This map is preliminary: it is incomplete in places and has hanging contacts; it has not been reviewed for edge joins.
LIST OF MAP UNITS

SURFICIAL DEPOSITS (HOLOCENE AND PLEISTOCENE)

Qa Alluvium
Qac Alluvium and colluvium
Qc Colluvium
Qt Terrace deposits
Qtp Terrace and pediment gravels
Qp Pediment gravels
Qls Landslide deposits—Includes some talus deposits
Qlg Landslide and glacial deposits
Qtg Terrace gravel and glacial outwash deposits
Qg Glacial deposits
Qs Windblown sand
Qtr Travertine deposits
Qf Alluvial fan deposits
Qb BASALT (PLEISTOCENE)

BASALT FLOWS AND INTRUSIVES (PLIOCENE)

Tb BASALT FLOWS AND INTRUSIVES (PLIOCENE)

Caldwell Canyon Volcanics (Miocene or Younger)

Tcc CALDWELL CANYON VOLCANICS (MIocene OR YOUNGER)

Intrusive Rocks (Eocene)

Ti INTRUSIVE ROCKS (EOcene)

Tig Granodiorite
Tid Dacite
Tia Andesite
Tir Rhyolite

POST-WIND RIVER DIKE (POST-LOWER EOCENE)--In T. 2 N., R. 2 W.
(Wind River Meridian)

Te EOCENE ROCKS UNDIVIDED

Upper and Middle Eocene Rocks—May include younger rocks locally

Twb Wagon Bed Formation

Upper (?) and Middle Eocene Rocks

Tw Wiggins Formation
Tt Tepee Trail Formation
Ttw Wiggins and Tepee Trail Formations
Ta Aycross Formation (Middle Eocene)

Ttpw Trout Peak Trachyanandesite (Middle Eocene) and Wapiti Formation
(Middle or Lower Eocene)

Te LOWER EOCENE ROCKS
Tw Wasatch Formation
Twi Willwood Formation
Twd Wind River Formation
Tim Indian Meadows Formation
Tcg Conglomerate beds

Lower Eocene and Paleocene Rocks

Tfu Fort Union Formation (Paleocene)
Kl Lance Formation (Upper Cretaceous)
Km Meeteetse Formation (Upper Cretaceous)
Klm Lance and Meeteetse Formations (Upper Cretaceous)
Kmv Mesa Verde Formation (Upper Cretaceous)
Kc Cody Shale (Upper Cretaceous)
Kmvc Mesa Verde Formation and Cody Shale (Upper Cretaceous)
<table>
<thead>
<tr>
<th>Code</th>
<th>Formation/Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kf</td>
<td>FRONTIER FORMATION (UPPER CRETACEOUS)</td>
</tr>
<tr>
<td>Kmt</td>
<td>MOWRY AND THERMOPOLIS SHALES (LOWER CRETACEOUS)</td>
</tr>
<tr>
<td>Kft</td>
<td>FRONTIER FORMATION AND MOWRY AND THERMOPOLIS SHALES (UPPER AND LOWER CRETACEOUS)</td>
</tr>
<tr>
<td>KJ</td>
<td>CLOVERLY FORMATION (LOWER CRETACEOUS) AND MORRISON FORMATION (UPPER JURASSIC)</td>
</tr>
<tr>
<td>Js</td>
<td>SUNDANCE FORMATION (UPPER AND MIDDLE JURASSIC)</td>
</tr>
<tr>
<td>Jsg</td>
<td>SUNDANCE FORMATION (UPPER AND MIDDLE JURASSIC) AND GYPSUM SPRING FORMATION (MIDDLE JURASSIC)</td>
</tr>
<tr>
<td>JTrn</td>
<td>NUGGET SANDSTONE (JURASSIC? AND TRIASSIC?)</td>
</tr>
<tr>
<td>JTr</td>
<td>SUNDANCE, GYPSUM SPRING, AND NUGGET FORMATIONS (UPPER AND MIDDLE JURASSIC AND JURASSIC? AND TRIASSIC?)</td>
</tr>
<tr>
<td>JTrgn</td>
<td>GYPSUM SPRING FORMATION AND NUGGET SANDSTONE (MIDDLE JURASSIC AND JURASSIC? AND TRIASSIC?)</td>
</tr>
<tr>
<td>Rcd</td>
<td>CHUGWATER FORMATION OR GROUP (TRIASSIC) AND DINWOODY FORMATION (LOWER TRIASSIC)</td>
</tr>
<tr>
<td>Pp</td>
<td>PARK CITY OR PHOSPHORIA FORMATION AND RELATED ROCKS (PERMIAN)</td>
</tr>
<tr>
<td>Pm</td>
<td>TENSLEEP SANDSTONE (PENNSYLVANIAN) AND AHSDEN FORMATION (PENNSYLVANIAN AND UPPER MISSISSIPPIAN)</td>
</tr>
<tr>
<td>Pzr</td>
<td>MISSISSIPPIAN THROUGH CAMBRIAN ROCKS UNDIVIDED</td>
</tr>
<tr>
<td>Mm</td>
<td>MADISON LIMESTONE (UPPER AND LOWER MISSISSIPPIAN)</td>
</tr>
<tr>
<td>Dd</td>
<td>DARBY FORMATION (UPPER DEVONIAN)</td>
</tr>
<tr>
<td>MD</td>
<td>MADISON LIMESTONE AND DARBY FORMATION (UPPER AND LOWER MISSISSIPPIAN AND UPPER DEVONIAN)</td>
</tr>
<tr>
<td>Ob</td>
<td>BIGHORN DOLOMITE (UPPER ORDOVICIAN)</td>
</tr>
<tr>
<td>Cr</td>
<td>CAMBRIAN ROCKS—Includes Gallatin Limestone (Upper Cambrian), Gros Ventre Formation (Upper and Middle Cambrian), and Flathead Sandstone (Middle Cambrian)</td>
</tr>
<tr>
<td>MDCE</td>
<td>MADISON LIMESTONE, BIGHORN DOLOMITE, AND CAMBRIAN ROCKS (UPPER AND LOWER MISSISSIPPIAN, UPPER ORDOVICIAN, AND UPPER AND MIDDLE CAMBRIAN)</td>
</tr>
<tr>
<td>OCE</td>
<td>BIGHORN DOLOMITE (UPPER ORDOVICIAN) AND UPPER AND MIDDLE CAMBRIAN ROCKS</td>
</tr>
<tr>
<td>pCE</td>
<td>PRECAMBRIAN IGNEOUS AND METAMORPHIC ROCKS</td>
</tr>
<tr>
<td>pCed</td>
<td>Diabase</td>
</tr>
<tr>
<td>pCEgr</td>
<td>Granite</td>
</tr>
<tr>
<td>pCEm</td>
<td>Migmatite</td>
</tr>
<tr>
<td>pCEum</td>
<td>Ultramafic rocks</td>
</tr>
<tr>
<td>pCEgn</td>
<td>Gneiss</td>
</tr>
<tr>
<td>pCEgm</td>
<td>Gneiss and migmatite into which felsic dike network has intruded</td>
</tr>
<tr>
<td>Ar</td>
<td>QUARTZ MONZONITE AND METASEDIMENTARY ROCKS (ARCHEAN)</td>
</tr>
</tbody>
</table>

CONTACT—Dashed where approximately located
FAULTS—Dotted where concealed
Normal fault—Bar and ball on downthrown side
Thrust fault—Sawteeth on upper plate
LAKE
GLACIER
SOURCES OF GEOLOGIC DATA

12. Kolm, K. E., 1974, ERTS MSS imagery applied to mapping and economic evaluation of sand dunes in Wyoming: University of Wyoming Special Report under contract NAS 5-21799 (available from National Technical Information Service, Springfield, Virginia), fig. 1, scale 1:1,000,000.

25. ______, unpublished mapping.