/L)	7	78.14275687	42.99993896	149.99978638
200530	TOTAL NONFILTRABLE RESIDUE (MG/L)	5	26.59996700	7.99999142	51.99993896
P00620	TOTAL NITRATE (N) (MG/L)	5	0.19199976	0.09999985	0.39999956
P00665	TOTAL PHOSPHORUS (P) (MG/L)	6	0.04166661	0.00999999	0.07999986
P00600	TOTAL NITROGEN (N) (MG/L)	0	•	•	•
P01000	DISSOLVED ARSENIC (AS) (UG/L)	0	•	•	•
P01002	TOTAL ARSENIC (AS) (UG/L)	7	4.14285224	2.99999619	6.99999237
P01025	DISSOLVED CADMIUM (CD) (UG/L)	0	•	•	•
P01027	TOTAL CADMIUM (CD) (UG/L)	7	1.28571251	0.00000000	2.99999619
P01030	DISSOLVED CHROMIUM (CR) (UG/L)	0	•	•	
P01034	TOTAL CHROMIUM (CR) (UG/L)	7	18.71425615	0.00000000	99.99983215
P01040	DISSOLVED COPPER (CU) (UG/L)	0	•	•	
P01042	TOTAL COPPER (CU) (UG/L)	6	9.16665395	0.00000000	14.99998093
P01046	DISSOLVED IRON (FE) (UG/L)	0	•		
P01045	TOTAL IRON (FE) (UG/L)	7	711.42735073	299.99951172	1245.99780273
P01049	DISSOLVED LEAD (PB) (UG/L)	0		•	
P01051	TOTAL LEAD (PB) (UG/L)	7	22.71425547	1.99999714	63.99992371
P01056	DISSOLVED MANGANESE (MN) (UG/L)	0	•	*	
P01055	TOTAL MANGANESE (MN) (UG/L)	7	264.71387591	0.0000000	839.99877930
P71890	DISSOLVED MERCURY (HG) (UG/L)	0		• • • • • • • • • • • • • • • • • • • •	0 53000013
P71900	TOTAL MERCURY (HG) (UG/L)	4	0.26999968	0.09999985	0.53999943
P01090	DISSOLVED ZINC (ZN) (UG/L)	0			11 00000000
P01092	TOTAL ZINC (ZN) (UG/L)	7	5.57142162	0.00000000	11.99998093

Table 18. — Water-quality statistical summary for station 073599500, Quachita River near Malvern, Ark.

VARIABLE	LABEL	N	MEAN	MINIMUM VALUE	MAXIMUM VALUE
P00095	SPECIFIC CONDUCTANCE (MICROMHOS)	50	113.55224207	6.61999226	346.99951172
P00400	PH (UNITS)	49	6.94019670	6.49999332	7.98999119
P00010	TEMPERATURE (DEG C)	63	17.45235596	2.99999619	29.99995422
P00070	TURBIDITY (JTU)	49	12.69386194	1.69999790	59.99992371
P00300	DISSOLVED OXYGEN (MG/L)	50	8.51038940	3.69999504	11.97998428
P00310	BIOCHEMICAL OXYGEN DEMAND 5 DAY (MG/L)	50	1.44579813	0.02999996	4.29999447
P00915	DISSOLVED CALCIUM (CA) (MG/L)	8	9.12498891	5.99999332	13.99998283
P00925	DISSOLVED MAGNESIUM (MG) (MG/L)	8	2.49999712	0.99999869	4.99999523
P00929	TOTAL SODIUM (NA) (MG/L)	4	9.17498779	2.29999733	19.99996948
P00937	TOTAL POTASSIUM (K) (MG/L)	4	4.07499504	1.99999714	7.99999142
P00440	BICARBONATE (HCO3) (MG/L)	5	50.19992676	20.99996948	159.99977112
P00445	CARRONATE (CO3) (MG/L)	5	0.00000000	0.00000000	0.00000000
P00945	DISSOLVED SULFATE (SO4) (MG/L)	19	15.84208488	4.99999523	49.99993896
P00940	DISSOLVED CHLORIDE (CL) (MG/L)	49	14.14691995	2.99999619	43.99993896
P70300	DISSOLVED SOLIDS (RESIDUE AT 180 C) (MG/L)	0			
P00515	TOTAL FILTRABLE RESIDUE (MG/L)	20	90.84987488	42.99993896	180.99977112
P00530	TOTAL NONFILTRABLE RESIDUE (MG/L)	20	16.09997921	1.99999714	47.99993896
P00620	TOTAL NITRATE (N) (MG/L)	20	0.45199945	0.09999985	0.95999861
P00665	TOTAL PHOSPHORUS (P) (MG/L)	20	0.16879980	0.00599999	2.29999733
P00600	TOTAL NITROGEN (N) (MG/L)	0	•	•	•
P01000	DISSOLVED ARSENIC (AS) (UG/L)	0	•		
201002	TOTAL ARSENIC (AS) (UG/L)	38	8.23683711	2.99999619	9.99999619
P01025	DISSOLVED CADMIUM (CD) (UG/L)	0	•		
P01027	TOTAL CADMIUM (CD) (UG/L)	40	1.97499746	0.00000000	9.99998569
P01030	DISSOLVED CHROMIUM (CR) (UG/L)	0			
P01034	TOTAL CHROMIUM (CR) (UG/L)	12	4.24999452	0.00000000	14.99998093
P01040	DISSOLVED COPPER (CU) (UG/L)	0		•	
P01042	TOTAL COPPER (CU) (UG/L)	19	21.73681184	0.00000000	157.99978638
P01046	DISSOLVED IRON (FE) (UG/L)	0		•	
P01045	TOTAL IRON (FE) (UG/L)	18	189.22194163	31.99995422	539.99926758
P01049	DISSOLVED LEAD (PB) (UG/L)	0	•		
P01051	TOTAL LEAD (PB) (UG/L)	40	25.97496639	0.00000000	749.99902344
P01056	DISSOLVED MANGANESE (MN) (UG/L)	0			
P01055	TOTAL MANGANESE (MN) (UG/L)	17	229.23495932	74.99990845	789.99877930
P71890	DISSOLVED MERCURY (HG) (UG/L)	0		•	
P71900	TOTAL MERCURY (HG) (UG/L)	16	0.50249951	0.09999985	0.79999918
P01090	DISSOLVED ZINC (ZN) (UG/L)	0			
P01092	TOTAL ZINC (ZN) (UG/L)	46	13.49998522	0.00000000	79.99990845

Table 19.—Water-quality statistical summary for station 07359580, Ouachita River near Donaldson, Ark.

	VARIABLE	LABEL	N	MEAN	MINIMUM VALUE	MAXIMUM VALUE
	P00095	SPECIFIC CONDUCTANCE (MICROMHOS)	26	120.92291377	62.99992371	484.99926758
	P00400	PH (UNITS)	25	6.90279255	6.49999332	7.19999218
	P00010	TEMPERATURE (DEG C)	26	19.26920355	8.99999046	28.99995422
	P00070	TURBIDITY (JTU)	25	14.08398052	3.99999523	99.99983215
	P00300	DISSOLVED OXYGEN (MG/L)	25	7.98719112	3.29999638	11.11998558
	P00310	BIOCHEMICAL OXYGEN DEMAND 5 DAY (MG/L)	24	0.94291529	0.26999968	1.99999714
	P00915	DISSOLVED CALCIUM (CA) (MG/L)	7	8.85713264	5.99999332	12.99998474
	P00925	DISSOLVED MAGNESIUM (MG) (MG/L)	7	2.14285432	0.99999869	3.99999523
	P00929	TOTAL SODIUM (NA) (MG/L)	9	6.49999163	1.89999771	11.99998093
	P00937	TOTAL POTASSIUM (K) (MG/L)	9	2.55555254	0.59999937	7.99999142
	P00440	BICARBONATE (HCO3) (MG/L)	9	18.88886049	10.99998283	23.99995422
	P00445	CARBONATE (CO3) (MG/L)	9	0.00000000	0.00000000	0.00000000
	P00945	DISSOLVED SULFATE (SO4) (MG/L)	17	16.47056495	5.99999332	54.99992371
	P00940	DISSOLVED CHLORIDE (CL) (MG/L)	14	21.85710934	6.99999237	119.99978638
	P70300	DISSOLVED SOLIDS (RESIDUE AT 180 C) (MG/L)	0	•		
	P00515	TOTAL FILTRABLE RESIDUE (MG/L)	26	90.38448862	45.99993896	286.99951172
	P00530	TOTAL NONFILTRABLE RESIDUE (MG/L)	26	20.38458769	3.99999523	162.99978638
	P00620	TOTAL NITRATE (N) (MG/L)	26	0.52884551	0.12999982	1.19999790
	P00665	TOTAL PHOSPHORUS (P) (MG/L)	26	0.03923072	0.00999999	0.11999983
	P00600	TOTAL NITROGEN (N) (MG/L)	0			
	P01000	DISSOLVED ARSENIC (AS) (UG/L)	0			•
	P01002	TOTAL ARSENIC (AS) (UG/L) .	17	2.99999619	2.99999619	2.99999619
	P01025	DISSOLVED CADMIUM (CD) (UG/L)	0			•
	P01027	TOTAL CADMIUM (CD) (UG/L)	19	4.57894133	0.00000000	9.99998569
	P01030	DISSOLVED CHROMIUM (CR) (UG/L)	0		•	
	P01034	TOTAL CHROMIUM (CR) (UG/L)	20	0.44999943	0.00000000	2.99999619
	P01040	DISSOLVED COPPER (CU) (UG/L)	0		•	
	P01042	TOTAL COPPER (CU) (UG/L)	20	4.64999374	0.00000000	14.99998093
	P01046	DISSOLVED IRON (FE) (UG/L)	0	•		•
	P01045	TOTAL IRON (FE) (UG/L)	20	444.04927597	219.99969482	1299.99780273
	P01049	DISSOLVED LEAD (PB) (UG/L)	0		•	•
	P01051	TOTAL LEAD (PB) (UG/L)	19	56.57886887	0.00000000	185.99975586
	P01056	DISSOLVED MANGANESE (MN) (UG/L)	0			•
	P01055	TOTAL MANGANESE (MN) (UG/L)	19	257.31537267	38.99995422	1499.99731445
. ,	P71890	DISSOLVED MERCURY (HG) (UG/L)	0			
	P71900	TOTAL MERCURY (HG) (UG/L)	0			
	P01090	DISSOLVED ZINC (ZN) (UG/L)	0			•
	P01092	TOTAL ZINC (ZN) (UG/L)	19	12.84208754	0.00000000	39.99995422

Table 20.—Water-quality statistical summary for station 07360162, Ouachita River near Sparkman, Ark.

VARIABLE	LABEL	N	MEAN	MINIMUM VALUE	MAXIMUM VALUE
P00095	SPECIFIC CONDUCTANCE (MICROMHOS)	27	110.88873574	49.99993896	477.99926758
P00400	PH (UNITS)	27	6.88814078	5.89999390	7.19999218
P00010	TEMPERATURE (DEG C)	27	19.14812056	6.99999237	27.99995422
P00070	TURBIDITY (JTU)	27	18.51479061	4.99999523	89.99989319
P00300	DISSOLVED OXYGEN (MG/L)	27	8.46850918	6.68999290	11.69998550
P00310	BIOCHEMICAL OXYGEN DEMAND 5 DAY (MG/L)	26	1.07692168	0.34999961	1.99999714
P00915	DISSOLVED CALCIUM (CA) (MG/L)	7	7.85713305	5.99999332	10.99998283
P00925	DISSOLVED MAGNESIUM (MG) (MG/L)	7	1.99999739	0.99999869	3.99999523
P00929	TOTAL SODIUM (NA) (MG/L)	9	6.79999118	1.69999790	11.99998093
P00937	TOTAL POTASSIUM (K) (MG/L)	9	1.82221970	0.99999869	2.99999619
P00440	BICARBONATE (HCO3) (MG/L)	9	18.99996991	12.99998474	23.99995422
P00445	CARBONATE (CO3) (MG/L)	9	0.00000000	0.00000000	0.00000000
P00945	DISSOLVED SULFATE (SO4) (MG/L)	18	13.11109347	4.99999523	30.99995422
P00940	DISSOLVED CHLORIDE (CL) (MG/L)	15	20.49996808	7.49999237	109.99981689
P70300	DISSOLVED SOLIDS (RESIDUE AT 180 C) (MG/L)	0	•		
P00515	TOTAL FILTRABLE RESIDUE (MG/L)	26	84.26911574	35.99995422	292.99951172
P00530	TOTAL NONFILTRABLE RESIDUE (MG/L)	26	30.34611155	5.99999332	173.99974060
P00620	TOTAL NITRATE (N) (MG/L)	27	0.53740674	0.11999983	1.20999813
P00665	TOTAL PHOSPHORUS (P) (MG/L)	27	0.03962958	0.00999999	0.10999984
P00600	TOTAL NITROGEN (N) (MG/L)	0	•		
P01000	DISSOLVED ARSENIC (AS) (UG/L)	0	•		•
P01002	TOTAL ARSENIC (AS) (UG/L)	16	3.37499583	2.99999619	7.99999142
P01025	DISSOLVED CADMIUM (CD) (UG/L)	0	•		
P01027	TOTAL CADMIUM (CD) (UG/L)	16	4.49999434	0.00000000	9.99998569
P01030	DISSOLVED CHROMIUM (CR) (UG/L)	0		•	
P01034	TOTAL CHROMIUM (CR) (UG/L)	17	0.52941109	0.00000000	2.99999619
P01040	DISSOLVED COPPER (CU) (UG/L)	0		•	
P01042	TOTAL COPPER (CU) (UG/L)	17	6.17646238	0.00000000	19.99996948
P01046	DISSOLVED IRON (FE) (UG/L)	0			
P01045	TOTAL IRON (FE) (UG/L)	17	711.76362430	216.99967957	1299.99780273
P01049	DISSOLVED LEAD (PB) (UG/L)	0			
P01051	TOTAL LEAD (PB) (UG/L)	16	47.06243799	0.99999869	170.99972534
P01056	DISSOLVED MANGANESE (MN) (UG/L)	0		•	
.P01055	TOTAL MANGANESE (MN) (UG/L)	16	153.68727970	85.99989319	259.99951172
P71890	DISSOLVED MERCURY (HG) (UG/L)	0			
P71900	TOTAL MERCURY (HG) (UG/L)	0	•		•
P01090	DISSOLVED ZINC (ZN) (UG/L)	0			•
P01092	TOTAL ZINC (ZN) (UG/L)	16	10.18748523	0.00000000	19.99996948

Table 21.—Water-quality statistical summary for station 07362000, Ouachita River at Camden, Ark.

VARIABLE	LABEL	N	MEAN	MINIMUM	MAXIMUM
				VALUE	VALUE
P00095	SPECIFIC CONDUCTANCE (MICROMHOS)	33	97.69696230	61.99992371	149.00000000
PC0400	PH (UNITS)	33	6.99393868	6.00000000	7.89999962
P00010	TEMPERATURE (DEG C)	32	17.09374851	5.00000000	28.50000000
P00070	TURBIDITY (JTU)	32	18.09374905	2.00000000	50.00000000
P00300	DISSOLVED OXYGEN (MG/L)	16	8.88124865	6.79999256	11.79999924
P00310	BIOCHEMICAL OXYGEN DEMAND 5 DAY (MG/L)	2	0.39999998	0.39999956	0.40000039
P00915	DISSOLVED CALCIUM (CA) (MG/L)	32	8.36875212	5.20000172	11.00000000
P00925	DISSOLVED MAGNESIUM (MG) (MG/L)	32	1.57500028	0.90000039	2.10000038
P00929	TOTAL SODIUM (NA) (MG/L)	0			
P00937	TOTAL POTASSIUM (K) (MG/L)	0			•
P00440	BICARBONATE (HCO3) (MG/L)	33	20.12121212	11.00000000	32.00000000
P00445	CARBONATE (CO3) (MG/L)	32	0.00000002	0.00000000	0.00000050
P00945	DISSOLVED SULFATE (SO4) (MG/L)	33	9.82424557	5.20000172	21.00000000
P00940	DISSOLVED CHLORIDE (CL) (MG/L)	33	10.59091146	5.50000191	20.00000000
P70300	DISSOLVED SOLIDS (RESIDUE AT 180 C) (MG/L)	31	60.61289141	40.00000000	91.00000000
P00515	TOTAL FILTRABLE RESIDUE (MG/L)	0			
P00530	TOTAL NONFILTRABLE RESIDUE (MG/L)	1	13.00004768	13.00004768	13.00004768
P00520	TOTAL NITRATE (N) (MG/L)	0		•	
P00665	TOTAL PHOSPHORUS (P) (MG/L)	33	0.05454552	0.00000000	0.29000026
P00600	TOTAL NITROGEN (N) (MG/L)	31	0.77193598	0.30000025	1.70000076
P01000	DISSOLVED ARSENIC (AS) (UG/L)	12	0.33333309	0.00000000	1.99999714
P01002	TOTAL ARSENIC (AS) (UG/L)	12	0.91666643	0.00000000	2.00000000
P01025	DISSOLVED CARMIUM (CD) (UG/L)	12	0.66666656	0.00000000	2.00000000
P01027	TOTAL CADMIUM (CD) (UG/L)	11	9.09090779	0.00000000	10.00000000
P01030	DISSOLVED CHROMIUM (CR) (UG/L)	12	0.83333333	0.00000000	10.00000000
P01034	TOTAL CHROMIUM (CR) (UG/L)	11	18.18181818	0.00000000	160.00000000
P01040	DISSOLVED COPPER (CU) (UG/L)	12	5.91666603	0.00000000	25.00000000
P01042	TOTAL COPPER (CU) (UG/L)	11	16.36363229	0.00000000	55.00000000
P01046	DISSOLVED IRON (FE) (UG/L)	12	183.33323161	50.00000000	869.99877930
P01045	TOTAL IRON (FE) (UG/L)	11	1989.99978083	149.99978638	7200.00000000
P01049	DISSOLVED LEAD (PB) (UG/L)	12	0.99999968	0.00000000	3.00000000
P01051	TOTAL LEAD (PB) (UG/L)	11	99.99998474	99.99983215	100.00000000
P01056	DISSOLVED MANGANESE (MN) (UG/L)	12	79.99998093	10.00000000	170.00000000
P01055	TOTAL MANGANESE (MN) (UG/L)	11	196.36360862	80.00000000	610.00000000
P71890	DISSOLVED MERCURY (HG) (UG/L)	12	0.02500001	0.00000000	0.20000005
P71900	TOTAL MERCURY (HG) (UG/L)	10	0.02999998	0.00000000	0.19999975
P01090	DISSOLVED ZINC (ZN) (UG/L)	12	18.33333214	0.00000000	40.00000000
P01092	TOTAL ZINC (ZN) (UG/L)	11	71.81817211	10.00000000	400.00000000

53

Table 22. -Water-quality statistical summary for station 07362065, Ouachita River below Camden, Ark.

VARIABLE	LABEL	N	MEAN	MINIMUM VALUE	MAXIMUM VALUE
P00095	SPECIFIC CONDUCTANCE (MICROMHOS)	82	129.06096761	63.99992371	236.99998474
P00400	PH (UNITS)	87	6.99425155	6.29999924	7.99999142
P00010	TEMPERATURE (DEG C)	46	19.10868842	3.99999905	32.99998474
P00070	TURRIDITY (JTU)	0		127 001 000 000	
P00300	DISSOLVED OXYGEN (MG/L)	46	7.39130354	3.29999924	11.49999428
P00310	BIOCHEMICAL OXYGEN DEMAND 5 DAY (MG/L)	44	3.28636658	0.19999975	16.00004578
P00915	DISSOLVED CALCIUM (CA) (MG/L)	0	•		
P00925	DISSOLVED MAGNESIUM (MG) (MG/L)	0			
P00929	TOTAL SODIUM (NA) (MG/L)	0			
P00937	TOTAL POTASSIUM (K) (MG/L)	0			
P00440	BICARBONATE (HCO3) (MG/L)	88	24.14771940	14.00004768	36.00003052
P00445	CARBONATE (CO3) (MG/L)	88	0.00000011	0.00000000	0.00000050
P00945	DISSOLVED SULFATE (SO4) (MG/L)	47	13.67020723	4.20000362	39.99998474
P00940	DISSOLVED CHLORIDE (CL) (MG/L)	47	15.29361445	3.69999504	30.99998474
P70300	DISSOLVED SOLIDS (RESIDUE AT 180 C) (MG/L)	0			•
P00515	TOTAL FILTRABLE RESIDUE (MG/L)	0			
P00530	TOTAL NONFILTRABLE RESIDUE (MG/L)	46	46.58913429	0.99999964	633.00024414
P00620	TOTAL NITRATE (N) (MG/L)	0			
P00665	TOTAL PHOSPHORUS (P) (MG/L)	47	0.10382984	0.00000000	0.67000037
P00600	TOTAL NITROGEN (N) (MG/L)	0		•	
P01000	DISSOLVED ARSENIC (AS) (UG/L)	3	9.99998919	9.99998569	9.99999619
P01002	TOTAL ARSENIC (AS) (UG/L)	0	•	•	•
P01025	DISSOLVED CADMIUM (CD) (UG/L)	8	0.12499996	0.00000000	0.99999964
P01027	TOTAL CADMIUM (CD) (UG/L)	0			
P01030	DISSOLVED CHROMIUM (CR) (UG/L)	4	6.99999833	0.00000000	10.99999523
P01034	TOTAL CHROMIUM (CR) (UG/L)	0			•
P01040	DISSOLVED COPPER (CU) (UG/L)	8	4.12499829	0.99999869	11.99999428
P01042	TOTAL COPPER (CU) (UG/L)	0			
P01046	DISSOLVED IRON (FE) (UG/L)	8	213.74982977	9.99999619	489.99926758
P01045	TOTAL IRON (FE) (UG/L)	0			
P01049	DISSOLVED LEAD (PB) (UG/L)	8	2.37499931	0.00000000	7.99999905
P01051	TOTAL LEAD (PB) (UG/L)	0			
P01056	DISSOLVED MANGANESE (MN) (UG/L)	8	126.24990463	29.99998474	269.99975586
P01055	TOTAL MANGANESE (MN) (UG/L)	0			
P71890	DISSOLVED MERCURY (HG) (UG/L)	6	0.43333309	0.10000044	0.50000000
P71900	TOTAL MERCURY (HG) (UG/L)	3	5.33333338	0.50000000	14.99999714
P01090	DISSOLVED ZINC (ZN) (UG/L)	8	17.49998951	0.00000000	50.00000000
P01092	TOTAL ZINC (ZN) (UG/L)	0			•
101032	TOTAL LINE (LIV) (OU)L)	v		•	•

Table 23.—Water-quality statistical summary for station 07362400, Ouachita River at Lock and Dam 8, near Calion, Ark.

VARIABLE	LABEL	N	MEAN	MINIMUM VALUE	MAXIMUM VALUE
				VALUE	VALOL
P00095	SPECIFIC CONDUCTANCE (MICROMHOS)	37	284.54009845	119.99978638	738.99902344
P00400	PH (UNITS)	37	6.59837140	5.56999397	7.09999275
P00010	TEMPERATURE (DEG C)	37	19.81078156	8.99999046	33.99995422
P00070	TURBIDITY (JTU)	37	17.13511312	5.99999332	39.99995422
P00300	DISSOLVED OXYGEN (MG/L)	37	7.18701901	1.32999802	10.59998322
P00310	BIOCHEMICAL OXYGEN DEMAND 5 DAY (MG/L)	37	1.81729490	0.38999957	3.99999523
P00915	DISSOLVED CALCIUM (CA) (MG/L)	10	12.59998226	9.99998569	16.99996948
P00925	DISSOLVED MAGNESIUM (MG) (MG/L)	10	3.19999615	0.99999869	4.99999523
P00929	TOTAL SODIUM (NA) (MG/L)	7	45.51422555	17.99996948	84.19989014
P00937	TOTAL POTASSIUM (K) (MG/L)	7	2.51428236	1.89999771	3.09999561
P00440	BICARBONATE (HCO3) (MG/L)	7	17.85711779	9.99998569	31.99995422
P00445	CARBONATE (CO3) (MG/L)	7	0.00000000	0.00000000	0.00000000
P00945	DISSOLVED SULFATE (SO4) (MG/L)	21	10.03808183	0.99999869	29.99995422
200940	DISSOLVED CHLORIDE (CL) (MG/L)	32	73.81239796	18.99996948	239.99964905
P70300	DISSOLVED SOLIDS (RESIDUE AT 180 C) (MG/L)	0	•	•	
P00515	TOTAL FILTRABLE RESIDUE (MG/L)	25	217.95965820	99.99983215	439.99926758
P00530	TOTAL NONFILTRABLE RESIDUE (MG/L)	25	24.39996399	8.99999046	132.99978638
P00620	TOTAL NITRATE (N) (MG/L)	25	0.47439946	0.09999985	2.49999714
P00665	TOTAL PHOSPHORUS (P) (MG/L)	25	0.04919993	0.00999999	0.17999977
P00600	TOTAL NITROGEN (N) (MG/L)	0		•	•
P01000	DISSOLVED ARSENIC (AS) (UG/L)	0	•		
P01002	TOTAL ARSENIC (AS) (UG/L)	17	6.17646240	2.99999619	22.99996948
P01025	DISSOLVED CADMIUM (CD) (UG/L)	0			
P01027	TOTAL CADMIUM (CD) (UG/L)	19	7.73683101	0.00000000	16.99996948
P01030	DISSOLVED CHROMIUM (CR) (UG/L)	0			
P01034	TOTAL CHROMIUM (CR) (UG/L)	19	9.26314404	0.00000000	99.99983215
P01040	DISSOLVED COPPER (CU) (UG/L)	0		•	
P01042	TOTAL COPPER (CU) (UG/L)	24	9.54165370	0.00000000	39.99995422
P01046	DISSOLVED IRON (FE) (UG/L)	0	•		•
P01045	TOTAL IRON (FE) (UG/L)	25	1079.43815308	64.99992371	1992.99658203
P01049	DISSOLVED LEAD (PB) (UG/L)	0	•		
P01051	TOTAL LEAD (PB) (UG/L)	24	66.08323508	0.00000000	417.99926758
P01056	DISSOLVED MANGANESE (MN) (UG/L)	0		•	
P01055	TOTAL MANGANESE (MN) (UG/L)	24	294.66623052	89.99989319	699.99902344
P71890	DISSOLVED MERCURY (HG) (UG/L)	0			
P71900	TOTAL MERCURY (HG) (UG/L)	3	0.97666530	0.09999985	2.42999649
P01090	DISSOLVED ZINC (ZN) (UG/L)	0			
P01092	TOTAL ZINC (ZN) (UG/L)	23	19.30432216	0.00000000	69.99992371

VARIABLE	LABEL	N	MEAN	MINIMUM VALUE	MAXIMUM VALUE
P00095	SPECIFIC CONDUCTANCE (MICROMHOS)	41	227.90233072	82.00000000	879.99975586
P00400	PH (UNITS)	25	6.95479595	6.36999321	8.49999142
P00010	TEMPERATURE (DEG C)	24	20.20831792	5.99999332	29.99995422
P00070	TURRIDITY (JTU)	18	19.77775680	2.00000000	44.99993896
P00300	DISSOLVED OXYGEN (MG/L)	20	7.36399455	4.47999477	11.19998646
P00310	BIOCHEMICAL OXYGEN DEMAND 5 DAY (MG/L)	12	1.38166477	0.59999937	2.39999576
P00915	DISSOLVED CALCIUM (CA) (MG/L)	27	9.62963097	5.20000172	31.00000000
P00925	DISSOLVED MAGNESIUM (MG) (MG/L)	27	1.98518541	0.90000039	3.99999523
P00929	TOTAL SODIUM (NA) (MG/L)	2	4.79999495	4.09999561	5.49999428
P00937	TOTAL POTASSIUM (K) (MG/L)	2	1.64999771	1.19999790	2.09999752
P00440	BICARBONATE (HCO3) (MG/L)	21	19.33332493	3.99999523	37.99998474
P00445	CARBONATE (CO3) (MG/L)	15	0.00000010	0.00000000	0.00000050
P00945	DISSOLVED SULFATE (SO4) (MG/L)	39	10.92563556	4.39999962	36.99995422
P00940	DISSOLVED CHLORIDE (CL) (MG/L)	39	44.26921756	4.49999523	229.99995422
P70300	DISSOLVED SOLIDS (RESIDUE AT 180 C) (MG/L)	24	107.83336830	65.00000000	193.99969482
P00515	TOTAL FILTRABLE RESIDUE (MG/L)	12	131.49979782	73.99990845	273.99951172
P00530	TOTAL NONFILTRABLE RESIDUE (MG/L)	12	20.66663699	0.99999869	42.99993896
P00620	TOTAL NITRATE (N) (MG/L)	12	0.29166633	0.09999985	0.60999936
P00665	TOTAL PHOSPHORUS (P) (MG/L)	14	0.04785708	0.00000000	0.08999985
P00600	TOTAL NITROGEN (N) (MG/L)	0			•
P01000	DISSOLVED ARSENIC (AS) (UG/L)	4	10.49999309	9.99998569	11.99999428
P01002	TOTAL ARSENIC (AS) (UG/L) .	4	2.99999619	2.99999619	2.99999619
P01025	DISSOLVED CADMIUM (CD) (UG/L)	9	0.33333319	0.00000000	1.99999905
P01027	TOTAL CADMIUM (CD) (UG/L)	4	9.24998736	6.99999237	9.99998569
P01030	DISSOLVED CHROMIUM (CR) (UG/L)	4	8.24999571	0.00000000	19.99998474
P01034	TOTAL CHROMIUM (CR) (UG/L)	4	1.49999809	0.00000000	2.99999619
P01040	DISSOLVED COPPER (CU) (UG/L)	9	3.77777651	1.99999905	6.99999905
P01042	TOTAL COPPER (CU) (UG/L)	12	12.74998267	2.99999619	49.99993896
P01046	DISSOLVED IRON (FE) (UG/L)	9	258.88876004	79.99998474	739.99975586
P01045	TOTAL IRON (FE) (UG/L)	12	1168.08119456	179.99972534	1899.99682617
P01049	DISSOLVED LEAD (PR) (UG/L)	9	1.44444387	0.00000000	9.99999619
P01051	TOTAL LEAD (PB) (UG/L)	12	28.58329288	9.99998569	59.99992371
P01056	DISSOLVED MANGANESE (MN) (UG/L)	9	139.99991692	19.99998474	329.99975586
P01055	TOTAL MANGANESE (MN) (UG/L)	15	214.06642253	40.00003052	680.99902344
P71890	DISSOLVED MERCURY (HG) (UG/L)	6	0.61666642	0.49999952	0.89999998
P71900	TOTAL MERCURY (HG) (UG/L)	2	1.34999943	0.50000000	2.19999886
P01090	DISSOLVED ZINC (ZN) (UG/L)	9	11.22221533	0.00000000	29.99998474
P01092	TOTAL ZINC (ZN) (UG/L)	12	26.58329360	8.99999046	169.99974060

near Malvern, upstream from potential mining areas; station 07359580, near Donaldson; station 07360162, near Sparkman; station 07362000, at Camden and downstream from the confluence of the Little Missouri River; station 07362065, "below" Camden; station 07362400 at Lock and Dam 8, near Calion, and downstream from the confluence of Smackover Creek; and station 07364080, near Felsenthal and near the Arkansas-Louisiana State boundary, downstream from the confluences of Moro Creek and the Saline River.

The stations "at" and "below" Camden, 07362000, and 07362065, are U.S. Geological Survey stations. The station "below" Camden (07362065) is inactive. The rest of the stations on the Ouachita River are operated by the Arkansas Department of Pollution Control and Ecology.

Malvern, Donaldson, and Sparkman is similar. However, there is an increase in iron and lead concentrations from the station near Malvern (07359500) to the station near Sparkman (07360162). Iron, lead, and manganese concentrations at all stations on the Ouachita River sometimes exceed standards for drinking water. The sources of these metals may be the mining activities near Hot Springs.

Data for stations on the Ouachita River at and downstream from Camden show some dilutional effect of the Little Missouri River whose confluence is several miles upstream from these stations. Most noticeable are reductions in specific conductance, sulfate, and chloride.

The station at Lock and Dam 8 near Calion (07362400), reflects the influence of Smackover Creek (table 23). Of particular note are increases in specific conductance, sodium, chloride, and total filterable residue (see discussion of Smackover Creek). Those same parameters continue to increase, as shown by data for the station near Felsenthal, despite some dilution by Moro Creek and Saline River. Like Smackover Creek, the lower part of the Ouachita River receives oil-field brines high in sodium chloride.

The Ouachita River shows a general deterioration in quality from the station near Malvern (07359500) to the Arkansas-Louisiana State line. Some of the deterioration results from mining activities upstream from the study area. In addition, there is a large number of municipal and industrial waste discharges, both on the main stem of the Ouachita River and on a number of tributary streams (Arkansas Department of Pollution Control and Ecology, 1977). As a result of these wastes, dissolved-oxygen concentrations are sometimes suppressed to less than the State standard of 5.0 mg/L. The Ouachita River water quality is further deteriorated downstream from Smackover Creek which carries oil-field brines into the river.

No benthic or sediment data are published for the Ouachita River. However, benthic and sediment data are being collected at the stations near Malvern and at Camden and will be published in a subsequent report.

Little Missouri River

The Arkansas Department of Pollution Control and Ecology has operated a sampling station on the Little Missouri River near Boughton (07361600) since April 1974. Statistical data for this station (table 25) show the stream to be of good quality except for occasional high concentrations of iron, lead, manganese, and unfilterable residues.

There are no waste sources directly on the main stem of the river, but a few effluents are located on tributary streams (Arkansas Department of Pollution Control and Ecology, 1977).

Benthic and sediment data are not available at this site. Both types of data are being collected at station 07361660, near Whelen Springs, and will be published in a subsequent report.

Table 25.—Water-quality statistical summary for station 07361600, Little Missouri River near Boughton, Ark.

VARIABLE	LABEL	N	MEAN	MINIMUM VALUE	MAXIMUM VALUE
P00095	SPECIFIC CONDUCTANCE (MICROMHOS)	38	68.97362478	27.99995422	129.00000000
P00400	PH (UNITS)	38	7.12367831	6.39999962	7.59999180
P00010	TEMPERATURE (DEG C)	38	18.88155854	6.99999237	27.99995422
P00070	TURBIDITY (JTU)	37	22.54051564	3.00000000	69.99992371
P00300	DISSOLVED OXYGEN (MG/L)	37	8.57756001	5.79999352	11.59998703
P00310	BIOCHEMICAL OXYGEN DEMAND 5 DAY (MG/L)	36	1.17416509	0.37999958	3.19999599
P00915	DISSOLVED CALCIUM (CA) (MG/L)	10	9.13999252	2.99999619	19.00000000
P00925	DISSOLVED MAGNESIUM (MG) (MG/L)	10	1.70999831	0.99999869	3.99999523
P00929	TOTAL SODIUM (NA) (MG/L)	9	2.57777458	1.69999790	3.39999580
P00937	TOTAL POTASSIUM (K) (MG/L)	9	1.21110951	0.09999985	1.79999733
P00440	BICARBONATE (HCO3) (MG/L)	19	28.73682419	1.99999714	66.00000000
P00445	CARBONATE (CO3) (MG/L)	20	0.00000000	0.00000000	0.00000000
P00945	DISSOLVED SULFATE (SO4) (MG/L)	20	8.65499071	0.99999869	25.00000000
P00940	DISSOLVED CHLORIDE (CL) (MG/L)	18	5.24443960	2.10000038	8.49999142
P70300	DISSOLVED SOLIDS (RESIDUE AT 180 C) (MG/L)	3	67.66666667	53.00000000	95.00000000
P00515	TOTAL FILTRABLE RESIDUE (MG/L)	27	60.51844053	25.99996948	104.99981689
P00530	TOTAL NONFILTRABLE RESIDUE (MG/L)	27	35.62958082	3.99999523	120.99983215
P00620	TOTAL NITRATE (N) (MG/L)	38	0.31342074	0.00000000	2.96999645
P00665	TOTAL PHOSPHORUS (P) (MG/L)	38	0.09421045	0.00999999	0.89999908
P00600	TOTAL NITROGEN (N) (MG/L)	11	0.55727305	0.24000019	1.30000019
P01000	DISSOLVED ARSENIC (AS) (UG/L)	1	0.00000000	0.00000000	0.00000000
P01002	TOTAL ARSENIC (AS) (UG/L)	17	3.35293703	2.99999619	8.99999046
P01025	DISSOLVED CADMIUM (CD) (UG/L)	1	6.00000000	6.00000000	6.00000000
P01027	TOTAL CADMIUM (CD) (UG/L)	17	4.52940580	0.00000000	13.99998283
P01030	DISSOLVED CHROMIUM (CR) (UG/L)	1	0.0000000	0.00000000	0.00000000
P01034	TOTAL CHROMIUM (CR) (UG/L)	17	0.52941109	0.00000000	2.99999619
P01040	DISSOLVED COPPER (CU) (UG/L)	1	4.00000000	4.00000000	4.00000000
P01042	TOTAL COPPER (CU) (UG/L)	16	5.37499273	0.00000000	10.99998283
P01046	DISSOLVED IRON (FE) (UG/L)	1	320.00000000	320.00000000	320.00000000
P01045	TOTAL IRON (FE) (UG/L)	17	1113.58642578	438.99926758	3004.99487305
P01049	DISSOLVED LEAD (PB) (UG/L)	1	2.99999619	2.99999619	2.99999619
P01051	TOTAL LEAD (PB) (UG/L)	17	15.76468625	0.00000000	59.99992371
P01056	DISSOLVED MANGANESE (MN) (UG/L)	1	120.00000000	120.00000000	120.00000000
P01055	TOTAL MANGANESE (MN) (UG/L)	17	115.47042577	24.99996948	223.99969482
P71890	DISSOLVED MERCURY (HG) (UG/L)	1	0.00000000	0.00000000	0.00000000
P71900	TOTAL MERCURY (HG) (UG/L)	0		*	
P01090	DISSOLVED ZINC (ZN) (UG/L)	1	30.00000000	30.00000000	30.00000000
P01092	TOTAL ZINC (ZN) (UG/L)	17	6.99999063	0.00000000	22.99996948

Smackover Creek

Data are given for two stations on Smackover Creek (tables 26 and 27). Station 07362110, north of Smackover, Ark., has been operated by the Arkansas Department of Pollution Control and Ecology since April 1974. The other station, 07362200, was operated by the Geological Survey from 1959 to 1972. Water in Smackover Creek is of very poor quality. A number of refineries, chemical plants, and municipalities discharge their waste water into Smackover Creek or into one of its tributaries. In addition, oil-field brines are flushed into the creek during surface runoff. The results of these wastes can be seen in the high concentrations of sodium, chloride, dissolved solids, and total filterable residue.

Benthic data were collected at several locations on Smackover Creek during summer surveys in 1974 and 1975 by the Arkansas Department of Pollution Control and Ecology (1977). Population densities of benthic organisms generally decreased downstream. No sediment data are available for this stream.

Moro Creek

Data for one station near Banks (07362550) are given in table 28. This station has been operated by the Arkansas Department of Pollution Control and Ecology since April 1974. Like most streams in the study area, high concentrations of iron, lead, and manganese are present which sometimes exceed standards (table 11). This stream usually does not flow during late summer and fall. When streamflow becomes low, dissolved oxygen is sometimes reduced to less than 5.0 mg/L.

No waste sources are discharged directly into Moro Creek, but three municipal and two industrial waste sources discharge into tributaries of Moro

Table 26.—Water-quality statistical summary for station 07362110, Smackover Creek north of Smackover, Ark.

VARIABLE	LABEL	N	MEAN	MINIMUM VALUE	MAXIMUM VALUE
P00095	SPECIFIC CONDUCTANCE (MICROMHOS)	27	635.40641050	210.99969482	1629.99731445
P00400	PH (UNITS)	26	6.26845485	5.89999390	6.70999241
P00010	TEMPERATURE (DEG C)	27	18.07404780	4.99999523	27.99995422
P00070	TURBIDITY (JTU)	27	17.37034678	5.99999332	39.99995422
P00300	DISSOLVED OXYGEN (MG/L)	27	6.64332595	3.19999599	11.09998226
P00310	BIOCHEMICAL OXYGEN DEMAND 5 DAY (MG/L)	27	1.10222080	0.51999944	1.74999714
P00915	DISSOLVED CALCIUM (CA) (MG/L)	7	22.57139751	10.99998283	39.99995422
P00925	DISSOLVED MAGNESIUM (MG) (MG/L)	7	7.28570543	3.99999523	12.99998474
P00929	TOTAL SODIUM (NA) (MG/L)	9	90.36654663	21.49996948	229.99966431
P00937	TOTAL POTASSIUM (K) (MG/L)	9	3.05555174	1.79999733	4.49999523
P00440	BICARBONATE (HCO3) (MG/L)	9	11.33331839	6.99999237	19.99996948
P00445	CARBONATE (CO3) (MG/L)	9	0.00000000	0.00000000	0.00000000
P00945	DISSOLVED SULFATE (SO4) (MG/L)	18	7.61110169	0.99999869	18.99996948
P00940	DISSOLVED CHLORIDE (CL) (MG/L)	15	249.09964396	109.99981689	529.99926758
P70300	DISSOLVED SOLIDS (RESIDUE AT 180 C) (MG/L)	0	•		•
P00515	TOTAL FILTRABLE RESIDUE (MG/L)	26	429.57626108	187.99972534	969.99877930
P00530	TOTAL NONFILTRABLE RESIDUE (MG/L)	26	25.96150281	1.99999714	90.99989319
P00620	TOTAL NITRATE (N) (MG/L)	27	0.21370344	0.09999985	0.71999925
P00665	TOTAL PHOSPHORUS (P) (MG/L)	27	0.06851844	0.00999999	0.89999908
P00500	TOTAL NITROGEN (N) (MG/L)	0	•	•	•
P01000	DISSOLVED ARSENIC (AS) (UG/L)	0	•	•	• • • • • • • • • • • • • • • • • • • •
P01002	TOTAL ARSENIC (AS) (UG/L)	17	3.47058375	2.99999619	9.99998569
P01025	DISSOLVED CADMIUM (CD) (UG/L)	0			
P01027	TOTAL CADMIUM (CD) (UG/L)	18	7.77776792	0.0000000	13.99998283
P01030	DISSOLVED CHROMIUM (CR) (UG/L)	0		•	
P01034	TOTAL CHROMIUM (CR) (UG/L)	17	0.52941109	0.00000000	2.99999619
P01040	DISSOLVED COPPER (CU) (UG/L)	0			
P01042	TOTAL COPPER (CU) (UG/L)	23	6.84055571	0.00000000	16.99996948
P01046	DISSOLVED IRON (FE) (UG/L)	0	1750 00005700	720 00002244	3297.99414063
P01045	TOTAL IRON (FE) (UG/L)	23	1759.08385700	739.99902344	3291.99414063
P01049	DISSOLVED LEAD (PB) (UG/L)	0	57 212/2277		321.99951172
P01051	TOTAL LEAD (PB) (UG/L)	16	57.31242377	0.0000000	321.99951172
P01056	DISSOLVED MANGANESE (MN) (UG/L)	0		225 000(4005	1399.99755859
P01055	TOTAL MANGANESE (MN) (UG/L)	22	499.31736131	235.99964905	1379.77100857
P71890	DISSOLVED MERCURY (HG) (UG/L)	0	•	•	•
P71900	TOTAL MERCURY (HG) (UG/L)	0	•	•	•
P01090	DISSOLVED ZINC (ZN) (UG/L)	22	17.72724633	0.00000000	35.99995422
P01092	TOTAL ZINC (ZN) (UG/L)	22	11.12124033	0.0000000	33.7773726

Table 27.—Water-quality statistical summary for station 07362200, Smackover Creek near Norphlet, Ark.

VARIABLE	LABEL	N	MEAN	MINIMUM VALUE	MAXIMUM VALUE
P00095	SPECIFIC CONDUCTANCE (MICROMHOS)	106	4004.19589061	292.00024414	19099.9960938
P00400	PH (UNITS)	11	5.13636442	3.69999886	6.0000038
P00010	TEMPERATURE (DEG C)	104	18.14229858	5.00000000	31.9999847
P00070	TURRIDITY (JTU)	0 -	•		
P00300	DISSOLVED OXYGEN (MG/L)	7	6.32857323	4.40000343	8.4000034
P00310	BIOCHEMICAL OXYGEN DEMAND 5 DAY (MG/L)	0			
P00915	DISSOLVED CALCIUM (CA) (MG/L)	4	90.25008821	11.00004768	260.0002441
P00925	DISSOLVED MAGNESIUM (MG) (MG/L)	4	20.47502136	2.20000362	60.0000305
P00929	TOTAL SODIUM (NA) (MG/L)	0			•
P00937	TOTAL POTASSIUM (K) (MG/L)	0			
P00440	BICARBONATE (HCO3) (MG/L)	10	5.00000005	0.00000000	11.9999943
P00445	CARRONATE (CO3) (MG/L)	10	0.00000020	0.00000000	0.0000005
P00945	DISSOLVED SULFATE (SO4) (MG/L)	7	12.61429569	4.00000381	23.9999847
P00940	DISSOLVED CHLORIDE (CL) (MG/L)	7	971.42919922	82.00003052	2900.0043945
P70300	DISSOLVED SOLIDS (RESIDUE AT 180 C) (MG/L)	4	1703.50133514	177.00045776	5080.0000000
P00515	TOTAL FILTRABLE RESIDUE (MG/L)	0			
P00530	TOTAL NONFILTRABLE RESIDUE (MG/L)	0			
P00620	TOTAL NITRATE (N) (MG/L)	0			
P00665	TOTAL PHOSPHORUS (P) (MG/L)	0			
P00500	TOTAL NITROGEN (N) (MG/L)	0			
P01000	DISSOLVED ARSENIC (AS) (UG/L)	2	9.99999619	9.99999619	9.9999962
P01002	TOTAL ARSENIC (AS) (UG/L)	0			
P01025	DISSOLVED CADMIUM (CD) (UG/L)	8	0.37499984	0.00000000	1.9999990
P01027	TOTAL CADMIUM (CD) (UG/L)	0			
P01030	DISSOLVED CHROMIUM (CR) (UG/L)	4	10.74999332	0.00000000	18.9999847
P01034	TOTAL CHROMIUM (CR) (UG/L)	0			
P01040	DISSOLVED COPPER (CU) (UG/L)	8	5.49999805	0.99999964	10.9999952
P01042	TOTAL COPPER (CU) (UG/L)	0			
P01046	DISSOLVED IRON (FE) (UG/L)	8	568.74975395	199.99998474	1599.9995117
P01045	TOTAL IRON (FE) (UG/L)	0	•	•	
P01049	DISSOLVED LEAD (PB) (UG/L)	8	5.99999666	0.00000000	19.9999847
P01051	TOTAL LEAD (PB) (UG/L)	0		•	
P01056	DISSOLVED MANGANESE (MN) (UG/L)	8	872.49948120	389.99975586	1399.9997559
P01055	TOTAL MANGANESE (MN) (UG/L)	4	870.00139236	140.00047302	2500.0043945
P71890	DISSOLVED MERCURY (HG) (UG/L)	4	0.64999950	0.49999952	1.0999994
P71900	TOTAL MERCURY (HG) (UG/L)	2	2.04999971	0.50000000	3.5999994
P01090	DISSOLVED ZINC (ZN) (UG/L)	8	62.49995375	9.99999619	309.9997559
P01092	TOTAL ZINC (ZN) (UG/L)	0	•	•	

62

Table 28.—Water-quality statistical summary for station 07362550, Moro Creek near Banks, Ark.

VARIABLE	LABEL	N	MEAN	MINIMUM	MAXIMUM
				VALUE	VALUE
P00095	SPECIFIC CONDUCTANCE (MICROMHOS)	22	56.13629289	29.99995422	115.99984741
P00400	PH (UNITS)	23	6.50825397	5.99999332	6.99999237
P00010 .	TEMPERATURE (DEG C)	22	18.31815607	7.99999142	25.99996948
P00070	TURRIDITY (JTU)	23	23.26083805	9.99998569	54.99992371
P00300	DISSOLVED OXYGEN (MG/L)	22	6.68953792	3.79999542	10.79998589
P00310	BIOCHEMICAL OXYGEN DEMAND 5 DAY (MG/L)	23	1.56217177	0.84999913	2.99999619
P00915	DISSOLVED CALCIUM (CA) (MG/L)	5	4.59999485	1.99999714	6.99999237
P00925	DISSOLVED MAGNESIUM (MG) (MG/L)	5	1.79999769	0.99999869	3.99999523
P00929	TOTAL SODIUM (NA) (MG/L)	7	4.81428024	2.09999752	9.19999027
P00937	TOTAL POTASSIUM (K) (MG/L)	7	1.98571159	0.99999869	3.59999561
P00440	BICARBONATE (HCO3) (MG/L)	7	17.42854718	8.99999046	32.99995422
P00445	CARBONATE (CO3) (MG/L)	7	0.0000000	0.00000000	0.00000000
P00945	DISSOLVED SULFATE (SO4) (MG/L)	15	7.19999003	0.99999869	14.99998093
P00940	DISSOLVED CHLORIDE (CL) (MG/L)	12	9.33332229	5.99999332	14.99998093
P70300	DISSOLVED SOLIDS (RESIDUE AT 180 C) (MG/L)	0	•		
P00515	TOTAL FILTRABLE RESIDUE (MG/L)	22	83.77261769	56.99992371	116.99983215
P00530	TOTAL NONFILTRABLE RESIDUE (MG/L)	22	21.13633572	2.99999619	62.99992371
P00620	TOTAL NITRATE (N) (MG/L)	23	0.25130405	0.09999985	0.74999928
P00665	TOTAL PHOSPHORUS (P) (MG/L)	23	0.08391292	0.01999998	0.19999975
P00600	TOTAL NITROGEN (N) (MG/L)	0			
P01000	DISSOLVED ARSENIC (AS) (UG/L)	0	•	•	•
P01002	TOTAL ARSENIC (AS) (UG/L)	14	3.49999544	2.99999619	9.99998569
P01025	DISSOLVED CADMIUM (CD) (UG/L)	0	•	•	•
P01027	TOTAL CADMIUM (CD) (UG/L)	14	4.42856514	0.00000000	16.99996948
P01030	DISSOLVED CHROMIUM (CR) (UG/L)	0		•	•
P01034	TOTAL CHROMIUM (CR) (UG/L)	14	0.21428544	0.00000000	2.99999619
P01040	DISSOLVED COPPER (CU) (UG/L)	0	•	•	•
P01042	TOTAL COPPER (CU) (UG/L)	14	5.07142217	0.00000000	13.99998283
P01046	DISSOLVED IRON (FE) (UG/L)	0		•	
P01045	TOTAL IRON (FE) (UG/L)	14	1362.06903948	496.99926758	2796.99536133
P01049	DISSOLVED LEAD (PB) (UG/L)	0	•	•	•
P01051	TOTAL LEAD (PB) (UG/L)	13	43.84609516	0.00000000	153.99978638
P01056	DISSOLVED MANGANESE (MN) (UG/L)	0	•	•	•
P01055	TOTAL MANGANESE (MN) (UG/L)	13	188.84588036	50.99993896	619.99902344
P71890	DISSOLVED MERCURY (HG) (UG/L)	0	•	•	•
P71900	TOTAL MERCURY (HG) (UG/L)	0	•	•	•
P01090	DISSOLVED ZINC (ZN) (UG/L)	0		•	
P01092	TOTAL ZINC (ZN) (UG/L)	13	15.76920773	0.00000000	40.99993896

Creek (Arkansas Department of Pollution Control and Ecology, 1970). Probable cause of low dissolved-oxygen concentration in the stream is forest litter in combination with low velocities.

Benthic organisms were collected in 1974 and 1975 at two locations upstream from the station near Banks (07362550), in the vicinity of Fordyce, by the Arkansas Department of Pollution Control and Ecology (1977). Sediment data are being collected at the station near Banks but are not available for publication.

Saline River

Data are given for four stations on the Saline River (tables 29 through 32). Two of these, operated by the Arkansas Department of Pollution Control and Ecology, are 07363002, west of Benton, and 07364012, near Fountain Hill (fig. 7). The other two stations, 07363080, near Tull, and 07363500, near Rye, were operated by the Geological Survey. The station near Rye has been reactivated for the present study.

The Saline River water is of good quality except for certain trace metals, which at times exceed levels recommended for drinking water. Metals exceeding recommended limits include copper, iron, lead, manganese, and zinc (tables 29 through 32).

No sediment or benthic data are available for publication, but both are being collected at station 07363500, near Rye. These data will be published in a subsequent report.

Hurricane Creek

Hurricane Creek is a tributary to the Saline River (fig. 7) and drains an area of bauxite mining. The Arkansas Department of Pollution Control and

Table 29.—Water-quality statistical summary for station 07363002, Saline River west of Benton, Ark.

P00095 SPECIFIC CONDUCTANCE (MICROMHOS) 25 110.95983887 64.99992371 149.99978638 P00400 PH (UNITS) 26 7.53845365 7.04999256 7.77999161 7.7999161 7	VARIABLE	LABEL	N	MEAN	MINIMUM VALUE	MAXIMUM VALUE
P00400	P00095	SPECIFIC CONDUCTANCE (MICROMHOS)	25	110.95983887	64.99992371	149.99978638
PODO10					7.04999256	7.79999161
P00070					6.99999237	30.99995422
P00300				13.81536671	3,99999523	49.99993896
POO310						11.89998245
P00915 DISSOLVED CALCIUM (CA) (MG/L) 6 15.99997600 9.5999569 19.9999694 P00925 DISSOLVED MAGNESIUM (MG) (MG/L) 8 2.47499681 1.4999980 3.75999523 P00927 TOTAL SODIUM (NA) (MG/L) 8 2.47499681 1.4999980 3.75999523 P00937 TOTAL POTASSIUM (K) (MG/L) 8 0.73749906 0.0999985 76.9999385 P00937 P00440 BICARRONATE (CO3) (MG/L) 8 0.00000000 0.00000000 0.00000000 P00945 DISSOLVED CHLORIDE (CL) (MG/L) 17 4.88234723 0.9999869 9.9999869 P00940 DISSOLVED CHLORIDE (CL) (MG/L) 14 4.39285231 3.4999961 5.9999332 P70300 DISSOLVED CHLORIDE (CL) (MG/L) 26 77.46413745 0.6999987 120.99983215 P00930 TOTAL FILTRABLE RESIDUE (MG/L) 26 0.20153821 0.0999998 0.82999515 P00930 TOTAL NITRATE (V) (MG/L) 26 0.20153821 0.0999998 0.82999918 P00945 DISSOLVED CARSENIC (AS) (UG/L) 0 0.00000000 0.00000000 0.00000000					0.02999996	2.58999534
P00925				15.99997600		19.99996948
P00929				3.16666295	0.99999869	4.99999523
P00937			8	2.47499681	1.49999809	3.79999542
P00445 CARRONATE (CO3) (MG/L)			8	0.73749906	0.09999985	1.39999771
P00945	P00440	BICARBONATE (HCO3) (MG/L)		64.24991989	45.99993896	76.99990845
P00940		CARBONATE (CO3) (MG/L)	8	0.00000000	0.00000000	0.00000000
P70300 DISSOLVED SOLIDS (RESIDUE AT 180 C) (MG/L) 0 0 0 0 0 0 0 0 0	P00945	DISSOLVED SULFATE (SO4) (MG/L)	17	4.88234723	0.99999869	9.99998569
P00515	P00940	DISSOLVED CHLORIDE (CL) (MG/L)	14	4.39285231	3.49999619	5.99999332
P00530 TOTAL NONFILTRABLE RESIDUE (MG/L) 25 13.31998215 2.99999619 58.99992371 P00620 TOTAL NITRATE (N) (MG/L) 26 0.20153821 0.09999985 0.82999918 P00665 TOTAL PHOSPHORUS (P) (MG/L) 26 0.02730766 0.00999999 0.14999980 P00600 TOTAL NITROGEN (N) (MG/L) 0	P70300	DISSOLVED SOLIDS (RESIDUE AT 180 C) (MG/L)	0	•	•	
P00A20 TOTAL NITRATE (N) (MG/L) 26 0.20153821 0.09999985 0.82999915 P00665 TOTAL PHOSPHORUS (P) (MG/L) 26 0.02730766 0.00999999 0.14999980 P00600 TOTAL NITROGEN (N) (MG/L) 0	P00515	TOTAL FILTRABLE RESIDUE (MG/L)		77.46413745	0.06999987	
P00665 TOTAL PHOSPHORUS (P) (MG/L) 26 0.02730766 0.00999999 0.14999980 P00600 TOTAL NITPOGEN (N) (MG/L) 0	P00530	TOTAL NONFILTRABLE RESIDUE (MG/L)	25	13.31998215	2.99999619	
P00600 TOTAL NITROGEN (N) (MG/L) 0	P00520	TOTAL NITRATE (N) (MG/L)	26	0.20153821		
P01000 DISSOLVED ARSENIC (AS) (UG/L) 0	P00665	TOTAL PHOSPHORUS (P) (MG/L)	26	0.02730766	0.00999999	0.14999980
P01002 TOTAL ARSENIC (AS) (UG/L) 17 2.99999619 2.99999619 2.99999619 P01025 DISSOLVED CADMIUM (CD) (UG/L) 0	P00500	TOTAL NITROGEN (N) (MG/L)	-	•		
P01025 DISSOLVED CADMIUM (CD) (UG/L) 0	P01000	그리지 구마를 전혀하는 그 전 그리 사람이 뭐 없는 그 가장 세계를 하는 것이라고 가장하는 것이 되었다.		•		•
P01027 TOTAL CADMIUM (CD) (UG/L) P01030 DISSOLVED CHROMIUM (CR) (UG/L) P01034 TOTAL CHROMIUM (CR) (UG/L) P01040 DISSOLVED COPPER (CU) (UG/L) P01042 TOTAL COPPER (CJ) (UG/L) P01046 DISSOLVED IRON (FE) (UG/L) P01047 TOTAL IRON (FE) (UG/L) P01048 TOTAL LEAD (PB) (UG/L) P01050 TOTAL LEAD (PB) (UG/L) P01051 TOTAL LEAD (PB) (UG/L) P01055 TOTAL MANGANESE (MN) (UG/L) P01055 TOTAL MANGANESE (MN) (UG/L) P01050 DISSOLVED MERCURY (HG) (UG/L) P01090 DISSOLVED ZINC (ZN) (UG/L) P01090 P0	P01002			2.99999619	2.99999619	2.99999519
P01030 DISSOLVED CHROMIUM (CR) (UG/L) 0	P01025			•		•
P01034 TOTAL CHROMIUM (CR) (UG/L) P01040 DISSOLVED COPPER (CU) (UG/L) P01042 TOTAL COPPER (CJ) (UG/L) P01046 DISSOLVED IRON (FE) (UG/L) P01045 TOTAL IRON (FE) (UG/L) P01049 DISSOLVED LEAD (PB) (UG/L) P01051 TOTAL LEAD (PB) (UG/L) P01056 DISSOLVED MANGANESE (MN) (UG/L) P01055 TOTAL MANGANESE (MN) (UG/L) P01056 DISSOLVED MERCURY (HG) (UG/L) P01090 DISSOLVED ZINC (ZN) (UG/L) P01090	P01027			2.94736425	0.00000000	9.99998569
P01040 DISSOLVED COPPER (CU) (UG/L) 0 0 0.00000000 999.99804668 P01046 DISSOLVED IRON (FE) (UG/L) 0 0.00000000 999.99804668 P01046 DISSOLVED IRON (FE) (UG/L) 26 526.9225295 200.99972534 1899.99682617 P01049 DISSOLVED LEAD (PB) (UG/L) 0 0.00000000 269.99951172 P01051 TOTAL LEAD (PB) (UG/L) 19 34.42100048 0.00000000 269.99951172 P01056 DISSOLVED MANGANESE (MN) (UG/L) 0 0.00000000 269.99951172 P01055 TOTAL MANGANESE (MN) (UG/L) 26 38.15379370 15.99997902 67.99990845 P71890 DISSOLVED MERCURY (HG) (UG/L) 0 0 0.00000000 269.9990845 P71900 TOTAL MERCURY (HG) (UG/L) 0 0 0.00000000 269.9990845 P71900 DISSOLVED MERCURY (HG) (UG/L) 0 0 0.0000000000000000000000000000000	P01030			•	•	•
P01042 TOTAL COPPER (CJ) (UG/L) 26 131.49979107 0.00000000 999.99804668 P01046 DISSOLVED IRON (FE) (UG/L) 0 .<	P01034			0.47368361	0.00000000	2.99999619
P01046 DISSOLVED IRON (FE) (UG/L) P01045 TOTAL IRON (FE) (UG/L) P01049 DISSOLVED LEAD (PB) (UG/L) P01051 TOTAL LEAD (PB) (UG/L) P01056 DISSOLVED MANGANESE (MN) (UG/L) P01055 TOTAL MANGANESE (MN) (UG/L) P71890 DISSOLVED MERCURY (HG) (UG/L) P71900 TOTAL MERCURY (HG) (UG/L) P01090 DISSOLVED ZINC (ZN) (UG/L) P01090 DISSOLVED ZINC (ZN) (UG/L) O	P01040		-		•	• • • • • • • • • • • • • • • • • • • •
P01045 TOTAL IRON (FE) (UG/L) P01049 DISSOLVED LEAD (PB) (UG/L) P01051 TOTAL LEAD (PB) (UG/L) P01056 DISSOLVED MANGANESE (MN) (UG/L) P01055 TOTAL MANGANESE (MN) (UG/L) P71890 DISSOLVED MERCURY (HG) (UG/L) P71900 TOTAL MERCURY (HG) (UG/L) P01090 DISSOLVED ZINC (ZN) (UG/L) 0 526.92225295 200.99972534 1899.99682617 0 34.42100048 0.00000000 269.99951172 26 38.15379370 15.99997902 67.99990845	P01042			131.49979107	0.00000000	999.99804688
P01049 DISSOLVED LEAD (PB) (UG/L) 0 P01051 TOTAL LEAD (PB) (UG/L) 19 34.42100048 0.00000000 269.99951172 P01056 DISSOLVED MANGANESE (MN) (UG/L) 0 P01055 TOTAL MANGANESE (MN) (UG/L) 26 38.15379370 15.99997902 67.99990845 P71890 DISSOLVED MERCURY (HG) (UG/L) 0 P71900 TOTAL MERCURY (HG) (UG/L) 0 P01090 DISSOLVED ZINC (ZN) (UG/L) 0					•	•
P01051 TOTAL LEAD (PB) (UG/L) 19 34.42100048 0.00000000 269.99951172 P01056 DISSOLVED MANGANESE (MN) (UG/L) 0 .	P01045			526.92225295	200.99972534	1899.99682617
P01056 DISSOLVED MANGANESE (MN) (UG/L) 0	P01049			•	•	•
P01055 TOTAL MANGANESE (MN) (UG/L) 26 38.15379370 15.99997902 67.99990845 P71890 DISSOLVED MERCURY (HG) (UG/L) 0	P01051			34.42100048	0.00000000	269.99951172
P71890 DISSOLVED MERCURY (HG) (UG/L) 0				•		•
P71900 TOTAL MERCURY (HG) (UG/L) 0	P01055	TOTAL MANGANESE (MN) (UG/L)		38.15379370	15.99997902	67.99990845
P01090 DISSOLVED ZINC (ZN) (UG/L) 0	P71890					
그는 사람이 있는 사람이 되었다면 그는 사람이 그는 사람이 되었다면 그는 사람이 그는 사람이 되었다면 그는 사람이 되었	P71900			•	•	•
P01092 TOTAL ZINC (ZN) (UG/L) 26 216.15351749 0.99999869 3799.99389648				•	•	
	P01092	TOTAL ZINC (ZN) (UG/L)	26	216.15351749	0.99999869	3799.99389648

65

VARIABLE	LABEL	N	MEAN	MINIMUM	MAXIMUM
				VALUE	VALUE
P00095	SPECIFIC CONDUCTANCE (MICROMHOS)	20	114 10000140		151 00000000
P00400	PH (UNITS)	20 19	116.19998169 7.33157790	56.00000000 6.69999981	151.00000000 7.89999962
P00010	TEMPERATURE (DEG C)	19	18.57894576	8.00000000	28.00000000
P00070	TURBIDITY (JTU)	15	11.533333238	3.00000000	38.00000000
P00300	DISSOLVED OXYGEN (MG/L)	19	7.92105062	5.09999943	10.29999924
P00310	BIOCHEMICAL OXYGEN DEMAND 5 DAY (MG/L)	19	1.39999808	0.29999965	5.39999390
P00915	DISSOLVED CALCIUM (CA) (MG/L)	4	15.75000000	14.00000000	17.00000000
P00925	DISSOLVED MAGNESIUM (MG) (MG/L)				4.00000000
P00929	TOTAL SODIUM (NA) (MG/L)	4	3.42500138	2.70000076	4.00000191
P00927	TOTAL POTASSIUM (K) (MG/L)		•	•	•
P00440	BICARBONATE (HCO3) (MG/L)	0	F/ 027/07/0	• 00000000	83.99989319
P00445	CARBONATE (CO3) (MG/L)	16	54.93748760	16.00000000	0.00000000
P00945	DISSOLVED SULFATE (SO4) (MG/L)	15	0.00000000	0.00000000	14.00000000
		4	10.12500048	5.50000191	3.40000153
P00940	DISSOLVED CHLORIDE (CL) (MG/L)	4	2.90000105	2.50000095	
P70300	DISSOLVED SOLIDS (RESIDUE AT 180 C) (MG/L)	4	78.75000000	60.00000000	92.00000000
P00515	TOTAL FILTRABLE RESIDUE (MG/L)	0	•	•	•
P00530	TOTAL NONFILTRABLE RESIDUE (MG/L)	0		• • • • • • • • • • • • • • • • • • • •	
P00620	TOTAL NITRATE (N) (MG/L)	15	0.12533341	0.01000001	0.32000029
P00665	TOTAL PHOSPHORUS (P) (MG/L)	20	0.09150005	0.01000001	0.18000013
P00600	TOTAL NITROGEN (N) (MG/L)	20	0.51650032	0.25000018	0.90000081
P01000	DISSOLVED ARSENIC (AS) (UG/L)	1	1.00000000	1.00000000	1.00000000
P01002	TOTAL ARSENIC (AS) (UG/L)	0	•	•	•
P01025	DISSOLVED CADMIUM (CD) (UG/L)	1	1.00000000	1.00000000	1.00000000
P01027	TOTAL CADMIUM (CD) (UG/L)	0	•		•
P01030	DISSOLVED CHROMIUM (CR) (UG/L)	1	0.00000000	0.00000000	0.00000000
P01034	TOTAL CHROMIUM (CR) (UG/L)	0	•		•
P01040	DISSOLVED COPPER (CU) (UG/L)	1	4.00000000	4.00000000	4.00000000
P01042	TOTAL COPPER (CU) (UG/L)	0	•	•	
P01046	DISSOLVED IRON (FE) (UG/L)	1	130.00000000	130.00000000	130.00000000
P01045	TOTAL IRON (FE) (UG/L)	0	•	•	
P01049	DISSOLVED LEAD (PB) (UG/L)	1	4.00000000	4.00000000	4.00000000
P01051	TOTAL LEAD (PB) (UG/L)	0	•		
P01056	DISSOLVED MANGANESE (MN) (UG/L)	1	80.0000000	80.00000000	80.00000000
P01055	TOTAL MANGANESE (MN) (UG/L)	0	•	•	•
P71890	DISSOLVED MERCURY (HG) (UG/L)	1	0.00000000	0.00000000	0.0000000
P71900	TOTAL MERCURY (HG) (UG/L)	0	•		
P01090	DISSOLVED ZINC (ZN) (UG/L)	1	20.00000000	20.00000000	20.00000000
P01092	TOTAL ZINC (ZN) (UG/L)	0			

Table 31.—Water-quality statistical summary for station 07363500, Saline River near Rye, Ark.

VARIABLE	LABEL	N	MEAN	MINIMUM VALUE	MAXIMUM VALUE
P00095	SPECIFIC CONDUCTANCE (MICROMHOS)	51	104.58836095	41.00003052	239.99993896
P00400	PH (UNITS)	51	7.13921711	6.10000324	7.80000305
P00010	TEMPERATURE (DEG C)	57	17.19999749	0.99999964	32.00003052
P00070	TURBIDITY (JTU)	0			•
P00300	DISSOLVED OXYGEN (MG/L)	31	8.59678296	4.69999886	12.99999905
P00310	BIOCHEMICAL OXYGEN DEMAND 5 DAY (MG/L)	0	•		•
P00915	DISSOLVED CALCIUM (CA) (MG/L)	31	8.33871952	3.80000401	14.00004768
P00925	DISSOLVED MAGNESIUM (MG) (MG/L)	31	2.28064715	0.90000033	3.50000381
P00929	TOTAL SODIUM (NA) (MG/L)	0			
P00937	TOTAL POTASSIUM (K) (MG/L)	0			
P00440	BICARBONATE (HCO3) (MG/L)	50	27.86001268	9.99999619	52.00003052
P00445	CARBONATE (CO3) (MG/L)	52	0.00000027	0.00000000	0.00000050
P00945	DISSOLVED SULFATE (SO4) (MG/L)	31	19.13550042	5.80000401	70.99998474
P00940	DISSOLVED CHLORIDE (CL) (MG/L)	31	2.97419561	0.89999998	4.20000362
P70300	DISSOLVED SOLIDS (RESIDUE AT 180 C) (MG/L)	31	71.32259000	25.00000000	153.99996948
P00515	TOTAL FILTRABLE RESIDUE (MG/L)	0	•		
P00530	TOTAL NONFILTRABLE RESIDUE (MG/L)	0		•	•
P00620	TOTAL NITRATE (N) (MG/L)	0	•	•	•
P00665	TOTAL PHOSPHORUS (P) (MG/L)	11	0.02636362	0.00000000	0.08999991
P00500	TOTAL NITROGEN (N) (MG/L)	0			
P01000	DISSOLVED ARSENIC (AS) (UG/L)	0	•		•
200109	TOTAL ARSENIC (AS) (UG/L)	0	•	•	•
P01025	DISSOLVED CADMIUM (CD) (UG/L)	0		•	•
P01027	TOTAL CADMIUM (CD) (UG/L)	0	•	•	•
P01030	DISSOLVED CHROMIUM (CR) (UG/L)	5	2.59999943	0.00000000	6.99999905
P01034	TOTAL CHROMIUM (CR) (UG/L)	2	4.99999571	2.99999905	6.99999237
P01040	DISSOLVED COPPER (CU) (UG/L)	5	3.19999886	0.00000000	5.99999905
P01042	TOTAL COPPER (CU) (UG/L)	0		•	•
P01046	DISSOLVED IRON (FE) (UG/L)	13	390.15368740	0.00000000	909.99975586
P01045	TOTAL IRON (FE) (UG/L)	0		•	•
P01049	DISSOLVED LEAD (PB) (UG/L)	5	2.79999936	0.00000000	6.99999905
P01051	TOTAL LEAD (PB) (UG/L)	0		•	
P01056	DISSOLVED MANGANESE (MN) (UG/L)	15	80.33331267	4.99999523	169.99995422
P01055	TOTAL MANGANESE (MN) (UG/L)	10	68.00011149	0.00000050	210.00045776
P71890	DISSOLVED MERCURY (HG) (UG/L)	1	0.50000000	0.50000000	0.50000000
P71900	TOTAL MERCURY (HG) (UG/L)	3	1.36666640	0.50000000	2.79999924
P01090	DISSOLVED ZINC (ZN) (UG/L)	. 4	11.74999595	9.99999619	15.99999619
P01092	TOTAL ZINC (ZN) (UG/L)	0		•	•

Table 32. -Water-quality statistical summary for station 07364012, Saline River near Fountain Hill, Ark.

VARIABLE	LABEL	N	MEAN	.MINIMUM VALUE	MAXIMUM VALUE
P00095	SPECIFIC CONDUCTANCE (MICROMHOS)	52	112.90375137	34.99995422	544.00000000
P00400	PH (UNITS)	53	6.97565500	5.79999352	7.70000362
P00010	TEMPERATURE (DEG C)	51	18.09801919	0.00000000	34.00000000
P00070	TURBIDITY (JTU)	43	20.04648457	7.99999142	74.99990845
P00300	DISSOLVED OXYGEN (MG/L)	52	7.90480148	4.19999504	12.00000572
P00310	BIOCHEMICAL OXYGEN DEMAND 5 DAY (MG/L)	51	1.37921431	0.27999967	3.19999981
P00915	DISSOLVED CALCIUM (CA) (MG/L)	12	9.41665888	2.99999619	22.00000000
P00925	DISSOLVED MAGNESIUM (MG) (MG/L)	12	3.33333049	0.99999869	6.99999237
P00929	TOTAL SUDIUM (NA) (MG/L)	9	14.63332950	1.39999771	80.00000000
P00937	TOTAL POTASSIUM (K) (MG/L)	9	1.82222070	1.09999847	3.00000000
P00440	BICARBONATE (HCO3) (MG/L)	9	28.11108292	8.99999046	45.00000000
P00445	CARBONATE (CO3) (MG/L)	В	0.00000000	0.00000000	0.00000000
P00945	DISSOLVED SULFATE (SO4) (MG/L)	31	15.79353305	3.49944523	47.99993896
P00940	DISSOLVED CHLORIDE (CL) (MG/L)	43	14.38371583	2.49999714	140.00000000
P00515	TOTAL FILTRABLE RESIDUE (MG/L)	40	100.12492294	51.99993896	325.00000000
P00530	TOTAL NONFILTRABLE RESIDUE (MG/L)	39	20.66664478	4.00000000	88.99989319
P00620	TOTAL NITRATE (N) (MG/L)	38	0.28578921	0.00999999	1.09999847
P00665	TOTAL PHOSPHORUS (P) (MG/L)	39	0.05333329	0.00999999	0.14999980
P01002	TOTAL ARSENIC (AS) (UG/L)	24	4.29166106	2.99999619	18.99996948
P01027	TOTAL CADMIUM (CD) (UG/L)	27	9.18517323	0.00000000	110.99980164
P01034	TOTAL CHROMIUM (CR) (UG/L)	24	7.87499768	0.00000000	99.99983215
P01042	TOTAL COPPER (CU) (UG/L)	36	21.19443369	0.00000000	390.00000000
P01045	TOTAL IRON (FE) (UG/L)	39	1064.17800356	20.00000000	3300.00000000
P01051	TOTAL LEAD (PB) (UG/L)	38	66.57885986	0.00000000	269.99951172
P01055	TOTAL MANGANESE (MN) (UG/L)	39	225.66640961	64.99992371	510.00000000
P71900	TOTAL MERCURY (HG) (UG/L)	4	0.59999974	0.09999985	1.50000000
P01092	TOTAL ZINC (ZN) (UG/L)	36	18.24998429	0.00000000	90.00000000

Ecology has operated a water-quality station (07363270) near Sardis since 1974. The Geological Survey operated a water-quality station (07363300) near Sheridan from October 1949 to September 1954 and from October 1967 to September 1972. This station has been reactivated for this study.

As might be expected of a stream draining a mining area, high concentrations of some trace metals have been reported (tables 33 and 34). Metals in excess of recommended limits include cadmium, iron, lead, and manganese. Sulfates sometime exceed standards (table 33).

No sediment and benthic data are available for publication. However, both sediment and benthic data are being collected at the station near Sheridan. Early indications are that benthic communities are very small (E.E. Morris, oral commun., 1978), probably as a result of upstream mining activities. Both sediment and benthic data will be published in a subsequent report.

Bayou de Loutre

Statistical data are given for a water-quality station (07364600) on Bayou de Loutre near El Dorado (table 35). The station has been operated by the Arkansas Department of Pollution Control and Ecology since October 1970. This stream drains an area of oil-field activities, and the water quality of the stream reflects those activities. High chloride concentrations resulting from oil-field brines exceed limits for human consumption. Of metals present, chromium, iron, lead, and manganese exceed limits. Dissolved oxygen is sometimes less than the State standard of 5.0 mg/L, probably as a result of low flows, municipal and industrial wastes (Arkansas Department of Pollution Control and Ecology, 1975), respiration of aquatic plants, and oxygen demand of the breakdown of organic detritus from forest litter. No sediment or benthic data are available for this stream.

VARIABLE	LABEL	N	MEAN	MINIMUM VALUE	MAXIMUM VALUE
P00095	SPECIFIC CONDUCTANCE (MICROMHOS)	22	500.99745269	2.95999622	952.9987793
P00400	PH (UNITS)	23	5.34999408	3.02999592	8.8299904
P00010	TEMPERATURE (DEG C)	23	19.08692837	7.99999142	27.9999542
P00070	TURBIDITY (JTU)	23	29.76517661	3.99999523	189.9997559
P00300	DISSOLVED OXYGEN (MG/L)	23	8.93564162	6.01999378	17.9999695
P00310	BIOCHEMICAL OXYGEN DEMAND 5 DAY (MG/L)	22	1.01499875	0.38999957	2.1799974
P00915	DISSOLVED CALCIUM (CA) (MG/L)	5	22.59997025	8.99999046	45.9999390
P00925	DISSOLVED MAGNESIUM (MG) (MG/L)	5	7.99999123	4.99999523	13.9999828
P00929	TOTAL SODIUM (NA) (MG/L)	7	38.62852015	13.99998283	57.8999329
P00937	TOTAL POTASSIUM (K) (MG/L)	7	2.74285385	1.49999809	3.9999952
P00440	BICARBONATE (HCO3) (MG/L)	7	22.99996649	0.00000000	116.9998322
P00445	CARBONATE (CO3) (MG/L)	7	1.42856938	0.00000000	9.9999857
P00945	DISSOLVED SULFATE (SO4) (MG/L)	15	235.59963385	9.99998569	499.9992676
P00940	DISSOLVED CHLORIDE (CL) (MG/L)	12	5.70832713	3.99999523	6.9999924
P70300	DISSOLVED SOLIDS (RESIDUE AT 180 C) (MG/L)	0			•
200515	TOTAL FILTRABLE RESIDUE (MG/L)	25	397.04485807	40.99993896	988.9985352
P00530	TOTAL NONFILTRABLE RESIDUE (MG/L)	22	51.09083674	6.99999237	302.9995117
P00620	TOTAL NITRATE (N) (MG/L)	23	0.37869520	0.09999985	1.2099981
P00665	TOTAL PHOSPHORUS (P) (MG/L)	23	0.03347822	0.00999999	0.1199998
P00600	TOTAL NITROGEN (N) (MG/L)	0			
P01000	DISSOLVED ARSENIC (AS) (UG/L)	0	•		•
P01002	TOTAL ARSENIC (AS) (UG/L)	15	2.99999619	2.99999619	2.9999962
P01025	DISSOLVED CADMIUM (CD) (UG/L)	0			
P01027	TOTAL CADMIUM (CD) (UG/L)	22	15.04543390	0.00000000	59.9999237
P01030	DISSOLVED CHROMIUM (CR) (UG/L)	0			•
P01034	TOTAL CHROMIUM (CR) (UG/L)	16	0.37499952	0.00000000	2.9999962
P01040	DISSOLVED COPPER (CU) (UG/L)	0			
P01042	TOTAL COPPER (CU) (UG/L)	23	11.08694042	0.00000000	28.9999542
P01046	DISSOLVED IRON (FE) (UG/L)	0	•	•	•
P01045	TOTAL IRON (FE) (UG/L)	23	5267.12026579	519.99926758	24049.9492188
P01049	DISSOLVED LEAD (PB) (UG/L)	0			•
P01051	TOTAL LEAD (PB) (UG/L)	16	102.37484086	0.00000000	398.9992676
P01056	DISSOLVED MANGANESE (MN) (UG/L)	0	•		•
P01055	TOTAL MANGANESE (MN) (UG/L)	22	2144.63238248	109.99981689	6019.9882813
P71890	DISSOLVED MERCURY (HG) (UG/L)	0			•
P71900	TOTAL MERCURY (HG) (UG/L)	0	•	•	•
P01090	DISSOLVED ZINC (ZN) (UG/L)	0	•	•	•
P01092	TOTAL ZINC (ZN) (UG/L)	22	137.99980311	9.99998569	609.9990234

VARIABLE	LABEL	N	MEAN	MINIMUM VALUE	MAXIMUM VALUE
P00095	SPECIFIC CONDUCTANCE (MICROMHOS)	64	530.35959411	90.99989319	1719.9997559
P00400	PH (UNITS)	58	6.49655298	4.29999924	8.2000036
P00010	TEMPERATURE (DEG C)	54	16.03148100	2.49999714	29.9999847
P00070	TURBIDITY (JTU)	0			
F00300	DISSOLVED OXYGEN (MG/L)	34	8.07941821	5.00000000	13.0000477
P00310	BIOCHEMICAL OXYGEN DEMAND 5 DAY (MG/L)	10	1.38999971	0.00000000	5.0000000
P00915	DISSOLVED CALCIUM (CA) (MG/L)	32	25.18751186	6.20000362	86.9999847
P00925	DISSOLVED MAGNESIUM (MG) (MG/L)	32	4.99687630	1.10000420	16.9999847
P00929	TOTAL SODIUM (NA) (MG/L)	0			
P00937	TOTAL POTASSIUM (K) (MG/L)	0	•		
P00440	BICARBONATE (HCO3) (MG/L)	55	32.81821555	0.00000000	156.0004578
P00445	CARBONATE (CO3) (MG/L)	55	0.00000023	0.00000000	0.0000005
P00945	DISSOLVED SULFATE (SO4) (MG/L)	36	207.94449192	22.00003052	859.9997559
P00940	DISSOLVED CHLORIDE (CL) (MG/L)	36	5.60555975	1.19999886	14.0000477
P70300	DISSOLVED SOLIDS (RESIDUE AT 180 C) (MG/L)	32	360.43759394	62.00003052	1239.9995117
P00515	TOTAL FILTRABLE RESIDUE (MG/L)	0			•
200530	TOTAL NONFILTRABLE RESIDUE (MG/L)	0	•	•	
P00620	TOTAL NITRATE (N) (MG/L)	0	•	•	
P00665	TOTAL PHOSPHORUS (P) (MG/L)	10	0.01899999	0.00000000	0.0699999
P00600	TOTAL NITROGEN (N) (MG/L)	0	•		•
P01000	DISSOLVED ARSENIC (AS) (UG/L)	3	9.99999619	9.99999619	9.9999962
P01002	TOTAL ARSENIC (AS) (UG/L)	0		•	
P01025	DISSOLVED CADMIUM (CD) (UG/L)	7	0.71428512	0.00000000	1.9999990
P01027	TOTAL CADMIUM (CD) (UG/L)	0	•	•	•
P01030	DISSOLVED CHROMIUM (CR) (UG/L)	5	5.19999886	0.00000000	9.9999962
P01034	TOTAL CHROMIUM (CR) (UG/L)	0	•	•	•
P01040	DISSOLVED COPPER (CU) (UG/L)	9	5.77777534	1.99999905	19.9999847
P01042	TOTAL COPPER (CU) (UG/L)	0	•	•	•
P01046	DISSOLVED IRON (FE) (UG/L)	19	90.57892227	0.00000000	205.9999695
P01045	TOTAL IRON (FE) (UG/L)	0	•	•	
P01049	DISSOLVED LEAD (PB) (UG/L)	10	3.59999905	0.00000000	9.9999962
P01051	TOTAL LEAD (PB) (UG/L)	0	•		
P01056	DISSOLVED MANGANESE (MN) (UG/L)	19	2893.15667885	0.00000000	15999.9960938
P01055	TOTAL MANGANESE (MN) (UG/L)	20	181.18521919	000000050	610.0002441
P71890	DISSOLVED MERCURY (HG) (UG/L)	6	1.18333284	0.49999952	3.9999990
P71900	TOTAL MERCURY (HG) (UG/L)	1	0.5000000	0.50000000	0.5000000
P01090	DISSOLVED ZINC (ZN) (UG/L)	10	51.71998888	0.00000000	250.0000000
P01092	TOTAL ZINC (ZN) (UG/L)	0	•		•

Table 35. - Water-quality statistical summary for station 07364600, Bayou de Loutre near El Dorado, Ark.

VARIABLE	LABEL	N	MEAN	MINIMUM	MUMIXAM
				VALUE	VALUE
P00095	SPECIFIC CONDUCTANCE (MICROMHOS)	46	2963.42935313	406.99926758	7499.98828125
P00400	PH (UNITS)	47	7.03892870	6.13999367	8.09999084
P00010	TEMPERATURE (DEG C)	46	19.74997029	4.99999523	30.99995422
P00070	TURBIDITY (JTU)	47	12.34253737	2.69999695	29.99995422
P00300	DISSOLVED OXYGEN (MG/L)	46	6.46042745	2.34999657	13.69998169
P00310	BIOCHEMICAL OXYGEN DEMAND 5 DAY (MG/L)	47	2.95829431	0.82999915	12.99998474
P00915	DISSOLVED CALCIUM (CA) (MG/L)	11	93.81804171	18.99996948	269.99951172
P00925	DISSOLVED MAGNESIUM (MG) (MG/L)	11	18.09088343	4.99999523	38.99995422
P00929	TOTAL SODIUM (NA) (MG/L)	8	330.46198845	64.49992371	609.99902344
P00937	TOTAL POTASSIUM (K) (MG/L)	8	14.61248326	1.49999809	52.99993896
P00440	BICARBONATE (HCO3) (MG/L)	8	57.37491584	13.99998283	109.99981689
P00445	CARBONATE (CO3) (MG/L)	8	0.00000000	0.00000000	0.0000000
P00945	DISSOLVED SULFATE (SO4) (MG/L)	24	38.06661459	8.59999084	99.99983215
P00940	DISSOLVED CHLORIDE (CL) (MG/L)	35	1051.55539987	18.99996948	2499.99609375
P70300	DISSOLVED SOLIDS (RESIDUE AT 180 C) (MG/L)	0		•	
P00515	TOTAL FILTRABLE RESIDUE (MG/L)	34	1830.14382037	280.99951172	4549.99218750
P00530	TOTAL NONFILTRABLE RESIDUE (MG/L)	34	49.47051954	9.99998569	335.99951172
P00620	TOTAL NITRATE (N) (MG/L)	34	0.61588161	0.00999999	1.39999771
P00665	TOTAL PHOSPHORUS (P) (MG/L)	34	0.17117625	0.02999996	0.77999872
P00600	TOTAL NITROGEN (N) (MG/L)	0	•		•
P01000	DISSOLVED ARSENIC (AS) (UG/L)	0	•	•	•
P01002	TOTAL ARSENIC (AS) (UG/L)	24	5.70832618	2.99999619	44.99993896
P01025	DISSOLVED CADMIUM (CD) (UG/L)	0	•	•	•
P01027	TOTAL CADMIUM (CD) (UG/L)	32	11.21873467	0.00000000	25.99996948
P01030	DISSOLVED CHROMIUM (CR) (UG/L)	0	•	•	•
P01034	TOTAL CHROMIUM (CR) (UG/L)	25	5.47999104	0.00000000	99.99983215
P01040	DISSOLVED COPPER (CU) (UG/L)	0	•	•	•
P01042	TOTAL COPPER (CU) (UG/L)	32	10.65623479	0.00000000	42,99993896
P01046	DISSOLVED IRON (FE) (UG/L)	1	374.99951172	374.99951172	374.99951172
P01045	TOTAL IRON (FE) (UG/L)	33	1052.93764796	264.99951172	2814.99536133
P01049	DISSOLVED LEAD (PB) (UG/L)	0			
P01051	TOTAL LEAD (PB) (UG/L)	33	58.72719476	0.00000000	255.99966431
P01056	DISSOLVED MANGANESE (MN) (UG/L)	0			
P01055	TOTAL MANGANESE (MN) (UG/L)	34	1008.29238712	129.99983215	2659.99536133
P71890	DISSOLVED MERCURY (HG) (UG/L)	0			
P71900	TOTAL MERCURY (HG) (UG/L)	4	0.40749955	0.09999985	0.70999926
P01090	DISSOLVED ZINC (ZN) (UG/L)	0	•	•	•
P01092	TOTAL ZINC (ZN) (UG/L)	34	24.61761208	0.00000000	49.99993896

Cornie Bayou

Station 07365800 (fig. 7), Cornie Bayou near the town of Three Creeks, was operated by the Arkansas Department of Pollution Control and Ecology from February 1968 to April 1974. Table 36 gives the statistical data for this station. Part of the drainage area of this stream is comprised of oil fields and is subject to degradation by oil-field wastes. Data for station 07365800 reflect some degradation from oil fields. The maximum chloride concentration of 240 mg/L (table 36), which is near the recommended maximum allowed for drinking water, probably resulted from oil-field brine. Arsenic, chromium, iron, lead, and manganese concentrations have exceeded standards. Dissolved-oxygen concentration is sometimes less than the 5.0 mg/L minimum recommended by State water-quality standards. No benthic or sediment data are available for this stream.

Three Creeks

Table 37 gives statistical data for a water-quality station (07365900), on Three Creeks, near the town of Three Creeks. This station was operated by the Arkansas Department of Pollution Control and Ecology from February 1968 to April 1974, and data show the stream to be degraded by oil-field wastes (Arkansas Department of Pollution Control and Ecology, 1975). However, two samples collected during the summer of 1974, at the Arkansas-Louisiana State boundary, indicate some improvement in water quality (Arkansas Department of Pollution Control and Ecology, 1975).

At the station near Three Creeks, dissolved oxygen, chloride, chromium, iron, lead, manganese, and zinc concentrations (table 37) are in violation of one or more of the standards shown in table 11.

A varied benthic community was reported for this stream at the Arkansas-Louisiana State boundary for the summer of 1974 (Arkansas Department of Pollution Control and Ecology, 1975). No sediment data are available.

VARIABLE	LAREL	N	MEAN	MINIMUM	MAXIMUM
				VALUE	VALUE
P00095	SPECIFIC CONDUCTANCE (MICROMHOS)	19	456.10460141	154.99977112	759.99902344
P00400	PH (UNITS)	14	5.75570822	4.77999496	6.69999313
P00010	TEMPERATURE (DEG C)	35	15.64283412	2.49999714	26.99995422
P00070	TURRIDITY (JTU)	14	17.69283356	3.79999542	39.99995422
P00300	DISSOLVED OXYGEN (MG/L)	14	7.05356353	3.39999580	10.29998684
P00310	BIOCHEMICAL OXYGEN DEMAND 5 DAY (MG/L)	13	1.68999786	0.50999945	8.35999107
P00915	DISSOLVED CALCIUM (CA) (MG/L)	4	24.24996495	1.99999714	
P00925	DISSOLVED MAGNESIUM (MG) (MG/L)	4	5.74999356	1.99999714	6.99999237
P00929	TOTAL SODIUM (NA) (MG/L)	0	•		•
P00937	TOTAL POTASSIUM (K) (MG/L)	0			
P00440	BICARBONATE (HCO3) (MG/L)	0			
P00445	CARBONATE (CO3) (MG/L)	0			
P00945	DISSOLVED SULFATE (SO4) (MG/L)	6	5.98332707	3.89999580	7.99999142
P00940	DISSOLVED CHLORIDE (CL) (MG/L)	19	145.68400734	33.99995422	239.99964905
P70300	DISSOLVED SOLIDS (RESIDUE AT 180 C) (MG/L)	0	143.00400734	33.77773422	237077707703
P00515	TOTAL FILTRABLE RESIDUE (MG/L)	6	370.83274587	91.99989319	582.99902344
P00530	TOTAL NONFILTRABLE RESIDUE (MG/L)	6	31.66662312	10.99998283	50.99993896
P00520	TOTAL NITRATE (N) (MG/L)	6	0.52666604	0.09999985	2.29999733
P00565	TOTAL PHOSPHORUS (P) (MG/L)	6	0.03999995	0.00999999	0.06999987
P00600	TOTAL NITROGEN (N) (MG/L)	0	•	•	•
P01000	DISSOLVED ARSENIC (AS) (UG/L)	0			
P01002	TOTAL ARSENIC (AS) (UG/L)	6	10.16665252	2.99999619	28.99995422
P01025	DISSOLVED CADMIUM (CD) (UG/L)	0	10010003232		
P01027	TOTAL CADMIUM (CD) (UG/L)	6	4.66666158	0.00000000	7.99999142
P01030	DISSOLVED CHROMIUM (CR) (UG/L)	0	4.00000130		
P01034	TOTAL CHROMIUM (CR) (UG/L)	6	25.83329217	0.00000000	99.99983215
P01040	DISSOLVED COPPER (CU) (UG/L)	0	23.03327211	-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
P01042	TOTAL COPPER (CU) (UG/L)	6	13.99998124	0.00000000	32.99995422
P01046	DISSOLVED IRON (FE) (UG/L)	1	374.99951172	374.99951172	374.99951172
P01045	TOTAL IRON (FE) (UG/L)	6	1118.49808757	609.99902344	1699.99682617
P01049	DISSOLVED LEAD (PB) (UG/L)	0	1110047000737	007077702344	1077177032017
P01051	TOTAL LEAD (PB) (UG/L)	6	116.33316215	3.99999523	214.99971008
P01056	DISSOLVED MANGANESE (MN) (UG/L)	0	110.55510215	3.77777523	214.77771000
P01055	TOTAL MANGANESE (MN) (UG/L)	6	704.99902344	399.99926758	909.99877930
P71890	DISSOLVED MERCURY (HG) (UG/L)	0	104677702344	377677720130	,0,0,1,011,30
P71900	TOTAL MERCURY (HG) (UG/L)	2	0.24499971	0.17999977	. 0.30999964
P01090	DISSOLVED ZINC (ZN) (UG/L)	0	0.664437311	0.11333311	. 0.30777704
P01092	TOTAL ZINC (ZN) (UG/L)	5	24.59996643	19.99996948	28.99995422
101035	TOTAL ZING (ZN) (OG/L)	3	24.57770043	17.77770940	20077773422

Table 37.—Water-quality statistical summary for station 07365900, Three Creeks near Three Creeks, Ark.

VARIABLE	LABEL	N	MEAN	MINIMUM VALUE	MAXIMUM VALUE
P00095	SPECIFIC CONDUCTANCE (MICROMHOS)	21	551.47534688	154.99977112	1073.99755859
P00400	PH (UNITS)	16	6.11686891	5.29999447	8.09999943
P00010	TEMPERATURE (DEG C)	21	15.85711970	3.99999523	29.49995422
P00070	TURBIDITY (JTU)	16	19.24372327	4.69999504	44.99993896
P00300	DISSOLVED OXYGEN (MG/L)	16	7.30374110	3.64999580	10.59998322
P00310	BIOCHEMICAL OXYGEN DEMAND 5 DAY (MG/L)	16	1.57187315	0.19999975	6.29999352
P00915	DISSOLVED CALCIUM (CA) (MG/L)	5	37.39996490	6.99999237	53.00000000
P00925	DISSOLVED MAGNESIUM (MG) (MG/L)	5	9.99999084	2.99999619	17.00000000
P00929	TOTAL SODIUM (NA) (MG/L)	0			•
P00937	TOTAL POTASSIUM (K) (MG/L)	0			
P00440	BICARBONATE (HCO3) (MG/L)	2	237.49983978	211.99967957	263.00000000
P00445	CARBONATE (CO3) (MG/L)	2	0.00000000	0.00000000	0.00000000
P00945	DISSOLVED SULFATE (SO4) (MG/L)	7	8.68570764	4.99999523	17.00000000
P00940	DISSOLVED CHLORIDE (CL) (MG/L)	20	322.79948959	17.00000000	3399.99438477
P70300	DISSOLVED SOLIDS (RESIDUE AT 180 C) (MG/L)	1	266.00000000	266.00000000	266.00000000
P00515	TOTAL FILTRABLE RESIDUE (MG/L)	6	431.33266703	70.99990845	642.99902344
P00530	TOTAL NONFILTRABLE RESIDUE (MG/L)	6	42.33327230	6.99999237	109.99981689
P00620	TOTAL NITRATE (N) (MG/L)	6	0.17666644	0.09999985	0.29999965
P00665	TOTAL PHOSPHORUS (P) (MG/L)	7	0.06285711	0.01999998	0.18000013
P00600	TOTAL NITROGEN (N) (MG/L)	1	1.30000019	1.30000019	1.30000019
P01000	DISSOLVED ARSENIC (AS) (UG/L)	0		•	•
P01002	TOTAL ARSENIC (AS) (UG/L) .	6	3.66666222	2.99999619	6.99999237
P01025	DISSOLVED CADMIUM (CD) (UG/L)	0		•	
P01027	TOTAL CADMIUM (CD) (UG/L)	6	6.16665999	0.00000000	8.99999046
P01030	DISSOLVED CHROMIUM (CR) (UG/L)	0	•	•	
P01034	TOTAL CHROMIUM (CR) (UG/L)	6	25.83329217	0.00000000	99.99983215
P01040	DISSOLVED COPPER (CU) (UG/L)	0	•	•	•
P01042	TOTAL COPPER (CU) (UG/L)	6	7.83332364	0.00000000	12.99998474
P01046	DISSOLVED IRON (FE) (UG/L)	1	449.99926758	449.99926758	449.99926758
P01045	TOTAL IRON (FE) (UG/L)	6	973.16499837	399.99926758	1919.99658203
P01049	DISSOLVED LEAD (PB) (UG/L)	0	•		•
P01051	TOTAL LEAD (PB) (UG/L)	6	131.33311717	0.00000000	391.99926758
P01056	DISSOLVED MANGANESE (MN) (UG/L)	0		•	•
P01055	TOTAL MANGANESE (MN) (UG/L)	6	966.83164978	229.99966431	1969.99658203
P71890	DISSOLVED MERCURY (HG) (UG/L)	0	•	•	
P71900	TOTAL MERCURY (HG) (UG/L)	4	0.28499967	0.09999985	0.47999948
P01090	DISSOLVED ZINC (ZN) (UG/L)	0		•	
P01092	TOTAL ZINC (ZN) (UG/L)	6	224.33289083	16.99996948	1199.99755859

Ground-Water Occurrence and Quality

The geologic column in south Arkansas is summarized in table 38. Lignite occurs in Tertiary deposits of Eocene age. "Arkansas lignite is found principally in strata of Eocene age. It is most abundant in strata of the Wilcox Group and successively less abundant in the overlying Claiborne and Jackson Groups" (Stroud and others, 1969). The Eocene deposits also contain aquifers that are important sources of water supply both locally and regionally. Total ground-water usage in the study area was 422 Mgal/d in 1975 (Halberg, 1975).

Much of the definition of the geologic units in the subsurface is based on interpretation of electric logs of test holes drilled for oil and gas exploration. An example of such an electric log is shown in figure 8. The geologic units have been correlated throughout the Coastal Plain of Arkansas and in parts of adjacent States in regional hydrologic studies such as U.S. Geological Survey Professional Papers 448 and 569.

The stratigraphic relationships of the Tertiary units in the project area are shown by five geologic cross sections located as shown in figure 9. The cross sections are shown in figure 10, sheets 1 through 4. Table 39 contains information on the test holes and wells used to define the cross sections.

Most of the aquifers that yield freshwater in the study area are part of, or lie above, the Eocene Series. The exceptions are the Clayton Formation of Paleocene age and the Nacatoch Sand of Cretaceous age. These two aquifers yield freshwater within small areas in the project area. The geologic units below the Nacatoch Sand do not contain freshwater in the project area.

Table 38.—Generalized geologic column in the lignite area of southern Arkansas

System	Series	Group	Formation	Lignite occurrence			
	Holocene		Townson and stream denocits	Lignite hade absent			
Quaternary	Pleistocene		Terrace and stream deposits	Lignite beds absent			
		Jackson	Undifferentiated				
Tertiary	Eocene	Claiborne	Cockfield Formation Cook Mountain Formation Sparta Sand Cane River Formation Carrizo Sand	Contains lignite beds			
		Wilcox	Undifferentiated				
	Paleocene	Midway	Porters Creek Clay Clayton Formation	Lignite beds absent			
Cretaceous	Upper Cretaceous		Arkadelphia Marl Nacatoch Sand Saratoga Chalk Marlbrook Marl Annona Chalk Ozan Formation Brownstown Marl Tokio Formation Woodbine Formation	Lignite beds in Tokio Formation only			

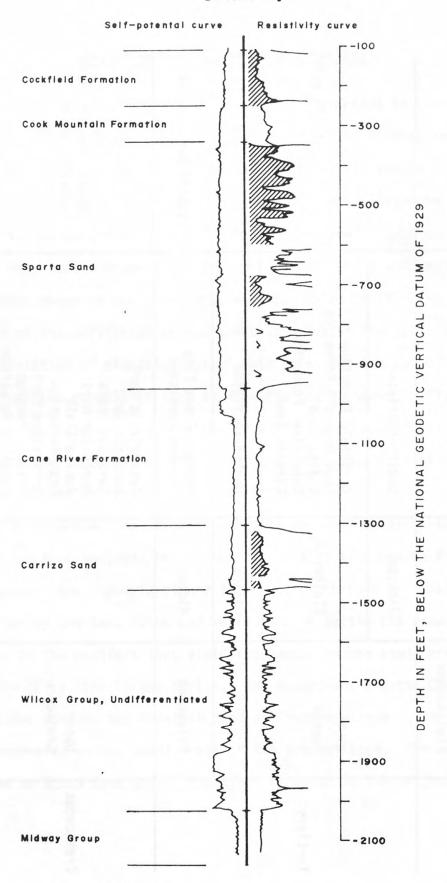


Figure 8.—Composite example of an electric log.

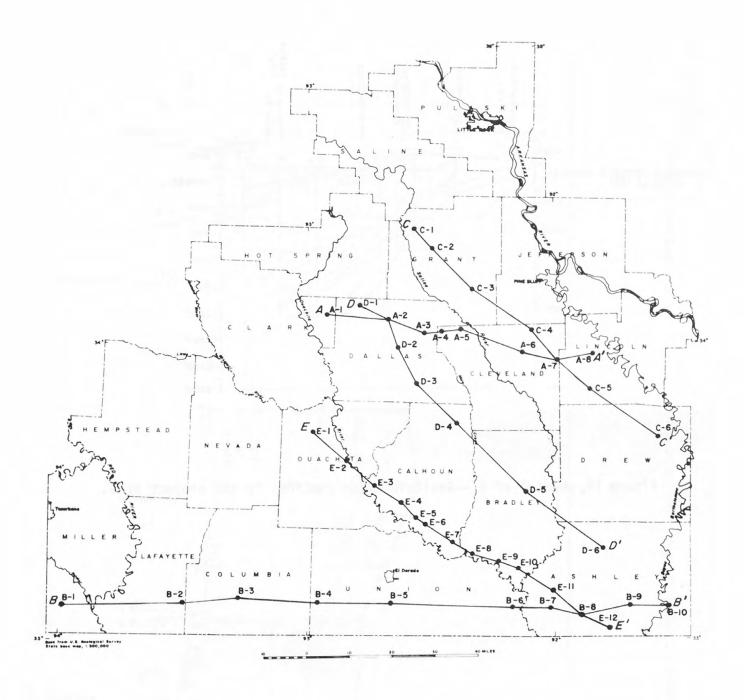


Figure 9. —Locations of geologic cross sections.

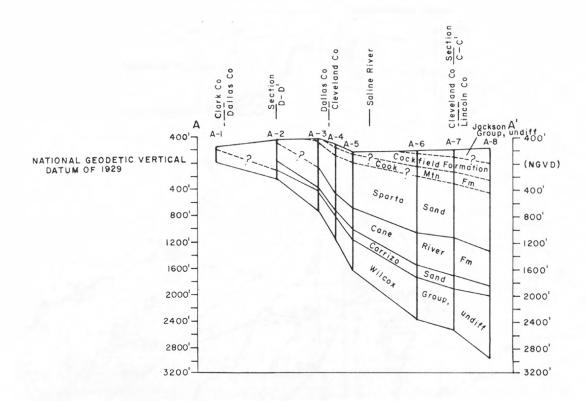


Figure 10, sheet 1 of 4.—Geologic cross sections in the project area.

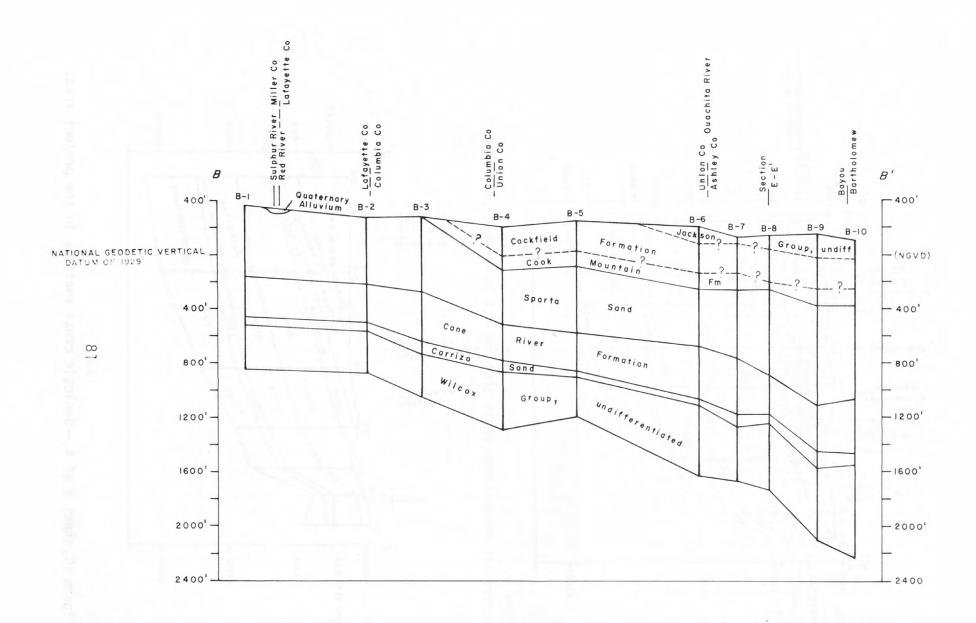


Figure 10, sheet 2 of 4.—Geologic cross sections in the project area.

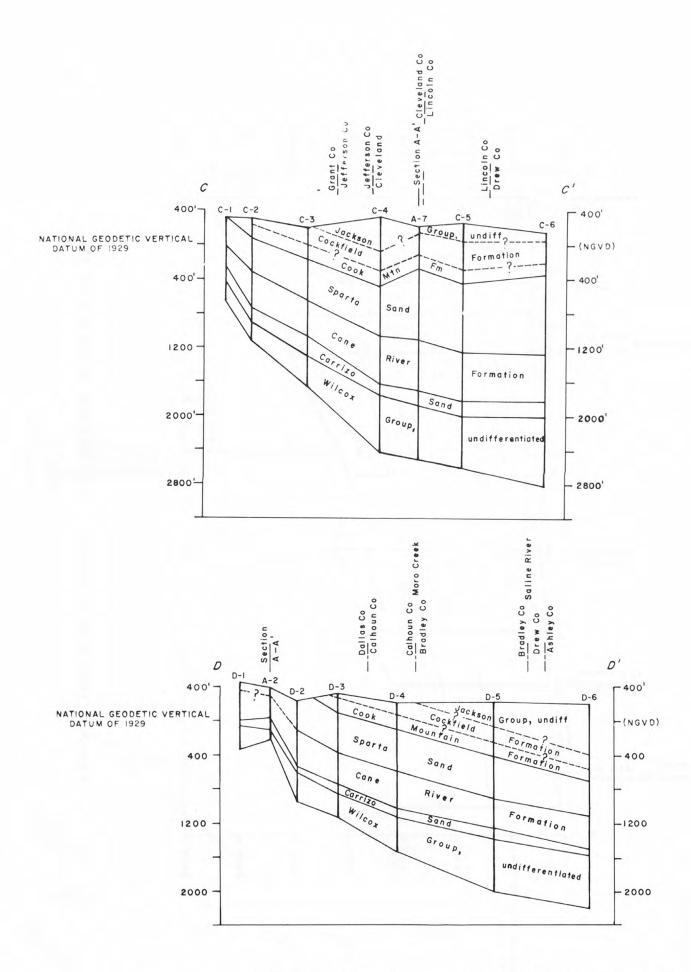


Figure 10, sheet 3 of 4.—Geologic cross sections in the project area.

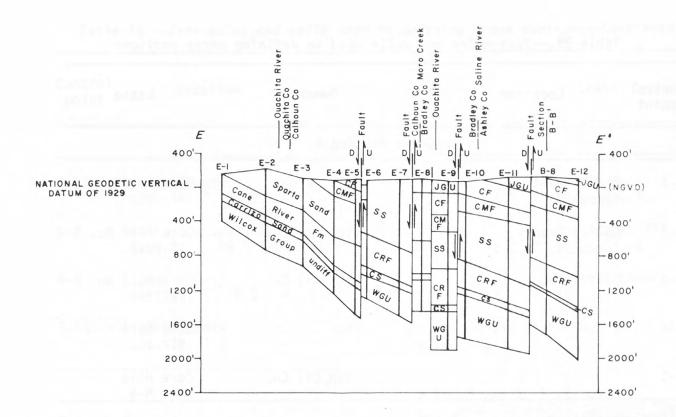


Figure 10, sheet 4 of 4.—Geologic cross sections in the project area.

Table 39.—Test holes and wells used in defining cross sections

Control point	Location	Owner	Lease				
	Cross s	ection A					
A-1	Clark County, sec. 27, T. 7 S., R. 18 W.	J. F. Stone	Hunnicut No. 1.				
A-2	Dallas County, sec. 34, T. 7 S., R. 17 W.	Lion Oil Co.	Core Hole No. 12-PW-7.				
A-3	Dallas County, sec. 31, T. 7 S., R. 15 W.	Lion Oil Co.	Core Hole No. PW21.				
A-4	Cleveland County, sec. 7, T. 8 S., R. 13 W.	Lion Oil Co.	Core Hole No. 8-F-1.				
A-5	Cleveland County, sec. 1, T. 8 S., R. 13 W.	Lion Oil Co.	Core Hole No. M-6.				
A-6	Cleveland County, sec. 3, T. 8 S., R. 13 W.	W. M. Coates	J. L. Moore No. 1.				
A-7	Cleveland County, sec. 13, T. 9 S., R. 9 W.	Desha Basin Corp.	E. A. Merril No. 1.				
A-8	Lincoln County, sec. 5, T. 9 S., R. 9 W.	William L. Durham	Tarner No. 1.				
	Cross s	section B					
B-1	Miller County, sec. 11, T. 19 S., R. 28 W.	Arkla Oil Co.	R. T. Dodd No. 1				
B-2	Lafayette County, sec. 4, T. 19 S., R. 23 W.	McAlester Fuel Co.	Cora Jeffus No. 1.				
B-3	Columbia County, sec. 22, T. 18 S., R. 21 W.	Crow Drilling Co.	Chaffin No. 1.				
B-4	Union County, sec. 24, T. 18 S., R. 18 W.	Lion Oil Co.	Lofton No. 1.				
B-5	Union County, sec. 33, T. 18 S., R. 15 W.	C. H. Murphy, Jr.	Cates No. C-1.				
B-6	Union County, sec. 31, T. 18 S., R. 10 W.	McAlester Fuel Co.	Crossett Lumber Co. No. H-1.				

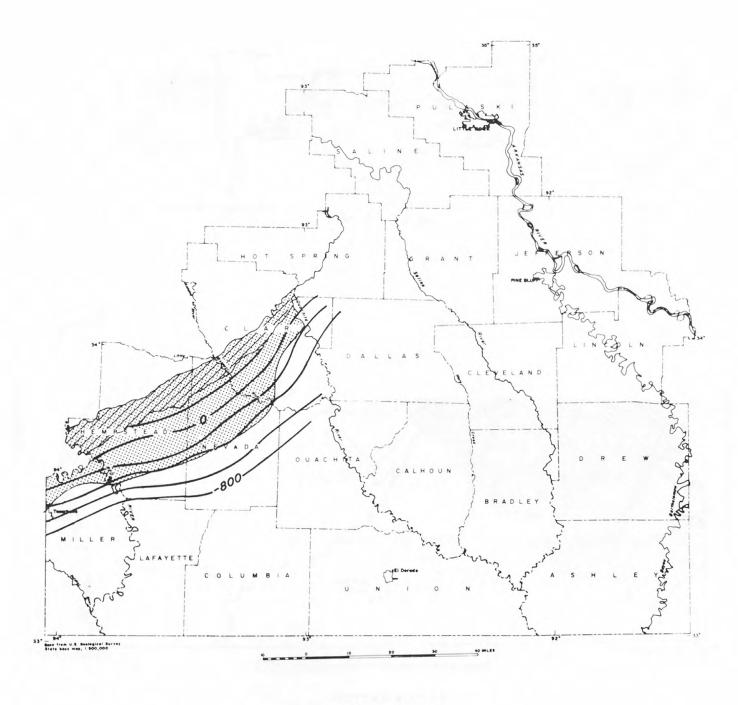
Table 39.—Test holes and wells used in defining cross sections—Continued

Control point	Location	Owner	Lease
	Cross section	n B—Continued	
B-7	Ashley County, sec. 34, T. 18 S., R. 9 W.	Patoil Corp.	Georgia Pacific Corp. No. 1.
B-8	Ashley County, sec. 2, T. 19 S., R. 9 W.	Patoil Corp.	Georgia Pacific Corp. No. 2.
B-9	Ashley County, sec. 27, T. 18 S., R. 6 W.	Lion Oil Co.	Crossett Lumber Co.
B-10	Ashley County, sec. 31, T. 18 S., R. 4 W.	Chicago Corp.	Mr. Morris No. 1.
	Cross s	ection C	
C-1	Grant County, sec. 13, T. 4 S., R. 15 W.	Lion Oil Co.	Exploratory Hole No. G-2.
C-2	Grant County, sec. 2, T. 5 S., R. 14 W.	C. A. Lee	International Paper Co. No. A-1.
C-3	Grant County, sec. 21, T. 6 S., R. 12 W.	Connelly & Froderman	Ashcraft No. 1.
C-4	Cleveland County, sec. 10, T. 8 S., R. 10 W.	Richardson and Sneed Brothers	Beulah Studdard No. 1.
A-7	(See cross section A)		
C-5	Lincoln County, sec. 18, T. 10 S., R. 7 W.	Curtis Kinard	Payne Estate No. 1.
C-6	Drew County, sec. 2, T. 12 S., R. 5 W.	Davis-McCauley	Lucas No. 1.
	Cross so	ection D	
D-1	Dallas County, sec. 12, T. 7 S., R. 17 W.	Lion Oil Co.	No. 10-PW-7.
A-2	(See cross section A)		
D-2	Dallas County, sec. 33, T. 8 S., R. 15 W.	J. F. Stone	Herbert & Walsh No. 1.

Table 39.—Test holes and wells used in defining cross sections—Continued

Location	Owner	Lease		
Cross sectio	n D—Continµed			
Dallas County, sec. 5, T. 10 S., R. 14 W.	Lion Oil Co.	Core Hole No. F-15.		
Calhoun County, sec. 25, T. 11 S., R. 13 W.	Garland Anthony	Brazil No. 1.		
Bradley County, sec. 14, T. 14 S., R. 10 W.	Pan Am Southern Corp.	Mollie Turner No. l.		
Ashley County, sec. 34, T. 17 S., R. 9 W.	Placid Oil Co.	Crossett Lumber Co. No. 1.		
Cross s	ection E			
Ouachita County, sec. 8, T. 18 S., R. 18 W.	Garland Anthony	Hirsch No. 1.		
Ouachita County, sec. 15, T. 13 S., R. 17 W.	Garland Anthony	Berg No. 1.		
Calhoun County, sec. 15, T. 14 S., R. 16 W.	J. T. O'Neal	Gaughn No. 1.		
Calhoun County, sec. 35, T. 14 S., R. 15 W.	Placid Oil Co.	Gorth No. 1.		
Calhoun County, sec. 17, T. 15 S., R. 14 W.	Mid-Century Petro- leum Corp.	Freeman-Smith No. 1.		
Calhoun County, sec. 3, T. 16 S., R. 14 W.	Ruth L. Markham	Calion Lumber Co. No. 1.		
Calhoun County, sec. 14, T. 16 S., R. 13 W.	Placid Oil Co.	Freeman-Smith No. 5.		
Bradley County, sec. 34, T. 16 S., R. 12 W.	Olin Oil and Gas Corp.	Ferguson No. A-1.		
Bradley County, sec. 10, T. 17 S., R. 11 W.	William R. Wood, Jr.	Hunt No. 2.		
Bradley County sec. 16, T. 17 S., R. 10 W.	Placid Oil Co.	C. H. Murphy No. 3.		
	Cross section Dallas County, sec. 5, T. 10 S., R. 14 W. Calhoun County, sec. 25, T. 11 S., R. 13 W. Bradley County, sec. 14, T. 14 S., R. 10 W. Ashley County, sec. 34, T. 17 S., R. 9 W. Cross s Ouachita County, sec. 8, T. 18 S., R. 18 W. Ouachita County, sec. 15, T. 13 S., R. 17 W. Calhoun County, sec. 15, T. 14 S., R. 16 W. Calhoun County, sec. 35, T. 14 S., R. 15 W. Calhoun County, sec. 37, T. 15 S., R. 14 W. Calhoun County, sec. 17, T. 15 S., R. 14 W. Calhoun County, sec. 3, T. 16 S., R. 14 W. Bradley County, sec. 34, T. 16 S., R. 12 W. Bradley County, sec. 10, T. 17 S., R. 11 W. Bradley County	Cross section D—Continued Dallas County, sec. 5, T. 10 S., R. 14 W. Calhoun County, sec. 25, T. 11 S., R. 13 W. Bradley County, sec. 14, T. 14 S., R. 10 W. Cross section E Ouachita County, sec. 8, T. 18 S., R. 18 W. Ouachita County, sec. 15, T. 13 S., R. 17 W. Calhoun County, sec. 15, T. 14 S., R. 16 W. Calhoun County, sec. 35, T. 14 S., R. 16 W. Calhoun County, sec. 35, T. 14 S., R. 15 W. Calhoun County, sec. 37, T. 16 S., R. 14 W. Calhoun County, sec. 37, T. 16 S., R. 14 W. Calhoun County, sec. 37, T. 16 S., R. 14 W. Calhoun County, sec. 37, T. 16 S., R. 14 W. Calhoun County, sec. 37, T. 16 S., R. 18 W. Calhoun County, sec. 37, T. 16 S., R. 18 W. Calhoun County, sec. 37, T. 16 S., R. 18 W. Calhoun County, sec. 37, T. 16 S., R. 18 W. Calhoun County, sec. 37, T. 16 S., R. 18 W. Calhoun County, sec. 37, T. 16 S., R. 18 W. Calhoun County, sec. 37, T. 16 S., R. 18 W. Calhoun County, sec. 37, T. 16 S., R. 18 W. Calhoun County, sec. 37, T. 16 S., R. 18 W. Calhoun County, sec. 37, T. 16 S., R. 18 W. Calhoun County, sec. 39, T. 16 S., R. 19 W. Calhoun County, sec. 30, T. 16 S., R. 19 W. Calhoun County, sec. 30, T. 16 S., R. 19 W. Calhoun County, sec. 30, T. 16 S., R. 19 W. Calhoun County, sec. 30, T. 16 S., R. 19 W. Calhoun County, sec. 30, T. 16 S., R. 10 W. Calhoun County, sec. 30, T. 16 S., R. 10 W. Calhoun County, sec. 30, T. 16 S., R. 10 W. Calhoun County, sec. 30, T. 16 S., R. 10 W. Calhoun County, sec. 30, T. 16 S., R. 10 W. Calhoun County, sec. 30, T. 16 S., R. 10 W. Calhoun County, sec. 30, T. 16 S., R. 10 W.		

Table 39.—Test holes and wells used in defining cross sections—Continued


Control Point	Location	Owner	Lease
sfeta	Cross sectio	n E—Continued	ion de Sand.
E-11	Ashley County, sec. 3, T. 18 S., R. 8 W.	Tidewater Oil Co.	Crossett Co. No. D-1.
B-8	(See cross section B)		
E-12	Ashley County sec. 24, T. 19 S., R. 7 W.	Union Production	Crossett Lumber Co. No. F-1.

A network of 600 observation wells has been established in the project area. Water-level measurements will be made in these wells biannually. Spring (1978) measurements have been made, and were used in defining the potentiometric surfaces for the Cockfield Formation, Sparta Sand, Cane River Formation, and the Carrizo Sand. Additional observation wells are being added, when possible, to the existing network.

Nacatoch Sand

The Nacatoch Sand is present in the subsurface throughout most of the project area (fig. 11). However, it contains freshwater in only a small area near its outcrop. This area includes parts of Miller, Hempstead, Nevada, and Clark Counties. The Nacatoch Sand consists mostly of sand and calcareous clay. In the subsurface, adjacent to its outcrop in southwest Arkansas (Boswell and others, 1965), the Nacatoch Sand is from about 150 ft to more than 500 ft thick and the percentage of sand is from less than 20 to as much as 80 (fig. 12). Most of the sandy material is in the upper part of the formation. The sandy upper part of the formation is an aquifer that furnishes as much as 300 gal/min to wells in or near the outcrop. The potentiometric surface (altitude to which water will rise in wells tapping a confined artesian aquifer) for the Nacatoch Sand is shown in figure 13. The general movement of water in the formation is southeastward.

The quality of water from the Nacatoch Sand is generally poor in the project area. Throughout most of the south-Arkansas lignite area, the Nacatoch Sand does not contain freshwater (Cushing, 1966). Only in parts of Miller, Hempstead, Nevada, and Clark Counties does the Nacatoch Sand contain water having less than 1,000 mg/L of dissolved solids. The average specific conductance, as determined from 72 analyses (table 40), is about 1,900 (cm⁻¹ at 25°C) μ mho with values ranging from 190 to 19,900 μ mho. The pH values range from 7.4 to 9.0

EXPLANATION

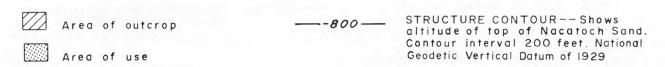


Figure 11.—Structural contours of the top and areas of use of the Nacatoch Sand (modified from Boswell and others, 1965).

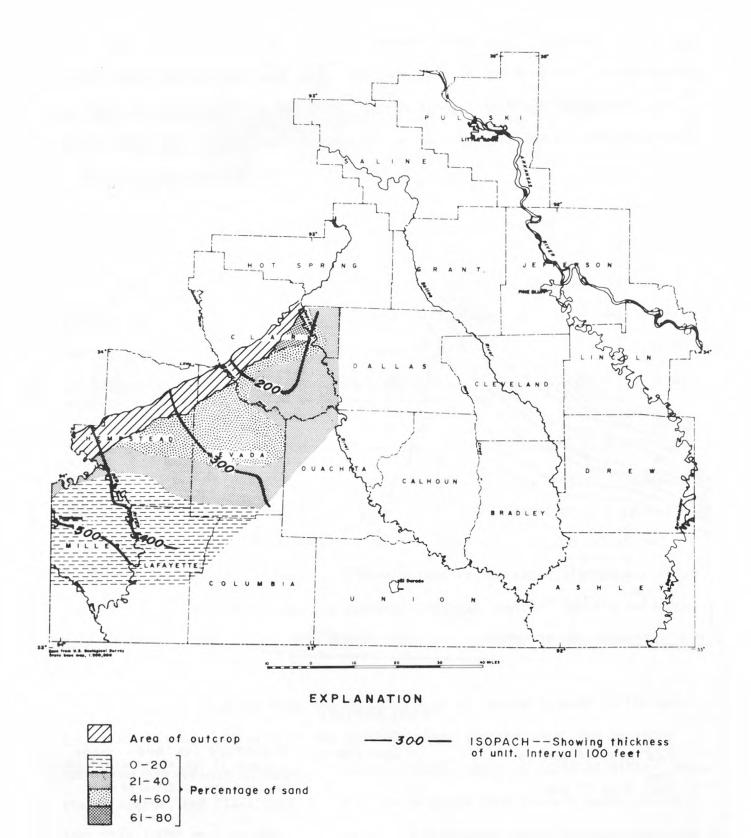
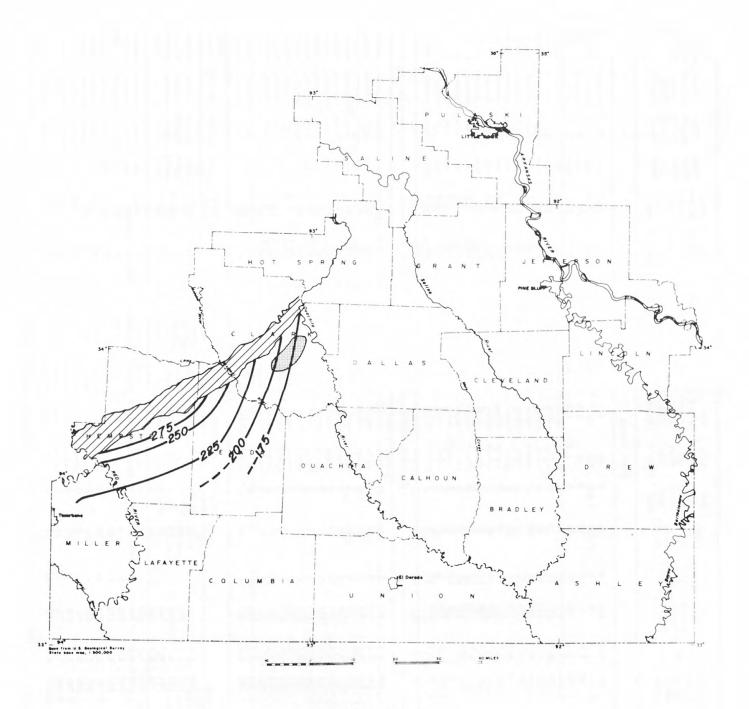



Figure 12.—Thickness and percentage of sand of the Nacatoch Sand (modified from Boswell and others, 1965).

EXPLANATION

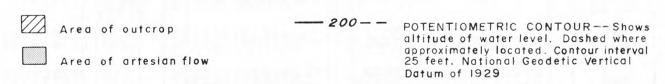


Figure 13.—Potentiometric surface of the Nacatoch Sand (modified from Boswell, 1965).

Well number	Date of sample	Temper- ature (°C)	Color (plat- inum- cobalt units)	Specif- ic con- duct- ance (µmho)	Ph	Bicar- bonate (HCO ₃) (mg/L)	Carbon- ate (CO ₃) (mg/L)	Hard- ness as CaCO ₃ (mg/L)	Non- car- bonate hard- ness (mg/L)	Dis- solved cal- cium (Ca) (mg/L)	Dis- solved magne- sium (Mg) (mg/L)	Dis- solved sodium (Na) (mg/L)	Sodium adsorp- tion ratio	Dis- solved potas- sium (K) (mg/L)	Dis- solved chlo- ride (Cl) (mg/L)	Dis- solved sul- fate (SO ₄) (mg/L)	Total fluo- ride (F) (mg/L)	Dis- solved silica (SiO ₂) (mg/L)	Dis- solved iron (Fe) (µg/L)	Dis- solved solids (sum of constit- uents)	Dis- solved nitrate (NO ₃) (mg/L)
							*							(mg/ L)	(mg/L)	(1119712)				(mg/L)	
										Clark Co	unty			-							
08519W08BAB1 08519W09ACC1 08519W18BBD1 09520W3DCC1 09520W10ACC1 09520W2ADB1 09520W22ADB1 09520W22ADB1 09520W33BCD1 09520W33BCD1 09520W34BBC1 09520W34DAB1 09520W34DAB1 10520W42CDB1 10520W04ACB1 10520W04ACB1 10520W25CDD1	05-23-63 12-06-62 01-15-63 05-23-63 09-14-50 09-15-50 09-15-50 07-26-46 09-14-50 10-11-50 10-11-50 09-14-50 09-14-50 09-13-50	17.7 18.8 18.3 18.8 19.4 19.4 20.0 21.6 20.5 21.1 21.6 20.5 21.1	3 18 1 1 	440 19,900 190 1,740 2,260 590 1,500 1,660 848 1,820 1,820 2,310 2,040 3,910 1,950 2,130 3,800 3,200	8.0 7.4 7.6 8.4 8.6 8.5 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.5	234 65 86 343 392 295 406 428 374 350 372 380 348 358 367 367 364 408	0 0 24 30 21 16 25 32 30 35 26 22 28 21 26 0 10	154 2,690 33 13 34 17 6 11 18 47 33 72 19 22 42 30	0 2,690 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 754 18 2.0 	7.1 196 2.9 4.5	34 3,680 13 367		5.5 80 3.4 2.0	10 7,560 7.0 337 535 24 275 310 55 158 402 562 490 1,080 445 505 1,100 825	24 2.0 13 21 3.0 24 14 1.0 40 49 3.0 1.0 6.0 1.0 1.0 3.0		47 7.8 63 12 		294 12,300 169 940	0.2
									Не	mpstead	County				-				-		
12S24W04ADD1 12S24W14BAC2 12S24W27CBC1 12S24W33CBD1 12S24W33CBD1 12S24W36AAA1 13S24W02ADA1 13S24W09BDC1 13S24W09BDC1 13S25W05ABD1 13S25W05ABD1 13S25W25CCB1 14S25W25CCB1 14S25W25CCB1 14S25W32BBC1	03-30-51 03-16-51 03-22-51 03-22-51 03-22-51 03-22-51 03-22-51 03-21-51 03-22-51 03-22-51 03-22-51 03-21-51 03-21-51 03-21-51 03-21-51 03-19-51 04-11-51			586 486 546 563 607 565 634 690 701 326 476 528 1,240 1,220 1,680	8.4 8.5 7.9 8.2 8.6 8.9 8.6 8.9 8.2 8.6 9.0 8.7 8.8	261 220 256 54 239 212 234 251 255 196 222 260 297 288 321	6 8 0 0 10 16 11 18 16 0 13 24 12 21 14	262 68 47 50 55 15 10 8 10 91 15 28 10 9	38 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						8.5 22 30 31 44 36 40 46 47 10 18 16 225 210 340	100 48 46 44 51 49 65 48 42 2.0 21 15 35 32 40					1.1 .300 1.4 .200 1.7 3.1 .400 2.00 .200 2.88 2.1 .700 1.00 2.7
										Miller C	ounty										
14526W07CAA1 14527W01AAA1 14527W01AAB1 14527W01BBB1 14527W02AAA1 14527W02AAB1 14527W02ADD1 14527W07CBC1 14527W12AAB1 14528W07CCA1 14528W13CCC1 14528W13CCC1 14528W14CBD1 14528W16DAC1	08-15-51 08-15-51 08-15-51 08-09-51 08-15-51 08-09-51 02-27-68 08-15-51 08-09-51 08-08-51 08-08-51 08-09-51	20.0	4	1,070 747 711 785 718 785 776 782 821 1,740 805 1,140 3,750 4,490 1,680	8.5 8.7 8.7 8.8 8.7 8.3 8.0 8.5 8.6 8.7 8.8 7.7 8.8	312 326 303 342 260 342 278 288 273 224 439 347 216 156 398		32 40 13 27 16 27 25 8 42 28 203 8 61 78	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.0	0.3	160		1.1	158 67 62 76 76 76 85 70 108 452 59 205	46 34 30 34 40 34 45 31 40 1.0 20 4.0 2.0 3.0 3.0		12		421	3.6 1.1 2.0 3.6 2.0 2.3 60 .30 8.6

Table 40.—Chemical analyses of samples taken from wells tapping the Nacatoch Sand—Continued

Well number	Date of sample	Temper- ature (°C)	Color (plat- inum- cobalt units)	Specific conductance (µmho)	Ph	Bicar- bonate (HCO ₃) (mg/L)	Carbon- ate (CO ₃) (mg/L)	Hard- ness as CaCO ₃ (mg/L)	Non- car- bonate hard- ness (mg/L)	Dis- solved cal- cium (Ca) (mg/L)	Dis- solved magne- sium (Mg) (mg/L)	Dis- solved sodium (Na) (mg/L)	Sodium adsorp- tion ratio	Dis- solved potas- sium (K) (mg/L)	Dis- solved chlo- ride (C1) (mg/L)	Dis- solved sul- fate (SO ₄) (mg/L)	Total fluo- ride (F) (mg/L)	Dis- solved silica (SiO ₂) (mg/L)	Dis- solved iron (Fe) (µg/L)	Dis- solved solids (sum of constit- uents) (mg/L)	Dis- solved nitrate (NO ₃) (mg/L)
•									Mille	r County	-Contin	ued									
14S28W17BBC1	08-09-51			1,080	8.9	351	25	12	0						186	2.0					2.1
14S28W17CBA1	08-09-51			1,040	8.8	460		12	0						128	1.0					2.1
	02-27-68	17.0	4	1,050	7.9	455	0	5	0	1.6	0.2	240		0.8	125	.6		13		605	.20
14S28W18AAC1	08-08-51			1,190	8.8	338	25	12	0						218	3.0					4.8
14528W21AAA1	08-09-51			2,210	8.5	344	14	22	0						565	2.0					1.9
14S28W22BDA1	08-08-51			5,320	7.7	218	0	100	0						1,670	2.0					2.0
14S28W30ACA1	08-08-51			2,400	8.8	432	32	24	0						602	2.0					1.9
14S28W32DCB1	07-26-51	23.0		4,900	8.6		14	70	0						1,480	2.0					1.0
15S28W10AAB1	07-21-51	23.0		11,200	8.2	170	8	306	153						3,850	1.0					1.7
15S28W18ACC1	07-26-51	22.0		3,650	8.5	469	13	46	0						955	2.0					1.2
14S28W34CDC1	02-27-68		5	7,160	7.7	316	0	156	0	46	9.9	1,470		6.7	2,220	26		11		3,940	.10
										Nevada	County			17-							
11S21W14CCC1	06-17-53	23.0		1,210	8.6	294	13	10	0						222	28					1.4
11S21W18BAA1	04-17-51	23.0		629	8.7	271	14	10	0						38	37					1.9
12S21W27BAC1	10-05-64		5	1,840	8.1	300	0	11	0	2.1	1.5	377		2.7	393	36		14		976	.40
12S22W09CDA1	10-05-64		6	828	8.2		0	4	0	1.0	.4	180		1.1	95	30		13		460	.60
12S22W10BCB1	06-17-53			816	8.9		22	Q	0						92	32					.00
12S22W10CDD1	06-17-53			927	8.7		16	6	0						126	28					.00
12S22W15BAB1	06-17-53			909	8.8		16	6	0						128	36					1.6
12S22W13BDC1	10-06-64		8	1,080	8.2		0	4	0	.6	.7	231		1.4	167	26		14		585	.60
12S22W23BDC1	02-28-68		4	1,070	8.5		6	4	0	1.5	.2	243	49	1.1	175	25		13		611	1.0
12S23W03ACD1	08-30-50			532	8.0			18	0			245			43	34					.30
12323WU3ACD1	03-07-68		3	517	7.7		0	18	0	5.8	.7	108		1.8	40	26		17		304	.40
120224020001				490			0	21	0			100		1.0	31	40					1.6
12S23W03CBD1	09-06-50				8.3			4	0	.3	.3	217		1.5	124	37		15		554	1.2
13S22Wo7BDC1	10-07-64		3 5	994	8.0		16	8	0	2.7	.3	231		1.1	141	37		14		585	1.1
	02-28-68	14.0	5	1,030	8.5	303	/	8	0	/		231		1.1	141	3/		14		303	1.1

and average 8.5. In Clark County, water from the Nacatoch Sand is hard in many places. For the 18 analyses shown in table 4C, the maximum values of hardness, as calcium carbonate (CaCO_3) , is 2,690 mg/L, with most values ranging between 18 and 154 mg/L. Water from the Nacatoch in Nevada County is soft, averaging 9.4 mg/L CaCO_3 for 14 samples. The average hardness is 46 mg/L CaCO_3 in 15 samples from Hempstead County and 53 mg/L in 26 samples from Miller County. Overlying the Nacatoch Sand is the Arkadelphia Marl, which is in turn overlain by the Midway Group. The Arkadelphia Marl consists of calcareous clay and limestone and ranges from 0 to 150 ft thick. The formation contains practically no sand beds and is not an aquifer in the project area.

Midway Group

The Midway Group in the project area consists of calcareous clay, sandy limestone, and calcareous sandstone and is from about 400 to 600 ft thick in the subsurface. A structural contour map of the top of the Midway is shown in figure 14. The amount of sand in the Midway ranges from 0 to about 20 percent. The calcareous sandstone and limestone at the base of the Midway Group make up the Clayton Formation, which is an aquifer in the northern part of the project area. In some places there is appreciable sand in the Clayton Formation. The Clayton Formation (Kincaid Formation in the Arkansas bauxite area) is generally about 35 ft thick and furnishes as much as 350 gal/min to wells near its outcrop in Hot Spring, Saline, and Pulaski Counties. The upper part of the Midway Group, the Porters Creek Clay (Wills Point Formation in the Bauxite area), is not an aquifer in the project area.

The only information available at the present time on the chemical quality of water from the Clayton Formation in the project area is from the analyses of

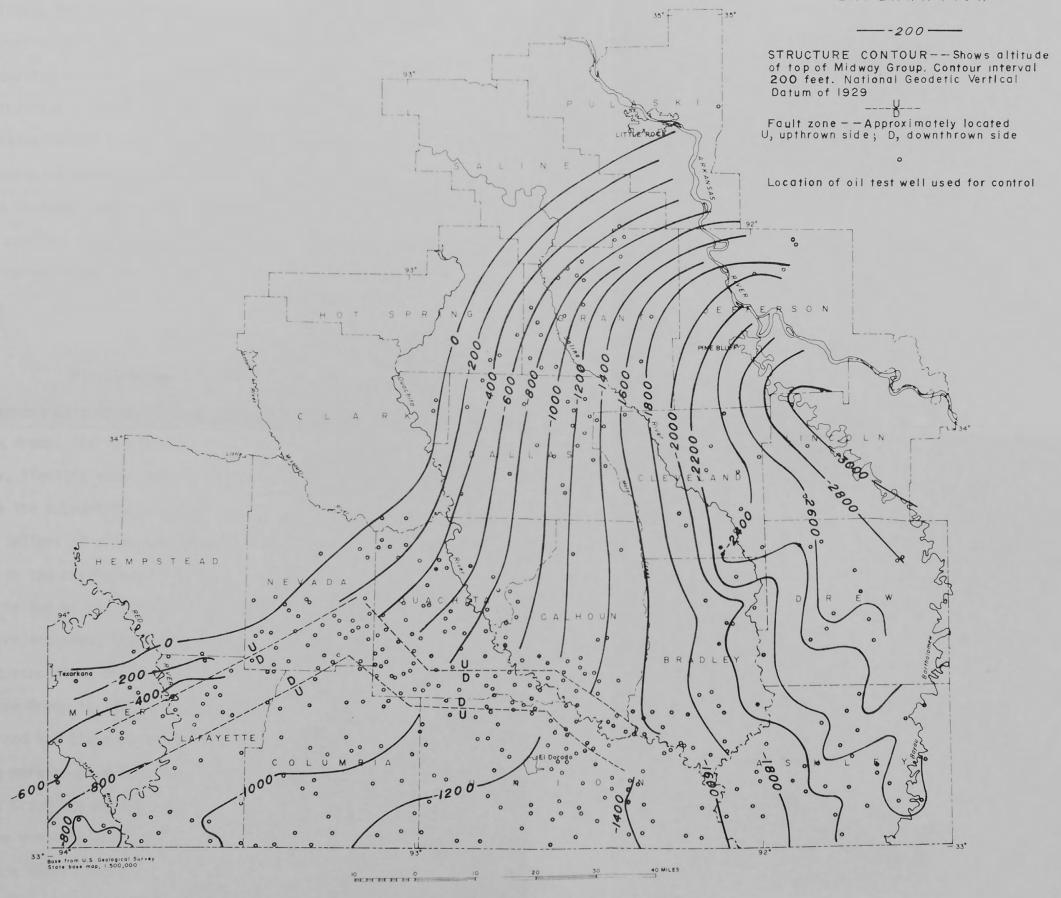
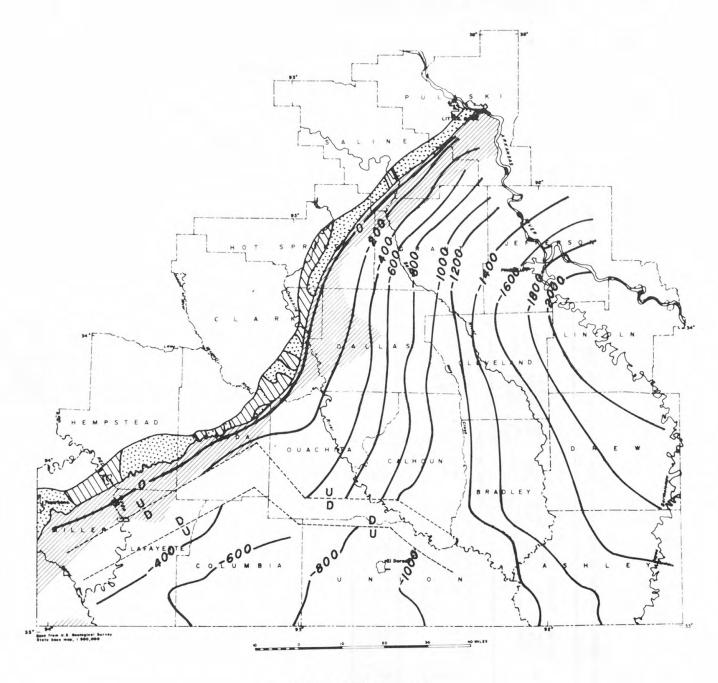


Figure 14.—Structural contours of the top of the Midway Group.

six samples (table 41) from Hot Spring and Saline Counties. With so few analyses concentrated in such a small area, very little can be said about the general quality of water in the formation. However, the available analyses do indicate a lower mineral concentration in the water from the Clayton Formation in Hot Spring County than in Saline County (table 41). Specific conductance averages 355 μmho in three samples from Saline County, and 149 μmho in three samples from Hot Spring County. The pH of the water from the two counties averages 7.2 and ranges from 5.5 to 8.1. The hardness of the water ranges from soft (12 mg/L CaCO_3) to hard (154 mg/L CaCO_3) in the two counties.

Wilcox Group, Undifferentiated

The lowermost unit of the Eocene section in Arkansas is the undifferentiated Wilcox Group. It consists of interbedded fine-grained sand, clay, silt, lignite, lignitic silt, and lignitic clay. It occurs either at the surface or in the subsurface throughout most of the project area. The exceptions are inliers of older rock (Midway Group and igneous rocks of Cretaceous age) in the northern part of the area. The outcrop area, the structural contours of the top of the formation, and areas of use are shown in figure


15. In the project area, the Wilcox Group ranges in thickness from 200 to

500 ft and in percentage of sand from 10 to 60 (fig. 16).

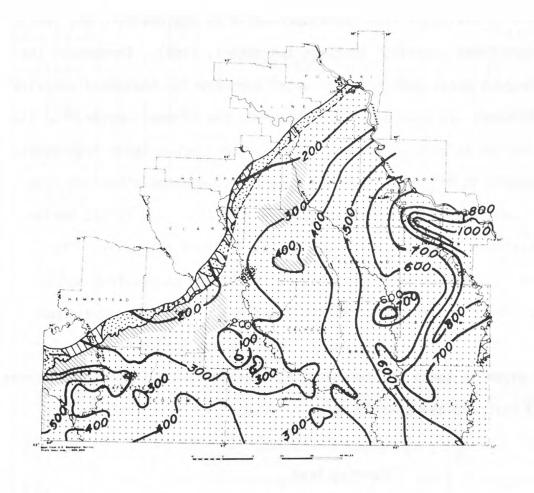
The Wilcox Group is identified on electric logs as the sequence of interbedded sand and clays above the distinctive clays of the Midway Group and below the more prominent sands of the Carrizo formation. The sand beds in the Wilcox Group are aquifers of local importance in or near the outcrop. Typically, the water in the sands of the Wilcox Group becomes brackish or saline within a short distance downdip and is unfit for most uses.

Table 41.—Chemical analyses of samples taken from wells tapping the Clayton Formation (Midway Group)

Well number	Date of sample	Temper- ature (°C)	Color (plat- inum- cobalt units)	Specific conductance	Ph	Bicar- bonate (HCO ₃) (mg/L)	Carbon- ate (CO ₃) (mg/L)	Hard- ness as CaCO ₃ (mg/L)	Non- car- bonate hard- ness (mg/L)	Dis- solved cal- cium (Ca) (mg/L)	Dis- solved magne- sium (Mg) (mg/L)	Dis- solved sodium (Na) (mg/L)	Sodium adsorp- tion ratio	Dis- solved potas- sium (K) (mg/L)	Dis- solved chlo- ride (Cl) (mg/L)	Dis- solved sul- fate (SO ₄) (mg/L)	Total fluo- ride (F) (mg/L)	Dis- solved silica (SiO ₂) (mg/L)	Dis- solved iron (Fe) (µg/L)	Dis- solved solids (sum of constit- uents) (mg/L)	Dis- solved nitrate (NO ₃) (mg/L)
									Hot	Spring	County										
04S17W10AAD1 05S18W03AAA1 05S18W03ADA1	12-07-65 05-11-64 12-08-65	18.0	6 3 	276 86 66	7.3 5.5 6.3	166 7 31	0 0 0	136 12	0 6 -	48 2.1	3.8	3.5 10 4.6	0.1	0.4	1.9 12 1.8	6.2	0.2	22 20	2,200 60 200	170 64	0.20 15 2.5
									Sa	aline Cou	inty										
01S13W22BAA1 01S14W34BDA1 01S14W34BDD1	04-17-63 04-12-63 05-22-63	18.0	2 3 1	318 396 352	8.1 7.6 8.5	188 254 	0 0 6	154 150 101	0 0 0	40 40 19	13 12 13	7.4 34 35	0.3 1.2 1.5	3.1 8.8 9.0	7.4 7.0 12	8.6 11 7.6	0.2	12 7.8 16	300 0 10	184 246 213	0.10 .00 2.6

STRUCTURE CONTOUR——Shows altitude of top of Wilcox Group. Contour interval 200 feet. National Geodetic Vertical Datum of 1929

--200 ---


Outcrop area of Wilcox Group. Approximately located

Outcrop Area where Wilcox Group is covered by Quaternary deposits

Fault zone — Approximately located U, upthrown side; D, downthrown side

Area of use

Figure 15.—Structural contours of the top and areas of use of the Wilcox Group, undifferentiated (modified from Hosman and others, 1968).

Area of outcrop.
Approximately located

Area of outcrop covered by Quaternary deposits

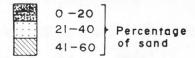


Figure 16.—Thickness and percentage of sand of the Wilcox Group undifferentiated (modified from Hosman and others, 1968).

The quantities of water available from the Wilcox Group varies. "About 200-300 gal/min is available from individual wells in southeastern Hot Spring and southwestern Grant counties" (Halberg and others, 1968). Throughout the rest of the project area, quantities of water adequate for household supplies or other small needs are generally available from the Wilcox. Water from the Wilcox Group varies in mineralization. Seven water samples taken from wells tapping the Wilcox in Miller County have specific conductances ranging from 152 to 2,170 µmho (table 42), with an average of 930 µmho. In Hot Spring County, the range in conductance for 16 samples is 16 to 661 µmho. The average pH for 30 analyses shown in table 42 is 7.3 and ranges from 5.0 to 8.9. Most of the pH values are between 6.2 and 8.4. Iron concentrations range from 0.0 to 9.7 mg/L and average 1.2 mg/L in Hot Spring County. For the analyses given in table 42, hardness, as calcium carbonate (CaCO₃), ranges from 2 to 143 mg/L and averages 35 mg/L.

Carrizo Sand

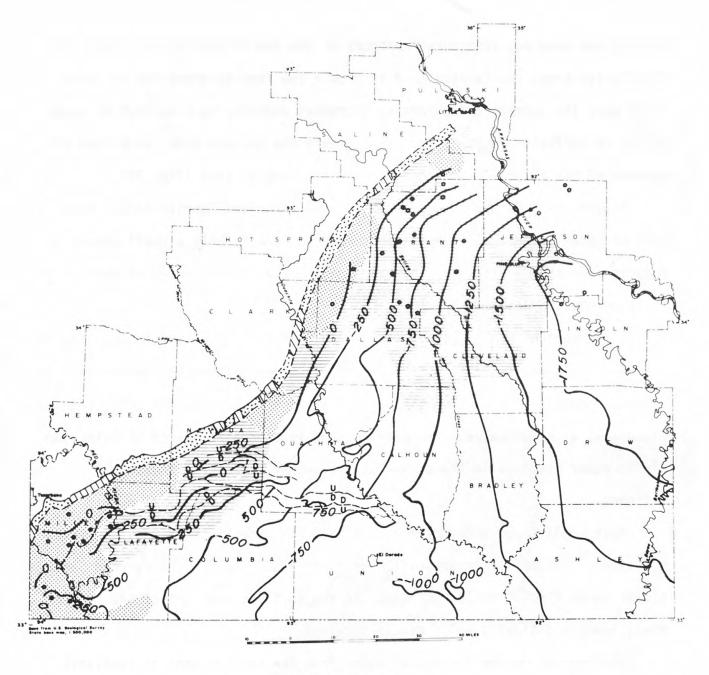

The Carrizo Sand, the basal formation of the Claiborne Group in Arkansas, crops out in central Miller, south Hempstead, and central Nevada Counties (Ludwig, 1972, p. 15), northwest Ouachita County (Albin, 1964 pl. 5), and possibly in southeast Clark County (Plebuch and Hines, 1969, p. A26). Its outcrop in west Dallas County (Plebuch and Hines, pl. 1) and east Hot Spring County (Halberg and others, 1968, pl. 1) has been inferred from updip projections of electric-log data. It is not known whether the Carrizo Sand crops out in Saline and Pulaski Counties, but it is present in the subsurface in north Grant County. The Carrizo Sand generally is present in the subsurface south and east of its outcrop. However, locally, it is missing, and the overlying Cane River Formation rests directly upon the Wilcox Group. Figure 17 shows

Table 42.—Chemical analyses of samples taken from wells tapping the Wilcox Group, undifferentiated

⊭ell number	Date of sample	Temper- ature (°C)	Color (plat- inum- cobalt units)	Specif- ic con- duct- ance (µmho)	Ph	Bicar- bonate (HCO ₃) (mg/L)	Carbon- ate (CO ₃) (mg/L)	Hard- ness as CaCO ₃ (mg/L)	Non- car- bonate hard- ness (mg/L)	Dis- solved cal- cium (Ca) (mg/L)	Dis- solved magne- sium (Mg) (mg/L)	Dis- solved sodium (Na) (mg/L)	Sodium adsorp- tion ratio	Dis- solved potas- sium (K) (mg/L)	Dis- solved chlo- ride (Cl) (mg/L)	Dis- solved sul- fate (SO ₄) (mg/L)	Total fluo- ride (F) (mg/L)	Dis- solved silica (SiO ₂) (mg/L)	Dis- solved iron (Fe) (µg/L)	Dis- solved solids (sum of constit- uents) (mg/L)	Dis- solved nitrate (NO ₃) (mg/L)
										Clark	County										
08S18W16AAA1	05-17-63	20.0	1	231	7.9	110	0	4	0	1.6	0.0	51		1.3	17	2.4		39		167	0.20
						-				Hempstea	d County										
12S23W33BDD1	03-22-51			90	7.4	33	0	26	0						5.8	1.0				*****	3.7
										Hot Spri	ng County	1									
03S16W21ACB1 03S16W21BDA1 04S16W08ADC1 04S16W17BDB1 04S16W19BCD1 04S17W24ACC1 04S17W24ACC2 04S17W25CB1 04S17W28AAC1 05S17W03BAA1 05S17W04DBC 05S17W17AAA1 05S17W18DDC1 05S17W22DD2 06S18W01DDD1 06S18W35CCC	07-01-63 07-05-63 05-08-64 06-25-63 05-08-64 05-15-65 05-15-64 04-26-63 04-11-63 03-28-63 05-08-64 05-28-63 01-15-63 05-03-63 06-07-63	18.0 17.5 23.0 18.0 19.5 19.5 18.0 20.5 14.0 17.5 19.0 20.5	0 3 0 4 4 3 2 3 3 1 1 1 1 2 1 1 2	53 293 17 16 82 98 40 32 270 32 19 21 661 508 125 236	7.0 7.8 5.7 6.5 6.5 7.6 8.5 7.6 8.5 7.9 8.1 7.1 8.4	190 3 5 41 3 3 4 157 8 4 2 178 238 71	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18 107 4 5 30 23 11 7 14 9 2 2 2 8 8 90 33 84	0 0 2 1 0 20 8 4 4 0 2 0 1 0 0	4.4 29 .4 1.4 7.6 6 4.8 2.9 1.5 3.3 1.8 1.0 .5 18 23 8.1	1.6 8.3 .9 .1 2.7 2.7 1.0 .8 1.5 1.1 .0 .4 5.5 7.8 3.1 9.5	2.3 27 .5 1.0 3.2 6.0 2.2 1.9 58 2.0 .9 1.5 109 81 13	1.1 .2 .3 .5 .3 .3 6.6	1.6 3.5 .6 .5 3.0 1.2 .8 .5 2.0 .3 .2 .1 3.0 5.7 2.5 2.3	3.8 9.8 2.5 2.8 3.0 7.5 4.5 7.0 2.4 1.8 3.0 114 50 4.4 9.2	1.6 .0 .0 8.0 3.6 16 4.4 4.6 .0 .0 .0 1.0 2.8 10	0.1 .1 .0 .0 .2 .2 .1 .0 .0 .2 .1 .1 .1 .1 .4 .4	11 12 8.2 12 9.9 9.4 10 12 12 51	140 140 20 100 4,000 50 440 810 570 90 130 0 0 150 480 9,700 2,400	177 17 17 64 62 36 25 166 27 18 20 352 307 127	0.20 .60 3.0 .00 .00 11 6.3 .70 .10 5.5 0.2 2.2 .20 .00
										Lafayet	te Count	у									
15S25W35BCD1	03-07-68	18.0	4	225	7.5	124	0	36	0	11	1.9	35		2,1	3.0	6.8		9.9		131	.00
										Miller	County										
15S26W23DCC1 15S26W23DCC2 15S28W10AAB2 15S28W32CAB1 17S27W22DBB1 19S27W30CAC1 20S27W05ABB1	10-23-68 10-23-68 07-26-51 07-25-51 10-23-68 10-25-68	23.0 22.0 25.0	2	835 791 274 152 326 2,170 1,960	8.3 8.3 6.6 7.4 8.6 8.7 8.9	312 8 95 184 512	8 4 0 0 8 32 44	10 38 32 39 4 18	0 0 25 0 0	3.0 11 1.0 5.5 3.0	0.5 2.6 .2 1.1	184 167 76 500 455		1.3 3.2 .7 2.5 2.0	81 105 45 5.5 7.1 432 345	0.4 1.2 2.0 2.0 .8 .4		11 10 10 14 14		456 459 195 1,240 1,120	1.6 1.1 86 .80 .20 .30
										Nevac	ia County										
13S21W21CDA1	01-24-46			29 301	8.1		0	110 143	22	30 35	8.6 8.7	18 14		5.0 5.8	4 .8 5.0	26 29		11 15		186	1.2

Table 42.—Chemical analyses of samples taken from wells tapping the Wilcox Group, undifferentiated—Continued

Well number	Date of sample	Temper- ature (°C)	Color (plat- inum- cobalt units)	Specif- ic con- duct- ance (µmho)	Ph	Bicar- bonate (HCO ₃) (mg/L)	Carbon- ate (CO ₃) (mg/L)	Hard- ness as CaCO ₃ (mg/L)	Non- car- bonate hard- ness (mg/L)	Dis- solved cal- cium (Ca) (mg/L)	Dis- solved magne- sium (Mg) (mg/L)	Dis- solved sodium (Na) (mg/L)	Sodium adsorp- tion ratio	Dis- solved potas- sium (K) (mg/L)	Dis- solved chlo- ride (Cl) (mg/L)	Dis- solved sul- fate (SO ₄) (mg/L)	Total fluo- ride (F) (mg/L)	Dis- solved silica (SiO ₂) (mg/L)	Dis- solved iron (Fe) (µg/L)	Dis- solved solids (sum of constit- uents) (mg/L)	Dis- solved nitrate (NO ₃) (mg/L)
									0	uachita	County										
12S19W11DCD1	02-06-58		6	1,820		8	10	53	0	17	2.6	427	25	13	540	8.8	0.9	6.6	0	1,030	0.10
										Saline C	ounty										
02S12W18ABB1 01S13W23DDD1	06-06-63 06-10-67	17.0	3 2	26 72	5.4 5.9	5 22	0	6 24	2 6	1.2	0.8	1.0	0.2	0.6	2.0	0.0	0.0	9.7 20	120 2,300	21 63	3.4

EXPLANATION

STRUCTURE CONTOUR—Shows altitude of top of Carrizo Sand. Contour interval 250 feet. National Geodetic Vertical Datum of 1929

Outcrop area of Carrizo Sand. Dashed where approximately located

Outcrop area of Carrizo Sand covered by Quaternary deposits

Fault zone—Approximately located U, upthrown side; D, downthrown side

Location of oil test well used for control

Area of use

Area of potential use

Figure 17.—Structural contours of the top and areas of use of the Carrizo Sand.

the outcrop area and structural contours of the top of the Carrizo Sand. In the lignite area, the Carrizo Sand is from a few feet to about 100 ft thick in or near its outcrop and generally increases downdip, to a maximum of about 300 ft in Jefferson County (fig. 18). Within the project area, more than 80 percent of the material composing the Carrizo Sand is sand (fig. 18).

Figure 19 shows the potentiometric surface for the Carrizo Sand. Movement of water is generally to the southeast. There is only a small amount of pumping from the Carrizo Sand and there are no significant cones of depression in the project area.

The amount of water used by wells tapping the Carrizo Sand in the lignite area is not large (table 2). Significant withdrawals from the Carrizo Sand in Miller, Hempstead, Nevada, Ouachita, and Hot Spring Counties add up to a total withdrawal of 0.33 Mgal/d. The Carrizo Sand is used as a source of water supply in other counties in the area, but the amount of water withdrawn is not significant.

Most wells tapping the Carrizo are used for domestic supplies. Very few municipal, industrial, or irrigation wells are completed in the Carrizo Sand. Yields range from 30 to 100 gal/min. In the southwestern part of the project area, low-yield flowing wells can be obtained.

Information on the quality of water from the Carrizo Sand is available at a few places in the area. This information is given in table 43. Typically, the water is a sodium bicarbonate type and has a low to moderate mineral concentration. Downdip, water in the Carrizo Sand is unusable for some purposes because of increased chloride concentrations. The specific conductance of water from the Carrizo Sand differs from place to place, ranging from 24 μmho in a sample from Hot Spring County, to 4,680 μmho in a sample from Ouachita County. Figure 20 shows lines of equal specific conductance for the Carrizo

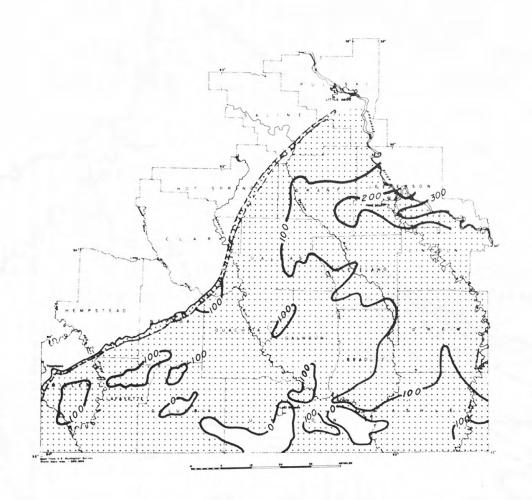
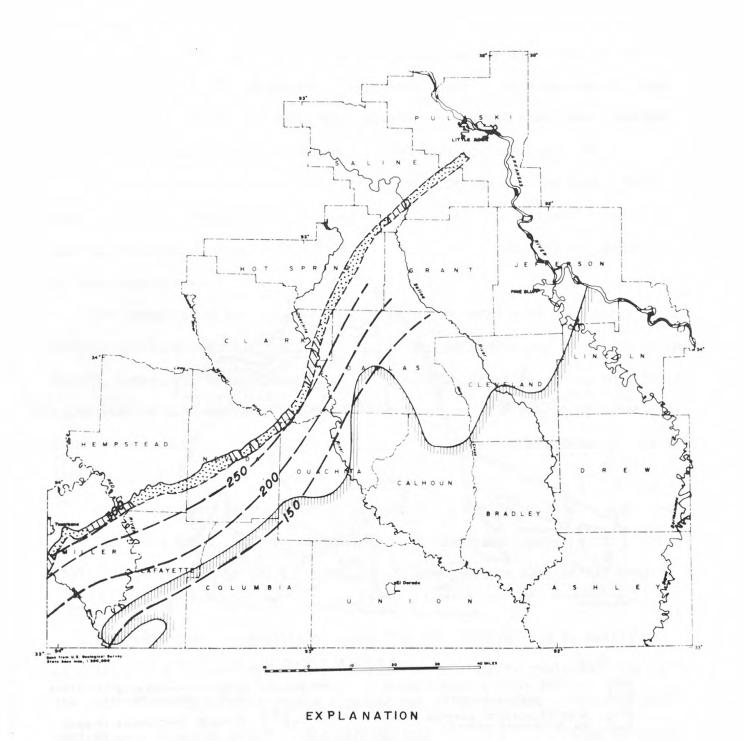
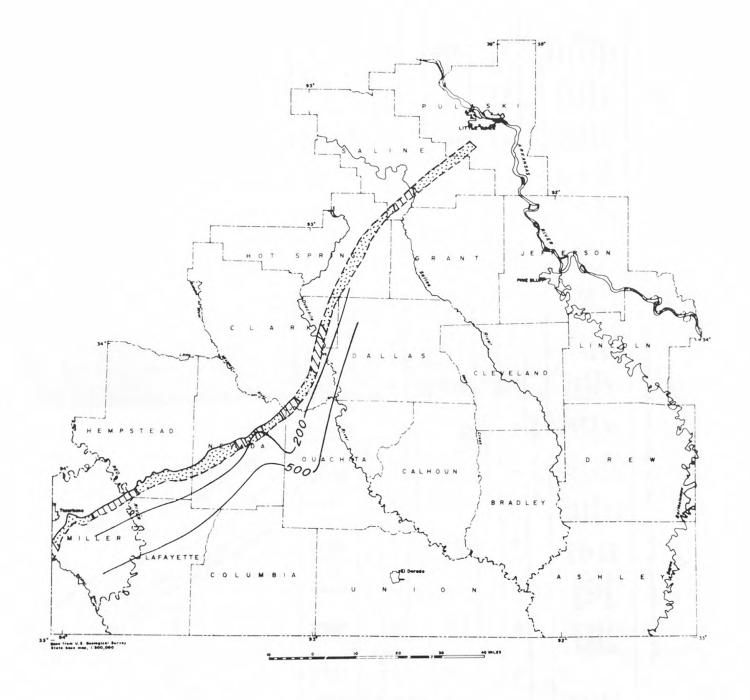



Figure 18.—Thickness and percentage of sand of the Carrizo Sand (modified from Hosman and others, 1968).

Area of outcrop. Dashed where approximately located

Area of outcrop covered by Quaternary deposits


Area of outcrop covered by Quaternary deposits

Approximate location of saltwater interface

Figure 19.—Potentiometric surface of the Carrizo Sand.

Table 43.—Chemical analyses of samples taken from wells tapping the Carrizo Sand

Non-car- of car- of																						
06S17W34ABB1 06-20-63 19.0 2 24 8.2 82 0 18 0 4.8 1.4 44 4.5 2.8 33 5.8 0.2 12 1,000 Miller County	Well number	of.	ature	(plat- inum- cobalt	ic con- duct- ance		bonate (HCO ₃)	ate (CO ₃)	ness as CaCO ₃	car- bonate hard- ness	solved cal- cium (Ca)	solved magne- sium (Mg)	solved sodium (Na)	adsorp- 'tion	solved potas- sium (K)	solved chlo- ride (C1)	solved sul- fate (SO ₄)	fluo- ride (F)	solved silica (SiO ₂)	solved iron (Fe)	Dis- solved solids (sum of constit- uents) (mg/L)	Dis- solved nitrate (NO ₃) (mg/L)
Miller County 15526W28CCC1 10-07-64 8 692 8.4 344 7 10 0 2.6 0.8 153 2.3 34 0.0 14 17528W16DDA1 10-07-64 12 291 8.3 169 2 4 0 .9 .4 66 1.4 2.0 3.0 10 02-29-68 15 290 7.6 176 0 4 0 1.1 .3 65 14 1.1 4.0 3.4 8.5 Nevada County 12520W02CDD1 10-06-64 18.0 3 257 7.8 132 0 10 0 3.0 0.7 54 2.6 5.8 12 12 Ouachita County 11519W32CCC1 08-07-59 20.5 59 7.2 13 0 11 0 5.0 5.0 3 12519W17ACC1 06-13-61 20.5 7 144 6.4 76 0 51 0 16 2.7 7.0 0.4 1.8 2.8 3.0 3 12519W26ACC1 04-08-59 18.5 4 7.2 58 0 25 0 7.2 1.7 18 1.6 6 8.8 90 0 0 0 0										Но	t Spring	County										
15S26W28CCC1 10-07-64 8 692 8.4 344 7 10 0 2.6 0.8 153 2.3 34 0.0 14 17S28W16DDA1 10-07-64 12 291 8.3 169 2 4 0 .9 .4 66 1.4 2.0 3.0 10 10 02-29-68 15 290 7.6 176 0 4 0 1.1 .3 65 14 1.1 4.0 3.4 8.5 8.5 12 02-29-68 15 290 7.8 132 0 10 0 3.0 0.7 54 2.6 5.8 12 12 02 04 04 04 04 04 04 04 04 04 04 04 04 04	06S17W34ABB1	06-20-63	19.0	2	24	8.2	82	0	18	0	4.8	1.4	44	4.5	2.8	33	5.8	0.2	12	1,000	146	0.20
17528W16DDA1 10-07-64 12 291 8.3 169 2 4 0 .9 .4 66 1.4 2.0 3.0 10										1	Miller Co	ounty										
12S2OW02CDD1 10-06-64 18.0 3 257 7.8 132 0 10 0 3.0 0.7 54 2.6 5.8 12 12 Ouachita County 11S19W32CCC1 08-07-59 20.5 59 7.2 13 0 11 0 5.0 5.0 312S19W17ACC1 06-13-61 20.5 7 144 6.4 76 0 51 0 16 2.7 7.0 0.4 1.8 2.8 3.0 312S19W26ACC1 04-08-59 18.5 4 7.2 58 0 25 0 7.2 1.7 18 1.6 .6 8.8 90 0		10-07-64		12	291	8.3	169	2	10 4 4	0	.9		66		1.4	2.0	3.0		10		383 169 171	.10 .20 .20
Ouachita County 11S19W32CCC1 08-07-59 20.5 59 7.2 13 0 11 0 5.0 5.0 12S19W17ACC1 06-13-61 20.5 7 144 6.4 76 0 51 0 16 2.7 7.0 0.4 1.8 2.8 3.0 3 12S19W26ACC1 04-08-59 18.5 4 7.2 58 0 25 0 7.2 1.7 18 1.6 .6 8.8 90 0	3								7		Nevada C	ounty										
11S19W32CCC1 08-07-59 20.5 59 7.2 13 0 11 0 5.0 5.0 12S19W17ACC1 06-13-61 20.5 7 144 6.4 76 0 51 0 16 2.7 7.0 0.4 1.8 2.8 3.0 3 12S19W26ACC1 04-08-59 18.5 4 7.2 58 0 25 0 7.2 1.7 18 1.6 .6 8.8 90 0	12S20W02CDD1	10-06-64	18.0	3	257	7.8	132	0	10	0	3.0	0.7	54		2.6	5.8	12		12		156	0.00
12S19W17ACC1 06-13-61 20.5 7 144 6.4 76 0 51 0 16 2.7 7.0 0.4 1.8 2.8 3.0 3.0 12S19W26ACC1 04-08-59 18.5 4 7.2 58 0 25 0 7.2 1.7 18 1.6 .6 8.8 90 0.0										0	uachita	County										
15S16W13DAD1 04-09-59 18.5 14 4,680 8.4 518 10 /9 0 20 /.0 1,950 51 11 1,350 6.0 0	12S19W17ACC1	06-13-67	20.5	7	144	6.4	76	0			16				1.8	2.8	3.0			3 0 0		5.6 .50 4.7 .80

500

LINE OF EQUAL SPECIFIC CONDUCTANCE, in micromhos per centimeter at 25 degrees Celsius. Interval as shown

Area of outcrop of Carrizo Sand. Dashed where approximately located

Area where outcrop of Carrizo Sand is covered by Quaternary deposits

Figure 20.—Specific conductance for the Carrizo Sand.

Sand. Because of lack of available data, it was not possible to define contours in the central and eastern part of the project area. The specific conductance of water from the Carrizo Sand is generally less than 700 µmho. The pH of water in nine analyses, shown in table 43, ranges from 6.4 to 8.4 and averages 7.7. Water from the Carrizo Sand is generally soft (hardness, less than 60 mg/L), with the exception of one sample of water from the formation in Ouachita County that has a hardness of 79 mg/L (CaCO₃). Silica concentrations for five analyses, shown in table 43, averages 11.3 mg/L and ranges from 8.5 to 14 mg/L.

Cane River Formation

The Cane River Formation overlies the Carrizo Sand and is in turn overlain by the Sparta Sand. The Cane River occurs in the subsurface throughout most of the project area. The formation crops out in a zone along the north-western boundary of the project area, from just south of Little Pock to near Texarkana (fig. 21). The Cane River Formation ranges in thickness from 150 ft, in Pulaski County, to 500 ft, in Jefferson County (fig. 22). The formation is generally from 21 to 60 percent sand. However, in west Grant, east Hot Spring, and central Miller Counties, the percentage of sand is 61 to 80. The percentage of sand decreases downdip (fig. 22). The potentiometric surface for the Cane River Formation is shown in figure 23.

Relatively few wells have been developed in the Cane River Formation. The formation is used mostly as a source of supply for wells in and near its updip limits. In this area, yields of as much as 920 gal/min are obtained (Ludwig, 1972). Total water use from the Cane River Formation in the lignite area was 3.48 Mgal/d in 1975 (table 2). The greatest water use was 2.47 Mgal/d in Lafayette County, with smaller amounts used in Miller, Nevada, Ouachita, Columbia, Dallas, and Hot Spring Counties.

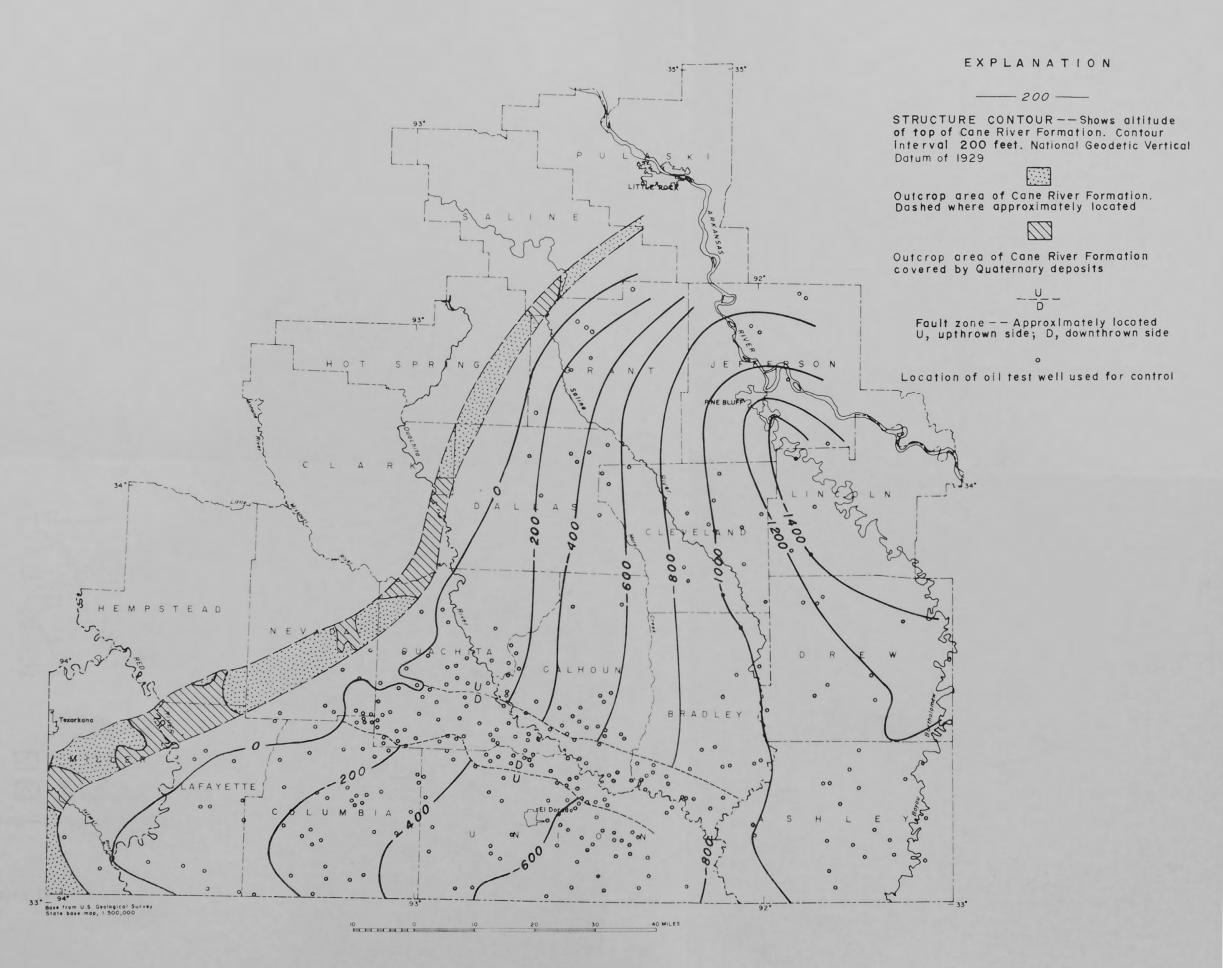
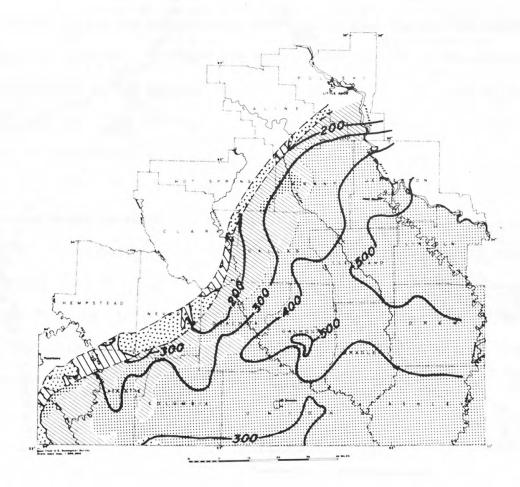



Figure 21.—Structural contours and areas of use of the Cane River Formation.

EXPLANATION

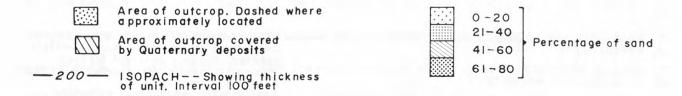
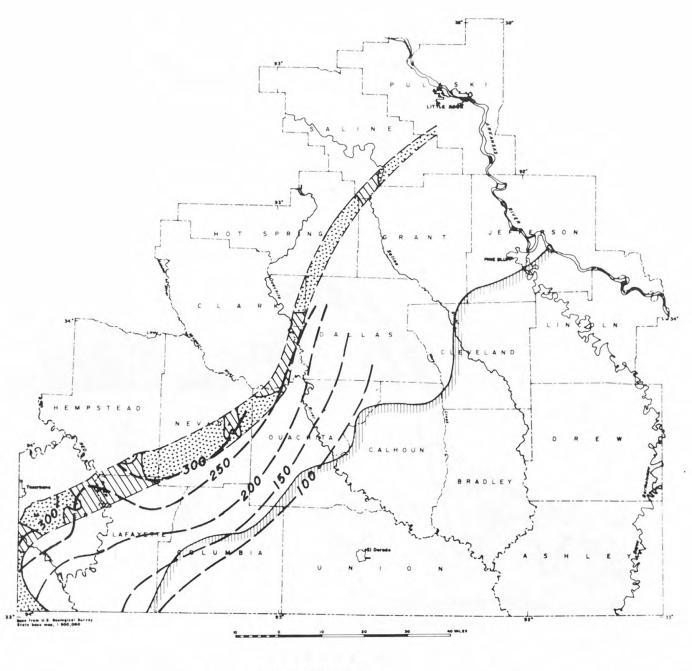



Figure 22.—Thickness and percentage of sand of the Cane River Formation (modified from Hosman and others, 1968).

EXPLANATION

Figure 23.—Potentiometric surface of the Cane River Formation.

The specific conductance of water from wells tapping the Cane River Formation ranges from 22 µmho, for a sample from Hot Spring County, to 4,360 µmho, for a sample from Ouachita County. The average specific conductance for 39 analyses, shown in table 44, is 443 µmho. Lines of equal specific conductance for the Cane River Formation are shown in figure 24. A general trend can be detected, with conductance increasing downdip, as might be expected. Contours are not fully developed in the central and eastern parts of the project area because sufficient data are not available at this time. The average pH is 7.5 and the range in pH is 4.5 to 8.8, with most values between 6.4 and 8.6. The average hardness for the analyses shown in table 44 is 35 mg/L ($CaCO_3$), which indicates soft water. However, the hardness of water in samples collected in Ouachita County is as much as 236 mg/L CaCO3. Bicarbonate averages 155 mg/L and ranges from 0 to 492 mg/L. Silica averages 12.6 mg/L and ranges from 8.5 to 25 mg/L. Chloride concentrations in water from the Cane River Formation are generally low except in the faulted zone in the south-central part of the project area. Within this zone, chloride concentrations can be so high that the water is unfit for some uses.

Sparta Sand

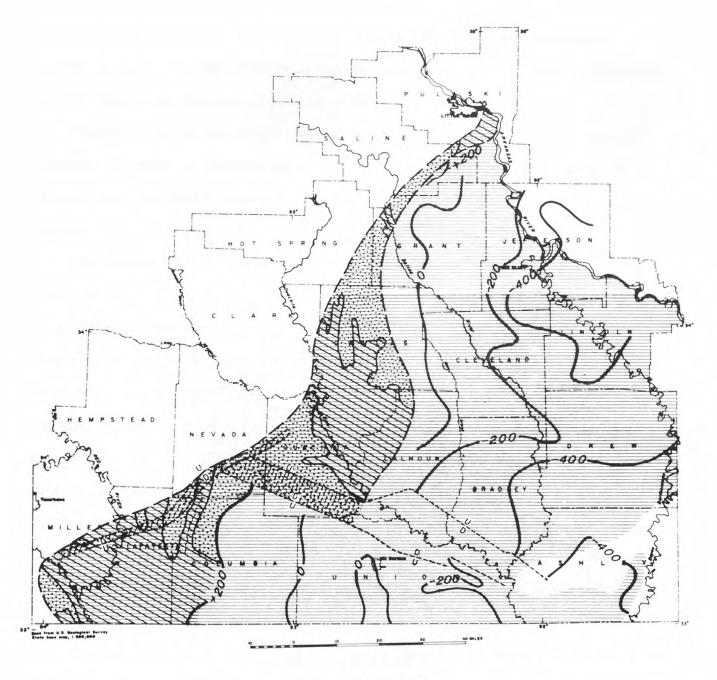
The Sparta Sand overlies the Cane River Formation and is overlain in turn by the Cook Mountain Formation. The Sparta is present throughout the entire project area. Areas of outcrop, structural contours of the top, and areas of use are shown in figure 25. The Sparta consists chiefly of beds of fine- to medium-grained sand in the lower part of the unit, and of beds of sand, clay, and lignite in the upper part. The formation is 300 to 900 ft thick and ranges from 21 to 100 percent sand in the project area (fig. 26). The thickness of the Sparta Sand increases and the percentage of sand generally decreases

Table 44.—Chemical analyses of samples taken from wells tapping the Cane River Formation

Well number	Date of sample	Temper- ature (°C)	Color (plat- inum- cobalt units)	Specif- ic con- duct- ance (µmho)	Ph	Bicar- bonate (HCO ₃) (mg/L)	Carbon- ate (CO ₃) (mg/L)	Hard- ness as CaCO ₃ (mg/L)	Non- car- bonate hard- ness (mg/L)	Dis- solved cal- cium (Ca) (mg/L)	Dis- solved magne- sium (Mg) (mg/L)	Dis- solved sodium (Na) (mg/L)	Sodium adsorp- tion ratio	Dis- solved potas- sium (K) (mg/L)	Dis- solved chlo- ride (C1) (mg/L)	Dis- solved sul- fate (SO ₄) (mg/L)	Total fluo- ride (F) (mg/L)	Dis- solved silica (SiO ₂) (mg/L)	Dis- solved iron (Fe) (µg/L)	Dis- solved solids (sum of constit- uents) (mg/L)	Dis- solved nitrate (NO ₃) (mg/L)
									Co	lumbia C	ounty										
15S20W12CCC1 15S20W13BBB1	08-29-50 08-29-50			522 497	8.3	262 273	0	40 36	0	10	2.8	106	7.6	4.8	40 34	1.0		11	100	304	1.7
									D	allas Co	unty										
07S17W22AAB1 09S17W28DAB1	06-27-63 07-26-46		3	35 228	7.3 8.0		0	13 21	0	2.4	1.7	0.8		1.0	1.8 364	3.2		13 11		37	0.00
									Не	mpstead	County										
14S24W29BCB1	04-04-51 02-28-68	14.0	 4	113 127	5.3		0	18 11	16 11	1.3	2.0	13	1.7	2.0	22 24	6.0		25		81	9.0 6.5
									Hot	Spring	County										
04S16W27AAC1 05S16W16CDB1 05S16W17CCB1	07-02-63 06-17-64 05-08-64	18.0	3 5 10	22 41 34	6.2 4.7 5.6	1	0 0 0	4 6 8	0 6 1	1.1 1.9 1.8	0. 4 .5 .8	1.1 1.2 1.7	0.2	1.2 .8 1.4	2.2 2.5 .1	3.0 8.4 2.2	1.0	16	650 860 1,000	33	0.00 .00 1.6
									La	fayette	County										
16S24W15BCB1 16S23W10DAC1 16S23W16BCB2 16S25W14DBB1 16S25W35BDC1 17S23W21BCB1 19S25W13CDD1 19S26W32ADC1 20S26W04DBD1	01-24-46 07-07-52 03-07-68 02-29-68 10-06-64 06-19-50 10-06-64 02-29-68 10-25-68	16.0 21 22.2 20.0	 3 9 6 7 9 6 9	24 129 218 480 682 134 1,190 1,150 386 399	8.4 7.4 7.5 7.6 7.8 7.1 8.8 8.3 8.5	70 104 244 275 64 428 492 164	0 0 0 0 0 0 34 4 4 8	69 23 45 11 20 44 20 22 16 20	0 0 0 0 0 0	12 15 3.4 5.9 11 5.7 7.1 5.0 6.0	4.1 2.0 .6 1.5 4.0 1.6 1.1	24 	1.8 25 7.3 8.4	5.0 3.8 1.9 3.1 1.6 3.4 2.7 1.3	3.5 4.2 12 34 63 9.5 137 142 6.3 7.8	3.4 6 7.4 1.6 .2 3.5 .0 .6	0 .3 .1	11 13 20 11 9.:	390 80 2 7	280 358 87 668 679	1.8 .5 .0 .70 1.0 .2 .20 .20 1.6
									м	iller Co	ounty										
16S26W24ABA1 16S27W30CCD1 16S27W36DBB1 18S26W03BBB1 18S26W27BBA1 19S27 W32CDD1 19S28W10ADC1 20S28W14AAA1	10-23-68 07-25-51 10-24-68 10-06-64 03-08-68 10-23-68 10-07-64 02-29-68 10-23-68	18.0 3 4 20.0 8 18.0 21.0 4 8 15.0	3 2 6 25 3 1 1	280 76 284 246 658 325 274 278 379	7.8 7.1 8.4 7.9 7.6 7.6 8.6	25 120 145 370 196 4 98 0 104	0 0 4 0 0 0 0	52 14 51 4 7 29 48 53 11	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 1.2 2.3 8.0 12 15 3.0	3.6 3.3 .4 .4 2.2 4.5 3.8 .9	38 26 54 156 65 35 36 88	2.1	3.7 4.3 1.4 2.3 2.4 5.5 5.2	9.9 8.2 7.1 3.7 38 8.7 5.6 8.0	7.0 1.6 .2 .6 .8 37 37		11 11 11 10 15 14		144 394 196 165 174	1.0 5.0 .10 .60 .40 2.0 .80 2.1

Table 44.—Chemical analyses of samples taken from wells tapping the Cane River Formation—Continued

Well number	Date of sample	Temper- ature (°C)	Color (plat- inum- cobalt units)	Specif- ic con- duct- ance (µmho)	Ph	Bicar- bonate (HCO ₃) (mg/L)	Carbon- ate (CO ₃) (mg/L)	Hard- ness as CaCO ₃ (mg/L)	Non- car- bonate hard- ness (mg/L)	Dis- solved cal- cium (Ca) (mg/L)	Dis- solved magne- sium (Mg) (mg/L)	Dis- solved sodium (Na) (mg/L)	Sodium adsorp- tion ratio	Dis- solved potas- sium (K) (mg/L)	Dis- solved chlo- ride (Cl) (mg/L)	Dis- solved sul- fate (SO ₄) (mg/L)	Total fluo- ride (F) (mg/L)	Dis- solved silica (SiO ₂) (mg/L)	Dis- solved iron (Fe) (µg/L)	Dis- solved solids (sum of constit- uents) (mg/L)	Dis- solved nitrate (NO ₃ (mg/L
									N	evada Co	unty										
14S21W11ADB1	10-08-64 03-07-68		2 2	221 230	7.4 7.0	132 140	0	21 31	0	11	0.9	41 41		2.0	1.5	3.4 3.6		10 11		131 143	0.00
14S22W08CBC1	10-07-64	18.0	1	44	6.0	4	0	11	8	1.8	1.0	2.0		1.0	3.0	.0		11		34	11
	111								01	uachita	County										
11S19W24DDD1 11S19W33AAC1 12S16W33BCA1	08-07-59 08-07-59 01-16-59	20.0		219 226 4,360	7.9 7.4 8.2	122 73 256	0 0	112 78 236	12 18 26	65	18	871	25	16	6.5 16 1,360	5.0 5.0 31			40		10 27
12S19W14AAA2	08-21-58 08-22-58		60 35	916 925	8.2	196 190	0	45 44	0	13 12	3.0	187 178	12 12	6.3	205 202	1.6			1,000		1.8
12S19W14ABB1 15S16W30DAD1 15S19W22DCC1	08-21-58 12-04-45 04-09-59		5 18	83 37 832	7.4 7.8 8.3	44 214 350	0 0 4	35 30 22	0 0 0	4.9 9.5 6.0	5.6 1.5 1.7	3.4 76 192	.2 6.0 18	.6 2.7 4.2	4.0 11 110	1.6 6.1 .2	0.0	9.9	100 180 40	225	.20 2.2 .20


____200____

LINE OF EQUAL SPECIFIC CONDUCTANCE, in micromhos per centimeter at 25 degrees Celsius. Interval as shown

Area of outcrop of Cane River
Formation. Dashed where
approximately located

Area where outcrop of Cane River Formation is covered by Quaternary deposits

Figure 24.—Specific-conductance contours for the Cane River Formation.

EXPLANATION

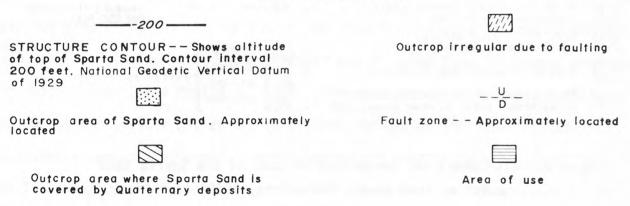
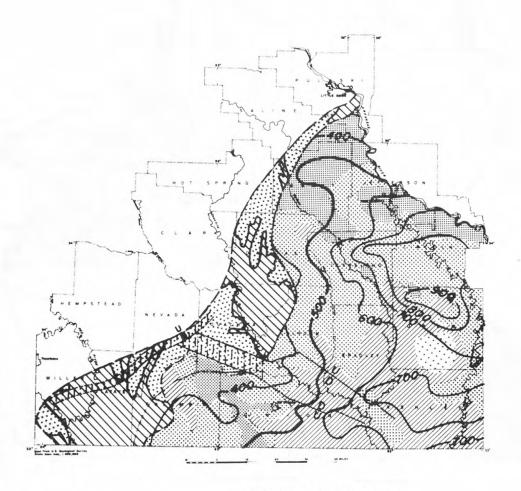
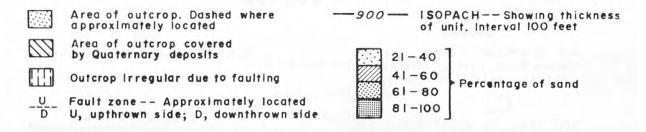
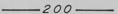



Figure 25.—Structural contours of the top and areas of use of the Sparta Sand.

EXPLANATION




Figure 26.—Thickness and percentage of sand of the Sparta Sand (modified from Hosman and others, 1968).

downdip. The formation dips toward the Mississippi River and southward toward the gulf. In the lignite area, the Sparta Sand is thinnest in southern Pulaski County and thickest in northern Drew County.

Figure 27 shows the potentiometric surface of the Sparta Sand. General movement of water is southeastward. Depressions exist around Magnolia, El Dorado, and Pine Bluff, where heavy pumping has significantly lowered water levels.

The Sparta Sand is the most productive aquifer in the lignite area. As shown in table 2, it is the source of significant withdrawals in 17 of the 20 counties in the lignite area. In 1975, total withdrawal from the Sparta Sand within the project area was 91.51 Mgal/d. The Sparta Sand is also a productive aquifer in eastern Arkansas, northern Louisiana, and in Mississippi. The Memphis aquifer, of which the Sparta Sand is the upper part, is a dependable source of water supply in northeast Arkansas and in Tennessee, Missouri, and Kentucky. About 350 Mgal/d was pumped from the Sparta Sand and the Memphis aquifer in 1965 in Arkansas, Kentucky, Louisiana, Mississippi, Missouri, and Tennessee. The use of water from the Sparta Sand and the Memphis aquifer in Arkansas increased about 30 percent from 1965 to 1975 and probably increased about the same amount in the other States.

The largest use of water from the Sparta Sand (53.82 Mgal/d in 1975) is in Jefferson County. Water withdrawn from the formation is used for municipal supply for Pine Bluff and smaller cities and industrial supply for two papermills and other industries. The second largest use of water from the Sparta Sand is in Union County (17.4 Mgal/d in 1975). The water is used for public supply by El Dorado and smaller cities and by several refineries and other industries. Substantial amounts of water from the Sparta are used in Columbia (6.02 Mgal/d in 1975) and Ouachita (4.28 Mgal/d in 1975) Counties. In 1975, use in other counties ranged from 0.13 Mgal/d to as much as 2.97 Mgal/d per county. Where

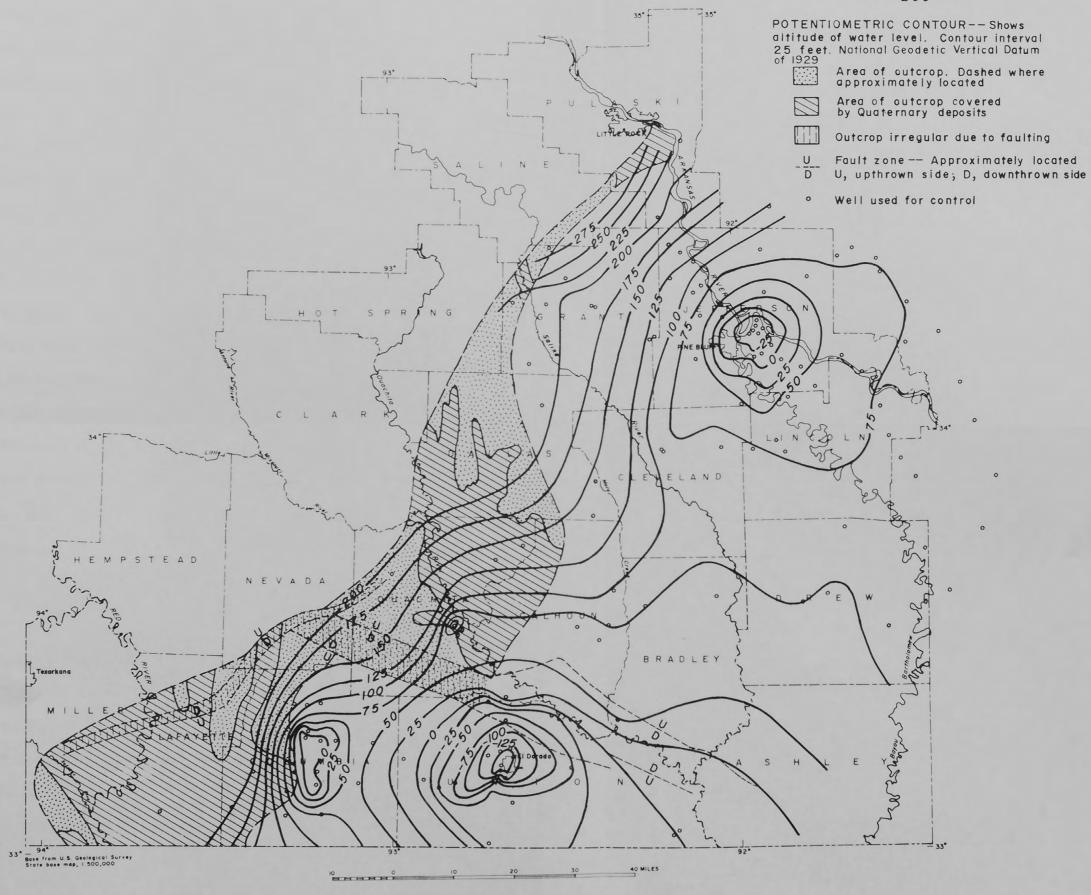


Figure 27.—Potentiometric surface of the Sparta Sand.

present, the Sparta Sand is used as a source of municipal supply by most towns and cities in the project area.

Water in the Sparta Sand is generally soft and is a sodium bicarbonate type. Within the project area, dissolved-solids concentrations range from 24 to 1,320 mg/L and have an average of about 93 mg/L (table 45). Although the range in dissolved solids is large, the average indicates that in most areas water in the Sparta is only moderately mineralized. Specific conductance of water from the Sparta Sand ranges from 20 µmho in a sample from Lafayette County, to 4,610 µmho in a sample from Ouachita County. Figure 28 shows lines of equal specific conductance for the Sparta Sand. Conductance increases downdip, as mineralization of the water increases. Also, locally, specific conductance may be higher than the general trend indicates. These highs are indicated by the closed lines on the map. The pH ranges from 4.0 to 8.8 and averages 7.4. Hardness of water from the Sparta Sand ranges from 1 to 238 mg/L and averages about 30 mg/L. Bicarbonate averages about 145 mg/L and ranges from 0 to 1,280 mg/L. Concentrations of silica range from 1.6 to 58 mg/L and average about 15.5 mg/L.

Cook Mountain Formation

The Cook Mountain Formation overlies the Sparta Sand and is overlain in turn by the Cockfield Formation. It is typically about 100 to 150 ft thick. The formation is composed of carbonaceous clay, lignite, and lenticular beds of sand ranging from a few inches to a few feet thick. These thin sand beds do not contain substantial amounts of water. However, the formation does furnish small amounts of water to shallow wells in its outcrop area in central Grant County east of the Saline River. The Cook Mountain Formation is of only minor importance as an aquifer in the project area.

Dis-

solved

magne-

sium

Dis-

solved

sodium

(Na)

Sodium

adsorp-

tion

Dis-

solved

cal-

cium

Non-

car-

bonate

hard-

Hard-

ness

as

CaCO3

Bicar- Carbon-

ate

 (CO_3)

bonate

(HCO₃)

Color

(plat-

inum-

cobalt

Date

of

sample

Well number

Temper-

ature

21.1

21.5

06-17-64

07-01-64

07S14W31AAA1

07S14W31AAA1

07S15W29CDB1 12-05-66

20

0

2

128

133

39 6.9

6.0

6.8

48

51

0

0

0

36

38

(°C)

Specif-

ic con-

duct-

ance

Ph

Dis-

solved

(sum of

constit-

91

34

3,800

.00

.00

3.5

20

14

0.2

nitrate

 (NO_3)

Dis-

solved

chlo-

ride

Dis-

solved

potas-

sium

Dis-

solved

sul-

fate

Total

fluo-

(F)

Dis-

solved

silica

(Si02)

Dis-

solved

iron

(Fe)

0

0

11

11

2.2

2.6

.8

7.3

2.9

4.5

2.1

6.5 11

6.5

4.3

11

2.6

Well number	Date of sample	Temper- ature (°C)	Color (plat- inum- cobalt units)	Specif- ic con- duct- ance (µmho)	Ph	Bicar- bonate (HCO ₃) (mg/L)	Carbon- ate (CO ₃) (mg/L)	Hard- ness as CaCO ₃ (mg/L)	Non- car- bonate hard- ness (mg/L)	Dis- solved cal- cium (Ca) (mg/L)	Dis- solved magne- sium (Mg) (mg/L)	Dis- solved sodium (Na) (mg/L)	Sodium adsorp- tion ratio	Dis- solved potas- sium (K) (mg/L)	Dis- solved chlo- ride (Cl) (mg/L)	Dis- solved sul- fate (SO ₄) (mg/L)	Total fluo- ride (F) (mg/L)	Dis- solved silica (SiO ₂) (mg/L)	Dis- solved iron (Fe) (µg/L)	Dis- solved solids (sum of constit- uents) (mg/L)	Dis- solved nitrate (NO ₃) (mg/L)
									Dallas	County-	-Continu	ied									
07S16W17CDC1 07S16W35ABB1 08S15W34BDC1 10S13W34ACA1 10S13W34ACA3	12-05-66 12-05-66 12-05-66 10-25-49 05-10-50	18.3	5 5 1 	63 298 54 813 315	6.9 6.4 6.7 8.2 7.4	28 16 18 520 172	0 0 0 9	22 70 10 26 102	0 56 0 0	7.8 15 2.2 7.0 29	0.7 7.8 1.2 1.9 7.1	2,2 22 5,1 209 27		1.4 5.9 2.0 6.2 3.1	2.3 45 4.6 14 9.0	3.8 7.0 2.2 3.5		1# 34 15 12 28		71 197 42	.00 52 1.0 4.1 1.0
										Drew Co	unty										
11S06W11DBC1 11S07W07BBD1 11S08W11DDD1 11S08W14BBA1 12S06W32ADD1 12S07W21DDC1 12S07W26DAC2 12S07W26DAC2 12S07W04ABA1 13S07W10BCA1 13S07W11CBC1 13S07W11CBC1 13S07W21AAC1 15S07W08BAC	07-28-5: 10-21-5: 12-16-5: 12-16-5: 09-10-54: 02-10-54: 02-12-5- 02-10-5- 02-10-5- 02-10-5- 02-10-5-	3 23.0 3 3 4 4 26.0 4 27.0 4 23.0 4 22.0 4 25.0	20 10 6 8 15 35 35	265 194 197 230 270 253 255 231 357 293 262 328 749	8.0 7.9 8.5 8.4 8.3 7.6 8.2 7.7 8.3 8.6 8.0	170 120 114 122 160 146 140 142 208 172 150 178 425	0 4 4 0 3 1 0 0 0 3 8	1 15 15 1 4 4 3 10 3 5 4 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.4 4.4 .4 1.4 .8 1.0	0.0 1.0 .1 .1 .2 .1	68 67 58 55 68 79 184	30 25 13 14 17	1.5	4.8 3.2 2.8 3.5 4.5 3.5 2.8 7.5 5.0 5.5 8.0	0.9 2.8 3.0 5.0 .6 3.0 3.2 1.0 4.0 5.8 3.0 7.0	.3 .0	13 6.6 12 12 12	100 30 190 40 100 0 0 110 130 30 1,100 440	174 164 188 232 464	0.70 .40 1.2 .90 .70 1.3 2.0 1.0 .20 1.2 6.0 .40 2.5
										Grant C	ounty										
03S14W20DDA 03S15W25BBB 03S15W26DAA1 04S12W17DCC2 04S15W33BCA1 05S13W03CDA3 05S13W09ABA1 05S14W05CBB1 05S14W06DBA1 05S14W18DDB1 06S15W25CCC1 06S15W25CCC3 06S15W25CCC4 06S15W26AAA1 06S15W26ACA1 07S12W21BDB1	06-27-6: 06-27-6: 10-20-6: 07-21-6: 06-20-6: 05-28-6: 07-01-6: 05-14-6: 05-18-6: 05-07-6: 05-11-6: 10-19-6: 08-04-6:	3 17.0 4 18.5 4 4 21.0 5 20.0 4 20.0 4 19.5 3 20.0 4 20.0 4 20.0 4 19.0 19.0 4 19.0 4 19.0 4 19.0	1 1 5 5 80 0 2 0 6 6 6 - 1 2 3 3 5	39 108 32 433 53 76 127 96 102 181 266 150 103 81 175	7.2 4.9 6.1 8.4 6.7 6.4 6.3 6.0 6.4 7.4 6.6 6.4 6.2 4.8 7.1 6.8	3 7 193 22 24 32 42 39 70 122 51	0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 20 5 64 13 20 19 33 24 28 38 66 28 10 28	0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.8 3.8 1.0 20 3.3 4.4 5.2 10 6.7 8.1 8.0 16 6.5 1.0 9.5	.8 2.5 3.5 1.2 2.2 1.5 1.9 1.8 2.1 4.5 6.5 2.8 1.7	1.3 4.1 2.8 70 3.6 4.9 5.5 9.4 8.2 7.3 5.1 6.0 4.4 11 1.5	.5 3.8 .4 .5 .5 .7 .7 .6 .4 .3 .4 1.6	2.3 8.2 1.5 5.4 2.3 2.7 1.9 3.8 3.0 3.6 28 38 3.3 4 1.5 5.4	2.6 11 3.4 6.5 4.0 3.3 6.2 7.5 6.2 7.5 6.5 14 2.1 6.0	.0 8.6 2.0 42 .0 6.4 4.0 13 3.6 8.0 11 11 3.2 13 7.8	.0 .2 .1 .3 .2 .0 .0 .0 .2 .1 .21 .3 .2 .2 .0 .0 .0 .0212	17 11 36 14 24 18 17 34 56 30 16 11 11 16 15	100 100 770 4,200 1,700 2,200 7,400 5,800 300 510 20 30 210	34 73 52 264 54 58 62 103 115 90 166 96 64 56	1.7 15 1.5 2.6 .40 .00 .00 .00 .10 .00 4.0 5.4 17 .30
									Н	ot Sprin	g County										
06S16W07CAC1 06S16W07DAD1 06S16W36CBC	08-18-6 06-27-6 06-27-6	3 18.5	0 3 2	169 83 34	5.5 7.2 6.1	4.0	0	44 32 12	42 0 0	8.8 8.8 4.2	5.4 2.3 .3	12 1.7 1.4	0.8	2.3 4.4 .8	17 2.4 2.8	2.2 5.2 0	0.2	18 12 14	550 10,000 1,500	119 67 34	51 .00 1.2
									Je	efferson	County										
05S09W33CDB1 05S10W02CDD1 05S10W03BBC1 05S10W03CDB1 05S10W04BBD1 05S10W11ABD1	12-07-44 12-06-44 12-06-44 12-06-44 12-06-44	8 8 23.0 8 8 23.0	5 0 5 7 5 5	126 106 138 104 87	7.3 7.6 7.5 7.7 7.7	55 63 48 41	0 0 0	19 25 35 27 21 29	0 0 0 0 0 0	4.9 6.9 9.8 7.2 5.8 7.8	1.6 1.9 2.5 2.2 1.7 2.3	20 12 13 10 9.9	2.0	4.1 2.4 3.2 2.6 3.5 3.2	4.0 4.0 4.5 4.2 5.5	3.8 2.9 10 6.8 7.4 6.9	20 .1 .1 .1 .1	15 13 17 14 14 13	90 50 80 150 100 60	88 70 92 70 67 71	0.00 .00 .00 .00

Dis-

Dis-

Dis-

Dis-

Dis-

Total

Dis-

Dis-

Dis-

Non-

Hard-

Color

Specif-

Dis-

solved

Dis-

Well number	Date of sample	Temper- ature (°C)	Color (plat- inum- cobalt units)	Specif- ic con- duct- ance (µmho)	Ph	Bicar- bonate (HCO ₃) (mg/L)	Carbon- ate (CO ₃) (mg/L)	Hard- ness as CaCO ₃ (mg/L)	Non- car- bonate hard- ness (mg/L)	Dis- solved cal- cium (Ca) (mg/L)	Dis- solved magne- sium (Mg) (mg/L)	Dis- solved sodium (Na) (mg/L)	Sodium adsorp- tion ratio	Dis- solved potas- sium (K) (mg/L)	Dis- solved chlo- ride (Cl) (mg/L)	Dis- solved sul- fate (SO ₄) (mg/L)	Total fluo- ride (F) (mg/L)	Dis- solved silica (SiO ₂) (mg/L)	Dis- solved iron (Fe) (µg/L)	Dis- solved solids (sum of constit- uents) (mg/L)	Dis- solved nitrate (NO ₃) (mg/L)
_									Ouachit	a County	-Contin	ued									
12S18W24CAC1 12S19W14AAA1 12S19W28DDC1 12S19W30AAA1 13S16W05ACD1 13S16W18CAC1 13S16W27BBD1 13S17W19ABB2 13S17W19CCA1 13S17W19CCA1 13S17W23CAA1 13S18W003BAC1 13S18W10ADB1 13S18W10ADB1 13S18W17BBB1 13S19W16ADA1 13S19W28CAB1 14S16W07CBC1 14S17W02DCD1 14S17W04BAD1 14S17W04BAD1 14S17W04BAD1 14S17W04BAD1 14S17W04BAD1 14S17W04BAD1 14S17W1BCB1 14S17W1BCB1 14S17W1BCB1 15S18W02ABB1 15S18W02ABB1 15S18W02ABB1 15S19W22ABB1 15S19W21CAB1 15S19W21CAB1 15S19W22ABB1	08-06-59 09-04-58 08-07-59 08-07-59 04-07-59 04-07-59 04-08-59 04-08-59 04-08-59 04-08-59 08-10-59 08-10-59 08-10-59 08-11-59 04-09-59 04-09-59 08-11-59 04-09-59 08-11-59 04-09-59 08-11-59 04-09-59 08-11-59 04-09-59	19.0 18.5 18.5 19.5 19.0 21.0 19.5	5 3 4 5 2 6 6 5 	254 45 161 137 154 2,740 4,610 142 61 91 72 43 199 220 39 148 187 146 325 63 89 240 250 90 669 22 189 182 176	7.7 6.3 7.9 6.8 6.1 6.3 6.2 4.9 6.8 6.2 4.9 6.8 6.2 7.8 6.8 7.3 6.8 7.3 6.8 6.1 7.3 6.8 6.1 7.3 6.8 6.1 7.3 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8	30 4 64 32 84 294 320 80 18 24 6 0 10 7 7 92 46 154 29 16 156 3 3 138 4 4 0 110 94 94 98 99		84 664 333 266 92 150 60 18 24 20 9 35 46 9 24 68 88 38 44 22 25 34 64 26 36 46 49 27 48 48 48 48 48 48 48 48 48 48 48 48 48	59 3 12 7 0 0 0 0 3 4 20 0 0 46 1 18 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0	1.0 6.8 27 42 17 4.0 6.8 6.0 2.5 18 17 16 14 16 14	1.0 2.1 6.0 11 4.2 2.0 1.7 1.2 .7 5.5 5.5 5.3 3.8 3.4 3.1 3.1	3.7 	 .6 2.1 26 34 .3 .2 .5 .3 .5 .6 1.2 1.2 1.1 1.3 1.1	1.4 3.0 12 1.3 4.0 2.3 3.2 1.5 1.5 1.5 4.4 4.4 4.3 4.3 4.2 4.5	36 5.5 12 18 5.4 775 141 4.0 6.5 3.5 4.5 39 28 8.0 19 5.0 15 29 3.5 8.5 6.0 27 4.5 8.0 104 3.8 5.2 5.5 5.0	1.0 4.0 5.0 5.0 5.0 .4 6.8 3.8 5.8 11 25 .4 1.0 1.0 9.0 17 22 2.4 .6 19 16 .2 3.0 10 10 10 10 10 10 10 10 10 10 10 10 10	.3	3.9	170 10 40 20 10 0 10 10 10 10 10 10 10 120 150 0	24	45 1,1 11 19 .50 1.0 .80 .40 .40 .60 2.6 51 1.4 28 .20 .20 .20 .50 12 1.5 39 .40 .40 .50 .60 .60 .60 .60 .60 .60 .60 .6
										Union Co	ounty										
16S15W21DCD1 16S16W02BAC1 17S15W06CCC1 17S15W08DCC1 17S15W08DCC1 17S15W09ACB1 17S15W09ACB1 17S15W09ACC1 17S15W28DCC1 17S15W28DCC1 17S15W28DCC1 17S16W01ABB1 17S16W01CCC1 17S16W01ABB1 17S16W01CCC1	09-28-40 08-01-46 12-04-45 09-11-42 09-16-42 12-05-42 09-22-42 09-21-42 02-11-47 02-17-43 11-28-45 02-29-52 02-25-47 11-25-42 01-28-43 09-02-42 06-15-72 08-31-77 08-01-50 02-08-46 01-25-46	20.0	15	54 44 21 454 452 36 446 447 510 246 35	8.1 8.4 8.2 7.8 7.0 7.5 7.0 8.4 8.3 8.3 7.0 8.0 8.0 8.0 8.4 8.3	245 241 256 232 250 232 224 189 232 213 222 208 242 244 232 206 224 240 286 292 158	12 0 	 4 6 6 4 5 29 3 8 16 5 7 2 4 4 8 4 2 2 2 2 2 3	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.0 1.8 2.1 1.2 1.9 1.2 1.5 8.4 .9 2.2 4.5 1.4 2.6 1.0	2.6 .4 .3 .3 .4 .4 .2.0 .1 0.6 1.1 .2 .4 .2 .2 .4 .2 .2	128 106 103 106 116 106 107 59 100 106 104 107 109 115 101 92 110 116 509 81	27 19 17 22 20 22 17 4.8 24 16 11 21 17 32 21 14 26 11 42	1.1 1.4 3.0 1.5 1.6 3.4 1.5 7.4 3.8 .9	2.3 46 20 23 25 22 30 22 2.8 20 36 38 36 27 36 18 15 27 25 638 35	0.4 .6 1.4 1.8 2.0 1.0 1.1 .7 .3 0.8 1.3 .3 6.8 1.2 6.0 2.9 1.8	0.2 1.0 .1 0.1 .2 .3 	14 12 12 17 1.6 16 17 18 16 11 10 11 11 26 32 24 15 11 17 11 11 26 32 24 15 11 11 11 11 12 13 14 15 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	80 20 30 20 20 20 20 20 20	321 269 263 251 282 271 250 187 248 271 276 275 292 306 266 230 267 314 1,320 209	0.50 .50 .10 2.0 0.10 .00 .20 3.5 .20 .20

-500-

LINE OF EQUAL SPECIFIC CONDUCTANCE, in micromhos per centimeter at 25 degrees Celsius. Interval as shown

Area of outcrop of Sparta Sand, Dashed where approximately located

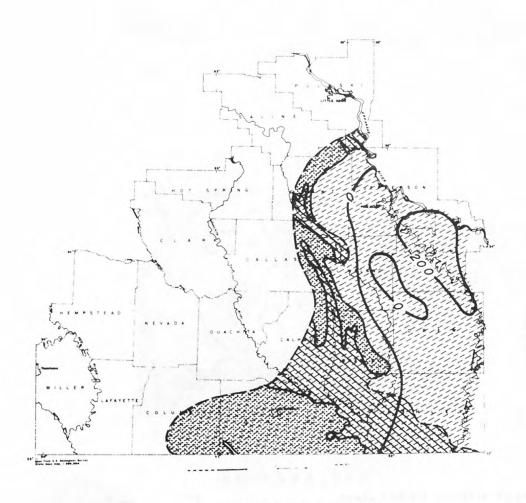
Outcrop irregular due to faulting

Area where outcrop of Sparta Sand is covered by Quaternary deposits

Fault zone — Approximately located U, upthrown side; D, downthrown side

Figure 28.—Specific conductance for the Sparta Sand.

The results of analyses of 20 samples taken from wells tapping the Cook Mountain Formation are shown in table 46. Most of the samples were taken from wells in Ouachita and Grant Counties. Specific conductance ranges from 78 to 3,040 μmho and averages about 401 μmho . The average pH is about 6.4 and the range in values is from 5.3 to 8.3. Average hardness is about 98.5 mg/L and values range from 3 to 1,110 mg/L. Bicarbonate ranges from 8 to 210 mg/L and averages 56.0 mg/L.


Cockfield Formation

The Cockfield Formation overlies the Cook Mountain Formation and is in turn overlain by the Jackson Group, undifferentiated. The Cockfield is present throughout the eastern part of the project area. Areas of outcrop, structural contours of the top, and areas of use are shown in figure 29. The formation is about 200 ft thick and generally consists of 40 to 80 percent sand in the project area (fig. 30). Figure 31 shows the potentiometric surface for the Cockfield Formation. Movement of water is generally southward.

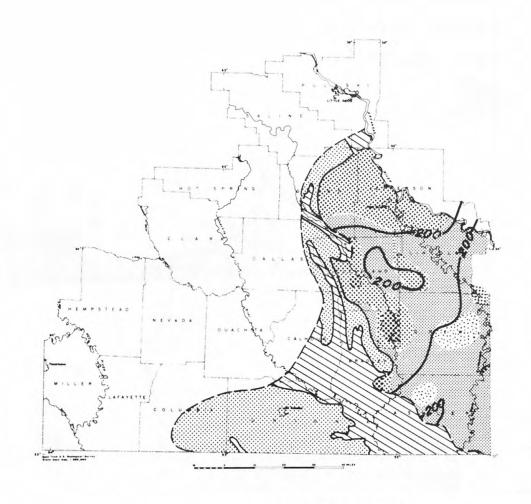
The Cockfield Formation is a significant source for ground water in 11 counties in the project area. The largest use is for domestic water supply. However, a few municipal and industrial wells also tap the aquifer. Within the project area, yields range from a few gallons per minute to 400 gal/min. The total water use in 1975 from the Cockfield Formation in the project area was 3.19 Mgal/d (table 2). The largest water use from the Cockfield is in Union (0.67 Mgal/d in 1975) and Cleveland (0.44 Mgal/d in 1975) Counties.

Water in the Cockfield is generally soft and is a sodium bicarbonate type. In the project area, dissolved solids range from 25 to 900 mg/L and average about 241 mg/L (table 47). Specific conductance ranges from 25 to 1,740 μmho and averages 435 μmho . Lines of equal specific conductance for the Cockfield are shown in figure 32. Closed contours in certain areas indicate local variations

Well number	Date of sample	Temper- ature (°C)	Color (plat- inum- cobalt units)	Specific conductance (µmho)	Ph	Bicar- bonate (HCO ₃) (mg/L)	Carbon- ate (CO ₃) (mg/L)	Hard- ness as CaCO ₃ (mg/L)	Non- car- bonate hard- ness (mg/L)	Dis- solved cal- cium (Ca) (mg/L)	Dis- solved magne- sium (Mg) (mg/L)	Dis- solved sodium (Na) (mg/L)	Sodium adsorp- tion ratio	Dis- solved potas- sium (K) (mg/L)	Dis- solved chlo- ride (Cl) (mg/L)	Dis- solved sul- fate (SO ₄) (mg/L)	Total fluo- ride (F) (mg/L)	Dis- solved silica (SiO ₂) (mg/L)	Dis- solved iron (Fe) (µg/L)	Dis- solved solids (sum of constit- uents) (mg/L)	Dis- solved nitrate (NO ₃) (mg/L)
									Ca	lhoun Co	unty										
11S14W11BAB1	08-05-59	18.0		203	5.3	11	0	30	21						64	7.0					22
									Co	lumbia C	ounty										
17S2OW36CAB1 19S19W01DBA1	08-29-50 08-29-50		==	300 429	7.7	193 210	0	46 57	0	14	2.7	55	3.5	2.2	4.0	6.7	0.1	15	20	196	1.2
									D	allas Co	unty										
10S13W18CAA1	12-05-66		5	182	6.3	12	0	40	30	6.3	6.0,	12		6.6	18	5.4		12		115	40
										Grant Co	unty										
04S14W31BCB1 05S14W06DBA2 05S15W12ADA1	08-14-63 05-14-64 05-14-64	18.5	4 6 3	78 96 80	6.8 6.3 5.6	24 44 8	0 0 0	22 24 6	2 0 0	7.9 6.4 2.1	6.0 2.0 .4	5.5 8.2 11	0.4 .7 1.8	0.6 3.1 .3	5.2 6.0 14	2.8 3.2 4.2	.1	32 53 28	50 11,000 120	74 115 67	7.0 .20 2.9
									Ou	achita C	ounty										
14S17W29ABC1 14S18W15ABB1 14S18W18DCD1 14S19W20BAA1 14S19W23BCD1 15S16W29BCA1 15S17W02ABD1 15S17W16DAA1 15S17W18CAC1 15S18W30BBD1 15S18W36AAA1 15S18W36AAA1	08-11-59 08-10-59 08-10-59 08-10-59 08-10-59 08-11-59 08-11-59 08-11-59 08-11-59 08-11-59 08-11-59	18.0 18.5 23.5 21.0 19.5		92 99 348 101 939 98 517 355 437 3,040 96 307 223	6.8 5.5 7.4 7.8 6.1 5.6 5.9 5.5 6.6 6.2 7.0	16 10 78 26 192 24 13 18 10 145 32 46	000000000000000000000000000000000000000	30 18 115 11 149 19 36 78 79 1,110 3 59 39	17 10 51 0 0 0 25 63 71 991 7 21 32						12 12 38 16 198 8.0 68 52 96 750 6.0 50	1.0 1.0 2.0 5.0 10 6.0 9.0 6.0 25					8.4 5.2 59 1.0 8.8 1.0 41 79 4.2 14 12 40 71

STRUCTURE CONTOUR — Shows altitude of top of Cockfield Formation. Contour inteval 200 feet. National Geodetic Vertical Datum of 1929

200 -


Outcrop area of Cockfield Formation.

Dashed where approximately located

Outcrop area where Cockfield Formation is covered by Quaternary deposits

Area of use

Figure 29.—Structural contours of the top and areas of use of the Cockfield Formation (modified from Hosman and others, 1968).

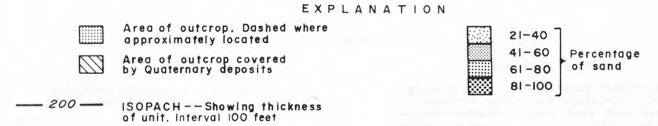


Figure 30.—Thickness and percentage of sand of the Cockfield Formation (modified from Hosman and others, 1968).

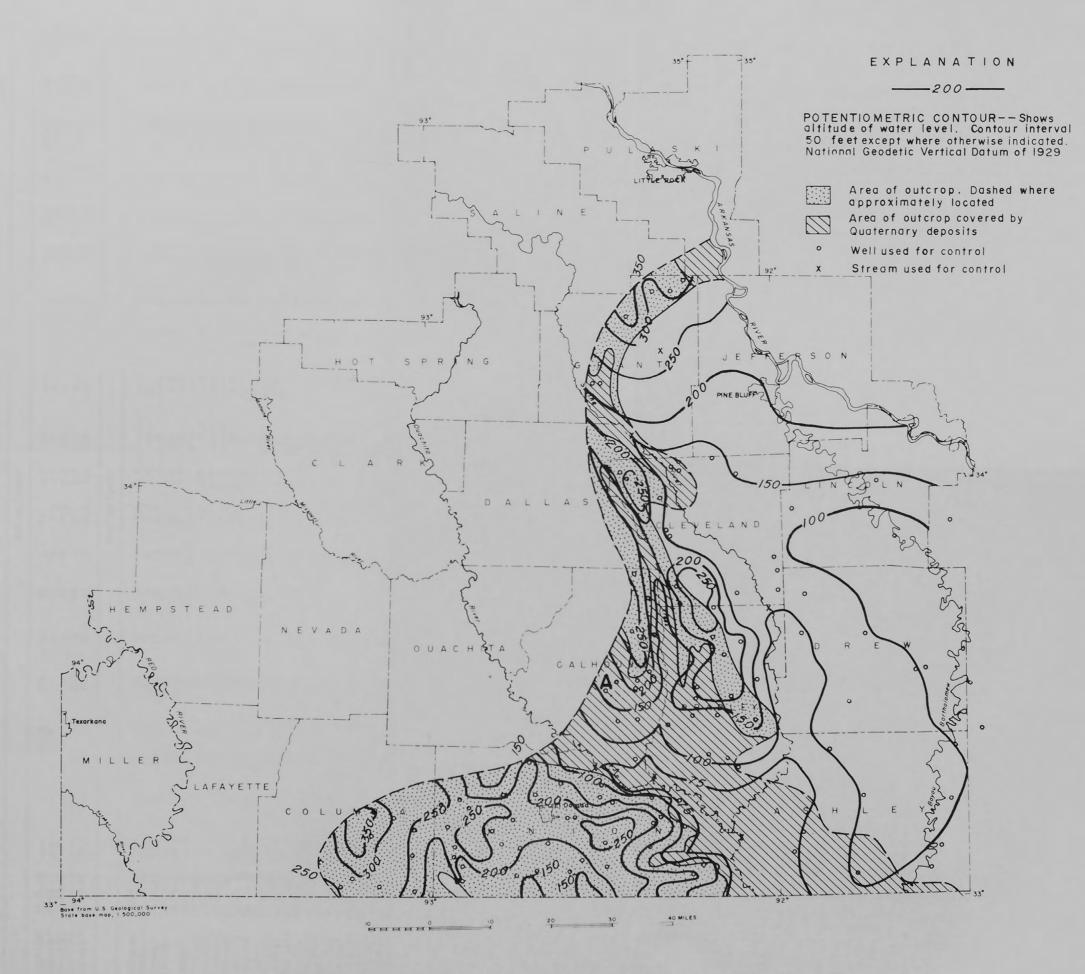


Figure 31.—Potentiometric surface of the Cockfield Formation.

Well number	Date of sample	Temper- ature (°C)	Color (plat- inum- cobalt units)	Specif- ic con- duct- ance (µmho)	Ph	Bicar- bonate (HCO ₃) (mg/L)	Carbon- ate (CO ₃) (mg/L)	Hard- ness as CaCO ₃ (mg/L)	Non- car- bonate hard- ness (mg/L)	Dis- solved cal- cium (Ca) (mg/L)	Dis- solved magne- sium (Mg) (mg/L)	Dis- solved sodium (Na) (mg/L)	Sodium adsorp- tion ratio	Dis- solved potas- sium (K) (mg/L)	Dis- solved chlo- ride (Cl) (mg/L)	Dis- solved sul- fate (SO ₄) (mg/L)	Total fluo- ride (F) (mg/L)	Dis- solved silica (SiO ₂) (mg/L)	Dis- solved iron (Fe) (µg/L)	Dis- solved solids (sum of constit- uents) (mg/L)	Dis- solved nitrate (NO ₃) (mg/L)
										Ashley C	ounty										
15S07W31ADD1 18S08W04BBC1 18S08W17ADD1 18S09W14CDB1 18S10W14ACB1	07-25-47 04-11-61 11-12-46 11-12-46 01-19-47			457 1,010 680 1,110	8.0 8.2 7.7 7.2 8.1	248 262 210 316	0 0 0 10	41 21 28 84 14	0 0 0 0	11 5.8 7.9 23 4.2	3.2 1.5 2.2 6.3 1.0	90 57 215 117 238	5.5 17 5.6 27	2.7 9.1 4.6 5.7	15 34 206 122 187	14 6.2 .8 .3 .6	0.1 .2 .3 .1	10 14 4.6 8.0	29,000 120 20 2,310 >90	274 585 402 646	0.2 .20 .20 .20
										Bradley	County										
11S07W25BBB1 12S09W08AAA1 12S09W20BCB 12S10W04ABA1 12S10W19BCC 12S12W26BAC1 12S12W26BAC2 12S07W30DBD2 13S10W14ABD1 13S10W14ABD1 13S11W01DAC1 13S11W01DAC1 13S11W07CDD 14S12W34CDD 14S09W04AAC1 14S10W31DBB1 14S10W31DBB1 15S09W27DDB1 15S10W29ADA1 15S11W22CDA1 16S10W11DCB1 16S10W11DCB1 16S10W11DCA1 16S10W11DCA1	10-20-53 08-14-59 08-14-59 08-14-59 08-03-59 08-03-59 07-31-59 08-19-59 08-19-59 01-13-59 01-14-59 08-17-59 08-17-59 08-17-59 08-18-59 08-18-59 08-18-59 08-18-59 08-18-59 08-18-59 08-18-59 08-18-59 08-18-59 08-18-59 08-18-59 08-18-59 08-18-59 08-18-59	20.0 22.0 20.5 20.5 20.5 20.5 20.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	3 2 5 3 1 	508 293 283 297 306 249 101 274 326 317 350 309 204 310 1,180 376 219 301 323 321 132 312 731 43 343 676	8.1 7.9 7.2 7.5 6.1 6.2 7.9 7.3 7.3 8.0 7.7 7.8 8.0 7.7 7.8 8.0 7.7 7.8 8.0 7.7 7.8	304 168 156 149 154 14 50 85 200 69 24 182 194 182 208 176 7 7 176 8 172 428 24 208 258	800000000000000000000000000000000000000	19 6 28 72 70 60 22 78 4 4 29 85 54 48 20 16 58 46 14 22 12 8 8 10 16	0 0 0 0 49 0 8 0 0 0 28 28 28 0 0 0 0 0 0 0 0 0 0	6.1 2.1 7.8 20 20 5.6 7.6 27 25 41 4.6 117 5.4 4.6 16 13 4.6 16 13 4.1 3.1 1.2 9	0.8 .4 2.2 5.3 4.9 1.9 2.4 5.8 5.4 9.4 2.0 38 1.5 1.1 4.2 3.3 6 4.0 .9 .1	66 49 39 32 	2.0 2.0 2.0 2.0 3.8 1.5 1.2 87 2.4 7.9 5.1 2.6 3.3 7.8 1.2 8.0 29 6 16 3.5	2.2 3.5 4.8 4.9 2.5 	13 7.2 5.5 16 14 40 6.5 32 10 8.5 8.5 15 7.0 58 8.5 5.5 8.2 41 22 9.5 15	1 7.8 6.4 18 14 1 .8 6 .2 11 11 8.0 15 6 .6 6.6 12 .4 .0 3.8 .0 .0 4.6 136	6.5		91 60 91,000 5,100 280 025 12,000 32 140 0 13,000 22 1,100 40 85 11 11 110 60 1,000 90 240 62,000 280 180	170 164 177 219 46 186 207 164 293 234 900 219 130 172 176 179 60 172 442 25 205 437	2.4 1.0 .2 1.0 1.2 30 .10 8.0 .10 1.3 2.2 .10 8.60 .8 .6 .10 1.3 .30 .20 1.0 1.8 9.5 1.2 1.9 .80 .90 3.0
										Calhoun (County										
11S12W29CCA1 11S13W15BBC1 11S14W04BAB1 13S12W17BAD1 13S12W34CDD1 13S13W09CDB1 13S13W30CCC1 14S13W01AAA1 14S13W01AAA1 14S13W11DDB1 14S14W29AAA1 15S13W20BCC1	08-04-55 08-04-55 08-13-55 08-14-55 01-13-55 08-12-55 01-13-55 12-12-55 08-12-55 08-13-55 08-12-55	8 18.5 19.0 18.5 18.5 20.0 20.0 18.5 23.0 23.0 20.0	40 40 2 5 1	112 39 53 1,180 310 344 25 243 391 210 162 442	6.1 6.2 5.8 6.0 8.2 5.9 6.9 7.7 6.6 6.6 7.4	29 12 22 48 194 204 11 60 210 96 80 210	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	36 9 12 212 20 55 6 46 6 38 28	12 0 0 192 0 0 0 0 0	3.7 4.6 16 1.9 15 1.8 11 7.8	 .9 2.0 3.6 .2 1.9 3.0 2.7 2.1 2.2	3.6 68 56 1.2 26 94 27 18 85	.5 6.7 3.3 .2 1.7 10 1.9 1.5 5.7	1.7 2.4 4.3 2.5 3.1 2.8 3.7 3.0 3.6	4.5 5.0 3.5 310 7.0 9.5 2.5 38 13 16 5.0 38	16 1.0 .0 26 0.6 .2 4.6 15 20		6.7	220 0 0 0 0 0 0 0 0	46 234 220 27 166 242 153 100 273	6.6 1.8 .00 2.4 .60 1.0 .10 2.1 .40 .10

Well number	Date of sample	Temper- ature (°C)	Color (plat- inum- cobalt units)	Specif- ic con- duct- ance (µmho)	Ph	Bicar- bonate (HCO ₃) (mg/L)	Carbon- ate (CO ₃) (mg/L)	Hard- ness as CaCO ₃ (mg/L)	Non- car- bonate hard- ness (mg/L)	Dis- solved cal- cium (Ca) (mg/L)	Dis- solved magne- sium (Mg) (mg/L)	Dis- solved sodium (Na) (mg/L)	Sodium adsorp- tion ratio	Dis- solved potas- sium (K) (mg/L)	Dis- solved chlo- ride (Cl) (mg/L)	Dis- solved sul- fate (SO ₄) (mg/L)	ride (F)	Dis- solved silica (SiO ₂) (mg/L)	Dis- solved iron (Fe) (µg/L)	Dis- solved solids (sum of constit- uents) (mg/L)	Dis- solve nitrat (NO ₃ (mg/L
									C	leveland	County										
10S09W23DCC1 08S10W16DAA1 08S12W12DBB1 08S13W34ABC1 10S09W15ACC1 10S12W12CAB1	11-29-66 11-30-66 11-29-66 11-01-66 11-29-66 01-15-58	===	5 8 4 10 1 6	272 480 337 553 188 369	7.6 7.8 7.8 7.9 7.2 7.4	180 272 207 245 114 170	0 0 0 0	6 15 8 96 14 62	0 0 0 0 0	2.1 4.5 2.6 29 3.8	1.0 .4 5.6 1.1 4.8	65 115 80 86 37 45		1.4 3.2 1.8 5.6 3.5 7.1	3.7 20 3.6 35 1.0 8.8	5.8 5.8 4.0 34 2.4		15 13 12 14 17 6.5		182 298 207 332 122	.6 1.0 .7 1.8 .5
										Columbia	County			,							
19S21W17CCC1	08-07-50	20.0		70	6.1	20	0	13	0	2.8	1.4	7.4	0.9	1.6	7.0	3.8	0.1	42	0	77	.60
										Dallas	County			-		_					
09S13W32ADC1	12-05-66		2	42	6.6	16	0	11	0	3.5	0.6	2.6		0.9	1.3	2.0		26		47	1.9
										Drew (County										
11506W08BBD1 11507W04CDB1 11507W04CDB1 11508W28DDC1 12506W30DAA1 12507W115ADC1 12508W27CDC1 12508W27CDC1 12508W33BAC 12508W34BBB1 33507W10ACC1 13507W10ACC1 13507W11CCC1 13507W11CCC1 13507W15CBB1 13508W23BAC1 13508W23BAC1 13508W23BAC1 13508W35CBC1 14507W16BAA1 14507W16BAA1	03-30-54 12-16-53 12-17-53 10-03-54 10-21-53 12-16-53 20-08-54 02-09-54 02-09-54 02-10-54 02-10-54 02-10-54 02-10-54 02-10-54 03-30-54 02-10-54 03-30-54 02-10-54	21.0 14.0 20.0 23.5	20 12 8 9 18 14	464 638 1,560 441 348 433 1,270 908 539 305 286 292 258 292 258 366 1,120 406 405 396 338 1,740 890	8.5 8.8 8.4 8.4 8.8 8.1 7.7 8.0 7.5 8.3 8.4 7.9 8.2 7.8 8.4 8.3 8.4 8.3 8.4 8.3 8.4 8.3 8.3 8.4 8.3 8.4 8.3 8.4 8.4 8.5 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	284 334 181 244 210 243 184 242 283 176 157 146 158 193 228 218 218 211 212 175 281	9 20 4 8 6 12 0 0 0 0 2 2 2 0 0 0 0 0 0 0 0 0 0 0	11 16 13 8 12 105 566 19 3 6 9 4 4 10 444 8 15 9 11 598 86	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.5 1.8 6.0 1.0 2.4 2.9 2.5	1.0 .8	108 124 71 92 91 76	13 12 18 14 13 10	2.7 1.3	7.2 16 107 15.5 5.5 54 64 14 7.5 5.8 5.2 5.2 12 57 20 17 16 10 58	1.0 1.0 464 9.9 1.0 1.0 393 145 24 1.2 12 18 4.0 2.0 15 263 1.2 2.4 16 2.0 179	0.66 .22	10 12	50 40 370 270 80 30 220 0 90 60 130 310 250 40 110 250 90 0 130 150	266 338 182 252 247 216	1.2 1.8 3.9 1.9 1.8 2.4 4.5 1.1 8.0 8.8 2.8 1.4 4.4 4.4 0.0 1.8 2.3 2.8
										Grant (County										
03S12W15CDA1 03S12W18BCA1 03S12W30CBB1 03S13W24ADA2 04S13W07DAA1 04S13W11CDA1 04S13W34ACD1	08-06-64 08-27-64 10-19-64 07-22-64 08-05-64 08-04-64	18.5 17.0 19.5 17.5 19.0	5 5 5 5	86 344 136 75 511 347 690	6.5 7.6 6.2 5.8 7.8 7.4 7.4	10 7 19 308 183 203	0 0 0 0 0	24 22 12 212 128 229	16 17 0 0 0 62	4.8 5.2 2.8 62 39 72	2.9 2.3 1.1 14 7.3	5.6 7.5 29 20 54	0.5 1.0 .9 .8 1.6	2.3 1.1 6.2 5.9 7.7	6.4 14 14 9.0	3.2 .0 4.0 4.8 8.6 172	.1	23 44 22 34 16	2,700 2,800 170 2,800 470	78 82 304 222 443	25 .20 17 1.4 .20 .30

Table 47.—Chemical analyses of samples taken from wells tapping the Cockfield Formation—Continued

Mell number Date Temper Color Specification Specif															
05513W05DBD1 07-23-64 18.5 5 482 8.0 201 0 12 0 42 5.9 50 1.9 4.7 6.0 69 .0 20 1,500 05513W26BCD1 08-05-64 19.5 5 27 6.3 12 0 6 0 1.4 .5 2.5 0 .0 30 1110 06512W2DCD1 08-05-64 19.5 5 2 484 8.2 211 0 18 0 6.0 8.0 8 103 10. 3.1 10 56 .4 15 40 06512W2DCD1 08-05-64 20.0 5 658 7.7 256 0 128 0 37 8.6 99 93 8.6 55 107 .3 17 2,000 05512W2DCD1 07-30-64 18.5 5 289 7.4 0 90 0 26 6.1 22 1.0 4.6 14 5 86 0 12 20 0 05512W2DD1 05-14-64 18.5 5 289 7.4 0 90 0 26 6.1 22 1.0 4.6 14 6.4 0 37 170 07512W03BBD1 05-14-64 18.5 2 759 7.8 179 0 150 3 46 8.4 105 3.7 6.0 16 218 .2 13 7,200 05513W3DD1 02-25-49 20.5 5 987 7.6 356 0 39 0 13 1.6 101 7.0 .2 10 34 .1 25 770 05510W3DD1 02-25-49 15.5 10 579 8.6 213 15 26 0 7.0 2.1 128 11 1.1 11 80 .2 111 100 05510W2DD1 02-25-49 15.5 10 579 8.6 213 15 26 0 7.0 2.1 128 11 1.1 11 80 .2 111 100 05510W2DD1 02-07-49 525 8.4 217 14 16 0 4.2 1.2 116 13 3.4 13 56 .1 12 70 05510W2DD1 02-07-49 675 8.4 250 0 70 0 18 6.1 118 6.1 17.3 11 125 .0 39 100 0550W3DD1 02-07-49 675 8.4 250 0 70 0 18 6.1 118 6.1 118 6.1 7.3 11 125 .0 39 100 05510W3DD1 02-07-49 675 8.4 250 0 70 0 18 6.1 118 6.1 118 6.1 7.3 11 125 .0 39 100 05510W3DD1 02-07-49 675 8.4 250 0 70 0 18 6.1 118 6.1 118 6.1 7.3 11 125 .0 39 100 05510W3DD1 02-07-49 675 8.4 250 0 70 0 18 6.1 118 6.1 118 6.1 7.3 11 125 .0 39 100 05510W3DD1 02-07-49 675 8.4 250 0 70 0 18 6.1 118 6.1 118 6.1 7.3 11 125 .0 39 100 05510W3DD1 02-07-49 675 8.4 250 0 70 0 18 6.1 118 6.1 118 6.1 7.3 11 125 .0 39 100 05510W3DD1 02-07-49 675 8.4 250 0 70 0 18 6.1 118 6.1 118 6.1 7.3 11 125 .0 39 100 05510W3DD1 02-07-49 555 8.4 217 14 10 0 28 0 7.6 2.2 34 2.8 3.6 8.0 2.8 30 11316W3DD1 02-07-49 55 584 8.0 20 0 7.0 28 0 8.3 2.0 92 7.3 2.4 12 75 .1 43 460 07510W3DD1 02-07-49 15.5 50 446 7.7 148 0 54 0 8.0 18 0 8.3 2.0 122 9.9 3.7 84 2.2 0	solved solved solved solved solved Dis- potas- chlo- sul- ride silica iron (sum of nitra (K) (C1) (S0 _H) (mod/) (mod/) (cod/) (cod/)	Sodium solved adsorp- potas- tion sium ratio (K)	solved sodium (Na)	solved magne- sium (Mg)	solved cal- cium (Ca)	car- bonate hard- ness	ness as CaCO ₃	ate (CO ₃)	bonate (HCO ₃)	Ph	ic con- duct- ance	(plat- inum- cobalt	ature	of	Well number
0SS14W26BCC1 09-05-64 19.5 5 2 494 8.2 211 0 18 0 6.0 1.4 55 2.5 0 0 30 110 0 0 0 0 0 0 0 0 0 0 0 0 0 0			ed	-Continue	County-	Grant									
03511W15CDC1 02-25-49 20.5 5 987 7.6 356 0 346 54 99 24 84 2.0 5.4 26 220 0.0 2.0 50 05510W18BBB1 03-28-49 60 513 7.6 260 0 39 0 13 1.6 101 7.0 .2 10 34 .1 25 770 05510W2CDC1 02-16-49 15.5 10 579 8.6 213 15 26 0 7.0 2.1 128 11 1.1 11 80 .2 11 100 05510W2CDC1 02-04-49 525 8.4 217 14 16 0 4.2 1.2 116 13 3.4 13 56 .1 12 70 05510W2CDC1 02-16-49 675 8.4 250 0 70 0 18 6.1 118 6.1 7.3 11 125 .0 39 100 05509W19CBC1 02-16-49 80 460 8.1 168 0 30 0 8.8 2.0 92 7.3 2.4 12 75 .1 43 1,440 05509W2CCC1 02-14-49 18.0 5 609 8.2 239 9 21 0 6.5 1.2 130 12 1.8 12 90 .1 22 170 06510W2BBAA1 02-16-49 15.5 50 446 7.7 148 0 54 0 15 4.0 65 1.2 130 12 1.8 12 90 .1 22 170 06510W2BBAA1 02-16-49 30 1,005 8.1 301 0 139 0 41 8.7 3.2 17 216 1.0 21 780	2.5 .0 .0 30 110 44 3.1 10 56 .4 15 40 299 6.5 107 .3 17 2,000 423 1 4.8 86 .0 12 270 348 4.6 14 6.4 .0 37 170 188	10 3.1 3.8 6.5 4.5 4.8 1.0 4.6	103 99 93 22	.5 .8 8.6 4.3 6.1	1.4 6.0 37 25 26	0 0 0 0	6 18 128 80 90	0 0 0 0	12 211 256 221	6.3 8.2 7.7 7.9 7.4	27 484 658 570 289	5 2 5 5 5	19.5 19.5 20.0 20.0 18.5	08-05-64 05-11-64 08-06-64 07-29-64 07-30-64	05S14W26BCC1 06S12W02DCB1 06S12W08ADC1 06S12W22CAC1 06S12W29CBC1
05\$10M18BBB1 03-28-49 60 513 7.6 260 0 39 0 13 1.6 101 7.0 .2 10 34 .1 25 770 05\$10M2CDC1 02-16-49 15.5 10 579 8.6 213 15 26 0 7.0 2.1 128 11 1.1 11 80 .2 11 100 05\$10M2CDC1 02-04-49 525 8.4 217 14 16 0 4.2 1.2 116 13 3.4 13 56 .1 12 70 05\$10M2CDC1 02-04-9 675 8.4 250 0 70 0 18 6.1 118 6.1 7.3 11 125 .0 39 100 06\$09M19CBC1 02-16-49 80 460 8.1 168 0 30 0 8.8 2.0 92 7.3 2.4 12 75 .1 43 1,440 06\$09M19CBC1 02-14-99 18.0 5 609 8.2 239 9 21 0 6.5 1.2 130 12 1.8 12 90 .1 22 170 06\$10M2BBA1 02-16-49 15.5 50 446 7.7 148 0 54 0 15 4.0 65 3.9 3.8 13 75 .1 43 460 07\$10M03ABC1 02-16-49 30 1,005 8.1 301 0 139 0 41 8.7 3.2 17 216 1.0 21 780				County	fferson	Je									
13S16W08DBB1 04-08-59 19.0 25 210 7.5 114 0 28 0 7.6 2.2 34 2.8 3.6 8.0 2.8 370 13S16W28ADA1 04-08-59 19.0 5 584 8.0 220 0 28 0 8.3 2.0 122 9.9 3.7 84 .2 0 Union County 17S15W28CDC3 11-28-45 133 6.8 17 0 34 20 7.4 3.8 9.5 0.7 4.4 18 20 0.0 40 440	.2 10 34 .1 25 770 316 .1 1.1 11 80 .2 11 100 362 .3 .4 13 56 .1 12 70 328 7.3 11 125 .0 39 100 449 .2 .4 12 75 .1 43 1,440 321 .1 1.8 12 90 .1 22 170 392 .3 .8 13 75 .1 43 460 293	7.0 .2 11 1.1 13 3.4 6.1 7.3 7.3 2.4 12 1.8 3.9 3.8	101 128 116 118 92 130 65	1.6 2.1 1.2 6.1 2.0 1.2 4.0	13 7.0 4.2 18 8.8 6.5	0 0 0 0 0 0 0	39 26 16 70 30 21 54	0 15 14 0 0 9	260 213 217 250 168 239 148	7.6 8.6 8.4 8.4 8.1 8.2 7.7	513 579 525 675 460 609 446	60 10 80 5	15.5 18.0 15.5	03-28-49 02-16-49 02-04-49 02-07-49 02-16-49 02-14-49 02-16-49	05510W18BBB1 05510W22CDC1 05510W26CCA1 05510W27DAD1 06509W19CBC1 06509W29CCC1 06510W28BAA1
13S16W28ADA1 04-08-59 19.0 5 584 8.0 220 0 28 0 8.3 2.0 122 9.9 3.7 84 .2 0 Union County 17S15W28CDC3 11-28-45 133 6.8 17 0 34 20 7.4 3.8 9.5 0.7 4.4 18 20 0.0 40 440				County	uachita	0									
17S15W28CDC3 11-28-45 133 6.8 17 0 34 20 7.4 3.8 9.5 0.7 4.4 18 20 0.0 40 440								-							
17515#1200200 11 20 10				ounty	Union C										
								-							17S15W28CDC3

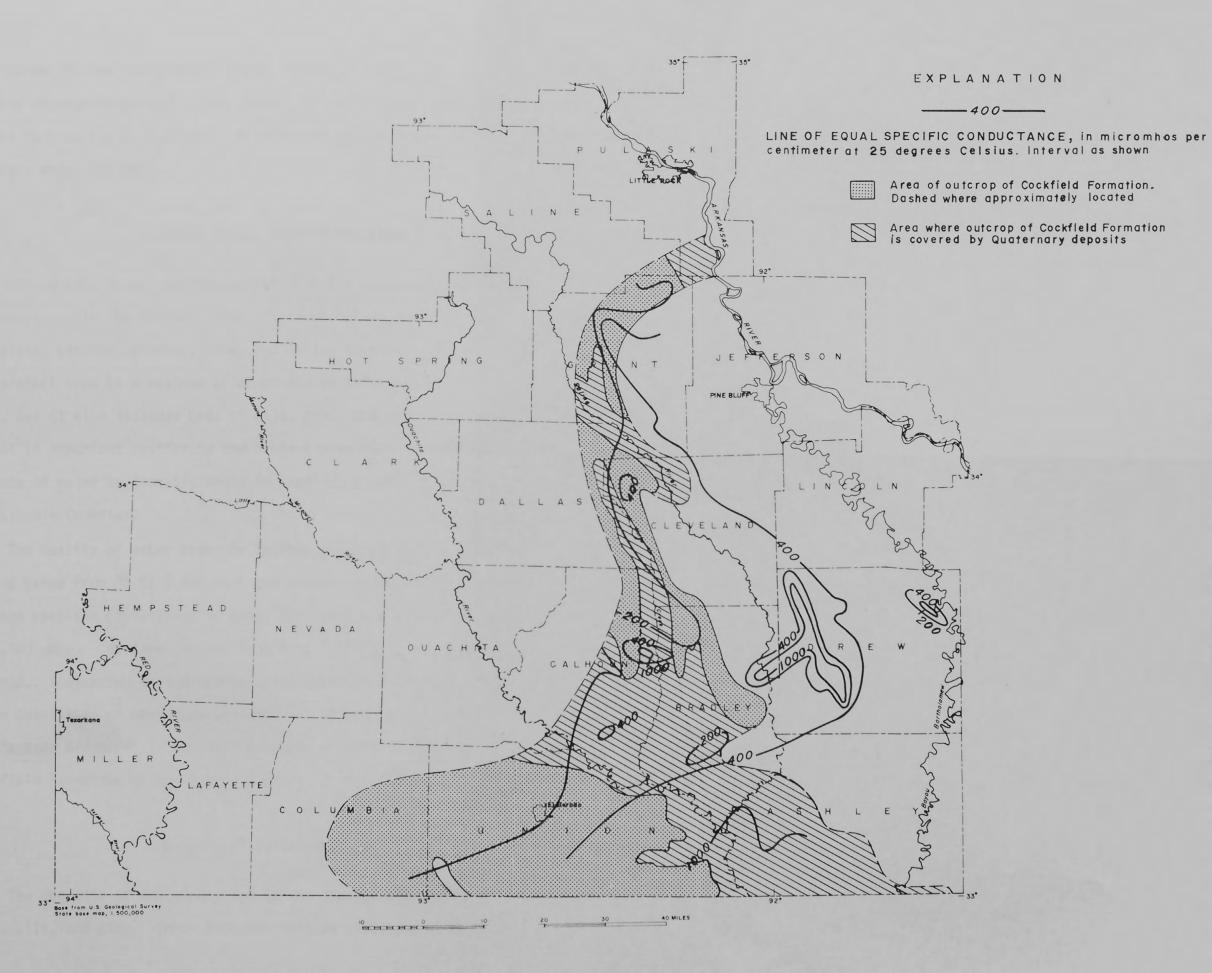


Figure 32.—Specific conductance for the Cockfield Formation.

that do not follow the general trend. Hardness ranges from 3 to 598 mg/L and the average is 54 mg/L. The average pH is 7.5 mg/L and the range in values is from 5.8 to 8.8 mg/L. Bicarbonate ranges from 7 to 428 mg/L and averages about 165 mg/L.

Jackson Group, Undifferentiated

The Jackson Group, undifferentiated, is the uppermost part of the deposits of Eocene age in the project area. It crops out in parts of Grant, Jefferson, Cleveland, Lincoln, Bradley, Drew, and Ashley Counties. The Jackson Group in the project area is a maximum of about 300 ft thick and consists mostly of clay, but it also includes beds of silt, sand, and lignite. The Jackson Group is not an important aquifer in the project area, but it does furnish small amounts of water to domestic wells in Bradley, Cleveland, Drew, Grant, Jefferson, and Lincoln Counties.

The quality of water from the Jackson Group is generally poor. Dissolved solids range from 78 to 5,330 mg/L and average about 852 mg/L (table 48). Average specific conductance is about 839 µmhos and values range from 35 to 5,490 µmho. Hardness ranges from 4 to 2,620 mg/L and averages about 379 mg/L, indicating that water from the Jackson is generally hard. Where large quantities of good-quality water are needed in the outcrop area of the Jackson Group, it is usually necessary to drill a deeper well into the Cockfield Formation or the Sparta Sand.

Deposits of Quaternary Age

The deposits of Quaternary age in the lignite area consist of gravel, sand, silt, and clay. These deposits include alluvium, which underlies the

Table 48.—Chemical analyses of samples taken from wells tapping the Jackson Group, undifferentiated

Well number	Date of sample	Temper- ature (°C)	Color (plat- inum- cobalt units)	Specific conductance (µmho)	Ph	Bicar- bonate (HCO ₃) (mg/L)	Carbon- ate (CO ₃) (mg/L)	Hard- ness as CaCO ₃ (mg/L)	Non- car- bonate hard- ness (mg/L)	Dis- solved cal- cium (Ca) (mg/L)	Dis- solved magne- sium (Mg) (mg/L)	Dis- solved sodium (Na) (mg/L)	Sodium adsorp- tion ratio	Dis- solved potas- sium (K) (mg/L)	Dis- solved chlo- ride (C1) (mg/L)	Dis- solved sul- fate (SO ₄) (mg/L)	ride (F)	Dis- solved silica (SiO ₂) (mg/L)	Dis- solved iron (Fe) (µg/L)	Dis- solved solids (sum of constit- uents) (mg/L)	Dis- solve nitrat (NO ₃ (mg/L
					-				В	radley Co	ounty										
12S09W28CAD1 13S10W02BBC1	08-14-59 08-19-59		2 0	676 403	7.3		0	146 153	0	37 45	13 9.8	98 29	3.5 1.0	82 5.5	15 13	136 32			180 620	437 239	3.0
									C1	eveland	County										
08S09W10DDB1 08S10W16BBD1 09S10W17ACC1 11S11W05ACC1	11-30-66 11-30-66 09-03-59 11-29-66		5 3 1 2	1,422 172 3,320 1,410	7.9 6.2 3.3 7.9	8	0 0 0	234 27 1,500 604	0 26 0 384	61 5.2 382 189	20 3.4 133 32	226 20 150 82		11 .6 21 10	55 19 600 45	408 37 1,030 502		23 70 28		954 160 1,010	3.0 .40 .20 2.8
						-				Drew Co	unty			-							
11S06W06AAA1 11S06W07CAA1 11S06W08BAD1 11S06W30ABD1 11S06W30ABD1 11S06W30ABD1 11S07W16BAA1 11S07W16BAA1 11S07W25CCA1 12S07W01CBB1 12S07W01CBB1 12S07W15CCB1 12S07W15CCB1 12S07W15CCB1 12S07W15CCB1 12S07W29DAD1 12S07W29DAD1 12S07W29DAD1 12S07W29DAD1 13S06W07CAC1 13S06W07CAC1 13S06W17CBB1 13S06W17CBB1 13S07W16CDB1 13S07W16CDB1 13S07W16CDB1 13S07W16CDB1 13S07W16CDB1	10-19-54 10-19-54 10-15-54 10-20-53 10-20-53 10-21-53 10-21-53 10-21-53 10-21-53 10-21-53 10-21-53 10-21-53 10-21-53 10-21-53 10-21-54 10-21-54 10-21-54 12-16-54 12-16-54 12-10-54 12-10-54 12-10-54 10-03-54 10-03-54 10-03-54 10-03-54 10-03-54	19.0 19.0 19.0 19.0 19.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	5 7 5 5 10 20 8 5 7 5 7	1,960 320 2,270 803 244 4,360 1,110 3,240 508 4,300 644 3,250 5,490 2,250 75 980 157 596 859 1,060 766 859 1,110 1,030 43	6.66 7.63 3.47 7.11 4.11 6.56 8.44 4.31 7.33 5.54 7.44 7.22 7.99 6.55 7.0	46 0 2 20 0 68 0 304 0 0 0 0 14 11 56 2 0 32 57 8 5	000000000000000000000000000000000000000	1,110 89 1,070 270 41 2,080 300 1,700 158 1,180 2,620 925 20 154 32 110 92 399 250 200 40 214 317	945 51 0 269 25 2,080 244 17 0 1,040 158 1,180 26 925 9 138 15 109 46 39 250 174 0	257 26 25 59 8.6 461 500 44 48 48	113 5.9 107 30 4.8 227 206 .8 333 21 3.8 20 22 23	52 24 80 57 28 362 165 449 83 16 38 74 121	0.7 1.1 1.6 1.5 1.9 3.4 3.8 2.9 1.2 1.6 3.6	14 12 16 12 12 18 63 36	70 20 18 16 26 310 118 46 13 488 79 282 400 50 3.5 162 10 50 21 32 37 220 10 240 128 6.0	95 61,330 367 42 2,380 2,210 1,720 1,540 3,080 1,570 7,0 56 22 54 69 514 268 17 20 95 297 4.0	.4	36	19,000 810 350 7,300 120 1,400 1,400 17,000 17,000 10,530 540 150 670 80 70 2,400 270 340 110 90	1,730 256 2,080 658 183 0 2,990 5,330 5,330 507	1.7 10 .70 .20 1.2 3.1 9.0 1.7 24 7.1 128 2.4
										Grant (County										
05S12W03ABA1	08-20-65	19.5	3	114	5.1	4	0	17	14	2.6	2.6	13	1.4	1.7	7.1	25	0.0	40	760	99	3.0
									J	efferson	County										
04S10W30BDC1 04S11W11CDB1 06S10W06ABA1 06S10W24BDB1	02-17-49 05-10-49 03-28-49 03-28-49		5 5 5 10	124 261 72 3,120	7.0 6.0 6.8 4.8	40 34	0 0 0	18 66 4 811	0 34 0 829	4.8 18 1.3 196	1.4 5.2 .2 83	12 14 18 393	1.2 .7 3.9 5.9	0.4 .2 .1 8.8	18 20 7.5 280	9.1 58 3.5 1,260	.2	38 100 34 60	100 10 150 140	98 236 83 2,360	0.00 .80 .30

Table 48.—Chemical analyses of samples taken from wells tapping the Jackson Group, undifferentiated—Continued

Well number	Date of sample	Temper- ature (°C)	Color (plat- inum- cobalt units)	Specif- ic con- duct- ance (µmho)	Ph	Bicar- bonate (HCO ₃) (mg/L)	Carbon- ate (CO ₃) (mg/L)	Hard- ness as CaCO ₃ (mg/L)	Non- car- bonate hard- ness (mg/L)	Dis- solved cal- cium (Ca) (mg/L)	Dis- solved magne- sium (Mg) (mg/L)	Dis- solved sodium (Na) (mg/L)	Sodium adsorp- tion ratio	Dis- solved potas- sium (K) (mg/L)	Dis- solved chlo- ride (Cl) (mg/L)	Dis- solved sul- fate (SO ₄) (mg/L)	Total fluo- ride (F) (mg/L)	Dis- solved silica (SiO ₂) (mg/L)	Dis- solved iron (Fe) (µg/L)	Dis- solved solids (sum of constit- uents) (mg/L)	Dis- solved nitrate (NO ₃) (mg/L)
									Jefferso	n County	-Contin	ued									
07S09W03BDD1 07S09W22ADB1 07S10W22BDD1	02-14-49 03-29-49 05-10-49		5 5 20	1,120 1,332 136	8.0 7.0 5.8	302 218 12	0 0 0	85 178 13	0 0 3	25 43 2.3	5.5 17 1.7	215 206 11	10 6.7 1.3	2.4 6.6 .7	56 100 16	243 294 20	0.2	25 45 51	70 200 90	722 823 113	0.00 1.4 1.6
									L	incoln C	County										
09S07W03CCA1 09S07W03DAA1 09S07W03DAA1 09S07W07DBB1 09S07W17CBD1 09S07W17GDD1 09S07W19ADB1 09S08W01DDB1 09S08W01DDB1 09S08W02DAC1 09S08W02DAC1 09S08W20ACB1 10S07W07DDC1 10S07W07DDC1 10S07W10CDC1 10S07W14BAB1 10S07W17BCC1 10S08W15CCD1 10S08W15CCD1 10S08W17BCC1	10-17-56 10-17-56 09-13-56 09-20-56 08-28-56 08-28-56 08-28-56 08-18-56 05-16-56 11-30-56 08-24-56 08-29-56 08-29-56 08-29-56 08-26-56 11-30-56 11-30-56	19.0	55 55 5	275 1,260 461 459 223 146 40 35 4,230 476 436 351 3,94 1,070 320 160 201 815 4,840 1,100 594 119	7.86.15 6.15 6.50 7.52 7.59 7.59 7.59 84.7	272 56 0 46 10 16 6 64 10 1 132 73 58		39 600 126 106 600 19 10 11 2,5600 192 56 61 103 389 102 51 2,760 186 80	26 0 80 10 22 11 11 0 6 2,5560 140 48 57 102 281 0 3 3 23 86 0 144 77 17	18 21 4.1 2.1 2.5 14	3.5 18 	258 35 15 2.3 2.7 20 28	1.5 .3 .4	5.8	101 34 60 20 110 17 2.5 6.0 345 9.0 32 22 28 52 22 28 52 11 36 88 392 150 97 7.0 54	23 326 1.4 171 25 24 1.0 2,360 170 138 88 110 479 42 7.0 18 85 2,330 240 100 185 565	0.1	3.1	80 210	78	4.5 5.3 94 1.4 .7 2.1 1.3 .4 2.1 2.5 2.1 2.3 4.7 8.0 170 2.0 1.9 2.4 4.3

flood plains of the streams, and terrace deposits, which are older alluvial deposits situated at higher altitudes above the present flood plains.

Where present, these deposits are always at the surface; no younger formations overlie them. In many places the terrace deposits are dissected and function as independent aquifers. The locations of terrace and alluvial deposits are shown in figure 33. Figure 34 shows the thickness of the Quaternary deposits in the project area. The terrace deposits are from 0 to more than 100 ft thick and are commonly about 40 ft thick. The alluvial material varies in thickness from one drainage basin to another. Alluvium underlying the Red River flood plain ranges from 0 to 90 ft in thickness. Quachita River alluvium ranges from 0 to 50 ft thick in most places. Alluvium underlying the Little Missouri River and the Saline River flood plains has a maximum thickness of about 40 ft. Alluvium deposited by smaller streams in the project area is generally less than 25 ft thick and commonly consists mostly of fine-grained material (silts and clays).

A large percentage of the total ground water used in the 20 counties containing the project area in 1975 (312.23 Mgal/d) is pumped from Quaternary aquifers. Most of this water (297.77 Mgal/d in 1975) is pumped from thick alluvial and terrace deposits which are beyond the eastern boundary of the project area. The water pumped outside the project boundary is used in Ashley, Drew, Lincoln, Jefferson, and Pulaski Counties. Less than 20 Mgal/d of water is pumped from Quaternary deposits within the project area. The largest use from the Quaternary aquifers in the lignite area is in Lafayette County (12.19 Mgal/d in 1975) followed by Miller County (1.74 Mgal/d in 1975).

The alluvial aquifer can furnish as much as 1,500 gal/min to properly constructed wells in Miller and Lafayette Counties (Ludwig, 1972), where

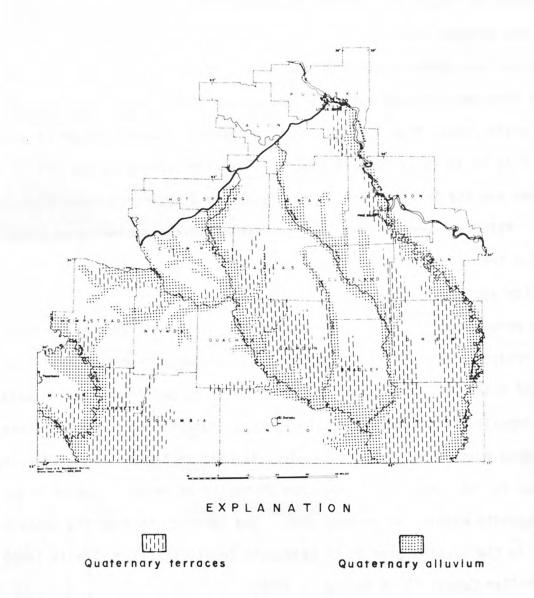
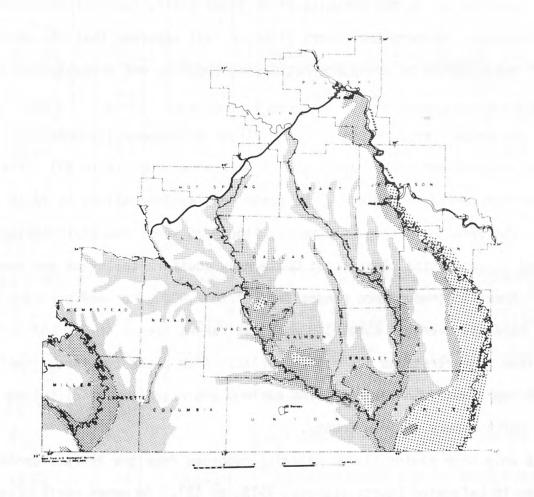
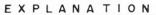




Figure 33.—Distribution of the Quaternary deposits (modified from Boswell and others, 1968).

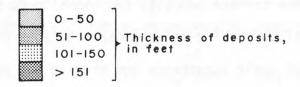


Figure 34.—Thickness of the Quaternary deposits (modified from Boswell and others, 1968).

the alluvium is as much as 90 ft thick. Many large-yielding irrigation wells tap the aquifer in these two counties. Little is known about the maximum yield of the alluvial aquifer in other parts of the lignite area. Yields of 240 gal/min were reported by Plebuch and Hines (1969, p. A29) for wells tapping the alluvium in the Ouachita River flood plain, south of Arkadelphia, in Clark County. Halberg and others (1968, p. 33) reported that the maximum yield of the alluvium in Grant and Hot Spring Counties was probably about 25 gal/min.

In the project area, water from the alluvium is generally moderately to highly mineralized, hard, and contains excessive iron (table 49). For the counties represented in table 49, the range in dissolved solids is 28 to 1,610 mg/L and the average is about 414 mg/L. Figure 35 shows the distribution of dissolved solids in the significant Quaternary aquifers (alluvium and terraces). Specific conductance ranges from 27 to 2,900 μ mho and averages 523 μ mho. Hardness averages about 158 mg/L and ranges from 6 to 864 mg/L. Dissolved iron concentrations are highly variable from place to place. For the counties represented in table 49, the maximum concentration of dissolved iron (24,000 mg/L) occurs in Drew County.

The only high yields (1,100 gal/min) reported from the terrace deposits have been in Lafayette County (Ludwig, 1972, p. 12). In other parts of the lignite area, the terrace deposits are known to furnish supplies sufficient for only domestic use. The terrace deposits form only a thin surface mantle in many areas of their occurrence and shallow dug and bored wells may tap both the terrace deposits and underlying older formations of Tertiary age.

Table 50 shows the results of the analyses of samples taken from wells tapping terrace deposits in 13 counties in the project area. The average specific conductance is about 345 μ mhos and ranges from 21 to 4,130 μ mhos.

Well number	Date of sample	Temper- ature (°C)	Color (plat- inum- cobalt units)	Specif- ic con- duct- ance (µmho)	Ph	Bicar- bonate (HCO ₃) (mg/L)	Carbon- ate (CO ₃) (mg/L)	Hard- ness as CaCO ₃ (mg/L)	Non- car- bonate hard- ness (mg/L)	Dis- solved cal- cium (Ca) (mg/L)	Dis- solved magne- sium (Mg) (mg/L)	Dis- solved sodium (Na) (mg/L)	Sodium adsorp- tion ratio	Dis- solved potas- sium (K) (mg/L)	Dis- solved chlo- ride (Cl) (mg/L)	Dis- solved sul- fate (SO ₄) (mg/L)	Total fluo- ride (F) (mg/L)	Dis- solved silica (SiO ₂) (mg/L)	Dis- solved iron (Fe) (µg/L)	Dis- solved solids (sum of constit- uents) (mg/L)	Dis- solved nitrate (NO ₃) (mg/L)
										Calhoun	County							or and a			
15S13W36BAD1 15S14W19DCD1 15S15W11CDB1	08-06-59 08-05-59 08-05-59	19.5		233 46 88	7.0 6.7 5.9	19 14 12	0 0 0	38 6 22	22 0 12						34 7.0 5.5	16 8.0 20	===				23 .70
										Clark C	ounty										
06S19W30DBB1 07S19W20CCD1 07S19W22CDC1 07S19W31ACD1	06-18-63 01-15-63 05-27-63 06-18-63 05-27-63	19.4 18.8 17.7	2 5 6 11 2	291 1,600 1,460 224 720	6.9 7.4 8.4 6.6 7.2	27 137 124 29 331	0 0 7 0	34 476 413 54 299	12 364 300 30 28	6.7 156 134 15 104	4.4 21 19 4.0 9.5	37 176 162 14 35		4.0 3.8 4.2 9.4 2.4	48 96 111 20 54	10 591 477 11 26		16 36 39 11 18		165 1,180 1,040 139 427	26 .80 .80 40
										Drew Co	unty										
11S04W02ADC1 11S04W24BDD1 11S04W25ADA1 11S05W08CBC1 11S05W27AAD1 11S06W34BCC1 11S08W09CAB1 11S08W15BBD1 11S08W34ABA1 12S05W11BBA1 12S05W11BBA1 12S05W11CBA1 12S06W16AAD1 12S06W19DAB1 12S06W19DC1 12S08W19BBB1 12S06W29DAB1 12S06W31DDC1 12S08W19BBB1 12S06W31DDC1 12S08W19BBB1 13S06W2BDB1 13S06W2BDB1 13S06W2BDB1 13S06W12BBD1 13S06W12BBD1 13S06W12BBD1 13S08W16DAD1 13S08W16DAD1 13S08W16DAD1 13S08W19BAA1 13S08W16DAD1 13S08W19BAA1 13S08W16DAD1 13S08W18BC1 13S08W16DAD1 13S08W16DAD1 13S08W16DAD1 13S08W16DAD1 13S08W16DAD1 13S08W16DAD1 13S08W16DAD1 13S08W35CBC2 14S05W12ABC1 14S05W20BAD1 14S06W16BCC1 14S05W20BAD1 14S06W16CCC1	08-12-52 02-03-54 09-24-52 03-30-54 10-13-54 02-04-54 01-04-55 02-04-54 10-12-54 10-13-54 10-13-54 10-13-54 02-03-54	18.0 18.0 18.0 16.0 20.0 18.0 16.0 16.0 17.0 17.0 17.0 17.0 18.0 19.0	7 10 5 4 10 5 6 6 6 5 5	573 495 367 431 117 290 938 1,620 557 256 134 185 186 237 237 237 238 280 172 824 323 155 587 307 281 355 185 453 220 445	6.5 7.3 7.0 6.5 6.9 7.1 6.8 7.4 8.2 7.3 7.4 7.6	192 64 500 8 36 2 29 89 63 108 72 56 105 10 21 3 29 70 28 166 10 39 108 4 11 23 68 4 11 23 68		250 227 162 82 32 52 117 707 80 83 37 70 37 37 37 38 20 159 37 117 108 22 88 63 12 78 17 74 58	0 0 1 30 0 455 87 7066 566 10 0 0 0 12 1422 34 0 0 311 0 94 0 755 85 55 2 97 0 70 0	74 8.4 153 22 8.5 17 9.5 9.7 17 12 2.3 31 3.2 2.3 17 14 32 22 22	16 79 6.9 3.9 6.6 3.2 3.0 6.1 5.5 1.4 7.7 5.5 11 8.6 2.2	34 12 106 18 14 15 21 21 25 23 29 18 54 58 19 28 34 2.2	0.99 1.7 1.5 1.5 1.5 1.5 1.7 1.2 1.7 6.9 1.1 1.1 1.6 .3	2.0	26 18 22 82 8.8 20 196 58 16 31 9.0 9.0 16 22 25 198 46 38 16 17 232 14 18 89 44 22 40 32 48 32 112 20 5.0	2.3 5.0 7.0 1.0 4.9 87 23 812 105 6.6 3.7 3.1 3.8 3.5 6.0 22 130 22 2.0 5.0 11 17 1.0 2.0 3.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	0.2	52	10,000 15,000 24,000 90 4,300 290 330 330 330 3,000 570 190 2,600 520 310 2,200 1,100 2,300 40 2,700 80 130 5,700 7,200 4,200 23,000 1	350 1,340 1,340 180 110 118 143 141 178 136 228 119 281 281 314 107 263 167 263	1.6 .000 .000 15 .500 1200 4.8 .399 .400 .500 .500 .400 .21 115 6.00 12 1.3 1.5 .300 5.6 76 40 8.0 75 2.4 3.1 1.3 2.4 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3

 ${\it Table 49.-Chemical\ analyses\ of\ samples\ taken\ from\ wells\ tapping\ the\ alluvium-{\it Continued}}$

Well number	Date of sample	Temper- ature (°C)	Color (plat- inum- cobalt units)	duct- ance	Ph	Bicar- bonate (HCO ₃) (mg/L)	Carbon- ate (CO ₃) (mg/L)	Hard- ness as CaCO ₃ (mg/L)	Non- car- bonate hard- ness (mg/L)	Dis- solved cal- cium (Ca) (mg/L)	Dis- solved magne- sium (Mg) (mg/L)	Dis- solved sodium (Na) (mg/L)	Sodium adsorp- tion ratio	Dis- solved potas- sium (K) (mg/L)	Dis- solved chlo- ride (Cl) (mg/L)	Dis- solved sul- fate (SO ₄) (mg/L)	Total fluo- ride (F) (mg/L)	Dis- solved silica (SiO ₂) (mg/L)	Dis- solved iron (Fe) (µg/L)	Dis- solved solids (sum of constit- uents) (mg/L)	Dis- solved nitrate (NO ₃) (mg/L)
									Drew	County—	Continue	d									
14S07W18ABD1 14S07W18CBB1 14S08W09ABA1 14S08W22BBA1 14S08W29AAA1	02-10-54 12-14-54 02-04-54 12-07-54 02-04-54		10	267 32 353 2,900 514	6.8 6.8 7.1 7.3 7.0	6 21 44	0 0 0 0	33 8 31 190 46	22 3 14 154 18	0.9	1.3	3.4	0.5		29 4.5 59 845 117	42 3.0 10 7.0 3.0			1,200 250 90 2,100 200	50	16 2.3 14 2.6 16
										Grant Co	unty										
05S15W05ABB1 05S15W05ABB2	06-21-63 10-13-54	19.0	1	103	6.8	5	0	16	12	1.4	3.2	11	1.2	1.3	21	2.2	0.1	15	30	66	8.8 45
									Не	mpstead	County										
10S24W14DDD2	04-05-51			124	7.7	30	0	38	13						7.0	5.0					6.6
									Hot	Spring	County										
04\$16W09BBB1 04\$17W29DCB1 06\$18W03AAC1 06\$18W03ACC1 06\$18W03ACD1 06\$18W03ACD1 06\$18W03ADB1 06\$18W03ADD1 06\$18W03ADD1 06\$18W03ADD1 06\$18W03BA1 06\$18W03DA1 06\$18W03DBA1 06\$18W03DBA1	06-16-64 06-25-63 05-03-63 04-16-64 09-22-64 09-21-64 09-21-64 09-22-64 09-22-64 11-06-64 09-23-64 09-23-64 09-23-64 05-02-63 04-16-64	19.0 17.0 17.0 15.5 22.0 20.0 21.0 19.5 21.0 19.5 20.5 20.5 20.5 20.5	10 4 3 5 5 5	189 132 63 74 335 328 94 298 180 124 94 209 125 27 108 176 166	8.2 6.9 6.9 5.9 7.3 6.8 6.0 7.2 7.4 6.9 5.7 6.6 7.0 6.7 5.7	105 77 66 66 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	49 36 14 19 34 31	0 30 10 14 30 27	16 2.1 2.9 4.3 7.3 7.3	2.2 7.5 1.8 2.1 4.0 3.2	20 8.0 4.5 5.4 17 16	1.2 .6 .5 .5 	4.2 1.0 1.5 1.2 	3.5 16 6.2 9.0 27 20	8.6 5.0 3.8 5.6	0.2	25 16 9.6 11 	1,100 80 610 540 580 230	132 86 46 54 108	27 12 12 14 49 23 45 27 12 5.0 20 14 5.1 23 36 42
										Miller C	ounty										
14\$28W14CBD2 15\$26W26DCC1 15\$26W35AAB1 15\$27W12BCB1 16\$26W22AAA1 18\$26W29CBC1	08-09-51 06-16-53 06-16-53 02-27068 03-14-68 03-08-68	18.0	 4 4 2	714 1,840 2,130 600 2,660 374	8.1 7.9 7.9 7.7 4.2 7.9	328 418 480 448 0 206	0 0 0 0	349 654 787 378 864 80	393 10 864 0	97 232 24	33 69 4.7	16 202 55		1.1 9.4 2.2	7.2 226 300 11 625 19	30 328 387 34 446		22 21 9.6		440 1,610 217	9.6 .00 .00 .40 1.4 .40

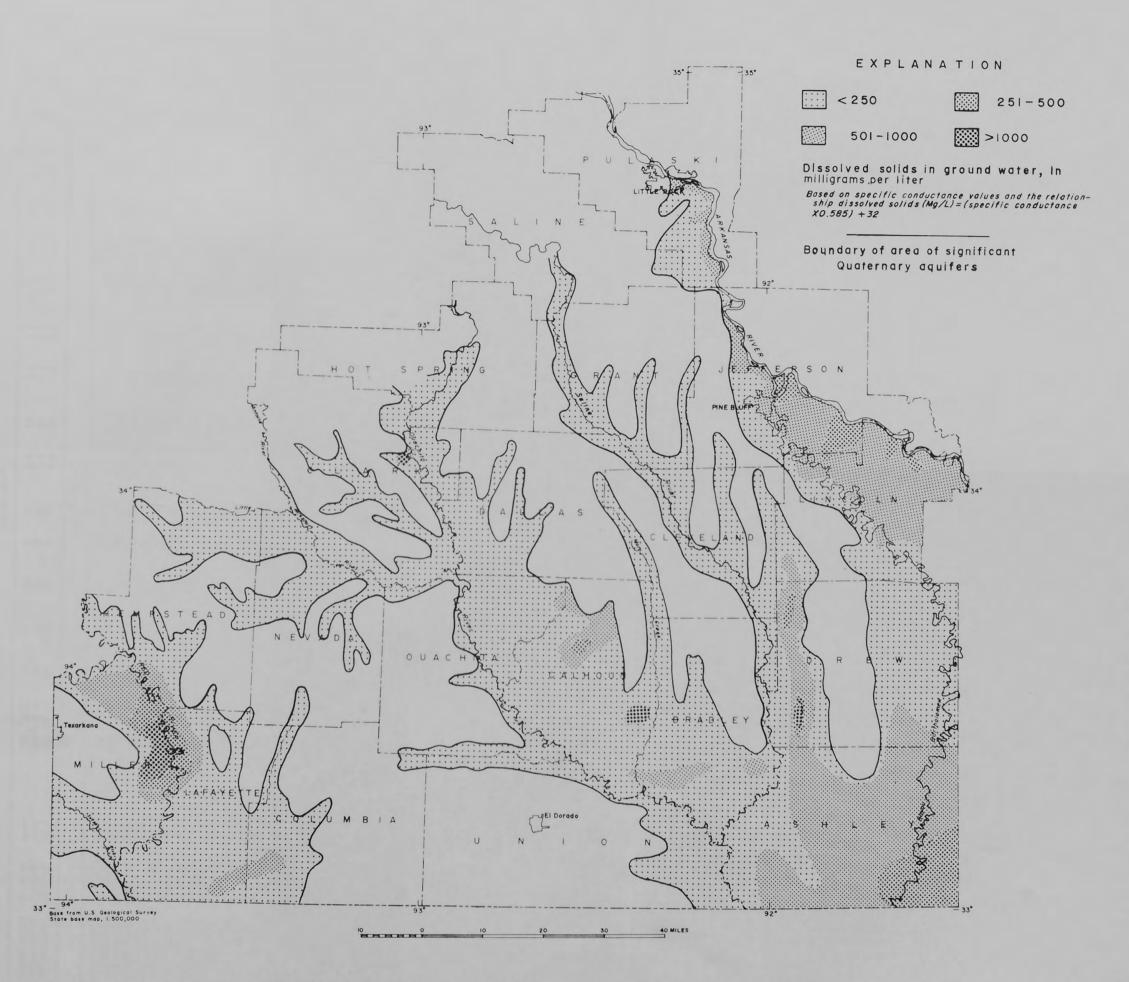


Figure 35.—Distribution of dissolved solids in the Quaternary aquifers (modified from Boswell and others, 1968).

Well number	Date of sample	Temper- ature (°C)	Color (plat- inum- cobalt units)	Specif- ic con- duct- ance (µmho)		Bicar- bonate (HCO ₃) (mg/L)	Carbon- ate (CO ₃) (mg/L)	Hard- ness as CaCO ₃ (mg/L)	Non- car- bonate hard- ness (mg/L)	Dis- solved cal- cium (Ca) (mg/L)	Dis- solved magne- sium (Mg) (mg/L)	Dis- solved sodium (Na) (mg/L)	Sodium adsorp- tion ratio	Dis- solved potas- sium (K) (mg/L)	Dis- solved chlo- ride (Cl) (mg/L)	Dis- solved sul- fate (SO ₄) (mg/L)	Total fluo- ride (F) (mg/L)	Dis- solved silica (SiO ₂) (mg/L)	Dis- solved iron (Fe) (µg/L)	Dis- solved solids (sum of constit- uents) (mg/L)	Dis- solved nitrate (NO ₃) (mg/L)
										Ashley C	ounty										
18S08W16BBC1 18S08W16BCD1 18S08W21BDB1	01-20-47 11-12-46 02-07-47			178 289 269	6.5 7.0 6.8	59 93 141	0 0 0	53 81 79	5 5 0	11 20 18	6.2 7.5 8.4	13 31 38	0.8 1.5 1.9	1.2 1.8 2.2	20 48 31	5.1 4.7 4.4	0.1 .1 .1	51 46	0 20 80	147 212	1.0 .80 .20
									(Calhoun (County										
11S12W19ADC1 11S14W07DDD1 11S14W33BBD1 12S12W08DAC1 12S12W03DBA1 12S13W33CBB1 12S13W35CDB1 12S13W35CDB1 12S14W08BAA1 12S14W29DCC1 12S15W15ABA1 12S15W33BDD1 13S13W10DCD1 13S13W10DCD1 13S13W10DCD1 13S13W10DCD1 13S13W10DCD1 13S14W23BAC1 13S14W23BAC1 13S16W33BAC1 14S12W21BBB1 14S12W21BBB1 14S12W21BBB1 14S12W21BBB1 14S13W03DDB1 14S13W03DDB1 14S13W03DDB1 14S13W03DD1 14S14W06DDB1 14S13W03DD1 14S14W06DDB1 14S15W05DDB1 14S15W05DDB1 14S15W05DDB1 14S15W05DDB1 14S15W05DDB1 14S15W05DDB1 14S13W07ABA1 15S13W07ABA1 15S13W07ABA1	08-04-59 08-05-59 08-05-59 08-04-59 08-04-59 08-04-59 11-03-59 11-03-59 11-03-59 11-03-59 11-03-59 08-04-59 08-04-59 08-04-59 08-05-59 08-06-59	18.0 22.0 18.0 22.0 18.0 20.0 23.0 23.0 23.0 24.0 25.0 18.5 18.5 20.5 23.0 20.5 23.0 20.5 23.0 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20		63 493 75 123 196 120 709 245 89 1,620 53 107 447 317 85 500 222 78 73 105 220 257 4,130 645 90 80 216 143 104 374	5.4 6.28 6.28 6.33 6.04 4.58 6.72 6.12 6.7.15 5.6.9 7.7.15 7.06.49 7.06.63 7.06 7.06 7.06 7.06 7.06 7.06 7.06 7.06	20 8 14 30 22 6 118 14 14 19 113 28 25 2 25 8 118 7 48 6 39 26		11 95 13 42 58 24 99 76 15 218 14 9 75 17 108 20 39 67 28 9 99 10 68 26 26	66 88 0 16 0 94 60 0 218 0 2 64 0 46 52 11 17 6 18 0 17 39 9 65 8 2 2 2						7.0 122 7.0 16 16 4.5 27 17 3.0 270 2.5 5.0 37 53 6.0 42 7.0 5.5 10 34 32 1,190 118 8.0 9.0 20 14 16 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	2.0 23 1.0 1.0 1.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1					10 2.8 2.4 11 1.7 5.8 150 66 6.7 1.6 146 30 12 108 16 8.4 5.5 20 52 54 95 102 13 6.6 6.7 2.7 7 2.7 6.6 6.7 7 1.0 6.7 7 1.0 6.7 7 7 8 8 8 8 8 9 8 9 9 9 1 9 1 8 8 8 8 8 8 9 8 9
11S13W11ACA1	08-04-5	9 20.0		177	5.3	6	0	40	35	leveland	County				16	1.0			10		56
12.10.17	71.77.0							-							2.5						
11S09W36CDA1	08-04-5	9 20.0		153	6.4	22	0	25					-#-		15	21					17
									(columbia	County										
19S23W13CCB1	10-13-5	0 20.0)	669	7.2	328	0	266	0	59	29	47	1.3	3.3	60		0.0	18	40		0.60
										Dallas (County										
08S17W18BCA1	06-18-6	3 17.7	7 4	102	6.8	8	0	22	15	3.2	3.3	8.4		2.1	15	0.0		9.8		64	18
											-										

Well number	Date of sample	Temper- ature (°C)	Color (plat- inum- cobalt units)	Specif- ic con- duct- ance (µmho)	Ph	Bicar- bonate (HCO ₃) (mg/L)	Carbon- ate (CO ₃) (mg/L)	Hard- ness as CaCO ₃ (mg/L)	Non- car- bonate hard- ness (mg/L)	Dis- solved cal- cium (Ca) (mg/L)	Dis- solved magne- sium (Mg) (mg/L)	Dis- solved sodium (Na) (mg/L)	Sodium adsorp- tion ratio	Dis- solved potas- sium (K) (mg/L)	Dis- solved chlo- ride (C1) (mg/L)	Dis- solved sul- fate (SO ₄) (mg/L)	Total fluo- ride (F) (mg/L)	Dis- solved silica (SiO ₂) (mg/L)	Dis- solved iron (Fe) (µg/L)	Dis- solved solids (sum of constit- uents) (mg/L)	Dis- solved nitrate (NO ₃ (mg/L
										Drew Cou	inty									(3/ = /	
13S07W02ACC1 13S07W02BAC1	02-03-54 02-03-54	16.0 19.0	=	201 352	6.9	16 6	0	54 52	41 47						19 83	1.0			200 290		43 16
										Grant Co	ounty										
05S15W08ABA2	04-16-64	16.0	5	21	5.8	10	0	19	11	3.3	2.7	13	1.3	1.5	20	16	0.0		3,600	90	0.20
									Hot	t Spring	County										
06S19W11DBA1	05-11-64		1	49	4.9	2	0	4	3	0.6	0.8	4.3	0.9	1.8	6.0	0.0	0.1	21	50	47	11
									Je	fferson	County										
05S09W19BAB1 06S09W05DDD1	03-28-49 02-16-49		10 5	298 409	5.7 6.7	4 86	0	29 63	26 0	8.0	2.3	41 57	3.3 3.1	0.2	78 7 4	6.5	0.0	43 53	230 220	182 266	0.20
									L	afayette	County										
16S25W13CCC1 19S24W25DDD1 19S26W24DDD1 2OS23W04BDA1	01-08-55 02-29-68 03-07-68 02-29-68	3 18.0		640 567 286 200	8.0 8.6 8.1 7.1	242 344 132 88	0 20 0 0	268 370 78 72	0 38 0 0	68 94 6.7 17	24 28 15 7.0	30 19 17 15	0.8	0.7 1.2 1.2	59 32 8.0 18	45 23 .0 3.0		19 2.3 35	0	406 117 146	0.60 .10 .00
										Lincoln	County										
08508W12DAA1 08508W29ABB1 09508W01DDA1 09508W25AAC1 10506W16DDC1 10506W23CDA1 10507W19DBB1 10507W30BBB1 10507W30BBB1 10508W05CBC3 10508W14AAC1 10508W16ABC1	11-30-56 11-30-56 09-18-56 04-26-56 11-30-56 04-27-56 08-29-56 08-24-56 10-04-56 08-23-56 11-30-56	66 66 18.0 66 66 18.0 66 66 66	5	329 686 200 400 383 163 441 136 72 289 357 571 170 275	8.0 8.2 6.5 5.2 7.0 7.4 6.5 6.8 7.0 6.1 4.3 4.5 7.6	142 25 4 28 32 7 6 8 10 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25 113 42 52 122 19 97 33 14 54 56 49 27	0 0 22 49 99 0 92 28 7 46 52 49 27	2.7	11 14 7.9	47 32 38	2.8	4.0	20 75 16 72 84 25 41 18 8.0 62 42 83 26 37	17 85 16 5.2 2.0 2.0 23 12 2.0 17 13 15 3.0	0.2	1.5	0	210	34 20 9.6 65 116 8.6 117 18 16
						110			0	uachita	County										
11S15W25CCB1 11S16W12CCC1 11S17W35ABD1 12S15WW08ACA1	08-19-5 08-19-5 08-12-5 11-03-5	9 23.0 9 20.5	5	362 96 202 281	7.6 7.0 6.1 7.3	46 17	0	85 32 32	5 0 18 53						54 5.0 51 12	5.0 1.0 1.0 3.0					16 3.1 3.6 2.3

Dissolved solids range from 47 to 406 mg/L and average about 179 mg/L. Hardness averages 70.9 mg/L and ranges from 4 to 399 mg/L. The pH averages about 6.59 and ranges from 4.3 to 8.6.

IMPACT OF LIGNITE DEVELOPMENT

The development of lignite resources in south Arkansas could have a variety of effects on available water resources. Direct effects will result from the mining activity, processing and conversion of the lignite, and land reclamation. Indirect effects will be related to population growth, increased public services, and expansion of commercial activities in the area.

An in-depth analysis of direct and indirect effects of lignite development is beyond the scope of this report. However, the reader should be aware of both types of effects because each will cause impacts on local and regional water resources in terms of quantity and quality. The following is an overview of the possible direct effects of lignite development.

The direct effects of lignite development include not only the obvious changes in the physical features of the land, but also changes in the hydrologic environment. The quantity and quality of surface and ground water can be affected.

Before mining can begin, the area where a pit is to be located and the perimeter area must be dewatered. This is generally done by using galleries of dewatering wells around the perimeter and a grid network of wells over the pit area. The dewatering directly affects the quantity and quality of surface and ground water.

In the project area, lignite generally is found in or near the outcrop areas of the Tertiary aquifers. (See figures 17, 21, 25, and 29.) In many places, large parts of these outcrop areas are covered by alluvial or terrace deposits of Quaternary age. Therefore, the mine excavations will, in some areas, cut through one or more shallow aquifers as well as significantly incise the Tertiary outcrop. Dewatering of these aguifers in the area of mining will probably have varying effects upon the ground-water regime, dependon the local hydrologic characteristics of the aquifers. The shallow Ouaternary deposits, which are disconnected and function independently in many places, may be virtually "dried up" locally. This would affect primarily household supplies in the immediate area which might be tapping that aquifer. The dewatering of parts of the outcrop areas of the Tertiary aguifers will reduce water levels updip and downdip from the excavation sites. Updip water users may experience a continuing drop in water levels until eventually their wells may "dry up" and deeper wells may have to be drilled. Downdip, the effects could be equally or more severe.

When making plans for dewatering at a site in preparation for strip mining, the depth below land surface, and the thickness, of the saturated zone are of primary interest. In the outcrop areas of the Tertiary aguifers, watertable (unconfined) conditions exist and the saturated zone is nearer to the land surface than in areas where the aquifers are confined. Dewatering a portion of a Tertiary outcrop will require the pumpage of substantial quantities of water and could cause significant changes in water levels updip and downdip from the excavation site.

The most extensive and productive aquifers in the project area are the Cockfield Formation and the Sparta Sand. The outcrop areas of these aquifers are quite large (figs. 25 and 29) and contain most of the potential lignite

strip-mining sites (fig. 4) in the area. Figure 36 shows the saturated thickness of material in in the outcrop areas of the Cockfield Formation and the Sparta Sand. An estimate of the depth at which the saturated zone will be encountered can be made by subtracting the altitude of the potentiometric surface (water-table in outcrop area) (figs. 27 and 31) from the land-surface altitude (plate 1).

For example, at site A (plate 1) the land-surface altitude is approximately 200 ft. The altitude of the water table (fig. 31) in the Cockfield Formation at this site is 150 ft. The depth to the saturated zone is therefore approximately 50 ft. The saturated thickness of the Cockfield at this site is approximately 300 ft (fig. 36). Therefore, if an excavation 150 ft deep is planned, approximately 100 ft of saturated material will have to be dewatered.

The land-surface contours on the map on plate 1 are rather coarse. However, reasonable estimates of depth to the saturated zone can be obtained by using them. Better estimates can be determined by obtaining more accurate land-surface altitudes.

Dewatering also stresses the surface-water regime. Changes in both quantity and quality may occur as a result of dewatering. Water discharged from the dewatering wells, and "mine water" pumped from the mines after excavation begins, must be disposed of. The most obvious receptacles will be local streams. Downstream from a mining area, receiving streams will experience increased flows that are directly proportional to the quantities of ground water that is necessary to pump for dewatering. The discharged ground water will also affect the quality of the stream. This change in quality will present no problem if the quality of the ground water is as

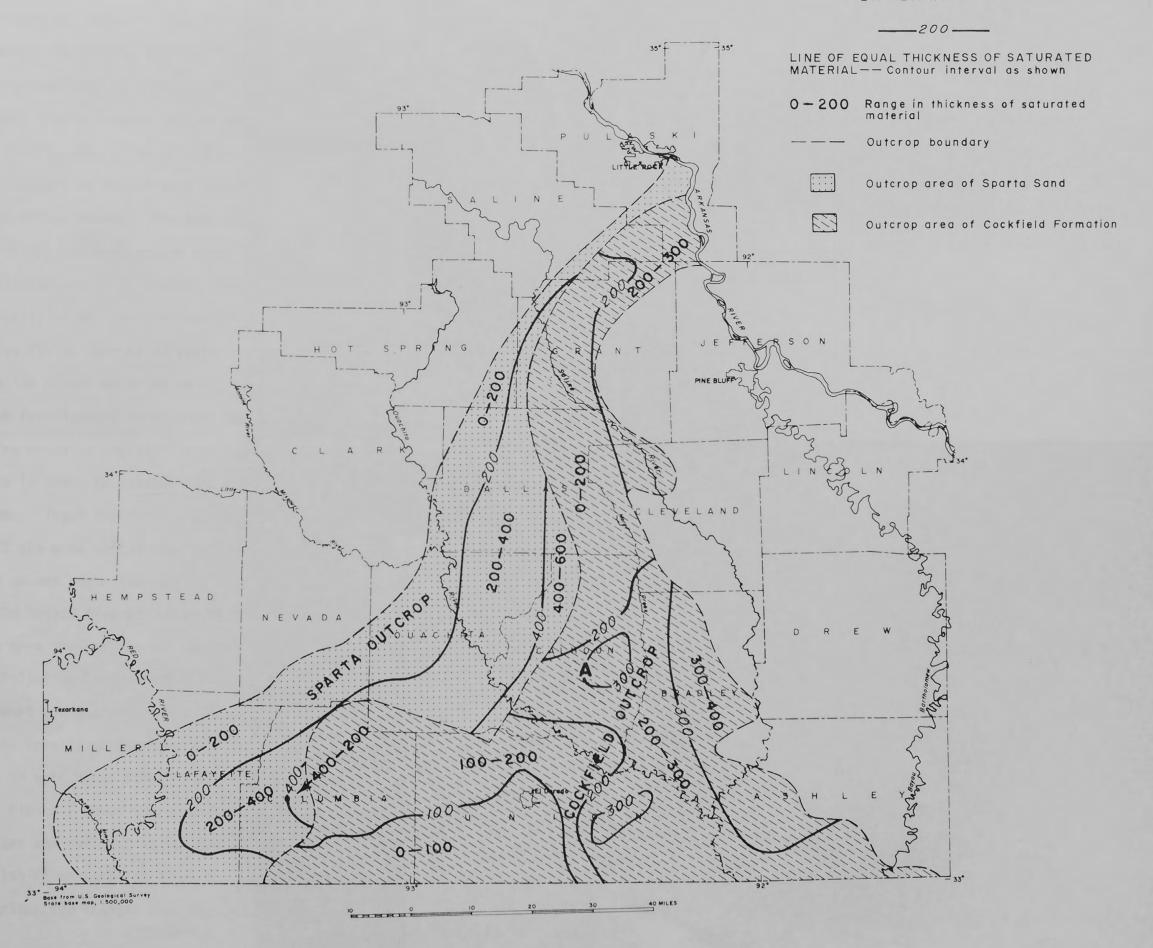


Figure 36.—Saturated thickness of the Sparta Sand and Cockfield Formation in outcrop areas.

good or better than the water in the receiving streams. However, although by existing standards the quality of water in the streams may not be reduced, the character of the water may be altered somewhat. In some local areas, within the project area, near oil wells and associated saltwater pits, shallow wells are no longer used because of deterioration of water quality. "Chloride concentrations of as much as 46,250 mg/L have been found in the alluvium near Garland City in Miller County. The high chloride content of the water in the alluvial aquifer has made ground water in this area unsuitable for irrigation. The contamination is associated with oil-field activity in the area and is related directly to effluent seepage from brine-storage pits, some of which have been in use for as long as 30 years" (Ludwig, 1972). It would be wise to sample the shallow ground water at each mine site before development and select the best method for disposal if it shows poor quality.

When mining actually begins at a site, it may be necessary to divert certain streams in order to maintain the integrity of existing surface—drainage systems. These diversions, coupled with earth—moving activities associated with the mine excavation, will cause increased sediment loads in the streams unless controlled on the mining site. Greatly increased sediment loads could impact severely upon streambed biota. In most of the streams in the project area the habitat for benthic organisms is generally good (Arkansas Department of Pollution Control and Ecology, 1976 and 1977). A significant increase in sediment concentration in a stream over an extended period of time could reduce the variety of benthic organisms by virtually "silting up" existing habitat. This in turn would reduce the available food supply for larger aquatic life. Figure 7 shows the locations of stations where sampling for benthic organisms and sediment is continuing. In addition, plans are being made to establish other sampling sites as necessary through the mining period in order to monitor any changes that may occur.

When processing the lignite as it is removed, water will probably be used for ore-dust control when hauling, handling, and crushing the lignite, and for washing it to lower the ash and sulphur content. Road dust can be controlled in the mine area and on the haul roads by wetting these areas. A conservative estimate of water requirements can be made by assuming that roads and mine areas are kept wet through the deposition of water equal to the net annual-evaporation rate (Argonne National Laboratories, 1977). The average annual lake evaporation rate in the project area ranges from 46 in. in the southwest to 43 in. in the northeast. Dust can also be a problem during loading, unloading, and crushing the lignite. Generally, application of a water spray is the best means of preventing the dust from becoming airborne. Available data indicate that a consumptive use of 1 pound of water for every 50 pounds of ore handled and crushed is a reasonable estimate (Argonne National Laboratories, 1977). Washing requires about 1,500 to 2,000 gallons of water per ton of ore processed. However, about 80 percent of this water is recirculated.

Because lignite has a low heating value and a high moisture content, transporting it for long distances is not economical. Accordingly, the lignite will probably be utilized in near mine-mouth operations. In the case of a mine-mouth steam-electric generating plant, about 50 percent of the energy generated is expended in waste heat. Removal of this waste heat generally requires water for cooling purposes. Some of the lignite could be converted to gas or oil. The gasification and liquification procedures require water for processing and cooling.

There are two basic methods which require water for removing waste heat from steam-electric powerplants: once-through and evaporative cooling. In once-through cooling, the excess heat is transferred from the steam to water which has been withdrawn from a large body of water. The

heated water is then returned to its source where it is diluted and the heat dissipated. This cooling method requires withdrawal of large amounts of water and is used only where adequate surface-water flows are available. For streams that are considered as a source of cooling water and as recipients for plant discharge, the 7-day, 10-year low flow must be three times the amount required for withdrawal (Argonne National Laboratory, 1977). The Red and Ouachita Rivers are the only streams within the project area that could be considered as sources of water for a once-through cooling system. Consumption of water for plants using the once-through cooling system is 0.011-0.018 (ft³/s)/MWe (megawatts of electricity) (Argonne National Laboratory, 1977).

In using evaporative cooling, excess heat is transferred to water which is then exposed to the air so that most of the heat is dissipated as some of the water evaporates. Cooling ponds or cooling towers may be used in evaporative cooling. Use of cooling ponds involves taking water from natural or artificial ponds, circulating it through the condenser and returning it to the ponds. When using a cooling tower, the heated water is cooled by the forced circulation of air through a falling spray of water. These methods require withdrawal of water from streams, reservoirs or ground-water sources to replace evaporation and spray drift losses. There should be adequate quantities of ground water available for this purpose almost anywhere in the project area. Water consumption by powerplants is 0.018-0.026 (ft³/s)/MWe for plants using cooling towers, and 0.022-0.037 (ft³/s)/MWe for those using cooling ponds (Argonne National Laboratory, 1977).

In the gasification and liquification processes, water is used in processing and cooling. In processing, water is used to generate steam and supply hydrogen for the reaction, and for quenching and sluicing and

control of air pollution. Many of the conversion reactions are highly exothermic, therefore, extensive process cooling is required. A gasification plant generating 250 million scf/day (standard cubic feet per day) of gas will require approximately 8-24 ft 3 /s of water. A gasification plant of this size or a liquification plant producing 100,000 barrels of oil per day will consume approximately 19 ft 3 /s of water (Argonne National Laboratories, 1977).

During reclamation, return of the overburden to the pits should be done as carefully as possible in order to restore, as nearly as possible, the integrity of the aquifers that have been disturbed. On properly reclaimed lands, infiltration and ground-water movement in the area will eventually approximate premining conditions. Streams diverted during mining should be rechanneled across the mine fill and premining gradients approximated as closely as possible. Postmining flows in such streams may differ somewhat due to changes in the ground-water/surface-water relationship throughout the mine area and that area in the perimeter affected by dewatering. The direction of water movement and (or) the quantity of water moving between stream and aquifer may differ after reclamation.

Soil stabilization plant cover should be established over the mine fill. This should be done immediately after filling the excavations in order to minimize erosion and avoid excessive sediment transport. Studies have concluded that strip-mined areas having greater than 10 in. of mean annual precipitation can be reclaimed without supplemental irrigation (Argonne National Laboratories, 1977). Mean annual precipitation for the project area is 48-52 in., so no supplemental water for irrigation of plant cover should be necessary.

SUMMARY AND RECOMMENDATIONS

Both water and lignite are important resources in south-central Arkansas. Removal and utilization of the lignite will undoubtedly have impacts upon the water resources. In order to effectively assess the significance of these impacts, existing baseline hydrologic conditions have been defined. Much of the information presented represents a compilation of data that is available as a result of previous water-resources investigations in the area. Data currently being collected in the project area are being added to the data base to more clearly define existing conditions.

Using data presented in this report as primary input, a digital model will be used to predict the effects of mining upon the ground-water regime. Various scenarios will be analyzed at each proposed mining site (fig. 7) to determine the drawdown necessary for dewatering, the quantities of water that will have to be pumped to maintain desired drawdown, and the distance from the excavation sites that cones of depression will significantly affect water levels.

Collection of data should continue at its current level in the project area for a minimum of 3 years. Flow duration, flood frequency, and low-flow frequency are already determined for the major streams. However, sediment transport and stream biota should be well defined in the area before mining begins. Also, seasonal ground-water fluctuations and local water-level patterns should be defined. Ground-water samples should be collected in the proposed mining areas to check the quality of water in the formations that are likely to be disturbed. A skeleton data-collection network should be maintained throughout the mining period to monitor changes as they occur. These data could be used to check the accuracy of long-term predictions and

identify unforeseen problems. Early detection of problems in the hydrologic environment is vital to proper and timely corrective action.

Lignite is a very valuable resource for Arkansas. Aside from its obvious asset as an energy source, the mining and associated activity could be a stimulus upon the economy of the south-central part of the State. However, care should be taken that in utilizing one resource, irreversible damage is not done to another.

REFERENCES

- Albin, D. R., 1964, Geology and ground-water resources of Bradley, Calhoun, and Ouachita Counties, Arkansas: U.S. Geological Survey Water-Supply Paper 1779-G, 31 p.
- American Public Health Association and others, 1975, Standard methods for the examination of water and waste water, 14th ed.: Washington D.C., American Public Health Association, 1193 p.
- American Society for Testing and Materials, 1974, Annual book of standards, pt. 31, Water: Philadelphia, ASTM publication, 902 p.
- Argonne National Laboratory, 1977, An integrated assessment of increased coal use in the Midwest: Impacts and constraints: U.S. Department of Energy National Coal Utilization Assessment, v. II, sec. 6, 36 p.
- Arkansas Department of Pollution Control and Ecology, 1976, Arkansas water quality inventory report, 1976: Little Rock, Arkansas Department of Pollution Control and Ecology publication, 297 p.
- ____May 1976, State of Arkansas 303 (e) water-quality management plan, Red River Basin: Little Rock, Arkansas Department of Pollution Control and Ecology publication, 227 p.
- ____July 1977, Water pollution control survey, Lower Ouachita River basin, segment 2D: Little Rock, Arkansas Department of Pollution Control and Ecology publication, 534 p.
- ____July 1975, Water pollution control survey: Lower Ouachita River basin, (segment 2E) and Red River Basin oil fields: Little Rock, Arkansas

 Department of Pollution Control and Ecology publication,
- ____May 1976, Water pollution control survey of the Red River basin: Little Rock, Arkansas Department of Pollution Control and Ecology publication 394 p.

- Baker, R. C., and others, 1948, Ground-water resources of the El Dorado area,
 Union County, Arkansas: University of Arkansas Research Series No. 14,
 39 p.
- Bedinger, M. S., and Reed, J. E., 1961, Geology and ground-water resources of Desha and Lincoln Counties, Arkansas: Arkansas Geological Commission Water Resources Circular No. 6, Little Rock, 105 p.
- Boswell, E. H., and others, 1965, Cretaceous aquifers in the Mississippi embayment: U.S. Geological Survey Professional Paper 448-C, 37 p.
- _____1968, Quaternary aquifers in the Mississippi embayment: U.S. Geological Survey Professional Paper 448-E, 15 p.
- Brown, Eugene, Skovgstad, M. W., and Fishman, M. J., 1970, Methods for collection and analysis of water samples for dissolved minerals and gases:

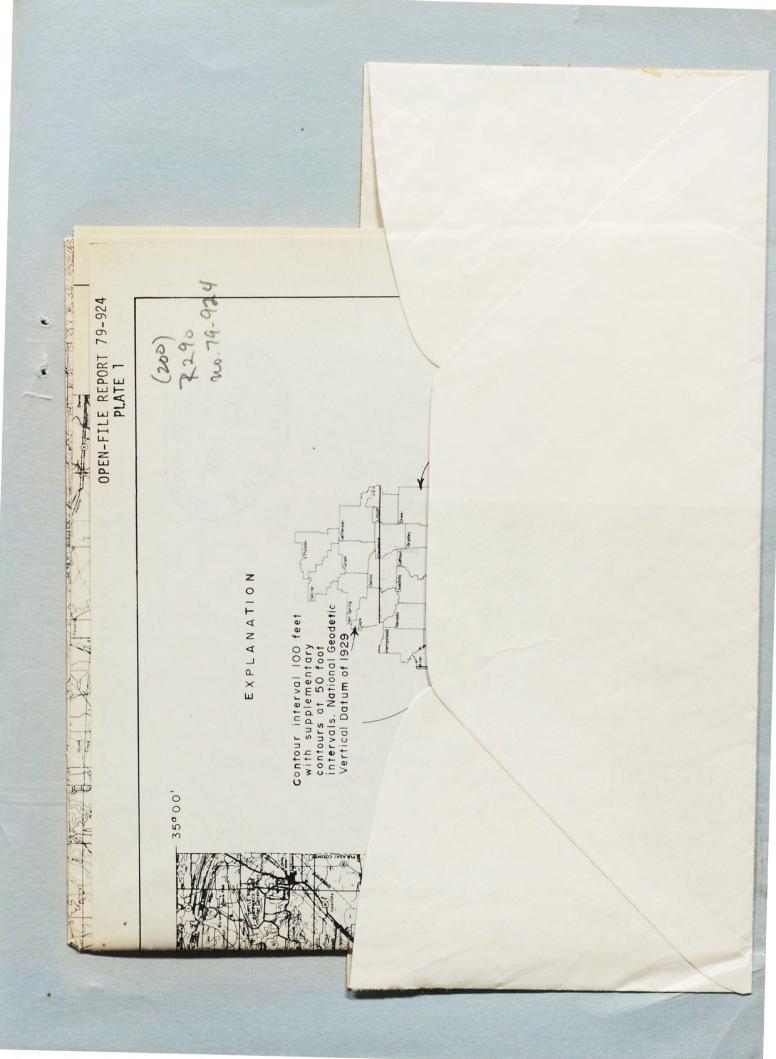
 U.S. Geological Survey Techniques of Water-Resources Investigations,
 book 5, chapter Al, 160 p.
- Clardy, B. F., 1978, Arkansas lignite investigations, (preliminary report):
 Little Rock, Arkansas Geological Commission publication, 85 p.
- Cushing, E. M., 1966, Map showing altitude of the base of fresh water in Coastal Plain aquifers of the Mississippi embayment: Hydrologic Investigation Atlas HA-221.
- Cushing, E. M., and others, 1964, General geology of the Mississippi embayment: U.S. Geological Survey Professional Paper 448-B, 28 p.
- Ferris, J. G., 1955, Ground-water hydraulics, Part 1--Theory: U.S. Geological Survey open-file report, Ground-Water Note No. 28, 105 p.
- Halberg, H. N., 1977, Use of water in Arkansas, 1975: Little Rock, Arkansas Geological Commission Water Resources Summary Number 9, 28 p.
- Halberg, H. N., and others, 1968, Water resources of Grant and Hot Spring Counties, Arkansas: U.S. Geological Survey Water-Supply Paper 1857, 64 p.

- Haley, B. R., and others, 1976, Geologic map of Arkansas: U.S. Geological Survey, scale 1:500,000.
- Hem, J. D. 1970, Study and interpretation of the chemical characteristics of natural water 2d ed.: U.S. Geological Survey Water-Supply Paper 1473, 363 p.
- Hewitt, F. A., and others, 1949, Ground-water resources of Ashley County, Arkansas: University of Arkansas Research Series No. 16, 35 p.
- Hines, M. S., 1975, Flow-duration and low-flow frequency determinations of selected Arkansas streams: Little Rock, Arkansas Geological Commission Water Resources Circular No. 12, 75 p.
- _____1978, Graphs for determining the approximate elevation of the 100-year flood in Arkansas: Little Rock, Arkansas Geological Commission Water Resources Summary No. 13, 11 p.
- Hosman, R. L., 1969, Geohydrology of the Coastal Plain aquifers in Arkansas:

 Hydrologic Investigations Atlas HA-309.
- Hosman, R. L., and others, 1968, Tertiary aquifers in the Mississippi Embayment: U.S. Geological Survey Professional Paper 448-D, 29 p.
- James, I. C., and Steele, T. D., 1977, Application of residuals management for assessing the impacts of alternative coal-development plans on regional water resources: Paper presented at Third International Symposium in Hydrology, Colorado State University, Fort Collins, June 27-29, 1977, 23 p.
- Jennings, M. E., and Bryant, C. T., 1974, Water-quality modeling for wasteload allocation studies in Arkansas--Stream dissolved oxygen and conservative minerals: U.S. Geological Survey open-file report, Little Rock, 19 p.

- Kaiser, W. R., 1974, Texas lignite: Near-Surface and deep-basin resources:

 Bureau of Economic Geology Report of Investigations No. 79, University


 of Texas at Austin, 70 p.
- Klein, Howard and others, 1950, Ground-water resources of Jefferson County,
 Arkansas: University of Arkansas Research Series No. 19, 44 p.
- Ludwig, A. H., 1972, Water resources of Hempstead, Lafayette, Little River, Miller, and Nevada Counties, Arkansas: U.S. Geological Survey Water-Supply Paper 1998, 41 p.
- National Academy of Sciences and National Academy of Engineering, 1974, Water quality criteria, 1972: U.S. Government Printing Office, Washington, D. C. 594 p.
- Onellion, F. E., 1956, Geology and ground-water resources of Drew County,
 Arkansas: Little Rock, Arkansas Geological Commission Water Resources
 Circular No. 4, 32 p.
- Patterson, J. L., 1967, Storage requirements for Arkansas streams: Little Rock, Arkansas Geological Commission Water Resources Circular No. 10, 35 p.
- _____1971, Floods in Arkansas, magnitude and frequency characteristics

 through 1968: Little Rock, Arkansas Geological Commission Water Resources

 Circular No. 11, 21 p.
- Payne, J. N., 1968, Hydrologic significance of the lithofacies of the Sparta Sand in Arkansas, Louisiana, Mississippi, and Texas: U.S. Geological Survey Professional Paper 569-A, 17 p.
- 1970, Geohydrologic significance of lithofacies of the Cockfield formation of Louisiana and Mississippi and of the Yequa formation of Texas:

 U.S. Geological Survey Professional Paper 569-B, 14 p.

- Plebuch, R. O., and Hines, M. S., 1967, Water resources of Pulaski and Saline Counties, Arkansas: U.S. Geological Survey Water-Supply Paper 1839-B, 25 p.
- U.S. Geological Survey Water Supply Paper 1879-A, 32 p.
- Reed, J. E., 1972, Analog simulation of water-level declines in the Sparta Sand, Mississippi Embayment: U.S. Geological Survey Hydrologic Investigations Atlas HA-434.
- Stone and Webster Engineering Corporation, 1978, Arkansas lignite for power generation: Prepared for Arkansas Power and Light Company and Arkansas Electric Cooperative Corporation, sec. 3.2 through 3.2.4.1 and 3.4 through 3.4.4.2.
- Stroud, R. B., and others, 1969, Mineral resources in industries of Arkansas:
 Bureau of Mines Bulletin No. 645, 418 p.
- Tait, D. B., and others, 1953, The ground-water resources of Columbia County, Arkansas, a reconnaissance: U.S. Geological Survey Circular 241, 25 p.
- U.S. Army Corps of Engineers, New Orleans District, 1966, Hydrology and hydraulic design, Appendix I *in* Volume I, Interim report on navigation and stabilization, Comprehensive basin study, Red River below Denison Dam, Louisiana, Arkansas, Oklahoma, Texas: 58 p.
- U.S. Environmental Protection Agency, 1974, Methods for chemical analysis of water and waste: U.S. Environmental Protection Agency publication, 298 p.
- U.S. Geological Survey, issued annually, Water resources data for Arkansas:
 U.S. Geological Survey water-data reports, Little Rock.

