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HYDROGEOLOGY OF THE GATLINBURG AREA, TENNESSEE

by Ann Zurawski

ABSTRACT

A study of ground-water availability in the Gatlinburg area was
undertaken to improve concepts of ground-water occurrence in the
Blue Ridge and demonstrate that ground water is present in sufficient
quantities to provide an alternative to surface water as a source of
supply. Of 25 test wells, 8 produced between 50 and 116 gallons per
minute.

The Gatlinburg area, located on the northern flank of the Great
Smoky Mountains, is underlain by fractured, variably-metamorphosed,
sedimentary rocks. The most effective criteria for choosing well
sites were valley areas with 7 percent or less land slope, presence
of fracture traces, and deep overburden. Mapped faults were not a
good indicator of ground-water occurrence.

The largest amounts of ground water occur in irregularly shaped
zones of deep and intense weathering in the rocks underlying broad,
fracture-controlled valleys. Permeable zones along fractures at depths
of 170 feet or less supply most of the water.



INTRODUCTION

Objective

This report concerns the geologic and hydrologic factors control-
ling the occurrence of productive aquifers in the fractured crystalline
rocks of the Blue Ridge province, specifically, in the wvicinity of
Gatlinburg. It is based on field observations and data from 25 test
wells, including five aquifer tests. The study was undertaken in April
of 1978, in cooperation with the Tennessee Valley Authority, the
Tennessee Division of Water Resources and the city of Gatlinburg.

The objectives of the study were:

1. to test and refine concepts of ground-water occurrence
in the fractured rocks of the Blue Ridge and criteria for
selecting sites favorable for drilling high-yielding wells,

2. to identify the specific geologic and hydrologic controls
on the occurrence of large ground-water supplies in the
vicinity of Gatlinburg,

3. to demonstrate that ground water occurs in this area in
sufficient quantities to be considered as a source of
supplies as great as several hundred gallons per minute, and

4. to obtain high-quality well records in a part of the state
for which ground-water records are inadequate for planning

and water management purposes.

Previous Studies

The complex geology of the Gatlinburg area was mapped and described
in a series of U.S. Geological Survey Professional Papers by Warren
Hamilton (1961), Jarvis B. Hadley and Richard Goldsmith (1963), and
Philip B. King (1964).

H. E. LeGrand (1967) developed a method for evaluating potential
well-drilling sites in the Blue Ridge and Piedmont provinces of the
Southeastern states based on factors controlling ground-water distri-
bution. McMaster and Hubbard (1970) mapped areas of high potential for
ground-water development in the Great Smoky Mountains National Park.
They found from the results of test drilling that major valley locations
in the vicinity of faults and in areas with thick overburden were favor-
able locations for wells. Tributary valleys had moderate potential, and
ridges were the least favorable sites.
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Figure l.--Location of Gatlinburg, Tennessee.

DESCRIPTION OF THE STUDY AREA

Topographic Setting

The Gatlinburg area is located in the foothills of the Smoky
Mountains (fig. 1). Topographic relief in the immediate vicinity of
Gatlinburg is as much as 1000 ft, although maximum regional relief
exceeds 5000 ft. Because of the ruggedness of the terrain, most of
the developable land is confined to the valley bottoms. The city lies
in the flat-bottomed valley of the West Prong Little Pigeon River and
its tributaries Le Conte Creek, Roaring Fork and Dudley Creek. Down-
stream from Gatlinburg the river valley is sharply constricted between
high ridges.



Geology

The Gatlinburg area is underlain by Precambrian sedimentary rocks
which have been very slightly to moderately metamorphosed. The most
extensively exposed formations are the Roaring Fork Sandstone and the
overlying Pigeon Siltstone (fig. 2). King (1964) describes the Roaring
Fork Sandstone as fine-grained gray or blue-gray sandstone, interbedded
with dull greenish siltstone and phyllitic clayey rocks. The main part
of the Pigeon Siltsone is a dull blue-green laminated siltstone.

Overlying the Pigeon Siltstone are the Rich Butt Sandstone, the
Elkmont Sandstone and the Thunderhead Sandstone. Except for a small area
near the junction of the Gatlinburg bypass and U.S. Highway 441 on the
north end of town all major valleys are underlain by Pigeon Siltstone or
Roaring Fork Sandstone. These two formations are the only significant
aquifers in the area, not because of their lithology but because of their
topographic situation.

Where the bedrock is not exposed at land surface, it is covered
by a layer of weathered rock and soil overburden. The thickness of the
overburden varies from a few feet to more than 100 ft. A veneer of allu-
vium, or stream-transported material, ranging from boulders to fine sand
and clay covers the bottom of major valleys (fig. 2).

Faults are a major control not only on the sequence of rock units
but also on the topography. The eastern segment of the Gatlinburg Fault
(fig. 2) is marked by a chain of deep depressions in the foothills.

The fault itself appears as a zone of severely crushed and fractured rock
such as a 75-ft wide zone observed in Gatlinburg by King (1964).

Numerous lesser faults and fractures crisscross the area. Line segments
formed by such features as aligned valleys, notches in ridges, and straight
reaches of streams can be observed on aerial photography (fig. 3). They
are thought to be the surface manifestation of almost vertical zones of
fracture concentration (Parizek and Drew, 1966). These natural linear
features are called fracture traces when less than 1 mi long and linea-
ments when they extend a greater distance (Lattman, 1958).

Climate

Gatlinburg has a warm, humid climate (fig. 4). Mean monthly temper-
atures range from 38° to 75° F. The average annual precipitation is
about 56 inches in Gatlinburg itself, increasing with altitude to about
80 inches on the higher mountain slopes (TVA, 1975). There is a rela-
tively dry period in September and October when precipitation averages
about 3 inches per month. Precipitation increases through the winter
to a spring peak in March. Another period of high precipitation occurs
in midsummer, as a result of thunderstorms. Over half of the annual
precipitation is returned to the atmosphere by evaporation and by trans-
piration of plants. This is illustrated by comparing the mean monthly
runoff curve and the precipitation distribution curve. For most of the
year, runoff is roughly proportional to precipitation. However, the
runoff for June, July, and August is significantly less than expected
because of the high evapotranspiration rate at that time of year.
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HYDROGEOLOGY

Rock Weathering

The process of rock weathering is intimately related to the occur-
rence of ground water in the Gatlinburg area. The weathering occurs
where fractures in the bedrock admit ground water. The solution of some
minerals such as sulfides and the breakdown of metamorphic minerals
gradually increase the size and permeability of the fractures, and hence
the porosity of the host rock, accelerating the weathering process.
Fractures having vertical dimensions of several feet were penetrated dur-
ing test drilling.

For the purpose of discussing ground water in the Gatlinburg area,
it is more relevant to describe earth materials in terms of the degree
to which they are weathered rather than formation name and lithology of
the parent rock. Four stages of weathering can be distinguished in what
is actually a gradational process.

1. Unweathered rock, in the areas tested, is dark gray or greenish
gray, typically laminated and containing preferentially oriented
mica particles. Although fractures are present in the unweath-
ered rock, they are tightly sealed and not water bearing.

2. Slightly weathered rock is similar in color but fractures and
cleavage planes are dark reddish brown from oxidation of iron
and manganese minerals. It usually appears duller than the un-
weathered material. This slight weathering indicates some
exposure to ground water.

3. Fully weathered rock is light brown, rather soft, silty to
sandy in texture, clay rich and stained red, orange, and black
along cleavage planes. Most of the enlarged, water-bearing
fractures occur in the weathered rock. This material differs
from the overburden in that it is still indurated to some degree.

4. The overburden is similar to the weathered rock but considerably
softer and friable. It is composed of clay and other insoluble
residues from the parent rock. Although most of the overburden
is formed in place, in some places the uppermost part consists
of material carried in by streams or by downslope movement.



A hypothetical cross section (fig. 6) illustrates the variation in
depth of weathering from place to place. There are two typical se-
quences of materials underlying the valleys around Gatlinburg. For
example, some wells, such as well B in figure 6, penetrate a layer of un-
saturated overburden, several feet to a few tens of feet thick, a zone
of fully weathered rock and then abruptly, unweathered rock. This sequence
is typical of low-yielding sites. 1In some cases, the overburden rests
directly on.unweathered rock. In areas where ground-water circulation
has been more active, such as the site of the high-yielding well A, the
overburden and weathered rock are apt to be much thicker. 1In addition,
there is commonly a transition zone where sequences of slightly weathered
or unweathered rock are interrupted by fully weathered intervals above
and below fractures.

Ground-Water Occurrence

Well yields are largely determined by the number, size and degree of
interconnection of the openings encountered in the rocks (McMaster and
Hubbard, 1970). Most of the water-bearing fractures penetrated by test
wells were in the weathered rock. Generally, fractures in the unweathered
rock did not produce water. This suggests that, in their unweathered
state, the fractured rocks are nearly impermeable and that some type of
chemical activity is required to enlarge the fractures to the point where
they will freely transmit water. The greatest water-yielding potential
exists, therefore, in places where the rock is highly fractured and the
fully-weathered zone extends to considerable depth, as at the site of
well A in figure 6.

Another factor in determining well yields is the thickness of sat-
urated overburden overlying the bedrock. Water that percolates downward
through the unsaturated zone is stored in the overburden and slowly re-
leased. Because the fractures occupy such a small part of the bedrock
volume, their storage capacity is limited. However, they act as collectors
and transmitters of water stored in the porous overburden.

In the Gatlinburg area, ground-water circulation patterns are local-
ized rather than regional in extent (LeGrand, 1967). Recharge is areally
distributed, and discharge areas are springs and major streams. The
average water level in the valleys away from the streams is about 20 ft
below land surface.

10
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Figure 6.--Relation between well yields and degree of weathering.
Well yields are highest at sites with a thick layer of
overburden, considerable depth of weathering and abun-
dant fractures, such as the site of well A. Well B
would have a low yield. Fractures are present in the
unweathered rock but are commonly so tightly closed
that they do not contribute significantly to the
permeability of the rock.
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RESULTS OF TEST DRILLING

Drilling Site Selection

Based on the foregoing concept of ground-water occurrence, certain
factors were thought to indicate sites with a greater probability of
yielding a sizeable ground-water supply. These factors were as follows:

1. Wells at sites on or near a mapped fault would produce
water from the fault itself or the highly fractured rock
nearby.

2. At sites on or near a fracture trace or linear feature,
especially at the intersection of such features, one would
have more chance of drilling through a fracture and of
encountering greater depth of weathering than in inter-
vening areas.

3. Sites in topographically low valley areas with gentle
land slopes are likely to be in or near ground-water
discharge areas and have greater saturated thickness of
aquifer material. 1In addition, the ground-water circula-
tion system is most highly developed in these areas.
Unusually broad flat valleys tend to develop where frac-
turing is pronounced.

4. Areas known to have deep overburden would be apt to have
greater depth of weathering and greater water-storage capac-
ity than areas with shallow bedrock.

5. Sites on talus fans deposited by streams draining Mount
Le Conte might have considerable depth of alluvial material
which would enhance the water-bearing properties of the site.

Some of these criteria were modified during the course of the test
drilling. The initial thrust of the drilling was to test sites along
the Gatlinburg Fault. Later drilling tested flat-bottomed valleys and
fracture traces. The talus fan criterion (factor 5) was developed after
the drilling of several successful wells in such an area.

12



Test Drilling

Between April 10 and June 20, 1978, 24 test wells were drilled by
a water-well contractor under the supervision of Tennessee Valley
Authority and U.S. Geological Survey personnel. 1In addition, an old
well at Holston Assembly Grounds was cleaned out for testing. The wells
are numbered 1 through 25 in the order they were drilled with the old
well as number 25. Because well 20 was abandoned after drilling 80 feet,
its yield is unknown.

The 6-1/4 inch-diameter test holes were drilled using air rotary
rigs and cased with 6-1/2-inch-inside-diameter steel pipe set into bed-
rock. Representative samples of the rock cuttings were collected from
each well to supplement the geologist's log. Various geophysical logs
for 18 of the wells are presented as supplemental data following this
report. Seven of the wells were backfilled upon completion.

Nine of the test wells are located in downtown Gatlinburg. The
others are spread out along State Highway 73 on the east side of town,
with a cluster in the vicinity of Gatlinburg-Pittman High School
(figure 7). The sites chosen meet one or more of the criteria described
in the previous section and were also on land either owned by the city
or accessible through agreement with the land owner. The area near the
high school is adjacent to a part of the national park mapped by McMaster
and Hubbard (1970) as an area of high ground-water favorability.

Well discharges measured during drilling ranged from 3 to 116 gal/min
(table 1). Of the 23 completed test wells, 8 produced 50 gal/min or
more.

The wells range in depth from 80 to 300 feet; (the 80-foot well
could not be completed due to difficulties unrelated to the drilling).
All but seven of the wells were 200 to 250 feet deep, but all the major
water-bearing openings were less than 170 ft below land surface. The
major water-bearing zones in the wells that produced 50 gal/min or more
were between 76 and 170 ft below land surface.

The water-bearing openings are fractures of various sizes and orien-
tations. Some are only a fraction of an inch high whereas others are
enlarged to as much as several feet. The enlarged fractures are usually
within the weathered rock zone. Most of the fractures are rather steeply
inclined at angles between 40° and 80°. The direction of dip is generally
easterly (fig. 8). Results of this study indicate that hydraulic con-
nection between nearby wells is the rule; in addition, the major water-
bearing zones in nearby wells commonly occur in the same 50-ft depth
interval. This occurs although most of the fractures dip so steeply
that wells even as little as a hundred feet apart must be aligned along
the strike of the fracture plane in order for both wells to tap the same
fracture. Given an extensive network of fractures, it appears that as
the weathering process proceeds, certain fracture connections are prefer-
entially enlarged as a result of the movement of ground water in directions
determined by the hydraulic gradient.
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NOTICE: This material may be protected

copyright law (Title 17 U.S. Code)
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Figure 8.--Angle and direction of dip of fractures in four test wells.
The fractures dip predominantly toward the east at angles between 20
and 70 degrees. Circumferential scales show the compass direction of
dip or the angle in degrees below horizontal. Radial scales show num-
ber of fractures in each 10 degree interval. For example, in well 9,
eight fractures are dipping in a compass direction between N75°E and
N85°E; nine fractures dip at an angle between 35° and 45° below hori-
zontal. Data on the orientation of the fractures was obtained from
acoustic televiewer logs of the wells.
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In the resulting system a water-bearing zone is not areally restricted
to a particular fracture but occurs at a particular level in the network
through interconnection of multiple fractures.

Four high-yielding wells are in the Gatlinburg-Pittman High School
area (fig. 9). Wells 17 and 18 are closely spaced wells in the parking
lot of Hunter Hills Theater. They produced 50 and 95 gal/min, respective-
ly, while the wells were blown with compressed air from the drilling rig.
Well 23, which produced 116 gal/min (measured while drilling), and well
24, which produced 60 gal/min, are in a small valley transverse to the
axis of the large open valley in which the high school is located.

Nearby wells 14 and 22 produced less than 20 gal/min. The wells in this
area penetrated at least 40 feet of overburden and weathered zones extend-
ing from 144 to over 200 feet below land surface. A block diagram through
the northern cluster of wells illustrates the abundance of fractures in
the higher yielding wells (fig. 10).

Four wells in downtown Gatlinburg produced 50 gal/min or more during
drilling (fig. 11). Well 5 is located at the city water plant, about 30
ft from the river. It produced 70 gal/min during drilling and is the
best of the downtown wells. Well 6, in the parking lot of City Hall,
produced 50 gal/min. Well 9, on Reagan Drive, produced 60 gal/min, and
nearby well 11 produced 50 gal/min. Wells 6, 9, and 11 are all located
in the foot of the Le Conte Creek talus fan, and all four of the wells
are in the broad-flat valley formed by the junction of Le Conte Creek and
Baskins Creek with the West Prong Little Pigeon River. Le Conte Creek
valley is characterized by rather deep overburden, as shown by the cross
sections (figs. 12 and 13).

Six wells in the Gatlinburg area were tested to evaluate well
yields and boundary conditions which would affect well performance.
Each well was pumped with a submersible pump for 7 to 8 hours at two or
more pumping rates. During these tests water-level measurements were
made in the pumped well and any nearby observation wells that were avail-
able. These data gave information on the performance of the well and the
response of the ground-water system to the stress of pumping. Table 2
summarizes the conditions and results of these tests. Specific capac-
ities ranged from 0.54 to 2.1 (gal/min)/ft.

Hydrologic characteristics of aquifers in the Gatlinburg area are
in violation of many of the assumptions of aquifer-test analysis.
Insofar as these tests can be analyzed, they indicate that the aquifers
are unconfined with transmissivities estimated to range from less than
100 ft2/d to as much as 800 ft2/d. Storage is highly variable. At the
only site with multiple observation wells (test of well 23), water-level
elevations and drawdown indicated water movement along a fracture. Re-
charging boundaries, probably nearby streams, are significant in the
downtown area. No-flow boundaries are expected to be evident after longer
periods of pumping at the Gatlinburg-Pittman High School area, which is
enclosed by high hills. A full discussion of the tests is in the supple-
mentary data following this report (pages 38 through 46).
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Figure 9.--Location of test wells in the Gatlinburg-Pittman High School area,
on the east side of Gatlinburg.

Wells 17, 18, 23, and 24 produced
over 50 gal/min; wells 14 and 22 produced less than 20 gal/min.
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Figure 1l.--Location of nine test wells and one preexisting well in downtown
Gatlinburg. Le Conte Creek and Baskins Creek flow into the
West Prong Little Pigeon River forming a wide valley in which
the city is located. A-A' and B-B' are cross section lines.
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Evaluation of Site-Selection Criteria

McMaster and Hubbard (1970) found that in the Great Smoky Mountains
National Park, the chances of obtaining large well yields are best near
faults, but large openings do not occur near all faults and good well
yields can be obtained where there are no faults. In the Gatlinburg
area eight test wells produced 50 gal/min or more and only one was located
on a mapped fault. Of the 25 test wells, 8 were drilled within 200 feet
of a mapped fault (fig. 14). Three of these are believed to penetrate
the fault. Only well 5 produced more than 50 gal/min; five wells pro-
duced less than 20 gal/min. Results of this study indicate that al-
though there is a patent relationship between faults and topography,
the presence of faults is not a useful criterion for choosing drilling
sites in Gatlinburg.

Linear features played an important role in the selection of sites
for wells 14 through 24. Many of these features were observed in the
field or on topographic maps. Well locations and fracture traces ob-
served on areal photography are shown in figure 15.

A total of 16 test wells are within 500 ft of a fracture trace.
However, most of these could not be considered to lie exactly on fracture
traces. Five of the wells associated with fracture traces produced 50
gal/min or more and nine produced less than 20 gal/min.

It is significant that the four highest yielding wells are not only
very close to fracture traces but they are also at fracture-trace inter-
sections. There are only five wells within 500 ft of a fracture-trace
intersection including these four. Based on this sample, the presence
of an intersection at a site is a more powerful criterion than the pres-
ence of a single trace. Fracture-trace intersections are probably most
useful when considered in combination with other criteria.

McMaster and Hubbard (1970) noted that the potential for developing
large yields is greater in broad valley floors and gentle valley slopes
than other areas. In the Gatlinburg area, the slope of the land is a
good index to topographic position because the highland areas character-
istically have very steep slopes and only valley floors are relatively
flat. Land slope can be measured approximately on a topographic map.
The ratio of the contour interval to the horizontal distance between two
contour lines is expressed as a percentage using this formula:

Vertical rise X 100 = percent slope.
Horizontal distance
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Thirteen test wells are in the areas of 7 percent or less slope
(fig. 16). All eight wells that produced 50 gal/min or more are in
this group, but only three wells that produced 20 gal/min or less are
included. The other test wells are located at sites with 8- to 20-
percent slope. Not including well 20, which was not completed, 82 per-
cent of the wells in areas with greater than 7 percent slope produced
20 gal/min or less, none produced as much as 50 gal/min.

The major talus fans in the Gatlinburg area are shown on figure 17.
They are composed of material transported from Mount Le Conte by Le Conte
Creek, Roaring Fork and the upper reaches of Dudley Creek. Wells 6, 9,
and 11, that produced 50 gal/min or more (measured during drilling), are
located in the foot of the Le Conte Creek fan where it spreads into the
Little Pigeon River valley. However, two wells drilled farther up the
fan and well 25 at Holston Assembly Grounds yield less than 25 gal/min.
Alluvial material is thin in this part of the fan. The association of
high-yielding wells with the lower part of the fan may be coincidental.

Overburden depths penetrated by test wells ranged from 10 to 129
ft. All the wells that produced more than 30 gal/min during drilling had
overburden between 40 and 80 ft thick (fig. 18). However, thick over-
burden does not necessarily indicate the presence of ground water. Of
15 wells producing 30 gal/min or less, 10 had overburden less than 40 ft
thick, but the remaining 5 wells had overburden 50 to 129 ft thick.
As a site-selection criterion, thick overburden has limited usefulness
since the only feasible way of determining it in this area is by well
records or exploratory drilling. A summary of the comparison between
site-selection criteria and well yields is given in table 3.

In summary, this study indicates that high-yielding wells can be
drilled in valleys with 7 percent or less land slope known or suspected
to have deep overburden (or having existing high-yielding wells).
Within such areas good wells are located along a fracture trace or
linear feature, or more commonly, at the intersection of such features.
Areas outlined in figure 19 meet some or all of these criteria.
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Table 3.--Summary of comparison between test-well yields and site~selection
criteria for all the test wells except well 20. (Production
figures obtained during drilling, except for yield of well 25,
which was determined by pumping.)

Number of wells Wells producing Wells producing
Criterion meeting this 50 gal/min or 20 gal/min or
criterion more less
Number Percent Number Percent

1. Mapped fault:

Within 500 ft 11 1 9 7 64
More than 500 ft away 13 7 54 5 38
2. Fracture trace:
Within 500 ft 16 5 31 9 56
More than 500 ft away 8 3 38 4 50
3. Intersection of
fracture traces:
Within 500 ft 5 4 80 1 20
More than 500 ft away 19 4 21 11 58
4, Land slope:
7 percent or less 13 8 62 3 23
More than 7 percent 11 0 0 9 82
5. Overburden thickness:
40 ft or more 15 8 53 6 40
Less than 40 ft 9 0 0 6 67
6. Talus fan:
On talus fan 6 3 50 2 33
Away from talus fan 18 5 28 10 56
7. Land slope +
overburden thickness:
7 percent or less, 40 ft
or more 11 8 73 3 27
More than 7 percent,
less than 40 ft 7 0 0 6 86

8. Land slope +
overburden thickness +
fracture trace inter-
section:
7 percent or less, 40 ft
or more, less than
500 ft away 4 4 100 0 0
More than 7 percent, less
than 40 ft, more than
500 ft away 7 0 0 6 86

28















WATER QUALITY

Water samples were collected near the end of the pumping tests of
five test wells. They were analyzed for some 40 constituents and pro-
perties including the major anions and cations, pH, dissolved solids and
a variety of health-related substances. The complete analyses are inclu-
ded in the supplemental data section (page 47).

Both the ground water and the surface water in the Gatlinburg area
are of high quality. They are very low in dissolved minerals. Figure 20
shows the major dissolved constituents of a representative sample of sur-
face water and the average of the five samples of ground water. The water
is relatively rich in bicarbonate, silica and calcium, and especially in
the case of the ground water, sodium. It contains very little sulfate,
and is acidic.

As drinking water, the ground water in Gatlinburg generally compares
favorably with both health standards and with the raw water supplies of
the 100 largest cities in the United States (table 4). One sample, from
well 6, contained excessive iron. All other constituents were within the
U.S. Environmental Protection Agency standards except phenols, which were
present in measurable amounts in all five samples. Some possible sources
of phenols are petroleum products, agricultural and industrial chemicals,
or decaying organic material. Because it is possible that these phenols
were in some way introduced during the sampling or analyzing process it
would be appropriate to resample the wells before concluding that the
ground water is contaminated.

CONCLUSIONS

Ground water in the Gatlinburg area occurs in the weathered upper
part of the rock underlying the area. The depth and degree of weathering
are variable depending on combinations of such factors as the abundance
of fractures and the topographic situation. As a result, the highest
yielding aquifers are deep, irregularly-shaped zones of weathered rock
located in broad fracture-controlled valleys. Water occurs in open,
weathered fractures usually 55 to 170 feet below land surface. Circula-
tion patterns are shallow and localized with recharge occurring by perco-
lation through the thick clayey overburden.

Eight of the 25 wells produced 50 gal/min or more. Specific capa-
cities of the five wells that were test pumped ranged from 0.54 to 2.1
(gal/min)/ft of drawdown. The high-yielding wells are in two areas:
lower Le Conte Creek valley and the Gatlinburg-Pittmen High School area.

Several different site-selection criteria were tested during the

study. The most effective criteria were location in valley areas with
7 percent or less land slope, presence of fracture traces, and presence
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of deep overburden. All eight of the test holes that produced 50 gal/min
or more met two or more of these criteria. The least effective of the
criteria tested was proximity to a mapped fault.

Water-quality parameters for the pumped wells were within drinking-
water standards with two exceptions. One sample contained excessive
dissolved iron, and a detectable amount of phenol was present in all
five samples. The phenol could have been introduced during or after samp-
ling, however.

The successful test drilling in the Gatlinburg area demonstrates
that ground water can be considered as an alternative or supplement to
surface water for supplies in the Blue Ridge.

MILLIEQUIVALENTS OR MILLIMOLES PER LITER
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Figure 20.~-Major dissolved constituents in ground water
and surface water in the Gatlinburg area.
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SUPPLEMENTAL DATA

A considerable amount of data concerning individual wells is
included in this section for the convenience of those interested in
additional details regarding specific sites. A discussion of the
aquifer tests of wells 5, 6, 9, 18, and 23 begins on page 38. (This
material is summarized on page 17 of this report.) The field data
for the tests are on file in Nashville at the Tennessee District Of-
fice of the U.S. Geological Survey, Water Resources Division. Comglete
chemical analyses of water from these five wells are given in Table 5.
Geophysical logs for 18 test wells begin on page 50.
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Aquifer Tests

The tested wells are in two groups: Well 18 and well 23 near
Gatlinburg-Pittman High School and wells 5, 6, and 9 in the downtown
area. Well 25, the old well, can be included with the latter. The wells
in each group are not only relatively close together but their responses
to pumping are similar.

Gatlinburg-Pittman High School Area
Well 23

Well 23 was pumped in two consecutive 4-hour steps at 36 and 67
gal/min, respectively. The higher pumping rate was the limit imposed
by the pumping equipment.

Ground-water levels before pumping began were lowest along the trans-
verse valley in which wells 23, 24, and 14 are located, indicating the
presence of a preferred avenue of ground-water flow from well 23 in the
direction of wells 24 and 14 (fig. 21). This southeasterly trending
valley coincides with a fracture trace (fig. 15) and the low potentiometric
surface probably indicates preferential movement along a fracture. The
same configuration was evident after eight hours of pumping. Drawdown in
the,three closest test wells, 24, 14, and 22, at distances of 420, 600,
and 780 ft, respectively, from the pumped well ranged from 0.6 ft in well
22 to a maximum of 1.1 ft in well 14. The water level in well 23 (the
pumped well) declined a total of 46 ft by the end of the test. Although
the rate of recovery was rapid during the first few minutes after pumping
ceased, the water level was still 9 ft below the prepumping level 1 hour
after the pump was turned off. Recovery was complete by the following
morning. Figure 22 shows the response of wells 23 and 24 to the pumping
of well 23.

The specific capacity of well 23 at the end of the test was 1.1
(gal/min)/ft. An additional 53 ft of available drawdown remained above
the uppermost water-bearing zone which supplies approximately 25 percent
of the yield. The major water-bearing zone, supplying 75 percent of the
yield, is 19 ft below the upper zone. However, projections of drawdown
for longer pumping periods or higher rates based on the specific capacity
obtained from this test may lead to serious underestimates of the actual
drawdown under those conditions.
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BEFORE PUMPING

=

EXPLANATION

WATER TABLE CONTOUR-
shows altitude of
pctentiometric
surface June 23, 1978
before and after
8 hour pumping test
(Dashed where
approximately located)

CONTOUR INTERVAL
IS 10 FEET
DATUM IS NGVD of 1929

AFTER PUMPING

610

%
WELL 22
L
1658~ 11is number
is water
table altitude 400 FEET
1
Figure 21.-- The potentiometric surface in the vicinity

of well 23 before and during the aquifer
test indicates what may be a zone of greater

permeability oriented NW-SE.
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Figure 22.--Log-log plots of drawdown and recovery in pumped well 23
and observation well 24, 420 feet away.
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It should be noted that several additional factors have an effect on
the maximum pumping capacity of the well.

1. For a longer pumping period, hydrologic boundaries might play
an increasing role in determining the drawdown. The effects of pumping
reach an ever-larger area as the hydraulic gradient within the aquifer
system adjusts to the stress. The net effect of hydrologic boundaries
is determined by the transmissive properties of the aquifer and by the
nature of and distance to its boundaries. These boundaries can be cate-
gorized generally either as barriers to ground-water flow or as sources
of water. 1In the Gatlinburg area, the unweathered rock underlying the
steep hills could be expected to act as a barrier, or no-flow boundary.
Intercepting a no-flow boundary causes the rate of drawdown to increase.
In contrast, perennial streams could act as source boundaries. This type
of boundary, referred to as a recharging boundary, causes the rate of
drawdown to decrease either because of interception of natural ground-
water outflow to the stream or by the inducing of stream water to enter
the aquifer system. Although data obtained from this test do not clearly
identify the influence of either type of boundary, it is expected that
the valley walls (no-flow boundaries) would eventually increase the rate
of drawdown by limiting the flow of water to the well.

2. Available drawdown in the well is subject to change as water
levels fluctuate from season to season and year to year. If, for example,
the water level declined 10 ft below its level at the time of the test,
the available drawdown, and, therefore, the well's potential yield would
be reduced by 14 percent. If the area north of the high school is a
ground-water discharge area, as is apparently indicated by the presence
of springs, then the natural water-level fluctuations would be considerably
less than in highland areas. The only records of natural water-level fluc-
tuations are two sets of water-level measurements made during a rainy
period in June 1978 (shown in fig. 21), and a dry period in October 1978.
Water—-level declines during this interval for wells 14, 23, and 24, res-
pectively, were 1.30, 0.95, and 0.57 ft. This is significant because at
the time the October measurements were made, streamflow was at its seasonal
low. These October ground-water levels, then are representative of what
could be expected during an extended period of dry weather.

3. An intermittent pumping schedule would permit higher discharges
than continuous pumping. Ultimately, the impact of pumpage on the aqui-
fer will be determined by the total volume of water removed, not the
schedule of withdrawals.

4. Production well design, in particular the well diameter, would
affect the efficiency of the well.
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Well 18

The 8-hour test of well 18 consisted of two steps: 3 hours pumping
at 36 gal/min, followed by 5 hours pumping at 67 gal/min. The higher
rate was limited by the equipment used.

Water levels were lowered during the test a total of 20.1 ft, and
recovered within two hours after the cessation of pumping to less than
a foot below the prepumping level. Well 17, at a distance of 110 ft,
experienced 6.3 ft or drawdown by the end of the test (fig. 23). The
specific capacity of well 18 was 2.1 (gal/min)/ft of drawdown at the end
of the test, using only about one third of the available drawdown. As
in the case of well 23, the optimum pumping rate for this well is dependent
on boundary effects, available drawdown, pumping schedule, and well con-
struction.

Boundaries and natural water-level fluctuations are likely to be
significant factors due to the location of well 18. It is located in
an arm of the broad valley in which the Gatlinburg-Pittman High School
is situated. This smaller valley is about 60 ft higher than the floor
of the main valley and is walled with high hills. The geometry of the
aquifer is poorly defined at present. It is probably bounded on the
north and south by the dense rock of the hills and is elongated in an
east-west direction. Ground water may move preferentially along a frac-
ture oriented in this direction. The long-term effect of the geometry
of the aquifer on well yield could not be evaluated from the test data.

Ground-water levels in wells 17 and 18 are approximately 40 ft
higher in altitude than in wells 23 and 24. Declines of 6 and 8 ft
were noted in wells 17 and 18, respectively, between June and October
1978 whereas the average decline for this period in all the test wells
was 2 ft. The greater fluctuation is characteristic of the topographi-
cally higher position of these wells. If the June and October water
levels truly represent the extremes that can be expected annually, then
the seasonal decline will amount to no more than about a 9-percent re-
duction in the available drawdown.

Downtown Area
Well &

Well 5 was pumped a total of 7 hours at four different rates:
20, 40, 56 and 80 gal/min (table 2). Total drawdown was 75 ft. The
specific capacity decreased from 1.8 (gal/min)/ft at the end of step 1
to 0.92 (gal/min)/ft at the conclusion of the test. The water level
had been lowered to the uppermost water-bearing zone at 90 ft below
land surface, an opening in highly weathered rock which produced about
14 percent of the discharge measured during drilling. The major water-
bearing zone is at 115 to 120 ft.
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Figure 23.--Log-log plots of drawdown and recovery in pumped well 18 and

observation well 17. The aquifer test consisted of pumping for
4 hours at 36 gallons per minute and an additional 4 hours at
67 gallons per minute.
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The well is only about 30 ft from the West Prong Little Pigeon
River. As expected, the aquifer response indicates the influence of
a recharging boundary beginning 4 to 5 minutes after each pumping rate
increase (fig. 24). Pumping this well would cause river water to enter
the ground-water system; however, the well would probably also be sup-
plied by ground water which normally discharges to the stream. If in-
filtration of surface water occurs, any change in water quality would
be gradual and would become apparent over a period of several months of
pumpage.

Well 6

The well was pumped at 20, 40, and 60 gal/min for a total of
7 hours. The specific capacity declined from 1.2 (gal/min)/ft at the
end of the first step to 0.60 (gal/min)/ft at the end of the third
(table 2). During the test the water level reached the deepest major
water-bearing opening shortly after the discharge was increased to
60 gal/min. From that time to the end of the test these openings were
supplying water to the well at their maximum rate. Well 6, like 5,
showed the effect of a recharging boundary, possibly Le Conte Creek
(fig. 25). Well 6 has less available drawdown than well 5 owing to a
lower natural water level.

Well 9

The pumping test of well 9 was similar to that of 6, with the
exception of the use of well 11, 200 ft away, as an observation well.
Three pumping rates, with a maximum of 57 gal/min, were used in the
8-hour test. Specific capacity declined from 2.0 (gal/min)/ft at the
end of the first step to 0.54 (gal/min)/ft at the end of the test
(table 2). Drawdown of 98 ft lowered the water level below water-bearing
zones at 106 and 108 ft. For a longer pumping period, the well is likely
to produce less than the highest rate tested. The response of well 9
to pumping (fig. 26) showed the influence of a recharging boundary.

Total drawdown in well 11, the observation well, was 1.3 ft; its
response showed the effects of water-table conditions. It has not been
pump tested but a preliminary yield of 50 gal/min was estimated during
drilling (table 1). The test of well 9 indicates that mutual interfer-
ence would occur if both wells were pumped simultaneously.
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Figure 24.--Log-log plots of drawdown and recovery in well 5.
Well 5 was pumped at a maximum rate of 80 gallons
per minute for a total of 7 hours. Water levels
*  had been lowered to the first water-bearing fractures
by the end of the test.
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Figure 25.--Log-log plots of drawdown and recovery in well 6. Water
levels in well 6 dropped below the major water—-producing
fractures early in the third step of the pumping test.

well 26

This well, drilled in the 1930's to supply the Holston Assembly
Grounds, has been unused since soon after World War II, according to a
local resident. It was reputed to be a good well, but a pumping test
showed that it could not sustain pumping at 20 gal/min. In 7.5 hours,
the water level dropped to the pump intake (fig. 27, table 2). This
test confirmed what had been suspected from the yields of test wells 12
and 13, farther down the valley, that the Le Conte Creek talus fan has
only a thin covering of alluvial material and is not a major aquifer.
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Figure 26.--Log-log plots of drawdown and recovery in wells 9 and 11.
Well 9 was pumped at three rates, with a maximum of 57
gallons per minute, for 8 hours. Drawdown in observation
well 11, 200 feet from well 9, was 1.3 feet.

Chemical Analyses
Five test wells were sampled after 5% to 7 hours of pumping.

Results of analysis of these samples by the U.S. Geological Survey
National Water Quality Laboratory in Atlanta are given in table 5.
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Figure 27.--Log-log plots of drawdown and recovery in well 25.
The old well at Holston Assembly Grounds was pumped
at 20 gallons per minute for 7.5 hours. The test was
terminated when the water level dropped rapidly to
the level of the pump intake between 420 and 450
minutes.

Geophysical Logs
The following geophysical logs were made of
Gatlinburg test wells:

>Ny
I 22 2 20y
- A E o ~.-c-.-¢E
> (S > 0.30
i &dd i 2dE
(O] ° U w y © U 0
=7 ERds 5 ERdd
. 59 Qoo . 8w U v Q9
S yEfs wpis g yphg bghg
F A% vulewag F louaum gD
H'HQ.:‘HUE o & 60 — H Qe B :1&-4?:0
~ — g 33 o d g —~ - g 33 o d
v B Id~ 0T RdODO v W OO 33
2 OHmRZOUO<<OA 2 OHRMZOUOCO
l x--xxxx - - 15 X = = = = = = = -
2 none 16 X - = = X = = = =
3 nomne 17 X = = = = = = = -
b4 X - - XX XX - - I8 X X X X X X X X X
5 XXX XXXXZXX 19 none
6 X X X X X X X X X 20 none
7 mnone 21 x - - XXX - - -
8 none 22 X K = = = = = = -
9 XX XX -XXXX 23 X X XX - XX XX
10 none 24 X - = - - = = - -
11 x - - x~x - -x 25 X = = = = = - - =
12 x X XXX X XXX
13 x - -xxx - - -
14 x - - XX XX - -
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Table 5.-- Analyses of water samples collected in 1978 from five test wells
in the Gatlinburg area. Values in milligrams per liter unless
otherwise indicated.

Pumping period (minute)--—-—--=—=-a—eev
Pumping rate (gallons per minute)-—--

Alkalinity, total, as CaCO3 __________
Arsenic, total-——=--——mmmmm——
Barium, total-————————c
Bicarbonate-—-————=— o
Cadmium, total-——=———m—mme e~
Calcium, dissolved——-———————cmmmoeee—
Carbon, total organic----————=~—=—=--
Carbonate- ————————————
Chloride, dissolved—-=-——mecmemmeem—o
Chromium, hexavalent-—~-—-——m———o—memeee—
Color (UNits§)-—=—=—mm——~mmmm e
Copper——---—-- - —_—
Cyanide-—-——=————m—com e
Detergents—————=——=——m—mm———o—
Dissolved solids, sum of constituents
Dissolved solids (tons/acre-foot)-—--
Dissolved solids, residue at 180°C---
Fluoride, dissolved-~~—--———————————-
Hardness, noncarbonate-—-—-—————=——=———
Hardness, total—-———==——————mm— oo
Iron, dissolved---—-—————==——————uu—o
Iron, total-~———————m~m—mmm e
Lead, total-———————m————
Magnesium, dissolved-—---—====—=-—no—
Manganese, dissolved-
Manganese, total-——————co—mmmmmmmmmee
Mercury, total--———————————mmmmmmme—e e
Nitrite, as N, total-~-————————eoum-
Nitrate, as N, total-—--—-=——————--
Nitrite plus nitrate, as N, total-
pH, field (units)-—-—————mc—m———m
Phenolg———————m e
Phosphorus, total, as P--—---————-
Phosphorus, total, as POA —————————
Potassium, dissolved--———~————e—an
Sodium adsorption ratio—-~—--——----
Selenium, total---—
Silica, dissolved—=————cmmemm———un
Silver, total--————=——— e
Sodium, dissolved-==—m——=mmmmmaeem
Sodium, percent-———————————o————on
Specific conductance, field

(umho /ecm at 259C)=——mm——cm—meee
Specific conductance, lab------——-
Sulfate, dissolved-————————emaccen
Turbidity (JTU)-~--———==————moomv
Water temperature (degrees Celcius)
Zinc, total-- ———

5 6 9 18 23
MAY S MAY 6 MAY 4 JUNE 21 JUNE 23
367 380 315 435 420

75 60 57 67 67

46 48 34 16 44
.001 .000 .001 .001 .003
.000 .000 .000 .000 .000

56 72 42 20 54
.000 .000 .000 .000 .001

8.2 15 8.5 3.3 8.0

4.2 5.3 6.0 7.4 8.0

0 0 0 0 0

1.6 3.9 5.6 1.9 1.5

.000 .000 .000 .000 .000

5 5 5 10 5

.002 .002 .000 .002 .002
.00 .00 .00 .00 .00
.0 .0 .0 .0 .0
69 82 67 42 70
.10 .14 .08 .07 0.08
72 101 58 48 61
.1 .0 .1 .1 2
0 1 0 0 0
30 49 32 15 32
.010 .010 .020 .000 .000
.070 .400 .130 .020 .060
.014 .007 .000 .009 .006
2.2 2.9 2.6 1.6 2.9
.010 .010 .010 .010 .030
.010 .010 .010 .010 .020
< .0005 < .0005 < . 0005 < .0005 < .0005
.01 .01 .00 .00 .00
.38 3.3 1.6 .49 .11
.39 3.3 1.6 .49 .11
7.4 6.6 A 5.9 7.5
.001 .003 .002 .005 .002
.03 .05 .06 .11 .08
.09 .15 .18 .34 .25
.5 .8 .7 .6 L4
.5 A .5 b .5
. 000 .000 .000 .000 .000
19 22 21 20 22
. 000 .001 .004 .000 .000
6.7 7.0 6.6 3.8 6.6
33 23 30 35 31
90 150 110 70 119
92 137 102 51 93
2.6 1.0 1.1 1.0 2.0
1 1 1 1 1
16 17 16 16 12
.020 .180 .140 .060 .030
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For those unfamiliar with borehole geophysics, some of the uses for the
various types of logs are briefly listed below. (For a complete descrip-
tion of the theory and applications of borehole geophysics to water-
resources investigations see Keys and MacCary, 1971).

Caliper log - spring-loaded 'fingers'" measure the average borehole
diameter; can be used to detect fractures in the rock, check
casing depth

Temperature log — measures the temperature of the water in the bore-
hole to detect source and movement of the water

Fluid resistivity log - measures the electrical resistance of the
water which is related to its dissolved solids content

Neutron log - uses a neutron-emitting source and a detector; can be
used to measure total porosity of the rock

Gamma log - records natural gamma radiation from the rock, usually
higher for clay-rich rock; used for correlation

Gamma-gamma log - uses a gamma-emitting source and a detector; can
be used to measure bulk density of the rock, identify lithology

Acoustic velocity log - records the transit time of a sound pulse;
can be used to measure porosity, identify fractures

Guard resistivity and Long-short normal electric logs - measure
resistance and potentials between the borehole fluid and
surrounding rock; used for correlation and identification of
porous rocks; used chiefly in unconsolidated rocks.

Logs of Gatlinburg wells are shown in figures 28 through 45.

Scales are consistent on all the illustrations to allow comparison.
The original logs are on file in Nashville.
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