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A Practical Lagrangian Transport Model 

Harvey E. Jobson 

U.S. Geological Survey, NSTL Station, Mississippi 

ABSTRACT 

An unconditionally stable and practical transport model for use in 

upland streams and rivers has been developed and verified. Basing the 

model on the Lagrangian, rather than the Eulerian, reference frame 

greatly reduces the numerical problems associated with solving the 

advective terms of the convective-diffusion equation. The model contains 

almost no numerical dispersion, is conceptually simple, and is relatively 

easy to code. Model results closely simulated dye concentrations 

measured in the Chattahoochee River near Atlanta, Ga. under highly 

unsteady flow conditions. 



INTRODUCTION 

The simulation of the transport of pollutants in rivers has received 

wide attention. Historically, the problem has been approached by applying 

the conservation principle in the Eulerian sense. Although an enormous 

amount of literature exists that describes various numerical techniques 

for solving the resulting convective-diffusion equation, all 

practical solution schemes contain an undesirably large amount of numerical 

dispersion. Most of the dispersion results from deficiencies in simulating 

the advective term of the equation. 

If the conservation principle is applied in the Lagrangian sense, 

the troublesome advection term does not appear so the mathematical 

difficulties of numerically solving the equation arc small. Although 

straightforward, transforming the Lagrangian solution back to a fixed 

grid coordinate system is somewhat involved. 

The purpose of this paper is to present a practical, one-dimensional, 

transport model which is based on the Lagrangian reference frame and to 

verify the model's accuracy by comparison with field data and a solution 

obtained by an existing Eulerian model of the implicit finite-difference 

type. 
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In addition to accuracy and unconditional stability, the Lagrangian 

solution scheme offers several significant advantages. It can be used 

to assess the contribution of each surface exchange process to the 

accuracy of a temperature model as well as to determine rate coefficients 

for surface exchange (Jobson, 1977). Jobson and others (1978) used 

observed temperature records in conjunction with a continuous measure of 

traveltimes, which are a direct result of the Lagrangian solution scheme, 

to estimate the natural temperature of a thermally altered river. 

Fischer (1972) found a Lagrangian scheme to be quite effective for 

simulating transport in the Bolinas Lagoon, Calif. A final advantage of 

Lagrangian scheme is its mathematical simplicity and its physical 

understandability. 

After the theoretical basis for the model has been outlined, it 

will be verified by use of 4 days of dye dilution data obtained on a 

27.8-km reach of the Chattahoochee River near Atlanta, Ga. The reach 

starts at Buford Dam, where hydroelectric units are used for peak power 

generation, so the river flow rate is highly unsteady. Dye concentrations 

are simulated by both the Lagrangian and an Eulerian model, and the lack 

of numerical dispersion of the Lagrangian model is vividly illustrated. 
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THEORETICAL DEVELOPMENT 

In the Lagrangian framework, one conceptually follows an individual 

fluid parcel while keeping track of all factors which tend to change its 

concentration. The Lagrangian transport model is unique because it does not 

use a gradient-type despersive term and it can more accurately simulate 

the transport than the Eulerian dispersive model does. For example, the 

Lagrangian model gives an exact solution to the plug flow problem, 

provided the velocity field is precisely defined. Because of numerical 

dispersion, Eulerian solution schemes are generally very poor at simulating 

the plug flow problem. 

In order to develop a solution approach, it is well to begin with 

some review of the fundamentals of mixing. Consider a localized flow 

element in the river segment of length Ax and area da as illustrated in 

figure 1. The flow segment is moving downstream with a velocity U, the 

cross-sectional mean stream velocity. Neglecting molecular diffusion, 

the continuity of mass for a conservative substance in the element 

requires 

-a(c da Ax) u x (I)]
= c(u - U)da - {c(u - U) + a[c(a Ax} da 

t 

or 

ac a [c(u - U)] 
= o (1)

at + ax 

in which u and c are local instantaneous values of velocity and 

concentration while t is time. 



TYPICAL SEGMENT MOVING AT VELOCITY U 

TYPICAL ELEMENT 

(u-U)+-fr(u-U) Ax 

TYPICAL SEGMENT MOVING AT VELOCITY U 

Figure 1.--Typical flow element in a typical segment of a river. 
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Along the same lines used by Reynolds in dealing with turbulent 

fluctuations, let's define the local instantaneous value of u and c as 

u = U + u + u' 
a 

(2) 

c = C + c + c' 
a 

in which U and C are cross sectional mean values which have also been 

averaged over a time which is long with-respect-to turbulent fluctuations, 

u and c are local values (in the cross-section) of the time mean
a a 

values of u and c, and u' and c' are instantaneous deviations of the 

value of u or c from U + u or C + c . By definition then, the time
a a 

averaged value of u` or c' is zero. Also by definition the cross-sectional 

mean value of u and c is zero. 
a a 
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Replacing the instantaneous values of u and c in equation 1 with 

their equivalent values from 2 and expanding 1 obtains 

c u C u c u c' u'c
9C 9 a Dc' 3( a ) D(  a a) D( a ) 9(u'C) 9( a) 

at at 3t 9x '9x 9x 9x 9x 

D(u'c') (3)
= 0 

ax 

Now average each term in equation 3 with respect to time (short relative 

to normal variation); it is seen that all terms involving only one 

primed term are zero by definition so equation 3 reduces to 

Dc u C u ac 
DC + a D( a ) 9(  a) Du'c' 

- 0 (4)
9t 9t ax ax ax 

in which the overbar indicates a time averaged value. Next, integrating 

each term in equation 4 over the entire cross-sectional area, A, and dividing 

by the cross sectional area (i.e., averaging over the cross section) all 

terms involving a single term with a subscript a are identically zero so 

equation 4 reduces to 

DC 1 a 
+ --- ru + u'c')da = 0 (5)

A ax aa 
A 

using braces < > to indicate a cross sectional averaged value, equation 

5 can be written 

'D<u c + u'c'> 
DC a a 

+ = 0 (6)
at 9x 
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Equation 6 is an expression of Taylor's (1954) theory of one-dimensional 

dispersion. The term <u c > designates the effect of differential
a a 

convection while the term <u'c'> designates the turbulent diffusion 

effect. According to Fischer (1966), who applied Taylor's theory to 

natural channels, the <u c > term far outweighs the <u'c'> term. Based 
a a 

on many experimental observations, equation 6 can be simplified to 

c > 
a a— + = o (7)

9t 

According to the convective dispersion theory of Taylor and Fischer, 

the quantity <u c > is usually expressed as a diffusive term
a a 

ac 
‹u c > = -D (8)

a a x ax 

in which D is the dispersion coefficient. Equation 8 has been verified
x 

as the correct form of equation for the asymptotic solution in a steady 

uniform channel. It can be shown theoretically that D  = 5.9 U*Y for 
x 

flow in an infinitely wide open channel with a logarithmic velocity 

profile (Elder, 1959). Here U and Y are the shear velocity and depth, 

respectively. Fischer (1973) summarized measurements in both the laboratory 

and natural channels. The reported values ranged from D  = 5.8 U*Y to 
x 

D = 7500 U Y. With this much variation it is difficult to predict an
x 

appropriate value of D  for use in a given flow condition. Much of the
x 

uncertainty about the "real" dispersion coefficient is academic when 

using a conventional finite-difference Eulerian transport model because 

numerical dispersion (smearing because of limitations of the model) is 

often equal to or greater than the actual dispersion observed in a 

natural stream. 
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In view of the difficulties involved in the use of equation 8, 

the proposed Lagrangian model uses an alternative approach to evaluate 

the term <u c >. This approach is much more straightforward in its
a a 

physical interpretation. Recall the definition 

1 
<uc> ,— u c da (9)a a A a a 

where 

u = u -
a 

c = c - C 
a 

since the turbulent components (u' and c') are ignored. That is, u 
a 

is the local deviation from the cross-sectional mean velocity. Equation 9 

is an expression for the net flux of material by the convective velocity 

u through a vertical plane which is moving downstream at velocity U. 

Consider figure 2 which illustrates an infinitely wide river with the 

finite segments (parcels) separated by a moving plane, the dashed lines. 

Assuming the concentration to be well mixed in each segment, equation 9 

can be evaluated directly from the velocity distribution. At the boundary 

between segments k and k - 1 the local concentration, c, can be 

approximated by k l in the region where u > 0 and by Ck in the region- a 

where u < 0. The cross-sectional average concentration (in segment k) 
a 

is C . It then follows from equation 9
k 

1 
c > = ua (C - C )da

a a k 

+ 
where C is the uniform concentration in segment k and A  indicates 

k 

integration over the portion of the area where the local velocity is 

greater than the cross-sectional mean (u > 0). Since C and C are 
a k-1 k 

assumed independent of position in a cross section, they can he moved 



ORDER OF UZlt 

PARCEL k -I DQ 
k I 

(SEGMENT) 

I 
VELOCITY PROFIL PARCEL k 

DQ 
kt I 

I (SEGMENT) 

RIVER BED 
DO- k VELOCITY PARCEL k I 

I PROFILE (SEGMENT) 
BOUNDARY k 

DQk+i 

BOUNDARY k+ I 

I/ 

Figure 2.--Schematic of a longitudinal section of a river with fluid parcels delineated to illustrate the 
dispersive process. 
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outside of the integral leaving 

C  Ck
k-1 u da ( 10 )‹u c > = a 

a a A +
A 

Similarly, at the boundary between segments k and k + 1, 

C - C
k+1 k 

‹u c > = u da 
a a A a

A 

where A indicates integration over the portion of the area where 

u < 0. 
a 

By observing that continuity of water at the boundary must be 

maintained, it is seen that 

u da + u da = 0. 
a a 

A 

Let's define a mixing coefficient, DQk, at the boundary between segments 

k and k + 1 as 

E u da = 1 2 - Edda (12)
k a J 

A 

so that the second term of equation 7 is approximated by 

a<u > DOk (Ck - Ck 1 ) - (C - C )
a c a - + k-1 k-1 k (13) 

ax AAx 

in which Ax is the distance between the segment boundaries which 

is also approximately equal to UAt and AAx is recognized as the 

segment volume. Of course, equation 13 could be derived just as 

easily from a mass balance and DQ as defined in figure 2. But 

notice only 2 assumptions have been required: first u'c' = 0, 
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and second that the concentration in each segment is well mixed. The 

first assumption is well founded, but the accuracy of the second depends 

on the time step size. Ideally for equation 13 to be most accurate the 

value of the time step must be some fixed percentage of the time 

required for complete mixing in the cross section. It has been found 

empirically that equation 13 has an optimum accuracy when the time 

2 
step size is equal to 5D /U . Equation 13 will underestimate the true 

x 

dispersion for small time steps and overestimate it for large time 

steps. 
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Equation 13 can also become unstable for highly unsteady flow where 

adjacent segment volumes of very unequal size exist in the river. This 

instability is easily overcome by limiting the value of DQ. 

The rate of flow of water between segments (DQ) is determined from 

the distribution of velocity in the cross section and mean velocity as 

shown by equation 12. The value of DQ will remain a constant percentage 

of the discharge, Q, provided the velocity distribution in the cross 

section remains similar. For example, if the lateral variation in 

velocity were zero and the vertical variation were logarithmic, the 

ratio of DQ/Q would be only a function of the ratio of the mean velocity 

to the shear velocity. The ratio of DQ/Q would increase from 0.092 to 

0.184 as the ratio of the mean to shear velocity decreased from 10.0 to 

5.0. Lateral variations in velocity increase the value of DQ/Q. At 

high flow conditions in the Chattahoochee River for example, inclusion 

of lateral velocity variations increased the value of DQ by 75, 25, 28, 

and 48 percent over values estimated from the vertical velocity variation 

alone at the Highway 20, Littles Ferry, Highway 120, and Highway 141 

Bridges, respectively. 

It is worthwhile to compare equation 13 to an explicit finite-

difference formulation of equation 8, namely, 

c > D (C  - - (C  - C ) 
a a c _ xk k Ck+1) Dxk-1 k-1 k 

(14)
3x (Dx >c) 2 

Ax 

2 
Equation 14 is identical to equation 13 if the value of D /Ax is replaced

x 

by DQ/AAx. On the other hand, the value of D is very difficult to estimate,
x 

especially for natural channels, while the computation of DQ is straight-

forward and requires only stream gaging data. This is an important 

advantage to the Lagrangian approach. 
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Returning to equation 7 and integrating gives 

TT 
D<u c >dT

C = co - a a (15) 
0 ax 

where C  is the concentration of the parcel (segment) at time zero and C
0 

is the concentration after a time lapse of TT. The time lapse, or 

traveltime, TT, can be considered either as a single time step in the 

model or as the total time for the parcel to pass through the system. 

Equation 15 is quite amenable to numerical analysis because of its 

integral rather than differential form. On the other hand, in order to 

construct a solution net over space and time, equation 15 must be solved 

for a series of fluid parcels, and the locations of the parcels must be 

continually tracked. 

The location of a particular water parcel (or moving water segment) 

can be determined at any time from 

TT 
UdT (16) 

where x and x are the locations of the fluid parcel at the time TT 
o 

and at time zero, respectively, and U is the mean flow velocity. As in 

equation 15, the traveltime TT could be considered as the time step in 

the model, in which case x must be the location of the parcel at the
o 

beginning of the time step. Of course, the value of U is evaluated at the 

location of the parcel. 
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The traditional Eulerian solution scheme for transport problems 

involves discretizing the river reach into a number of subreaches separated 

by grid points. The initial conditions for the solution net are known 

concentrations of water parcels at each grid point. New concentrations 

of different water parcels at the same grid point are then computed for 

some later time, At. One boundary condition and a finite-difference 

approximation of the convective diffusion equation are used to compute 

the new concentrations. The new concentrations are then considered as 

initial or old values and the process is repeated as many times as 

desired. 

In the Lagrangian approach, the Eulerian grid must be retained 

because it is the reference upon which the depth, area, and velocity of 

flow arc defined. The solution scheme starts at time zero with a known 

concentration of a water parcel at each grid point just as in the 

Eulerian scheme. In the Lagrangian approach, however, new concentrations 

are computed by use of equation 15 for the same water parcels, which, of 

course, are no longer at the same location after a time lapse of At. The 

new location of each water parcel is determined by equation 16. The 

boundary condition is incorporated by adding a new parcel to the upstream 

boundary at each time step. 
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The basic bookkeeping necessary to keep track of all the information 

about individual fluid parcels is accomplished by setting up Parcel 

Characteristic arrays. The parcels are numbered in the order of their 

location, or time of entry to the reach, with parcel number 1 occupying 

the upstream boundary and parcel NS occupying the downstream boundary. 

In general, the total number of parcels in the system, NS, will be 

different for each time step. A minimum of three parcel characteristics 

(location, volume, and concentration) must be tracked but it is usually 

desirable to follow more. For example, Jobson and others (1978) kept 

track of 13 characteristics in a temperature model. The characteristics 

and identifying index of each parcel are updated during each time step 

of the model. 

A copy of the program deck, 177 statements, may be obtained by 

contacting the author (U.S. Geological Survey, Building 2101, 

NSTL Station, MS 39529) if further detail is desired. 

MODEL VERIFICATION 

The U.S. Geological Survey undertook an intensive study of the 

Chattahoochee River near Atlanta, Ga. in the spring of 1975. The study 

plan included the development and verification of unsteady flow and 

transport models. The Lagrangian model is verified with data collected 

during this intensive study on a 27.9-km reach extending from Buford Dam, 

about 65 km northeast of Atlanta, to the Highway 141 Bridge. The reach 

has four small tributaries and an overall slope of 0.00036. Its roughly 

rectangular cross section ranges in width from '15 to 65 m. 
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The U.S. Army Corps of Engineers controlled the river flow below 

Buford Dam during the verification period, March 21-24, 1976. They 

3 
maintained a steady flow of 15.3 m /s until 0700 hours on Monday morning, 

3
March 22. At 0700 hours a release rate of 113 m /s was started and 

maintained for 15 hours (fig. 3). At 2200 hours the release rate was 

3 
returned 15.3 m /s. At 0700 hours on Tuesday they increased the release 

3 
rate to 226 m /s and maintained it for 5 hours before returning to 15.3 

3 
m /s for the duration of the study. As reported previously (Keefer and 

Jobson, 1978), the flow was modeled using a finite-difference solution 

to the one-dimensional continuity and momentum equations for gradually 

varied flow. Figure 3 shows a comparison of modeled and observed stages 

at Highway 20, Littles Ferry, Highway 120, and Highway 141 which are 

3.69, 13.25, 20.65, and 27.88 km downstream of the dam, respectively. 

The river reach was subdivided by use of 48 unequally spaced grid points 

and the flow model was operated with a time step of 5 minutes. Results 

of the flow model (velocity, area, top width, and tributary inflow) were 

stored on magnetic disks. 
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Starting at 1100 hours on March 21, rhodamine-WT dye was injected 

below Buford Dam from a point near the center of the river. The dye was 

injected at a constant rate for the duration of the study, and dip 

samples were collected from the Littles Ferry and Highway 141 bridges. 

Figure 4 contains a plot of the observed concentrations as well as 

values computed with the Lagrangian model. The Lagrangian model was 

operated with a 30-minute time step so it averaged six values from the 

flow model during each time step and for each grid point. The traveltime 

through the reach varied from a maximum of 23.4 hours to a minimum of 

8.0 hours. In general, the results of the Lagrangian model appear to be 

excellent. The root-mean-square (RMS) error between the modeled and 

observed dye concentrations was 0.75 mg/1 at Littles Ferry during the 58 

hours when concentration was non-zero. The RMS error at Highway 141 was 

0.86 mg/1 during the 49 hours of non-zero concentration. 
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For purposes of comparison, results obtained by use of an implicit 

finite-difference solution to the Eulerian dispersion equation similar 

to that presented by Stone and Brian (1963) are shown in figure 5. 

These results, which have been presented previously (Keefer and Jobson, 

1978), were obtained by assuming the dispersion coefficient, D , to be 
x 

equal to zero. In other words, all of the apparent mixing shown in 

figure 5 results from numerical dispersion over which the modeler has 

little or no control. By some fortuitous coincidence, as is often the 

case, the numerical dispersion in the Eulerian finite-difference scheme 

approximates the actual dispersive process, and the agreement in figure 

5 is also good. The RMS errors are 0.88 and 0.81, respectively, at 

Littles Ferry and Highway 141. Numerical dispersion appears to overly 

"smear" the results in figure 5 in several places and to reduce the peak 

concentrations during the low flow between the high flow pulses by more 

than it should. 

The results shown in both figures 4 and 5 are very good and in 

terms of the root-mean-square errors one would have to say the Lagrangian 

and Eulerian models are of about equal accuracy. Visually, the results 

shown in figure 4 appear superior, especially at Littles Ferry. 
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In order to illustrate that equation 13 does indeed model the 

actual mixing process and that the Lagrangian model contains virtually 

no numerical dispersion (except in the dispersive term itself) the model 

was rerun for plug flow assumption, DQ = 0. These results are shown in 

figure 6. The RMS "error" in figure 6 is 1.15 at both Littles Ferry and 

Highway 141. The difference between the modeled results in figure 4 and 

6 is the mixing process as modeled by equation 13. Equation 13 is not 

perfect because it ignores lateral variations in concentration. In 

fact, it appears to do a rather poor job on the arrival of the first dye 

front at Highway 141 and on rapidly falling stage (Littles Ferry at 

0600, and 2100 hours on March 23 and Highway 141 at 0600 hours on the 

24th). The difference in the computed curves of figures 5 and 6 is a 

direct measure of the numerical dispersion of the Eulerian model since 

both are calculated for plug flow conditions (D  = 0). Some errors in 
x 

the flow model certainly exist (fig. 3), and these errors will influence 

the accuracy of the transport model. For example, the observed peak 

discharge at Highway 141 which occurred at about 1500 hours on March 23 

was 20 percent larger than the modeled value (Keefer and Jobson, 1978, 

p. 641) while the observed concentration peak here was about 20 percent 

lower than the value modeled by the Lagrangian scheme (fig. 4). The 

nearly simultaneous arrival of the dye front and flood wave at Highway 

141 about noon on March 22 may help explain the poor fit of the transport 

model at this time. The second dye front and flood wave arrived at 

Highway 141 about noon on March 23. This and the fact that fluid 

segments of very unequal size existed in the river at this time are 

believed to account for the poor match of the peak concentration at 

Highway 141 about noon on March 23 by the Lagrangian model. 
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In summary, it is believed that the proposed Lagrangian transport 

model is basically superior to the finite-difference model and that 

equation 13, while not perfect, provides a reasonable approximation of 

the mixing process. The Lagrangian model offers significant advantages; 

it can be unconditionally stable for any time step size; the coding is 

relatively simple and straightforward; the magnitude of the mixing coefficient, 

DQ, can be easily assessed from stream gaging data; and the conceptual 

model is easily visualized in the physical sense so that program modification 

is easily accomplished. 

To further illustrate the nondispersive nature of the Lagrangian 

model, it was run assuming DQ = 0, At = 30 minutes and steady low-flow 

conditions like those on March 21. The upstream concentration was 

assumed to vary as a square wave (period 12 hours, amplitude 13.18), and 

the predicted concentrations are shown in figure 7. The slight angles 

at the corners occur because the concentration at specific Eulerian grid 

points is determined by linear interpolation between the nearest Lagrangian 

parcels. The concentration changed from zero to 13.18 at time zero so 

it is easily seen that the low-flow traveltimes are slightly over 12 

hours and slightly under 24 hours to Littles Ferry and Highway 141, 

respectively. The reduction in amplitude is the result of tributary 

dilution. The Eulerian finite difference model was also run under these 

conditions with the dispersion coefficient set equal to zero. These 

results are also shown in figure 7. All dispersion in figure 7 is the 

result of numerical dispersion. 
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The cost of running the Lagrangian model is not large. For example, 

I/
the results shown in figures 4, 6, and 7 were obtained on an IBM 360-91 

machine with CPU times of 4.66, 5.23, and 2.56 seconds, respectively. 

The model contained the coding necessary to handle nonconservative 

substances, tracked eight parcel characteristics, created instructions for 

two computer-drawn plots, and except for figure 7, averaged six values 

of each hydraulic variable for each of the 48 grid points and time steps. 

1/
The use of the brand name in this report is for identification 

purposes only and does not imply endorsement by the U.S. Geological Survey. 
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SUMMARY AND CONCLUSIONS 

The simulation of transport in open channels has long been approached 

from the Eulerian frame of reference. Approaching the problem from a 

Lagrangian point of view is much simpler conceptually and offers several 

significant advantages. Among those are: 

1. Numerical dispersion can be practically eliminated. 

2. A continuous record of traveltimes, which are very useful in 

the interpretation of results, is a direct by-product. 

3. The mixing coefficient DQ is easily evaluated in comparison 

with the difficulty of estimating the dispersion coefficient, D. 

4. The contribution of each physical process such as tributary 

inflow, mixing, or surface exchange on the predicted concentration can 

be easily tabulated. This information is extremely useful in calibrating 

models. 

An unconditionally stable and practical solution algorithm for 

solving the one-dimensional transport problem from the Lagrangian reference 

frame has been developed. The algorithm has been verified by comparison 

of modeled and observed dye concentrations in the Chattahoochee River 

under highly transient conditions. 
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NOTATION 

A cross sectional area of river. 

c local instantaneous concentration. 

c deviation of local time averaged velocity from cross
a 

sectional mean. 

c' deviation of local instantaneous velocity from local time 

averaged value. 

C cross sectional average concentration. 

C concentration of parcel k. 
k 

C concentration at time zero. 
0 

da differential area. 

DQ flow rate of water from one segment (parcel) to the next.
k 

D longitudinal dispersion coefficient. 
x 

k index number of a Lagrangian parcel. 

Q discharge. 

t time. 

TT traveltime of the parcel. 

u local instantaneous velocity of the water. 

u deviation of local time averaged local velocity from cross 
a 

sectional mean. 

t/' deviation of local instantaneous velocity from local time 

averaged value. 

cross sectional mean velocity of the water. 

shear velocity.U * 
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W width of river. 

x longitudinal distance from origin. 

x 
o 

location of a water parcel before the time step. 

Y river depth. 

Ax distance between parcel boundaries. 

At time step size. 
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