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LACUSTRINE-HUMATE MODEL: SEDIMENTOLOGIC AND GEOCHEMICAL MODEL FOR
TABULAR SANDSTONE URANIUM DEPOSITS IN THE MORRISON FORMATION, UTAH,

AND APPLICATION TO URANIUM EXPLORATION

By Fred Peterson and Christine E. Turner-Peterson

Abstract

The lacustrine-humate model is derived from the observed occurrence of
tabular uranium ore deposits in sandstone beds that consistently lie close to
a distinct type of offshore-lacustrine gray mudstone. This report attempts to
synthesize field observations, literature data, and preliminary laboratory
work into an hypothesis or model of formation of this type of tabular uranium
ore deposit. The basic premise of the model is that humic and fulvic acids
generated in the offshore muddy sediments of humus-bearing lakes were expelled
by compaction or seepage into nearby sandstone beds where the organic acids
were fixed as tabular humate deposits. Subsequently, uranium~bearing ground
water passed through the sandstone where the humate fixed and concentrated the

uranium, forming tabular sandstone uranium deposits.



Introduction

The lacustrine-humate model was proposed by Turner-Peterson and Peterson
(1978) to account for facies control of uranium mineralization in fluvial-
lacustrine rocks of the Jurassic Salt Wash Member of the Morrison Formation,
Utah, and the Triassic Stockton Formation of the Newark Group, New Jersey and
Pennsylvania (fig. 1). The limitation of uranium to a particular facies
association in both of these areas (figs. 2 and 3) implies that certain
inherent features in the depositional environment were prerequisites for
mineralization, and these features, in turn, place constraints on hypotheses
concerning the processes that formed the ore. The most important constraints
are that inferred pore~water and ground-water chemistry and ground-water flow
patterns related to the mineralization must be consistent with those of the
depositional environments (Peterson, 1977; Turner-Peterson, 1977, 1979, 1980).

The basic premise of the lacustrine-humate model is that structureless
organic matter associated with uranium in the tabular sandstone ore deposits
originated as soluble humic substances in the pore fluids of offshore-
lacustrine gray mudstones. The juxtaposition of these gray mudstones,
hypothesized to be sources of soluble humic substances, with permeable
sandstone beds (figs. 2, 3) appears to have been essential for uranium
mineralization.

This report briefly presents the salient points of the model, with the
Salt Wash Member of the Morrison Formation in southern Utah serving as an
example. Features of other uranium districts are also included where
applicable. The basic features of the model should prove helpful in

exploration for tabular orebodies.

















































































in the ore deposits, and the presence of selenate inhibits the process of HZS
generation by sulfate-reducing bacteria (Postgate, 1949). 1In addition, the
presence of significant quantities of HZS in sandstones would be expected to
cause extensive bleaching of adjacent redbeds, but no appreciable amount of
alteration has been found in red mudstones that lie directly above or below
the ore-bearing sandstones.
No conclusive evidence has been found to indicate the source of the

uranium, although most workers are of the opinion that it was derived from
alteration of volcanic materials, especially ash, that were incorporated in

sandstones of the Salt Wash (Waters and Granger, 1953; Cadigan, 1967).

Application of the Model to Other Tabular Ores

and Use as an Exploration Guide

As mentioned earlier, gray mudstones must have been deposited in
reducing, alkaline, lake-bottom sediments to be considered favorable source
rocks of humic substances because reducing conditions favor preservation of
humic matter in the pore waters of the muds and because alkaline conditions
favor solubilization of humic substances so they can be expelled along with
the pore fluids. Also critical to the model is the type of organic matter
incorporated in the sediments. Several continental sequences, both uranium-
bearing and barren, were evaluated in light of these criteria, and the
lacustrine~humate model apparently can explain why certain parts of the rock
record, although favorable by conventional criteria, do not contain tabular
sandstone uranium deposits.

An important balance between the amount of organic matter incorporated in
the muds and the pH of the pore fluids appears to be an important factor in

determining whether or not a particular formation is favorable or unfavorable
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for mineralization by processes involved in the lacustrine-humate model

(fig. 13). 1Incorporation of abundant organic matter tends to lower the pore-
water pH because of the increased acidity associated with normal oxidation and
fermentation of organic matter. This happens in peat bogs and coal swamps
where the pH is commonly are as low as 3-6 (Baas Becking and others, 1960).
This low pH may partly be why the Cretaceous Dakota Sandstone generally lacks
significant uranium deposits. The acidity of the pore waters would have
inhibited mobilization of humic acids, which are precipitated under acid
conditions, and most of these acids would have remained trapped in the muds.
Although fulvic acids as well as some of the humic acids may have migrated
into sandstone beds and contributed to preservation of the plant debris, it is
more likely that preservation of plant matter in some of the sandstone beds in
the Dakota was due to widespread reducing conditions below a shallow regional
water table, as suggested by the presence of carbonaceous organic matter in
overbank mudstones of the Dakota. Thus, although the Dakota contains fluvial
sandstones with locally abundant carbonaceous trash, and at first may appear
favorable by conventional criteria, the lack of mobility of some of the humic
substances decreases the likelihood of finding significant tabular uranium
deposits in the formation.

Preservation of abundant plant debris in the Dakota also suggests an
explanation for the apparent climatic control of many uranium deposits. The
humid climate of the Late Cretaceous resulted in such an abundance of
vegetarion throughout the region that acid pore waters caused by decaying
vegetation inhibited mobilization and expulsion of humic substances into
nearby sandstone beds. Also, so much organic matter was present and reducing
conditions were so widespread that any uranium that was brought into the
region was trapped in a dispersed state wherever it met adsorbing organic

substances or reducing conditiomns.
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Figure 13.--Schematic diagram showing inferred pH of pore waters in muds as a
function of the amount of incorporated volcanic ash and organic matter.
Alteration of ash tends to raise pH, whereas alteration of organic matter
tends to depress pH. These two parameters may affect favorability of
source rocks because alkaline conditions are conducive to solubilization
and migration of humic substances.

*, volcanic ash was not deposited in the Lockatong lake sediments, and the
high pH for these mudstones is inferred fromthe presence of sedimentary
analcime.

K+BB, "K" shales in Westwater Canyon Member and mudstones in Brushy Basin
Member, Morrison Formation, Grants mineral belt, New Mexico.

L, Lockatong Formation, Newark basin, Pennsylvania and New Jersey.

S, Salt wash Member, Morrison Formation, Henry Mountains mineral belt, Utah.

C, Chinle Formation, Circle Cliffs and White Canyon districts, Utah.

D, Dakota Formation, Colorado Plateau.
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In contrast, semiarid paleoclimates appear to have been more favorable
for the formation of tabular uranium deposits. In these climatic conditions,
plant growth was more restricted, occurring only along water courses, in and
near lakes, or at higher elevations where rainfall may have been more
frequent. The greater aridity tended to discourage growth in other areas.
Consequently, the amount of vegetation incorporated within the lake muds would
probably have been less than under humid climatic conditions. The pH of the
lake muds would therefore not have been lowered considerably by degradation of
organic material incorporated in them. In addition, semiarid climates tend to
favor development of alkaline lakes because of the concentration of ions by
evaporation. These two factors combined would result in more alkaline pore
waters in the anoxic lake-bottom sediments. The alkaline pore waters would
promote solubilization of humic substances formed by degradation of the
available plant material, so that these substances could be expelled into
nearby sandstone beds where they could be fixed as tabular humate masses.
Oxidizing conditions at and near the surface in sediments surrounding the
lakes would tend to keep uranium in solution until it encountered the humate
trap, rather than allow the uranium to be fixed in a dispersed state as it may
have been in the Dakota.

Proposed here, therefore, is the idea that certain climates are conducive
to the formation of tabular humate masses in sandstone and are therefore
favorable for the formation of tabular uranium deposits. We feel that climate
may be an important large scale factor in determining the favorability of
finding tabular uranium deposits in differentwparts of the rock record.

In addition to the development of alkaline lakes in a semiarid climate,
the incorporation of large amounts of volcanic debris in the lake muds at the

time of deposition also favored mobilization of humic material. Alteration of
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volcanic ash may have caused a rise in pH sufficient to solubilize humic acids
and allow them to move out of the muds with the pore fluids. This probably
happened in the Salt Wash of the Henry Mountains region (fig. 13) where
mudstones associated with tabular orebodies are bentonitic, and it also
applies to mudstones near ore-bearing sandstones in the Chinle Formation of
the Colorado Plateau. In the Westwater Canyon Member of the Morrison
Formation of the Grants region of New Mexico, the "K" shales, which interbed
with the ore-bearing sandstones, would also be favorable source rocks for
humic substances (fig. 13). Large amounts of volcanic debris incorporated in
the muds of the "K" shales raised the pore-water pH high enough to effectively
strip the muds of humic material and allow the pore waters to move the humic
material into nearby sandstone beds, accounting for the world’s largest
tabular sandstone uranium orebodies. The increased pore-water pH in the "K"
shales also resulted in complete destruction of plant fragments in the muds,
so that the mudstones presently contain no organic matter at all. The "K"
shales in the Grants region, which are lacustrine in origin (Turner-Peterson
and others, 1980), are not only much thicker than the lacustrine mudstones in
the Salt Wash of the Henry Mountains region but also contained more volcanic
debris, which suggests that the primary difference between tabular Salt Wash
ores and tabular Westwater Canyon ores is a matter of scale rather than
origin.

Incorporation of volcanic debris in the lacustrine mudstones was probably
the most effective way in which the pH of the pore fluids was raised, but
alkaline pore fluids exist intéome lakes in the absence of volcanic debris.

In the Triassic Lockatong Formation in the Newark basin (fig. 13), for
instance, sedimentary analcime occurs with no apparent tuffaceous precursor

(Van Houten, 1962). A pore-water pH of 9 or greater probably existed in the
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Lockatong pore fluids, based on recent studies of analcime in lake sediments
devoid of volcanic material (Schreiber and others, 1972). Thus, even without
volcanic debris, certain lake sediments contain pore waters that are
sufficiently alkaline to solubilize humic substances and move them into
adjacent sandstone beds.

No single criterion is sufficient to determine whether a particular
mudstone is favorable or unfavorable as a source rock for humic substances,

with the possible exception of Botryococcus, which appears to be a good

indicator of the lack or scarcity of humic and fulvic acids in the lake
waters. The type of organics and the early chemical nature of the pore waters
probably are the critical factors. Field criteria, palynological analysis,
elemental chemical analyses, and vitrinite reflectance are several techniques
that are being used in discriminating favorable from unfavorable source

rocks. As in oil and gas source-rock studies, however, a combination of
criteria and tests is more reliable than any single one. At this point, using
the lacustrine-humate model as a guide, favorable rocks (Morrison and Chinle
Formations) can be readily distinguished from unfavorable rocks (Dakota and
Green River Formations). With further refining of humate-source-rock studies,
the lacustrine-humate model could prove to be a significant exploration guide

for tabular sandstone uranium deposits.

Summary and Conclusions
The lacustrine-humate model can be summarized as follows:
l. Formation of alkaline and reducing lakes in a semiarid climate, in
areas of tectonic subsidence. Lake-sediment pore fluids contained solubilized

humic substances.
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2. Expulsion of the humic substances from the gray lacustrine mudstones,
by seepage or compaction, into adjacent sandstone beds.

3. Formation of tabular humate bodies within the sandstone beds by
reaction of humic-rich pore fluids with hydroxides on clay particles coating
the sand grains.

4. Subsequent flow of uranium-bearing ground water around and through
the humate bodies which extracted and concentrated uranium through time.

The lacustrine-humate model differs from other models in that the humic
substances are inferred to have migrated only short distances from mudstone
beds that lie near the ore-bearing sandstones. The model is also an attempt
to work within the constraints of facies control: pore-water and ground-water
chemistry and flow patterns are based on reconstruction of depositional
environments and are consistent with what would be expected in a natural

system containing those environments.
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