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INTRODUCTION 

It is well known t h a t  na tura l  earthquake f au l t s  usual ly  have considerable 

Fau l t s  induced by mining excavations (s topes)  i n  deep gold 
s t r u c t u r a l  c m p l e x i t y  and t h a t  a simple planar  model of a f a u l t  is not 
e n t i r e l y  adequate. 
mines show a similar degree of complexity and there  are many advantages t o  
studying them. 
mechanical p roper t i es  and much more is known about t h e  s tate of stress i n  t h e  
hypocentral region than f o r  na tura l  f a u l t s .  
gold mines is dry so tha t  s t ud i e s  of f a u l t  mechanics are not hindered by t h e  
unce r t a in t i e s  o f  poss ib le  hydraulic e f f e c t s  (e.g. McGarr et  al . ,  1975). The 
best- studied mine-induced shear zones have formed i n  s o l i d  i n t a c t  rock and 
then are later exhumed when t h e  mine developnent f i n a l l y  penetra tes  i n t o  
them. Thus, t h e  mine excavations, a t  depths extending t o  below 3 km provide 
very d i r e c t  evidence about the  nature of f a u l t i n g  i n  t h e  environs of t h e  
earthquake focus. 

zone i n  t h e  E.R.P.M. gold mine, east of Johannesburg, South Africa, and then 
relates cons i s ten t  fea tures  of t h e  shear zone complexity t o  t heo re t i c a l  
f r a c t u r e  pa t t e rn s  based on t h e  mechanics of shear crack formation and 
i n t e r ac t i ons  between cracks. 
cons t r a in t s  on models fo r  t h e  developnent of t h e  f a u l t  zones based on t h e  
underground observations i n  conjunction with r e s u l t s  of laboratory testing. 

The observations reviewed here were made from a network of tunnels  
developed i n t o  a f a u l t  system a t  a depth of 2 km i n  t h e  West Claims p i l l a r  of 
ERPM (Ortlepp, 1978; Ortlepp and Gay, 1979; McGarr et  a1 1979, Spottiswoode, 
1979). T h i s  fracture system is undoubtedly the  best explored and completely 
mapped mine-induced f a u l t  zone t o  date, so it is of  p a r t i c u l a r  interest w i t h  
regard t o  e s t ab l i sh ing  r e l a t i o n s  between f a u l t  zone architecture and f a i l u r e  
mechanics. 

An e s s e n t i a l  theme of t h i s  study is t h e  nature and mechanics of the  
formation of a quasiplanar f r a c t u r e  zone. 
cracks has proven amenable t o  mathematical ana ly s i s ,  t h e  formation of planar 

They o f t en  occur i n  previously i n t a c t  rock w i t h  known 

I n  many cases the rock i n  deep 

This  repor t  reviews observations of the s t r u c t u r e  of a mine-induced f a u l t  

F ina l ly ,  we draw conclusions regarding 

- A, 

Although t h e  developnent of t e n s i l e  
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shear cracks has been la rge ly  ignored by f rac ture  mechanicians. A major 
d i f f i c u l t y  is that  a shear crack cannot grow i n  its own plane, but r a the r  
extends out  of its plane as a tensi le  crack, f i n a l l y  s t a b i l i z i n g  w i t h  t h e  
crack oriented i n  t h e  d i rec t ion  of t he  maximum pr inc ipa l  compressive-stress U1 
(e.g. Brace and Bombolakis, 1963; Sih, 1973). 
t h i s  general izat ion were reported by Holzhausen (1978) who managed t o  cause 
cracks i n  a rock-like material oriented at  angles of 2240 o r  less t o  01 
extend i n  the i r  own plane. 

plane, it seems l i k e l y  t h a t  f a u l t  formation is not t h e  r e s u l t  of t he  dynamic 
propagation of such cracks. 
f rac tures  i n  samples i n  t r i a x i a l  compression somehow r e s u l t  from t h e  
coalescence of t i n y  microcracks oriented subparal lel  t o  
the  a x i a l  stress approaches its maximum value. 
(Scholz, 1968; Peng and Johnson, 1972; Hallbauer et  a1 
Byerlee, 1979) have shown tha t  microcracks form homogeneously throughout t h e  
sample a t  low l eve l s  of stress. 
ul t imate leve l ,  an i n s t a b i l i t y  develops such t h a t  microcracks develop 
Preferent ia l ly  w i t h i n  a band more or  less coinciding with the  eventual shear 
fracture.  A t  present it is not clear what determines t h e  or ien ta t ion  of t h e  
band of intense microcracks, but Rudnicki and Rice (1975) have analyzed t h e  
associated di latancy i n  terms of e l a s t i c- p las t i c  cons t i tu t ive  re la t ionships  
and have predicted the  developent  of an i n s t a b i l i t y  i n  t he  form of a 
deformation band oriented roughly p a r a l l e l  t o  t h e  d i rec t ion  of t he  maximum 
shear stress. 

The inc ip ient  shear  fractures form within these bands of in tense  
subgrain-scale microcracking and much of the  avai lab le  evidence, including 
ours,  suggests t h a t  t h i s  is t h e  stage at  which t h e  intricate f a u l t  zone 
geometry is establ ished.  
relate t h e  observations of complex f a u l t  pat terns t o  t h e  f ac to r s  responsible 
fo r  t h e  geometry of t h e  inc ip ient  shear fractures .  The underlying assumption 
here is t h a t  t he  only essential difference between the  inc ip ient  f a u l t s  and 
post- fracture fau l t s  involves t h e  amount of shear displacement and t h e  degree 
Of commination of rock within t h e  f a u l t  zone. 

Some apparent exceptions t o  

t o  
These experimental r e s u l t s  w i l l  be discussed later. 

Because of the d i f f i cu l ty  of ge t t ing  shear cracks t o  extend i n  their own 

Laboratory r e s u l t s  have indicated t h a t  shear 

u l ,  
Laboratory experiments 

1973; Lockner and 

which develop as 

- 2 s  

A s  t h e  state of stress approaches its 

One of the primary i n t e n t s  of t h i s  report  is t o  

OBSERVATIONS AND BACKGROUND 

The f a u l t  zone under discussion occurred i n  the West Claims p i l l a r  i n  
1974 and was discovered where it cropped out i n  the south wall of a bay o f f  
t h e  49 level dr ive ( tunnel)  (Figure la) .  
important issues regarding t h e  mechanism of  mine tremors was t h e  extent  of t h e  
corresponding faults.  
underground evidence up t o  t h a t  time had suggested, or  were they several 
hundred meters i n  extent  as inferred from measurements of seismic source 
parameters (Spottiswoode and McGarr, 1975)? The network of incl ined tunnels 
developed over t h e  following 16 months revealed a great deal of unexpected 
complexity i n  t h e  f rac ture  zone and dimensions of a t  least 30 m ,  but the 
question of t h e  overal l  extent  was not answered. 
extend t h e  tunnels far enough t o  encompass t h e  e n t i r e  f r ac tu re  system. 

A t  tha t  time, one of t he  more 

Did they have dimensions of tens  of meters, as t he  

It d id  not prove possible t o  
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A detailed s t r u c t u r a l  mapping from the  incl ined tunnels indicated t h a t  
t he  f au l t  system cons is t s  of two quasi-planar shear zones, termed zones A and 
B (Gay and Ortlepp, 1979) and Ortlepp (1978) showed t h a t  t h e  two zones 
co r re l a t e  with seismic events t h a t  caused damage i n  September 1970. 
zone B was associated wi th  one of two reported tremors (magnitudes of 1.7 o r  
3.4) on September 5 and 6 and zone A was more de f in i t e ly  correlated with an 
event of magnitude 2.1 on September 23 (see a l so  McGarr et  al., 1979). 
Ortlepp (1978) a l s o  demonstrated t h a t  t he  two zones are re la ted  t o  the  mine 
geometry as shown i n  Figure la. 

of the  order of 30 m th ick  and form broad planar beds dipping southward. 
country rock above (hangingwall) and below (footwall)  t he  reef is qua r t z i t e  
with a s trength i n  uniaxia l  compression of 2 t o  4 kb (e.g. Jaeger and Cook, 
1969; McGarr e t  al . ,  1975). The mining operation consis ts  of excavating th in  
tabular  stopes roughly 12 m th i ck  centered about t h e  gold bearing reef and 
then tramming the  ore out  through tunnels i n  the  footwall such as t h e  49 level 
footwall dr ive shown i n  Figure la.  Because the  stresses i n  t he  rock abut t ing  
the  stopes become exceedingly high, t he  rock inevi tably f a i l s  and a large 
f r ac t ion  of t h i s  f a i l u r e  i n  E.R.P.M. is accounted fo r  by tremors, sane of 
which cause considerable underground damage (McGarr, 1976). 

and B i n  t h e  plane of t h e  reef r e l a t i v e  t o  t h e  mine face posi t ion i n  September 
1970. 
re la ted  it t o  the  northward advancing face about 30 m t o  the  south. Shear 
zone A s t r ikes NW, dips toward t h e  NE, and was assumed due t o  t h e  face 
advancing toward t h e  NE (Figures la and l b ) .  
typ ica l  o f  burst  fractures observed i n  the  Witwatersrand gold mines i n  t h a t  
they are normal f a u l t s  with a sense of displacement such as to accanodate the  
movement of rock i n t o  the  nearest stopes (McGarr, 1971a). 
have presumed tha t  t h e  convergence of t he  s tope on the  lower- left i n  Figure l b  
was t h e  primary cause of t h e  elast ic s t r a i n  build-up t h a t  resulted i n  shear 
zone A. Another common fea ture  of these mine-induced f au l t s  is t h e i r  control 
by the mine geanetry rather than pre-existing geological f a u l t s  and jo in t s .  
This report  emphasizes observations and analysis  of shear zone A r a the r  than B 
because zone A could be more def in i t ive ly  associated wi th  a pa r t i cu la r  seismic 
event and also because it was explored over a greater depth range. 

were developed s tar t ing  from the  north sidewall of t h e  49 dr ive adjacent t o  
the  fan chamber (Figure 1). 
then fanned out  i n  f i ve  d i f f e ren t  d i rec t ions  t o  follow the various branches of 
t h e  fractures upward toward the  mining horizon (Gay and Ortlepp, 1979). 
cross  sect ion view of shear zone A (Figure l b )  is ac tua l ly  an "artist's 
impression" of t h e  s t ruc tu re  of t h e  fracture system ra ther  than a f a i th fu l  
description of t h e  geometry. Although t h e  individual f rac tures  were mapped i n  
considerable detai l  it was not possible  t o  project  these fractures 
unambiguously onto a cross section because of d i f f i c u l t i e s  i n  cor re la t ing  
individual  f rac tures  between d i f f e ren t  branches of the  incl ined tunnel System. 

Typical shear displacements across the  shear zones ranged from about 4 t o  
10 m (e.g. McGarr et  al., 1979) and the sense of displacement was always as 
indicated by the large arrows i n  Figure l b .  A large scale feature of possible 

Shear 

The gold i n  t h e  Witwatersrand mines occurs i n  reefs which are typica l ly  
The 

Figure l a  is a plan view showing t h e  approximate traces of shear  zones A 

Shear zone B strikes east-west, dips northward, and Ortlepp (1978) has 

Both of the shear zones are 

For example, we 

Following t h e  i n i t i a l  discovery of zone A a network of incl ined tunnels  

The raise at  first went northward and upward and 

The 
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, 
signif icance,  shown schematically i n  Figure l b ,  is t h e  var ia t ion  i n  width Of 
zone A. Where we first discovered t h i s  fracture system, on the  49 level ,  it 
was 10 t o  20 cm w i d e  (e.g. Figure 6d of Gay and Ortlepp, 1979). 
t h e  w i d t h  of  t he  zone increased t o  severa l  meters as seen, fo r  example, i n  
Figure 6c of Gay and Ortlepp (1979). 

State of stress. 
depth (about 2 Irm) of shear  zones A and B i n  ERPM is approximately represented 
by a maximum pr inc ipa l  stress oriented i n  a near-vertical d i rec t ion  and having 
a magnitude of  530 bars  wi th  t h e  other two principal  stresses oriented more O r  
less horizontal ly and having magnitudes of 265 bars, half of t h e  overburden 
value (Gay, 1975; McCarr and Gay, 1978; McCarr e t  al. ,  1979). The ambient 
s tate of stress interacts wi th  t h e  mining t o  add a subs tant ia l  amount of 
induced stress t o  the  rock i n  the environs of the  shear zones. The mine 
geometry near the shear zones (Figure 1) is qu i t e  complex so it is d i f f i c u l t  
t o  compute even an approximate stress f i e l d  fo r  t h i s  region, especia l ly  i f  one 
were t o  take i n t o  account the inelastic deformation (e.g. McGarr, 1971b). 

To obtain scme idea  of t h e  stress f i e l d  near shear zones A, a simple 
two-dimensional ca lcula t ion  was performed using the  method of Muskelishvili 
(1953) (e.g. Cook, 1963). We assumed t h a t  stress of magnitude 1 acted normal 
t o  the plane of the nearest mine excavation, modelled as a t h i n  crack, t o  the 
south and southwest of shear  zone A t o  produce an induced stress f i e ld .  We 
a l s o  assumed t h a t  t he  stress ac t ing  p a r a l l e l  t o  the plane of the excavation 
was half  of t h e  component normal t o  t h e  stope. The r e s u l t s  of t he  ca lcula t ion  
a t  selected points near shear zone A ,  as seen i n  cross sect ion (Figure l b ) ,  
are indicated by number pairs .  
pr inc ipa l  stresses, respect ively,  i n  units of the  stress ac t ing  perpendicular 
t o  the stope. If  t he  mine face t o  t h e  SW of shear  zone A was the  only fac tor  
al ter ing the  stress f i e l d  then t h e  un i t  of stress i n  Figure l b  would be about 
540 bars ,  which is t h e  overburden stress. I n  fact,  t h e  shear zones are w i t h i n  
t h e  i so la ted  West Claims p i l l a r  and, i n  pa r t i cu la r ,  t h e  mining t o  the  east, 
which was completed i n  1948, induced large stresses i n  t h e  area. 
approximate methods of stress calculat ion were used i n  an attempt t o  include 
t h e  effects of the stope i n  the upper r i g h t  of Figure l b .  
ind ica te  t h a t  t he  u n i t  of stress might be as high as 1 kb a t  t h i s  writing. 
However, t h e  r e s u l t s  of t h e  different  methods show q u i t e  a lack of agreement 
and so we can only place broad l i m i t s  of 540 bars t o  1 kb on t h e  stress un i t  
i n  Figure lb .  

One of t he  in t e res t ing  fea tures  of t he  stress f i e l d  indicated i n  Figure 
l b  is t h e  increase i n  t he  minimum principal  stress i n  the  up-dip direct ion.  
From the 49 l eve l  up t o  t h e  l e v e l  of mining t h e  minimum stress increases by 
more than a f ac to r  of two. Note t h a t  t h e  r e l a t i v e  increase of 0 3  does not 
depend on our knowledge of the  absolute level of  t he  stress f i e l d  and so t h i s  
effect is reasonably independent of the various assumptions i n  the analysis.  

En echelon offsets .  As seen schematically i n  Figure l b ,  the  mine-induced 
shear zones cons is t  of an echelon pa t te rn  of f r ac tu res  occurring on a Variety 
of scales. 
of fse t  is always opposite t o  t h e  sense of displacement. That  is, for  r i g h t  
la tera l  displacement as viewed i n  cross sect ion,  the  trace of the f rac ture  

Up t h e  d ip  

The ambient state of stress i n  t h e  absence of mining at  t h e  

The numbers indica te  the  maximcrm and minimum 

Several 

The results 

One of t h e  most in t r iguing  observations is that t h e  sense of 
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s teps  t o  the  lef t  as i l l u s t r a t e d  i n  Figure 2a; s imi lar ly ,  fo r  l e f t  lateral 
displacement the  offsets are t o  the  r ight .  
f r ac tu res  are connected by a series of secondary shear fractures, which i n  
some cases of fse t  t h e  primary fractures by small displacements but do not 
extend beyond them. The en echelon pa t te rn  occurs over a range of length 
sca le s  from less than a centimeter t o  more than a meter i n  the shear zone 
under discussion. 

pa t te rns  w i t h i n  t h e  large o f f se t  and a l s o  i l l u s t r a t e s  t h e  nature of t h e  shear 
displacement across t h i s  region. The pre-existing j o i n t ,  labeled J ,  has been 
displaced 2-3 an across each of t h e  primary shear f r ac tu res  w i t h  l i t t l e  
obvious deformation i n  t h e  region between the  o f f s e t  ends. 
t h e  seaent  of j o i n t  within the  zone of overlap may have experienced a s l i g h t  
clockwise ro ta t ion  as viewed i n  Figure 2b. 
t h a t  t he  j o i n t  appears to  have undergone much less shear displacement than  t h e  
near- parallel secondary f rac tures ;  t ha t  is, comminution of t h e  quar tz i te  i n  
t h e  j o i n t  is much less evident than fo r  t h e  secondary fractures. 

The secondary fractures wi th in  the large o f f se t  region i n  Figure 2b 
appear t o  be s t r u c t u r a l l y  control led by the primary shear f rac tures .  
t h a t  many of the  secondary fractures seem t o  or ig ina te  from t h e  end regions of 
f r ac tu re  segments composing t h e  primary shear f au l t s .  Furthermore, as 
mentioned previously, t h e  secondary fractures do not extend beyond t h e  
overlapping primary f rac tures .  
independence of t he  f rac ture  pat tern is the  re la t ionship  between the  spacing 
of t h e  secondary fractures and the  amount of  o f f s e t  of t he  primary fractures. 
I n  Figure 2 the  secondary fractures connecting the  primary shears  are 22 t o  25 
cm long and separated by about 4 t o  8 an and those between t h e  small o f f s e t  
fractures j u s t  t o  t h e  l e f t  of the center  of Figure 2a have lengths of about 4 
an and spacings of roughly 1 an. Generally, then, the  r a t i o  of length t o  
spacing of t he  secondary f rac tures  is approximately 4 .  
indica te  t h a t  t h e  secondary f r ac tu res ,  as t h e i r  name suggests,  are generated 
as a r e s u l t  of t he  primary shear fractures .  

Figure 3, is approximately 4 but there is considerable var ia t ion  about t h i s  
mean, 20 measurements of a and b from photographs of en echelon o f f s e t s  
within the  shear zones yielded r a t i o s  b/a ranging from 1.3 t o  6.6. The 
arithmetic average is 4.1 and the  gemetric mean is 3.7; fo r  each type of mean 
t h e  standard deviation is 1.6. I n  any case, b/a does not show any 
systematic var ia t ion  wi th  dimension. 

A where it was first discovered i n  
t h e  south s idewal l  of the fan chamber (Figure l a )  was previously in terpre ted  
by Gay and Ortlepp (1979, Figure 6d) and McGarr et  a l .  (1979, Figure 5) as a 
bifurcating-and-coalescing f rac ture .  On closer  inspection, however, t h i s  
turned out  t o  be another en echelon pa t te rn  w i t h  an unusually l a rge  value of 
b/a. 
fractures along the dip ( p a r a l l e l  t o  the shear displacement) of shear zone A. 
Along s t r i k e ,  however, t h e  f r ac tu res  are observed t o  bifurcate and coalesce. 
Thus, t h e  amount of o f f se t ,  seen i n  Figure 3 would presumably show some 
var ia t ion  along the d i rec t ion  perpendicular t o  t h e  figure. 

The end points of the  main 

The l i n e  drawing of Figure 2b highl ights  a number of smaller en echelon 

It appears t h a t  

It is a l s o  of interest t o  note 

We see 

Another manifestation of the  scale- 

These observations a l l  

On the  average, t h e  r a t i o  of  overlap b t o  o f f s e t  2, as defined i n  

Par t  of the exposure of shear zone 

-- 

I n  fact,  it seems t h a t  there are no bifurcat ions i n  the individual  

2, 
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The shape of any of  t h e  individual  shear f r ac tu res  forming t h e  f r ac tu re  
zones is f a i r l y  consis tent  as seen, i n  Figure 2 and ideal ized i n  Figure 3. 
Each f r ac tu re  has a l i n e a r  portion subpara l le l  t o  the  dip of t h e  overal l  zone 
and t h e  end regions, termed "feather f rac tures ,"  tend t o  curve i n t o  t h e  
v e r t i c a l  direct ion.  The sigmoidal (or  mirror-image sigmoidal) un i t s  on a 
var ie ty  of scales are nested together i n  en echelon pa t te rns  t o  form the 
f rac ture  zone. 

Microscopic observations. 
microscopic analyses of t h i n  sec t ions  of wall rock adjacent t o  the  shear 
f r ac tu res  and found evidence for a pervasive d i s t r ibu t ion  of intragranular  
microfractures oriented subpara l le l  t o  t h e  maximum principal  stress. Away 
from the major shear f r ac tu res  t h e  d is t r ibut ion  of microcracks was 
considerably subdued. 
t o  confirm the belief t h a t  the  formation of the microcracks preceded the shear 
displacement. 

I n  addit ion t o  the  microfractures Gay and Ort lepp (1979) reported two 
sets of larger scale f rac tures  i n  the wall rock within an en echelon o f f se t .  
One set  appeared t o  be shear f rac tures  showing small displacments of the order 
of 0.2 mu oriented i n  the  conjugate d i rec t ion  (%600)  t o  the primary shear 
direct ion.  
Pa ra l l e l  t o  t h e  microfractures and are in terpre ted  as extension cracks as they 
show no shear displacement. 

Gay and Ortlepp (1979, Figure 9) performed 

Distort ion of t h e  microcrack by shear f r ac tu res  tended 

The o ther  set  cons is t s  of f rac tures  oriented approximately 

D I S C U S S I O N  

We now make a brief case f o r  a high degree of s i m i l a r i t y  between t h e  
f rac tures  observed underground and i n  laboratory samples. Then we consider a 
pa r t i cu la r ly  relevant  set of  experiments t h a t  bear on t h e  i n i t i a l  development 
of shear fracture planes and then use these laboratory r e s u l t s  as a point of 
departure fo r  analyzing the underground f r ac tu re  pa t te rns  i n  terms of t h e  
stress f i e l d  induced by an i so la ted  crack and by in t e rac t ions  between cracks. 

The important similarities between the f rac tures  observed underground and 
those i n  laboratory samples are as follows. 
intragranular  microcracks oriented subpara l le l  t o  t h e  d i rec t ion  of t h e  maximum 
Principal  stress precedes the  shear fa i lure .  
are most pervasive near t h e  planes of  shear displacement. 
1973; Peng and Johnson, 1972; Scholz, 1968; Lockner and Byerlee, 1979; Gay and 
Or t lepp ,  1979). (2)  The f r ac tu re  pa t te rns  i n  t h e  laboratory samples i n  
t r i a x i a l  compression a l so  form en echelon pa t te rns  consis tent  i n  sense w i t h  
those observed underground. On the scale of a laboratory sample t h e  en 
echelon of fse ts  are normally seen as steps on one fracture.surface opposing 
t h e  motion of t h e  other  surface (e.g. Paterson, 1958). (3) The f a u l t  gouge 
shows a similar degree of comminution i n  both cases (Spottiswoode, 1979). 

Accepting fo r  now the s i m i l a r i t y  between f a i l u r e  i n  the l a b  and i n  t h e  
mine, we now consider some experiments on ERPM footwall qua r t z i t e  by Hallbauer -- e t  al .  (1973). These authors tested a s u i t e  of  cy l indr ica l  samples i n  a st iff  
machine t o  various points  on t h e  s t r e s s- s t r a in  curve; typical  l eve l s  of 
confining stress near t h e  peak of t h e  loading curve were about 300 bars. By 
studying t h i n  sect ions of the various samples under the microscope they  were 

(1) The development of 

I n  both cases t h e  microcracks 
(Hallbauer et  al. ,  
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able t o  es tabl ish t h a t  most of the microcracks are intragranular ,  near- 
p a r a l l e l  t o  the  axial  d i rec t ion  and form at  l eve l s  between about 80% and 100% 
of t h e  peak stress. 
before peak stress an inc ip ient  shear plane forms by means of l inking up of 
microcracks. Kranz (1979) has recently presented sane electron micrographs 
showing i n  de ta i l  some mechanisms fo r  crack coalescence. No major shear 
displacement occurs, however, u n t i l  t h e  s t r e s s- s t r a in  curve is s ign i f i can t ly  
past i ts  peak. 

the present context. F i r s t ,  t h e  formation of the shear f r ac tu re  is primarily 
a t e n s i l e  process. 
Second, a t  t h e  time of  formation of t h e  inc ip ient  shear f r ac tu re  the Specimen 
is st i l l  i n  a strain-hardening portion of t h e  loading curve. Third, t h e  
geanetry of t he  f r ac tu re  is large ly  establ ished before any subs tant ia l  S t r a in  
softening occurs. 
developent  of t he  f r ac tu res  composing the  mine-induced shear  zones. 

On the  basis of t h e  laboratory r e s u l t s  we assume t h a t  at some point 
during the  build up of stress i n  the  rock t h e  intragranular  microcracks 
coalesce t o  form a larger scale crack whose plane is oriented a t  about 300 
t o  t h e  d i rec t ion  of  t h e  maximum principal  stress, al .  Once t h i s  crack 
develops we can analyze it as a shear crack, because of its orientat ion.  
Under t h e  influence of the applied stress f i e l d  t h i s  inc ip ient  shear crack 
deforms and generates induced stresses which influence the  developent  of 
successive fractures .  This  is the  point a t  which we begin our analyses Of 
in te rac t ions  between shear cracks under t h e  influence of a broad scale stress 
f i e l d  i n  order t o  gain sane ins igh t  i n t o  f ac to r s  responsible fo r  t h e  observed 
f r ac tu re  patterns.  

t h e  solut ions f o r  stress and deformation are obtained using a method of 
successive approximation described by Pollard and Holzhausen (1979) and Segall 
and Pollard (1978). 
shear displacement proportional t o  the  normal stress, an, 
plane of t h e  fracture.  The assuaed dimensions i n  the following examples are 
a r b i t r a r y  and were chosen t o  i l l u s t r a t e  the  pa r t i cu la r  geometry of Figure 2. 
The following analys is  is divided i n t o  th ree  successive s tages of f rac ture  
developnent s t a r t i n g  w i t h  t h e  case of a s ing le  crack i n  an applied stress 
f ie ld .  

I n  Figure 4 we i l l u s t r a t e  t h e  tendency of a 4 m long crack t o  induce 
f a i l u r e  i n  the  adjacent rock. The primary f r ac tu re  extends from x = -2 m to  
x = +2 m ,  but only t h e  right-hand half of t h e  crack is shown because the  
p ic ture  is antisymnetric about the plane The assumed ambient s tate Of 
stress is indicated i n  the  lower right-hand corner and was or ig ina l ly  intended 
t o  be similar t o  t h e  typica l  state of stress i n  the environs of shear zones A 
and B. I n  fact,  it seems t h a t  t h e  assumed minimum pr inc ipa l  stress is 
too low (Figure l b ) ,  but u n t i l  more exact estimates of t h e  state of stress 
near shear zone A becane avai lable we have elected not t o  repeat the 
analysis.  We note t h a t  i f  the  r a t i o s  0 3 / U l  are as high as suggested i n  
Figure l b ,  then shear displacements across pre-existing cracks or  i n  i n t a c t  
rock are d i f f i c u l t  t o  explain i n  terms of laboratory rock mechanics resu l t s .  

From their  photomicrographs it appears t h a t  somewhat 

There are several  important r e s u l t s  from the  study of Hallbauer et  al. i n  

No dynamic shear f rac ture  propagation is involved. 

These f indings are assumed here t o  apply a l s o  t o  t h e  

The following analyses assume a two-dimensional plane s t r a i n  model and 

Each crack is assmed t o  have a f r i c t i o n a l  res i s tance  t o  
ac t ing  on t h e  

x = 0. 
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With an assumed coeff icient  of f r i c t i o n  u = 0.7 the  crack i n  Figure 4 
has a maximum shear displacement of about 2.2 m, which is much less than t h e  
typ ica l  observed displacements of 4 t o  10 cm (McCarr et  al.. 1979) because we 
are considering an i so la ted  crack. 
displacements can only occur after  a long series of shear cracks i n t e r a c t  
i ne l a s t i ca l ly .  

induces new stresses which, i n  turn,  w i l l  affect the  developent  of  addi t ional  
fractures .  
induced) and t h e  tendency for new f rac tu res  t o  form is not e n t i r e l y  clear and 
so we have t o  r e l y  on laboratory observations. 
compression is normally observed t o  occur according t o  t h e  Mohr-Coulomb 
f a i l u r e  c r i t e r i o n  (e.& Jaeger and Cook, 1969) 

As w i l l  be seen, the  large shear 

As the crack deforms under t h e  influence of t he  applied stress f i e l d  it 

The re la t ionship  between t h e  t o t a l  stress f i e l d  (applied and 

Shear f a i l u r e  i n  rocks under 

where So is a material constant,  and ? is t h e  shear stress ac t ing  on a 
plane oriented i n  t h e  optimum di rec t ion  for f a i lu re ,  taken here as 300 t o  
t h e  d i rec t ion  of ul. On t h i s  bas is  t h e  function we have chosen as a measure 
of the tendency of the stress f i e l d  t o  cause f a i l u r e  is F = I T /  - 0.7 Un. 
I f ,  U 3  < 0 a t  a pa r t i cu la r  point where F has a high value, then we assume 
t h e  formation of  a t e n s i l e  f r ac tu re  oriented parallel t o  
shear  f rac ture .  Generally, values of F tha t  are high compared t o  t h e  
ambient l eve l  of 263 bars are considered t o  indica te  l ikel ihood of fur ther  
f a i lu re .  

Spacing of p a r a l l e l  f rac tures .  From the contours of F i n  Figure 4 it is 
clear t h a t  i f  a f r a c t u r e  were to  form p a r a l l e l  t o  t h e  o r ig ina l  crack and 
between x = -2 and +2 m 
below the  y = 0 plane; otherwise f r ac tu re  formation i n  a region of low F 
would be implied. 
f r ac tu res  t o  be separated by a distance of 1/11 t o  1 /3  of the f r ac tu re  
dimensions i n  stress regimes s imi lar  to tha t  considered here. 
f a i r l y  consistent  crack spacings noted f o r  t h e  secondary f r ac tu res  i n  Figure 2 
are expected on the basis of t he  analysis  of an i so la ted  crack (Figure 4 ) .  

New f rac tures .  The high values of F contoured i n  Figure 4 form two lobes, 
one extending downward and s l i g h t l y  leftward from t h e  f r ac tu re  t i p  and t h e  
other extending ahead and sanewhat upward f ran  t h e  t i p .  New f r ac tu res  have 
been sketched i n t o  t h e  high-F regions subject  t o  various constraints .  
Immediately ahead of and below t h e  crack t i p  a t  x +2 m u3 < 0 and so 
t e n s i l e  cracks oriented parallel t o  the loca l  d i rec t ion  of ul 
i n  t h i s  portion of  Figure 4. This r e s u l t  simply confirms the tendancy of 
shear cracks t o  s t ab i l i ze  rather than propagate i n  their own planes (e.& 
Brace and Bombolakis, 1963). The extension cracks calculated t o  form i n  the  
c lose  v i c i n i t y  of t h e  f r ac tu re  t i p  (Figure 4 )  seem t o  match closely the 
observed "feather fractures"  which extend out of t he  planes of t h e  en echelon 
f rac tures  i n  Figure 2. 
less than 20 cm by the  induced stress f i e l d .  
compressive stress across t h e i r  d i s t a l  ends. 

ul, r a the r  than a 

the  new crack would l i e  a t  least 1 t o  1& m above or  

Generalizing on t h i s  point,  we expect paral lel  shear 

Thus, the 

are indicated 

Those extension cracks are confirmed t o  lengths of 
Longer cracks would experience 
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I n  t he  high-F region away from the fracture t i p  U3 is pos i t ive  and SO 

we expect shear failure i n  one of two conjugate d i rec t ions  a t  300 t o  the  
loca l  d i rec t ion  of u l .  
have been drawn i n  one of t h e  two possible direct ions such as t o  allow the 
maximum length  of shear fracture within the  high-F zone. 

interesting because t h i s  is where shear fractures are expected t o  form t h a t  
w i l l  eventually i n t e r a c t  s t rongly with o ther  f r ac tu res  i n  the  same approximate 
plane. 
Of the i n i t i a l  crack and so we expect new shear f rac tures  wi th in  t h i s  zone t o  
mostly l i e  above t h e  y = 0 plane. The new shear crack shown i n  Figure 4 was 
a r b i t r a r i l y  assumed t o  be about 10 cm above the i n i t i a l  crack. 
t h e  new shear crack is not predicted t o  overlap with the  o r ig ina l  crack on t h e  
basis  of t h i s  single f r ac tu re  analysis.  

The analysis  i l l u s t r a t e d  i n  Figure 4 indica tes  t h a t  t he re  w i l l  be a 
tendancy for  new shear fractures t o  be offset from the  i n i t i a l  fractures i n  
t h e  same sense as i n  Figure 2 ,  but allows f o r  t he  poss ib i l i t y  of t he  other  
sense of offset .  
high-F lobe it would almost ce r t a in ly  propagate i n t o  t h e  t i p  of t he  or ig ina l  
crack (Segall and Pollard, 1978) and so it would not be dis t inguishable as a 
separate  o f f s e t  f rac ture .  

p a r a l l e l  t o  t h e  
observations i n  the  mine. The single crack shown i n  Figure 4 does not induce 
a stress f i e l d  t h a t  would lead t o  formation of another p a r a l l e l  primary crack 
Of comparable length. 
formed i n  response t o  stresses induced by a much more extensive zone of shear 
p a r a l l e l  t o  t h e  two cracks but not v i s ib l e  i n  t h i s  cross  section. 
geometry of t h e  two primary shear cracks is consistent  with the  induced stress 
f i e l d  of Figure 4. 
great F and does not extend i n t o  t h e  low-F region. 

Figure 5 have lengths such tha t  these fractures are i n  e q u i l i b r i m  with the 
loca l  stress f ie ld .  That is, if t h e  t e n s i l e  crack i n i t i a t e s  i n  t he  zone of 
large negative values of a3 near t h e  t i p  of a primary shear and propagates 
away from the end region, then t h e  mode I s t ress- in tens i ty  f ac to r ,  K I ,  
i n i t i a l l y  has a la rge  pos i t ive  value indica t ing  a marked propensity fo r  
fur ther  propagation. As t h e  crack lengthens KI diminishes and f i n a l l y  
becomes negative a t  about the crack length of 10 an shown i n  Figure 5. 
In teres t ingly ,  a comparison of t h e  stress f i e l d  shown i n  Figure 5 w i t h  t ha t  
calculated f o r  a similar case but without the two t e n s i l e  cracks, showed tha t  
these "feather fractures" have very l i t t l e  effect on t h e  induced stress f i e ld .  

below each of t he  t i p s  of t h e  primary shear fractures where we ant ic ipa te  
fur ther  tensi le  failure, as indicated schematically i n  Figure 5. 
i n t e r e s t ,  however, are the  high-F regions extending ahead of each of the 
primary shears.  
zones shear f rac tures  are predicted t o  form a t  distances of up t o  roughly 40 
an ahead of each primary fracture t i p ,  as indicated shematically i n  Figure 5. 
It should be reemphasized that the i l lus tra ted  fractures i n  the high-F regions 

The secondary shear f r ac tu res  sketched i n  Figure 4 

The high-F lobe  extending ahead of t he  primary fracture is pa r t i cu la r ly  

F i r s t ,  we notice tha t  t h i s  lobe is centered s l i g h t l y  above the plane 

We see t h a t  

If a shear f rac ture  formed i n  the  y < 0 region of the 

The analysis  i l l u s t r a t e d  i n  Figure 5 Includes two primary shear cracks 
axis and o f f se t  by 30 cm as ant icipated on t h e  bas is  of x 

We speculate t h a t  t h i s  second primary shear crack 

The 

That is, t h e  second crack lies i n  a region of r e l a t i v e l y  

Tensile cracks leading away from t h e  end of the  primary shear cracks i n  

As before, there is a region of negative u3 inmediately ahead of and 

Of primary 

On t h e  bas is  of t he  induced stresses calculated i n  these 
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were sketched somewhat a r b i t r a r i l y  and only represent one of many 
p o s s i b i l i t i e s .  
i l l u s t r a t e d  i n  Figure 5 predict  amounts of overlap by t h e  formation of shear 
cracks ahead of t h e  i n i t i a l  shear f rac t ions  t h a t  are e n t i r e l y  consis tent  wi th  
t h e  observations (e.g. Figure 2).  

- A s  i l l u s t r a t e d  i n  Figure 6 we have taken t h e  analysis  t o  the t h i r d  stage 
and calculated the stress f i e l d  induced by o f f s e t  primary shear cracks t h a t  
overlap by 20 cm. This  analysis  assumes that  t h e  primary shear f rac tures  i n  
Figure 5 have been extended by 10 cm because of s trong in t e rac t ions  between 
them and t h e  new shear fractures immediately ahead of t h e i r  t i p s .  
cracks were not e x p l i c i t l y  included i n  the  analysis  of t h i s  case. 
before t h i s  fracture configuration is intended t o  be s imi lar  t o  t h a t  shown i n  
Figure 2. 

fracture t i p  region, as was seen i n  the  two previous examples, but,  of greater 
i n t e r e s t  is the marked high-F region between t h e  o f f s e t  ends of t he  primary 
fractures .  As before, shear fractures having t h e  or ienta t ion  allowing t h e  
longest fractures have been added and we see tha t  these predicted secondary 
f r ac tu res  coincide qu i t e  n ice ly  w i t h  those observed i n  Figure 2 although t h e  
actual fractures may be ro ta ted  clockwise s l i g h t l y  r e l a t i v e  t o  the  calculated 
planes of failure. 

Figure 6 has very l i t t l e  effect on the peak shear displacements even though it 
c lea r ly  has a major effect on t h e  state of stress between the two cracks. The 
peak displacements across  the  fractures of Figure 6 are 2.9 mu whereas t h e  
peak displacements fo r  t he  i so la ted  4 m f r ac tu re  is 2.2 mu. Presumably, t h e  
s t rong in t e rac t ions  between fractures re su l t ing  i n  shear displacements of 6 cm 
or SO require  inelastic deformation of the material between adjacent primary 
shear cracks. The conjugate shear fractures shown i n  the  middle of Figure 6 
must eventually serve as an important mechanical l i n k  between the  o f f s e t  
cracks during the  major stress drop. 

Nevertheless, it is clear t h a t  t h e  results of the analysis  

Tensile 
As mentioned 

Contours of F show the  two high-value lobes extending from each 

In teres t ingly ,  t h e  elastic in t e rac t ion  between the -o f f se t  f r ac tu res  i n  

CONCLUSIONS 

Exploration of shear zones A and B revealed considerable unexpected 
complexity, but there is nevertheless some system t o  t h e  fracture patterns.  
Because these f r ac tu res  only failed once, it was possible  t o  relate the 
post- failure observations t o  t h e  pre- failure regime when we presume the 
inc ip ient  shear fractures were developing. 
systematic features, highlighted i n  Figure 3 for instance, are much more 
apparent i n  t h e  mine-induced fractures than i n  natural  f a u l t  zones tha t  have 
experienced repeated fai lure.  

various lengths from about 1 an up t o  4 or 5 m .  The various seguents, how- 
ever, were i n  fact made up of many nested shor ter  segments (e.g. Figure 2). 
One of the  most i n t e r e s t i n g  features  of t h e  shear zones is t h e  s imi l a r i ty  of 
t h e i r  geometries over a wide range of scales. Individual fractures appeared 
t o  be oriented at  roughly 300 t o  the loca l  d i rec t ion  of u1 Ortlepp, 1979) whereas the en echelon of fse ts  were such as t o  make the overa l l  
shear zone more pa ra l l e l  t o  t h e  d i rec t ion  of T ~ ~ ,  t h e  maximum shear stress. 

It seems l i k e l y  that  t h e  

The shear zones consist of a complex series of fracture sements of 

(e.g. Gay and 
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Probably the  most important assumption i n  our analysis  of f rac ture  
developnent is the a s se r t ion  tha t  the  f rac ture  geometries are established 
before large scale s t r a i n  softening of t h e  shear zone commences. 
assmpt ion relies heavily on t h e  experimental r e s u l t s  of Hallbauer e t  al. 
(1973) but it should be noted tha t  a l l  of t h e  observations of shear zones 
and B (Gay and Ort lepp,  1979) are consis tent  w i th  the  s table  developent  of 
the crack pat terns.  That is, the f rac tur ing  is highly ordered on scales 
ranging from less than a gra in  dimension up t o  5 m or more. Furthermore, a 
cataclysmic event m i g h t  be expected t o  produce considerable grain boundary 
rupturing, which was not observed (Gay and Ort lepp,  1979). 
assumption is correc t  then t h e  ac tua l  seismic event, corresponding t o  the 
major stress drop, simply involves subs tan t i a l  increases i n  shear displacement 
across f rac tures  whose geanetr ies  are already established. The most important 
effect associated wi th  the large displacements is t h e  generation of f a u l t  
gouge (Spottiswoode, 1979). 

By analyzing t h e  in t e rac t ion  between a s ing le  crack and the ambient 
stress f i e l d  we confirmed the r e s u l t s  of previous s tudies  t o  t h e  effect tha t  a 
shear crack could not extend i n  its own plane but rather terminates i n  an 
extension crack tha t  s t a b i l i z e s  more or  less i n  t h e  d i rec t ion  of Further 
f a i l u r e  occurs by means of subparal lel  en echelon cracks as indicated i n  
Figure 4. 
f a i l u r e  i n  nearly t h e  same plane as an i n i t i a l  crack. 
t h e  mechanism by which shear cracks studied by Holzhausen (1978) extended "in 
plane". As t h e  appl ied  deviatoric  stress was increased i n  these experiments 
t h e  i n i t i a l  crack, oriented a t  2280 t o  ul, 
by means of a shor t  f r ac tu re  approximately p a r a l l e l  t o  Further increase 
of stress resul ted i n  a series of of fse t  f r ac tu re  segplents subparal lel  t o  the 
i n i t i a l  crack and showing shear  displacement. 
were t o  t h e  r i g h t  fo r  left- lateral shear displacement. 

Before an inc ip ient  shear crack forms t h e  rock has deformed i n e l a s t i c a l l y  
by means of microcracks oriented subpara l le l  t o  (J1 
shown t h a t  sanewhat before t h e  ul t imate stress is reached these subgrain s ized 
cracks p re fe ren t i a l ly  form i n  bands along the  eventual shear f au l t s .  
i t  is not known exact ly why these d i l a t a n t  deformation bands tend t o  be more 
o r  less para l le l  t o  T~~~ or what determines the i r  thickness. Both i n  t h e  
laboratory s tudies  and possibly i n  shear zone A there is an indicat ion tha t  a 
higher confining stress leads t o  broader zones of shear f a i l u r e  (e.g. Tu l l i s  
and Yund, 1977). 
qua l i t a t ive  corre la t ion  between increasing wid th  of shear deformation and 
increasing u3 
l eve l  where it was first discovered. The primary conclusion of t h i s  study is 
t h a t  t h e  consis tent  fea tures  of t h e  shear zone geanetry can be predicted t o  a 
large extent on t h e  basis of elast ic in terac t ions  involving mult iple  cracks 
and an applied stress f ie ld .  These consis tent  elements of t h e  shear zone 
archi tec ture  (Figure 3) include: (1) f rac tu re  o f f s e t s  of the opposite sense 
t o  t h a t  of the shear displacements wi th  r a t i o s  of overlap t o  o f f s e t  averaging 
roughly 4; (2) t e n s i l e  or  "feather" f rac tures ,  or iented subparal lel  t o  t h e  
d i rec t ion  of  u l ,  terminating t h e  shear  f r ac tu re  seeplents; ( 3 )  secondary 
shear f rac tures  connecting t h e  overlapping primary shears with an or ienta t ion  
appropriate fo r  shear f a i l u r e  conjugate t o  t h a t  of t h e  primary fracture.  

T h i s  

A 

If our underlying 

U l .  

This  seems t o  be a v iable  mechanism f o r  the  extension of shear 
T h i s  a l so  appears t o  be 

extended at  first out of plane 
U l .  

A l l  of t h e  observed Offsets 

and various s tudies  have 

So far, 

I n  the case of shear zone A we noted i n  Figure l b  t h e  

i n  the up-dip d i rec t ion  along the f r ac tu re  zone f ran  the  49 
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The elatic analysis  u t i l i z e d  here probably cannot be used t o  analyze the 
developoent of the  f r ac tu re  system after t h e  o f f s e t  f r ac tu re  segments begin t o  
interact  strongly. We speculate tha t  after  the geometry i l l u s t r a t e d  i n  Figure 
6 is established e i t h e r  a fur ther  increase of stress or  a weakening of t h e  
zone of secondary fractures occurs such t h a t  t he  o f f s e t  no longer serves as an 
effective b a r r i e r  t o  shear displacement. 
large shear displacements, of t h e  order of centimeters i n  shear zone A ,  are 
accanodated wi th in  t h e  overlapping region by t h e  ro t a t ion  of blocks defined by 
the  secondary shear fractures .  
have ro ta ted  clockwise s l i g h t l y .  
t h i s  region we expect roughly 150 t o  200 o f  block ro ta t ion ,  if t h e  shear 
displacement is accomodated i n  t h i s  way. Note t h a t  the shear displacement 
across  t h e  secondary fractures t h a t  is associated w i t h  block ro ta t ion  is 
opposite i n  sense t o  the conjugate shear f a i l u r e  t ha t  appears t o  have 
o r ig ina l ly  generated these faul ts  (Figure 6) .  

The observations suggest t h a t  t h e  

For example, i n  Figure 2b t h e  j o i n t  seems t o  
For 6 an of t o t a l  shear displacement across 

After an en echelon o f f s e t  ceases t o  be a "barrier" t h e  two cracks 
* e f fec t ive ly  become one longer crack with correspondingly greater equilibrium 

shear displacements. Th i s  process is unstable because s t r a i n  energy is 
released and t h e  level  of  induced stress on adjacent o f f se t s  is 
correspondingly increased, possibly leading to  fur ther  shear displacement. 
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FIGURE CAPTIONS 

A plan view of t h e  mine geanetry i n  t h e  southern portion of t h e  
West Claims p i l l a r .  
on the  plane of mining are shown. 
about 25 t o  30 m below the  mine stope. 
Cross section view along A-A’ showing t h e  re la t ionship  of shear  
zone A t o  the  mining. The indicated fracture pa t te rn  within zone A 
is schematic and not intended t o  be exact. Shear zone B has not 
been included. The number pa i r s  beside t h e  dots  indicate estimated 
l eve l s  of maximun and minimum principal  stresses. 
Photograph of shear zone A as it crops out on t h e  north sidewall of 
t h e  49 level drive. 
Line drawing i l l u s t r a t i n g  the  fracture geometry of Figure 2a. 
most prominent pre- existing jo in t  is labeled J. 
Schematic diagram of fundamental fracture pa t te rn  observed i n  t h e  
mine-induced f a u l t  zones and their probable re la t ionship  to  t h e  
broad scale state of stress. 
T h e  stress f i e l d  of an i so la t ed  shear crack, extending from x I -2 
m t o  x = +2 m ,  and the ambient stress f i e l d  indicated i n  t h e  lower 
r ight .  The contours are of t h e  function F = - 0.7 on with 
t h e  ambient level of  F being 262 bars. Fractures ,  indicated by 
t h i n  l ines ,  have been sketched somewhat a r b i t r a r i l y  i n t o  areas of 
high F where t h e  induced stresses are expected t o  generate 
fu r the r  failure. The inset shows more d e t a i l s  of the tensi le  zone 
near the  crack t i p  which is outl ined by a dashed contour. 
The effect on the stress f i e ld  of in terac t ions  involving two 4 m 
shear cracks o f f s e t  by 20 ~ l l  and tensi le  f r ac tu res  extending from 
t h e i r  end regions. The contours are as described i n  Figure 4. 
Additional fractures have been sketched i n  as t h i n  l i nes  i n  t he  
regions of pa r t i cu la r ly  high values of F. A s  i n  Figure 4 the  
tensile zone is bounded by a dashed contour. 
Values of F i n  t h e  region about the overlapping end regions of 
two 4 m shear cracks under the  influence of the  ambient stress 
f i e l d  shown i n  t h e  lower right-hand portion of t he  figure. I n  
regions where F is high, secondary fai lure is ant icipated.  Of 
pa r t i cu la r  interest are the secondary shear cracks between the two 
primary cracks. 

The approximate traces of shear zones A and B 
The 49 level footwall dr ive  is 

The 

Figure l a  

Figure l b  

Figure 2a 

Figure 2b 

Figure 3 

Figure 4 

Figure 5 

Figure 6 
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