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	Notation

a haIf-width of opening

h layer thickness

e-fj strains

GT.JJ stresses

v vertical displacement

v Poisson's ratio

E Young's modulus

p density

g acceleration due to gravity

x,y horizontal and vertical coordinates

6 = h/a ratio of layer thickness to half-width of opening

o constant

mi ,ms constants

n = x/a ratio of x coordinate to half-width of opening

VO ,VQ constants

J n Bessel function of order n

m



Prediction of vertical displacements in a subsiding elastic layer A

model for subsidence in karst terrains

by William Z. Savage

Introduction

Subsidence over underground cavities is a common phenomenon, particularly 

in karst terrains. At the ground surface, subsidence manifests itself by the 

formation of a depression which may adversely affect adjacent manmade 

structures. Models of subsidence have been presented by Hackett (1959, 1964), 

Berry (1960, 1963, 1964a, b), Berry and Sales (1961, 1962) and Salamon (1963, 

1964a, b, 1965). These and other subsidence models are reviewed by Voight and 

Pariseau (1970). In many of these models, as well as in the model introduced 

here, the subsiding region is assumed to be elastic. This is thought to give 

a reasonable picture of displacements up to a state of incipient failure.

In what follows, the subsiding region is modeled as an infinitely long 

elastic layer resting on a rigid base and deforming under its own weight into 

an opening at its lower edge. An approximate solution for vertical 

displacements on the ground surface and over the opening is found for the case 

when the layer thickness is much greater than the width of the opening. This 

solution, based on the superposition of solutions to two boundary-value 

problems, differs from previous solutions in that the weight of the subsiding 

layer is explicitly included. Because of the restricted form of the boundary 

conditions, this solution is most appropriate for predicting subsidence up to 

incipient failure in karst terrains.



The two boundary-value problems

Consider a homogeneous and isotropic elastic layer of thickness h, under 

its own weight, overlying an opening of width 2a (figure 1). The opening is 

considered to be of great length relative to its width (2a) so that the layer 

is in a state of plane strain. This general problem can be solved by the 

superposition of solutions to two separate problems.



/ Y / /

Figure 1.  Elastic layer of thickness
h overlying an opening of width 2a



The first problem is to determine the response of an infinitely wide 

layer of thickness h to gravity only. The stresses at y = 0 are 

a YV (x,0) = v(x,0) = 0 x%0 , and
AJr

ayy(x,0) = -P gh x%0 

and at y * h are

A solution for stresses which satisfies equilibrium and compatibility is 

ayy - pg(y-h) (1)

a - a --*- -«'--h) . (2)
X 2 l-v P

The layer is assumed to be constrained from lateral displacement so

and

x = e z - 0 , 0<x ^ and 0<y<h

e -
y E(l-v) 

which leads to the vertical displacements, due to gravity only,

) (3).
The second problem is the determination of the response of the layer to 

an opening of width 2a at its base. Directly over the opening, equilibrium 

requires that the total vertical stress vanish. Thus on y - 0,
22

pgh x <a
22,

0 x >a

a vv (x,0) » 0 x^) , and

v(x,0) = 0 x >a



and on y = h

a yv (x,h) = 0 x%0 , and *j
ayy(x,h) = 0 X\0

A solution to this problem for the case h/a »1 is given by Sneddon and 

Lowengrub (1969, p. 62-66).

Vertical displacements at the roof of the opening, that is at y = 0, as 

given by Sneddon and Lowengrub (1969), are

2

2 I/ m i 4m. -m. rij.0 2 ~\ 6 
v(n,0) - -Y 0[l-n ~

where n = x/a, VQ = , 6 = h/a ,

and the notation 0(s" ) means that terms of order (a/h)" 8 and smaller are 

omitted. Here m = 2.350, and m3 = 9.962.

Vertical displacements on the free surface, y = h, are given by Sneddon 

and Lowengrub (1969, eq. 2.11.7, p. 64) as

.' (5)

where g(e) s £ (t)Jo(ct)dt (6) 

and

m l m l (2t +I)m3 s 
= t [1+ T+ '     3 + 0(6') . (7)

Substitution of equation 7 in equation 6 and integrating leads to
2

mx m t 3m 3 , m 3 J 2 (5) 8 
g(c) = [i+^7T + T7v-TAIT]T JI(?)+ IT, TT-+o(«") > (8)



and thus,

. -2v0 ..

Evaluation of vertical displacements on the free surface 

The integrals in equation 9 can be found approximately by using Fi Ion's 

quadrature (Sneddon, 1951, p. 519). Using this procedure, when 6»1, say 10 

or greater, sufficient accuracy is obtained by excluding terms of order 6"" 

and smaller. Vertical displacements of the free surface are then given by the 

approximate expression,

m i H
v(n,6) = -2v[l+]M(5«)J t {5)cos5n.2. , (10) 

where  (««) -

An alternative to quadrature is to follow Sneddon (1951) and replace 

M(56) in equation 10 by the approximate expression,

M(5«) - M x ( 5 6) = (l+5«)e'5a-l^[l+25«]e-°5a . . (11) 

This approximation is best at large values of C5 where M(55) = M»(55) = 

(1+55 )e"^ 6 , provided 0>1. For smaller values of 55, the parameter a is chosen 

in such a way that the area under the curve Mi (55) -M(5s) is as small as 

possible. This condition is best satisfied when a = 1.85.



Substituting equation 11 in the integral £ M(^6)J 1 (c)coscn -|- 

gives the approximation,

where

I,- e-fcjcos^. , and

The integrals Ij , I 2 , I 3 , K, are found by methods described in Sneddon 

(1951). The results are
1 _ 2 2 2_ l/«I, =-=[^+1+6 -n ] /2 - 6

I 2 = l-= 2 [s [ 
T R,

1 r- 2 2 2 2 - 1/0I,= -7= [R 2 +l+a 6 -n ] 2 - a5 , and2
2

2 222 J 2 1 / 2 2222 222l/

where R x = [ [1+5 -n ] +4s n ] 2 and R 2 = [ [1+a s -n ] +4a 6 n ] 2



Vertical displacements on the free surface and

over the opening

Displacements due to the weight of the layer deforming into the opening 

are now obtained by superposition of the displacements obtained in problems 1 

and 2. For y = 0, this yields the vertical displacements

 ( . , = . -»p [1+ _ : c^] (12)

and for y - h, the vertical displacements

v(n.h)- - v ( v P9h- -lrin.+^-VzI.-sIJ . (13) 

We can now write equation 12 in the dimensionless form

. (14)

Since the first term on the right in equation 13 is a constant,

Y . - 0vg 2E(i-v   we nave

2 V o
(15)

for the vertical displacements on the free surface.

Vertical displacements on y - h for s - 10 predicted by Fi Ion's 

quadrature of equation 10 and by equation 15 are the same to 3 decimal 

places. Vertical displacements on y - h, predicted by equation 15 for three 

values of the ratio 6 = h/a, are shown in figure 2. Vertical displacements 

over the hole (on y = 0) predicted by equation 14 are shown in figure 3.
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Discussion of resulting displacements

Vertical displacements on the free surface, shown in figure 2, are seen 

to decrease as h, the layer thickness, increases relative to the width of the 

opening, 2a. However, a broader trough of subsidence is formed as 5 = h/a 

increases. Additionally, because VQ = * I p 9 a and

= (l+v)(l-2v) h2 , increasing Young's modulus, E, causes a decrease in 
V9 2E(l-v) pg

free-surface vertical displacements. Conversely, increasing the density, p , 

and h or a causes an increase in vertical displacements at the surface. Also, 

increasing Poisson's ratio, v, causes a decrease in VQ and vg and hence a 

decrease in vertical displacements at the ground surface. Note that the width 

of the subsidence trough is controlled only by the ratio h/a and is not 

affected by changing VQ or v . Of equal interest is the formation of a ridge 

at the edge of the subsidence trough. This phenomenon is clearest in the case 

5 = h/a = 10 (fig. 2). Vertical displacements over the hole, as shown in 

figure 3, will be increased as P , h, or a is increased and will be decreased 

as 5, E, or v is increased.

Displacements over the hole, at y = 0, approximate actual field 

conditions as displacements for x2 >a2 will not vanish unless the subsiding 

layer overlies a very stiff base. This is also true for shear stresses at y = 

0 when x2 >a2 . The assumption that these stresses vanish implies that the 

layer is free to slide towards the hole as it subsides. Again this would be 

approximately true in the case of a relatively soft layer overlying a very 

stiff layer. Recognizing these restrictions, the present solution is best 

used as a model of subsidence in a karst terrain where a thick and relatively 

soft soil layer overlies solution cavities in much stiffer limestone or 

dolomite.

11



References 

Berry, D. S., 1960, An elastic treatment of ground movement due to mining,

Part I: Journal of Mechanics and Physics of Solids, v. 8, no. 4,

p. 280-292. 

____1963, Ground movement considered as an elastic phenomenon: Mining

Engineer, no. 37, p. 28-39. 

1964a, A theoretical elastic model of the complete region affected by

mining a thin seam: Sixth Symposium on Rock Mechanics, Rolla, 1964, 

Proceedings, p. 310-329. 

1964b, The ground considered as a transversely isotropic material:

International Journal of Rock Mechanics and Mining Sciences, v. 1, no. 2,

p. 159-167. 

Berry, D. S., and Sa-les, T. W., 1961, Elastic treatment of ground movement due

to mining, Part II: Journal of Mechanics and Physics of Solids, v. 9,

no. 1, p. 52-62. 

____1962, An elastic treatment of ground movement due to mining, Part III:

Journal of Mechanics and Physics of Sol ids,.v. 10, no. 2, p. 73-83. 

Hackett, P., 1959, An elastic analysis of rock movement caused by mining:

Institute of Mining Engineers Transactions, v. 118, pt. 7, p. 421-433. 

____1964, Prediction of rock movement by elastic theory compared with in-

situ measurement: Rock Mechanics and Engineering Geology, Supplement 1,

p. 88-102. 

Salamon, M. D. G., 1963, Elastic analysis of displacements and stresses

induced by the mining of seam or reef deposits, Part I: Journal of South

African Institute of Mining and Metallurgy, v. 64, p. 128-149.

12



Salamon, M. D. G., 1964a, Elastic analysis of displacements and stresses 

induced by the mining of seam or reef deposits, Part II: Journal of 

South African Institute of Mining and Metallurgy, v. 64, p. 197-218.

____19645, Elastic analysis of displacements and stresses induced by the 

mining of seam or reef deposits, Part III: Journal of South African 

Institute of Mining and Metallurgy, v. 64, p. 468-500.

____1965, Elastic analysis of displacements and stresses induced by the

mining of seam or reef deposits, Part IV: Journal of South African 

Institute of Mining and Metallurgy, v. 65, p. 319-338.

Sneddon, I. N., 1951, Fournier transforms: New York, Mc&raw-Hill, 542 p.

Sneddon, I. N., and Lowengrub, M., 1969, Crack problems in the classical 

theory of elasticity: New York, John Wiley, 221 p.

Voight, B., and PariSeau,.W., 1970, State of predictive art in subsidence 

engineering: American Society of Civil Engineers, Proceedings, Journal 

of Soil Mechanics and Foundations Division, v. 96, SM2, p. 721-750.

13


