UPPER PALEOZOIC DEPOSITIONAL AND DIAGENETIC FACIES IN A MATURE PETROLEUM PROVINCE (A FIELD GUIDE TO THE GUADALUPE AND SACRAMENTO MOUNTAINS)

Ву

Peter A. Scholle and Robert B. Halley
U.S. Geological Survey, Denver, Colorado 80225

Open-File Report 80-383

1980

Contents

Page Part I Permian reef complex, Guadalupe Mountains Introduction-----1 El Paso-Carlsbad roadlog-------McKittrick Canyon roadlog-----Walnut Canyon roadlog-----37 Dark Canyon-Sitting Bull Falls-Rocky Arroyo roadlog------42 Illustrations------55 Tables-----Bibliography------ 117 Part II Upper Paleozoic bioherms, Sacramento Mountains Introduction----- 141 Carlsbad-Alamogordo roadlog----- 148 Alamogordo-El Paso roadlog----- 155 Illustrations----- 159 Tables----- 162 Bibliography----- 184

PART I

THE PERMIAN REEF COMPLEX OF THE GUADALUPE MOUNTAINS

P. A. SCHOLLE

Introduction

Setting

The Permian Basin region (fig. 1) provides an excellent opportunity to study the interrelationships of depositional facies, diagenetic alteration patterns, oil generation and migration, and ultimately, petroleum potential and production. The entire depositional spectrum from far-back-reef to deep basin can be observed in the Guadalupe and Delaware Mountains with little or no structural deformation and very slight vegetation or soil cover. complex of this region is also dissected by a series of deep canyons cut at right angles to the regional facies strike. These canyons provide crosssectional views of the lateral and vertical relations of environments through Finally, the region is rather exceptional in that, at the end of Guadalupian time, the entire suite of facies was essentially preserved (pickled) by extremely rapid deposition of evaporites (anhydrite, halite, sylvite, and more exotic salts). These evaporites filled the Delaware Basin and even covered adjacent shelf areas. Thus, original facies relations were preserved from extensive erosional modification, and late Tertiary uplift, coupled with dissolution of the very soluble evaporites, has led to resurrection of original (Permian) topography (Plate 1, in pocket), greatly facilitating facies reconstruction.

In addition to the advantages provided by these outcrops, the Permian Basin has a wealth of subsurface data. More than 30,000 exploration wells and 150,000 development wells have been drilled in the Permian Basin region. All the outcrop facies of the Guadalupe, Delaware, and Glass Mountains are encountered in the subsurface Delaware Basin, Northwest Shelf, and Central Basin Platform as well as in the Midland Basin, and to a lesser degree, the Marfa Basin (fig. 1). Thus, the associations of oil and gas with specific depositional and diagenetic facies can be rather clearly established in this region.

Previous studies

A number of classic studies have been completed on the "Permian reef complex" of Texas and New Mexico which have established an excellent stratigraphic and sedimentologic framework for the region. studies (King, 1948; Adams and Frenzel, 1950; Newell, and others, 1953), in particular, presented the overall outlines of our modern concept of reefrelated depositional environments. Subsequent studies, including those of Babcock (1977), Dunham (1972), Esteban and Pray (1977), Harms (1974), Hayes (1964), Mazzullo and Cys (1977), Meissner (1969), Schmidt (1977), Tyrell (1969) and others, have fleshed in the details of many of the depositional environments and have contributed to our understanding of the diagenetic history of the region. In spite of this, however, few areas have more unresolved geological controversies than the Permian reef complex. Not a single one of the facies represented in the spectrum of basinal to far-backreef settings has not evoked a variety of opinions as to its origin or Thus, although the overall environmental framework of facies is generally agreed upon, much work remains to be done on specific interpretations.

Depositional and stratigraphic setting

The Permian reef complex is characterized by three sections of time equivalent but lithologically very dissimilar rocks. The first facies consists of thick masses of finely laminated siltstones and sandstones with thinner, interbedded black-gray limestone bodies. The second facies contains massive, light-gray limestones overlying steeply bedded, partially dolomitized, blocky limestone rubble. The third zone contains tan, fine-grained, medium-bedded dolomites with interbedded evaporites and red to brown sandstone and siltstone units.

As early as the late 1920's, it was recognized that this represented a basin-reef-back reef sequence of environments (Lloyd, 1929; Crandall, 1929; Blanchard and Davis, 1929). These conclusions were drawn largely on lithologic criteria. Subsequent work (eg. King, 1948; Newell and others, 1953; Babcock, 1977) on faunal, floral, sedimentologic, and stratigraphic aspects of these units has confirmed the initial conclusions. Never-the-less, considerable controversy exists over whether the Capitan Formation, the second facies mentioned above, represents a "true" or "ecologic" reef. The controversy is well summarized in Cys and others, 1977. Various workers have considered the Capitan to represent an unconsolidated shelf margin skeletal bank, or mound (Lang, 1937; Achauer, 1969), a true barrier reef (Newell and others, 1953), or an uninterupted slope facies (King, 1948). Others have felt that the abundance of inorganic, early submarine cement indicated that the wave-resistant nature of the Capitan "reef" was a result of primarily inorganic rather than organic processes making this a "cement reef" rather than an "organic or ecologic reef" (Schmid and Klement, 1971). Basically, the problem boils down to the recognition of in-situ, frame-building organisms in the Capitan Formation. If these can be recognized (in quantity), and we believe they can be, then the complex can reasonably be called a reef. The biological diversity of this environment (see table 1); the abundance of framework calcareous sponges, bryozoans, and hydrocorallines; the ubiquitous presence of encrusting organisms (Tubiphytes, Archaeolithoporella, Girvanella, and other groups); the remarkably high productivity of organisms (generating vast masses of reef and fore-reef skeletal debris); the presence of major volumes of inorganic, radial-fibrous, originally aragonitic cements; and the large-scale fragmentation and disruption of fabrics by wave and current activity are all features of the Permian reef complex which are highly analogous to modern reefs. Indeed, much of the semantic confusion over the reef nature of the Capitan Formation is largely a product of the "fair-weather" examination of modern reefs. On a clear, calm day when most geologists venture forth, the modern reef is a truly wave-resistant structure consisting of abundant, in-situ framework organisms. The day after a hurricane, however, much of this "waveresistant framework" has been smashed into rubble which accumulates within the reef or is transported into deeper water settings. Indeed, quarries in Pleistocene or older reefs show only a small percentage of in-place framework organisms coupled with extensive encrustation and submarine cementation of reef debris.

Each of the major depositional facies of the Permian Basin will be examined during this field excursion and so the other, non-reef facies will not be extensively described here. The generalized facies patterns are shown in figure 2 and Table 1. The back reef area consists of skeletal sand banks, islands, lagoons, and sabkhas. From the farthest back-reef area to the reef these sediments include: nodular gypsum and anhydrite beds interlayered with red siltstones; tan, aphanocrystalline dolomitic mudstone beds with evaporite crystal casts; interbedded thin, laminated sandstone-siltstone units; pure, locally stromatolitic or calcisphere-rich, dolomitized carbonate mudstones; dolomitized pelletal mudstones; dolomitized pisolitic grainstones; partially dolomitized green algal-foraminiferal grainstones; and a very narrow zone of reef-derived, back-reef rubble.

The basinal areas contain turbidites and slumps of reef- and back-reef-derived carbonate material. Some of it accumulated as thin sheets of fine-grained debris which spread over much of the basin. The bulk of the carbonate debris accumulated near its sources along the margins of the basin (in a few cases reworked into submarine mounds or "lithoherms" by contour currents). The main volume of basinal sediment is finely laminated sandstone and siltstone also transported from the shelf to the basin by gravity-driven currents.

It must be kept in mind that, although the three rock packages mentioned above are lateral time-equivalents of each other and have approximately the same overall thickness, this equivalence does not necessarily extend to smaller scale units. Thus, laminated sandstones which are tens to hundreds of meters thick in the basin facies may have essentially no equivalents in the reef or back-reef sections. Likewise, reef and back-reef limestone and dolomite sequences which, again, may be tens to hundreds of meters thick, will commonly thin to less than a meter toward the basin center. So although large-scale overall age equivalence is present, we must also think in terms of non-synchronous or "reciprocal" sedimentation on smaller scales (Wilson, 1967; Meissner, 1972). This reciprocal sedimentation may be related to tectonic movements or eustatic fluctuations in sea level which shift the locus of active sedimentation or change the balance of influx of clastic terrigenous versus carbonate sediment.

The abrupt lateral facies changes in these Permian sediments are reflected in the complex stratigraphic terminology which has been applied to these units.

The detailed stratigraphic nomenclature of the Permian Basin will not be discussed here as the terminology of King (1948) and Newell and others (1953) will be followed with only minor modification. Stratigraphic nomenclature, correlations, and age designations for shelf, shelf edge, and basin units are shown in Table 2 and figure 3.

The Permian Basin region was subdivided during Guadalupian and earlier Permian time into a series of smaller basins and platforms (fig. 1). The orientation of these features was largely controlled by pre-Permian northwest-southeast oriented faulting of the Ancestral Rockies trend. These early lineaments, still visible in the Sierra Diablo Mountains, were modified by gentle, late Pennsylvanian and early Permian flexures. An even greater modification was produced by differential sedimentation. Original structural relief was significantly accentuated by higher rates of sedimentation of shallow water carbonate deposits on structural "highs" compared with lower rates on structural "lows". Thus, basins which were only a few tens of feet deep at the start of Permian time eventually had water depths in excess of 1,500 ft by the close of Guadalupian time.

The three major facies packages mentioned earlier--basin, reef, and back-reef--are strictly controlled by these structural sedimentologic features. Basinal facies cover the entire region of Delaware and Midland Basins. Reef facies are discontinuously distributed both in space and time but generally are confined to a very narrow belt bounding the platform areas. The back-reef province, in its broad sense, covers much of the platform areas.

The interrelationships between these facies are governed by a number of factors. Eustatic sealevel stands and (or) relative rates of subsidence versus sedimentation, as mentioned earlier, can lead to "reciprocal" sedimentation patterns. Ecological conditions, such as water temperature, salinity, turbidity, or other factors, can affect reef formation and, thus, overall facies patterns. Indeed, just within the Permian facies of the Guadalupe Mountains region, one can see remarkable variations in microfacies patterns. Bank margins of non-reefal bioclastic calcarenite are present in some intervals (Victorio Peak and Getaway units). Reefs which prograde largely horizontally out over reef talus are dominant at other times (upper Capitan unit). Yet other reefs which build up almost vertically in the section form the bank margin in the Goat Seep unit. Finally, terrigenous sand sheets cover the entire region from back-reef to basin at other times. So the discussion of facies patterns in the Permian Basin region must take into account these major variations in modifying factors. This excursion will focus primarily on the upper Capitan interval as this is the best exposed and most intensely studied part of the section. It must be kept in mind, however, that this is just one of a number of facies patterns which can be observed in the region.

The climatic setting of the Permian reef complex also had a major influence on both depositional and diagenetic processes. The region lay at the western margin of a broad alluvial plain to the east of the Appalachian area. The basin was presumably connected to a major western and southern ocean by narrow channels (fig. 1). The entire region lay within 10 degrees of the Permian equator and, as evidenced by the extensive back-reef evaporite deposits, clearly had a hot and very arid climate.

During Guadalupian and earlier Permian time water circulation in the Delaware Basin was apparently adequate to maintain normal marine salinity of the surface water along the bank margins. Waters penetrating deeper onto the banks were evaporatively concentrated to high salinities. Generation of heavy brines on the banks, which periodically flowed into the basin, may have contributed to euxinic, stratified water masses in the deeper parts of the Delaware and Midland Basins. Progressive restriction of the passageways between the Delaware Basin and the "open oceanic" areas to the south and west led to apparent salinity increases and extinction of reef growth in the region at the close of the Guadalupian. Continued aridity, coupled with restricted influx of marine waters led to the deposition of more than 2,000 ft of evaporite sediments in the Delaware Basin, completely filling the topographic depression left after Guadalupian time.

The extreme aridity of the region also had other influences. Transportation of clastic terrigenous debris was dominated by eolian processes. Equilibrium eolian deflation surfaces (sabkhas) are present in back-reef areas and dune migration may have been responsible for transport of a significant volume of sand to the shelf edge from where it could be moved into the basin, especially during low stands of sea level. Aridity also presumably prevented the formation of extensive karstification during sea level drops, allowed the development of widespread "coastal caliche", and led to the formation of hypersaline brines which may have contributed to the extensive dolomitization of back-reef carbonate sediments.

The question of relative sealevel changes, mentioned previously as part of the model of "reciprocal sedimentation", should also be examined further. Regional subsidence, local tectonic effects, eustatic sealevel stands, and epirogenic movements all can play a role in relative sealevel stands. Other factors, such as variations in sedimentation rate, also can yield apparent changes due to progradation or retrogression of shorelines. Numerous authors have pointed out that cyclic sedimentation of one sort or another is widespread in the Permian Basin in Pennsylvanian as well as Permian strata (eg. Meissner, 1969; Silver and Todd, 1969). Cyclic sedimentation operated at a number of scales involving fractions of an inch to hundreds of feet of sediment and were superimposed on an apparently long-term drop in sea level throughout the Late Permian. Known Late Pennsylvanian to Early Permian glaciation may have contributed to some of the cycles by creating periodic eustatic sea level changes. Although dating of these southern hemisphere glacial events is far from exact due to the provinciality and endemism of the floras and faunas present, glaciation is not considered to extend into the Late Permian and thus may not explain Guadalupian cycles and the global regression at the close of Guadalupian time. Epeirogenic events, late orogenic deformation in Appalachian and Hercynian regions, and variations in seafloor spreading may account for Late Permian cycles. Moreover, regional basin subsidence patterns may have been episodic and could also have contributed to the cyclicity of sedimentation.

Diagenetic Patterns

Generalized patterns of diagenesis in the Guadalupian section are outlined in figure 2 and table 1. The back reef area is characterized by the highest average porosities. These areas, which were the topographically highest facies in the complex, were frequently subjected to subaerial exposure and freshwater diagenesis. Evaporitic conditions in restricted lagoons and sabkhas led to the formation of evaporite minerals (gypsum and anhydrite). the withdrawal of these calcium sulphate minerals from the shelfal waters led to elevated Mg/Ca ratios and perhaps also to the formation of dolomitizing brines as in the modern Persian Gulf. Alternatively, but less probably, freshwater input and mixing with marine pore fluids may have led to dolomitization through "brine mixing" ("Dorag" dolomite). Thus, the back reef areas of the Permian reef complex are typified by calcareous grainstones and mudstones with a mixture of preserved primary porosity and secondary porosity related to such factors as early freshwater cementation and leaching, early dolomitization, or late (mesogenetic) dissolution of evaporite minerals.

The reef facies has very low average porosities. Small-scale permeability is very low but large-scale permeability is quite high as a result of fracturing. Porosity in this facies was completely obliterated by submarine cements probably within a few tens to hundreds of years after the time of reef deposition. These relatively coarse, radial, fibrous crusts of orginally aragonitic(?) cement formed within open pores in these Permian reefs just as in many modern reefs. Futher porosity destruction was accomplished by the infiltration of muddy, pelletal, internal sediment into remnant pores.

This type of cementation affected not just the reef-crest sediments but extended for several hundred feet down the fore-reef slope (a feature also seen in modern reefs). Thus, the upper fore-reef slope also has very low porosities. The lower half of the fore-reef talus facies has more complex diagenetic relations. Lesser amounts of submarine cementation are seen here. However, medium-crystalline, relatively late, very strongly fabric-selective dolomitization is present within this environment and has resulted in the replacement of about 1/2 of the original carbonate material in this facies. The source of dolomitizing fluids may be either from the overlying back-reef facies or from the hypersaline basin waters of Castile and Salado time. Such dolomitization has not led to significant secondary porosity in this facies, however.

The toe of the fore-reef slope is characterized by compaction and silicification. Calcitic fossil fragments, especially brachiopods, bryozoans, and echinoderms, were selectively and delicately silicified by chert, chalcedony, and megaquartz. In some cases, silicification extended to aragonitic fossils or formed non-selective chert nodules which cross-cut primary fabric elements. The source of silica most likely is from siliceous sponges and radiolarians which lived in lower slope and (or) basinal settings.

The basin facies is typified by calcite and very subordinate quartz cementation of sandstones as well as compaction of sandstone, siltstone, shale, and carbonate beds. Porosity in finer-grained basinal sandstones can be quite high (as high as 27 percent; Williamson, 1977, p. 414) with corresponding permeabilities in the tens to hundreds of millidarcies.

Recent Models

The Permian depositional and diagenetic patterns described here (and summarized in figs. 2 and 3 and in table 1) can be matched quite closely in some modern settings. The basinal relations can be modeled in the Mediterranean, the Black Sea, and to some degree, in the Bahamas-Florida The restricted circulation and partially euxinic conditions can be found, to some degree, in the Red Sea, Mediterranean, and Black Sea during the Tertiary or Quaternary; but the deep, relatively elongate, structurally controlled basins surrounded by steep, reefal escarpments bordering isolated platform areas are best modeled in the Bahamas. The suite of facies from fore-reef debris, reef, back-reef rubble, near-back-reef skeletal sands and muds, islands, restricted lagoons, and finally supra-tidal facies seen in the Permian is remarkably similar to the general facies spectrum found in the Florida Keys-Florida Bay area. Yet climatically and paleogeographically, the Permian of west Texas and New Mexico was much more like the arid, continentinterior southwestern margin of the Persian Gulf than the high-rainfall, ocean-margin region of south Florida. Thus, the lagoons and sabkhas of the Trucial Coast of the Persian Gulf provide an excellent analog for the farback-reef areas of the Permian.

It is clear, then, that no single area today provides a complete or exact analog for the Permian Basin. Yet if we combine the climatic factors of the Persian Gulf with the tectonic-sedimentologic patterns of the Florida-Bahamas region and the hydrographic factors of the Mediterranian-Black-Sea-Red Sea area we can very closely approximate the patterns seen in the Permian.

Oil and Gas Production

The Permian Basin has had hydrocarbon production for nearly 60 years and is one of the most prolific petroleum provinces in North America. To date, "approximately 91.6 billion barrels of oil-in-place and about 106.2 trillion cu ft of dissolved/associated and non-associated gas-in-place have been discovered in the Permian Basin" (Dolton and others, 1979, p. 1). from the Permian Basin extends from the Cambrian (Wilberns Fm.) to the Cretaceous (thin carbonate units) although production from units younger than Permian is negligible. Paleozoic reservoirs produce oil from depths of less than 500 to greater than 14,000 ft and also produce gas from depths of less than 500 ft to greater than 21,000 ft (Dolton and others, 1979). The Permian section is mainly oil productive with greater than 65 billion barrels of oilin-place (71 percent of the total discovered in the Permian Basin) having been discovered to date (in 2,188 pools). Non-associated gas production, on the other hand, comes predominantly from pre-Mississippian strata. Permian units contain only about 6.3 trillion cu ft of non-associated gas-in-place (about 13 percent of the total for the Permian Basin). However, Permian units contain 32.7 trillion cu ft of associated/dissolved gas-in-place (54 percent of the Permian Basin total) (Dolton and others, 1979).

The predominance of oil production from Permian units is clearly related to their relatively shallow burial in this region where virtually all Permian strata are found at present-day burial depths of less than 15,000 ft. Furthermore, virtually all production from Permian rocks comes from units at less than 10,000 ft burial depths; most of it from less than 5,000 ft depths (Dolton and others, 1979).

"The four provincial series of the Permian do not contain hydrocarbons in equal amounts. The largely evaporitic Ochoan rocks have accounted for only about 6 million bbls of discovered oil in-place, less than 0.01 percent of the Permian's 65 billion bbls" (Dolton, and others, 1979, p. 24).

"By contrast, the Guadalupian has accounted for 67 percent of all Permian oil found and 62 percent of all Permian gas. The Leonardian follows with 28 percent of the oil and 32 percent of the gas. The Wolfcampian contains 5 percent of the oil and 10 percent of the total Permian gas. These amounts are directly related to the progressive development of reefs and back-reef lagoons beginning in the Wolfcampian, increasing in the Leonardian, and culminating in the development of the Capitan reef complex in the Guadalupian.

Hydrocarbon traps in Permian rocks are largely a combination of stratigraphic and structural types, although each type does occur alone. the intricate stratigraphic interfingering of lithologies responsible for trapping much of the Permian oil has resulted largely from the constantly shifting... sedimentary environments. Primary sealing mechanisms are porosity and permeability barriers of carbonate, evaporite or shale.

About 40 percent of the [Permian] reservoirs are limestone, 29 percent are dolomite and 29 percent are sandstone. Porosities range from 1.5 to 25 percent and reservoir permeabilities from 0.02 to 200 millidarcies.

Recovery factors range from a low of 7.6 percent to a high of 47.5 percent. The fractured siltstone Spraberry reservoir of the Midland Basin has a very low recovery factor, although the volume of oil in-place is the largest of any single Permian pool. The average recovery factor for the Permian System is 25 percent." (Dolton and others, 1979, p. 24).

Detailed production (not reserve) figures for oil and gas fields developed in selected Leonardian, Guadalupian, and Ochoan units are shown in Table 3 (listed by county). Production totals for each producing stratigraphic unit are given in Table 4 along with a grand total for all these strata in the Permian Basin region. Only units which will be seen on this field trip have been included in these tables. Extensive production from age-equivalent but differently named units from the Central Basin Platform, Midland Basin, and Eastern Shelf have not been listed. Data for these tables was supplied by the Petroleum Data System, University of Oklahoma, Norman, Oklahoma.

Even a cursory examination of these tables will show that there is no production from the Capitan, Victorio Peak, or Goat Seep reef or fore-reef facies which were tightly cemented at the seafloor shortly after deposition. The vast bulk of production (greater than 90 percent) is from primary or early diagenetic secondary porosity in back reef dolomites and sandstones of the Tansill, Yates, Seven Rivers, Queen, and Grayburg Formations or the open shelf facies of the San Andres Limestone. A second, much smaller, peak of production comes from channel sandstones of the Delaware Mountain Group (particularly in the Bell Canyon Fm.) and basinal limestones of the Bell Canyon Fm. or Bone Spring Limestone. More significant oil reserves in basinal sandstones are found in the Midland Basin. There, the Spraberry Fm. has more than 8 billion barrels of oil-in-place. However, recovery factors of less than 10 percent indicate ultimately recoverable reserves of about 534,000,000 barrels of oil.

Individual channels in the "Ramsey Interval" near the top of the Bell Canyon Fm. are up to 100 ft thick, 1/4 to 4 miles wide, and 50 miles in length (Williamson, 1977). These channels have a very pronounced regional trend (NE-SW for the "Ramsey") which strongly controls the shape and distribution of basinal oil fields.

In this setting, then, back-reef environments account for greater than 90 percent of all hydrocarbon production with basinal sediments accounting for the rest. Reef and fore-reef facies are totally non-productive. Clearly, penecontemoraneous and early burial diagenesis played a major role in controlling the distribution of reservoirs. Evaporite formation and dissolution, synsedimentary dolomitization, early vadose and phreatic leaching and cementation, coupled with probable early oil migration from rapidly deposited and buried, overpressured source rocks in the basins, led to outstanding reservoir characteristics on the shelf. Early submarine cementation obliterated reservoirs on the shelf edge and slope long before oil migration. Finally, some basinal reservoirs may have been preserved from compactional porosity loss by overpressuring beneath 2,000 or more feet of rapidly deposited evaporites.

The source for most of this Permian oil is presumably from the euxinic, relatively organic carbon-rich, basinal sediments such as the Bone Spring Limestone and some intervals within the Delaware Mountain Group. Although these units generally have organic carbon contents of less than 1 percent (King, 1948; Palacas, oral commun., 1978), their carbonate composition, great thickness, and intervening sandy, permeable zones may mean that they can act as very efficient source rocks. Oil reservoired in the basinal facies, then, has probably migrated only a short distace from source to reservoir. Much of the oil in the back-reef sections, however, presumably moved upsection or laterally through fractured reef sediments to get from source to reservoir. The fracturing of the reef was essentially contemporaneous with deposition (because of compaction of the thick, underlying reef talus) and thus, even syndepositional reef cementation probably did not significantly retard fluid movement. Indeed, even today, the tightly cemented reef zone has the highest permeability of any of the Guadlaupian bank-to-basin facies (Motts, 1968).

Current estimates of the volume of undiscovered hydrocarbons in-place for Permian rocks of the Permian Basin are that "at the 95 and 5 percent probabilities, 1.0 to 6.0 billion bbls of oil in-place (1.5 to 9.2 percent of the discovered Permian crude oil) remain undiscovered, while 0.7 to 4.1 trillion cu ft of dissolved/associated gas in-place (2.2 to 12.4 percent of the discovered dissolved/associated gas) remain undiscovered. Finally, 0.2 to 0.6 trillion cu ft of non-associated gas in-place (3 to 21 percent of the discovered non-associated gas) remain undiscovered. Most of these undiscovered in-place hydrocarbons occur above 10,000 ft" (Dolton and others, 1979, p. 47).

"These undiscovered amounts will probably occur in circumstances similar to known fields and pools with respect to reservoir characteristics, seals, source beds, and nature of the hydrocarbons. Traps will probably be predominantly stratigraphic. The undiscovered deposits are likely to be distributed in undrilled areas surrounded by or flanking known production. Such flanking areas are in the western part of the Northwestern Shelf, the western areas of the Delaware Basin, and the southern and western parts of the Val Verde Basin." (Dolton and others, 1979, p. 47).

Studies have shown that "undiscovered pool sizes are small; only at the 5 percent probability is there a chance of occurrence of an oil pool of 16 million bbls or larger, or a non-associated gas pool of 24 billion cu ft or larger." (Dolton and others, 1979, p. 47).

Concluding Notes

For further general discussions of Permian Basin depositional and diagenetic facies patterns the papers by King (1948), Newell and others (1953), Hayes (1964), and Cys and others (1977), are recommended. Other, more specific papers, can be found in the extensive bibliography on the Permian Basin region given at the end of this section of the guidebook.

Further discussions of the specific details of facies patterns and diagensis are also presented in the roadlog section of this guidebook. log is based, in large part, on preexisting guidebooks (Nelson and Haigh, 1958; West Texas Geological Society, 1960 and 1969; Hobbs, Roswell, and West Texas Geological Societies, 1962; Roswell Geological Society, 1964; Dunham, 1972; Pray, 1975; and Pray and Esteban, 1977). However, this guidebook has extensive additional commentary on many localities and is organized differently from previous guides. All roadlogs are based on continuous routes with side trips being presented as separate, supplementary logs. Thus, the trip from El Paso to Carlsbad is logged as a continuous route with the excursions to McKittrick Canyon, Walnut Canyon, and Dark Canyon-Rocky Arroyo being listed as separately logged routes. This adds complexity to a bus tour but makes the logs much easier to use on car trips. Furthermore, for ease of use, all figures are in a single section after the roadlogs. Roadlog routes are shown in fig. 4. A generalized geologic map of the Guadalupe Mountains area is presented in Plate 2 (in pocket).

EL PASO TO CARLSBAD ROADLOG

			EL PASO TO CARLSBAD ROADLOG
	Cumul. N	Mileage	
	From	From	
Mileage		Carlsbad	Description
0.0	0.0	159.4	Leave Caballero Motel; turn right (heading east)
			on U.S. Highway 62 and 180 (Montana Avenue).
0.6	0.6	158.8	Intersection with Airway Road (airport about 1/2 mi to
0.0		25000	left); continue straight ahead.
6.5	7.1	152.3	Stabilized (vegetated) dunes of clastic terrigenous
			debris blown from the floor of the Hueco Bolson,
			the flat, intermontane basin we have been and are
			continuing to cross. The Hueco Bolson is one of the
			southernmost grabens of the Basin and Range Province
			and is bounded on the west by the Franklin Mountains
			and on the east by the Hueco and Sacramento ranges.
			To the north, near the Texas-New Mexico border, the
			the Hueco Bolson is separated from the Tularosa Basin
			(which has completely internal drainage) by a low
			ridge. The Hueco Bolson has external drainage along
			its southeastern side through the Rio Grande
			River valley. The average elevation of the Hueco
			Bolson is approximately 4,000 ft, and the basin
			averages 25 mi in width and 80 mi in length.
			"A recent (1967) USGS seismic and gravity profile
			across the Hueco Bolson from the base of the Franklin
			Mountains to the base of the Hueco Mountains
			indicates a deep structural trough bounded on the
			west by a large normal fault. The maximum thickness
			of the Hueco Bolson fill in the center of this
			trough is calculated to be about 9,000 feet."
			(McGlasson and Seewald, 1969). The bolson fill
			ranges in age from Miocene to Holocene; the
			Pleistocene deposits are particularly thick, with
			local accumulations of as much as 5,000 ft of
			Pleistocene alluvial and lacustrine sediment (Strain,
			1969).
1.5	8.6	150.8	El Paso city limit.
3.1	11.7	147.7	Junction with Texas FM Road 659 to Ysleta (on right)
			and start of two-lane section of U.S. Highway 62 and
			180; continue straight ahead. The intensely block-
			faulted, low-relief (ca. 1,000-1,500 ft) Hueco
			Mountains can be seen directly ahead. Precambrian to
			Tertiary igneous, metamorphic and sedimentary rocks

are exposed in this range (see fig. 5). Cerro Alto, the highest peak, is a Tertiary syenite porphyry intrusive. The Permian (Wolfcampian to early

Leonardian) section of the Hueco Mountains contains nearly 2,000 ft of limestone and very subordinate shale. The pre-Permian sedimentary section consists of a lower interval of Cambrian to Mississippian strata (mainly limestones and dolomites) and an upper interval of Pennsylvanian limestones, shales,

and subordinate sandstones. The upper and lower intervals each contain up to 2,000-4,000 ft of section. The lower interval shows disconformable contacts typical of stable shelf sections, whereas the upper interval contains angular unconformities indicative of the increased tectonic activity and bank-to-basin differentiation of that time period. Throughout this trip, the bank-to-basin facies

Throughout this trip, the bank-to-basin facies sequences we see will be related in one way or another to the initial, structurally controlled topographic variations generated during this Pennsylvanian and Permian deformation. The folding and faulting of this period, part of the Ancestral Rockies movements, generally trends northwest-southeast. The Diablo Platform, Orogrande Basin, Pedernal High, Northwest Shelf, and Delaware Basin (fig. 1) were among the many major physiographic features formed during this time interval. This primary structural relief was, in most cases, strongly modified by subsequent differential sedimentation.

4.4	16.1	143.3	Loose (unvegetated) dunes deposited by winds from the northwest which lose velocity and drop sand near the base of the Hueco Mountains. The hills on the right (largely covered by dunes) are made of Wolfcampian
2.5	18.6	140.8	limestones of the Hueco Group. Quarry in Hueco Group limestone on the right. The limestone here is about 97 percent pure CaCO ₃ and the quarry exposes a single, thin, fusulinid-rich bed about 3/4 of the distance up the rock face.
0.4	19.0	140.4	Lower part of Hueco Group is exposed in hill on right. The unconformable contact between the Hueco limestone and the underlying lower part of the Pennsylvanian Magdalena Limestone is exposed in the low knob at the base of the eastern slope of the hill. This unconformity is an indication of pre-Permian uplift and erosion on the Powwow anticline.
0.8	19.8	139.6	Exposures of the Mississippian Helms and Pennsylvanian Magdalena Formations in hills on left.
0.6	20.4	139.0	Quarry at 2:00 o'clock in Magdalena Limestone The very pure (99.8 percent CaCO ₃) limestones in this quarry, as well as those from the quarry at mile 18.6, were formerly transported to El Paso where they were calcined to CaO (quick lime).
0.3	20.7	138.7	Junction with Texas SF Road 2775 to Hueco Tanks State Park; continue straight ahead.
0.3	21.0	138.4	Hills on left capped by Magdalena Limestone. The

Hills on left capped by Magdalena Limestone. The southeast dips visible here are on the flank of the Powwow anticline. The Jones No. 1 Sorley well, drilled a few miles west on the crest of the Powwow anticline, encountered Precambrian granites at 2,172 ft depth. Helms Peak (elevation 5,409 ft) at 2:00 o'clock is capped by limestones of the Hueco Canyon Formation unconformably overlying middle

			Magdalena Limestone.
0.7	21.7	137.7	Entering Powwow Canyon.
1.9	23.6	135.8	Road cut in middle Magdalena Limestone.
0.5	24.1	135.3	Road cut in middle Magdalena Limestone.
0.8	24.9	134.5	Roadside park on left. The unconformity at the base of the Permian is clearly visible directly ahead. On the western side of the Hueco Mountains this unconformity cuts down to the Ordovician El Paso Limestone. In the outcrop directly ahead, the unconformity is between the Magdalena Limestone and the basal Hueco Group.
0.4	25.3	134.1	Road cut in upper 130 ft of Magdalena Limestone.
0.3	25.6	133.8	Road cut in the basal part of the Permian Hueco Group (including the poorly exposed Powwow Conglomerate and the overlying upper member of the Hueco Canyon Formation). The Powwow Conglomerate varies locally in thickness but is about 30 ft thick in this area. It contains red shales, siltstones, and chert— and limestone—pebble conglomerates. Another redbed interval (the Deer Mountain Shale) occurs near the top of the Hueco Group. These redbeds are considered to be the southern tongues of the thick, predominantly redbed Abo Formation of the Sacramento Mountains.
0.2	25.8	133.6	Road cut in Hueco Canyon Formation, mainly shelfal limestones.
1.2	27.0	132.4	Hueco Inn on left. Continued Hueco Group outcrops for next twelve miles.
8.7	35.7	123.7	Forty Mile Hill (elevation 5,427 ft). Leaving Hueco Mountains; emerging onto Diablo Plateau.
3.1	38.8	120.6	Roadside rest area on left with view of numerous extrusive and intrusive igneous features to the north and northeast in the Cornudas Mountains. The central, high volcanic cone is San Antonio Peak (7,020 ft).
13.3	52.1	107.3	Limestones of Hueco Group in road cut.
4.7	56.8	102.6	Road on Lower Cretaceous Campagrande Formation.
0.5	57.3	102.1	Junction with Texas Ranch Road 2317; continue straight ahead. Molesworth Mesa, which lies to the south, is composed of Cretaceous Trinity and Fredricksburg sediments.
1.9	59.2	100.2	Mountains at 9:00 o'clock are the Sierra Tinaja Pinta, a breached laccolith. The anticlinal structure in the center is composed of Bone Spring Limestone and is flanked by sediments of the Yeso Formation.
5.0	64.2	95.2	Junction with Texas Ranch Road 1111; continue straight ahead.
6.1	70.3	89.1	The Antelope Hills, containing basal Cretaceous sand- stones cut by a Tertiary sill, are visible at 3:00 o'clock.
2.7	73.0	86.4	Road is on Bone Spring Limestone.
1.5	74.5	84.9	Junction with Texas Farm Road 1437 to Dell City on left; continue straight ahead. Dell City is a farming community in the Salt Flat Bolson which has grown up as a consequence of the development of wells

	drawing Pleistocene(?) ground water from the bolson-
	fill. Rapid depletion of the water supply (use
	exceeds recharge) and increasing soil salinites
	indicate a short or very expensive continued
	existence for agriculture in this region.
4.8	Road crosses basal Cretaceous sandstones and passes

74.6 0.1 84 into Bone Spring Limestone. 78.3 6.5 81.1

1.0

0.25

82.1

82.35

77.05

Los Alamos Hills can be seen to the south of the highway, in foreground. Leonardian to basal Guadalupian rocks are exposed here.

77.3 Junction with Texas FM Road 1576 to Dell City.

left for view stop.

This location provides an excellent view of STOP I-1. the Guadalupe and Delaware Mountains and the Salt Flat Bolson (in which we are now standing). see a magnificent panorama including the Upper Permian section of the Guadalupe Mountains, about 20 This 5,000 ft escarpment is miles to the northeast. formed by a major north-south trending normal fault system which marks the eastern boundary of the Salt Flat Bolson. To the northwest and west we can see the Cornudas Mountains, Cerro Diablo, and Sierra Tinaja Pinta, a series of Tertiary igneous plugs and lava flows. To the south lies the Sierra Diablo range which is terminated by the Babb flexure zone, a monocline, at its northern end. Upper Permian (Guadalupian) limestones and sandstones of the Cherry Canyon Formation compose the two mesas to the north of the Babb flexure. Also visible beyond these mesas is Sierra Prieta, another Tertiary intrusive. Finally, to the southeast, Upper Permian strata, primarily Brushy Canyon Formation basinal sandstones, are visible in the face of the long Delaware Mountain escarpment.

Because the Guadalupe Mountains are the major focus of this portion of the field trip, let us take a closer look at that range (fig. 6). Although the topography of the eastern side of the Guadalupe Mountains is controlled almost entirely by the undeformed primary facies distribution of the Guadalupian sediments, the western face is completely controlled by Tertiary normal faults. Thus, on the on the western side, strata with a northeast-southwest facies strike are obliquely transsected by a north-south trending fault zone. Furthermore, we are viewing the exposure obliquely which makes accurate geologic observation even more difficult.

For reference purposes let us name the major peaks on the Guadalupe Mountain skyline. From south to north these include the massif of El Capitan (elevation 8,078 ft), Guadalupe Peak (the highest point in Texas at 8,751 ft), Shumard Peak (8,626 ft), an unnamed spur off Shumard Peak (about 8,350 ft), Bartlett Peak (8,513 ft), and Bush Mountain (8,676 ft). The massive, light colored rocks, which compose the upper parts of El Capitan, Guadalupe, and Shumard Peaks, are Upper Permian (Guadalupian) Capitan limestones and dolomites (see fig. 6 and table 2). Most of this mass is thick-bedded, fore-reef talus (largely of Rader age) which dips steeply (up to 35 degrees) to the southeast, into the basinal sediments of the Delaware Basin. The top of Guadalupe and nearby peaks, however, have true Capitan reef facies and even back-reef sediments. The Capitan reef and fore-reef strata undoubtedly originally extended several miles further south in this region but have been trimmed back by subsequent erosion.

To the north, Bartlett Peak is capped by the oldest exposed Capitan reef limestones which overlie rubble of an older (Goat Seep) reef. The area to the north of Bush Mountain contains the main reef-massif of the Goat Seep as well as age equivalent back-reef calcarenites and terrigenous sandstones (Queen and Grayburg) which stand out clearly as vegetated zones on the mountain slope. "At Guadalupe Peak the smooth slopes below the Capitan are Cherry Canyon and Brushy Canyon sandstones. North of Shumard Peak the upper part of the Cherry Canyon grades into Goat Seep reef. A tongue of Cherry Canyon sandstone continues northward under the Goat Seep reef and grades into small reefs and reefy lime banks in the southern Brokeoff Mountains, and into bedded back-reef rocks in the central Brokeoff Mountains. There Boyd has measured approximately 600 feet of beds which he calls the San Andres formation, and Frenzel, considers to be lower San Andres . . .

The rugged cliffs outcropping below the Delaware sand slopes are cut from the dark-bedded Bone Spring limestone of Leonard age. Between El Capitan and Shumard Peak the top of the Bone Spring limestone rises over 1000 feet and this is the Bone Spring flexure described by King. Below Shumard Peak the upper part of the Bone Spring has changed to the gray Victorio Peak . . , a reefy lime-bank facies. The Brushy Canyon sandstone onlaps the Bone Spring flexure and is absent in the slope below Bartlett Peak" (West Texas Geological Society, 1960, p. 50).

The bulk of the strata just described represent just two major phases of basinal progradational filling (Pray, 1975). The Victorio Peak Dolomite and the underlying Bone Spring Limestone form the older (Leonardian) phase. This sequence represents at least two to three miles of basinal infilling and progradation of shelf facies during the accumulation of about 1,000 ft of section (McDaniel and Pray, 1967). "The Leonardian bank margin was eroded in latest Leonardian and/or in early Guadalupian time,

and a major transgression of basin facies dark carbonates (Cutoff shaly member of King) brought basinal environments far to the north, overlapping Leonardian basin, basin margin, and shelf deposits alike" (Pray, 1975, p. 5). Presumably this transgression was a consequence either of major regional subsidence or of eustatic sea level rise, perhaps associated with the latest stages of Permian glaciation.

This transgression was followed by the second major cycle of progradation, represented by Goat Seep and Capitan reef complexes. These units built the Guadalupian shelf edge outward several miles by filling in a basin of 1,000 to 1,800 ft depth with steeply dipping, reef-derived debris beds which are clearly visible at the southern end of the Guadalupe escarpment. It is the upper part of this progradational sequence which will occupy much of our attention on this trip.

Turn around and return to U.S. Highway 62 and 180. Turn left on U.S. Highway 62 and 180. Crossing northern extension of East Diablo fault with the Salt Flat basin down-thrown on the eastern side.

Historical marker near site of former spring-fed oasis (Crow Springs) and a relay station of the Butterfield Overland Stage. The Butterfield route (see cover illustration) was established in 1858 and passed through the area of Guadalupe Pass (Pine Springs). This route lasted only about one year, however, before the entire line was shifted south to the approximate course of the present Interstate 10 through the Davis Mountains.

OPTIONAL STOP. Center of playa area of Salt Flat. This major graben, the easternmost of the Basin and Range province, formed in middle to late Tertiary time. The basin is about 60 mi long and 10 mi wide and has been the site of continuous alluvial, fluvial, and lacustrine sedimentation since the middle Tertiary. The thickness of sediments in the basin probably is many thousands of feet. Basin margin sediments include coarse gravels and sands alternating with clays derived from the weathering of the adjacent mountains (especially the Guadalupe and Sierra Diablo ranges). Because there is no natural outlet for the basin, all drainage is internal and sediments become finer-grained toward the basin center. Several important aquifers are present within the basin fill and these are currently being exploited for irrigation in areas such as Dell City to the northwest.

Modern saline playas occur in the Salt Flat area of Texas and the Crow Flat area of New Mexico and Texas, in the topographically lowest parts of the basin (elevations about 3,630 ft). These playas form in a region of low rainfall (about 9 or 10 in/yr average) and high evaporation (about 80 in/yr)

0.25 82.6 76.8

0.8 83.4 76.0

2.7 86.1 73.3

1.5 87.6 71.8

(Dunham, 1972). Thus, groundwater, which stands at a level near the playa surface, is drawn upward and is evaporated, leading to gradually increasing salinities. These high salinities greatly restrict vegetation and allow eolian deflation of the rather fine-grained playa preciptates.

Pits excavated in the playa sediments reveal firm but not hard, fine-grained, laminated, non-fossil-iferous lacustrine materials. Modern gypsum and minor halite are the dominant evaporite minerals but calcite, aragonite, and dolomite have also been found in the playa sediments either as primary or secondary minerals (see Friedman, 1966; and Dunham, 1972, for further details). C¹⁴ age dating and geological mapping of basinal units indicates that much of the sediment found at the surface today may be relict from a larger Pleistocene pluvial lake (King, 1948; Dunham, 1972). Eolian deflation has piled up some of of these primary and secondary minerals as dunes along the margins of the playa area.

Halite has been mined from the surface of the playa in areas to the south of the road although halite is not preserved to any extensive degree in buried sediments. This salt was a most highly valued commodity in the 1880's and was used for food preservation, final curing of hides, and other purposes. It was such a valuable substance that it was hauled by mule- and ox-drawn vehicles for many hundreds of miles over the southwest trail to Fort Quitman, then to San Elizaro, Franklin (now El Paso), Paso del Norte (now Juarez), and on to Chihuahua City. Disputes between Mexican and American mining interests in the area led to the El Paso Salt War of The conflict culminated in the battle of San Elizaro (then the county seat of El Paso County). Improved(?) food preservation techniques and more economical sources of salt have eliminated the relatively small-scale mining in this area.

On the south side of the road the Paso Tex oil pipeline can be seen sitting on trestles; on the north side of the road the El Paso Natural Gas pipeline to the Pacific Coast is buried beneath playa sediments.

0.8	88.4	71.0	Gypsum-bearing dunes are derived from deflation of the
			nearby playa surface.
2.2	90.6	68.8	Eastern edge of the Salt Flat Basin.
0.8	91.4	68.0	Folded and downfaulted blocks of Upper Permian on the
			left.
1.2	92.6	66.8	Beacon Hill on the left is composed of Capitan Lime-

Beacon Hill on the left is composed of Capitan Limestone with Rader Limestone at the base of the hill. This is the southern end of the Patterson Hills which consist of complexly faulted and folded Upper Permian limestones. Farther north are the Brokeoff Mountains.

0.5	93.1	66.3	El Paso Natural Gas Co. Guadalupe Compressor station
			on the left.
0.3	93.4	66.0	Road cut in Bell Canyon Formation.
0.4	93.8	65.6	Road cut in Bell Canyon Formation.
0.3	94.1	65.	Road cut in Cherry Canyon Formation; note greenish
			bentonite beds.
1.0	95.1	64.3	Road cut in downfaulted Bell Canyon Formation.
0.8	95.9	63.5	Road cut in Cherry Canyon Formation. The Patterson
			Hills to the left are capped by Capitan-age lime-
			stone.
0.6	96.5	62.9	Road cut in Cherry Canyon Formation exposing contact
			with Brushy Canyon Formation at east end of outcrop.
0.5	97.0	62.4	Junction with Texas Highway 54 to Van Horn on right.
			Keep left for Carlsbad.
0.3	97.3	62.1	OPTIONAL STOP. An excellent view of the south end of

the Guadalupe Mountains here shows the clear relations between reef, fore-reef, and basinal facies (fig. 7). Ahead and to the right, is the escarpment of the Delaware Mountains composed of Brushy Canyon and Cherry Canyon basinal sediments mainly sandstones and siltstones). The Delaware Mountain ridge is capped by the resistant Getaway Limestone which is exposed near the radar station visible at the top of the cliff. The Getaway Limestone Member occurs at a level about 100-200 ft above the base of the Cherry Canyon Formation and, in this area, is a very fossiliferous, gray to black limestone. Note the abundance of lenticular, channelized bedding in the Brushy Canyon and basal Cherry Canyon sections exposed in the Delaware Mountains escarpment. entire sequence was apparently deposited in water depths of at least several hundred feet by a combination of density currents, mass flows, localized slumps, and perhaps even contour currents. Much of the darker material visible in the cliff face represents relatively fine-grained overbank or nonchannelized flows. The lighter-colored, lenticular sediments are coarser-grained, massive, channelfill sandstones. Finally, at the very base of the escarpment, a dark ledge of the basinal Bone Spring Limestone is exposed.

To the left we can see the great mass of Capitan Limestone which forms the upper part of El Capitan. The Capitan Limestone in this face represents a fore-reef rubble facies which is the time equivalent of the Hegler, Pinery, and Rader Members of the Bell Canyon Formation. Below the massive (1,000-1,500 ft thick) limestone, gently sloping deposits of the Cherry Canyon Formation are evident. "The three distinctly visible ledges represent in ascending order the three basinal limestone tongues of this formation named Getaway, South Wells, and Manzanita" (K. W. Klement, in West Texas Geological Society, 1969, p. 18). The rest of the lower slopes of El

Capitan are composed of Brushy Canyon Formation.

The lateral flattening of dips from El Capitan to the Delaware Mountains is not a result of deformation, but rather represents a primary facies transition from reef to basin. The thick, steeply dipping, rubbly limestones of the fore-reef facies thin rapidly toward the basin so that 100 or more feet of reef limestone may have a time equivalent 1-5 ft thick limestone in the center of the Delaware Basin. The color change from the light colored, largely oxidized beds of the reef and fore-reef to the dark colored, organic carbon-rich, anoxic basinal facies can also be seen in these exposures.

It should be pointed out that the great thicknesses of basinal sandstones (about 3,500 ft of Delaware Mountain Group), although derived from the shelf, have only thin equivalents in the back-reef facies and are virtually absent in the reef itself. part, this may reflect the fact that much of the basinal sandstone was apparently transported from the north and north-east, across the Central Basin Platform and the then-filled Midland Basin from sources in the Pedernal Massif and the Arbuckle and Wichita uplifts (Watson, 1979; Bozanich, 1979). Thus, much of the sand influx may have been funneled through gaps in the reef in areas not currently ex-There is evidence, however, from posed in outcrop. submarine channel orientation, other current direction indicators, stratigraphic relations of basinal sandstones and fore-reef carbonate rocks, and the presence of numerous, if thin, back-reef sandstone beds, that some sand moved across the northwestern part of the basin margin along which we are now standing.

Thus, in all probability, another explanation must be sought for the inverse relationship of thick carbonate and thin sandstone units on the shelf and thin carbonate and thick sandstone units in the Silver and Todd (1969) and Meissner (1972) proposed similar concepts of reciprocal sedimentation to explain these observations. This model suggests that the carbonate sediments were deposited during high eustatic sea level stands. During these times of strong surface-water circulation, reefs flourished and climates were arid. The shelf areas had massive carbonate buildups which maintained the shelf edge at or near sea level. During this time, terrigenous sands were largely trapped in back-reef lagoons or in continental basins. The evaporitic conditions led to the formation of saline bottom-waters and a densitystratified basinal water column. This, in turn, led to largely euxinic, sediment starved conditions on the floor of the basin.

During lowered sea level stands, on the other hand,

eolian and fluvial(?) transport of large volumes of well-sorted arkosic sand to the shelf edge provided a massive supply of unconsolidated material on the upper slope. From there the sands were reworked into the basin by a variety of gravitationally driven current mechanisms. Subsequent transgression in the next cycle removed virtually all traces of sand from the tightly cemented shelf-edge limestones.

Thus, in the reciprocal sedimentation concept, although there is overall time-equivalence of the shelf and basin sediments, they are not exact time-equivalents when looked at in detail. The thick, basinal sandstones are equivalent, in most cases, to hiatuses in reef deposition and to thin sandstone beds in back-reef areas. Thick reef and back-reef limestones are equivalent to very thin, black limestones in the basin.

1.4 98.7 60.7

STOP II-2. This outcrop, faulted at its northern end, exposes Bone Spring Limestone in its basinal facies. This Leonardian limestone, the oldest unit exposed in the Guadalupe and Delaware Mountains, reaches at least 1,700 ft thickness in this area (King, 1948). A thickness of 3,123 ft has been measured for the combined Hueco Limestone-Bone Spring Limestone interval in the Updike well near El Capitan. combined section thickens to greater than 4,500 ft in the Delaware Mountains to the south (King, 1948, p. At this locality we can see typical, dark gray to black, cherty, interbedded limestones and calcareous shales which are the dominant lithology of the basinal part of the Bone Spring Limestone. Fossils, especially small ammonites, can be found at this locality, but are generally restricted to isolated, granular or calcarentic beds. Bedding surfaces in the basinal Bone Spring Limestone are typically wavy. Both the limestone and the shale units contain considerable amounts of organic matter and may have acted as source rocks within this basin. Indeed, trapped oil can be found even on outcrop in small cavities in the Bone Spring Limestone.

0.4 99.1 60.3 0.5 99.6 59.8 Road cut in Brushy Canyon sandstone. Well exposed, lenticular, sandstone channel

deposits of the Brushy Canyon Formation are visible in the distance on both the left and right sides (fig. 8).

1.6 101.2 58.2

STOP II-3. An exposure of basinal Brushy Canyon Formation, the lowest unit in the Delaware Mountain Group. The feature of special interest at this locality is the exposed margin of a submarine channel (fig. 9). Such channels are common in this formation and, at least in this area, generally trend northwest-southeast, that is, perpendicular to the shelf margin.

At this locality, we can see dark-colored, graded, relatively fine-grained sandstones, siltstones, and shales in thin beds with some soft-sediment deformation features. These are abruptly cut by a uniform, thick-bedded, sandstone-filled channel. Both types of sediments were clearly soft, even fluid, at the time of deposition, as shown by the fact that the channel margins are extensively deformed by sand injection.

Hayes (1964), Jacka and others (1968), Payne (1979), Berg (1979) and other authors have interpreted these or similar deposits as submarine fans. The graded, finer-grained sediments are considered to be interchannel or overbank turbidity-current deposits. The cut and fill, massive sandstones are interpreted as part of an anastomosing system of fan channels, eventually abandoned or filled by sand transport. Harms (1974), on the other hand, proposed that the finer-grained sediments were deposited by density overflows which dropped suspended sediments as they moved out over density interfaces within the water column rather than at the sediment-water interface. The channels were cut, according to Harms, by saline and cold density currents (rather than turbidity currents) which formed The sand fillings of the channels on the shelf. were also laid down by density currents.

In either case, these large (commonly more than 1/2 mile wide and 50-100 ft thick) channelized sandstones, surrounded by lower permeability siltstones and shales, represent significant potential stratigraphic traps. This is especially true because of the close spatial association of these sandstones and the potential basinal source rocks. Indeed, exploration efforts to date have located more than 100 oil and gas fields which produce from channel-sandstone reservoirs of the Delaware Mountain Group, primarily (but not exclusively) from the Bell Canyon Formation (see table 3).

0.5	101 • /	3/•/	į.	

Roadside rest areas on left and right. Excellent views of El Capitan (fig. 10) and the Delaware Mountains escarpment. Again, the bank-to-basin transitions of the Capitan Limestone and its equivalents are well shown.

0.7 102.4 57.0

Road cuts in sandstones and siltstones of the Brushy Canyon Formation.

0.4 102.8 56.6

OPTIONAL STOP. View along the Delaware Mountains escarpment on the right. Outcrops on the left consist of upper Brushy Canyon Formation sandstones with oriented fusulinid Foraminifera (fig. 11) which were reworked into the Delaware Basin from the adjacent Northwest Shelf. In thin section one sees compaction of the sandstones, some quartz overgrowth cement (minor), clacite cementation (very

0.3	103.1	56.3	extensive), numerous fine-grained carbonate clasts mixed with well-rounded and well-sorted quartz and feldspar grains. The detraital carbonate grains show intense pressure solution, especially where they are in direct contact with the less soluble quartz or feldspar grains. An enigmatic Brushy Canyon-Cherry Canyon contact is exposed in this outcrop. The contact strikes N 30° E and dips at about 17 degrees to the southeast. This relationship has been variously explained as a fault contact, an erosion surface, or a large and coherent slide mass. Note the abundant high-angle faults in the outcrops in this area. They generally have only minor offsets (although a few have 100 ft or greater throw) and are part of the Tertiary block fault system which marks the western boundary of the Guadalupe and Delaware Mountains.
0.3	103.4	56.0	Guadalupe and Delaware Mountains. OPTIONAL STOP. Shales, siltstones, and sandstones of the Cherry Canyon Formation are seen here. They show a number of interesting sedimentary features including a large channel, graded beds, flame structures, ripple marks, slump folds, and abundant horizontal lamination. Again, as for the Brushy Canyon section, evidence is present for the involvement of both traction and suspension processes in the deposition of these units. The Cherry Canyon Formation is about 1,000 ft thick in this area and thickens to about 1,300 ft in the subsurface sections measured to the east. Organic carbon-rich shales and limestones within the Cherry Canyon Formation may have acted as source rocks for a significant part of the oil in the Permian strata of the Delaware Basin.
0.4	103.8	55.6	Road cut in Tertiary-Quaternary alluvium.
0.4	104.2	55.2	Thin-bedded Cherry Canyon Formation exposed on right.
1.0	105.2	54.2	Rest area on left.
	105.6	53.8	Fault zone. Graded carbonate beds are present in the Cherry Canyon Formation at this locality.
0.7	106.3	53.1	Crest of Guadalupe Pass (elevation 5,695 ft). Pine Springs Canyon is visible to the left; the Pine Springs Camp and gas station are just ahead. The cliffs to the left (10:00 o'clock) are composed of Guadalupian basinal facies from the base to the middle of the slope; that is overlain by a thick zone of fore-reef rubble which, in turn, is capped by a thin zone of preserved reef limestone. The Getaway Limestone is visible in hills on the right and overlying sediments of the Cherry Canyon Formation are present in the slopes ahead and to the left. The greenish outcrops in these slopes (for example on Nipple Hill, directly ahead) are intercalated bentonite beds (volcanic ash) and shales in the Manzanita Limestone Member of the Cherry Canyon

1.3	107.6	51.8	Formation. U.S. Highway 62-180 is still cut through the extensively faulted zone on the western side of the Guadalupe and Delaware Mountains. Numerous small faults are present here, as they have been in most of the outcrops we have passed in the last 10 to 15 miles. The ruins of a way-station of short-lived Butterfield Overland Stage route are located behind the Texas Highway Department garage on the left. As with other parts of this route, the station was abandoned in 1859. Guadalupe Mountains National Park headquarters (Frijole
1.3	107.0	31.0	Station) on the left. This park is one of the newest in the National Park system, having opened in 1972. In 1978 approximately 60 percent of the park was designated as wilderness area, precluding any large-scale development. The establishment of the park resulted, in large part, from the concern and generosity of Wallace Pratt, one of the first geologists of the original Humble Oil and Refining Co., who lived for many years in the McKittrick Canyon area. Pratt's gift to the government of more than 5,000 acres was the first concrete step toward the formation of this park.
1.3	108.9	50.5	Exposures of Cherry Canyon Formation sandstone; this section is just below the South Wells Limestone Member.
0.8	109.7	49.7 49.2	Quaternary fanglomerates in road cuts. Road cuts in Cherry Canyon Formation. The South Wells Limestone Member is present at the top of this exposure and consists of thin-bedded sandstone and thin, lenticular, brachiopod-bearing limestones. The limestone beds range in thickness from a few inches to a few feet and are generally micritic. The intercalation of thin limestones and sandstones tends to lower the erosional resistance of this unit and therefore it does not form a prominent scarp. This is not true of the other limestone members of the Cherry Canyon Formation, however.
	111.2	48.2	We are descending off the Rader Ridge. The ridge is capped by the Rader Limestone Member of the Bell Canyon Formation (the third named member up from the base of the formation). We are now, once again, passing through the upper part of the Cherry Canyon Formation.
0.2	111.4	48.0	Nickle Creek Exxon Station on the left. The greenish, bentonitic beds of the Manzanita Limestone Member are visible at 11:00 o'clock, about half way up the hill.
0.8	112.2	47.2	Road cut in Manzanita Limestone. The Manzanita is
0.3	112.5	46.9	between 100 and 150 ft thick in this area. STOP II-4. This section shows a major submarine slide deposit at the base of the Rader Member of the Bell Canyon Formation. The southwestern end of the outcrop consists of laminated sandstones and siltstones

of an unnamed member of the Bell Canyon Formation. At the top of this sandstone is a conglomerate zone with limestone blocks set in a sandstone matrix. The limestone clasts are very poorly sorted and range from pea-sized pebbles to car-sized boulders (fig. 12). The clasts are non-dolomitic, generally light-colored limestones derived from the Capitan reef and upper fore-reef environments. Above this zone of bouldery rubble is a thick, graded bed of similar, but finer grained, carbonate clasts with carbonate matrix and cement. This, in turn, is capped by a series of thin-bedded, fine-grained, dark-colored limestones which are typical of the basinal limestone members of the Bell Canyon Formation.

This slide deposit is one of several which have found in the Delaware Basin. Three superimposed slides within the Rader Member make up the hummocky Rader Ridge in this area. Other slides are locally present in the Manzanita Member of the Cherry Canyon Formation and at the top of the Lamar Member of the Bell Canyon Formation (Newell and others, 1953, p. 69-These are, however, exceptional and localized events which move reef- and slope-derived material far beyond the range of the normal fore-reef rubble fans. For example, the outcrop we are at represents a slender, perhaps channelized, tongue of rubble which extends off a broader slide. This tongue of transported debris extends nearly five miles into the basin from the reef crest. This deposit has been shown to thin rapidly from reef to basin (Newell and others, 1953). It is nearly 100 ft thick at the base of the steep fore-reef slope but has thinned to less than 10 ft at this locality.

The mechanism of transport of the limestone clasts probably is largely as a submarine slide or debris flow. The volume of material involved is comparable to that of large, documented, subaerial landslides (Newell and others, 1953, p. 77). As with subaerial landslides, there is remarkably little disturbance of underlying soft sediment substrates. The incorporation of sandstone matrix with limestone boulders, and the channelized or abruptly terminated margins of the slides indicates that there was some erosion and inclusion of the underlying Bell Canyon sandstone in the slide. There may also have been some subsidence or foundering of the large, heavy, limestone blocks into the underlying sands.

The event which triggered the slide also, apparently, led to the generation of a turbidity current which deposited the thick graded bed which overlies the slide. This association appears to be a common one and has even been observed in modern submarine slides.

The Rader Limestone Member has a total thickness

of about 15 ft in this area, and about 10 ft is exposed at this outcrop. The unit thickens to a maximum of about 120 ft within about 3 miles as one approaches the basin margin (to the northwest).

Road cuts in Rader Limestone.

STOP II-5. Well-sorted, subarkosic sandstones of the Real Cappon Formation showing remarkable uniformity.

46.8

46.3

45.6

45.5

44.5

0.1 112.6

0.5 113.1

0.7 113.8

113.9

114.9

0.1

1.0

STOP II-5. Bell Canyon Formation showing remarkable uniformity of bedding and horizontal lamination. The Bell Canyon Formation is about 700 ft thick at its type locality, but has been reported to be as thick as 860 ft in subsurface sections (Hayes, 1964, p. 14). As with the other basinal sandstone units of the Delaware Mountain Group, the depositional mechanisms of the Bell Canyon sandstones have been extensively debated. The abundance of horizontal lamination and the apparently euxinic conditions in the basin center lend credence to the idea of density overflows and suspension deposition of much of the sand and silt. On the other hand, the presence of numerous subparallel erosional channels, most of them oriented from northeast to southwest, indicates that seafloor erosion, transportation, and deposition by long-lived density underflows, turbidity currents, or grain flows were also important.

More than 100 oil and gas fields have been discovered in the Bell Canyon Formation as of 1979 (table 3). These "are stratigraphic-hydrodynamic traps which occur where sandstone-filled channels are incised into less permeable interchannel sandstone" (Williamson, 1979, p. 39). These channels are as much as 5 miles wide, 100 ft deep, and 50 miles long and the shape and orientation of these channels clearly controls the size, trend, and productivity of oil and gas fields.

Entrance to McKittrick Canyon day-use area of the Guadalupe Mountains National Park on the left. See McKittrick Canyon supplementary roadlog.

The escarpment ahead is formed by the Lamar Limestone Member of the Bell Canyon Formation.

STOP II-6. This section exposes basinal, black, laminated limestones and shales of the Lamar Limestone Member (fig. 13). Some features indicative of turbidite deposition of platform-derived, finegrained carbonate sediment can also be seen. The Lamar is largely unfossiliferous at this locality. It becomes darker and more organic carbon-rich toward the basin center; indeed, all benthic organisms are absent from these basin-center sediments. Conversely, the unit becomes lighter colored and more fossiliferous toward the basin margin. It seems, therefore, that euxinic conditions were largely restricted to the deepest parts of the Delaware Basin (Babcock, L. C., 1977).

In this area, relatively near the basin margin, a

moderately diverse fauna which includes burrowing pelecypods, siliceous sponges, holothurians, and conodonts, is evidence that conditions here were not uniformly anaerobic (Babcock, L. C., 1977). Yet the evaporite crystal casts found on many bedding surfaces, the organic carbon-rich sediment, and the widespread preservation of very fine-scale lamination all indicate that largely, euxinic, evaporitic bottom waters occupied this region during much of Lamar time. Presumably, the dominantly anocix conditions were periodically relieved by input of turbidity currents bringing sediment-laden, oxygenated waters downslope into the basin. These events were probably accompanied by short-lived but widespread colonization of the basin floor by benthic organisms.

The lateral thickness variations of the Lamar follow a similar pattern of basin-margin to basin-center change. The Lamar thins from 300 ft along the Capitan slope, to approximately 20-30 ft in this area, to as little as 6 ft in outcrops about 17 miles from the basin edge, and eventually to only a few feet of silty shale in subsurface sections near the basin center (Tyrrell, 1969; Babcock, L. C., 1977).

The Lamar is the youngest limestone unit in the Guadalupian part of the Delaware Basin. As such, it is a lateral facies equivalent of the uppermost part of the Capitan Limestone on the shelf edge, and the Tansill Formation in back-reef, shelf-interior areas.

- Roadside rest area on right. Excellent exposures of reef and fore-reef deposits can be seen to the southwest. The exposed part of the reef becomes progressively older toward the south. The crest of the reef at the southern end of its outcrop (near Guadalupe Peak) is approximately 1,000 ft lower stratigraphically than the reef exposed at Walnut Canyon, about 25 miles to the north of this location. This implies that the face of the reef has been eroded back by at least 1/2 mile in the southern Guadalupe Mountains region.
- 35.4 Straight ahead lies the solution escarpment of the Castile evaporites. We are driving on a surface of Quaternary gravels which lie on the basal limestone and shale unit of the Castile and on the Lamar Limestone.
- 1.4 125.4 34.0 Junction with Texas Ranch Road 652 on the right.

 Continue straight ahead.

ahead.

1.2 116.1

7.9 124.0

43.0

- 0.1 125.5 33.9 Texas-New Mexico state line. Welcome to New Mexico.
 1.6 127.1 32.3 Notice the difference in vegetation on the gravel surface on which we are now driving versus that on the hills of Castile gypsum and anhydrite directly
- 0.5 127.6 31.8 STOP II-7. Excellent exposures of the Castile Formation in deep roadcuts. This unit is the oldest post-Guadalupian sediment in the region and conformably

overlies the Guadalupian Bell Canyon Formation. The Castile is entirely confined to the Delaware Basin and does not extend onto the adjacent shelf areas. It has a thin, basal limestone and shale zone which may be a lateral facies equivalent of the very youngest part of the Capitan and Tansill Formations. The bulk of the Castile, however, consists of a thick section of laminated anhydrite with intervals of laminated halite. The Castile Formation has been reported to reach a maximum thickness of 1,550 to 2,000 ft in subsurface sections in the northeastern part of the Delaware Basin (King, 1948, p. 89).

The Castile grades conformably upward into the Ochoan Salado Formation; the Salado contains laminated halite, anhydrite, sylvite, polyhalite, and even more soluble evaporite minerals. The extreme solubility of its components means that the Salado does not generally appear in outcrop. Indeed in this area, much (or all) of the Salado may have been removed by erosion. The Salado does, however, form a wedge of sediment which thickens toward the the northeast to a maximum of greater than 2,000 ft (Anderson and others, 1972, p. 82). In the northeastern part of the Delaware Basin, the Salado is extensively mined for potash minerals. Unlike the Castile, the Salado Formation extends beyond the borders of the Delaware Basin onto the surrounding shelf areas where it generally lies directly on Guadalupian carbonate rocks. Salado, in turn, is unconformably overlain by the dolomitic Upper Permian Rustler Formation, the Dewey Lake Redbeds, and younger units. The pre-Rustler unconformity shows extensive Permian tilting and erosion for, in places (particularly the southwestern part of the region), it has completely removed the Salado, allowing the Rustler to lie directly on the Castile Formation or Guadalupian carbonate rocks.

The onset of Castile evaporite deposition coincided closely with the termination of reef growth around the Delaware Basin margin. It is not entirely clear whether this is a causal or coincidental relationship. Eustatic sea level drop, tectonic movements, reef growth, or other factors could have increased the restriction of influx of normal marine water into this already partially barred basin. This, coupled with the extreme aridity and high evaporation rates in the area, may have led to drastic increases in the salinity of basin water, with the associated killing of the salinity-sensitive reef organisms and the eventual start of evaporite deposition. must be emphasized, however, that although the changes in depositional patterns at the Guadalupian-Ochoan transition were dramatic, the causes of these changes may have been considerably more subtle.

Strongly evaporitic conditions existed throughout Guadalupian time as, apparently did hypersaline stagnant bottom waters in the basin. Marine influx from the south was certainly present during Guadalupian time to maintain normal marine conditions in the surface waters of the Delaware Basin. This influx must have continued through much of Ochoan time, if in a somewhat more restricted form, to supply the salts of the Castile and Salado Formations. Thus, it appears most likely that it was a gradual change in marine water supply versus evaporative water removal which led to the abrupt shift from carbonate to evaporite sedimentation, presumably when a critical salinity level was reached. gradual (but not perfectly continuous) salinity transition apparently continued through Ochoan time, leading to deposition of anhydrite, then halite and sylvite, and eventually the true bittern salts found in the northeastern Delaware Basin.

The Castile Formation, then, represents an evaporite filling of the approximately 1,800 ft deep basin left at the end of Guadalupian time. Although there may have been some drop in basinal water levels, the Castile clearly was deposited in deep water as indicated by the complete absence of shallow-water sedimentary structures and the presence of finescale lamination. The laminae consist of regular (although variable thickness) alternations of white anhydrite laminae and darker laminae containing a mixture of organic matter and calcite (fig. 14). anhydrite-calcite couplets average 1-2 mm in thickness throughout the Castile Formation (Anderson and others, 1972 p. 73). On outcrop, the anhydrite may have been altered to gypsum (this locality has both gypsum and anhydrite exposed according to S. D. Kerr in Dunham, 1972). The laminations have remarkable lateral continuity, as one might expect for deeperwater evaporites, and individual laminae have been traced for more than 70 miles (Anderson and others, 1972). Contortion and deformation structures (fig. 15) are post-depositional and presumably represent volume changes due to hydration and/or dehydration reactions.

The laminations of the Castile Formation (as well as those in the uppermost Bell Canyon and Salado Formations) have been interpreted as annual varves (Udden, 1924; Anderson and others, 1972). The calcite and organic-matter layers represent periodic (annual?) freshening of the water and the development of plankton blooms. The anhydrite layers represent restricted, more evaporitic conditions. Approximately 260,000 such cycles have been counted in the uppermost Bell Canyon-Castile-Salado sequence. This implies extremely rapid deposition of thousands

of feet of evaporites in the Delaware Basin, a common situation with major evaporite deposits.

The evaporite filling of the Delaware Basin is largely responsible for the spectacular exposures of the Guadalupian facies which we are seeing on this trip. The complete plugging of the "hole" left at the close of Capitan reef growth and the subsequent, Tertiary, removal of that plug has left us with resurrected Guadalupian topography and facies relations in this area.

The Castile and Salado evaporites may also have had a major impact on the oil and gas distribution in the Permian Basin. The rapid burial of basinal source rocks to depths sufficient for oil and (or) gas generation is one probable effect. It is quite possible that compactional geopressuring of the basinal sediments resulted from the rapid deposition. This may have eventually aided the early migration of hydrocarbons from the basin, before deep burial and destruction of porosity in potential shelf reservoirs. Overpressuring and early oil migration may have been significant factors in the excellent hydrocarbon productivity of the Permian Basin region. The early oil movement may also explain why primary porosity and early diagenetic porosity modifications, rather than later diagenetic porosity types, are so important in many Permian Basin reservoirs. Finally, the extensive blanketing of both shelf and basin by an impermeable cover of evaporites clearyly provided an outstanding seal for the entire region.

			vided an odestanding sear for the entire region.
1.9	129.5	29.9	Note hummocky, solution-generated topography on top of
			the Castile evaporite. These are the Yeso Hills.
1.1	130.6	28.8	White's City visible directly ahead in the distance.
			The valley to the left is developed on the upper-

most Bell Canyon strata (Lamar and post-Lamar beds). The Capitan reef escarpment can be seen plunging to the north beneath Ochoan and younger sediments as a consequence of structural tilting. To the south, the reef rises higher and higher on the skyline to the point where it has been removed by erosion.

The buildings at the entrance to Carlsbad Caverns can be seen on the ridge top at about 11:00 o'clock. Zone of Quaternary rubble probably dervied from dissolution of upper Castile or Salado evaporites.

Several thin, weathered, basaltic igneous dikes cut

the evaporite section in this area. Roadside rest area on left.

At a point approximately 300 ft east of the highway, loose boulders of Lower Cretaceous (Commanchean) limestone have been described by W. B. Lang who interpreted them as fragments of widespread Cretaceous cover down-dropped and preserved in

solution pipes cut into the Ochoan evaporites. Entrance road to Slaughter and Rattlesnake Canyons and

1.4 133.2 26.2

27.6

1.2 131.8

1.2 134.4 25.0

1.5 135.9 23.5

			New Cave on left. Both Rattlesnake and Slaughter Canyon have excellent exposures of the late Guadalupian fore-reef, reef, and back-reef facies (see Pray and Esteban, 1977). Continue straight ahead.
0.3	136.2	23.2	Highway is still on Castile Formation. The mouth of Slaughter Canyon is visible at about 8:00 o'clock; the mouth of Rattlesnake Canyon can be seen at about 9:00 o'clock. The northwest-southeast trending Huapache Monocline crosses the Capitan reef front between these two canyons.
1.8	138.0	21.4	Quaternary gravel in road cut.
3.3		18.1	Beautiful downtown White's City. Junction with New Mexico Highway 7 to Walnut Canyon and Carlsbad Caverns on left. See separate "Walnut Canyon" supplementary road log. Continue on U.S. Highway 62-180 to Carlsbad, New Mexico.
5.0	146.3	13.1	Bridge over Jurnigan Draw. Rustler Formation red beds can be seen in middle distance on right.
0.2	146.5	12.9	Junction with New Mexico Highway 396 on right. The Black River oil field is located to the right; the field produces 42° API gravity oil from sandstones and siltstones just beneath the Lamar Limestone member of the Bell Canyon Formation at about 1,950 ft depth. The hills to the left are composed of Capitan reef limestone.
1.5	148.0	11.4	Road cut in Rustler Formation.
0.7	148.7	10.7	Road cut in Rustler Formation.
2.6	151.3	8.1	Junction with Dark Canyon Road on left near old Frontier Trading Post and Museum. The hills to the west are composed of Tansill Formation near- back-reef limestones and dolomites. The one well Dark Canyon oil field lies about 1/2 mile to the west. Completed in 1952, the field produced from an 11 ft pay zone in Delaware Mountain sandstone at 1,876 ft. The well continued to produce for many years at 10 to 12 BOPD. Continue straight ahead for Carlsbad. See supplementary "Dark Canyon-Sitting Bull Falls-Rocky Arroyo" roadlog for route to left.
1.0	152.3	7.1	In the foreground to the left are the Frontier Hills composed of Ochoan Rustler Formation sediments which dip southeastward into the Delaware Basin. The Rustler Formation in this area consists of dolomite, red beds, fine-grained sandstones, and minor gypsum. The Rustler overlies the Salado Formation in the Delaware Basin but lies directly on the Capitan Limestone in the ridge west of the Frontier Hills.
1.8	154.1	5.3	Carlsbad city limit.
1.3	155.4	4.0	Quaternary caliche exposed in pits on right.
0.4	155.8	3.6	Caverns City Air Terminal (Carlsbad municipal airport) entrance on left. The Hackberry Hills to the west are composed mainly of Tansill dolomites and upper Yates dolomites and sandstoneboth back-reef facies equivalents of the uppper part of the Capitan reef.

The reef itself is completely buried beneath younger sediments in this area. The back-reef equivalents are exposed only because of the gentle (approximately 5 degree) eastward dip of the Guadalupian strata in this area.

			Guadatupian Strata in this area.
2.5	158.3	1.1	Rodeway Inn on right.
0.1	158.4	1.0	Holiday Inn on right.
0.3	158.7	0.7	Ocotillo Hills located to the northeast.
0.7	159.4	0.0	Junction with U.S. Highway 285 to Pecos, Texas on the
			right. Road log ends here.

MCKITTRICK CANYON ROADLOG

road to McKittrick Paso-Carlsbad Most of this new Eval of the Bell Eth) are capped by The dipping Capitan
Paso-Carlsbad Most of this new eval of the Bell ch) are capped by
Paso-Carlsbad Most of this new eval of the Bell ch) are capped by
Most of this new rval of the Bell ch) are capped by
ch) are capped by
dipping Capitan
l Delaware Basin e filling. The ent lack of bedding pattern which trends
enecontemporaneous ction of the 1,500- calus over which
oraneous formation (and act that locally one
racture walls. The cite cement
and other
visible down- oth transition
l basinal deposits
slope deposits of the lenticular bedding is sed of micritic
ficant reefal fauna. bioherms formed in 1,600 ft). However, similar areas
luced by a combina-
ebris, along- currents, and
cular deposits he Florida-Bahamas
We will walk up
t 1/2 mi) and then Kittrick Canyon,
wear sturdy hiking and cactus-covered
in the Guadalupe ng or collecting is
e, the size of
ed trail make it
a group. PLEASE, SUBGROUPS. We

will keep the pace slow enough so that we can all remain together.

The purpose of this stop is to examine the toe-of-slope and fore-reef facies transitions of the Capitan Limestone and its equivalents. Although it would be pleasanter if this facies change could be seen without resorting to a strenuous climb, this is not possible. It must be remembered that the facies transition is one which took place on a 30 degree slope over a vertical distance of more than 1,000 ft; thus, the vertical component is an important one. Also, these facies are exposed only in areas south of White's City and are easily accessible only in Rattlesnake, Slaughter, and McKittrick Canyons. All three areas require extensive climbing and McKittrick provides the best visual continuity of lateral facies.

Our upward climb will take us across a number of different Bell Canyon units (fig. 16). We start at the level of the Rader Limestone, and cross several unnamed sandstone units, and the McCombs Limestone before reaching the Lamar Limestone. We will then descend along the Lamar dip-slope and view the lateral changes within a single unit.

Because there is no well-marked path, it is not possible to provide a detailed description of this tour. However, it is possible to provide a general picture of the salient features of the route. We start in the thin-bedded, darkcolored, micritic limestones of the Rader. Bryozoans and brachiopods are the most commonly seen megafossils. nodules and silicified (originally calcitic) organisms abound (fig. 17) with the silica having been derived from siliceous sponges (fig. 18) and radiolarians which lived or accumulated in the down-slope area. The only other macroscopic diagenetic feature visible is compactional deformation around fossils, concretions, nodules, or all ochtonous blocks of reefal debris (fig. 19). Channels filled with cross-bedded reef- and slope-derived debris and large blocks of reef limestone also can be seen locally in these beds.

As we move upslope, we will see thick packages of finegrained, well-sorted sandstone and siltstone interbedded with the limestone members. The sandstones are compositionally identical to the thin back-reef sandstone and siltstone units we will see at other localities. up-slope interfingering of discrete, basinward-dipping sandstone and carbonate units indicates that both were derived from the shelf. The sandstones also show extensive evidence of down-slope current transport including cross-bedding, channels, ripple marks, and other features. The farther upslope we move the more dominant the carbonate units become; at the same time, the sandstones become thinner and eventually pinch out entirely. The carbonate units become progressively more massive and coarser-grained in an up-slope direction (fig. 20); the carbonate grains also tend to be more clearly recognizable as reef- and slope-derived

skeletal fragments. The fact that this is primarily reef rubble is clear from the abundance of original framework producing organisms, such as calcareous sponges and bryozoans, as well as the organic encrustation and submarine cementation of many of the clasts. In local areas, massive, sorted, and channelized grain flow and turbidity current deposits of carbonate material are visible. In most areas, however, these units have little obvious internal structure.

The diagenesis of these units is complex. Many of the clasts of calcareous debris underwent submarine cementation in their original environment of formation. Subsequent alteration in the down-slope depositional environment included (at least locally) partial, late-diagenetic dolomitization (fig. 21), leaching of aragonitic grains, and medium-crystalline calcite cementation. Compaction is not extensive in these units, but grain fracturing is common (fig. 22), and porosity is generally quite low.

As we approach the crest of the hill, apparently in situ and extensively encrusted material becomes dominant. Some of this may represent blocks of debris too large to recognize, but most of it presumably indicates in situ lithification and encrustation of material at the base of the active reef-forming area by organic and inorganic agencies. Reef growth, algal encrustation and inorganic (submarine) cementation extends into water depths of several hundred feet in many modern tropical reef areas. Similar patterns are to be expected in the Permian. Thus, although the zone of major faunal growth and diversity lay upslope from the highest point we will ascend to, some in situ growth of reef organisms, algal encrustations, and submarine cementation presumably extended downslope into the areas we are crossing.

The view from the small peak we have climbed is one of the finest in the Guadalupe Mountains from a geological perspective. This vantage point allows us to look directly at the north wall of McKittrick Canyon (fig. 16) and largely eliminates the problem of apparent dips which complicated our earlier panoramas. The vast bulk of the sediments which make up the lower 3/4th of the north wall of McKittrick consist of Capitan fore-reef debris (fig. 16). In many areas, particularly near the mouth of the canyon, the steep, dip (nearly 30 degrees) of these rubble beds is apparent. The gradual flattening of those dips to the near-horizontality of the basinal Bell Canyon sediments is equally apparent in that area. Indeed, the uppermost basinal limestone (the Lamar) can be traced as a virtually continuous bed from basin to shelf (fig. 16) as it rises more than 1,700 ft. The same transition can be viewed in the shelf-edge escarpment visible to the north and northeast.

Above the bedded Capitan talus lies a massive, nearly completely unbedded zone of the Capitan reef-massif (fig. 16). The massive character is a consequence of both the original skeletal framework with its encrusted

(boundstone) fabric, and the massive, penecontemporaneous cementation which completely pervaded the reef and obliterated virtually all porosity. Although particularly well developed at its eastern end, the reef massif can be traced continuously toward the west. In this direction, the reef passes lower and lower in the section but continues to overlie thick, reef-talus deposits. Thus, from this vantage point we can see that the Capitan reef built upward nearly 1,000 ft during the time in which it prograded out over its own debris; the debris, furthermore, filled in a basin of between 1,000 and 2,000 ft water depth.

The ratio of reef rubble to in situ reef is extremely high, a fact noted by many workers. As pointed out by Dunham (1972), however, this is not a surprising situation. In modern reef-forming areas, the zone of significant reef growth is narrow, both laterally and vertically. The active growth zone is but a thin veneer on the upper and frontal edge of the reef platform. Much of this in situ material is eventually broken up by storms and reworked reworked down the fore-reef slope. New organisms grow in the reef crest area only to be reduced to rubble as well. Vast quantities of material are formed within the reef zone but only a small fraction of this volume remains in that environment. Most is swept away into fore-reef or backreef settings. Thus, the vast amounts of rubble visible in the Capitan complex are not a valid piece of evidence to deny the existence of a true reef in this area. the rubble serves as evidence that the shelf edge was occupied by a faunally diverse assemblage of organisms with remarkably high rates of sediment production.

Above and to the west of the Capitan reef-massif, a wedge of flat lying, well bedded, back-reef sediments (Tansill and Yates Fms.) can be seen (fig. 16). The wedge thickens to the west where older sediments are exposed. The sediments (mainly green algal-fusulinid grainstones) of the near-back-reef Tansill can be seen to pass into and over the Capitan reef-massif and perhaps even to spill over onto the slope in front of the reef. This may be an indication that reef growth ceased before the end of carbonate sedimentation in the area. In that case, the final phase of shelf-edge deposition would have been marked by unconsolidated skeletal sand shoals rather than a barrier reef.

The spectacular view of facies relations on the north wall of McKittrick Canyon is matched by the vista to the north and northeast. It shows present-day topography which virtually exactly matches that of late Guadalupian time. Back-reef sediments mark the upland surface of the Northwest Shelf; Capitan reef sediments, characterized by their vertical, strike-parallel jointing, delineate the upper margin or rim of the Delaware Basin; steeply dipping slope deposits compose the flanks of the escarpment; and flat-lying basinal deposits of the upper Bell Canyon Fm. compose the floor of the present basin to the east-northeast (the

Delaware Basin). The exhumation of this Permian topography is entirely a consequence of the thick, (Castile) evaporite filling of the remnant Delaware Basin in Ochoan time, and its subsequent dissolution during the Tertiary.

To the east and southeast, a series of cuesta scarps of the various limestone members of the Delaware Mountain Group are visible. These culminate in the major escarpment of the Delaware Mountains, capped by the Getaway Ls.

On our descent down the dip slope of the Lamar, on which we are now standing, we will see a progressive change in the character of the rock. We will see greater amounts of finer-grained, darker-colored, less encrusted, and less obviously detrital sediment as we move downslope. Silicification will increase we approach the base of the slope.

We will eat lunch in the parking lot at the mouth of McKittrick Canyon and will then retrace our route back to U.S. Highway 62 and 180.

4.3 8.6 Junction with U.S. Highway 62 and 180. Turn right for El Paso or left for Carlsbad at mileage 113.8 on the El Paso-Carlsbad roadlog.

WALNUT CANYON ROADLOG

Mileage	Cum.
	Mileage
0.0	0.0 Junction with U.S. Highway 62-180 and New Mexico Highway 7
	in White's City, New Mexico at mileage 141.3 (reverse mileage
	18.1) on El Paso-Carlsbad roadlog. Take NM Highway 7

toward Carlsbad Caverns.

0.5

0.5 STOP I-2. Carlsbad Caverns National Park entrance sign. along road or in dirt lot on south side of road. This locality, at the entrance to Walnut Canyon, provides excellent exposures of the reef and near-back-reef facies of the upper Capitan Limestone and Tansill and Yates Formations. this area, the fore-reef facies and part of the reef have been buried beneath the thick Ochoan (and some thin Tertiary-Quaternary) filling of the Delaware Basin. Castile Fm., although completely or partially removed in areas to the southwest, has been preserved in this area because of the northeastward tilting of this region. Thus, only a small exposure of the reef-crest and its transition to the near-back-reef are exposed. Because an outstanding guidebook is available for the entire Walnut Canyon route (Pray and Esteban, 1977), only rather brief descriptions will be given for these localities (this site corresponds to Locality guide I, stops I and II of Pray and Esteban, 1977).

We will examine the rock spur between Walnut Canyon, and Bat Cave Canyon (fig. 23). We will pay particular attention to several fresh outcrops in Bat Cave Canyon for these expose the reef fabric in an unweathered and more readily visible state. Please note, however, that much of this exposure is within the National Park boundaries and thus collecting permits are required for sampling.

Babcock (1974) noted a distinct zonation of the reef. He recognized an Archaeolithoporella-nodular boundstone, a phylloid algal boundstone, and a Tubiphytes-sponge boundstone/packstone (fig. 23) as well as some transitional zones. In all these facies there are four salient elements: 1) an in situ framework of oriented organisms; 2) encrusting and binding organisms which added stability to the framework; 3) internal sediment of skeletal fragments, pellets, or other grains which lodged in open pores in the framework; and 4) submarine cement crusts filling virtually all remnant porosity.

The dominant framework organism in this complex is the calcareous sponge (fig. 24). Many different types existed here, including members of the genera Guadalupia, Amblysiphonella, Cystaulete, and Cystothalamia. Other organisms such as Tubiphytes (of probematic affinities), stromatolitic blue-green algae, phylloid algae, and bryozoans also form significant framework elements, at least locally.

Encrustation and stabilization of this skeletal framework was accomplished by Archaeolithoporella (a possible alga), Tubiphytes (found as both framework and encrusting forms),

Solenopora (a probable red alga), and other, less common organisms (fig. 25). Such encrustation, seen also in modern reefs, probably contributed greatly to the strengthening of the reef framework.

Internal sediment, although not a significant factor in the lithification of the reef, did play an imporant role in infilling and occluding the primary reef porosity. Internal sediments generally are found as laminated, geopetal fabrics, sometimes with interlayered submarine cements (fig. 26). The internal sediments contain a specialized fauna including foraminifers, ostracods, echinoids, pelecypods and other organisms which presumably lived within interstices in the reef framework.

Submarine cements form a very important component of the Permian reef. Coarse fans of radial-fibrous crystals fill much of the primary porosity in the reef and make up more than half the total volume of rock in many locations. cement fans, probably originally aragonite, are commonly interlayered with Archaeolithoporella or other encrusting organisms (fig. 25). The submarine cements are restricted to a relatively narrow zone which extends from several hundred feet down the fore-reef slope to perhaps one half mile shelfward of the reef crest. Very similar relations have been seen in modern reefs such as in Belize, Florida, the Bahamas, and Jamaica. In these areas, as in the Permian, submarine cementation, largely in the form of aragonitic and high-Mg calcite fans and crusts, are restricted to the reef face, upper fore-reef, and near-backreef zones.

After seeing these major fabric elements where they are unweathered and well exposed in Bat Cave Canyon we will cross the spur to Walnut Canyon. Examine the sediments on this traverse and try to recognize the same fabrics where they are more intensely weathered. Also examine the fracture fillings along Walnut Canyon.

We will now walk up Walnut Canyon examining the transition from reef to near-back-reef areas, eventually crossing from the south to the north side of Walnut Canyon.

On this traverse, be sure to note changes in bedding character as well as sediment composition. Also note the remarkably rapidity of the lateral lithologic changes. The most obvious change is from a boundstone fabric to one of grainstones and packstones containing ooids and skeletal grains. Cephalopods, foraminifers, pelecypods, gastropods, and most importantly, dasycladacean green algae, particularly Mizzia and Macroporella, rapidly supplant sponges and bryozoans as the major skeletal components. Bedding in these well-sorted grainstones is massive and indistinct (fig. 27) but still is far better defined than in the reef facies. Grain size ranges from coarse silt to coarse sand; sorthing moderately good to excellent. Coated grains and ooids form a significant percentage of the total sediment (figs. 27, 28 and 29).

Sediments further up-canyon (farther back-reef) show

increasing amounts of dolomite, fenestral fabrics, coated (pisolitic) grains, algal(?) lamination, carbonate breccias, "tepee structures", and thin, clastic terrigenous sandstone-siltstone units.

The abrupt facies transition from reef to back-reef is similar to that seen in many modern settings. Florida Keys on the western side of Andros Island in the Bahamas, for examples, the change from reefal boundstones to skeletal, back-reef grainstones takes place over distances of just a few tens to hundreds of feet. near-back-reef areas in Florida and the Bahamas generally consists of complex, small-scale mircofacies of green-algal (Halimeda) grainstones, grapestones (coated and coalesced grains), ooids, skeletal fragments, and other lithologies. In areas such as the Joulter's Cay region of the Bahamas, one can see these grainstone types closely intermingled as a series of submarine sand waves, islands, tidal channels, and beaches. Associated with these grainstones are mudstonewackestone microfacies in sheltered areas of tidal flats and The extremely varied lithologies in the back-barrier coves. Permian near-back-reef setting presumably reflects similarly complex microfacies patterns. This is also evident in the intimate mixture of diagenetic patterns in the Permian near-Submarine as well as vadose phreatic back-reef sediments. nonmarine cements are all present in local zones in this area probably as a result of local (island facies) input of nonmarine fluids.

Return to vehicle(s) and proceed up-canyon.

0.2	0.7	Near-back-reef Mizzia-dominated grainstones on right which
		we have examined in our previous traverse.

- 0.2 0.9 Cross Walnut Canyon.
- 0.2 l.1 Pisolite-bearing dolomites and faulted upper Yates sandstones in roadcut.
- 0.1 1.2 Upper Yates and lower Tansill sediments in canyon walls.

 This locality exposes mainly pisolitic dolomites and sandstones and is an excellent area for examining tepee structures.
- 1.0 2.2 Exhibit area on right.
- 0.3 2.5 Road cuts on right expose Yates Fm. dolomite and sandstone.
- 1.0 3.5 Parking area on left with exposures of pisolitic dolomites, tepee structures, and sandstones of Yates Fm.
- 0.5 4.0 Exhibit area (showing botanical diversity of the area) on the left. Canyon wall on left has exposures of Yates Fm., including the large, sand-filled cavern described by Dunham (1972, Stop II-5).
- 1.25 5.25 Sharp bend in road; primitive road on right can be used as parking area to view exposures of Yates Fm. just ahead.
- 0.05

 5.3 STOP III-7. Outstanding exposures of pisolitic dolomites of the upper Yates Fm. (see Pray and Esteban, 1977; Dunham, 1972). This locality illustrates numerous cycles of pisolitic sediments (termed "Walnutite cycles" by Pray and Esteban, 1977). Tepee structures (fig. 30) can be seen both in this outcrop and in the distant canyon wall to the north. The main small-scale features to be seen at this outcrop are

the abundant pisoliths which range from B-B-size to golf They have concentric laminations of thin carball-size. bonate coatings around nuclei of fractured pisoliths (fig, 31) or, rarely, marine fossils. The pisoliths, which have been completely replaced by aphanocrystalline dolomite, occur in cyclic beds, commonly with reverse grading (fig. 31). (but not most) cases, pisoliths have intergrown or interlocking There is considerable evidence to show that these pisoliths had original aragonite composition, now replaced by They are associated with sheet cracks (broad bands dolomite. of displacive, fibrous carbonate, presumably also originally aragonite but now dolomite or calcite; fig. 32). These displacive crusts are related to the origin of the tepee structures of this area for the tepees are expansion polygons formed by a volume increase of the associated sediments. This was most likely accomplished by in situ, near surface, displacive growth of aragonite and (or) evaporite minerals.

The origin of pisoliths and tepee structures in these sediments has been the subject of numerous studies and considerable controversy. Extensive discussions of these problems have been presented recently by Dunham (1972), Esteban and Pray (1977), and Pray and Esteban (1977) and so will be only briefly outlined here.

Basically there are two hypotheses: 1) the "all wet" model which proposes that the pisoliths were formed by organic (algal) or inorganic coating of grains in a shallow-water shelf setting with each grain acting as a free, clastic particle; and 2) the "caliche" hypothesis which suggests that pisoliths formed in situ as part of cyclic, reverse graded, caliche profiles which formed by alteration of carbonate sediment brought into the area by storms or other episodic processes. Advocates of either model can point to modern analogs (mainly from the Persian Gulf and Red Sea areas) with scattered, small-scale accumulations of aragonitic pisoliths in marginal marine, hypersaline settings. Yet nowhere have we discovered an analog which comes close to modeling the breadth and abundance of pisoliths that one sees in the Permian.

The differences of interpretation of these deposits, although important from the point of view of fully understanding the sediments, are not of great significance to the explorationist. There can be little argument that this facies must have stood as a paleotopographic high-point in Guadalupian time. The persistence of this facies in space and time (it is present in Seven Rivers, Yates, and Tansill rocks), its consistent geometry (an elongate facies, parallel to the reef trend), and its equally consistent juxta-position between open marine (grainstones with a high faunal diversity) and restricted (hypersaline mudstones and evaporites) environments indicate that the pisolite facies must have been a major hydrographic barrier. Nowhere in the world today are evaporitic mudstones and open marine, faunally diverse sediments in close proximity without

having an intervening barrier. It seems likely that to act as such a barrier, the region would have had to be subaerially exposed (except for tidal channels) and this would favor the caliche interpretation. It is possible, however, that broad, low relief, tidal flats could also act as partial hydrographic barriers. Finally, it is possible that a combination of processes could have acted. A number of different pisoliths can be seen in the Permian strata. These range from the small, irregularly coated grains seen at Stops III-2 and I-2 (and which almost certainly formed in a marine setting) to the larger, smoother, and more extensively encrusted grains present at this locality. Thus, a number of different origins can be envisioned for the different pisolith types.

The tepee structures and sheet cracks found in association with pisolitic sediments can also be interpreted as either marine or nonmarine. Displacive aragonite crusts and tepees have been noted in submarine cemented areas within the Persian Gulf itself as well as in coastal caliches and sabkha surfaces of the surrounding, subaerial-exposed coastlines.

- 0.3 5.6 Exhibit area on left; the thin sandstone-siltstone unit which marks the Tansill-Yates contact is exposed on the left.

 The road ascends into Tansill Fm. dolomites.
- 1.9 7.5 Cave entrance parking lot. Stop I-3. We will do the complete walking tour of Carlsbad Caverns - the Roswell Geological Society 1964 field trip guidebook provides a trail log of the caverns (Sanchez, 1964). The cave is cut primarily in the Capitan Limestone but the entrance and all of the upper level are in the back-reef dolomites of the Tansill and Yates Fms. The lowest parts of the cave are cut in steeply-dipping fore-reef talus of the Capitan, down to a level approximately 850 ft below the entrance. This level is presumably related to the regional groundwater discharge surface in the Pecos valley to the northeast. The history of development of the cave is extensively described by Jagnow (1979). The location and orientation of the Capitan reef and its early fracture system have controlled, to a large degree, the geometry of the local cave systems. Pliocene and Pleistocene uplift allowed percolation of phreatic groundwater through the joint system and eventual excavation of the caverns. The subsequent vadose history of the cave led to introduction (and later partial removal) of clay, silt, sand, and gypsum fills as well as calcitic speleothems. The cave is largely inactive today except for some areas in the lowest cave levels.

The outcrops at the southwest end of the parking lot provide exposures of tepee structures, sheet cracks, and pisolitic sediments of the Tansill Fm. We will probably not have time to visit these outcrops, but similar features are seen at Stop III-7.

Return down Walnut Canyon.

7.5 Junction with U.S. Highway 62-180 in White's City. End of supplementary roadlog. Turn left for El Paso or right for Carlsbad and rejoin main roadlog at mileage 141.2 (reverse mileage 18.1).

DARK CANYON - SITTING BULL FALLS-ROCKY ARROYO ROADLOG

	Cum. M:	ileage	
Mileage	Clock-	Counter-	
	wise	clockwise	
	loop	100p	
0.0	0.0	80.1	Head west on paved road to Dark Canyon at mileage 151.3 (reverse mileage 8.1) on El Paso-Carlsbad roadlog.
0.4	0.4	79.7	The Hanson and Yates, King No. 1 well on the right is the entire Dark Canyon oil field. Numerous offset wells were dry holes.
0.8	1.2	78.9	Rustler Formation dolomite, sandstone, and gypsum make up the low Frontier Hills ahead.
1.5	2.7	77•4	Rustler Formation outcrops in hills on both sides of road.
1.2	3.9	76•2	Mouth of Dark Canyon. We have left the Delaware Basin and are now on the Northwest Shelf in the northeastern part of the Guadalupe Mountains. Bedded Capitan Limestone outcrops are present on both sides of the canyon.
0.15	4.05	76.05	Road intersection; take sharp right.
0.20	4.25	75.85	STOP III-1. We will examine the reef to near-

We will examine the reef to near back-reef transition in the uppermost part of the Capitan and lower Tansill Formations. These sediments have been mapped as reefal Capitan limestones by Motts (1962) and as backreef limestones of the Tansill Formation by Kelley (1971). Tyrrell (1969) and Toomey and Cys (1977) presented extensive evidence to show that this locality provides an exposure of the transition beds between the Capitan and Tansill carbonates. Clearly, the major part of the reef front is buried beneath basinal sediments in this area but shelfward facies are well exposed. Thus, we can examine the near-back-reef skeletal grainstones containing ooids and algally coated grains, dasycladacean green algae (particularly Mizzia and Macroporella), crinoids, belerophontid gastropods, fusulinid Foraminifera, Tubiphytes-Archaeolithoporella colonies, and sponges (fig. 33). These rocks are similar in many ways to the sediments seen at the up-canyon end of the first stop in Walnut Canyon (Stop I-2) which would indicate that we are probably at, or only a short distance shelfward, of the main reef facies. Note the consistent change in bedding character as we walk in a shelfward direction.

The abruptness of the facies transition seen here and in Walnut Canyon in the near-back reef setting is very similar to modern facies transitions in areas such as Florida or the Bahamas. There, as here, reefal debris tends to move primarily into fore-reef talus; back-reef sands

are dominated by grains of green algal origin (Halimeda in modern sediments; Mizzia in the Permian) ooids or coated grains, and other particles of shelf origin. Submarine shoals, channels, islands, and patch reefs have local distribtuion and complex, virtually unpredictable, patterns. Such modern setting appear to be excellent analogs for these older environments.

We will not be able to stay within the Tansill Formation in our entire traverse through the Capitan-equivalent shelf strata because erosion has removed much of the far-back-reef Tansill. We will see facies equivalents in older (but still Capitan-equivalent) strata of the Yates and Seven Rivers Formations. Evidence from remaining outcrops and subsurface data indicate that similar shelfward facies transitions occurred in all three back-reef units (fig. 34). The general sequence of facies from the shelfedge landward tends to be reef; massive, skeletal (mainly green algal) grainstones; bedded and cross-bedded oolitic grainstones; dolomitized, fenestral grainstones and pisolitic mudstones; coarse, pisolitic, dolomitized grainstones with tepee structures; stromatolitic or pelloidal dolomitized mudstones; pure, calcisphere-bearing, dolomitic mudstones; with evaporite crystal casts and (or) collapse breccias; nodular gypsum or anhydrite units; and finally red siltstones.

Throughout this facies suite, thin but laterally persistent, fine-grained sandstone and siltstone beds are found. These sandstone-siltstone units, especially common in the Yates Formation, generally pinch out before reaching the reef facies; in several areas these sandstones approach within a few hundred yard of the reef. In the Yates (and the older Queen) strata, these terrigenous beds make up at least 1/3 of the formation thickness, are excellent regional correlation markers, and can act as reservoir units.

Because there was extensive (2-3 mile) basinward progradation of facies during Capitan deposition, the facies previously described as being lateral equivalents can also be seen to some degree in vertical sequence, a fact which has significant influence on the early diagenetic history of much of the sediment package. Figure 34 shows the progressive basinward shift of the evaporite-carbonate transition zones in successively younger, Capitan-equivalent back-reef units. Thus, the progradation of shallow-water, subaerial, or restricted environments over more normal marine sections may have allowed very early input of freshwater or hypersaline brines into unconsolidated and geochemically unstable sediments. Indeed, sediments from the shelfward edge of this outcrop to the platform interior show extensive signs of vadose as well as phreatic leaching and cementation combined with virtually complete, very finely crystalline dolomite replacement. approximate thickness of back reef units of the Artesia Group in this region are (in ascending order): Grayburg Fm., 400-500 ft; Queen Fm., 200-400 ft; Seven Rivers Fm., 450-600 ft; Yates Fm., 300-400 ft; and Tansill Fm., 100-325 ft (all data from Kelley, 1971). The transitions from carbonate to evaporite facies generally occur within 5 to 15 miles shelfward of the bank margin or reef throughout the history of the Artesia Group (fig. 34). Turn around and return to main road.

0.20 4.45 75.65 0.55 5.0 75.1 Intersection with main Dark Canyon road; turn right.

STOP III-2 at junction with small dirt road on left. Park and walk down road to cliff outcrop on south side of canyon. This locality (equivalent to part of Dunham's (1972) Stop I-1) exposes dolomites and calcitic dolomites of the near-back-reef Tansill Formation. A wide variety of sediment types are present here, typical of the complex, small-scale microfacies patterns in this paleogeographic zone. We can see pisolitic mudstones, birdseye dolomites, cross-bedded green-algal grainstones, and other lithologies intimately intermingled at this Fusulinid Foraminifera, belerophontid gastropods, pelecypods, green algae, and probable blue-green algae are particularly abundant in these sediments.

These beds apparently represent a series of islands or banks (cross-bedded grainstones; fig. 35), subaerial and intertidal flats (birdseye fabrics; fig. 36), restricted or sheltered mud accumulation sites (pisolitic mudstones), and intervening tidal channels (fossiliferous packstones and grainstones). These facies patterns are quite similar to ones found in the Bahamas in regions such as Joulter's Cay, or in Trucial Coast barrier-lagoon complexes of the Persian Gulf.

Diagenetically, these Permian microfacies are equally complex. Within this outcrop one can find microscopic examples of submarine cement as well as vadose and phreatic freshwater cements

(figs. 37 to 39). Porosities in this zone are variable but include some of the highest values found anywhere in the Guadalupian facies spectrum.

0.3 5.3 74.8

STOP III-3. Cross stream wash and examine two outcrops on north side of valley. The Tansill-Yates contact is exposed in the western part of the outcrop, marked by a thin sandstone-siltstone We can see algally laminated dolomites, fusulinid grainstones, pisolitic beds, probable Permian breccia pipes, as well as infiltrated, red, lateritic soils in solution enlarged fractures and voids. The pisolitic microfacies was postulated by Dunham (1972) to be one of the highest paleotopographic zones in the Capitan complex. Pisolitic "caliche" zones and solution features would thus be a probable result of even minor relative sea level drops during deposition. The red void-fillings consist of kaolinite, hematite, quartz, goethite, illite, and amorphous iron oxide, a reasonable composition for a solution residue in this area. extensive discussion of this facies will be given at Walnut Canyon (STOP III-7).

The thin sandstone-siltstone bed at the Yates-Tansill contact is typical of such terrigenous units in this area. They are generally 1-8 ft thick, well-sorted, very fine sandstone or coarse siltstone, and have subarkosic or arkosic composition. Dunham (1972) showed that a progressive decrease in feldspar content of these units from shelf interior to the Capitan shelf margin is directly matched by a progressive increase in kaolinite content. Thus, these clastic terrigenous beds were probably uniformly arkosic but the near-reef sections underwent more intense post-depositional alteration.

In spite of their relative thinness, these sandstone-siltstone beds have great lateral extent, particularly parallel to the reef trend, and serve as excellent stratigraphic marker beds (DeFord and Riggs, 1941). Some low-angle channel structures and ripples can be seen, locally, in these units, but generally these sediments are horizontally laminated or structureless. They presumably represent largely wind-transported material; the horizontal lamination may have resulted from dune migration over an equilibrium deflation surface (sabkha) or from depostion in extremely shallow, lagoonal waters.

Optional Stop. Pisolitic dolomites with "tepee" structures well exposed on south side of

0.4

5.7 74.4

			valley. Note laminated sandstone-siltstone unit interrupting and truncating some "tepees". The sandstone-siltstone is the uppermost part of the Yates Fm.; overlying dolomites are in the Tansill Fm.
1.1	6.8	73.3	Yates outcrop on left contains pisolitic dolomite and sandstone.
0.3	7•1	73.0	Yates Fm.(?) pisolitic dolomite with evaporite crystal casts on right.
0.6	7.7	72.4	Yates Fm.(?) outcrop of thick-bedded, dolomitic mudstones with sparse evaporite crystal casts.
0.5	8.2	71.9	Dolomitic mudstones, peloidal grainstones, and pisolitic beds of Yates Fm.(?) on right.
0.4	8.6	71.5	Yates Fm.(?) dolomitized peloidal grainstones on left.
1.2	9.8	70.3	Road junction; continue straight ahead to Sitting Bull Falls.
0.2	10.0	70.1	STOP III-4. Walk down stream to outcrops on north side of valley. Exposure of thin-bedded, aphanocrystalline to very finely crystalline dolomitic mudstone with extensive evaporite crystal casts, pyrite nodules, and contorted, probably stromatolitic zones. These penecontemporaneously dolomitized mudstones contain pellets, some peloids, scarce encrusting foraminifers, and numerous calcispheres. These sediments, with their sparse assemblage of salinity tolerant organisms and evaporite minerals, apparently represent a shallow, hypersaline lagoon similar to those found today in many areas of the Persian Gulf.
0.5	10.5	69.6	Road junction; bear right.
2.1	12.6	67.5	Start gravel road; continue straight ahead.
0.9	13.5	66.6	W.G. Smith ranch road on right; continue straight ahead. Road is on Seven Rivers Fm.
0.3	13.8	66.3	Road intersection on right; continue straight ahead on main road.
0.5	14.3	65 . 8	STOP III-5. Interbedded thin-bedded, dolomitized mudstones and red, far-back-reef siltstones of the Seven Rivers Fm. on left. The Seven Rivers is the oldest Capitan-equivalent unit in the Artesia Group. These outcrops have been mapped as basal Yates Fm. by Motts (1962) but have been considered to belong to the Seven Rivers by most other workers. Note the uniformity of the aphanocrystalline to very-finely-crystalline replacement dolomite. The environment presumably represents a shallow lagoonal or lower sabkha environment.
0.3	14.6	65.5	Medium-scale contortions visible in Seven Rivers Fm. These were probably caused by near-surface dissolution of interbedded gypsum and anhydrive, although the Seven Rivers consists mainly of dolomites and siltstones in this area.

0.4	15.0	65.1	Road intersection on left; continue straight ahead.
0.9	15.9	64.2	Road intersection on left; bear right on main road.
1.2	17.1	63.0	Varicolored sediments on right are interbedded massive gypsum, dolomite, and red beds of Seven Rivers Fm.
0.2	17.3	62.8 61.1	Ranch road on left; continue straight ahead. STOP III-6. Borrow pit in gypsum of Seven Rivers Formation. Surface weathering makes viewing of gypsum outcrops a frustrating exer- cise; most are altered to a very great degree with a solution residue covering most fabric elements. This borrow pit exposes the freshest samples easily accessible to a field trip group. Gray-white gypsum with a nodular, enterolithic texture can be seen in isolated blocks scattered around the pit (fig. 40). This "chicken-wire" fabric may be related to a sabkha origin of the evaporite, but may also be a consequence of dehydration-rehydration reactions during burial and uplift. (although the unit is gypsum on outcrop, it is generally anhydrite in the subsurface). The "chicken-wire" texture, with thin clay films between gypsum nodules, also been interpreted as the product of displacive growth of subaqueous gypsum in silty-clayey sediments in a shallow-water lagoon (Sarg, in Pray and Esteban, 1977). On the left one can see a reentrant of the Seven Rivers Embayment, an extensive planar feature developed by dissolution of the
0.3 1.2	19.3 20.5	60.8 59.6	evaporites of the Seven Rivers Fm. Road junction to right; continue straight ahead. Road on left; continue straight ahead on main
0.8	21.3	58.8	Ranch house on right. Well drilled to left (Humble's Bandanna Point Unit No. 1 gas well) was completed as a gas producer from Morrowan (Pennsylvanian) sandstone. It en- countered the following units: San Andres Fm. (top at 750 ft depth); Bone Spring Ls. (2,815 ft); Wolfcamp limestone (7,150 ft), Pennsylvanian (7,550 ft); Mississippian (Chester) (10,234 ft). Woodford Shale (10,868 ft); Devonian (10,932 ft); Montoya Group (11,622 ft); Simpson Group (11,995 ft); and Ellenburger Group (12,050 ft) (data from Hobbs, Roswell and West Texas Geological Societies, 1962 Field Trip Committee, 1962, p. 18).
1.2	22.5	57.6	Azotea Mesa on right is composed of Seven Rivers Fm. gypsum capped by a prominent dolomitic ledge. The ridge ahead in the distance consists of Queen and Grayburg beds downwarped

			along the Huapache Monocline. We are now entering the main part of the Seven Rivers Embayment with the road on thin alluvium over Queen Fm.
1.0	23.5	56.6	Intersection with New Mexico Highway 137 (a paved road from El Paso Gap to Carlsbad). Turn left toward El Paso Gap. Guadalupe Mountains ahead in distance; road traverses the Seven Rivers Embayment atop the Queen Fm.
2.6	26.1	54.0	Junction with road to Sitting Bull Falls on right; turn right.
3.2	29.3	50.8	Queen Fm.(?) redbeds, dolomites, and evaporites on right.
1.0	30.3	49.8	Road crosses approximate Queen-Grayburg contact and passes onto Grayburg Fm.
0.2	30.5	49.6	Entering Lincoln National Forest.
0.2	30.7	49.4	Road crosses first wash and traverses Huapache monocline ahead.
0.6	31.3	48.4	
0.6	31.6	48.4 48.5	Road crosses onto San Andres Limestone. Lenticular, partly silicified, skeletal grainstones of the San Andres, probably filling channels, on right at base of slope near stream crossing. Brown, thin-bedded Cherry Canyon sandstone beds can be seen in cliffs on right. This tongue of the generally basinal Cherry
0.7	32.3	47•8	Canyon Fm. extends many miles into the shelf environment in this area. The Cherry Canyon sandstone tongue is 164 ft thick near the mouth of Sitting Bull Canyon. A massive upper San Andres bioherm, overlain by Grayburg Fm. is visible ahead on right. Note lenticular bedding to the left of the bioherm.
0.6	329	47.2	Junction of Sitting Bull Canyon and Last Chance Canyon (along which have been travelling). Road turns into Sitting Bull Canyon. Cliff on north side of Last Chance Canyon (on right) has exposures of lower San Andres Ls. (at very base) overlain by the thick sandstone tongue of the Cherry Canyon Fm.; the upper San Andres, bioherm-bearing limestone and Grayburg Fm. sandstones and carbonates form the top of the section. A major angular discordance is visible between the Cherry Canyon sandstone tongue and the upper San Andres Ls. A more subtle angular discordance is also present between the upper San Andres and the Grayburg Fm. Excellent exposures of the lower San Andres, here extensively dolomitized, can be examined by walking up Last Chance Canyon for a few hundred feet.
0.2	33.1	47.0	The Cherry Canyon-San Andres unconformity is well
0.3	33.4	46.7	exposed on both sides of the road. Cherry Canyon sandstone outcrops with well

0.5	33.9	46.2	developed cross-bedding are visible on right. Parking area for Sitting Bull Falls. Lunch stop at
0.5	33.9	46.2	Parking area for Sitting Bull Falls. Lunch stop at picnic benches. The entire cliff on the northwest side of the picnic area is formed of modern travertine which can be examined in numerous fallen blocks. A short walk to the active waterfall area shows travertine in the process of formation. Calcium bicarbonate and carbon dioxide saturated waters emerge from springs in the Grayburg and San Andres units a short distance (about 1 mile) upstream from the falls. Warming of the waters, combined with release of CO ₂ from waters plunging over the falls, induces precipitation of calcium carbonate. The withdrawal of CO ₂ from the water by the numerous algae and higher plants which abound at the falls also contributes to the calcite precipitation. These plants are then incorporated within the calcite, later to rot away. This accounts for the unusual fabric seen in the travertine blocks. If you climb up or under the waterfalls, please take great care as the rocks here are very slippery. The other walls of the canyon in this area expose the Cherry Canyon sandstone tongue in their lower part, the upper San Andres Limestone in the middle part, and Grayburg Fm. in the upper part. Note the biohermal or bank structures in the San Andres; they were probably deposited as fusulinid grainstone banks rather than as true reefs. Return down-canyon to the El Paso Gap-Carlsbad
7.7	41.6	38.5	Junction with New Mexico Highway 137 (El Paso Gap-Carlsbad road). Note West Hess Hills at 2:00 to 3:00 o'clock and Azotea Mesa at 10:00 to 11:00 o'clockboth are composed of gypsum, red siltstones, and dolomites of the Seven Rivers Fm.
2.6	44.2	35.9	Turn left toward Carlsbad. Unpaved Dark Canyon road on right; continue
3.2	47.4	32.7	straight ahead. Road is on Queen Fm. Road now crossing the approximate contact be- tween the Queen and Seven Rivers Fms. The road is located almost directly on this contact for the next few miles, with Queen sediments on the left and Seven Rivers on the right.
1.2	48.6	31.5	Hills ahead and to the right are composed of Seven Rivers evaporites and red siltstones. The strongly developed vertical gullying is characteristic of the evaporite facies of the Guadalupian far-back-reef units and contrasts sharply with the horizontal bedding which dominates in areas of carbonate facies within

			these same units (fig. 41). Most of these hills are capped by the resistant "Azotea Tongue" (usage of Sarg, 1976), a dolomite unit in the Seven Rivers Fm.
4 • 4	53.0	27.1	Road passes from Seven Rivers Embayment into Rocky Arroyo.
0.6	53.6	26.5	Road is at the level of the contact of the Queen Fm. (Shattuck Sandstone unit of Sarg, 1976) and Seven Rivers Fm. We are nearly 1 mile shelfward (northwest) of the carbonate-evaporite transi- tion of the Seven Rivers Fm. (Sarg, 1976). This transition is remarkably abrupt (within about 500 ft) and remains in approximately the same location for nearly 200 ft of section (Bates, 1942; Pray and Esteban, 1977). This Seven Rivers facies transition has been shown by Sarg (1976) to be related to a depositional ridge in the underlying Shattuck Sandstone of the Queen Fm. The gullied hillside on the southeast side of the road has good exposures of the Seven Rivers evaporite facies (see Pray and Esteban, 1977, Stop VII). The section is dominated by bedded, nodular, mosaic gypsum with thin, pelletal or grapestone-bearing dolomites and red, gypsum- cemented, sandy siltstones. Note invigorating, heady aroma of hydrocarbons in the air; it emanates from the Indian Basin gas field about 0.3 miles ahead.
0.1	53.7	26.4	Low road cuts on right are Queen Fm. (Shattuck Sandstone). Conical hill visible to the north of the road is "The Tepee" and is capped by the resistant "Azotea Tongue" a massive dolomite of the Seven Rivers Fm. Underlying Seven Rivers evaporites, the Shattuck Sandstone and dolomites of the Queen Fm. are also exposed.
2.3	56.0	24.1	Intersection with road on left leading to Marathon Oil Co. Indian Basin gas field and plant. Pro- duction here is from Upper Pennsylvanian and Lower Permian reservoirs. Continue on main road.
0.1	56.1	24.0	Optional stop. Excellent view of the carbonate- evaporite facies transition in the Seven Rivers Fm. (see description of Stop VI in Pray and Esteban, 1977) on north wall of Rocky Arroyo. This extremely rapid transition can be seen in a narrow, nearly vertical, band in the upper half to two-thirds of the far wall of the valley. The transition is visible because of the radically different weathering patterns of the evaporite (vertical gullying) and carbonate (horizontal bedding) facies. The transition was was first described by Bates (1942) and has been recently examined by Sarg (1976).

0.7	56.8	23.3	Also exposed in the lower part of the cliff is the upper dolomite and the overlying Shattuck Sandstone unit of the Queen Fm. The Shattuck, generally about 90 ft thick in this region, thickens to about 140 ft beneath the carbonate-evaporite transition and may have been partly reponsible for the generation of restricted, evaporitic conditions shelfward of this point during Seven Rivers deposition (Sarg, in Pray and Esteban, 1977). Optional stop. Excellent exposures of Shattuck
			Sandstone (Queen Fm.) on the right (see Dunham, 1972, Stop I-5; Pray and Esteban, 1977, southwest end of Stop VIII). The sandstone has broad, channel-like structures with northwest-southeast axes.
0.1	56.9	23.2	Continuation of previous outcrop. These medium- to thin-bedded dolomites, about 12 mi shelfward of the Capitan scarp, are generally placed in the Seven Rivers Fm.; Sarg (1976), however, included them in the Queen Fm. Some interesting collapse breccias occur in these strata, which were in- cluded by Dunham (1972) in his "calcisphere dolomite wackestone" facies. The largest breccia occurs as an isolated pocket in a thick, light-tan dolomite bed. The breccia has large, angular clasts of dolomite with corroded and altered borders (fig 42). The clasts are held in a partial matrix of microcrystalline calcite, internal sediment (green illite-kaolinite clay and quartz silt), and coarsely crystalline, blocky, late, sparry calcite cement. Consider- able remnant porosity also is present in the breccia zones. Pray and Esteban (1977) argued for a modern karstic origin for these features; Dunham (1972) postulated a Permian origin, presumably related to weathering and dissolution of evaporite minerals. Note the abundant evidence of associ- ated evaporite (mainly gypsum) crystal casts in these dolomites.
0.3	57.2	22.9	Cyclic deposits of dolomite and red, silty shales. Generally grouped in the Seven Rivers Fm., these sediments were included in the uppermost part of the Shattuck Sandstone (Queen Fm.) by Sarg (1976) and Esteban and Pray (1977; see description for Stop VIII). These strata have been interpreted as "dolocalcrete cycles" with evidence of repeated deposition, exposure, weathering, and calichification (Pray and Esteban, 1977). Note also the abundant crystal— and nodule—casts of former gypsum (some voids now partly filled with calcite; see fig. 43).
0.8	58.0	22.1	A thick section of Seven Rivers dolomitic pack-

			stones and mudstones of probable lagoonal origin exposed on left. Note absence of evaporites and
			red beds.
0.3	58.3	21.8	Strata exposed behind Shafer Ranch are fossil- ferous, dolomitic, pelletal packstones.
0.2	58.5	21.6	Dry wash across Rocky Arroyo with massive traver- tine deposits exposed on left.
0.5	59.0	21.1	Small cemetery on right. Cliffs to southeast expose Seven Rivers Fm. fossiliferous, dolomitic, pelletal packstones containing ostracodes, calcispheres, and some small foraminifers. Queen Fm. (Shattuck Sandstone) is exposed at the cliff base.
0.3	59.3	20.8	On the south side of the arroyo are cliffs exposing thin-bedded dolomite of the Seven Rivers Fm. dominated by pelletal wackestone and mudstone. Stromatolitic(?) units have been described from this locality (Sarg, 1976).
0.5	59.8	20.3	Other, similar outcrops are along road on left. Road cuts to left are Seven Rivers dolomite (Dunham's (1972) Stop I-6). This section, 11.7 miles shelfward of the Capitan escarpment, consists of thin-bedded, stromatolitic(?), dolomitic wackestone with pellets, ostracodes, and calcispheres. In and along the stream valley, travertine is abundant along with travertine-cemented gravels. The dolomite in these sediments, as in most of the back-reef areas, is very finely crystal- line to aphanocrystalline and appears to be of very early diagenetic origin. Formation of early dolomite is probably related to restricted circulation in these back-reef lagoonal areas, precipitation of CaSO ₄ minerals, and consequent increase in Mg/Ca ratios of lagoonal and interstitial fluids. Contact of Mg-rich surface and interstitial waters with unstable aragonitic muds has led to partial dolomitization of modern carbonate muds in the Persian Gulf and this most likely took place in the Permian back-reef areas as well. The exact mechanisms of this dolomitization (reflux brine movement, evaporative pumping, and other models) are debated even in modern setting and are even more disputed for the Permian examples.
0.9	60.7	19•4	Leaving Rocky Arroyo. Outcrops to the south are upper Seven Rivers Fm. Yates Fm. is present on the crest and eastern side of the hills to the south.
4.4	65.1	15.0	Junction with U.S. Highway 285; turn right toward Carlsbad. The road here is on Quaternary alluvium overlying Yates Fm. The Seven Rivers Hills, to the northwest, are the type section of the Seven Rivers Fm. (Meinzer and others, 1926).

0.8	65.9	14.2	Bridge crossing over Rocky Arroyo.
0.9	66.8	13.3	Interbedded dolomites and red-brown sandstone
			of the Yates Fm. on both left and right.
0.6	67.5	12.7	Yates Fm. exposed in road cut.
0.3	67.8	12.4	Yates Fm. exposed in road cut.
1.5	69.2	10.9	Intersection of US Highway 285 with US 285
			(Truck Route) on right. Continue left on main US Highway 285.
0.3	69.5	10.6	Basal Tansill Fm. is exposed in low cuts on both
			sides of road. Thin-bedded to laminated dolo-
			mitic mudstones with evaporite (anhydrite?)
			crystal casts can be found just below road
			level to the west. All back-reef units dip
			gently basinward in this area.
0.4	69.9	10.2	The Ocotillo Hills at 1:00 o'clock and Avalon
0 • •	0,10	10.5	Hills at 11:00 to 12:00 o'clock are composed
			of back-reef Tansill and Yates evaporitic
			dolomites. The hills are the topographic
			expression of an anticlinal structure over
			the buried Capitan reef, one of many such
			structures in the shelf area to the north and
1 0	71 0	0 0	west of Carlsbad.
1.9	71.8	8.3	Thin-bedded Tansill dolomites with evaporite
			crystal casts present in roadcut. The type
			locality of the Tansill Fm., as described by
			DeFord and Riggs (1941), is located nearby in the
		= 0	Ocotillo Hills.
0.4	72.2	7.9	Gently dipping Tansill and Yates sediments in
			canyon to right are on eastern flank of the
			Tracy Dome.
1.1	73.3	6.8	Tansill dolomite overlying Yates sandstone is exposed in canyon on right.
0.7	74.0	6.1	Pecos River on left. Tansill Fm. in road cuts on
			right.
0.8	74.8	5.3	Living Desert State Park turn-off on right.
3.1	77•9	2.2	Carlsbad city center (junction of US Highways 62- 180 (from north) and 285); La Caverna Hotel).
2.2	80.1	0.0	Continue straight ahead.
4 • 4	00•1	0.0	Intersection of US Highways 62-180 (from south)
			and 285 (from southeast).
			Roadlog ends.

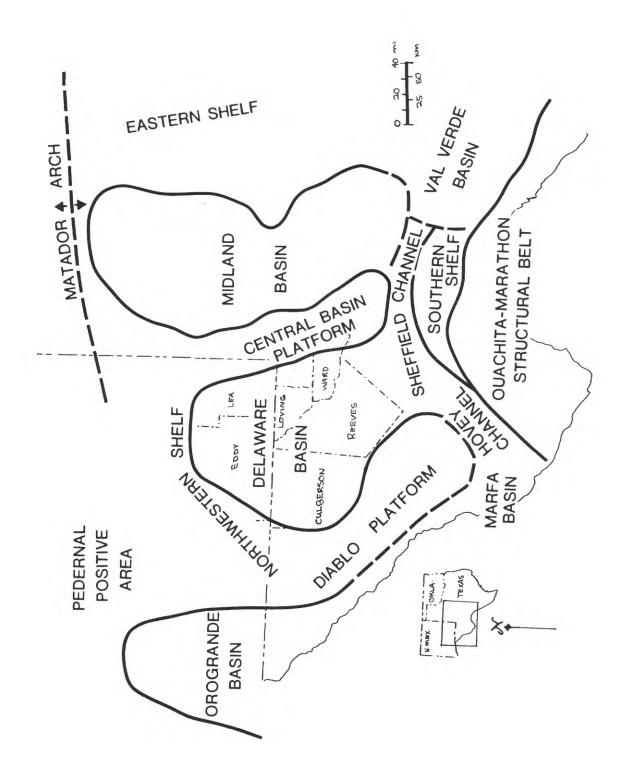


Figure 1.--Pennsylvanian and Permian physiographic features in the Permian Basin region. Modified from King (1948), McKee, Oriel and others (1967), and Williamson (1979).

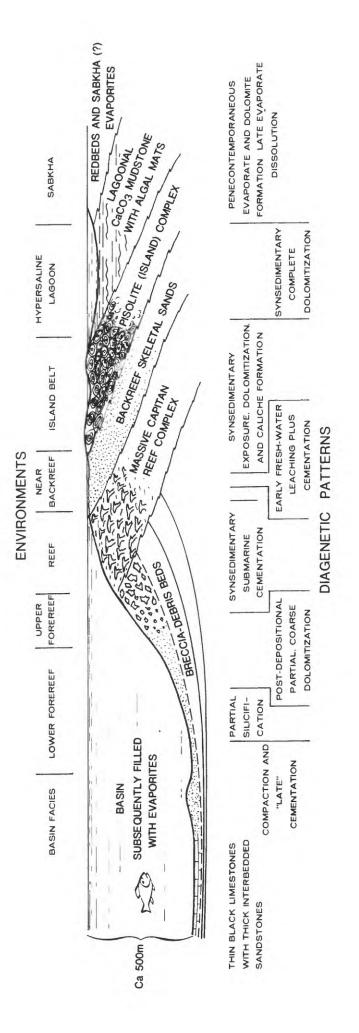
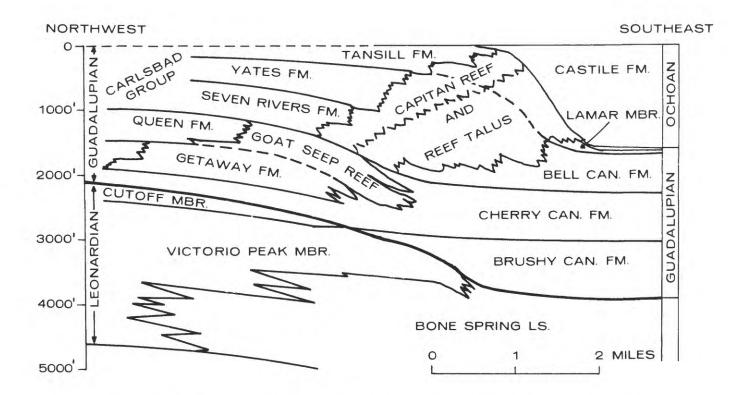



Figure 2.--Generalized cross-section of the Capitan reef complex showing inferred depositional environments and subsequent diagenetic alteration patterns.

AFTER KING 1948, NEWELL, ET. AL. 1953, HAYES 1957. AND TYRRELL 1964

Figure 3.--Stratigraphic nomenclature and inferred facies relationships for Leonardian, Guadalupian, and Ochoan units of the Northwest Shelf and Delaware Basin.

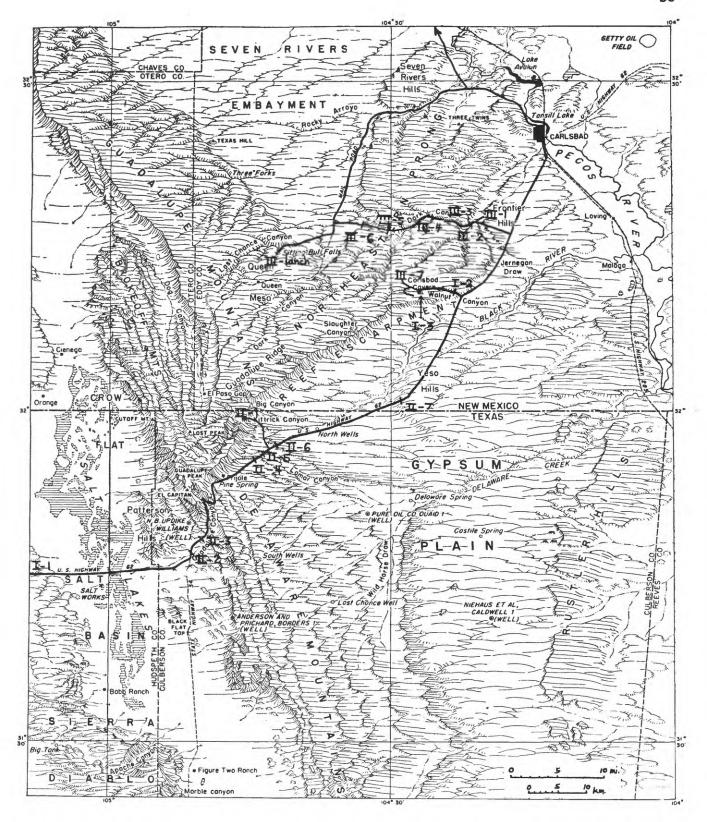
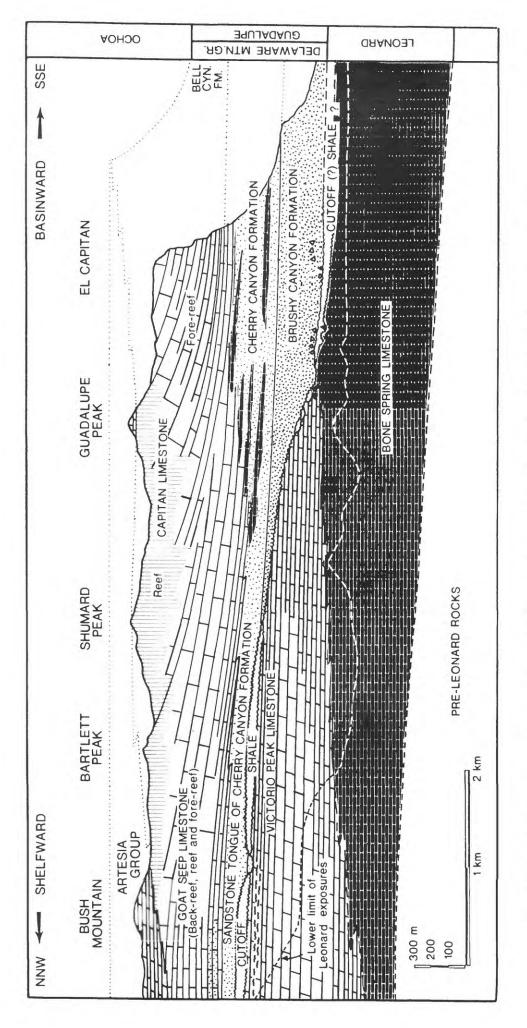



Figure 4.—Physiographic diagram of the Guadalupe-Delaware Mountains area showing the routes covered on this field trip and stop locations keyed to the roadlog. Adapted from King, 1948.

SYSTEM	SERIES	GROUP	FORMATION	MEMBER
			AN STRATA	
			ALACRAN MOUNTAIN FM.	DEER MOUNTAIN RED SHALE MBR.
PERMIAN	WOLFCAMPIAN	HUECO GP.	CERRO ALTO LIMESTONE	
			HUECO CANYON FM.	UPPER MBR. POWWOW CONGLOMERATE MBR.
PENNSYLVANIAN			MAGDALENA FM.	UPPER UNIT MIDDLE UNIT LOWER UNIT
MISSISSIPPIAN			HELMS FM.	
DEVONIAN			CHERT, SHALE, AND LIMESTONE	
SILURIAN			FUSSELMAN DOLOMITE	
ORDOVICIAN	UPPER		MONTOYA LIMESTONE	
	LOWER		EL PASO LIMESTONE	
CAMBRIAN -				
PRECAMBRIAN			RED GRANITE	

King and others (1945) and Barnes (1968). Terminology does not conform to U.S.G.S. usage in many cases but follows that of the Texas Bureau of Economic Geology. Figure 5. --Generalized pre-Mesozoic stratigraphy of the Hueco Mountains, Texas. Modified from

After King (1948 Figure 6.--Diagramatic section of the southwestern end of the Guadalupe Mountains, Texas. This approximates the view east-northeast from Stop I-1 on this trip. and 1967).

Figure 7. -- Oblique aerial view of the southern end of the Guadalupe Mountains (El Capitan and Guadalupe Note transition from massive, steeply-dipping, Capitan reef-talus limestones at top-center to flat-lying sandstones, siltstones and limestones of the Delaware Mountain Group in right-center and center-bottom area. Photo from King (1948, plate 1). Major escarpments in center-middle and center-bottom of photo are composed of Brushy Canyon Formation.



Figure 8.--View of the southern end of the Guadalupe Mountains. Note massive Capitan limestones of El Capitan (top center), underlying basinal sandstones, siltstones, and shales of the Cherry Canyon and Brushy Canyon Formations and the lenticular, sandstone-filled channel in the Brushy Canyon in the foreground.

Figure 9.—Margin of sandstone—filled submarine channel in the Brushy Canyon Formation. This exposure (Stop II—3) illustrates overbank siltstones and shales (on right) cut and filled by a massive, fine—grained sandstone. Note injection structures at sandstone—shale contact.

Figure 10. -- View of El Capitan from roadside rest area (mileage 101.7 on El Paso-Carlsbad roadlog). Hill in left foreground consists of lenticular sandstones interbedded with siltstones and shales (Brushy Canyon Formation). The Cherry Canyon Formation forms the recessive slope between the top of the foreground cliff and the massive, steeply-dipping Capitan limestones of El Capitan. Note the bank-to-basin transition in the right half of the photo (dips flattening to the east into the Delaware Basin).

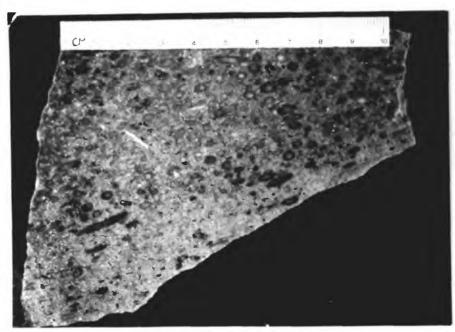


Figure 11.—Oriented fusulinid
Foraminifera in basinal
sandstone of the upper
Brushy Canyon Formation.
Fusulinids were reworked from
the shelf and oriented by
submarine currents. Locality
is on U.S. Highway 62–180 at
mileage 102.8 on El PasoCarlsbad roadlog.

Figure 12.—Large, rounded, reef-derived limestone clasts of the Rader slide which have foundered into a matrix of Bell Canyon sandstone. This location (Stop II-4) exposes part of a thin, channelized submarine debris flow or slide which has carried reef material at least five miles into the basin.

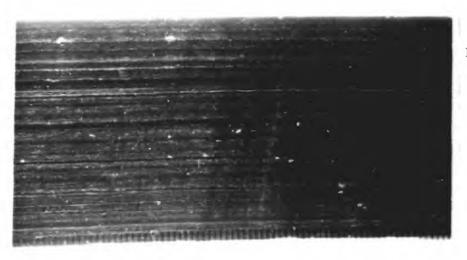


Figure 13.--Close-up photograph of a polished sample of the basinal Lamar Limestone Member of the Bell Canyon Formation (locality at Stop II-6). Note very small-scale, uniform lamination (small divisions at bottom of photo are millimeters) and dark color of sediment.

Figure 14. -- Photograph of a thinsection of laminated anhydrite from the Castile Formation (2x magnification). The sample was collected from surface outcrops about 20 miles east of El Capitan. Photo from King (1948, plate 10-B). Note the regular, thin laminations which consist of alternations of anhydrite and (or) gypsum (light layers) and an organic matter-calcite mixture (dark layers). Although some small-scale discontinuities can be seen in this photo in some laminae, packages of these laminae have been traced laterally for greater than 70 miles.

Figure 15.--Small-scale contortions in laminated gypsum from Castile Formation. These structures are probably produced as a consequence of rehydration of anhydrite to gypsum during uplift and weathering. Sample from Stop II-7; vertical axis of photograph represents approximately 3 feet on outcrop.

Figure 16. -- Panoramic view of north wall of McKittrick Canyon showing shelf edge facies transitions. Facies and formation boundaries are shown on the photograph.

(96%

Figure 17.--View of bedding plane in toe-of-slope facies of the Lamar Limestone Member of the Bell Canyon Formation. Brachiopods are extremely abundant but bryozoans, echinoderms, and siliceous sponges are also commonly found. The originally calcitic fauna has been largely silicified in this area. Sample from mouth of McKittrick Canyon.

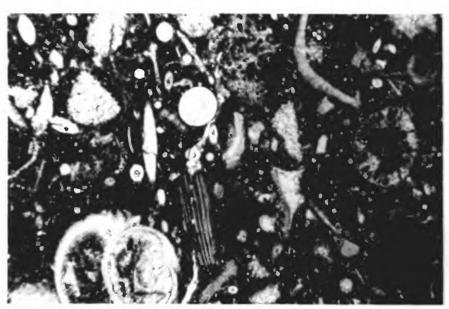


Figure 18.—Photomicrograph of toe-of-slope limestone from McKittrick Canyon. Note mixture of reef and slope fauna including abundant siliceous sponge spicules set in micritic matrix. Long axis of photo equals approximately 2.5 mm.

Figure 19.--Compactional drape in toe-of-slope limestones surrounding a large block of reef-derived limestone. Rader Member of Bell Canyon Formation at mouth of McKittrick Canyon.

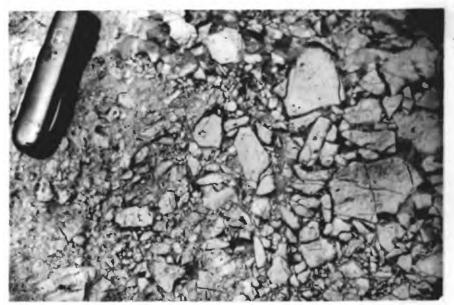


Figure 20.—Angular, reefderived rubble in the Capitan talus facies, McKittrick Canyon.
Although some in-situbrecciation has taken place, much of this material consists of reeflimestone, fragmented and redeposited in this forereef setting. Knife is approximately 3 inches long.

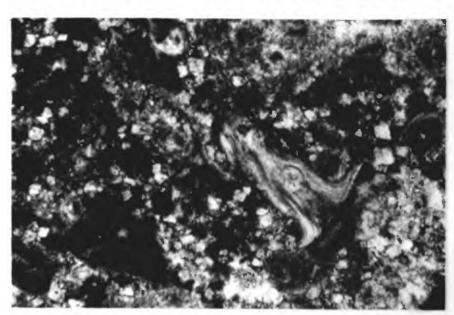
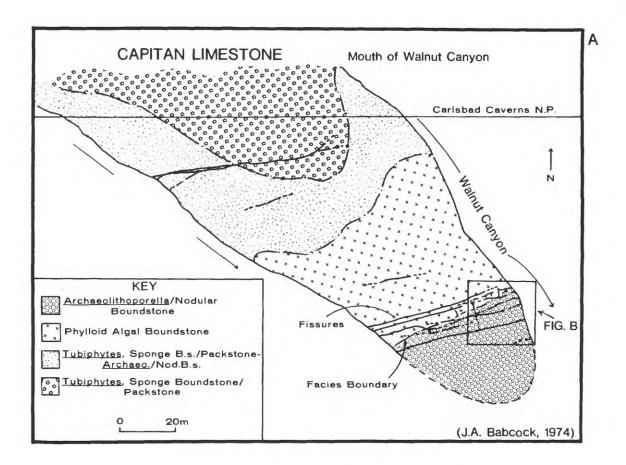



Figure 21.—Photomicrograph of typical Capitan talus facies. Note pellets, bryozoan fragments, and extensive but incomplete dolomitization of matrix but not framework grains. Long axis of photo equals approximately 2.5 mm.

Figure 22.—Photomicrograph of Capitan talus facies in McKittrick Canyon. Note in-situ fracturing of shelf-derived fusulinid foraminifer and extensive dolomitization of micritic matrix. Long axis of photo equals approximately 2.5 mm.

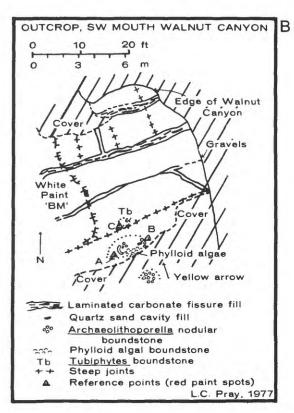


Figure 23.—Microfacies exposed at the mouth of Walnut Canyon (Stop I-2). After Babcock, J.A. (1977).

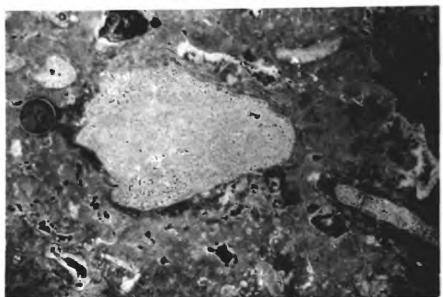


Figure 24.—Closeup of reef fabric near the mouth of Walnut Canyon (along north side of Bat Cave Canyon). Note oriented, in-place sponges surrounded by darker algal encrustations; porosity largely filled with fibrous, submarine cements.

Figure 25.—Photomicrograph of Capitan reef facies. Lower part of photo shows a largely neomorphosed calcareous sponge; this is overlain by numerous Archaeolithoporella encrustations (dark colored) interlayered with submarine cements (light colored). Long axis of photograph equals approximately 2.5 mm.

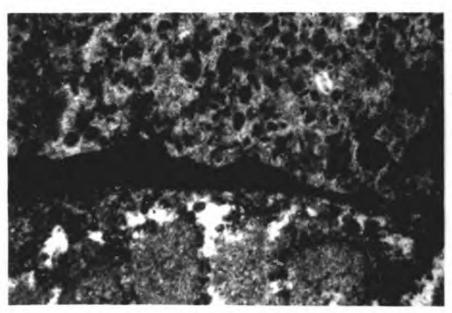


Figure 26.—Photomicrograph of Capitan reef facies. Lower half of photo shows a largely neomorphosed calcareous sponge; this is overlain by irregular, dark, algal encrustations. Remnant porosity filled by pelletal, penecontemporaneous, internal sediment. Same scale as previous photo.

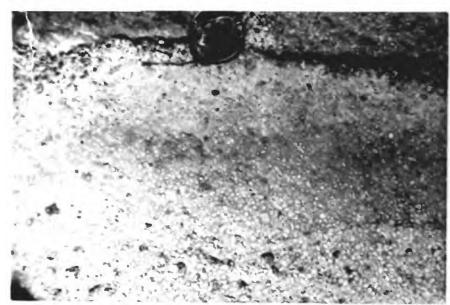


Figure 27.--Closeup of oolitic grainstone in Walnut Canyon. Grain nuclei are mainly green algae. Note excellent sorting and rounding of grains and general lack of internal sedimentary structures.



Figure 28.—Photomicrograph of grainstone shown in figure 27. Note nuclei of Mizzia green algae; these are oolitically coated and then surrounded by submarine cements. Long axis of photo equals approximately 2.0 mm.

Figure 29.—Photomicrograph of grainstone from Walnut Canyon. Virtually all grains are altered green algae; note extensive encrustation and binding of grains into "grapestones". Same scale as previous photo.

Figure 30.--Tepee structure in Walnut Canyon (Stop III-7). Sediments are pisolitic dolomites of the Yates Formation.

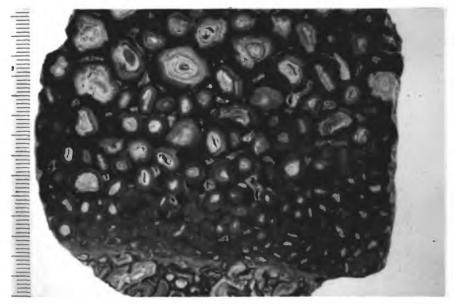


Figure 31.—Closeup of a polished slab of pisolitic dolomite from Walnut Canyon. Note well developed reverse grading, abundant nuclei of fractured pisolites, and excellent preservation of small—scale concentric laminations by replacement dolomite. Small scale divisions at left are millimeters.

Figure 32.--Pisolitic sediments of Yates Formation cut by a large, horizontal, sheet crack of calcite spar. Sheet crack is about 6 inches high.

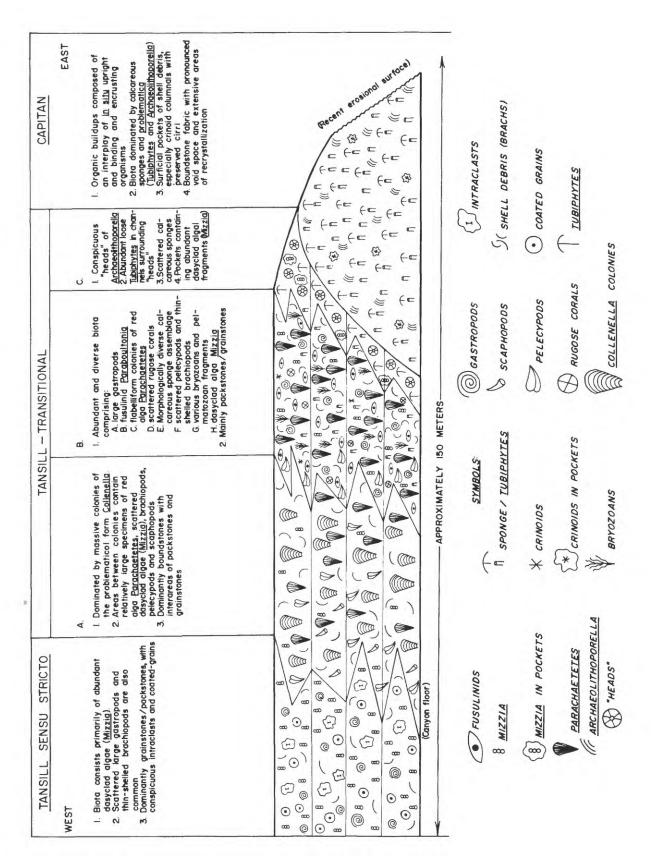


Figure 33.--Microfacies exposed at the mouth of Dark Canyon (Stop III-1). From Toomey and Cys (1977).

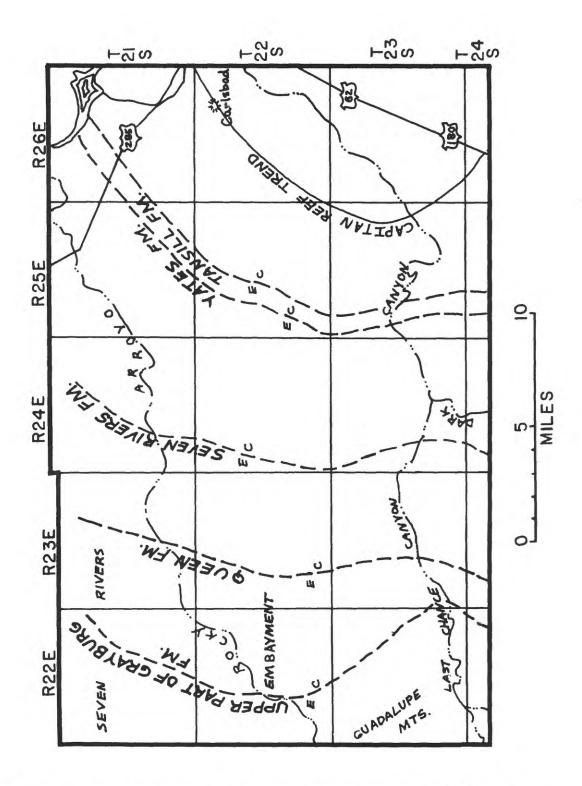


Figure 34.--Geographic location of the evaporite-carbonate transition in formations of the Artesia Group relative to the position of the uppermost Capitan reef facies. Adapted from Bjorklund and Motts (1959) and Motts (1968).

Figure 35.—Seaward-dipping low angle, cross-bedded grainstones in Tansill Formation at stop III-2 (Dark Canyon). These grainstones probably represent windward beaches on small islands. Cactus in center is approximately 2 feet high.

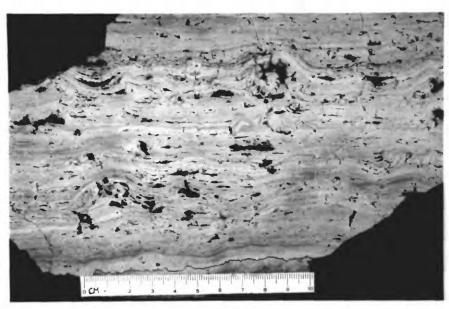


Figure 36.—Polished rock slab showing birdseye structures, fenestral porosity, and probable blue-green algal lamination of dolomitic mudstone in the Tansill Formation.

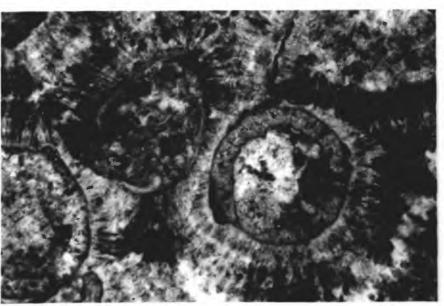


Figure 37.—Photomicrograph of green-algal grainstone showing coarse, radial, cloudy, fibrous, submarine cements (originally probably aragonite, now calcite). Long axis of photo equals 2.0 mm.

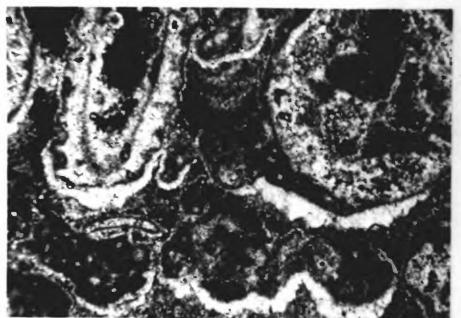


Figure 38.--Photomicrograph of green-algal grainstone showing microstalactitic or pendant calcite cement morphology indicative of cementation in a vadose (fresh water) environment. Long axis of photo equals 2.0 mm.

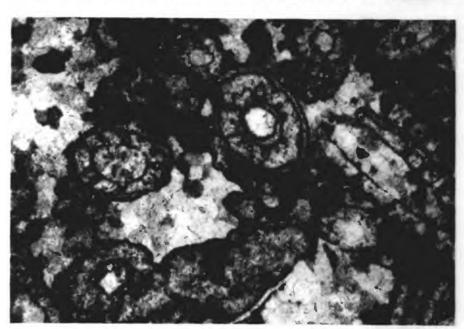


Figure 39.—Photomicrograph of green-algal grainstone showing blocky calcite cement fabric indicative of cementation in a phreatic (fresh water) environment. Long axis of photo equals 2.5 mm.

Figure 40.—Polished rock slab showing altered nodular or enterolithic fabric in back-reef bedded gypsum.

Figure 41.—Margin of the Seven Rivers Embayment along New Mexico Highway 137. Cliffs are capped by the resistant "Azotea Dolomite"; deeply gullied slopes are underlain by interbedded gypsum and red siltstone.

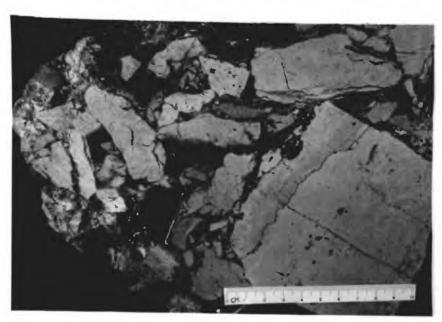


Figure 42.—Polished rock slab showing evaporite solution breccia from Rocky Arroyo. Note angular dolomite clasts and sparry calcite pore-lining cement.

Figure 43.--Crystal casts produced by the selective removal of evaporite minerals from Seven Rivers dolomite beds.

Table 1.--Correlations between faunal and sedimentary features and depositional environment (Data partially adapted from Newell and others (1953) and Schmidt (1977)) [C= common; P= present; R= rare; * indicates feature is generally or always detrital or allochthonous. Absence of any symbol indicates feature is absent or extremely rare]

Relative abundance in stratigraphic unit and/or environment

Feature	Aı	rtesia Group		Capit	an Ls.		Bell Canyon Fm•
	Sabkha-	Pisolite	Near	Reef	Fore	reef	Basin
	lagoon	facies	back-reef	crest	Up.	Lo.	
Fauna:							
Ostracodes	P	R	P	R	R	R	R
Calcispheres	С	P	P				P
Stromatolites	P	P	R	P	P		
Dasyclad algae		R	C	R	R*	R*	
Fusulinids		P	С	R	R*	R*	P
Other							
Foraminifera	P	R	P	P	R	R	R
Gastropods		R	C	P	R		
Pelecypods		R	C	P			
Red algae			P	C	P		
Echinoderms		R	P	P	P	P	R
Brachiopods		IX.	P	P	P	C	R
Calcareous			1	-	1	C	10
sponges				С	С	p*	
Hydrozoans				C	C	Γ.,	
Tubiphytes				C	C		
					C	ъ	
Bryozoans Ammonoids			D	C		P	7
			R	R	R	R	R
Siliceous	•					_	_
sponge spicul	Les					С	P
Conodonts						R	P
Radiolarians							P
Fish							R
Carbonate rock ty	ypes:						
Boundstone	P		R	С	С	P*	
Grainstone		С	С	P	P	P	
Packstone							
Wackestone	R	P	P	P	С	С	P
Mudstone	С	P	P	R	R	P	С
Non-carbonate roo	ck types:						2
Shale	9		_			_	C
Siltstone	C	P	R			P	C
Sandstone	С	P	R			P	С

Table 1.--Continued.

Feature	Aı	rtesia Group		Capit	an Ls	•	Bell Canyon Fm.
_	abkha- agoon	Pisolite facies	Near back-reef	Reef crest		ereef Lo.	Basin
Organic carbon-							
rich units	R					P	С
Grain types:							
Skeletal	R	P	С	С	С	P	P
Pelletal	С	R	P	P	P	R	
Pisolitic/ooliti	c R	С	P				
Intraclastic	R	P	P	С	С	P	R
Sedimentary							
structures:							
Lamination	С	R	R			P	С
Bedding	С	C	P		R	P	С
Synsedimentary							
fractures			P	С	С		
Channels			P	?	С	P	С
Cross-bedding		R	P		R	P	P
Graded bedding			R		R	P	P
Breccias	С				С	P	R
Tepee structures		С					
Diagenetic feature	:s:						
Dolomitization	С	С	P		P	P	
Chertification					P	С	С
Evaporite nodule	s C	R					
Freshwater	•						
cements	R	С	P				
Marine cements		•	P	С	С	P	
Primary porosity Secondary	P	R	P	-	-	-	С
porosity	С	R	С	R			

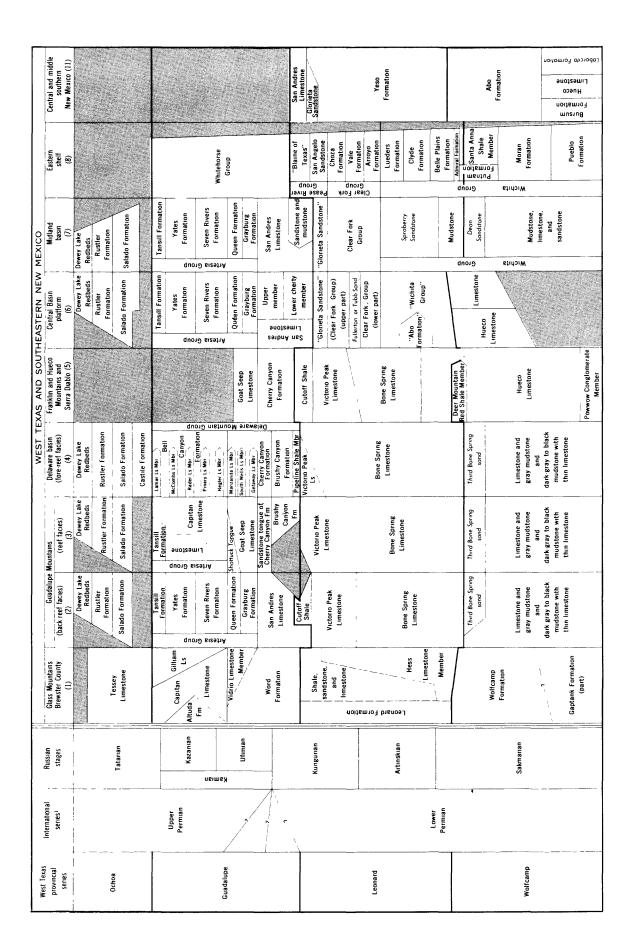


Table 2.--Correlation of Permian units from selected sections in west Texas and southeastern Hew Mexico. Adapted from McKee, Oriel and others (1967).

Table 3.--0il and gas production, by county, for selected Leonardian (Lower Permian) and Guadalupian and Ochoan (Upper Permian) units in the Permian Basin of Texas and New Mexico. 1/

Year Cumulative	re- gas prod. ported (cu ft)
Year	re- ported
Cumulative	<pre>in- oil prod. r terval (bbls) p (ft)</pre>
Prod.	in- terva (ft)
Prod.	Depth (ft)
>	Year
Producing	formation
Field or pool	name

Andrews County, Texas

FULLERTON, WEST	GRAYBURG		0000017973
TRIPLE-N	GRAYBURG	964 04338	
EMBAR	GRAYBURG	04010 064 0000006419 197	
FUHRMAN-MASCHO	GRAYBURG	956 04204	
MCFARLAND	GRAYBURG	955 05024 011 0000011878 197	
PARKER, WEST	GRAYBURG	962 04546 016 0000066107 197	
FUHRMAN-MASCHO		930 04700	
PHIL-BAR	GRAYBURG	956 04020 015	0000896433
BLOCK 2	GRAYBURG	957 04736 018 0001955190 197	
EMMA		939 04300 090 0016552009 197	
FUHRMAN-MASCHO	GRAYBURG	04700 060 0078866081 197	
MEANS	GRAYBURG	934 04400 090 0119214407 197	
MIDLAND FARMS	GRAYBURG	945 04800 080 0108777842 197	
MIDLAND FARMS, NORTH	GRAYBURG	953 04943 035 0012590377 197	
TRIPLE-N	GRAYBURG	964 04338 001 0004051895 197	
SERIO	GRAYBURG	970 04806 008 0000654352 197	
MABEE	GRAYBURG	943 04704 0052682331 197	
PARKER	GRAYBURG SAN ANDRES	935 04800 037 0001458371 197	
MIDLAND FARMS, EAST	GRAYBURG, UPPER	04780 011 0000064028 197	
MCFARLAND, SOUTH	QUEEN	956 04820 010 0000047523 197	
MAGUTEX	QUEEN	958 04862 016 0003666758 197	
	QUEEN		
ъ.	QUEEN	04730 010 0000190163 197	
MCFARLAND, NORTH	QUEEN	963 04745 010 0000120949 197	
MCF AKL AND	QUEEN	955 04790 014 0073537597 197	
MCFARLAND, SOUTHEAST	QUEEN	04875 041 0000020804 19	
MEANS, EAST	QUEEN SAND	955 04710 048 0000019318 197	
NOLLEY	QUEEN SAND	04495 027 0000705203 1	
MEANS	QUEEN SAND	954 04024 042 0032988811 197	
GOLDSMITH, NORTH	Ā	896	
NIX, NORTH	SAN ANDRES	56 04466 037	0001100845

HLIWS	ANDKE	952 042				
BLOCK A-28	ANDRE	964 043	0 05	5952	\sim	
BLOCK A-34, NORTH	SAN ANDRES	96	3 04	3657	\sim	
BLOCK 9	ANDRE	953 043	07	635	97	
BLOCK 10	ANDRE	952 046	90	2019	97	
FULLERTON, EAST	SAN ANDRES	46	24 011	0.1	1977	
H. B.	ANDRE	955 046	0.5	~	97	
MARTIN, SOUTHWEST	ANDRE	956 043	04	36	\sim	
	SAN ANDRES	956 044		00	6	
SHAFTER LAKE, SOUTH	ANDRE	959 046	4	0000001432	\sim	
THREE BAR	ANDRE	960 043	03	6	67	
MASCHO	ANDRE	942 046	ED.	40	\sim	
WALLEN	ANDRE	969 046	C	55	67	
FULLERTON	ANDRE	959 044	0.7			0000505622
FULLERTON	ANDRE	945 047	20	323	6.7	
FULLERTON, SOUTHEAST	SAN ANDRES	957 044	11 102	0000469247	1977	
JANE L.	ANDRE	956 045	0.1	286	6.7	
LITTMAN	ANIFEE	951 043	0.2	819	67	
MARTIN	ANDRE	945 043	04	638	\sim	
OPCO	ANDRE	968 043	03	330	6.7	
SHAFTER LAKE, NORTH	ANDRE	952 045	0.2	9801	6.7	
SHAFTER LAKE	ANDRE	953 044	0.0	٥,	\sim	
TRIPLE-N	ANDRE	966 042	00	1169	6.2	
FULLERTON	ES	955 044	0.5	0002880	6	
BLOCK A-34	RIV	020 896	46 009	0000017263	į~	
MEANS	YATES	934 029	50			
EMBAR	YATES	962 028	0.4			0000259864
EMMA	YATES	956 027	24 161			\sim
	YATES	952 030	54			
SHAFTER LAKE	YATES	952 030	54 057	3	1977	
MEANS	YATES	974 030	99	0000020557	1977	
M 17K 13	YATES SAND	46 027				

Cochran County, Texas

TO FIGURE TAGE	CAN ANTER"C		/ W # W / /	かかがくくくくく マート	くとんじくくく	4.0.2.3
	_	/CAT	01740	774 000	//AT DESCHOOMED ATA STAND /SAT	7//T
COCHRAN	SAN ANDRES	1954	05008 (346 0000	1954 05008 046 0000003441 1977	1977
RHODES	SAN ANDRES	1940	1940 05100 020	20 000	0000055547	1977
WINTHROF	SAN ANDRES	1959	1959 05124 040	340 0000	0000038185	1977
BUCKSHOT	SAN ANDRES	1956	1956 05010 030	30 000	0000013848 1975	1975
LEVELLAND	SAN ANDRES	1945	1945 04927 1	180		
BLOWING SAND	SAN ANDRES	1974	1974 05072	000	0000001315 1977	1977

	99 1977 88 1977 99 1977 79 1977 40 1977 40 1977 30 1977 30 1977 30 1977 49 1977 65 1977 65 1977 1977 14 1975 10 1977 31 1977 31 1977
	00000030 00000030 0000030412 01332375 00002119 03480672 000008817 0000008817 0000008817 000000347 000000347 0000003307 000002307 000002307 000002307 000002307 000002307
	02550 060 02400 018 03200 028 03200 020 03200 020 03270 170 02700 040 03750 150 03750 150 03750 150 03750 150 03750 150 03750 170 03750 032 02765 080 02765 080
Texas	19935 19935 19938 19938 19938 19938 19938 19939 19930 19930 19930 19930 19930 19930 19930 19930 19930 19930 19930
Crane County, T	GRAYBURG GRA
	CKANE COWDEN CONCHO BLUFF CRANE, SOUTH MCCLINTIC WADDELL BLOCK 31 DUNE GIB MCELROY WADDELL GULF-MCELROY BLOCK 31 SAND HILLS DUNE UNIVERSITY WADDELL SAND HILLS CONCHO BLUFF ABELL, NORTHEAST CRANE, SOUTH EPPENAUER MCELROY, WEST DUNE BAYVIEW, SOUTH MUNN-WYNNE SAND HILLS WER ABELL, NORTHWEST BAYVIEW, SOUTH MUNN-WYNNE SAND HILLS WER ABELL, NORTHWEST BAYVIEW, EAST CRANE, SOUTH ROWN-WYNNE SAND HILLS WER ABELL, NORTHWEST BAYVIEW, EAST BAYVIEW, EAST

 04920 020

ANDRES ANDRES ANDRES ANDRES

LEVELLAND SLAUGHTER TWO STATES

BLEDSOE BUCKSHOT

ANDRES

00000239512 0000001797 0000025242	0002719614
4053 1977 5938 1977 50221 1977 3002 1977 5149 1977 7421 1977 2199 1977 5157 1977 5157 1977 5157 1977 662 1977 7662 1977 7662 1977 1315 1977	1567 1977 0878 1977 3935 1977 1337 1977 4297 1977 7919 1977 1063 1977 5523 1977 9732 1977
013 00000 018 200 020 016 00000 015 00001 016 00000 010 00000 010 00000 011 00000 012 00000 012 00000 013 00000 015 00000	028 00011 024 00003 2264 00066 015 00000 006 00016 007 00000 030 00000 030 00000 034 00015 034 00015
1960 02065 1943 02250 1945 01400 1945 01790 1971 01280 1952 01190 1958 01928 1959 01350 1959 01350 1959 01350 1950 01350 1951 01098 1951 01955 1952 01565 1954 01565 1954 01565 1954 01580 1954 01580 1954 01580	757 017 017 017 017 017 017 017 017 017 01
QUEEN GONEN ANDRES SAN ANDRES	ANDER AN
NOELKE NOELKE, NORTHEAST NOELKE OLSON MILLARD, NORTH ELKHORN COX HOOVER NOELKE, SOUTHEAST PURE-BEAN MILLARD, NORTH VAUGHN NOELKE, SOUTHEAST FITING SHANNON TODD BAIR BLOCK 51 HOOVER LANCASTER HILL MIDWAY LANE, NORTHEAST TODD, NORTHEAST TODD, NORTHEAST TODD, SOUTHEST HOOVER, SOUTHEAST	HOWARD DRAW, NORTHEAST AMIGO BLOCK 44 FARMER HOWARD DRAW MIDWAY LANE PURE-BEAN, SOUTH SHANNON TODD, NORTH TODD, WEST WEGER, NORTH WATT

060 0000170370		079 0003578349	03342 020 0000134703	0000114880	1954 03520 273 0000764700 1977	1970 02142 010 0000421552 1977	0000000383	1972 02144 058 0000418261 1977	1973 02061 0000005641 1977	02348 010 0000024466	1956 01621 016 0000000314 1977	1952 03135
										I DDL.E	SEVEN RIVERS 1	
7731	JORDAN	LEA	SAND HILLS, WEST	T. E. BAR	DUNE, SOUTHEAST	3	CROSSETT	NYNNE	. I. S. J.	BAYUIEW	T. E. BAR	FEXELL

Crockett County, Texas

BETTY	GRAYBURG	1951	01460	005	0000200000	611	
BLOCK 46, EAST	GRAYBURG	61	01280	042	4	٥	
BLOCK 46	GRAYBURG		02363	317	0000001135 1	9	
DRY CREEK	GRAYBURG	23	01150		0000000395 1		
SHANNON	GRAYBURG	40	01984	020	0000018992 1	9	
DONHAM	GRAYBURG	n	01190				0000317267
HOWARD DRAW	GRAYBURG	10 10	- 1				
SUSITA	GRAYBURG	_		525			0001373988
DONHAM	GRAYBURG	C-I	01133				9602380000
DOUBLE R	GRAYBURG	1974	₽		00000000000	677	
T % 44	GRAYBURG	m	74	016	0000019478 1		
CROCKETT	GRAYBURG	938	57	092	0003622639 1	67	
HANSON	GRAYBURG		01168	900	0000019349 1	67	
MAGGIE NEAL	GRAYBURG	955	02225	105	5	67	
OLSON	GRAYBURG	940	01828	018	Ci Ti	67	
Topp	GRAYBURG	~	01580	100	0000125207 1	97	
TODD, NORTHWEST	GRAYBURG	957	01440	040	8277 1	97	
VAUGHN	GRAYBURG	1947	01445	001		6/2	
WEGER, WEST	GRAYBURG	1956	02372	138	0000208665 1		
WORLD	GRAYBURG LIME	1925	00920	603	0038548463 1	677	
FERGUS	GRAYBURG UPPER	S	02392				0001634031
FERGUS	GRAYBURG, LOWER	1968	02392				
LANCASTER HILL	LOWER GRAYBURG	1947	01718	018	0000037021 1	1977	
NOELKE	RUEEN	1973	01830	013			

	1967			1977	
HRUKES L	9041		/ 440000000	C/AT	
SAN ANDRES,	L.O. 1965 02210		0000024699	1977	
SAN ANDRES,	UF. 1965 02139	39 014	0000017527	1977	
SEVEN RIVERS	5 1967 01279	600 62			0000039278
SEVEN RIVERS	5 1962 01632	32 014	00000000074 1977	1977	
SEVEN RIVER	S 1945 01205				
SEVEN RIVER	1961				0000456653
SEVEN RIVERS	5 1940 01133	33 025	0005464201	1977	
SEVEN RIVER	S 1938 01985	85 136	0000146998	1977	
ES	1952 01400	00 021	0000002870	1977	
YATES	1942 01060	90			
ES	1945 00880	80			0000850172
YATES	1964 010	55 010	01055 010 0000124000 1977	1977	
YATES	1962 010	52 102	1962 01052 102 0000026020 1977	1977	

Crosby County, Texas

FORBES	SAN ANDRES	1959	03002 059	059	0000024020 1977	1977	
	***************************************	Constitution					
	carberson county, reads	, rexas					
SCREWBEAN, SOUTH	CASTILE	1964	01060	005			
PREWIT	CASTILE	1958	00600	010	0000007211	1977	
SCREWBEAN	CASTILE	1958	01024	004	0000111431	1977	
FORD, WEST	CHERRY CANYON	1963	04143	001	0000188269	1977	
GERALDINE	CHERRY CANYON	1962	03953	001	0000037846	1977	
GERALDINE, WEST	DELAWARE	1970	02440				
POKORNY	DELAWARE	1958	01693	003	0000000452	1977	
RIDGWAY	DELAWARE	1958	02011	010	0000000000	1977	
EITHERWAY	DELAWARE	1959	02436	028	0000035570	1977	
SCREWBEAN	DELAWARE	1958	02548	013	0000638493	1977	
GERALDINE, WEST	DELAWARE	1967	02437	012	0000225404	1977	
ED POKORNY	DELAWARE	1969	01338	1.1.4	0000003878	1977	
WAR-AM	DELAWARE	1970	02378	004	0000004424	1977	
MARSH	DELAWARE SAND	1953	02670	020	0000002604	1977	
GERALDINE	DELAWARE SAND	1957	02557	004			
RUSTLER HILLS	RUSTLER	1948	00456	010	0000004434	1977	

Dawson County, Texas

The state of the s			
ARUANNA	SAN ANDRES	1953 03875 004 0000018275 1977	1977
JO-MILL, SOUTH	SAN ANDRES	1964 03779 0000003146 1977	1977
WELCH, SOUTHEAST	SAN ANDRES	1964 04901 0000006107	1977
CEDAR LAKE, EAST	SAN ANDRES	1966 05015 0000047396 1977	1977
CEDAR LAKE, SOUTHEAST	SAN ANDRES	1953 04940 055 0001224881	1977
WELCH	SAN ANDRES	1941 05000 040 0101358337	1977
WELCH, SOUTH	SAN ANDRES	1956 04880 053 0000022133 1977	1977

Ector County, Texas

PENWELL	GRAYBURG	1926 03800 100	
DONNELLY	GRAYBURG	950 04020 0000001950 197	
FASKEN, SOUTH	GRAYBURG	04777 010 0000009136 197	
TEXCE	GRAYBURG	962 04473 004 000013398	
VEM	GRAYBURG	955 04180 198 0000051253 197	
COWDEN, WEST	GRAYBURG	55 04075 075 0000032241 197	
DONNELLY, NORTH	GRAYBURG	956 04060 105 0000004074 197	
GOLDSMITH, EAST	GRAYBURG	958 04100	10231
GOLDSMITH	GRAYBURG	50 03660	
DONNELLY, NORTH	GRAYBURG	956 04060 105 0000624333 19	
DOUBLE H	GRAYBURG	955 04456 032 0002892126 19	
FOSTER	GRAYBURG	948 04300 110 0192250982 19	
GOLDSMITH	GRAYBURG	966 03928 020 0000057620 19	
MOSS	GRAYBURG	55 03543 064 0001266362 19	
MOSSWELL	GRAYBURG SAN ANDRES	964 03972 232 0000067032 19	
GOLDSMITH, EAST	GRAYBURG, NORTH	970 04062 009 0000035224 1	
CONCHO BLUFF, NORTH	QUEEN	56 04490 035 0006002014 19	
MOOSE	QUEEN	958 04512 015 0003237262 19	
GOLDSMITH	SAN ANDRES	935 04300 050	
Appls	SAN ANDRES	953 04260 076 0000904381 197	
DOUBLE H, WEST	SAN ANDRES	61 04062 047 0000007797 197	
EDWARDS, NORTH	SAN ANDRES	955 04284 036 0000083693 197	
EMMA, SOUTHWEST	SAN ANDRES	04286 062 0000002476 1	
NOTREES, NORTH		956 04266 074 0000032245 197	
TXL . NORTHWEST	SAN ANDRES	956 04525 037 0000016027 197	
GOLDSMITH, NORTH	SAN ANDRES	964 04500 0000819877 197	
GOLDSMITH, WEST	SAN ANDRES	956 04280 016 0000004427 197	
TXL	SAN ANDRES	050 0000042070 197	
SLATOR	SAN ANDRES	957 04387 018 0000000940 197	

1977	1977	1977	1977	1977	1977	1977	1977	1977	1977	1977	1977	1977	1977	
0000809121	9926820000	0114105516	0007161549	0007224988	0301182320	0006754144	0001515521	0010346474	0005291922	0012679822	0062932746	0002121679	0008528694	
026	033	225	090	040	120	0.14	050		100	020	100	0.18	050	110
04352	05276	05050	04305	03400	04300	04224	04500	04500	04280	04320	03800	04172	04380	02720
1952	1964	1932	1950	1935	1935	1962	1950	1964	1956	1950	1926	1957	1952	1952
SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	YATES
BOURLAND	COWDEN, NORTH	COWDEN, SOUTH	DONNELLY	EDWARDS	GOLDSMITH	GOLDSMITH, EAST	GOLDSMITH, NORTH	GOLDSMITH, NORTH	GOLDSMITH, WEST	LAWSON	PENWELL	SLATOR	TXL.	ANDECTOR

Gaines County, Texas

677	0000792811	67	226	67	77.6	776		677	97	776	9.7	977		77.6	97	67.7	67	97	776	76	779	
0000002184 1			0000006383 1	0000112463 1	0001210846 1	0006344146 1		0000002400 1	0000000314 1	0000001096 1	0000001762 1	0000001860 1		0000005492 1	0000153358 1	0037588098 1	0000317171 1	0000175762 1	0059287691 1	0008510657 1	184	0000697425 1
010				015	0.1.7	010	160	016	052	030	032	052	019			090		073	160	025		032
03750	03700	04426	04426	04540	04148	04341	05042	04320	05150	04494	04992	05434	04305	04750	05470	04874	05508	05204	04800	05598	05450	04934
1950	1951	1972	\sim	1956	1957	1955	1957	1955	1953	1964	1956	1964	1951	1967	1961	1947	1962	1956	1939	in.	1963	D
QUEEN	QUEEN	QUEEN	GUEEN	QUEEN	QUEEN	QUEEN SAND	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES
HOBBS, EAST	HOBBS, EAST	NORMAN, SOUTH	NORMAN, SOUTH	FLYING N	HARRIS	MEANS, NORTH	SEMINOLE, WEST	DEMPSEY CREEK	FLOREY	HOBBS, SOUTHEAST	MEDLIN	WESCOTT	TEX-MEX	ROBERTSON, WEST	SEMINOLE, NORTH	ADAIR	BALE	CARTER-NEW MEXICO	CEDAR LAKE	GXK	G-M-K, SOUTH	GEORGE ALLEN

				0000266604 0000016305	0014657200 0015817396	0008349476 0001640673 0011534652
0000349335 19 0000631080 19 0001622269 19 0000670057 19	0001478090 197 0000158773 197 0000113946 197 0000157258 197	0003500718 197 0250279422 197 0000865577 197 0025217093 197	0000401310 197 0000015988 197 1042773383 197 0000113403 197	0000240273 177	0.040	
51 044 50 045 57 054 52 047 55 048	964 04859 11 966 05675 967 05696 961 05680	959 05450 01 936 05032 17 964 05310 01 948 05042 16	951 0 953 0 937 0 971 0	9/0 03416 961 03010 964 03506 961 03060	946 02909 02 958 03216 07 957 03480 08 944 03416	96
	SAN ANDRES SAN ANDRES SAN ANDRES SAN ANDRES	ANDRE ANDRE ANDRE ANDRE	VDRES VDRES VDRES VDRES	7.	YATES YATES Yates	YATES YATES YATES
SEA	RUSSELL, SOUTH RUSSELL, SOUTHWEST SEAGRAVES SEAGRAVES, SOUTH	SEMINOLE, EAST SEMINOLE SEMINOLE, SOUTHEAST SEMINOLE, WEST	ហ	BRUMLEY HARRIS MAXEY TEX-PAC	CEDAK LAKE FELMAC G-M-K HOMANN	LOOP, NORTHEAST SEMINOLE BALE LOOP

Garza County, Texas

	0000001411 1977		0001183018	0000021924	0001127257 1977	0001306193 1977	0001271172 1977	0000267319 1977	00 0003400926 1977	
1959 03232 0	1970 02809	02980	01875	02020	1966 03189	1966 03255	1965 03344	1966 03465	1956 03138 1	
SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	
SIMS, SOUTHWEST	FOST, NORTHWEST	ARLENE	DORWARD	DORWARD, WEST	GARZA	GARZA	GARZA	GARZA	HUNTLEY, EAST	
	SAN ANDRES 1959 03232 020 000000502	SAN ANDRES 1959 03232 020 0000000502 SAN ANDRES 1970 02809 0000001411	SAN ANDRES 1959 03232 020 0000000502 SAN ANDRES 1970 02809 0000001411 SAN ANDRES 1958 02980 006 0000722532	SAN ANDRES 1959 03232 020 0000000502 SAN ANDRES 1970 02809 000001411 SAN ANDRES 1958 02980 006 0000722532 SAN ANDRES 1956 01875 009 0001183018	SAN ANDRES 1959 03232 020 0000000502 SAN ANDRES 1970 02809 0000001411 SAN ANDRES 1958 02980 006 000722532 SAN ANDRES 1956 01875 009 0001183018 SAN ANDRES 1961 02020 099 0000021924	SAN ANDRES 1959 03232 020 0000000502 SAN ANDRES 1970 02809 000001411 SAN ANDRES 1958 02980 006 0000722532 SAN ANDRES 1956 01875 009 0001183018 SAN ANDRES 1961 02020 099 0000021924 SAN ANDRES 1966 03189 0001127257	SAN ANDRES 1959 03232 020 0000000502 SAN ANDRES 1970 02809 000001411 SAN ANDRES 1958 02980 006 0000722532 SAN ANDRES 1954 01875 009 0001183018 SAN ANDRES 1964 03189 0001127257 SAN ANDRES 1964 03255 0001306193	SAN ANDRES 1959 03232 020 0000000502 SAN ANDRES 1970 02809 000001411 SAN ANDRES 1958 02980 006 000022532 SAN ANDRES 1964 031875 009 0001183018 SAN ANDRES 1964 03189 0001127257 SAN ANDRES 1965 03255 0001306193 SAN ANDRES 1965 03344 0001271172	SAN ANDRES 1959 03232 020 0000000502 SAN ANDRES 1970 02809 0000001411 SAN ANDRES 1956 01875 009 0001183018 1960 03253 SAN ANDRES 1966 03189 0001127257 SAN ANDRES 1966 03255 0001306193 SAN ANDRES 1965 03344 0001271172 SAN ANDRES 1965 03465 0000267319	03232 020 0000000502 02809 0000001411 02980 006 0000722532 01875 009 0001183018 02020 099 0000021924 03189 0001127257 03255 0001271172 03344 0001271172 03465 0000267319

HUNTLEY	SAN ANDRES		1954 03387 022 0006085839 1	1977
JUSTICEBURG, NORTHWEST			018 0000267398	1977
P. H. D.	SAN ANDRES		1944 03565 060 0005035240 1	1977
°, H. D.			03762 020 0000209247	1977
ROCKER A, NORTHWEST			197 0000567652	1977
ROCKER A, NORTHWEST			1967 02953 0000077829 1	1977
COCKER A, SOUTH			02510 040 0000165121	1977
STORIE			1958 03598 005 0000111682 1	1977
THREE WAY	SAN ANDRES		0001110565	1977
, H, D,	SAN ANDRES,	1.0.	101 0000006667	1977
JUSTICEBURG, NORTHWEST	SAN ANDRES,	1.0.	02466 007 0000114144	1977
CURT-ROY	SAN ANDRES,	LOWER	00000077065	1977
HACKBERRY	Œ	L.OWER	146 0000413782	1977
HACKBERRY	SAN ANDRES,	UPPER	0000067259	1977

Glasscock County, Texas

FOOLS CREEK	GRAYBURG	01678 002 0000010361
¥.	GRAYBURG	1974 03653 0000033926 1977
	QUEEN	1959 01900 200 0000001752 1977
REYNOLDS	QUEEN	1959 01883 008 0000112463 1977
CREEK	QUEEN	1962 01723 001 0000208046 1977
Ā	QUEEN	1968 01616 004 0000150985 1977
ROSEMARY	SAN ANDRES	1955 02485 015 0000013829 1977
CREEK	SAN ANDRES	1963 02144 124 0000017733 1977
	SAN ANDRES	1964 02341 002 0001387051 1977
	SAN ANDRES	1906 03788 063 0000226353 1977
MCDOWELL	SAN ANDRES, LO.	1964 02401 005 0000086824 1977
<u> </u>	SAN ANDRES, MIDDLE	1964 02397 004 0000576727 1977

Hockley County, Texas

CLAUENE	SAN ANDRES	1953	05093	053	0000025219	1977
MARINELL	SAN ANDRES			016	0000022881	1977
PETTIT	SAN ANDRES		03655		6290000000	1977
SLAUGHTER	SAN ANDRES	1937	02000	100		
YELLOWHOUSE	SAN ANDRES		04463		0008432305	1977
YELLOWHOUSE, SOUTH	SAN ANDRES	1957	04705		0000460603	1977
D-F-8	SAN ANDRES	1971	05161			1977

Howard County, Texas

MOORE FAIRUIEW SNYDER VAREL HOWARD GLASSCOCK	GRAYBURG SAN ANDRES SAN ANDRES SAN ANDRES YATES	1937 03200 040 0008375368 1977 1945 03151 051 000000363 1977 1967 02085 044 0000012983 1977 1955 03080 012 0005011653 1977 1955 03200 019 0314288787 1977
1	Irion County, Texas	
BINGHAM SUGG, NORTH THOMAND PETERSON TANKERSLEY HOWDA	GRAYBURG SAN ANDRES SAN ANDRES SAN ANDRES SAN ANDRES	1955 01772 074 0000000200 1977 1956 01890 010 0000033684 1977 1953 00432 020 000000342 1977 1955 01875 051 0000050365 1977 1968 01184 006 0000027239 1977 1968 01994 173 0000285207 1977
ELAM, SOUTH COGDELL FULLERVILLE, NORTHEAST	Kent County, Tes SAN ANDRES SAN ANDRES SAN ANDRES	Texas 1964 01418 018 0000001264 1977 1951 01475 095 0000680043 1977 1964 02395 009 0000013232 1977
	Loving County, T	Texas
TWOFREDS, NORTHEAST WHEAT PONDITO JEANITA	BELL CANYON CASTILE CHERRY CANYON CHERRY CANYON	1959 04929 001 0000037289 1977 1951 02490 0000000566 1977 1963 05589 001 0000014716 1977 1963 04562 002 0000068089 1977
шш	DELAWARE DELAWARE DELAWARE DELAWARE DELAWARE DELAWARE	05032 04968 03106 04940 04807 04136

04	04608 013 0000111033	90(1956 04510 010 0007265753 1977	04993 007		04895 016		1937 03900 045 0002858541 1977	1952 04055 020 0005896372 1977	1963 04895 011 0000048954 1977
DELAWARE	DELAWARE	DELAWARE	DELAWARE	DELAWARE	DELAWARE	DELAWARE	DELAWARE	DELAWARE	DELAWARE SAND	DELAWARE, LOWER
BATTLEAXE	LIMMITT	EL MAR	GRICE	MERIDIAN	TUNSTILL, EAST	TWOFREDS	WHEAT	MASON	MASON, NORTH	TWOFREDS

Lynn County, Texas

BLOCK L	SAN ANDRES	1961	1961 04248	00000	0000002573	1977
GUINN	SAN ANDRES	1961	1961 04031 003		0000592112 1977	1977
SUNILAND	SAN ANDRES	1955	03803 007		0002687524 1977	1977
, W. O.	SAN ANDRES	1959	04043 006	00000 90	0000091152	1977
SUNILAND	SAN ANDRES, LOWER	1956	1956 04000 110	10 00023	0002267165 1977	1977
BLOCK L	SAN ANDRES, MIDDLE	1969	1969 04131	0000	0000162135 1977	1977

Martin County, Texas

1977	1977
0000000184	0001672131
000 020 00	042
3426	1972 03930 042 (
1952 (1972
9)	50
GRAYBUR	GRAYBUR
GLASS	PHOENIX

Midland County, Texas

MIDLAND FARMS, SOUTHE	SOUTHEAST	AST GRAYBURG	1953	04600	040	1953 04600 040 0000004560 1977	1977
TEX-HARVEY		GRAYBURG	1955	03684	016	0000005901	1977
AZALEA		GRAYBURG	1967	1967 04088	018	0000694122	1977
GERMANIA		GRAYBURG	1952	03940	020	0002559977	1977
GERMANIA		SAN ANDRES	1968	04163	007	0000005019	1977
DRIVER		SAN ANDRES	1955	03800	020	0000191489	1977
SWEETIE PECK		SAN ANDRES	1956	1956 05760	010	0000191907	1977
		SAN ANDRES	1972	06130	010	0000255774	1977
FEGASUS		SAN ANDRES	1954	1954 05584		0007309065	1977

Mitchell County, Texas

TURNER-GREGORY	SAN ANDRES	1959 01876 101 0000062556 1977
IATAN	SAN ANDRES	1957 02364 039 0001635388 1977
ELLWOOD, NORTH	YATES	1971 00611
ALBAUGH	YATES SD.	1956 01195 012 0000007321 1977

Pecos County, Texas

COYANOSA, WEST	BELL CANYON	1962 0	5386 0	24	0000147911	1977	
ATHEY	BONE SFRING	99	88		0000154323	1977	
COYANDSA, NORTH		896	0	080	C	67	
	CASTILE	63	59		0000038139	\sim	
COYANOSA, SOUTH	CHERRY CANYON	0 996			0000008878	\sim	
COYANOSA	CHERRY CANYON	965 0			0000001592	\sim	
COYANDSA		596			0000078940	0	
CHANCELLOR	DELAWARE	942	05300 0		0000135931	/	
WAHA, SOUTH	DELAWARE	963			000000016	97	
COYANDSA, NORTHEAST	DELAWARE	29		10			0001361167
COYANDSA, NORTH	DELAWARE	996			9	0	
ROJO CABALLOS	DELAWARE	29			929260000	1977	
COYANOSA	DELAWARE SAND	959	793	20			
CHANCELLOR	DELAWARE SAND	954	c.	016 (0000176567	\sim	
WAHA	DELAWARE SAND		04800 0		0000845264		
COYANOSA	DELAWARE SD.	ο,	793		000822269	1977	
ABELL, EAST	GRAYBURG	0	2082 0	83			0001378799
GRAYBURG T. C. O.	GRAYBURG						
HOKIT	GRAYBURG	09	∓	ы 13			0000634284
BARBASAL	GRAYBURG	1958 03	27	003 (0000003752	\sim	
SHEARER	GRAYBURG	49	9,6		0000056418	1977	
WENTZ, SOUTH	GRAYBURG	5.4	89		242	1977	
WENTZ, WEST	GRAYBURG	1965 0:		020	0000002112	1977	
TCI	GRAYBURG	99	30	0.1			0006385246
WHITE & BAKER	GRAYBURG	40		40			
	GRAYBURG	73	01185				
ABELL, SOUTH	GRAYBURG	9	m	027 (0000758970	1977	
T, C, I,	GRAYBURG	00	νn		0000019284	1977	
YATES	GRAYBURG	926	500	20	0683477509	1977	
COYANOSA	L.AMAR	95	~	3	0000080456	1977	
FUTNAM	OIL QUEEN	0	1360 0	26	0000000717	1977	

BURKE	QUEEN	1967	27	052		0000149794
HOKIT	GUEEN	1959	02567	023	0000000189 197	7
IRAAN, SOUTHEAST	QUEEN	1961	Ci	800	197	7
:	QUEEN	1955	84	045	6.7	7
KUCKY MESA	QUEEN	1961	230		52 197	
3	QUEEN	1971	01822		0000000234 197	7
ROCKY MESA, NORTHWEST	QUEEN	1972	02578		53 197	7
	QUEEN	1959	02598	045		M
FORT STOCKTON, SOUTH	QUEEN	1965	02686	038		0005479693
GIRVINTEX	QUEEN	1957	1379			0
WILBROS	QUEEN	1971		600		
MARLAW	QUEEN	1972	1516	002		0000005345
	QUEEN	973	01304			1,772
FORT STOCTON, SOUTHEAST	QUEEN	974	02698			
FROMME	QUEEN	626	01400	020	4351 197	7
	QUEEN	962	02422	005	0181938 197	7
LEHN-APCO, NORTH	QUEEN	946	01945		2933465 197	7
MASTERSON	QUEEN	929		040	197	7
=	QUEEN	957		025	197	
PRIEST & BEAVERS	QUEEN	957		040	197	7
_ R S ⊐	QUEEN	964		033	197	7
PECOS VALLEY-YOUNG	QUEEN	970		990	197	7
BEVERLY	CUEEN	974			197	_
MALICKY	SA		01964	028	2802 197	7
MISHELLY		096	01530	030	6142 197	7
PECOS-SHEARER		955	01840	920	1011 197	7
		940	02016	030	8607365 197	7
WHITE & BAKER		934		040	004901854 197	7
L.EHN-APCO	QUEEN SD.	926		01.6	59808 197	7
FROMME	₫			020		
CARDINAL	QUEEN, WEST	896		032		0001489788
ROXIE	RUSTLER	970			0400 197	7
OATES	TL.ER	947			533 197	7
z	ANDRE	1961	2345		3754 197	7
LOWERY & WILSON	ANDRE	1951	2003		1295 197	7
ABELL.	ANDRE	1949	3800	020		
	ANDRE	1963	601	024		0000330663
•	ANDRE	1950	2386		997 19	7
ABELL, SOUTH	SAN ANDRES	9	24		93 19	7
			380	00 :	0000742079 1977	7
* * * * * * * * * * * * * * * * * * * *	ANDRES	۶ 4	220	08	562 19	
AKELL	SAN ANDRES, LOWER	1950	03140	030		

FORT STOCKTON T. C. I. ABELL: NORTH	SEVEN RIVERS SEVEN RIVERS SEVEN RIVERS	1970 029 1960 014 1971 016	901 103 450 038 460 024	3 00000025177	1977	0000014459
STOCKTON		957	970		/ / / . T	
STOCKTON		944 02	892	0024448513	1977	
STOCKTON	SEVEN KIVEKS		0//0	000029482	19//	
		938 01	400			
		974		0000001063		
LEON VALLEY	Π.	296	02304 018			00000060535
	TANSILL	29				0000015779
FORT STOCKTON	TANSILL	948		0000166366	1977	
	TANSILL	959		۸.		0000196017
GRIMM	TANSILL	63				C4
	TANSILL	972	456			0000000778
	TANSILL.	896		0000015402	1977	
	TANSILL LIME			•		0000051147
PECOS VALLEY	YATES	0 0 0	01800 060			
TAYLOR-LINK	YATES	56				
	YATES	26				0000596282
	YATES	961	110			
	YATES	io D	780 020			0000315448
	YATES	0.1				
	YATES	896				0000173847
	YATES	20			197	
WEST	YATES	961			197	
REAUERS , WEST	YATES	096	01650 086	0000003543	1977	
	YATES	3			197	
	YATES	954	187			0000247141
PECOS VALLEY	YATES	0.1	500			
FUTNAM, NORTH	YATES	960				0000274902
	YATES	1957 02	616 054	0000049116	1975	0011835922
	YATES	89				0002767639
	rates	7.1				
EAST	YATES	65 02	584		197	
	YATES	64 02	672		197	
STOCKTON	YATES		\circ	. 0000031382	1977	
EON VALLEY	YATES	56 0	498		197	
VETTERUILLE	YATES	1934 02	400	0002910317	1977	

1948 01785 045 0000244035 1977	1928 01800 060 0016767484 1977	1928 01600 025 0006056877 1977	1967 01625 003 0000038700 1977	1969 03121 003 0000168090 1977	1970 03023 025 0000251564 1977	1970 01390 260 0000029651 1977	1944 02892 055	1943 03072 006 0000058843 1977
YATES	YATES-SEVEN RIVERS	YATES, LOWER						
OKIENI	PECOS VALLEY		PECOS VALLEY, SOUTHEAST		¥FF.	T, C, I,	CKTON	FORT STOCKTON

Reagan County, Texas

				-		
BARNHART, NORTHEAST	GRAYBURG	1955	01912	043	0000000629	1977
BIG LAKE, SOUTH	GRAYBURG	1954	02403	012	0000000924	1977
WOLTERS	GRAYBURG	1953	02250	100	0000007220	1977
JOHN SCOTT	GRAYBURG	1953	02534	163	0002354972	1977
PRICE	GRAYBURG	1953	02410	070	0001826725	1977
PRISCILLA	GRAYBURG	1964	02450	0.62	0000088920	1977
SANTA RITA, SOUTH	GRAYBURG	1961	03134	004	0000005968	1977
TEXON, SOUTH	GRAYBURG	1968	03266	004	0000527874	1977
PRICE, NORTHEAST	GRAYBURG	1954	02644	111	0000835098	1977
BIG LAKE	QUEEN	1923	03000	800	0124475372	1977
RIG LAKE	SAN ANDRES	1957	02985	002	0000011891	1977
JOHN SCOTT, NORTH	SAN ANDRES	1957	02306	164	0000002525	\sim
LONG-RODGERS	SAN ANDRES	1964	02560	800	0000000238	1977
ROCKER B	SAN ANDRES	1957	01774	073	0000002952	1977
ROCKER B, SOUTH	SAN ANDRES	1957	01858	118	0000002031	1977
BLOCK 49	SAN ANDRES	1955	02456	036	00000772266	1977
GRAYSON	SAN ANDRES	1928	03185	019	0001166409	1977
UBAR	SAN ANDRES	1955	02294	020	0000102228	1977

Reeves County, Texas

1.0% 4.8	1	070		C.36.00000	7.0+	
	021110 U200	0 0	~ i.	\C00000		
CONTEMBERS THOS			٠,	20000000	/ A T T	
WORSHAM	CASTILE		_	00000163	4 197	
CAMPRELL	CASTILE LIME		*~	42 000000122	11 197	
SUNNI	CHERRY CANYON		38	010		0000004767
WAHA, WEST	CHERRY CANYON		×~	00001075		0004637818
WAHA, WEST	CHERRY CANYON		^	00000100	2 197	
FORD	CHERRY CANYON		88		3 197	
KATHY-SUE	CHERRY CANYON		S	01 000000447	2 197	
WAHA, WEST	CHERRY CANYON		50		5 197	
			50	00000	6 197	
WAHA, WEST	CHERRY CANYON				7 197	
WORSHAM	CHERRY CANYON			000000	5 197	
RACUE	CHERRY CANYON			000011	3 197	
WAHA, WEST	CHERRY CANYON	896		030 000018861	ω	
WAHA, WEST	CHERRY CANYON				7 197	
WORSHAM	CHERRY CANYON			000001	8 197	
SULLIVAN	DELAWARE			61		
WAHA, WEST	DELAWARE			00000647	39 1975	0001425024
KENNEDY-FAULKNER, SOUTH				00000024	9 197	
BARSTOW	DELAWARE		04928			0000014474
BIG FLAT	DELAWARE			006 00000455	2 197	
E, C, F,	DELAWARE		c.i	0000023	3 197	
ഥ	DELAWARE	1959		002 000000554		
PECOS, NORTH	DELAWARE		04331	00000081	197	
RACUE	DELAWARE		;. - -,	000000	197	
REAVES	DELAWARE	33	03169 0	005 000000259	197	
			٥.		197	
WAHA, WEST	DEL AWARE	83		0000187	7 197	
WEINACHT		99	04654 0	18	6.6	
L. E. I.		963			4 197	
REEVES-BLOCK 4	DELAWARE	99		20 000000071	0 197	
REAUES, NORTH		964	03200 0			
TORO	DELAWARE	7.9	05158 0	00000262	10 1975	
TUNSTILL	DELAWARE	1947	03270			
WAHA	DELAWARE		800	40		0097289740
WAHA, WEST		1961	034	002 0000000295	75 1975	
WUKSHAM	UEL AWAKE		02081 0	00		0084284073

	0000666115	0000058362
1977 1977 1977 1977 1977 1977 1977	0000 0000	1977 1977 1977 1977 1977 1977 1977
0000090768 0000170546 0000030701 00002215165 0000035967 0001023932 0000020626 0000020626	368 368 368 362 362 368 368	0002665220 0000850945 00004530723 0001856241 00000855766 0000724964 00001139470 000001117
000 000 000 000 000 000 000 000 000 00	1000000000	000000000000000000000000000000000000000
03620 03940 02931 05179 03002 03350 03029 03029 05262 02968 04161	48488888888888888888888888888888888888	72222222222222222222222222222222222222
99999999999999999999999999999999999999	0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	966 963 963 960 961 961 961 962 958
DELAWARE		ELAWARE SAND
ORLA, SOUTHEAST AYLESWORTH CHAPMAN, SOUTH CRUSHER HAYS KEN REGAN KENNEDY-FAULKNER OLDS ROJO CABALLOS, WEST SABRE SAND LAKE SCREWBEAN, NORTHEAST	SULLIVAN TUNSTILL WORSHAW, SOUTHWEST CHAFMAN KENNEDY-FAULKNER, SOUTH AMBLER ALLAR-MARKS ARNO TORO, SOUTH	< C < C < C < C < C < C < C < C < C < C

Schleicher County, Texas

Scurry County, Texas

8. S. %	SAN ANDRES	1956 02170 025 1977
ROUGH CREEK	ANDRE	02022 062 0000000200
CORAZON	ANDRE	1953 02139 051 0003469592 1977
DIAMOND M		02380
SHARON RIDGE	SAN ANDRES	025
TONTO		1962 01751 0000011891 1977
UAREL, NORTH	ANDRE	1971 02328 082 0000025848 1977

Sterling County, Texas

1 T T T T T T T T T T T T T T T T T T T	GRAYRIIRG	1962 01691 003 0000204709 1977
	7.4	
PAROCHIAL-BADE, WEST	ST QUEEN	1965 01321 001 0000253297 1977
HERRELL, EAST	QUEEN SAND	1953 01454 011 0002123321 1977
PAROCHIAL-BADE	QUEEN SAND	1951 01103 016 0000976839 1977
FAROCHIAL-BADE	QUEEN SAND, LO.	1954 01336 061 0000367413 1977
DURHAM, WEST	SAN ANDRES	1953 01452 004 0000000089 1977
DURHAM	SAN ANDRES	1966 01461 007 0000003557 1977
KINKEL	SAN ANDRES	1959 01315 004 0000000397 1977
CLARK	SAN ANDRES	1949 00890 008 0000853424 1977
DURHAM	SAN ANDRES	1950 01404 016 0000362774 1977
PAROCHIAL-BADE	SAN ANDRES	1954 01737 010 0000018533 1977
	SEVEN RIVERS	1965 00984 003 0000014140 1977
		1965 01136 036 0000058982 1977
рикнам	YATES SAND	1957 00673 010 0000009558 1977

Terry County, Texas

			•
COUINGTON	SAN ANDRES	1956 05020 050	1956 05020 050 0000291004 1977
WELLMAN, SOUTHWEST	SAN ANDRES	1966 05509	0000106048 1977
WELLMAN, WEST	SAN ANDRES	1966 05583	0000801026 1977
TOKIO	YATES	1962 03378 034	006000000
WELLMAN, SOUTHWEST	YATES	1966 03430 088	
WELLMAN, WEST	YATES	1962 03440 075	0016708774

Tom Green County, Texas

HQ1 1	SAN ANTRES	1951 01295 024 0000052073 1976
111111111111111111111111111111111111111	į	
KNICKERBOCKER	SAN ANDRES	1952 00360 016 0000007099 1977
X Y F 1 = 100	C. A. S. S. S. C. C.	1011
FULL LAM	UEN ENERGY	//T GOO
FIINK	SAN ANTIGES	1952 00739 002 0000202615 1977
WATER VALLEY	SHYDING NOS	1948 01035 010 00029/1624 19//

Upton County, Texas

HORDLE	GRAYBURG	99	0 040
Ω ≪ Σ	GRAYBURG	*	011 0000008642 197
MCCAMEY, EAST	GRAYBURG	95	030 00000007378 1
CHURCH	GRAYBURG	0	0 0013008502 1977
CANLAW	GRAYBURG	0	007 0000011683 197
CANLAW	GRAYBURG		_
HURDLE	GRAYBURG	0	040 0000622501 19
MCCAMEY	GRAYBURG		080 0126456150 19
RODMAN-NOEL	GRAYBURG	1953 0174	073 0001053782 197
SHIRK	GRAYBURG	956 0285	0 070 0000672605 19
WEBB RAY	GRAYBURG		0 013 0000122510 197
MIETHER	GRAYBURG	1956 0324	1 174 0000795936 197
SUGARLOAF	GRAYBURG		7 004 0000065693 197
C-M-R	GRAYBURG	0	4 197
MCELROY	GRAYBURG - SAN ANDRES	1926	
HURDLE	QUEEN	56	4
AMACKER-TIPPETT, SOUTH	SAN ANDRES	1963 0491	3 016
CASTLE GAP	SAN ANDRES	Š	
HERRINGTON	SAN ANDRES	37	0000072485 197
WEBB RAY, SOUTHEAST	SAN ANDRES	95	062 0000000322 19
WEBB RAY	A	92	008 0000000113 197
HELUMA	SAN ANDRES	6 03	5 072 0000002727 19
RODMAN-NOEL	SAN ANDRES	1956 0183	4 010 0000034311 197

Ward County, Texas

QUITO, EAST	BELL CANYON	1964 05293 017 0000004512 1977
PORUITO	BELL CANYON	6.1
MAGNOLIA SEALY, WEST		959 06190 010 0000068394 197
DELSTRAT	BRUSHY CANYON	B 07675 006 0000129581 197
WAK-WINK	CHERRY CANYON	4 06080 004 0000000250 197
LOVELADY	CHERRY CANYON	4 06393 023 0000016727 197
MAGNOLIA SEALY, WEST	CHERRY CANYON	19
PYOTE, SOUTH	CHERRY CANYON	1 06216 012 0000061546 197
WAR-WINK	CHERRY CANYON	5 06037 002 0000019127 197
QUITO, WEST	CHERRY CANYON	4 06192
LOVELADY	CHERRY CANYON	06230 008 0000066252 197
PITZER, NORTH	CHERRY CANYON	4 06400 015 0000028878 19
PYOTE, SOUTH	CHERRY CANYON	06457 008 0000022371 197
BLOCK 16	CHERRY CANYON	05981 013 0000305657 197
SCOTT	DELAWARE	04239
scorr		
TWOFREDS	DELAWARE	04895
BLOCK 18		04982 022 0000004880 197
НАХІЙА	DELAWARE	04765 013 0000029330 197
MONROE	DELAWARE	04600 010
PRUITT, EAST	DELAWARE	05278 007 0000002436 197
REGAN-EDWARDS	DELAWARE	005 0000006940 1977
LION	DELAWARE	04993 020
MI VIDA	DELAWARE	970 05002 010
BLOCK 17	DELAWARE	04977 023 0000103268 197
BLOCK 17, SOUTHEAST	DELAWARE	956 05003 003
LION	DELAWARE	04965 015 0000135702 197
PITZER, SOUTH	DELAWARE	964 06390 011 0000135202 197
QUITO, EAST	DELAWARE	954 05124 010 0000135382 1
زئ		955 04732 011 0002832338 197
WIL-JOHN, NORTHWEST	DELAWARE SAND	961 05067 001 0000003424 197
BLOCK 17, SOUTHEAST		956 05003 024 0000124639 1975
PITZER		957 06085 025
QUITO		53 04934 010 0002388514 197
WILJOHN		953 05020 010 0000074394 197
SCOTT	Ü	46 04239 020
1		7 04757 004 0000231049 197
BLOCK 17	LAMAR LIME	05014 020 0000150969 197

	OLDS DELAWARE	67 0	850 01	0000029474	67
MONAHANS, WEST	RUEEN	1966 03	60 260	0000369862	97
₩ ₩ 0	QUEEN	62.0	36	000017928	0
H. S. A.	QUEEN	0 996	60 01	0000207520	7.6
MONAHANS, SOUTH	GUEEN	961 0	108 06	0005912100	97
MONAHANS, SOUTHWEST	QUEEN	970 0	084 00	0000059027	97
WRISTEN	RUEEN	973 0	\sim	7474	7.6
SHIFLEY, NORTH	QUEEN SAND	96	650 003	0000011047	7.6
WARD, SOUTH	QUEEN SAND	952 0	M	5342	7.6
DORR		955 0	291	0000405493	7.6
MONAHANS		0 096	569	0003982286	6.7
SHIPLEY	QUEEN SAND	928	075 080	0027338325	67
BLOCK 16	in all	970 0	736	0000007053	97
CRAWAR	SAN ANDRES	955 0	210	0000013095	7.6
WARD, SOUTH	SAN ANDRES	0 996	74	0000003286	67
MAGNOLIA SEALY, SOUTH	RIVE	940 0	47		
FYOTE	RIVE	942 0	27	000033848	.977
WARD, SOUTH	RIVE	953 0	·	0000005713 1	9.7
ш	RIVE	929 0	80 00		
MAGNOLIA SEALY	RIVE	0 626	20 07	0004390812	6.7
MAGNOLIA SEALY, SOUTH		940 02	0.5	00031226	.977
SPENCER	RIVE	941 02	00 04	0002423874	6.
WARD, SOUTH	RIVE	0 826	17	0096533385	6.
WARD-ESTES, NORTH	RIVE	0 676	000 085	0323702128	67
	YATES	954 0	08		
WARD, SOUTH	YATES	965 0	0.1		0000010297
SEALY, SOUTH	YATES	946 0	0.1	0000916238	.977
DORVENE	YATES	970 0	00	0000049180	\sim
SHIFLEY	YATES	933 0	0.65		
WARD, SOUTH	YATES	931 0			
MAGNOLIA SEALY, WEST	YATES	1958 03	3205 006	0000131401	67
	YATES	938 0		0012550205	7.6
SOUTH		520	640 04	0001526982	6.3
MAGNOLIA SEALY, NORTHWES	YATES	71 0	200	0000205685	1977
		730	06	0000178239	977
MAGNOLIA SEALY, SOUTH	YATES, LOWER	1968 03	250 005		0000032969

Winkler County, Texas

WINK, SOUTH	BONE SPRING	1973	08960	0.7.1	0000016579	1977	
* C * L C -	TOTAL OF MARCO	١.		3 6	AAA T T AAAA		
JUE, EAST	DELAWARE	Э.	05049	00%			0000126316
JOE	DEL AWARE	Ç.	05034		0000146965	1975	
エ	DELAWARE	ŷ	05004				0001484334
, NORTH	DELAWARE	ŷ	05002				0000400119
	DELAWARE	O.	05091		0000002289	1975	
WAR-WINK	DELAWARE	Ç.	05063	049			0001472649
JOE	DELAWARE	9	05034	900	0001035440	1977	
JUE, EAST	DELAWARE	Ç.	05022	003		67	
JOE	DELAWARE	D.	05002	012		67	
WAR-WINK	DELAWARE	Ç,	05091	004	0000064888	1977	
BLOCK 20	DELAWARE SAND	Ç.	05096	900	0000034180	67	
RSITY BLK 21	DELAWARE SAND	ŷ	07235	043	0000197522	6/	
KERMIT	GRAYBURG	Ś	03249	037	9026000000	67	
SCARBOROUGH, NORTH	GRAYBURG	ŝ	03286	020	0003281823	~	
KEYSTONE	GRAYBURG	Ο.	02918				0003325519
	GRAYBURG	ŝ	03249		0000352241	1977	
	QUEEN	≎	03285				
KEYSTONE	QUEEN	Ç.	03300	170			
DARMER	QUEEN	1967	23		0000079870	1977	
		≎.	03285		0000117006		
HALLEY, SOUTH	QUEEN SAND	96	i	051			
PAT BISHOP	QUEEN SI.		32	0.1.1	0000105080		
KEYSTONE	ANDRES	96	04465	900	0001039111	1977	
KERMIT	SAN ANDRES-YATES, UPPER						
EAVES		Ç.	320	030	0004412688	6.7	
HALLEY		ŝ	3		~ 1	1977	
LECK	SEVEN RIVERS	ç	03100	150	0004914944	67	
HALLEY	SEVEN RIVERS	9	03106	007			8990290000
EMPEROR	SEVEN RIVERS	ŷ	02900	050	0022798528	1977	
EMPEROR	SEVEN RIVERS	≎	03000	050	ŏ	67	
HALLEY		٥	03150	100	0014900242		
HENDRICK		ŝ	03100	300	Či.	\sim	
LECK, WEST		ŝ	03153	084	00000000	6.7	
HENDERSON	YATES	1963	05076	062			
FRI BIOHUF	חשות ביי	>	02220	070			

					1975		1977	1977		
					0000000118 1975		0026638929	0014550161		
100	_	020			102	_	0.75	_	100	
03150	02450	02360	02485	02492	03180	02537	03200	03030	02597	1937 02401
1939	1937	1937	1928	1956	1927	1952	1927	1936	1935	1937
YATES	YATES	YATES	YATES	YATES	YATES	YATES	YATES	YATES	YATES OBRIEN	YATES, UPPER
HALLEY	EMPEROR	EMPEROR DEEP	KERMIT	KEYSTONE	SCARBOROUGH	SCARBOROUGH	SCARBORDUGH	HENDERSON	HALLEY	WEINER

Yoakem County, Texas

BRONCO	AN ANDRE	952 11692 098	333 197
BRAHANEY, WEST	AN	954 05268 076	3 197
BRONCO	AN ANDRE	954 05182 098	7123 197
CHAMBLISS	AN ANDRE	955 05248 064	3275 197
CONRAD	AN ANDRE	05292 022	2270 197
FITZGERALD, EAST	SAN ANDRES	960 05398 012	8455 197
PLATANG	AN ANDRE	955 05137 029	2872 197
PRENTICE, NORTH	AN ANDRE	956 05095 016	082 197
PRENTICE	AN	05294 056	311 197
TAMARA	NA	957 05308 020	0005399 197
WAPLES PLATTER	SAN ANDRES	05300 113	419 197
WEST	AN	973 05219	01 197
ВАҮ	N N	05350	2268 197
HARTLEY	Z	959 05365 016	19 197
HENARD	SAN ANDRES	950 05205 135	1756 197
JANICE	AN	05263 017	90402 197
LANDON	AN	05100 040	3810 197
OWNRY	AN ANDRE	05350 060	26377 197
DWNBY, WEST	AN ANDRE	953 05307 161	81586 197
·REEVES	AN ANDRE	05544 030	84618 197
SABLE	AN ANDRE	05258 038	575397 197
SPIVEY	AN ANDRE	05340 020	167096 197
WEST	SAN ANDRES	05100 035	67
PRENTICE, NORTHWEST	ANDRE	164 048	583329
WBD	AN ANDRE	05288	07986 197
SABLE, NORTH	Z	05230	36466 197
FREATICE	AN ANDRE	05240	64 197
WASSON, NORTH	ANDRE	0	20 197

Chaves County, New Mexico

HENSHAW, WEST	GRAYBURG	02745	
SAMS RANCH	GRAYBURG	963 01683 010	0000654159
STOWN	RUEEN	942 00765 005 0000069757 1977	
COYOTE	QUEEN	59 00835 025 0000356666 197	
CAPROCK	QUEEN	940 009 0071710693 197	
CEDAR FOINT	GUEEN	956 02770 007 00000081	
SULIMAR	QUEEN	968 02031 008 0001888526 197	
LUCKY LAKE, SOUTH	QUEEN	007 0000093905 197	
rouble L	QUEEN	969 01929 010 0001575342 197	
DRICKEY	QUEEN	953 02871 019 0000	
DRICKEY, SOUTH	QUEEN	954 03132	
ROUND TANK	QUEEN	01506 004 0000005353 197	
UEST RANCH	QUEEN	02142 00001559	
CHAVES, SOUTHEAST	QUEEN	2 02107	0000170223
RACE TRACK	SAN ANDRES	4 02186 103 0000023808 197	
TOBAC, WEST		5 04242 004 0000000355 197	
MANY GATES		7 03261 0000000989 197	
PECOS		961 01128 018 0000013673 197	
LAKE,	SAN ANDRES	0 00880 012 0000121422 197	
BITTER LAKE, WEST		960 00763 040 0000011276 197	
BUTTON MESA		960 04032 010 0000000860	
CHISUM		1 02028 005 0000047969 197	
TOWER		0 04148 017 0000002036 197	
CHISUM, EAST		9 02155 039 0000075914 197	
GALLINA		5 04053 015 0000014691 197	
LONESOME		5 04118 130 0000002812 197	
MINDWILL	SAN ANDRES	9 02514 018 0000000993 197	
DEXTER		955 01338 010 0000002318 197	
DIABLO		2 02060 032 0000019732 197	
LESLIE SPRING	SAN ANDRES	64 01484 018 0000008739 197	
L.INDA		01023 021 0000071075 197	
ACME		51 01975 005 0000210769 19	
COMANCHE	SAN ANDRES	36 01254 010 0000015077 197	
BITTER LAKE		46 01247 005 0000000090 19	
	SAN ANDRES	66 03496 030 0013944240 19	
TWIN LAKES	SAN ANDRES	1965 02569 073 0000341870 1977	

TOM - TOM	SAN ANDRES	1967 039	54 020	1967 03954 020 0000415593	1977
CHAVEROO, NORTHEAST	SAN ANDRES	1967		0000010542	1975
CHAVEROO	SAN ANDRES	1965 04184	84 040	0018385897	1977
SIETE	SAN ANDRES	1968 03712	040	0000134608	1977
nouble L	SAN ANDRES	1969 03373	010		
CATO, NORTH	SAN ANDRES	1977		0000000304 1977	1977
CHAVEROO, SOUTH	SAN ANDRES	1977		0000000159	1977
SULIMAR	SAN ANDRES	1976		0000002399	1977
ROUND TANK	SAN ANDRES	1962 02960	09	0000059837	1977
L E RANCH	SAN ANDRES	1963 02089	89	0000001730 1977	1977

Eddy County, New Mexico

BIG EDDY	BONE SPRING	1970 08565 008 0000026816 1977	
FALMILLO	ហ	006 0000002481 19	
MAROON CLIFFS	BONE SPRING	06786 050 0000014946 1	
AVALON	BONE SPRING		0000026107
SHUGART	BONE SPRING	08135 0000103357 1	
PENLON	BONE SPRINGS	0000004742 1	
COTTON DRAW	BRUSHY CANYON	07184 016 0000032000 1	
GLENN	CASTILE	1952 00878 005 0000001716 1977	
CARLSBAD, SOUTH	CHERRY CANYON	975 0000079958 1	
SAND DUNES	CHERRY CANYON	970 06012 024 0000275024 1	
NASH DRAW	CHERRY CANYON	0000017677 1	
MAROON CLIFFS	DELAWARE	961 000000003 1	
SULPHATE DRAW	DELAWARE	02313 004 0000004469 1	
TECOLOTE PEAK	DEL.AWARE	59 02512 002 0000003293 1	
MALAGA, NORTH	DELAWARE	1954 04678 006 0000014663 1977	
MALAGA, WEST	DELAWARE	02300 005 0000000363 1	
MALAGA	DEL AWARE	02774 014 0000752787	
REVELATION		012	
ESPERANZA		02042 003 0000257890	
CARLSBAD, SOUTH	DELAWARE	974 04456 008 0000012905	
WASHINGTON RANCE	DELAWARE	01354 010	0000008374
O, S,	DEL.AWARE	06890 030 0000024932 19	
SCANLON	DELAWARE	03238 0	
SHUGART		04970 024 0000900093 19	
LOUING	DELAWARE	1958 02444 010 0000000281 1977	

	0000013101	00000020257	
	-		
1977 1977 1977 1977 1977 1977 1977 1977	7.6	1 1111111 1111111 0 999999 99999 9	<u>`</u>
0000061439 0000003729 0000016897 00000154998 00000129468 00000037222 00000024257 000000565720 00000565720	0000064	00000000000000000000000000000000000000	
0000 0000 0000 0000 0000 0000 0000 0000 0000		00000000000000000000000000000000000000	
01943 03189 01876 02349 05142 03210 02082 03960 02634		06112 07003 01800 01800 01883 02700 02362 03562 01353 02682	
1937 1966 1966 1960 1968 1953 1951 1951 1976 1976	7 6 6 7 6		1.Y/U
0ELAWARE 0ELAWARE 0ELAWARE 0ELAWARE 0ELAWARE 0ELAWARE 0ELAWARE 0ELAWARE	DELAWARE DELAWARE DELAWARE	DELAWARE DELAWARE DELAWARE DELAWARE DELAWARE DELAWARE DELAWARE MTN. GRAYBURG	SAN ANDKE
BLACK RIVER BURTON DARK CANYON CASS DRAW BIG EDDY BRUSHY DRAW WELCH VECOS SANTO NINO CARLSBAD INDIAN DRAW CORRAL CANYON ELBOW CANYON	CANYON TANK	E, SOUTHWEST RAW FLATS A RIDGE EL RITY , EAST N N N N N N N N N N N N N N N N N N N	LEMEIAKI

0007973132	0005611260	0000059296	
1977 1977 1977 1977 1977 1977 1977	476 479 479	7	
0000325201 0016280656 00023586947 0002055363 00002023759 0001386201 0001386201	01404 03937 19245	0000000551371 00000055560 0000055560 00000055540 000000531375 000000005574 000000000055760 000000000055760 0000000000	
021 035 033 010 010 010 025	020 015 015	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
03410 01875 03633 01374 02235 01775	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5) ENERNEE ENR OHRRHERRER	
1923 1923 1953 1953 1950 1943			
GRAYBURG SAN ANDRES GRAYBURG, QUEEN, YATES GRAYBURG, SAN ANDRES PREMIER GRAYBURG QUEEN QUEEN QUEEN	QUEEN QUEEN QUEEN QUEEN	QUEEN QUEEN QUEEN QUEEN GRAYBURG GUEEN GRAYBURG GAN ANDRES SAN ANDRES	
FOWER SHUGART ARTESIA SQUARE LAKE, NORTH VANDAGRIFF TURKEY TRACK, EAST HIGH LONESOME TURKEY TRACK BENSON, NORTH	ARKANSAS JUNCTION SAND TANK LOCO HILLS CULWIN	SCUARE LAKE SCANLON DRAW ROBINSON NORTH RED LAKE, EAST LEO, SOUTH LEO MILLMAN, EAST BEAR DRAW RED LAKE LOCO HILLS SHUGART, NORTH GRAYBURG TURKEY TRACK, WEST TAMANO THREE MILE LOGAN DRAW MILLMAN, RAST MILLMAN, NORTH ATOKA DAYTON HILLS CAVE, WEST EAGLE CREEK	

LOCO HILLS, SOUTH FOREST	SAN ANDRES SAN ANDRES	1958 1946	03834	036	0000016172	1974 1974
MALJAMAR		Š	04307	023		
NICHOLS	AN ANDRE	4	02919	<u>ب</u>	8310	6.7
GRAYBURG KEELY	AN ANDE	4	03290	20	00099231	~
TURKEY TRACK	EVEN RI	1949	01635	010	1297	∴
RED LAKE, SOUTH	i.	1964				6.7
MCMILLAN, WEST	Z	1961			2980000000	97
HIGH LONESOME	VEN RI	1956	01219	031	0000000353	9
MILLMAN, EAST	œ	1959	01038		0000284304	\sim
CAR	K	1962			0000000462	1977
FALMILLO	ĭ	1925	01495	010	0000029154	1977
MCMILLAN	Z	949	00320	007	0000013565	1974
ANGELL	2	954	01114	0.1.1	0000016824	1974
HACKBERRY	3	196	02020		0000055639	1974
MCMILLAN	RIVERS	938		010	0000329084	1977
MCMILLAN EAST	RIVERS	1964	01344	900	0000016419	6
MCMILLAN, WEST	RIVER	1961	00520		0000008553	\sim
MAROON CLIFFS	TANSILL	1959	02179		0000026336	6.2
PARALLEL	TANSILL (WINKLER)	1959	02358		0000007746	\sim
MAGRUDER	YATES		00220		0000009861	\sim
PCA	YATES	626	01500		0000821716	
RED HILLS	YATES		01630	44	0000033327	1977
BURTON	YATES	934	01160		0000003557	\sim
BENSON, EAST	YATES	096	02098		08915	
RUSSELL	YATES	1942	00785	10	0002383520	/
SALADAR	YATES	926	00633	20	15796	6.
GETTY	YATES	1927	01365	10	0001821983	6
BARBER	YATES	1937	01400		0001609822	6
BENSON	YATES	1943	01725	∞	0000245434	
CEDAR HILLS	YATES	1951	00542		02518	6
LUSK, WEST	YATES	94	02460	10	\sim	Ç,
HACKBERRY	YATES	1953	02047	900	\sim	1974
BENSON SOUTH	YATES	Ç	01742		00023383	9
COLWIN	YATES	1959	02582	080	162	3
FREZ, ZORTI	ATES - SEVEN	\sim	01744		00000113	97
	ATES SEVEN	1945	035	010	0010634	1977
EMPIRE, EAST	SEVEN F	S	98/00		0000205857	6.

	1941 00850 005 0000150577 1977	5 0000150577	1977
YATES SEVEN RIVERS	1955 01631 005	5 0001382298 1977	1977
YESO	1970	0000003386 1977	1977
YESO	1946 06090 020	0	0394144841
YESO	1977	0000007771 1977	1977
YESO	1968 02507	0000001864 1977	1977

Lea County, New Mexico

LUSK, EAST	BONE SPRING	1975	0000316041	197
	SPRI	1965 08708	1133	197
MILSON	22	1967 09410	0000012660	
FEARL	ហ	55 081	30 000000423	197
TEAS	ហ	C4	31 000012745	197
BUFFALO	SPR	963 044	15 000000771	197
LUSK		096	18 000001406	197
GRAMA RIDGE	SPR	966 106	36 00000170	197
LEA, SOUTH	SFR	54	447	197
OSUDO	BONE SPRING	964	13 000000728	1.97
而不	BONE SPRING	975 08	000013663	197
SAND DUNES	BONE SFRING	0	24 0000027	197
BELL LAKE, NORTH	BONE SFRING	Ç.	\sim	197
_ٰ	S	O-	٥	197
BELL LAKE	BONE SPRING	955 08	000039222	197
VACUUM, SOUTH	S	958 0850	7867	197
L.EA	S	60 096	000241249	197
VACUUM NORTH	BONE SFRING	53 0880	000000280	6
ANTELOPE RIDGE	SFR	0	0000008101	197
QUAIL RIDGE	ហ	961 1011	0001150682	197
SCHARB	SPR	D	042 0005448666	1.67
GRAMA RIDGE, WEST	SPRING	Ų.	000001804	197
SALT LAKE	ហ	Ç.	0002961	197
ROCK LAKE	NE SPRING	₽.	0065	197
FADUCA, NORTH	DELAWARE	967 047	005 000005688	197
	L.AWAR	967 048	000005142	197
	DELAWARE	959 046	008 000519956	197
CORBIN	L.AWAR	0.4	040 000000035	6 1977
MASON, EAST	DELAWARE	61 044	000035767	161
1.1	DELAWARE	1956 04621	003 0000071860	0 1977

	М 0 С	1977	67	67	67	67	97	97	67	67	9.7	97	1977	1974	1974		\sim			0		6.6	ŝ	6/	67	6.5	97	97	1977	N		1977	
39488 01132	03224	3 5 G 4 H 4	447	788840	433061	373756	175615	576201	192833	024571	418858	0023689	0013814	1981	164368		000346	74614	080078	40	461833	644833	019877	053742	655401	019720	0002150667	49	010310	00	7.1	59654	364472
	0000	0000		0000	0000	0000	0000	0000	0000	0000	8000		000	0000	000		00	026	0800000	0170	0184	0113	0328	0234	0001	0000	0002	0000	0000010	000	0000	0.4	0001
010	020	008				005		035		011	050	010	004	010	0.15	015		050	010	095	022	050	100	100	050	030	0.10	008		010	120	029	012
04115	751	0 N		04914	05062	05095	04712	05005	05020	09890	03800	04292	03685	03880	04195	04192	04044	03650	04645	\circ	03818	03960		04050		34	03765	410		03800	04379	67	04225
_ IO IO :	√ 0 √	1963	\sim	-40	1961	1961	1961	1962	73	959	937	952	23	1939	ŷ	\$	ŷ	9	ŷ	ŷ.	1935	ŝ	ŷ	٥	9	1949	1945	1950	1961	4	1957	1952	1938
AWA AWA	DELAWARE	DELAWAKE DELAWARE	DELAWARE	DELAWARE	DELAWARE	DELAWARE	DELAWARE	DELAWARE	DELAWARE	DELAWARE SANDSTONE	GRAYBURG	GRAYBURG	GRAYBURG	GRAYBURG	GRAYBURG	GRAYBURG	GRAYBURG	GRAYBURG & QUEEN	AN ANDRE		AN ANDRE	GRAYBURG SAN ANDRES	SAN	ANDRE	-SAN ANDRE	-SAN ANDRE	CUEEN	QUEEN	QUEEN	QUEEN	QUEEN	QUEEN	CUEEN
MASON, NORTH BRADLEY	JALY WEST	BALILE AXE PADUCA	CORBIN, WEST	DOUBLE X	TRISTE DRAW	CRUZ	LUSK	SALADO DRAW	TRIPLE X	QUERECHO PLAINS	SKAGGS	SAND HILLS	TEAGUE	MALJAMAR, NORTH	ROBERTS	ROBERTS WEST	ANDERSON RANCH WEST	ARROWHEAD	MALJAMAR, SOUTH	VACUUM	MONUMENT	MALJAMAR	EUNICE MONUMENT	HOBBS	ROBINSON	MALJAMAR EAST	YOUNG	BISHOF CANYON	MONUMENT, NORTHEAST	PEARSALL	CORBIN, SOUTH	DOLLARHIDE	CORBIN

EUMONT E-K, EAST LEONARD, SOUTH HUME	QUEEN QUEEN QUEEN	1953 1957 1950	04838 03438 03950		0000967009	1977 1977 1977	1145853903
MALJAMAR VACUUM	QUEEN	, 0, 0, 0	313	1001			65847 74548
CUERECHO PLAINS, EAST	GUEEN		04330	005			0000199035
75120	QUEER	1969					200
75160	COLEEN	٥٠	04584	010			38
73600 I FONARII	QUEEN	ᡐ᠀	03630				33.1
PEARL, WEST		1959			7837	6.5	
MESA	QUEEN	1962	408	005		1977	
CAPROCK NORTH	QUEEN	95			128	6.7	
SEVEN RIVERS	QUEEN	1954					
EIDSON	QUEEN	1976			0510	6.7	
REEVES	QUEEN	1977			0,	1977	
PEARL, EAST	QUEEN	1961	483		0000006159	\sim	
HUME, WEST	GUEEN	1962	392		~	97	
VACUUM	QUEEN	1961	03933			\sim	
SHINNERY		1973			0000035765	6/	
	<u>.</u>	1956		C:	8	6.7	
PENROSE - SKELLY	i	1936		020	270	6.3	
HARIY	QUEEN - GRAYBURG	1936	03710	0	502	1974	
	QUEEN - PENROSE	1967	 []		98569	0/	
CHO PLAINS	ili O	1961	3.9		000368462	1	
; ;		1929	02800		0000038964	97	
IE-MATTIX GAS	E C E S	1929					0074469493
	SAN ANDRES	1967	ロ: な: ロ:	:	58612	97	
	SAN ANDRES	1706	04321	020	6/90 8/90 8/90) / () /C	
	OTATION OTATION OTATION OTATION OF TAILORD	1001		ć	0 C	\ P 	
H000H			* \ D & \	-	1077	\	
- C L	ONIX TRUKTO	0 U	/	<00	0000	\ P 	
TT, WEST	SAN TRUCKES) () ()	07770) (V	<u> </u>		
SOUTH	SAN ANDRES	(C)	05020	0	ıN	0	
YER	SAN ANDRES	6	04926	(전 (제	. CV		
	SAN ANDRES	9		034	000000000	6	
BRONCO, SOUTH	SAN ANDRES		04636	032	0000000376		

59 04408 011 0000004821 1977 0000538072 1977 72 05855 010 0000093302 1977 50 09001 034 0000011248 1977 57 04833 010 000000629 1977 58 04884 006 0000263547 1977 59 04884 006 0000263547 1977 54 04177 017 0000102992 1977 57 04460 011 0000063955 1977 59 04945 035 000000415 1977 50 04860 010 0000174919 1977	964 04746 024 964 965 04904 028 964 04502 016 0005 951 04449 015 0004 959 04846 020 0000 969 04944 016 0001 969 04988 024 0000	959 04926 020 958 04804 044 0000015681 197 962 04063 067 0005089629 197 953 05815 015 0000001123 197 958 04950 028 0000016321 197 976 00000003443 197 976 0000000625 197	56 04952 024 0000107653 197 75 04174 0000012461 197 58 04085 013 0000061574 197 55 03848 010 0000269779 197 48 03430 010 0000060604 197 44 03150 020 0003781515 197 44 03565 008 0000236611 197
SAN ANDRES SAN ANDRES SAN ANDRES SAN ANDRES SAN ANDRES SAN ANDRES SAN ANDRES SAN ANDRES SAN ANDRES SAN ANDRES	SAN ANDRES SAN ANDRES SAN ANDRES SAN ANDRES SAN ANDRES SAN ANDRES SAN ANDRES SAN ANDRES		SAN ANDRES SAN ANDRES SEVEN RIVERS SEVEN RIVERS SEVEN RIVERS SEVEN RIVERS SEVEN RIVERS
CORMAC EUNICE, SOUTH LEA LOVINGTON MIDWAY RANGER LAKE BISHOF CANYON LOVINGTON, WEST BUTTON MESA, SOUTH GARRETT FOSTER ECHOLS	BOUGHJINK ZS600 FLYING M HOBBS, EAST JENKINS SAWYER, WEST SPENCER	SAWYER CROSSROADS, WEST MESCALERO CARTER SAWYER SOUTH ALLISON, EAST ARKANSAS JUNCTION, WEST CALUMET	AKNANSAS JUNCIIUN DICKINSON PEARL LUSK LEONARD BOWERS

0000552829	1531569760	0000074382	0000207085
1977 1975 1977	19974 19974 19977 19	1977 1977 1977 1977 1977	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
0000016375 0000075433 0000868919	0014346472 0000315095 00024630872 0000008812 000000324031 00000005247 00000005247 00000005247 00000005247 000000599631 00000599631 00000599631 00000599631 00000599631	000001036/0 0057819325 0000047445 00000563887 0000089501	00000084656 00000583813 0000007394
014 010 010	010 000 000 000 000 000 000 000 000 000	020 010 010 013 013	
03852 04048 03564 03936 03200	034675 033650 033750 033750 033767 033110 032110 033240 033240 033243 033243	y 40004	03570 037570 037559 03559
9953 9459 948 859	្រុកក្រុម ក្រុម ក្ម ក្រុម ក្រ	99999999999999999999999999999999999999	929 968 960 963
SEVEN RIVERS SEVEN RIVERS SEVEN RIVERS SEVEN RIVERS SEVEN RIVERS SEVEN RIVERS		YALES YATES YATES YATES YATES	YATES YATES YATES
HOBBS, EAST FEARL, EAST WATKINS WILSON WEST JALCO	LYNCH, NORTH LYNCH, NORTH LANGLIE-MATTIX CUSTER FOWLER VACUUM QUERECHO PLAINS MALJAMAR, SOUTH HALFWAY, NORTH GEM, EAST LUSK BAISH QUAIL RIDGE, SOUTH HALFWAY WILSON WEST JALMAT SAN SIMON, NORTH LYNCH-MIDDLE GEM TEAS, WEST	SAN SIMON JALMAT CORBIN VACUUM SALT LAKE LUSK, EAST	. 10

		0000023092			0178754259														0001179183				0408113895		
			1977	1977		1977	1977	1977	1977	1974	1977	1977	1974	1977		1977	1977	1977		1977	1977	1973		1974	1977
			0002008467	0008504784		0000074233	0000158509	0064964933	0015239555	0031592995	0005492102	0000259985	0006706253	0000029242		0000010334	0008611482	0073080856		0036823181	0000394726	0025767323		0011028220	0043736178
			010	025		017	021	025	500	040	021	015	090	020		025	020	100	020	1.10	015	090	020	020	035
02985	02880	03000		03000		03613	03001			03300	04375	04217	03150	03880		05015	05695	06400	06760		06765	05550	05470	05840	06394
		1957	1951	1927	1929	0	1961	1953	1975	1927	1954	947	1929	1951	1928	1945	1948	1944	1951	1974	1950	1945	1945	1952	1962
YATES	YATES	YATES	YATES & SEVEN RIVERS	YATES - SEVEN RIVERS	YATES - SEVEN RIVERS	SEVEN	YATES AND SEVEN RIVERS	YATES SEVEN RIVERS	YATES SEVEN RIVERS	YATES SEVEN RIVERS	YATES SEVEN RIVERS QUEEN	YATES SEVEN RIVERS QUEEN	YATES SEVEN KIVERS QUEEN	YATES-SEVEN RIVERS	YATES-SEVEN RIVERS	YESO	YESO GLORIETA								
JALCO	LANGMAT	RHODES	TEAS	RHODES	RHODES	SAN MIGUEL	TONTO, SOUTH	EUMONT	SCARBOROUGH	COOPER JAL	¥∷	WATKINS	EAVES	WILSON NORTH	EAVES	HARRISON	MONUMENT	DRINKARD	HOUSE	BLINEBRY	WARREN	BLINEBRY	BLINEBRY	TERRY	VACUUM

Roosevelt County, New Mexico

							0003614029		
1977	1977	1977	1977	1977	1977	1977	Ĭ	1974	1977
0000000118 1977	0000000848	0000048781	0000020075	0000381694		0000000407		0000006136 1974	0008290615
020	010	010	012	031		032	020	019	048
		04554	04600	04804	04231	04858	04610	03860	1958 04554
1964	1964	1963	1962	1962	1971	1959	1952	1968	1958
SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES	SAN ANDRES
ALLISON	ISON, NORTH	MILNESAND, WEST	CLR	IRIE, SOUTH	D, NORTHWEST	PRAIRIE	BLUITT	ITT, EAST	4ILNESAND

TODD, NORTHWEST	SAN ANDRES	1971 04231		0000085984
TOMAHAWK	SAN ANDRES	1977	0000025503 1977	
BLUITT	SAN ANDRES ASSOCIATED	1969	0002190084 1977	
BLUITT	SAN ANDRES NEW	1969		0000169294
TODD	SLAUGHTER ZONE, LOWER SA	1965	040 0002418564 1977	
Topp	SLAUGHTER ZONE, UPPER SA 1963	04536	0	0009154230
BAKER	SAN ANDRES	1966 04191 006	5	0000454467

Table 4.--Cumulative oil and gas production for selected stratigraphic units from the Permian Basin of west Texas and southeastern New Mexico

Producing Formation	No. of Pools	Cumulative oil production ² (bbls)	Cumulative gas production ³ (Mcf)
Bone Spring Ls.	36	10,836,946	26,107
Capitan Fm.	0	0	0
Castile Fm.	, 10	177,449	0
Delaware Mountain Gp	• ⁴ 228	147,838,929	444,186
Goat Seep Ls.	0	0	0
Grayburg Fm.	173	3,257,310,434	17,265,940
Queen Fm.	179	527,719,866	1,254,017,480
Rustler Fm.	5	1,019,685	0
San Andres Ls.	435	3,605,905,136	36,433,294
Seven Rivers Fm.	91	921,401,640	823,028
Tansill Fm.	12	229,717	0
Victorio Peak Ls.	0	0	0
Yates Fm.	159	609,064,948	1,710,628,578
Yeso Fm.	15	202,411,700	803,437,919
Total			
all units	1343	9,283,916,450	3,823,076,532

Data from Table 3, Petroleum Data System (PDS), University of Oklahoma. Data may not be complete as it includes only those pools and production data reported through the PDS system.

² Most data current through 1977. Some fields only reported through earlier years, however; see Table 3 for reporting years, by field or pool.

 $^{^3}$ Most data current through 1977 but some fields may be reported only through earlier years.

⁴ Includes production from the Bell Canyon, Cherry Canyon, and Brushy Canyon Formations and the Lamar Ls.

Bibliography of the Permian Basin and Related Areas

- Achauer, C. W., 1969, Origin of Capitan formation, Guadalupe Mountains, New Mexico and Texas: AAPG Bulletin, v. 53, p. 2314-2323.
- _____1971, Origin of Capitan formation, Guadalupe Mountains, New Mexico and Texas: Reply: AAPG Bulletin, v. 55, p. 313-315.
- Adams, J. E., 1930, Origin of oil and its reservoir in Yates pool, Pecos County, Texas: AAPG Bulletin, v. 14, no. 6, p. 705-717.
- 1935, Upper Permian stratigraphy of west Texas Permian basin: AAPG Bulletin, v. 19, p. 1010-1022.
- _____1936, Oil pool of open reservoir type: AAPG Bulletin, v. 20, p. 780-796.
- _____1944, Upper Permian Ochoa series of Delaware Basin, west Texas and southeast New Mexico: AAPG Bulletin, v. 28, p. 1596-1625.
- 1965, Stratigraphic-tectonic development of Delaware Basin: AAPG Bulletin, v. 49, p. 2140-2148.
- ______1967, Semi-cyclicity in the Castile Evaporite, <u>in</u> Elam, J. G., and Chuber, S., eds., Cyclic sedimentation in the Permian Basin: West Texas Geological Society Symposium, p. 197-203.
- Adams, J. E., and Frenzel, H. N., 1950, Capitan barrier reef, Texas and New Mexico: Journal of Geology, v. 58, p. 289-312.
- Adams, J. E., Frenzel, H. N., Rhodes, M. L., and Johnson, D. P., 1951, Starved Pennsylvanian Midland Basin: AAPG Bulletin, v. 35, p. 2600-2607.
- Adams, J. E., and Rhodes, M. L., 1960, Dolomitization by seepage refluxion: AAPG Bulletin, v. 44, p. 1912-1920.
- and others, 1939, Standard Permian section of North America: AAPG Bulletin, v. 23, p. 1673-1681.
- Adams, S. S., 1967, Bromine in the Salado Formation, Carlsbad potash district, New Mexico: Cambridge, Harvard University, unpublished Ph. D. dissertation, 202 p.
- ______1970, Ore controls, Carlsbad potash district, southeast New Mexico, in Third Symposium on Salt: Northern Ohio Geological Society, v. 1, p. 120-152.
- Anderson, R. Y., Dean, W. E., Kirkland, D. W., and Snider, H. I., 1972, Permian Castile varved evaporite sequence, west Texas and New Mexico: Geological Society of America Bulletin, v. 83, p. 59-86.
- Anderson, R. Y., and Kirkland, D. W., 1966, Intrabasin varve correlation: Geological Society of America Bulletin, v. 77, p. 241-256.
- 1979, Dissolution of salt in the Delaware Basin by means of brine density flow (abs.): Geological Society of America, Abstracts with Programs, v. 11, no. 7, p. 379.
- Anonymous, 1947, Guadalupe Mountains of New Mexico-Texas: Midland, Texas, West Texas Geological Society Guide Book, Field Trip no. 4, 94 p.
- 1949, The Permian rocks of Trans-Pecos, Texas region: Midland, Texas, West Texas Geological Society Guide Book, Field Trip no. 4, 94 p.
- Babcock, J. A., 1974, The role of algae in the formation of the Capitan Limestone (Permian, Guadalupian), Guadalupe Mountains, West Texas and New Mexico: Madison, University of Wisconsin, unpublished Ph. D. dissertation, 241 p.

- 1977, Calcareous algae, organic boundstones, and the genesis of the upper Capitan Limestone (Permian, Guadalupian), Guadalupe Mountains, west Texas and New Mexico, in Hileman, M. E., and Mazzullo, S. J., eds., Upper Guadalupian facies, Permian reef complex, Guadalupe Mountains, New Mexico and west Texas: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, 1977 Field Conference Guidebook (Publication 77-16), v. 1, p. 3-44.
- Babcock, L. C., 1974a, Conodont paleoecology of a Guadalupian (Permian) shelf to basin sequence, Permian reef complex, west Texas and New Mexico (abs.), in Abstracts with Programs: North-central Section, Geological Society of America, p. 489.
- 1974b, Statistical approaches to the conodont paleoecology of the Lamar Limestone, Permian reef complex, west Texas: Madison, University of Wisconsin, unpublished Ph. D. dissertation, 175 p.
- 1977, Life in the Delaware Basin--The paleoecology of the Lamar Limestone, in Hileman, M. E., and Mazzullo, S. J., eds., Upper Guadalupian facies, Permian reef complex, Guadalupe Mountains, New Mexico and west Texas: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, 1977 Field Conference Guidebook (Publication 77-16), v. 1, p. 357-390.
- Bachman, G. O., 1953, Geology of a part of northwestern Mora County, New Mexico: U.S. Geological Survey Oil and Gas Investigations Map OM-137. 1975, New Mexico, in McKee, E. D., Crosby E. J., and others,
 - Paleotectonic investigations of the Pennsylvanian System in the United States: U.S. Geological Survey Professional Paper 853-L, p. 233-243.
- Baker, C. L., 1920, Contributions to the stratigraphy of eastern New Mexico: American Journal of Science, 4th ser., v. 49, p. 99-126.
- _____1924, Caverns in the Guadalupe Mountain Range: Science, new ser., v, 59, p. 379.
- 1929, Depositional history of the red beds and saline residues of the Texas Permian: Texas University Bulletin 2901, p. 9-72.
- ______1935, Structural geology of trans-Pecos Texas, <u>in</u> The geology of Texas, v. 2: Texas University Bulletin 3401, p. 137-211.
- Ball, S. M., Roberts, J. W., Norton, J. A., and Pollard, W. D., 1971, Queen Formation (Guadalupian, Permian) outcrops of Eddy County, New Mexico, and their bearing on recently proposed depositional models: AAPG Bulletin, v. 55, p. 1348-1355.
- Barnes, V. E., ed., 1968, Geologic atlas of Texas, Van Horn-El Paso sheet: Austin, Texas University, Bureau of Economic Geology, 1:250,000 scale map.
- Bartlett, J. R., 1854, Personal narrative of explorations and incidents in Texas, New Mexico, California, Sonora and Chihuahua, connected with the United States and Mexican Boundary Commission, during the years 1850, 1851, 1852, and 1853: New York, D. Appleton & Company, v. 1.
- Bates, R. L., 1942, Lateral gradation in the Seven Rivers Formation, Rocky Arroyo, Eddy County, New Mexico: AAPG Bulletin, v. 26, p. 80-99.
- Beck, R. H., 1967, Depositional mechanics of the Cherry Canyon Formation, Delaware Basin, Texas: Lubbock, Texas Tech University, unpublished Master's thesis, 107 p.
- Beede, J. W., 1910, The correlation of the Guadalupian and Kansas sections: American Journal of Science (4th series), v. 30, p. 131-140.
- _____1924, Report on the oil and gas possibilities of the University Block 46 in Culberson County: Texas University Bulletin no. 2346, p. 13-14.

- Behnken, F. H., 1973, Leonardian and Guadalupian (Permian) conodont biostratigraphy and evolution in western and southwestern United States: Madison, University of Wisconsin, unpublished Ph. D. dissertation, 184 p.
- 1975a, Leonardian and Guadalupian biostratigraphy in western and southwestern United States: Journal of Paleontology, v. 49, p. 284-315.

 1975b, Conodonts as biostratigraphic indices, in Cys, J. M., and Toomey, D. F., eds., Permian exploration, boundaries, and stratigraphy: West Texas Geological Society and Permian Basin Section, Society of Economic Paleontologists and Mineralogists, p. 84-90.
- Belt, B. B., and McGlasson, E. H., 1968, Oils from Yeso reservoirs and their basinal equivalents, in Basins of the Southwest, v. 2--American Association of Petroleum Geologists, SW Section, 10th Annual Meeting, Wichita Falls, Texas, 1968: Midland, Texas, West Texas Geological Society, p. 53-67.
- Berg, R. R., 1979, Reservoir sandstones of the Delaware Mountain Group, southeast New Mexico, in Sullivan, N. M., ed., Guadalupian Delaware Mountain Group of west Texas and southeast New Mexico: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, 1979 Symposium and Field Conference Guidebook, Publication 79-18, p. 75-95.
- Bjorklund, L. J., and Motts, W. S., 1959, Geology and groundwater resources of the Carlsbad area, New Mexico: U.S. Geological Survey Open-File Report, 322 p.
- Black, D. M., 1951a, Origin and development of "positive" water catchment basins, Carlsbad Caverns, New Mexico: National Speleological Society Bulletin 13, p. 27-29.
- _____1951b, Loose carbonate accretions from Carlsbad Caverns, New Mexico: Science, v. 114, p. 126-127.
- _____1952, Cave pearls in Carlsbad Caverns: Science Monthly, v. 74, no. 4, p. 206-210.
- _____1953, Aragonite rafts in Carlsbad Caverns, New Mexico: Science, v. 117, p. 84-85.
- Black, T. H., 1954, The origin and development of the Carlsbad Caverns: New Mexico Geological Society Guidebook of southeastern New Mexico, 5th Field Conference, p. 136-142.
- Blake, W. P., 1855, Exploration and surveys for a railroad route from the Mississippi River to the Pacific Ocean, v. 2: Washington, D.C.
- Blanchard, W. G., Jr., and Davis, M. J., 1929, Permian stratigraphy and structure of parts of southeastern New Mexico and southwestern Texas: AAPG Bulletin, v. 13, p. 957-995.
- Bose, Emil, 1919, The Permo-Carboniferous ammonoids of the Glass Mountains and their stratigraphical significance: Texas University Bulletin 1762, 241 p.
- Boyd, D. W., 1955, Stratigraphy of the Brokeoff Mountains, New Mexico, in Permian field conference to the Guadalupe Mountains: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, 155 Field Trip Guidebook, p. 47-56.
- 1958, Permian sedimentary facies, central Guadalupe Mountains, New Mexico: New Mexico Bureau of Mines and Mineral Resources Bulletin 49, New Mexico Institute of Mining and Technology, 100 p.

- 1962, Leonardian and lower Guadalupian shelf-edge facies in El Paso Gap quadrangle, southeastern New Mexico, <u>in</u> Permian of the central Guadalupe Mountains, Eddy County, New Mexico: Hobbs, Roswell and West Texas Geological Societies, Field Trip Guidebook, Publication No. 62-48, p. 91-98.
- Bozanich, R. G., 1978, The Bell Canyon and Cherry Canyon Formations, southern Delaware Basin: Austin, University of Texas at Austin, unpublished Master's thesis, 165 p.
- 1979, The Bell Canyon and Cherry Canyon Formations, eastern Delaware Basin, Texas: Lithology, environments and mechanisms of deposition, in Sullivan, N. M., ed., Guadalupian Delaware Mountain Group of west Texas and southeast New Mexico: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, 1979 Symposium and Field Conference Guidebook, Publication 79-18, p. 121-141.
- Braithwaite, C. J. R., 1973, Reefs: just a problem of semantics?: AAPG Bulletin, v. 57, p. 1100-1116.
- Bretz, J. H., 1949, Carlsbad Caverns and other caves of the Guadalupe Block, New Mexico: Journal of Geology, v. 57, p. 447-463.
- Brooks, R. P., ed. and compiler, 1964, Ira Rinehart's reference book, Delaware basin exploration, west Texas: Dallas, Texas, Rinehart Oil News Company.
- _____, ed. and compiler, 1966, West Texas oil and gas prospects: Dallas, Texas, Rinehart Oil News Company, v. 1, 138 p.
- Bullington, N. R., 1968, Geology of the Carlsbad Caverns, <u>in</u> Delaware Basin exploration: West Texas Geological Society, Guidebook, Publication No. 68-55, p. 20-23.
- Burke, R. G., 1966a, Sleeping Texas giant stirs again: Oil and Gas Journal, v. 64, no 11, p. 53-55.
- 1966b, Gas reserves zooming in the Delaware: Oil and Gas Journal, v. 64, no. 24, p. 62-65.
- Burnside, R. J., 1959, Geology of part of the Horseshoe atoll in Borden and Howard Counties, Texas: U.S. Geological Survey Professional Paper 315-B, p. 21-35.
- Carlson, T. C., and Sipes, L. D. Jr., 1965, Characteristics of San Andres reservoir: Society of Petroleum Engineers of American Institute of Mining Engineers, Permian Basin Section, 5th Oil Recovery Conference, preprints, Paper No. SPE 1145, p. 84-91.
- Cartwright, L. D., Jr., 1930, Transverse section of Permian basin, west Texas and southeast New Mexico: AAPG Bulletin, v. 14, p. 969-981.
- Cave, H. S., 1954, The Capitan-Castile-Delaware Mountain problem, <u>in</u> New Mexico Geological Society, 5th Field Conference Guidebook, p. 117-124.
- Chuber, Stewart, and Rodgers, E. E., 1968, Relationships of oil composition and stratigraphy of Pennsylvanian and Wolfcamp reservoirs, in Basins of the Southwest, v. 2--American Association of Petroleum Geologists, SW Section, 10th Annual Meeting, Wichita Falls, Texas, 1968: Midland, Texas, West Texas Geological Society, p. 29-41.
- Clayton, Neal, 1951, Geology and geophysics of the North Snyder area, Scurry County Texas: Geophysics, v. 16, no. 1, p. 1-13.
- Clifton, R. L., 1944a, Ammonoids from upper Cherry Canyon Formation of Delaware Mountain group in Texas: AAPG Bulletin, v. 28, p. 1644-1646.

 1944b, Paleoecology and environments inferred for some marginal Middle Permian marine strata: AAPG Bulletin, v. 28, p. 1012-1031.
- Cooper, G. A., and Grant, R. E., 1966, Permian rock units in the Glass Mountains, west Texas: U.S. Geological Survey Bulletin 1244-E, p. E1-E9.

- Cox, E. R., 1967, Geology and hydrology between Lake McMillan and Carlsbad Springs, Eddy County, New Mexico: U.S. Geological Survey Water Supply Paper 1828, 48 p.
- Craig, D. H., and Schoonmaker, G. R., 1968, Yates oil field, Pecos County, Texas (abs.): AAPG Bulletin, v. 52, no. 3, p. 523.
- Crandall, K. H., 1929, Permian stratigraphy of southeastern New Mexico and adjacent parts of western Texas: AAPG Bulletin, v. 13, p. 927-944.
- Cromwell, D. W., 1979, Indian Draw Delaware Field: A model for deeper Delaware sand exploration, in Sullivan, N. M., ed., Guadalupian Delaware Mountain Group of west Texas and southeast New Mexico: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, 1979 Symposium and Field Conference Guidebook, Publication 79-18, p. 142-152.
- Cronoble, J. M., 1974, Biotic constituents and origin of facies in Capitan reef, New Mexico and Texas: Mountain Geologist, v. 11, p. 95-108.
- Crosby, E. J., and Mapel, W. J., 1975, Central and west Texas, in McKee, E. D., Crosby, E. J., and others, Paleotectonic investigations of the Pennsylvanian System in the United States: U.S. Geological Survey Professional Paper 853-K, p. 197-232.
- Cys, J. M., 1971, Origin of Capitan Formation, Guadalupe Mountains, New Mexico and Texas: Discussion: AAPG Bulletin, v. 55, p. 310-312.
- 1975, New observations on the stratigraphy of key Permian sections of west Texas, in Cys, J. M., and Toomey, D. F., eds., Permian exploration, boundaries, and stratigraphy: West Texas Geological Society and Permian Basin Section, Society of Economic Paleontologists and Mineralogists, p. 22-42.
- Cys, J. M., Toomey, D. F., Brezina, J. L., Greenwood, E., Groves, D. B., Klement, K. W., Kullmann, J. D., McMillan, T. L., Schmidt, V., Sneed, E. D., and Wagner, L. H., 1977, Capitan Reef--Evolution of a concept, in Hileman, M. E., and Mazzullo, S. J., eds., Upper Guadalupian facies, Permian reef complex, Guadalupe Mountains, New Mexico and west Texas: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, 1977 Field Conference Guidebook (Publication 77-16), v. 1, p. 201-322.
- Darton, N. H., and King, P. B., 1932, Western Texas and Carlsbad Caverns: International Geological Congress, 16th, United States 1933, Guidebook 13, Excursion C-1, 38 p.
- Darton, N. H., and Reeside, J. B., Jr., 1926, Guadalupe Group: Geological Society of America Bulletin, v. 37, p. 413-428.
- David, E. K. (General Chairman), 1977, The oil and gas fields of southeastern New Mexico, 1977 supplement—a symposium: Roswell, New Mexico, Roswell Geological Society, 220 p.
- Davies, W. E., and Moore, G. W., 1957, Endellite and hydromagnesite from Carlsbad Caverns: National Speleological Society Bulletin 19, p. 24-27.
- Davis, H. E., and others, 1953, North-south cross section through Permian Basin of west Texas: West Texas Geological Society Publication 53-30.
- Davis, J. B., and Kirkland, D. W., 1970, Native sulfur deposition in the Castile Formation, Culberson County, Texas: Economic Geology, v. 65, p. 107-121.
- Dean, W. E., and Anderson, R. Y., 1974, Trace and minor element variations in the Permian Castile Formation, Delaware basin, Texas and New Mexico, revealed by varve calibration: Fourth International Symposium on Salt, Cleveland, Northern Ohio Geological Society, v. 1, p. 275-285.

- 1978, Salinity cycles--evidence for deep-water deposition of the Castile and lower Salado Formations, Delaware basin, Texas and New Mexico, in New Mexico Geological Society, Symposium on Ochoan rocks of southeastern New Mexico and west Texas: New Mexico Bureau of Mines and Mineral Resources Special Publication 159, p. 15-20.
- Dean, W. E., Davies, G. R., and Anderson, R. Y., 1975, Sedimentological significance of nodular and laminated anhydrite: Geology, v. 3, p. 367-372.
- DeFord, R. K., and Lloyd, E. R., 1940, Editorial introduction, Pt. 1 of west Texas-New Mexico symposium: AAPG Bulletin, v. 24, p. 1-14.
- DeFord, R. K., and Riggs, G. D., 1941, Tansill Formation, west Texas and southeastern New Mexico: AAPG Bulletin, v. 25, p. 1713-1728.
- DeFord, R. K., Riggs, G. D., and Wills, N. H., 1938, Surface and subsurface formations, Eddy County, New Mexico (abs.): AAPG Bulletin, v. 22, p. 1706-1707.
- DeFord, R. K., and others, 1951, Apache Mountains of Trans-Pecos Texas:
 Midland, West Texas Geological Society, 1951 Field Trip Guidebook, 56 p.
- Dickey, R. I., 1940, Geologic section from Fisher County through Andrews County, Texas, to Eddy County, New Mexico: AAPG Bulletin, v. 24, p. 37-51.
- Dodge, C. F., 1958, Delaware Basin: what traps its oil?: Petroleum Engineer, v. 30, p. B48-B52.
- Dolton, G. L., Coury, A. B., Frezon, S. E., Robinson, Keith, Varnes, K. L., Wunder, J. M., and Allen, R. W., 1979, Estimates of undiscovered oil and gas, Permian Basin, west Texas and southeast New Mexico: U.S. Geological Survey Open-File Report 79-838, 118 p.
- Dunbar, C. O., 1941, Permian faunas: A study in facies: AAPG Bulletin, v. 52, p. 313-332.
- Dunbar, C. O., and Skinner, J. W., 1937, Permian fusulinidae of Texas:
 Austin, Texas University Bulletin 3701, p. 517-825.
- Dunham, R. J., 1965, Vadose pisolite in the Capitan reef (abs.): AAPG Bulletin, v. 49, p. 338.
- 1969a, Vadose pisolite in the Capitan reef (Permian), New Mexico and Texas, in Friedman, G. M., ed., Depositional environments in carbonate rocks: Society of Economic Paleontologists and Mineralogists Special Publication 14, p. 182-191.
- 1969b, Asymmetrically-filled veins in Capitan Reef and their genetic similiarity to vadose pisolite, New Mexico and Texas (abs.): Geological Society of America Special Paper 121, p. 83-84.
- 1969c, Early vadose silt in Townsend mound (reef) New Mexico, in Freedman, G. M., ed., Depositional environments in carbonate rocks: Society of Economic Paleontologists and Mineralogists Special Publication 14, p. 139-181.
- _____1970, Stratigraphic reefs versus ecologic reefs: AAPG Bulletin, v. 54, p. 1931-1932.
- 1972, Capitan reef New Mexico and Texas: Facts and questions to aid interpretation and group discussion: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, Publication 72-141, 272 p.
- Elam, J. G., 1972, The tectonic style in the Permian Basin and its relationship to cyclicity, <u>in</u> Elam, J. G., and Chuber, S., eds., Cyclic sedimentation in the Permian Basin, 2d ed.: West Texas Geological Society Publication 72-60, p. 55-79.
- Esteban, Mateu, 1976, Vadose pisolite and calide: AAPG Bulletin, v. 60, p. 2048-2057.

- Esteban, Mateu, and Pray, L. C., 1975, Subaqueous, syndepositional growth of in-place pisolite, Capitan reef complex (Permian), Guadalupe Mountains, New Mexico and west Texas (abs.): Geological Society of America, Abstracts with Programs, v. 7, p. 1068-1069.
- 1976, Nonvadose origin of pisolitic facies, Capitan reef complex (Permian), Guadalupe Mountains, New Mexico and west Texas (abs.): AAPG Bulletin, v. 60, p. 670.
- 1977, Origin of the pisolite facies of the shelf crest, in Hileman, M. E., and Mazzullo, S. J., eds., Upper Guadalupian facies, Permian reef complex, Guadalupe Mountains, New Mexico and west Texas: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, 1977 Field Conference Guidebook (Publication 77-16), v. 1, p. 479-486.
- Fiedler, A. G., and Nye, S. S., 1933, Geology and groundwater resources of the Roswell artesian basin, New Mexico: U.S. Geological Survey Water-Supply Paper 639, 372 p.
- Finks, R. M., 1960, Late Paleozoic sponge faunas of the Texas region: American Museum of Natural History Bulletin, v. 120, p. 1-161.
- Flawn, P. T., 1956, Basement rocks of Texas and southeast New Mexico: Austin, Texas University, Bureau of Economic Geology, Publication No. 5605, 261 p.
- Folk, R. L., 1976, Comparative fabrics of length-slow and length-fast aragonite in a Holocene speleothem, Carlsbad Caverns, New Mexico: Journal of Sedimentary Petrology, v. 46, p. 486-496.
- Foltz, G. A., 1966, Double X oil field, in The oil and gas fields of southeastern New Mexico: Roswell Geological Society, p. 100-101.
- Frenzel, H. N., 1955, The Queen-Grayburg problem, in Permian field conference to the Guadalupe Mountains: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, 1955 Field Trip Guidebook, p. 25-46.
- 1962, The Queen-Grayburg-San Andres problem solved, in Permian of the central Guadalupe Mountains, Eddy County, New Mexico: West Texas, Roswell, and Hobbs Geological Society Guidebook, Publication No. 62-48, p. 87-90.
- Friedman, G. M., 1966, Occurrence and origin of Quaternary dolomite of Salt Flat, west Texas: Journal of Sedimentary Petrology, v. 36, p. 263-267.
- Furnish, W. M., and Glenister, B. F., 1969, The Guadalupian Series (abs.): Geological Society of America Special Paper 121, p. 105-106.
- Galley, J. E., 1958, Oil and geology in the Permian Basin of Texas and New Mexico, <u>in</u> Weeks, L. G., ed., Habitat of Oil: New York, American Association of Petroleum Geologists Symposium, p. 395-446.
- 1971, Summary of petroleum resources in Paleozoic rocks of Region 5-north-central and west Texas and eastern New Mexico, in Cram, I. H., ed.,
 Future petroleum provinces of the United States--their geology and
 potential: American Association of Petroleum Geologists Memoir 15, v. 1,
 p. 726-737.
- Gardner, F. J., 1949, West Texas oil: Dallas, Texas, Rinehart Oil News Company, v. 1, 224 p.; v. 2, 275 p.
- Gardner, F. J., and Phifer, R. L., 1953, The oil and gas fields of west Texas, Part 1, Railroad Commission District 7-C: Houston, Texas, Five Star Oil Report, 304 p.
- Gester, G. H., and Hawley, H. J., 1929, Yates Field, Pecos County, Texas, <u>in</u> Structure of typical American oil fields: Tulsa, American Association of Petroleum Geologists, v. 2, p. 480-499.

- Gibson, G. R., 1965, Oil and gas in southwestern region—geologic framework, in Young, A., and Galley, J. E., eds., Fluids in subsurface environments: American Association of Petroleum Geologists Memoir 4, p. 66-100.
- Girty, G. H., 1902, The Upper Permian in western Texas: American Journal of Science, 4th ser., v. 14, p. 363-368.
- ______1908, The Guadalupian fauna: U.S. Geological Survey Professional Paper 58, 651 p.
- 1909, The Guadalupian fauna and new stratigraphic evidence: New York Academy of Science Annals, v. 19, p. 137-138.
- Good, J. M., 1957, Non-carbonate deposits of Carlsbad Caverns: National Speleological Society Bulletin, v. 19, p. 11-23.
- Grant, R. E., 1971, Brachiopods in the Permian reef environment of west Texas: North American Paleontologists Convention Proceedings, Pt. J, p. 1444-1481.
- Gratton, P. J. F., and Lemay, W. J., 1969, San Andres oil east of the Pecos, in Summers, W. K., and Kottlowski, F. E. eds., The San Andres limestone, a reservoir for oil and water in New Mexico: New Mexico Geological Society Special Publication 3, p. 37-43.
- Grauten, W. F., 1965, Fluid relationships in Delaware Mountain sandstone, in Young, A., and Galley, J. E., eds., Fluids in subsurface environments:

 American Association of Petroleum Geologists Memoir 4, p. 294-307.
- Greenwood, Eugene, 1975, Permian oil and gas production--when, where and why, in Permian exploration, boundaries, and stratigraphy, West Texas Geological Society and Permian Basin Section, Society of Economic Paleontologists and Mineralogists, Symposium and Field Trip: West Texas Geological Society Publication 75-65, p. 115-126.
- Grice, C. R., 1960, The Grice field, Loving County, Texas, in Geology of the Delaware Basin and field trip guidebook: Midland, West Texas Geological Society, 1960 Field Trip Guidebook, p. 78-80.
- Guinan, M. A., 1969, Coyanosa Delaware sand, Pecos County, Texas, <u>in</u> Delaware Basin exploration: West Texas Geological Society, Guidebook Publication No. 68-55a, p. 134-137.
- _____1975a, Slide-block geology, Coyanosa and adjacent areas, Pecos and Reeves Counties, Texas (abs.): AAPG Bulletin, v. 55, no. 2, p. 340.
 _____1975b, More evidence of the slide-block event will follow Delaware basin drilling: Oil and Gas Journal, v. 69, no. 27, p. 120-127.
- Haigler, L. B., 1962, Geologic notes on the Delaware Basin: New Mexico Institute of Mining and Technology, Circular 63, 14 p.
- Haigler, L. B., and Cunningham, R. R., 1972, Structural contour map on top of the undifferentiated Silurian and Devonian rocks in southeastern New Mexico: U.S. Geological Survey Oil and Gas Investigations Map OM-218.
- Hall, W. E., 1960, Upper Permian correlations in southeastern New Mexico and adjacent parts of west Texas, <u>in</u> Geology of the Delaware Basin and field trip guidebook: West Texas Geological Society, 1960 Field Trip Guidebook, p. 85-88.
- Halliday, W. R., 1961, More dolomite speleothems: National Speleological Society Bulletin 19, no. 11, p. 143.
- Ham, W. E., 1960, Middle Permian evaporites in southwestern Oklahoma: International Geological Congress, 21st, Copenhagen, Report pt. 12, p. 138-151.
- Hardie, C. H., 1958, The Pennsylvanian rocks of the northern Hueco Mountains: West Texas Geological Society Guidebook, Publication No. 58-40, p. 43-45.

- Harms, J. C., 1968, Permian deep-water sedimentation by nonturbid currents, Guadalupe Mountains, Texas (abs.): Geological Society of America Special Paper 121, p. 127.
- _____1974, Brushy Canyon Formation, Texas: A deep-water density current deposit: Geological Society of America Bulletin, v. 85, p. 1763-1784.
- Harms, J. C., and Pray, L. C., 1974, Erosion and deposition along the Mid-Permian intracratonic basin margin, Guadalupe Mountains, Texas (abs.): Society of Economic Paleontologists and Mineralogists Special Publication No. 19, p. 37.
- Harrington, G. E., 1966, Triste Draw oil field, in The oil and gas fields of southeastern New Mexico: Roswell Geological Society, p. 176-177.
- Harrington, J. W., 1963, Opinion of structural mechanics of central basin platform area, west Texas: AAPG Bulletin, v. 47, no. 12, p. 2023-2038.
- Harrison, S. C., 1966, Depositional mechanics of Cherry Canyon sandstone tongue: Austin, University of Texas, unpublished Master's thesis, 114 p.
- Hartman, J. K., and Woodward, L. R., 1971, Future petroleum resources in post-Mississippian strata of north-central and west Texas, and eastern New Mexico, in Cram I. H., Future petroleum provinces of the United Statestheir geology and potential: American Association of Petroleum Geologists Memoir 15, v. 2, p. 738-803.
- Hayes, P. T., 1957, Geology of the Carlsbad Caverns East quadrangle, New Mexico: U.S. Geological Survey Quadrangle Map GQ 98.
- ______1959, San Andres Limestone and related Permian rocks in Last Chance Canyon and vicinity, southeastern New Mexico: AAPG Bulletin, v. 43, p. 2197-2213.
- 1964, Geology of the Guadalupe Mountains, New Mexico: U.S. Geological Survey Professional Paper 446, 69 p.
- Hayes, P. T., and Koogle, R. L., 1958, Geology of the Carlsbad Caverns West quadrangle, New Mexico-Texas: U.S. Geological Survey Quadrangle Map GQ 112.
- Heckel, P. H., 1974, Carbonate buildups in the geologic record: a review, in Laporte, L. F., ed., Reefs in time and space: Society of Economic Paleontologists and Mineralogists Special Publication 18, p. 90-154.
- Hennen, R. V., and Metcalf, R. J., 1929, Yates oil pool, Pecos County, Texas: AAPG Bulletin, v. 13, no. 12, p. 1509-1556.
- Herald, F. A., ed., 1957, Occurrence of oil and gas in west Texas: Austin, Texas University Publication 5716, 442 p.
- Hess, F. L., 1929, Oolites or cave pearls in the Carlsbad Caverns: U.S. National Museum Proceedings, v. 76, art. 16, 5 p.
- Hills, J. M., 1942, Rhythm of Permian seas—a paleogeographic study: AAPG Bulletin, v. 26, p. 217-255.
- 1968, Gas in Delaware and Val Verde Basins, west Texas and southeast New Mexico, in Beebe, B. W., and Curtis, B. F., eds., Natural gases of North American, a symposium: American Association of Petroleum Geologists Memoir 9, v. 2, p. 1394-1492.
- 1970, Late Paleozoic structural directions in southern Permian Basin, west Texas and southeastern New Mexico: AAPG Bulletin, v. 54, no. 10, p. 1809-1827.
- 1972, Late Paleozoic sedimentation in west Texas Permian Basin: AAPG Bulletin, v. 56, p. 2303-2322.

- 1979, Delaware Basin sedimentation, tectonism and hydrocarbon generation, in Sullivan, N. M., ed., Guadalupian Delaware Mountain Group of west Texas and southeast New Mexico: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, 1979 Symposium and Field Conference Guidebook, Publication 79-18, p. 1.
- Hinds, J. S., and Cunningham, R. R., 1970, Elemental sulfur in Eddy County, New Mexico: U.S. Geological Survey Circular 628, 13 p.
- Hiss, W. L., 1977a, Movement of ground water in Permian Guadalupian aquifer systems, southeastern New Mexico and west Texas (abs.), in Hileman, M. E., and Mazzullo, S. J., eds., Upper Guadalupian facies, Permian reef complex, Guadalupe Mountains, New Mexico and west Texas: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, 1977 Field Conference Guidebook (Publication 77-16), v. 1, p. 487.
- ______1977b, Fresh-saline water interface in Permian Guadalupian Capitan-aquifer, southwest of Carlsbad, Eddy County, New Mexico (abs.), in Hileman, M. E., and Mazzullo, S. J., eds., Upper Guadalupian facies, Permian reef complex, Guadalupe Mountains, New Mexico and west Texas: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, 1977 Field Conference Guidebook (Publication 77-16), v. 1, p. 488.
- Hobbs, Roswell, and West Texas Geological Societies 1962 Field Trip Committee, 1962, Permian of the central Guadalupe Mountains, Eddy County, New Mexico: Hobbs, Roswell and West Texas Geological Societies Field Trip Guidebook and Geological Discussions, Publication No. 62-48, 115 p.
- Hollingsworth, R. V., and Williams, H. L., 1955, Evolution of the Fusulinidae: Midland, Texas, Paleontological Laboratory, 19 p.
- Holmquest, H. H., 1965, Deep pays in Delaware and Val Verde basins, <u>in</u> Young, A., and Galley, J. E., eds., Fluids in subsurface environments: American Association of Petroleum Geologists Memoir 4, p. 257-279.
- Hopkins, Eldon, 1974, Permian Basin has fifth of U.S. well completions: The Drilling Contract, v. 30, no. 5, p. 60-61.
- Horak, R. L., 1975, Tectonic relationship of the Permian Basin to the Basin and Range Province, in Hills, J. S., ed., Exploration from the mountains to the basin, American Association of Petroleum Geologists, SW Section, and Society of Economic Paleontologists and Mineralogists, Permian Basin section 1975, Joint Meeting, Transactions: El Paso Geological Society, p. 1-94.
- Horberg, L., 1949, Geomorphic history of the Carlsbad Caverns area, New Mexico: Journal of Geology, v. 57, p. 464-476.
- Horst, G. F., and Wilson, D. A., 1969, Log evaluation and wireline operations in the Delaware Basin, in Delaware Basin exploration: West Texas Geological Society, Guidebook, Publication No. 68-55a, p. 111-117.
- Hull, J. P. D., Jr., 1957, Petrogenesis of Permian Delaware Mountain sandstone, Texas and New Mexico: AAPG Bulletin, v. 41, p. 278-307.
- Jacka, A. D., 1974, Replacement of fossils by length-slow chalcedony and associated dolomitization: Journal of Sedimentary Petrology, v. 44, p. 421-427.
- 1979, Deposition and entrapment of hydrocarbons in Bell Canyon and Cherry Canyon deep-sea fans of the Delaware Basin, in Sullivan, N. M., ed., Guadalupian Delaware Mountain Group of west Texas and southeast New Mexico: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, 1979 Symposium and Field Conference Guidebook, Publication 79-18, p. 104-120.

- Jacka, A. D., Beck, R. H., St. Germain, L. C., and Harrison, S. C., 1968,
 Permian deep-sea fans of the Delaware Mountain Group (Guadalupian),
 Delaware basin, in Guadalupian facies, Apache Mountains area, west
 Texas: Permian Basin Section, Society of Economic Paleontologists and
 Mineralogists, p. 49-90.
- Jacka, A. D., and Franco, L. A., 1974, Deposition and diagenesis of Permian evaporites and associated carbonates and clastics on shelf areas of the Permian Basin: Fourth Symposium on Salt, Northern Ohio Geological Society, v. I, p. 67-89.
- Jacka, A. D., Thomas, C. M., Beck, R. H., Williams, K. W., and Harrison, S. C., 1972, Guadalupian depositional cycles, Delaware Basin and Northwest Shelf, in Elam, J. G., and Chuber, S., eds., Cyclic sedimentation in the Permian Basin (second edition): West Texas Geological Society Publication 72-60, p. 151-195.
- Jagnow, D. H., 1979, Cavern development in the Guadalupe Mountains: Columbus, Ohio, Cave Research Foundation, 55 p.
- Jenkins, R. E., 1961, Characteristics of the Delaware Formation: Journal of Petroleum Technology, v. 13, p. 1230-1236.
- Jenney, W. P., 1874, Notes on the geology of western Texas near the thirty-second parallel: American Journal of Science, 3rd ser., v. 7, p. 25-28.
- Johnson, J. H., 1942, Permian lime-secreting algae from the Guadalupe Mountains, New Mexico: Geological Society of America Bulletin, v. 53, p. 195-226.
- ______1951, Permian calcareous algae from the Apache Mountains, Texas: Journal of Paleontology, v. 25, p. 21-30.
- 1963, Pennsylvanian and Permian algae: Golden, Colorado School of Mines Quarterly, v. 58, no. 3, 211 p.
- Jones, C. L., 1954, The occurrence and distribution of potassium minerals in southeastern new Mexico, <u>in</u> Guidebook of southeastern New Mexico: New Mexico Geological Society, Guidebook, 5th Field Conference, p. 107-112.
- Jones, C. L., and Madsen, B. M., 1968, Evaporite geology of Fifth ore zone, Carlsbad district, southeastern New Mexico: U.S. Geological Survey Bulletin 1252-B, p. B1-B21.
- Jones, T. S., and Smith, H. M., 1965, Relationship of oil composition and stratigraphy in Permian Basin of west Texas and New Mexico, in Young, A., and Galley, J. E., eds., Fluids in subsurface environments, a symposium: American Association of Petroleum Geologists Memoir 4, p. 101-224.
- Jones, T. S., and others, 1949, East-west cross section through Permian Basin of West Texas: West Texas Geological Society Publication 49-17.
- Keller, D. T., and Porter, W. C., 1972, Developments in west Texas and eastern New Mexico: AAPG Bulletin, v. 56, no. 7, p. 1264-1268.
- Kelley, V. C., 1971, Geology of the Pecos county, southeastern New Mexico:

 New Mexico Bureau of Mines and Mineral Resources, Memoir 24, 75 p.

 1972, Geometry and correlation along Permian Capitan escarpment, New
- Mexico and Texas: AAPG Bulletin, v. 56, p. 2192-2211.
- Kendall, C. G. St. C., 1969, An environmental re-interpretation of the Permian evaporite-carbonate shelf sediments of the Guadalupe Mountains: Geological Society of America Bulletin, v. 80, p. 2503-2526.
- Kerr, S. D., and Thompson, A., 1963, Origin of nodular and bedded anhydrite in Permian shelf sediments, Texas and New Mexico: AAPG Bulletin, v. 47, p. 1726-1732.

- McKee, E. D., and others, Paleotectonic maps of the Permian System: U.S. Geological Survey Miscellaneous Geological Investigations Map I-450 (with text), p. 36-44.
- Keyes, C. R., 1929, Guadalupian reef theory: Pan American Geologist, v. 52, p. 41-60.
- 1933, Capitan Limestone as great barrier reef (abs.): Pan American Geologist, v. 60, p. 306.
- 1936, Guadalupian Series: its span and affinites: Pan American Geologist, v. 65, p. 35-36.
- 1938a, Guadalupian fauna; what it is not: Pan American Geologist, v. 69, p. 139-144.
- 1938b, Guadalupian Series in taxonomic status: Pan American Geologist, v. 69, p. 237-240.
- King, P. B., 1926, The geologic structure of a portion of the Glass Mountains of west Texas: AAPG Bulletin, v. 10, p. 877-884.
- 1930, The geology of the Glass Mountains: Austin, Texas University Bulletin 3038, pt. 1, 167 p.
- _____1934, Permian stratigraphy of Trans-Pecos Texas: Geological Society of America Bulletin, v. 45, p. 697-798.
 - 1935, Outline of structural development of Trans-Pecos Texas: AAPG Bulletin, v. 19, p. 221-261.
- 1936a, Unconformities in the later Paleozoic of Trans-Pecos Texas: Texas University Bulletin 3501, p. 131-135.
- 1936b, Permian rocks of the southern Guadalupe Mountains: Tulsa Geological Society Digest for 1936, p. 37-42.
- 1942, Permian of west Texas and southeastern New Mexico: AAPG Bulletin, v. 26, p. 535-763.
- 1947, Permian correlations: AAPG Bulletin, v. 31, p. 774-777.
- 1948, Geology of the southern Guadalupe Mountains, Texas: U.S. Geological Survey Professional Paper 215, 183 p.
- 1949, Regional geologic map of parts of Culberson and Hudspeth Counties, Texas: U.S. Geological Survey Oil and Gas Investigations, Preliminary Map 90.
- _____1965, Geology of the Sierra Diablo region, west Texas: U.S. Geological Survey Professional Paper 480, 185 p.
- 1967, Reef and associated deposits in the Permian of west Texas in McKee, E. D., and others, Paleotectonic maps of the Permian System: U.S. Geological Survey, Miscellaneous Investigations Map I-450 (with text), p. 36-44.
- King, P. B., and Fountain, H. C., 1944, Geologic map of southern Guadalupe Mountains, Hudspeth and Culberson Counties, Texas: U.S. Geological Survey Oil and Gas Investigations, Preliminary Map 18.
- King, P. B., and King. R. E., 1928, The Pennsylvanian and Permian stratigraphy of the Glass Mountains: Texas University Bulletin 2801, p. 109-145.
- 1929, Stratigraphy of outcropping Carboniferous and Permian rocks of Trans-Pecos Texas: AAPG Bulletin, v. 13, p. 907-926.
- King, P. B., and Knight, J. B., 1944, Sierra Diablo Region, Hudspeth and Culberson Counties, Texas: U.S. Geological Survey, Oil and Gas Investigations Preliminary Map 2.
- 1945, Geology of Hueco Mountains, El Paso and Hudspeth Counties, Texas: U.S. Geological Survey, Oil and Gas Investigations Preliminary Map no. 36, 2 sheets.

- King, P. B., and Newell, N. D., 1956, McCombs Limestone member of Bell Canyon Formation, Guadalupe Mountains, Texas: AAPG Bulletin, v. 40, p. 386-387.
- King, R. E., 1931, The geology of the Glass Mountains: Austin, Texas University Bulletin 3042, pt. 2, 245 p.
- King, R. E., Bates, R. L., Hills, J. M., Martin, B. G., and Taylor, S. J., 1942, Resume of geology of the south Permian Basin, Texas and New Mexico: Geological Society of America Bulletin, v. 53, p. 539-560.
- King, R. H., 1947, Sedimentation in Permian Castile sea: AAPG Bulletin, v. 31, p. 470-477.
- Kinney, E. E., and Schatz, F. L. (chairmen), 1967, The oil and gas fields of southeastern New Mexico, 1966 supplement, a symposium: Roswell, New Mexico, Roswell Geological Society, 185 p.
- Kirkland, D. W., and Anderson, R. Y., 1970, Microfolding in the Castile and Todilto evaporites, Texas and New Mexico: Geological Society of America Bulletin, v. 81, p. 3259-3282.
- Kirkland, D. W., and Evans, Robert, 1976, Origin of limestone buttes, gypsum plain, Culberson County, Texas: AAPG Bulletin, v. 60, p. 2005-2018.
- Klement, K. W., 1966, Studies on the ecological distribution of lime-secreting and sediment-trapping algae in reefs and associated environments: Neues Jahrbuch fur Geologie und Palaontologie, Abhandlungen, v. 125, p. 363-381.
- Koss, G. M., 1977, Carbonate mass flow sequences of the Permian Delaware Basin, west Texas, in Hileman, M. E. and Mazzullo, S. J., eds., Upper Guadalupian facies, Permian reef complex, Guadalupe Mountains, New Mexico and west Texas: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, 1977 Field Conference Guidebook (Publication 77-16), v. 1, p. 391-408.
- Kroenlein, G. A., 1939, Salt, potash, and anhydrite in Castile Formation of southeast New Mexico: AAPG Bulletin, v. 23, p. 1682-1693.
- Lang, W. B., 1935, Upper Permian formations of Delaware Basin of Texas and New Mexico: AAPG Bulletin, v. 19, p. 962-970.
- 1937, The Permian formations of the Pecos Valley of New Mexico and Texas: AAPG Bulletin, v. 21, p. 833-898.
- _____1939, Salado Formation of the Permian Basin: AAPG Bulletin, v. 23, p. 1569-1572.
- ______1941, New source of sodium sulphate: AAPG Bulletin, v. 25, p. 152-160.
 ______1942, Basal beds of Salado Formation in Fletcher potash core test, near
 Carlsbad, New Mexico: AAPG Bulletin, v. 26, p. 63-79.
- LeMay, W. J., 1960, Abo reefing in southeastern new Mexico, in Sweeney, H. N., ed., The oil and gas fields of southeastern New Mexico, 1960 supplement, a symposium: Roswell, New Mexico, Roswell Geological Society, p. XVIII-XXI.
- Lewis, F. E., 1941, Position of San Andres group, west Texas and New Mexico: AAPG Bulletin, v. 25, p. 73-103.
- Lloyd, E. R., 1929, Capitan limestone and associated formations of New Mexico and Texas: AAPG Bulletin, v. 13, p. 645-658.
- 1931, (published posthumously in 1975), Barrier reefs and saline residues of the Permian Basin, in Cys, J. M., and Toomey, D. F., eds., Permian exploration, boundaries, and stratigraphy: West Texas Geological Society and Permian Basin Section, Society of Economic Paleontologists and Mineralogists, p. 1-21.
- ______1949, Pre-San Andres stratigraphy and oil-producing zones in southeastern New Mexico: New Mexico Bureau of Mines and Mineral Resources, Bulletin 29, 87 p.

- 1952, Correlation chart, Permian of west Texas and New Mexico: Midland, Texas, West Texas Geological Society.
- _____1953, Reefs and associated rocks: Oil and Gas Journal, v. 52, p. 268-270.
- Long, W. T. B., 1942, The Carlsbad dolomite and the pisolites of the Guadalupe Mountains of New Mexico, (abs.): AAPG Bulletin, v. 26, no. 5, p. 901.
- Loucks, R. G., and Folk, R. L., 1976, Fanlike rays of former aragonite in Permian Capitan reef pisolite: Journal of Sedimentary Petrology, v. 46, p. 483-485.
- Lucia, F. J., 1961, Dedolomitization in the Tansill (Permian) Formation: Geological Society of America Bulletin, v. 72, p. 1107-1109.
- Maher, J. C., ed., 1960, Stratigraphic cross section of Paleozoic rocks--west Texas to northern Montana: Tulsa, Oklahoma, American Association of Petroleum Geologists.
- Maley, V. C., and Huffington, R. M., 1953, Cenozoic fill and evaporite solution in the Delaware Basin, Texas and New Mexico: Geological Society of America Bulletin, v. 64, p. 539-546.
- Marshall, J. W., 1952, Spraberry reservoir of west Texas: AAPG Bulletin, v. 36, no. 11, p. 2189-2191.
- Marshall, W. S., 1954, Varve-like laminations in the Permian Bone Spring Limestone of western Texas: New York, Columbia University, unpublished Master's thesis, 48 p.
- Mazzullo, S. J., 1977, Synsedimentary diagenesis of reefs, in Hileman, M. E., and Mazzullo, S. J., eds., Upper Guadalupian facies, Permian reef complex, New Mexico and west Texas: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, 1977, Field Conference Guidebook (Publication 77-16), v. 1, p. 323-356.
- Mazzullo, S. J. and Cys, J. M., 1977, Submarine cements in Permian boundstones and reef-associated rocks, Guadalupe Mountains, west Texas and southeastern New Mexico, in Hileman, M. E., and Mazzullo, S. J., eds., Upper Guadalupian facies, Permian reef complex, Guadalupe Mountains, New Mexico and west Texas: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, 1977 Field Conference Guidebook (Publication 77-16), v. 1, p. 151-200.
- McDaniel, P. N., and Pray, L. C., 1967, Bank to basin transition in Permian (Leonardian) carbonates, Guadalupe Mountains (abs.): AAPG Bulletin, v. 51, p. 474.
- McKee, E. D., 1951, Sedimentary basins of Arizona and adjoining areas: Geological Society of America Bulletin, v. 62, p. 481-506.
- McKee, E. D., Oriel, S. S., and others, 1967, Paleotectonic maps of the Permian System: U.S. Geological Survey, Miscellaneous Geological Investigations Map I-450, 164 p.
- McLennan, Lamar, Jr., and Bradley, H. W., 1951, Spraberry and Dean sandstones of west Texas: AAPG Bulletin, v. 35, no 4, p. 899-908.
- McNeal, R. P., 1965, Hydrodynamics of the Permian basin, in Young, A., and Galley, J. E., eds., Fluids in subsurface environments: American Association of Petroleum Geologists Memoir 4, p. 308-326.
- McNeal, R. P., and Mooney, T. D., 1968, Relationships of oil composition and stratigraphy of Delaware reservoirs, in Basins of the Southwest: v. 2, p. 68-75. Also reprinted in Sullivan N. M., ed., Guadalupian Delaware Mountain Group of west Texas and southeast New Mexico: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, 1979 Symposium and Field Conference Guidebook, Publication 79-18, p. 183-190.

- Mear, C. E., and Yarbrough, D. V., 1961, Yates Formation in southern Permian Basin of west Texas: AAPG Bulletin, v. 45, p. 1545-1556.
- Meinzer, O. E., Renick, B. C., and Bryan, K., 1926, Geology of No. 3 Reservoir Site of the Carlsbad Irrigations Project, New Mexico, with reference to water-tightness: U.S. Geological Survey Water-Supply Paper 580-A, 39 p.
- Meissner, F. F., 1972, Cyclic sedimentation in Middle Permian strata of the Permian basin, in Elam, J. G., and Chuber, S., eds., Cyclic sedimentation in the Permian Basin, second edition: West Texas Geological Society Publication 72-60, p. 203-232.
- Midland Map Company, 1978, Producing zone map, the Permian Basin, west Texas and southeast New Mexico, Midland, Texas, Midland Map Co., 1 sheet.
- Miller, A. K., and Furnish, W. M., 1940, Permian ammonoids of the Guadalupe Mountain Region and adjacent areas: Geological Society of America Special Paper 26.
- Miller, S. T., 1969, Summary of geophysical exploration in the Delaware Basin, in Delaware Basin exploration: West Texas Geological Society, Guidebook, Publication No. 68-55a, p. 105, 110.
- Moore, G. W., 1959, Alteration of gypsum to form the Capitan Limestone of New Mexico and Texas (abs.): Geological Society of America Bulletin, v. 70, p. 1647.
- 1960, Geology of Carlsbad Caverns, New Mexico, in Spangle, P. F., ed., A guidebook to Carlsbad Caverns National Park: Washington, D.C., The National Speleological Society, Guidebook Series No. 1, p. 10-17.
- Moran, W. R., 1954, Proposed type section for the Queen and Grayburg Formations of Guadalupian age in the Guadalupe Mountains, Eddy County, New Mexico (abs.): Geological Society of America Bulletin, v. 65, p. 1288.
- 1955, Sandstone in New Mexico Room of Carlsbad Caverns, New Mexico: AAPG Bulletin, v. 39, p. 256-259.
- ______1962, Surface type localities of the Queen and Grayburg Formations in the Guadalupe Mountains, Eddy County, New Mexico, in Permian of the central Guadalupe Mountains, Eddy County, New Mexico: Hobbs, Roswell, and West Texas Geological Societies Guidebook, Publication 62-48, p. 76-86.
- Motts, W. S., 1959, Age of the Carlsbad Caverns and related caves in the rocks of Guadalupe age west of the Pecos River in southeastern New Mexico (abs.): Geological Society of America Bulletin, v. 70, no. 12, pt. 2, p. 1737.
- _____1962a, Generalized geology of part of the Guadalupe Mountains and vicinity, in Permian of the Central Guadalupe Mountains, Eddy County, New Mexico: Hobbs, Roswell, and West Texas Geological Societies Guidebook, Publication 62-48, p. 99-100.
- 1962b, Geology of the West Carlsbad quadrangle, New Mexico: U.S. Geological Survey Geologic Quadrangle Map GQ-167.
- ______1968, The control of ground-water occurrence by lithofacies in the Guadalupian reef complex near Carlsbad, New Mexico: Geological Society of America Bulletin, v. 79, p. 283-298.
- 1972, Geology and paleoenvironments of the northern segment, Capitan shelf, New Mexico and west Texas: Geological Society of America Bulletin, v. 83, p. 701-722.
- 1973, Structure, sedimentation and paleoenvironments of northern Capitan reef complex, New Mexico and west Texas (abs.): AAPG Bulletin, v. 57, p. 796.

- Mutch, T. A., 1966, Abundance of magnetic spherules in Silurian and Permian salt samples: Earth and Planetary Science Letters, v. 1, p. 325-329.
- Myers, S. D., 1973, The Permian Basin--Petroleum empire of the southwest: El Paso, Texas, Permian Press, 708 p.
 - 1977, The Permian Basin--Petroleum empire of the southwest, era of advancement: El Paso, Texas, Permian Press, 624 p.
- Narin, A. E. M., and Smithwick, M. E., 1976, Permian paleogeography and climatology, in Falke, H., ed., The continental Permian in central, west, and south Europe: Dordrecht, Holland, D. Reidel Publishing Co., p. 282-312.
- Needham, C. E., 1937, Some New Mexico Fusulinidae: New Mexico School of Mines Bulletin 14, 88 p.
- Needham, C. E., and Bates, R. L., 1943, Permian type sections in central New Mexico: Geological Society of America Bulletin, v. 54, p. 1653-1667.
- Neese, D. A. and Schwartz, A. H., 1977, Facies mosaic of the upper Yates and lower Tansill Formations, Walnut and Rattlesnake Canyons, Guadalupe Mountains, New Mexico, in Hileman, M. E, and Mazzullo, S. J., eds., Upper Guadalupian facies, Permian reef complex, Guadalupe Mountains, New Mexico and west Texas: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, 1977 Field Conference Guidebook (Publication 77-16), v. 1, p. 437-450.
- Nelson, L. A., and Haigh, B. R., 1958, Franklin and Hueco Mountains, Texas: West Texas Geological Society Guidebook, 1958 Field Trip, 91 p.
- New Mexico Geological Society, 1954, Guidebook of southeastern New Mexico: 5th Field Conference, 1954, 209 p.
- Newell, N. D., 1955, Depositional fabric in Permian reef limestone: Journal of Geology, v. 63, p. 301-309.
- Newell, N. D., Rigby, J. K., Driggs, A., Boyd, D. W., and Stehli, F. G., 1976, Permian reef complex, Tunisia: Brigham Young University Studies, v. 23, pt. 1, p. 75-112.
- Newell, N. D., Rigby, J. K., Fisher, A. G., Whiteman, A. J., Hickox, J. E., and Bradley, J. S., 1953, The Permian reef complex of the Guadalupe Mountains region, Texas and New Mexico: San Francisco, Freeman and Company, 236 p.
- Nottingham, M. W., 1960, Recent Bell Canyon exploration in the north Delaware Basin (New Mexico-Texas), in Natural gases in the Southwest: Southwestern Federation of Geological Societies Transactions, v. 1, p. 139-153.
- Olive, W. W., 1957, Solution-subsidence troughs, Castile formation of Gypsum Plain, Texas and New Mexico: Geological Society of America, Bulletin, v. 68, p. 351-358.
- Oriel, S. S., Myers, D. A., and Crosby E. J., 1967, West Texas Permian Basin region, in Paleotectonic investigations of the Permian System in the United States: U.S. Geological Survey Professional Paper 515-C, p. C17-C60.
- Otte, Carel, Jr., and Parks, J. M., Jr., 1963, Fabric studies of Virgil and Wolfcamp bioherms, New Mexico: Journal of Geology, v. 71, p. 380-396.
- Page, L. R., and Adams, J. E., 1940, Eastern Midland Basin, Texas: AAPG Bulletin, v. 24, p. 52-64.
- Payne, M. W., 1973, Basinal sandstone facies of the Delaware Mountain Group, west Texas and southeast New Mexico: College Station, Texas A and M University, unpublished Ph. D. dissertation, 150 p.
- 1976, Basinal sandstone facies, Delaware basin, west Texas and southeast New Mexico: AAPG Bulletin, v. 60, p. 517-527.

- Canyon Formation, west Texas and southeast New Mexico, in Sullivan, N. M. ed., Guadalupian Delaware Mountain Group of west Texas and southeast New Mexico: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, 1979 Symposium and Field Conference Guidebook, Publication 79-18, p. 96-103.
- Pia, J. V., 1940, Vorlaufige Ubersicht der Kalkalgen des Perms von Nordamerika: Akademie der Wissenschaften, Wien, Math.-Naturwiss. Kl., Anz. 9, preprint, June 13, p. 1-9.
- Plummer, F. B., and Scott, Gayle, 1937, Upper Paleozoic ammonites in Texas, in The geology of Texas, v. 3: Texas University Bulletin 3701, p. 13-156.
- Porch, E. L., Jr., 1917, The Rustler Springs sulfur deposits: Texas University Bulletin, no. 1722, 71 p.
- Pratt, W. E., 1954, Evidences of igneous activity in the northwestern part of the Delaware basin, in Guidebook of southeastern New Mexico: New Mexico Geological Society, Guidebook, 5th Field Conference, p. 143-147.
- Pray, L. C., 1971, Submarine slope erosion along Permian bank margin, west Texas (abs.): AAPG Bulletin, v. 55, p. 358.
- 1975, Basin facies carbonates and associated features of the Guadalupe Mountain escarpment, Texas: Preliminary guidebook for Field Trip No. 2, Society of Economic Paleontologists and Mineralogists Annual Convention, (Dallas, Texas), 16 p.
- 1977, The all wet constant sea level hypothesis of Upper Guadalupian shelf and shelf edge strata, Guadalupe Mountains, New Mexico and Texas, in Hileman, M. E. and Mazzullo, S. J., eds., Upper Guadalupian facies, Permian reef complex, Guadalupe Mountains, New Mexico and west Texas: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, 1977 Field Conference Guidebook (Publication 77-16), v. l, p. 433-436.
- Pray, L. C., and Esteban, Mateu, eds., 1977, Upper Guadalupian facies, Permian reef complex, Guadalupe Mountains, New Mexico and west Texas; Volume 2, Road logs and locality guides: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, 1977 Field Conference Guidebook, Publication 77-16, 194 p.
- Pray, L. C., and Stehli, F. G., 1962, Allochthonous origin, Bone Spring "patch reefs", west Texas (abs.): Geological Society of American Special Paper 73, p. 118A-119A.
- Richardson, G. B., 1904, Report of reconaissance in Trans-Pecos Texas north of the Texas and Pacific Railway: Texas University Bulletin no. 23, 119 p. 1914, Van Horn folio, Texas: U.S. Geological Survey Folio 194.
- Rigby, J. K., 1952, Paleoecology of the Delaware Mountain group, Guadalupe Mountains area, Texas and New Mexico: New York, Columbia University, unpublished Ph. D., Thesis, 286 p.
- 1953, Some transverse stylolites, Guadalupe Mountains: Journal of Sedimentary Petrology, v. 23, no. 4, p. 265-271.
- 1957, Relationships between <u>Acanthocladia guadalupensis</u> and <u>Solenopora</u>
 <u>texana</u> and the bryozoan-algal consortium hypothesis: Journal of
 Paleontology, v. 31, p. 603-606.
- 1958, Mass movement in Permian rocks of Trans-Pecos Texas: Journal of Sedimentary Petrology, v. 28, p. 298-315.
- Roswell Geological Society, 1951, Permian stratigraphy of the Capitan Reef area of the southern Guadalupe Mountains, New Mexico: Roswell Geological Society, 1951 Field Conference Guidebook, 20 p.

- _____1952, Surface structures of the foothill region of the Sacramento and Guadalupe Mountains: Roswell Geological Society, 1952 Field Conference Guidebook, 14 p.
- ______1957, Slaughter Canyon, New Cave and Capitan Reef exposures, Carlsbad Caverns National Park: Roswell Geological Society (April 13, 1957) Field Trip Guidebook, 19 p.
- 1964, Geology of the Capitan reef complex of the Guadalupe Mountains, Culberson County, Texas and Eddy County, New Mexico: Roswell Geological Society, 1964 Field Trip Guidebook, 124 p.
- Roth, R. I., 1942, West Texas barred basin: Geological Society of America Bulletin, v. 53, p. 1659-1674.
- Ruedemann, Rudolf, 1929, Coralline algae, Guadalupe Mountains: AAPG Bulletin, v. 13, p. 1079-1080.
- St. Germain, L. C., 1966, Depositional dynamics of the Brushy Canyon Formation, Delaware basin: Lubbock, Texas Tech University, unpublished Master's thesis, 119 p.
- Sarg, J. F., 1976, Sedimentology of the carbonate-evaporite facies transition of the Seven Rivers Formation (Guadalupian, Permian) in southeast New Mexico: Madison, University of Wisconsin, unpublished Ph. D. dissertation, 313 p.
- 1977, Sedimentology of the carbonate-evaporite facies transition of the Seven Rivers Formation (Guadalupian, Permian) in southeast New Mexico, in Hileman, M. E., and Mazzullo, S. J., eds., Upper Guadalupian facies, Permian reef complex, Guadalupe Mountains, New Mexico and west Texas: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, 1977 Field Conference, Guidebook (Publication 77-16), v. 1, p. 451-478.
- Sax, N. A., and Stenzel, W. K., 1968, Oils from Abo reservoirs of the northwest shelf, in Basins of the southwest, Volume 2: American Association of Petroleum Geologists, Southwest Section, 10th Annual Meeting, Wichita Falls, Texas, 1968: Midland, Texas, West Texas Geological Society, p. 42-52.
- Scalapino, R. A., 1950, Development of ground water for irrigation in the Dell City Area, Hudspeth County, Texas: Texas Board of Water Engineers Bulletin 5004.
- Schmidt, Volkmar, 1977, Inorganic and organic reef growth and subsequent diagenesis in the Permian Capitan reef complex, Guadalupe Mountains, Texas, New Mexico, in Hileman, M. E., and Mazzullo, S. J., eds., Upper Guadalupian facies, Permian reef complex, Guadalupe Mountains, New Mexico and west Texas: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, 1977 Field Conference Guidebook (Publication 77-16), v. 1, p. 93-132.
- Schmidt, Volkmar, and K. W. Klement, 1971, Early diagenetic origin of reef framework in the Permian reef complex, Guadalupe Mountains, Texas and New Mexico (abs.): International Sedimentology Congress, Program with Abstracts, p. 89.
- Schmitt, G. T., 1954, Genesis and depositional history of Spraberry formation, Midland basin, Texas: AAPG Bulletin, v. 38, no. 9, p. 1957-1978.
- Scholle, P. A., and Kinsman, D. J., 1974, Aragonitic and high-Mg calcite caliche from the Persian Gulf--a modern analog for the Permian of Texas and New Mexico: Journal of Sedimentary Petrology, v. 44, p. 904-916.
- Schultz, C. B., and Howard, E. B., 1935, The fauna of Burnet Cave, Guadalupe Mountains, New Mexico: Academy of Natural Sciences Proceedings, v. 87, p. 273-298.

- Scobey, W. B., and others, 1951, North-south cross section through Permian Basin of West Texas: West Texas Geological Society, Publication 51-27.
- Scott, R. J., 1966, Paduca oil field, <u>in</u> The oil and gas fields of southeastern New Mexico: Roswell Geological Society, p. 144-145.
- Seewald, K. O., 1969, Pennsylvanian and Lower Permian stratigraphy, Hueco Mountains, Texas, in Delaware Basin exploration: West Texas Geological Society, Guidebook, Publication No. 68-55a, p. 45-49.
- Shaller, W. T., and Henderson, E. P., 1932, Mineralogy of drill cores from the potash field of New Mexico and Texas: U.S. Geological Survey Bulletin 833, 124 p.
- Sheldon, V. P., 1954, Oil production from the Guadalupe Series in Eddy County, New Mexico, in Guidebook of southeastern New Mexico: New Mexico Geological Society, 5th Field Conference, October 21-24, 1954, p. 150-159.
- Shumard, B. F., 1858, Notice of new fossils from the Permian strata of New Mexico and Texas, collected by Dr. George G. Shumard, geologist for the United States government expedition for obtaining water by means of artesian wells along the 32nd parallel, under the direction of Captain John Pope, U.S. Top. Eng.: St. Louis Academy of Science Transactions, v. 1, p. 290-297.
- 1859, Notice of fossils from the Permian strata of New Mexico, obtained by the United States expedition under Capt. Pope for boring artesian wells along the 32nd parallel, with descriptions of new species from these strata and the coal measures of that region: St. Louis Academy of Science Transactions, v. 1, p. 397-403.
- Shumard, G. G., 1858, Observations on the geological formations of the country between the Rio Pecos and the Rio Grande, in New Mexico, near the line of the 32nd parallel, being an abstract of a portion of the geological report of the expedition under Capt. John Pope, Corps of Topographical Engineers, U.S. Army, in the year 1855: St. Louis Academy of Science Transactions, v. 1, p. 273-289.
- Silver, B. A., and Todd, R. G., 1969, Permian cyclic strata, northern Midland and Delaware Basins, west Texas and southeastern New Mexico: AAPG Bulletin, v. 53, p. 2223-2251.
- Skinner, J. W., 1946, Correlation of Permian of west Texas and southeast New Mexico: AAPG Bulletin, v. 30, p. 1857-1874.
- Skinner, J. W., and Wilde, G. L., 1954, The fusulinid subfamily

 Boultoniinae: Journal of Paleontology, v. 28, p. 434-444.

 1955, New fusulinids from the Permian of west Texas: Journal of
- Paleontology, v. 29, p. 927-940.
- Smith, D. B., 1973, Geometry and correlation along Permian Capitan Escarpment, New Mexico and Texas: Discussion: AAPG Bulletin, v. 57, p. 940-945.
- 1974a, Origin of tepees in Upper Permian shelf carbonate rocks of Guadalupe Mountains, New Mexico: AAPG Bulletin, v. 58, p. 63-70.
 1974b, Sedimentation of Upper Artesia (Guadalupian) cyclic shelf
- deposits of northern Guadalupe Mountains, New Mexico: AAPG Bulletin, v. 58, p. 1699-1730.
- Snider, H. I., 1966, Stratigraphy and associated tectonics of the Upper Permian Castile-Salado-Rustler evaporite complex, Delaware Basin, west Texas and southeast New Mexico: Albuquerque, University of New Mexico, unpublished Ph. D. dissertation, 140 p.
- Spangle, P. F., ed., 1960, A guidebook to Carlsbad Caverns National Park: National Speleological Society Guidebook Series No. 1, 44 p.

- Stafford, P. T., 1959, Geology of part of the Horseshoe atoll in Scurry and Kent Counties, Texas: U.S. Geological Survey Professional Paper 315-A, p. 1-20.
- Stahl, W. J., and Carey, B. D., Jr., 1975, Source rock identification by isotope analysis of natural gases from fields in the Val Verde and Delaware basins, west Texas: Chemical Geology, v. 16, no. 4, p. 257-267.
- Steenland, N. C., 1969, Magnetic investigations in the Delaware Basin, <u>in</u>
 Delaware Basin exploration: West Texas Geological Society, Guidebook,
 Publicaton No. 68-55a, p. 118-125.
- Stipp, T. F., 1952, Surface structures of the foothill region of the Sacramento and Guadalupe Mountains, Chaves, Eddy, Lincoln, and Otero Counties, New Mexico, in Guidebook of south-central New Mexico: Roswell Geological Society, Guidebook, 6th Field Trip, 14 p.
- Stipp, T. F., and Haigler, L. B., 1956, Preliminary structure contour map of part of southeastern new Mexico showing oil and gas development: U.S. Geological Survey, Oil and Gas Investigations Map OM 177.
- Stipp, T. F., and others, eds., 1957, The oil and gas fields of southeastern New Mexico, 1956--a syposium: Roswell, New Mexico, Roswell Geological Society, 376 p.
- Strain, W. S., 1969, Cenozoic rocks in the Mesilla and Hueco Bolsons, <u>in</u>
 Delaware Basin exploration: West Texas Geological Society, Guidebook,
 Publication No. 68-55a, p. 83-84.
- Structuremaps., Ltd, 1973, The Permian Basin of west Texas and southeast New Mexico, Permian structure map showing oil and gas production: Midland, Texas, Structuremaps, Limited, scale 1:348,480, 1 sheet.
- Summerson, C. H., 1966, Crystal molds in dolomite; their origin and environmental interpretation: Journal of Sedimentary Petrology, v. 36, p. 221-270.
- Sweeney, Henry N., ed. in chief, 1961, 0il and gas fields of southeastern New Mexico, 1960 supplement—a symposium: Roswell, New Mexico, Roswell Geological Society, 229 p.
- Tait, D. B., Ahlen, J. L., Gordon, A., Scott, G. L., Motts, W. S., and Spitler, M. E., 1962, Artesia Group (Upper Permian) of New Mexico and west Texas: AAPG Bulletin, v. 46, p. 504-517.
- Tarr, R. S., 1892, Reconnaissance in the Guadalupe Mountains: Texas Geological Survey Bulletin 3, 39 p.
- Thomas, C. M., 1965, Origin of pisolites (abs.): AAPG Bulletin, v. 49, p. 499.
- 1968, Vadose pisolites in the Guadalupe and Apache Mountains, west Texas: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, Publication 68-77, p. 32-35.
- Thomas, L. C., 1960, Geraldine--Ford field, Culberson and Reeves Counties, Texas, in Geology of the Delaware Basin and field trip guidebook:

 Midland, West Texas Geological Society, 1960 Field Trip Guidebook, p. 76-77.
- Thomason, Ben, 1960, El Mar field, Loving County, Texas, and Lea County, New Mexico, in Geology of the Delaware Basin and field trip guidebook:
 Midland, West Texas Geological Society, 1960 Field Trip Guidebook, p. 71-75.
- Thrailkill, J. V., 1971, Carbonate deposition in Carlsbad Caverns: Journal of Geology, v. 79, p. 683-695.
- Thrailkill, J. V., and Boyer, P. S., 1965, Occurrence and stability of carbonate minerals in Carlsbad Caverns, New Mexico (abs.): Geological Society of America Program for 1965 Annual Meeting, p. 173.

- Toomey, D. F., and Cys, J. M., 1977, Rock/biotic relationships of the Permian Tansill-Capitan facies exposed on the north side of the entrance to Dark Canyon, Guadalupe Mountains, southeastern New Mexico, in Hileman, M. E., and Mazzullo, S. J., eds., Upper Guadalupian facies, Permian reef complex, Guadalupe Mountains, New Mexico, and west Texas: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, 1977 Field Conference Guidebook (Publication 77-16), v. 1, p. 133-150.
- Trollinger, W. V., 1968, Surface evidence of deep structure in the Delaware basin, in Delaware Basin exploration, 1968, Guidebook: West Texas Geological Society Pulication 68-55, p. 87-104.
- 1969, Surface evidence of deep structure in the Delaware Basin, <u>in</u>
 Delaware Basin exploration: West Texas Geological Society, Guidebook,
 Publication No. 68-55a, p. 87-104.
- Tyrrell, W. W., Jr., 1962, Petrology and stratigraphy of near-reef Tansill-Lamar strata, Guadalupe Mountains, Texas, and New Mexico, in Wilde, G. L., and others, eds., Permian of the central Guadalupe Mountains, Eddy County, New Mexico: Hobbs, Roswell and West Texas Geological Society, Field Trip Guidebook, Publication No. 62-48, p. 59-75.
- _____1964, Petrology and stratigraphy of near reef Tansill-Lamar strata,
 Guadalupe Mountains, Texas, and New Mexico, in Geology of the Capitan
 reef complex of the Guadalupe Mountains, Culberson County, Texas, and
 Eddy County, New Mexico: Roswell Geological Society Guidebook, p. 66-75.
- 1969, Criteria useful in interpreting environments of unlike but time-equivalent carbonate units (Tansill-Capitan-Lamar), Capitan reef complex, west Texas and New Mexico, in Friedman, G. M, ed., Depositional environments in carbonate rocks: Society of Economic Paleontologists and Mineralogists, Special Publication 14, p. 80-97.
- Udden, J. A., 1918, The age of the Castile gypsum and Rustler Springs formation: American Journal of Science, 4th ser., v. 40, p. 151-156.

 1924, Laminated anhydrite in Texas: Geological Society of America Bulletin, v. 35, p. 347-354.

 American Geological Institute, 1958, Geological Abstracts, v. 6, no. 3,
- Van Der Gracht, W. A. J. M., 1931, The Permo-Carboniferous orogeny of the South-Central United States: Kon. Akademie van Wetenschappen, Amsterdam Vers., Afd. Natuurk., No. 3, deel 27.
- Vertrees, C. D., Atchison, C. H., and Evans, G. L., 1959, Paleozoic geology of the Delaware and Val Verde basins, <u>in</u> Geology of the Val Verde basin and field trip guidebook: Midland, Texas, West Texas Geological Society, 1959 Field Trip Guidebook, p. 64-73.
- Vertrees, C. D., and others, 1964, Cross-section through Delaware and Val Verde basins from Lea County, New Mexico, to Edwards County, Texas: Midland, Texas, West Texas Geological Society, Publication 64-54.
- Vest, E. L., Jr., 1968, Pennsylvanian-Permian horseshoe atoll, west Texas (abs.): AAPG Bulletin, v. 52, no. 3, p. 553.
- 1970, Oil fields of Pennsylvanian-Permian horseshoe atoll, west Texas, in Halbouty, M. T., ed., Geology of giant petroleum fields--A symposium: American Association of Petroleum Geologists Memoir 14, p. 185-203.
- Vine, J. D., 1960, Recent domal structures in southeastern New Mexico: AAPG Bulletin, v. 44, no. 12, p. 1903-1911.
- 1963, Surface geology of the Nash Draw quadrangle, Eddy County, New Mexico: U.S. Geological Survey Bulletin 1141-B, 46 p.

- Von Buttlar, H., and Wendt, I., 1958, Ground-water studies in New Mexico using tritium as a tracer: American Geophysical Union Transactions, v. 39, no. 4, p. 660-668,:
- Wagner, L. H., Hines, V. J., Thorsen, W. G., and Cys, J. M., 1977, Selected bibliography of the Guadalupian of west Texas and New Mexico, in Hileman, M. E., and Mazzullo, S. J., eds., Upper Guadalupian facies, Permian reef complex, Guadalupe Mountains, New Mexico and west Texas: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, 1977 Field Conference Guidebook (Publication 77-16), v. 1, p. 500-508.
- Watson, W. G., 1974, Inhomogeneities of the Ramsey Member of the Bell Canyon Formation, Geraldine Ford Field, Culberson and Reeves Counties, Texas: Arlington, University of Texas at Arlington, unpublished Master's thesis, 122 p.
- ______1979, Inhomogeneities of the Ramsey Member of the Permian Bell Canyon Formation, Geraldine Ford Field, Culberson and Reeves Counties, Texas, in Sullivan, N. M., ed., Guadalupian Delaware Mountain Group of west Texas and southeast New Mexico: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, Symposium and Field Conference Guidebook, Publication 79-18, p. 2-38.
- Weinmeister, M. P., 1978, Origin of upper Bell Canyon reservoir sandstones (Guadalupian), El Mar and Paduca fields, southeast New Mexico and west Texas: College Station, Texas A and M University, unpublished Master's thesis, 96 p.
- West Texas Geological Society, 1951, Introduction to the petroleum geology of the Permian Basin of west Texas and southeastern New Mexico: Midland, Texas, West Texas Geological Society, 51 p.
- ______1960, Geology of the Delaware Basin and field trip guidebook: Midland,
 Texas, West Texas Geological Society, 1960 Field Trip Guidebook, 97 p.
 ______1966, Oil and gas fields in west Texas—Symposium: Midland, Texas, West
 Texas Geological Society Publication 66-52, 398 p.
 - 1969a, Delaware Basin exploration: West Texas Geological Society, Guidebook, Publication No. 68-55a, 170 p.
- _____1969b, Oil and gas fields in west Texas——Symposium, Volume 2: West Texas Geological Society Publication 69-57, 134 p.
- Whiteman, A. J., 1952, Regressive bioherm theory and Capitan reef: AAPG Bulletin, v. 36, p. 173-175.
- Wilde, G. L., 1955, Permian fusulinids of the Guadalupe Mountains: Permian Basin Section, Society of Economic Paleontologists and Mineralogists Guidebook, p. 59-62.
- _____1971, Fusulinacean history and its bearing upon Permian boundary problems (abs.): Bulletin of Canadian Petroleum Geology, v. 19, p. 375-376.
- 1975, Fusulinid-defined Permian stages, in Cys, J. M., and Toomey, D. F., eds., Permian exploration, boundaries, and stratigraphy: West Texas Geological Society and Permian Basin Section, Society of Economic Paleontologists and Mineralogists, p. 67-83.
- Wilde, G. L., and Todd, R. G., 1968, Guadalupian biostratigraphy and sedimentation in the Apache Mountains region, west Texas, in Guadalupian facies, Apache Mountains area, west Texas: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, p. 10-31.
- Wilkinson, W. M., 1953, Fracturing in Spraberry reservoir, west Texas: AAPG Bulletin, v. 37, no. 2, p. 250-265.

- Williamson, C. R., 1977, Deep-sea channels of the Bell Canyon Formation (Guadalupian), Delaware Basin, Texas-New Mexico, in Hileman, M. E., and Mazzullo, S. J., eds., Upper Guadalupian facies, Permian reef complex, Guadalupe Mountains, New Mexico, and west Texas: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, 1977 Field Conference Guidebook (Publication 77-16), v. 1, p. 409-432.
 - 1978, Depositional processes, diagenesis and reservoir properties of Permian deep sea sandstones, Bell Canyon Formation, Texas-New Mexico: Texas Petroleum Research Committee, Report no. UT78-2, 260 p.
- 1979, Deep-sea sedimentation and stratigraphic traps, Bell Canyon Formation (Permian), Delaware Basin, in Sullivan, N. M., ed., Guadalupian Delaware Mountain Group of west Texas and southeast New Mexico: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, 1979 Symposium and Field Conference Guidebook, Publication 79-18, p. 39-74.
- Willis, Robbin, 1929a, Preliminary correlation of the Texas and New Mexico Permian: AAPG Bulletin, v. 13, p. 907-1031.
- _____1929b, Structural development and oil accumulation in Texas Permian: AAPG Bulletin, v. 13, p. 1033-1043.
- Wilson, J. H., II, 1960, Twofreds field, Loving, Reeves and Ward Counties, Texas, in Geology of the Delaware Basin and field trip guidebook:

 Midland, West Texas Geological Society, 1960 Field Trip Guidebook, p. 81-84.
- Wilson, J. L., 1975, Carbonate facies in geologic history: New York, Springer Verlag, 471 p.
- Yurewicz, D. A., 1976, Sedimentology, paleoecology, and diagenesis of the massive facies of the lower and middle Capitan Limestone (Permian), Guadalupe Mountains, New Mexico and west Texas: Madison, University of Wisconsin, unpublished Ph. D. dissertation, 278 p.
- Limestone (Permian), Guadalupe Mountains, New Mexico and west Texas, in Hileman, M. E., and Mazzullo, S. J., eds., Upper Guadalupian facies, Permian reef complex, Guadalupe Mountains, New Mexico and west Texas: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, 1977 Field Conference Guidebook (Publication 77-16), v. 1, p. 45-92.

PART II

UPPER PALEOZOIC BIOHERMS IN THE NORTHERN SACRAMENTO MOUNTAINS

ROBERT B. HALLEY

UPPER PALEOZOIC BIOHERMS

IN THE NORTHERN SACRAMENTO MOUNTAINS

Introduction

Exposures of Upper Paleozoic strata in the northern Sacramento Mountains offer a superb opportunity to view varied carbonate lithologies, local facies changes, and the products of diagenesis within a variety of shelf and slope carbonate buildups. Similar buildups occur in the subsurface in nearby New Mexico, Texas and Utah basins and are known to be excellent hydrocarbon reservoirs. They have been targets of exploration in the area for the last quarter century.

We will visit three types of mounds and discuss their similarities and differences in the field. On Day IV, we will study phylloid algal mounds, structures which are widespread throughout the United States (Wray, 1968). We will compare a Virgilian mound (Pennsylvanian), which is largely a carbonate mud accumulation, with a Wolfcampian mound (Permian) that contains copious amounts of submarine cement. On Day V, we will visit an Osagean (Mississippian) buildup composed of a muddy core facies and crinoidal sand flank beds. This mound is similar to Lower Carboniferous mounds of Europe, known as Waulsortian Mounds and named from occurrences near Waulsort, Belgium.

The exposures provide a cross-sectional view of the rocks, but it is not possible to develop a regional picture of facies realtionships in a few days as may be done for the Permian Basin. The Permian part of this field course visits an area where erosion and evaporite solution produced outcrops that may be relatively easily related to a paleogeographic framework. In contrast, strata in the northern Sacramento Mountains dip into the subsurface a few miles to the east of the outcrops, and they are downfaulted below the Tularosa Valley to the west.

The northern Sacramento Mountain area was closer to sources of terrigenous clastic sediments than the Carlsbad area during the late Paleozoic. The Pedernal land mass repeatedly shed material south and west to the Alamogordo area. Some of the tectonism which occurred during this time is evidenced in the Sacramento Mountains by Late Paleozoic faulting. Some tectonism may also be reflected in the sediments themselves, which show evidence of repeated, relative sea level changes, probably of both tectonic and eustatic origin.

In the northern Sacramento Mountains we will continue to investigate many of the themes developed in the Carlsbad area, but now in a considerably different setting. These themes include facies relationships, faunal and lithologic variation, reef models, marine cementation, subaerial exposure, porosity and permeability development and preservation. They are themes which are increasingly incorporated into modern exploration scenarios and are well illustrated by the outcrops we will visit.

Summary of Significance to Petroleum Exploration

The general geology of the northern Sacramento Mountains has been worked out by Pray (1952, 1961) and Otte (1959b), who provided the framework for many later, more detailed studies. Pray (1959) summarizes work in the area before 1950. Excellent general field guides to the area have been published by Pray (1959) and Butler (1977). Pray (1975) has recently edited a field guide to shelf-edge and basin facies limestones in the Sacramento Mountains. Figure 1 indicates the position of our field stops on a generalized stratigraphic section for the northern Sacramento Mountains.

Several processes discussed and developed at outcrops in the Permian Reef complex will again be evoked to explain observations on these older bioherms. The significance of these processes varies from buildup to buildup, and the internal structure and composition of the bioherms reflect these differences. Some buildups are cement-rich, some mud-rich, some contain shallow-water fossils, some deep-water



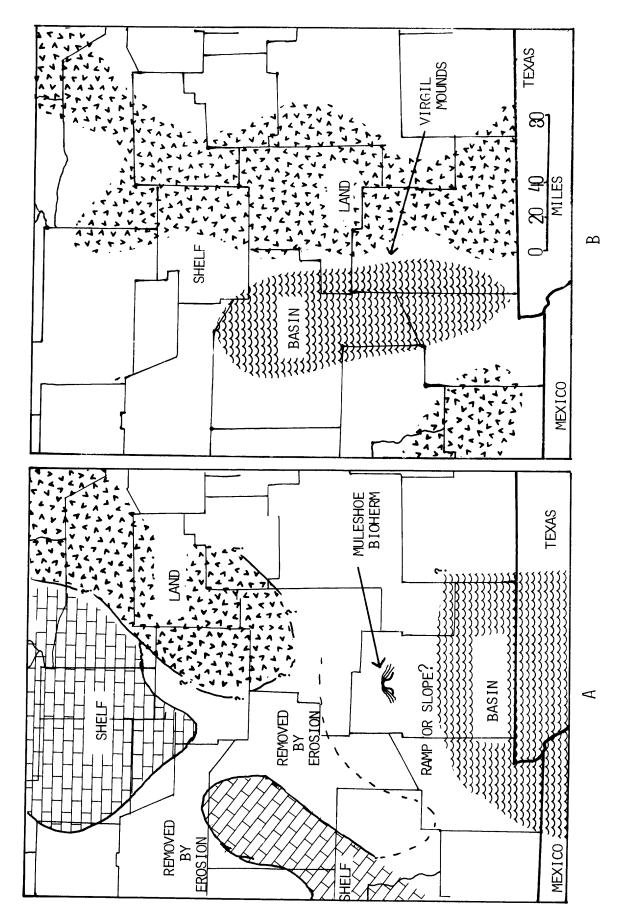
Figure 1. Partial stratigraphic column of the northern Sacramento Mountains showing field trip stops. Section is generalized after Pray (1961) and AAPG Geologic Road Map, Eastern Colorado and New Mexico.

fossils. We will try to extract as much interpretive data as possible from bioherm outcrops. Such observations will help to interpret similar rocks in the subsurface.

In contrast to the Capitan Reef, which does not produce oil in the subsurface, bioherms similar to those we visit in the Sacramento Mountains do form excellent reservoirs. Phylloid algal limestones, like those at Virgil and Yucca mounds, form reservoir rocks at Aneth Field (Elias, 1963; Irwin, 1963; Peterson and Ohlen, 1963), Ismay Field (Choquette and Traut, 1963), New Lucia Field (Toomey and Winland, 1973), Lusk Field (Thornton and Gaston, 1968), several fields in the "Horseshoe Atoll" (Vest, 1970), and Saunders and Conley fields (Kerr, 1969). These studies show, in some cases, direct association of subsurface porosity and the presence of phylloid algae. Porosity takes the form of shelter pores beneath algal blades in mudstones and wackestones, intergranular porosity in algal plate grainstones, and secondary porosity in leached algal plate mudstones. In some cases porosity and permeability are provided by fracturing or dolomitization in this facies. Several of the associated lithologies also provide excellent reservoir rock, some of which are oolitic, crinoidal and fusulinid grainstones. It is significant that production from many fields appears to be from the shelf-edge buildups themselves and not from fore-reef or back-reef facies. Fields along the Abo Trend (LeMay, 1972) and the Kemnitz-Townsend Trend (Malek-Aslani, 1970) occur at the shelf edge, a position occupied by the tight Capitan Limestone in younger units to the south. Early submarine cementation is a major factor in the lack of oil production from the Capitan reef.

The retention of porosity in the subsurface is still a topic of considerable study. We see little matrix porosity in outcrops of Late Paleozoic mounds (although vugs are characteristic of the lower Virgil Mound). The original porosity in these carbonate sediments was very high (40-85%), and the processes involved in such great porosity loss have not been well documented. One of the best documented cases of porosity loss in carbonate sands comes from studies of the crinoidal sand of the Lake Valley Formation.

Hydrocarbon reservoirs in rocks similar to those that occur in the Lake Valley appear to be rare. Pray (1958) reported that cores from the La Pan Field of Clay County, Texas, are similar to lithologies associated with Muleshoe Bioherm. La Pan Field may therefore be a buildup similar to Muleshoe Bioherm. Meyers (1974) showed that cementation and porosity loss in Lake Valley non-biohermal sediments are linked to periods of subaerial exposure. As much as 60% of the original porosity was lost within about five million years of sediment deposition. Almost all the rest was lost within 20-30 million years. Cementation took place during two episodes of subaerial exposure (Meyers, 1978).


It is interesting to note that early subaerial exposure is credited with producing leached porosity in many phylloid algal mounds (Wilson, 1975). Apparently, exposure and fresh-water diagenesis act as a double-edged sword, i.e., under some circumstances exposure helps produce reservoir rocks; in other cases exposure destroys reservoir properties. The particular circumstances which control the products of exposure are not well understood. Factors that probably exert considerable influence on the diagenetic history of these rocks include rate of transgression or regression, duration of exposure, climate, original sediment mineralogy and local paleohydrology.

Even less well understood are later diagenetic processes which may affect these limestones in the subsurface. The Holder and Laborcita mounds had been buried to at least 2500 feet and the Lake Valley bioherms as deeply as 6500 feet by the end of the Paleozoic. Processes, such as compaction, pressure-solution cementation, fracturing, cementation by dolomite and anhydrite, are known to occur at depth but are undocumented in these rocks.

Finally, one wonders what has been the effect of uplift and the current episode of exposure on these rocks. Might some of the differences between the rocks we see in outcrop and their subsurface counterparts be due to their Cenozoic uncovering?

Or was the character of these rocks essentially fixed during their burial?

Again, it should be emphasized that we will not develop a regional picture of sedimentary facies in the Sacramento Mountains as we do in the Guadalupe Mountains. Generalized paleogeographic maps for the Osagian and Virgilian Stages of the area are outlined in Figure 2. We will review principles of carbonate deposition as they apply to late Paleozoic bioherms and formulate new questions which have particular significance to petroleum exploration.

during A) Late Osagean time after Armstrong (1962, 1967) and Wilson (1975b); B) Virgilian time after Backman Generalized paleogeography of southeastern New Mexico (1975) and Meyer (1966). Figure 2.

$\begin{array}{cccc} {\tt CARLSBAD} & {\tt TO} & {\tt ALAMOGORDO} & {\tt ROADLOG} \\ & {\tt DAY} & {\tt IV} \end{array}$

Mileage	Cumulati	ve Mileage	Description
1	From	From	
	Carlsbad	Alamogord	0
0.0	0.0	181.4	Leave Carlsbad traveling north on US 285 from its junction with US 62-180 in downtown Carlsbad traveling toward Artesia, N.M.
21.3	21.3	160.1	Junction with NM 137. Continue north on US 285. As we travel northward, we cross several "reef" zones in the subsurface. Just a few miles north of here, our route crosses the trend of the San Andres reef zone (Miller, 1969) and further to the north, we cross the Abo reef trend about 5 miles south of Artesia (LeMay, 1972). In general, these trends parallel the Capitan Reef trend in the subsurface along the northern end of the Delaware Basin.
0.8-2.8	22.1- 24.1	159.3- 157.3	Low roadcuts through thin-bedded dolomites (with evaporite crystal casts) and redbeds of the restricted lagoon facies of the Yates and Seven Sisters Formations, similar to outcrops visited in Dark Canyon and Rocky Arroyo on Day III.
5.6	29.7		Junction with NM 381. Hills visible 6 miles to the east form the McMillan Escarpment and are composed of the Permian Artesia Group (undivided Tansill, Yates and Seven Sisters Fms.).
9.4	39.1		Junction with NM 335, continue north on US 285 toward Artesia.
4.1	43.2		Entering Artesia, N.M.
1.5 21.3	44.7 66.0		Turn left at junction with US 82 (US 83 on maps published prior to 1968) traveling west toward Cloudcroft. Road traverses 20 miles of Quaternary alluvium, good time for a nap or reading detailed descriptions of future stops. Hope Village center.
6.9	72.9		Chaves County line.
5.7	78.6		Junction with NM 13, continue west on US 82.
0.2	78.8		Roadcut in Quaternary alluvium.
0.3- 13.3	79.1-		Scattered outcrops of dark grainstones of the San Andres Formation.
1.7	93.8		Junction with NM 24 on left. Continue on US 82 west into foothills on the east side of the Sacramento Mountains. Hillsides and roadcuts for the next 45 miles are either limestones of the San Andres Fm. or red and yellow terrigenous clastics of the Yeso Fm. US 82 slowly climbs the east side of the Sacramento Mts. (almost a dip slope), gradually cutting deeper into the San Andres limestones and into the Yeso below. As elevation increases, we will pass through several vegetation zones, from open desert scrub to alpine conifer forest.
12.4	106.2	75.2	Village of Elk, N.M.
2.3	108.5		Mule Canyon Road on left.
0.8	109.3		Otero County line.
0.2 8.6	109.5 118.1	71.9 63.3	Enter Lincoln National Forest. Mayhill town limit. For the next 10 miles, valley is floored by the Yeso Fm., and the San Andres Fm. occurs on the surrounding higher areas.

0.4	118.5	62.9	Junction with NM 130 on left.
10.3	128.8	52.6	Junction with Springs Canyon Road on right.
1.1	129.9	51.5	Entering town of Winsatt, N.M.
4.1	134.0	47.4	Cloudcroft Ski Area on left.
1.9	135.9	45.5	Junction with NM 24 on right.
1.3	137.2	44.2	Cloudcroft town center, elevation about 8700 feet. US 82
1.5	137.2	77.2	drops rapidly, some 4000 feet in the next 20 miles, down the west face of the Sacramento Mts.
0.2	137.4	44.0	Alluvium exposed in roadcut to left and right.
0.2	137.6	43.8	Lower San Andres Fm.
1.7	139.3	42.1	Yeso Fm. on right. US 82 drops through over 1200 feet of Yeso Fm. in next 5 miles.
1.5	140.8	40.6	Lower Yeso redbeds typical of the next 3 miles.
3.2	144.0	37.4	Gradational contact of Yeso Fm. (marine) with underlying Abo Fm. (nonmarine) occurs in this general area.
0.6	144.6	36.8	Mountain Park, N.M.
0.9	145.5	35.9	High Rolls, N.M. and junction with West Side Road. High Rolls is a lead and copper mining district with ores occurring in arkose beds of the Abo Fm. (Jerome and others,
			1965).
1.0	146.5	34.9	East side of tunnel and Fresnal Box Canyon walls composed of the Bug Scuffle Limestone Member of the Gobbler Fm. (Middle Pennsylvanian). On this side (east side) of the Fresnal Fault, the Laborcita, Holder and Beeman Formations are missing, but they are present on the west side
			of the fault.
0.3	146.8	34.6	OPTIONAL STOP. Fresnal Box Canyon vista on right. Effects
			of drag from the Fresnal Fault Zone on Bug Scuffle Ls. Member may be viewed to the west on the north side of the
	Figure 3		canyon. Fresnal faults in this area were active during the latest Pennsylvanian and earliest Permian. Delgado and Pray (1977) estimate as much as 1600 feet of displacement, down to the west, along the fault zone in this area.
0.7	147.5	33.9	Dry Canyon ahead and to the left (south).
0.8	148.3	33.1	Tertiary dike and sill intruding Laborcita Fm. on right.
0.8	149.1	32.3	Covered, unconformable contact between Laborcita and Holder
0.0	147.1	32.3	
0.5	149.6	31.7	Fms. at approximately this point. View ahead of flank beds dipping eastward off Virgil bio- herms.
0.7	150.3	31.1	STOP IV-1, Virgil Bioherm. Lincoln National Forest boundary sign and parking area on left. The west flank of the bio-
			herm is strikingly exposed to the north of the road. Beds with apparent dips of almost 45° at the west end give way to less steeply dipping strata and massive units in the center of the bioherm outcrop. Faint bedding near the center suggests the escarpment does not expose core facies or that the bioherm core is very similar to flanking beds. The 60-80-ftthick feature is typical of many such bioherms in the area and shares features in common with many
	Figures 4		late Paleozoic buildups. Plumley and Graves (1953) first figured the Virgilian bio-
	and 5		herms and emphasized their geometry, orientation and biological origin. They appear as elongate bodies up to one mile long and 200 feet thick. They tend to parallel the mountain front. As we traverse the outcrop here, it

the mountain front. As we traverse the outcrop here, it

will become apparent that the bioherm, while beautifully exposed, does not weather in a manner that allows easy interpretation of the composition of these limestones. Parks (1958, 1962), Wray (1959, 1963) and Konishi and Wray (1961) established the importance of platy algae in these limestones and have refined the taxonomy of the platy or phylloid (leaf-shaped) algae (Pray and Wray, 1963). Phylloid algal limestones are widespread in the United States (Wray, 1968), and bioherms composed of such algal limestones are widespread in Late Pennsylvanian and Wolfcampian strata of southern New Mexico (Wilson, 1977). Cline (1959) emphasized the cyclic nature of Virgilian rocks in this area, and Wilson (1967) related these shelf cycles to basinal cycles in the Orogrande Basin. Shelf cycles consist of a variable sandstone and shale lower member with local channel-fill conglomerates which grade upward into normal marine limestone and shale. These in turn pass upward into shallow-water limestones (grainstones and bioherms) which cap the shelf cycles. Wilson (1967) interpreted these cycles to be the result of repeated sea level fluctuations, which periodically exposed the shelf and bioherms to subaerial weathering and diagenesis. Wilson drew on conceptual models of cyclic deposition and evidence from the Holder Fm. to develop the idea of shelf and basin reciprocal sedimentation. This important model promotes alternate sites of basin and shelf sedimentation during sea level low and high stands, respectively. During lowered sea level, most sediment bypasses the exposed shelves and is deposited in adjacent basins. During sea level high stands, these sediments are deposited on the shalves along with shallowwater limestones, while the basins receive little sediment and are "starved." The reciprocal sedimentation concept has been widely applied in shelf/basin sediment dynamics, and we will discuss its application to the Permian Basin.

Pray (1961) defined the La Luz anticline, which runs approximately NNW through this area and had a pronounced local influence on Late Pennsylvanian sedimentation (Wilson, 1969). Bioherms developed with long axes approximately parallel to the axis of the La Luz anticline, which was a subtle structural feature at the time but developed more strongly during later deposition of the Holder Formation.

Inspection of the bioherm proceeds up a gully around the west end of the feature, up-flanking beds eastward to the top of the mound. Before reaching the mound proper, the climb traverses marine shales and limestones of the upper Beeman Formation and enters the Holder Formation approximately 60 feet below the base of the bioherm. The limestones include oolitic and algal grainstones and algal boundstones separated by slope-forming shales.

The bioherm is composed in large part of mud (micrite) and phylloid algal plates. The phylloid algae are usually poorly preserved as molds or replaced by blocky calcite with all traces of original microstructure lost. They

are probably of diverse origin, some being green calcareous algae and some being red calcareous algae. Their poor state of preservation suggests they were originally aragonitic. Wray (1975, 1977) has suggested that the closest living analogues to some of the phylloid algae may be a family of red calcareous algae known as the Squamariacean algae. Today, "squamies" are subtle but widespread coral reef inhabitants.

A great many other organisms are evident in the biohermal rocks, including stromatolites, sponges, tubular encrusting foraminifera, stromatoporoids, and corals, all of which are capable of producing reef structures, but none of which appear to be abundant enough on outcrop to account for the bulk of the carbonate buildup. Volumetrically, mud is the most important constituent of the bioherm. Wray (1959) suggests the mud had been trapped by a thicket of phylloid algae, probably in a relatively low-energy setting. Ball and others (1977) question the mound-building capabilities of phylloid algae. Parks (1977) briefly reported that algal plate mudstones were uncommon in four cores taken through the bioherm. The upper bioherm contained calcirudites of sponge, stromatoporoid, tubular foraminifera, and other clasts. The lower part of the mound contained more mud and calcarenite and rare-to-abundant masses of fibrous calcite. Earlier outcrop studies by Otte and Parks (1963) suggest 30-50% of the lowest third of the bioherm is composed of botryoidal fibrous calcite, a replacement after aragonite submarine cement. The material is beautifully illustrated by the authors and was interpreted as fossil remains of a Stromatactis-like organism, following similar interpretations of fibrous cements from Europe. Otte and Parks (1963) point out that fibrous calcites weather indistinctly in the Virgil reef and are difficult to observe in outcrop, but are strikingly accentuated by weathering at Stop IV-3.

The lower third of the bioherm is also vuggy in outcrop with irregular voids up to several inches across scattered throughout the rocks. The origin of these vugs is problematic. Parks (1977) considered several mechanisms for producing the vugs, including subaerial solution (Wilson, 1975), submarine solution, decay of pre-existing soft-bodied organisms, sheltered porosity, dewatering contraction and gas bubbles. He concluded that vugs were the product of a combination of decay and gas generation. Small fractures and in situ brecciation (compactional) are common in some portions of the bioherm and are evidence of early lithification. Wilson (1975) suggests this early cementation and vuggy leaching took place during a sea level low stand and are the result of early meteoric water This explanation seems particularly likely diagenesis. in light of the cyclic nature of Holder sediments overlying the bioherm and the transgression/regression model that explains their origin (Wilson, 1967).

The abundant evidence of submarine cement illustrated by Otte and Parks (1963) and Parks (1977) suggests that early submarine cement should be considered as the lithifying

agent in these buildups. Less obvious micritic submarine cements may also be present in the bioherm sediments, cements which appear identical to detrital micrite. Such cements are common in Holocene reefs, are composed of high-Mg calcite, and appear as a micritic matrix in the reef rock (Macintyre, 1977). It is intriguing to imagine what role submarine cement may have had in creating vuggy porosity in these reefs. In a sense, portions of the bioherm are really "lithoherms," following the terminology used by Neumann and others (1977) to emphasize the role of subsea cementation during growth of the structure. This role is nicely illustrated by substituting submarine cement for "Stromatactis" and quoting from Otte and Parks (1963), "(Submarine cement) functioned as both a sedimentbinding and a framework-building organism in the construction of the bioherms and may be quite widespread in other late Paleozoic bioherms of the western United States." This has proven to be a rather prophetic statement in light of the now widely recognized submarine cements present in reefs of all ages.

0.3 150.6 30.8

Cattle guard in road and view straight ahead of the Tularosa Basin. In the basin, to the south, lie the outskirts of Alamogordo and the dunes of White Sands National Monument beyond. Across the basin rise the San Andres Mts. Pray (1959) estimates as much as 7000 feet of vertical displacement has occurred along the faults which formed the front of the Sacramento Mts.

0.3 150.9 30.5

OPTIONAL STOP, Yucca Mound. An unused dirt trail leads north of US 82 about 300 yards until it intersects the gully to the right (east). Route turns up gully at intersection until Yucca Mound is reached, about 100 yards after leaving the trail. The beds exposed in the gully below the mound and the mound itself have been studied in considerable detail by Toomey and others (1977a, 1977b). Exposed in the gully bottom are beds interpreted to represent facies which are basinward and slightly older than the mounds. These include shales, some of which show evidence of penecontemporaneous deformation (slumping?), crossbedded grainstones composed of material presumably transported from mound areas (e.g., sands composed almost entirely of fragments of tubular foraminifera), and small mounds (12-15 feet in diameter) composed of plumose algae and foraminifera.

The core facies of the mound is well exposed and consists of mud and algal plates, and a great variety of other fossils, including sponges, foraminifera, pelecypods, and dasyclad (calcareous green) algae.

Mound geometry can be seen by climbing the steep slope on the north side of the gully and looking south across the canyon that transects the mound. Beds immediately above the mound are nearly horizontal on top of and east of the buildup, but dip steeply over the western edge.

The bioherm is a complex of two mounds, as pointed out by Toomey and others (1977b), and in detail includes a complex variety of carbonate lithologies. One mound overlies and

Figure 6

is basinward of the other, showing that the complex as a whole built seaward and is regressional in character. However, the presence of stratigraphic breaks in the complex, interpreted to be of subaerial origin, emphasize the complex history which gave rise to this generally regressive sequence. Toomey and others (1977b) estimate the position of the mound to be $\frac{1}{2}$ mile east of the shelf edge. The shelf at this point was narrow (a few miles?) with the Orogrande Basin to the west and the Pedernal Uplift to the east.

Submarine cements have not been identified in the Yucca Mound and appear not to have been important in mound development here.

3.2	154.1	27.3	Junction	of	US	82	with	US	54-70.	Turn	right	(north)	toward
			Tularosa	ł.									

Junction with NM 545. Continue straight ahead. The town high on the alluvial fan two miles to the east is La Luz, at the mouth of La Luz Canyon. The strata exposed in the escarpment of the Sacramento Mts. dip to the north, so that increasingly younger beds lie at the base of the mountains to our right as we approach Tularosa. East of Alamogordo, these beds are Mississippian or older in age. At the last stop and east of us now, they are Pennsylvanian, and east of Tularosa they will be Permian in age.

Tularosa city limits.

Bear east (right) on US 70 toward Roswell.

Turn left (north) onto Bookout Road.

Cross bridge over canal.

Right turn onto Bookout NE (east).

Sharp right turn (south) in road, park at safe distance around turn.

STOP IV-2, Laborcita Lithoherms. Hilltops 1/4 mile to the NE are capped by strikingly banded limestones of Wolfcampian age. From this distance, it can be seen that the dark bands (cement-rich) pinch and swell along the face of the outcrop. In contrast, the light bands (mud-rich) are of rather even thickness and drape over the topography of the dark bands. This is strong evidence for the excellent mound-building capabilities of cement. Walk to the lithoherms via a meandering route over beds of the Laborcita Formation of Otte (1959a, 1959b). Here, these beds include red and green sandstones, siltstones and mudstones with some spectacular polymict conglomerates and thin limestones. The lithoherms have been described in increasing detail by Otte (1954, 1959a, 1959b), Otte and Parks (1963), Cys and Mazzullo (1977), and Mazzullo and Cys (1979). Because of their proximity to underlying nonmarine beds, the lithoherms are thought to be nearshore marine buildups, perhaps analogous to fringing reefs. Otte (1959) estimates the lithoherms to have stood as much as 60 feet above the surrounding bottom. Again, we use the term "lithoherm" (Neumann and others, 1977) to describe these mounds in order to emphasize the inferred role of submarine cement in mound development.

Weathering of these mounds has left internal structure easily visible. A number of components may be readily recognised

7.0 163.3 18.1 0.6 163.9 17.5 0.8 164.7 16.7 0.3 165.0 16.4

156.3

25.1

2.2

0.3 165.0 16.4 0.5 165.5 15.9 0.9 166.4 15.0

0.1 166.5 14.9

Figure 7

Figure 8

in outcrop. These include: (1) grey, commonly well laminated lime mud; (2) dark calcite cement, which fractures to reveal a blocky structure but may be viewed in low angle light to reveal a relict fibrous habit; (3) phylloid algal fragments; (4) fractures; (5) scattered sand pockets, some graded; (6) some coarsely crystalline, white, pore-filling calcite, and (7) brown dolomite. The dark calcite cement derives its color from submicroscopic inclusions of organic matter, which is apparently not extractable (Plumley and Graves, 1963). On outcrop, some areas of the lithoherms may be seen to be extremely rich in this dark cement. In places, it forms an anastomosing network with lightercolored sediments infilling voids within the cement framework. Cys and Mazzullo (1977) and Mazzullo and Cys (1979) estimate this cement to account for 50-85% of the mound They interpret the cement to be a marine cement that grew on the sea floor and within voids in the mound. It is interesting to compare these figures with estimates of 30-40% in-place coral in modern and Pleistocene coral reefs. It would appear that there is considerably more cement framework in the Laborcita lithoherms than there is coral framework in many coral reefs.

At several locations along the exposure of the lithoherm, the contact between a dark, cement-rich layer and a lighter, mud-rich layer may be observed in considerable detail at close range. Note that this contact is not erosional (and that the relief on the cement-rich bands is not erosional), but rather the contact appears to be a sharp change in the character of sedimentation. It is quite clear from these outcrop relationships that it is the marine cement in these mounds that has been responsible for their reef-like growth. These exposures provide the best evidence, in the writers' opinions, of ancient examples of lithoherms, and they are certainly the most extreme case of submarine cementation in mounds that we will observe on this trip.

Turn around and retrace route backwards to junction of US 54-70 with US 82.

Junction of US 54-70 with US 82. Continue straight ahead

12.4 178.9 2.5

0.0

181.4

2.5

toward Alamogordo.

Junction of US 54-70 with 10th Street, Alamogordo, N.M.

END OF DAY IV.

Mileage	Cumulative		
	From	From	Description
- 0 0	Alamogordo		Town Alexander and the TIC 5/ 70 from impetion
0.0	0.0	96.9	Leave Alamogordo traveling south on US 54-70 from junction with 10th Street.
1.9	1.9	95.0	Railroad overpass, merge left.
0.4	2.3	94.6	Turn left on US 54 to E1 Paso.
4.8	7.1	89.8	Turn left on ranch road (dirt) over railroad tracks and
-,.0	, • ±	0,10	stop to observe Muleshoe Bioherm.
2.0	9.1	87.8	Turn right (south) at "T" in road.
0.1	9.2	87.7	Road to left leads to Donald Taylor Ranch house and per-
			mission should be requested to travel ranch roads to the foot of the mountains.
0.9	10.1	86.8	Turn left (east) on well graded road leading up alluvial fan toward the mouth of San Andres Canyon.
0.4	10.5	86.4	End of well graded road. Busses and rental cars must
			stop here. Trip continues via 4-wheel-drive vehicles.
0.7	11.2	85.7	Continue east on trail approximately 0.6 miles to mouth of San Andres Canyon. At canyon mouth, turn left on old road that leads downslope to the northwest.
0.3	11.5	85.4	Old corral ahead on left. Find even older road which leads to the right (north) toward Muleshoe Bioherm.
0.4	11.9	85.0	End of old ranch road and mouth of Muleshoe Canyon. Begin approach to Muleshoe Bioherm from here on foot. STOP V-1, Muleshoe Bioherm. At the start of the walk, we may observe the arched appearance of eroded flank beds on the southwest side of the bioherm. Below this arch is exposed a small portion of core facies that will be our final objective. From the entrance to Muleshoe Canyon, route travels up the wash about 200 yards, then begins to climb out of the wash on the north side of the canyon, angling eastward toward a point that will bring us to the same elevation as the base of the bioherm but several hundred yards east of it and standing on non-biohermal sediments. The approach to the bioherm climbs out of the wash over Silurian and Devonian rocks of the Fusselman, Onate, Sly Gap and Percha(?) Formations. About 60 feet of Mississippian Caballero Formation unconformably overlies the Devonian and underlies the biohermal Lake Valley
	Figwre 9		Formation. On reaching an elevation equal to that of the base of the bioherm escarpment and a position about one-third of a mile east of the bioherm, we can observe typical interbioherm lithologies of the Lake Valley Formation. From this point, a westward traverse along the base of the bioherm leads us from normal horizontally-bedded Lake Valley sediments into increasingly steeply dipping biohermal flank beds, blocks of core rubble, and finally into bioherm core facies beneath the "arch" viewed earlier from below.

The bioherm has been studied in increasing detail for over 40 years with general descriptions by Laudon and Bowsher (1941, 1949), who subdivided the Lake Valley Formation into six members. Muleshoe Bioherm occurs in the second, third and forth members from the base of the Lake Valley, rises above the last two members of the Lake Valley and above the level of the overlying Rancheria Formation and protrudes

into the base of overlying Pennsylvanian deposits of the Gobbler Formation (Pray, 1958, 1961). Bioherms about five miles to the north are decidedly elongate in a northsouth direction and are not as thick as Muleshoe Bioherm. Muleshoe is estimated to have stood more than 300 feet above the general bottom level and may have developed on a relatively deep portion of a shelf that became more shallow to the north. Armstrong (1962, 1967) has suggested that a starved basin lay to the south, and tidal flat deposits are found 160 miles to the north. Land formed by the Pedernal Uplift lay about 80 miles northeast. shoe Bioherm appears almost circular in plan and may have formed in deeper water than the bioherms to the north. Wilson (1975) stated that most geologists acquainted with Mississippian bioherms believe they accumulated below wave base and perhaps below the photic zone. Again, it is tempting to make comparisons between these bioherms and the lithoherms of the Straights of Florida described by Neumann and others (1977).

Note that the faunal components of the bioherm did not require light for their survival. The common forms we will see in the flanking beds are crinoids, brachiopods, bryozoans, and solitary corals. In contrast to other bioherms observed on this trip, calcareous algae are absent. Other typically shallow-water forms, such as massive corals, clams and calcareous sponges, are rare or absent. The crinoidal grainstones of the flank beds are poorly sorted and contain articulated columns several inches long, which suggest flanking crinoidal beds formed in close proximity to where the crinoids lived. These biogenic sediments appear not to have been transported far from their source. As we approach the core facies of the bioherm, the slope of these flank beds increases to nearly 40°.

The core facies has been studied in great detail by Pray (1958, 1965a, 1965b, 1969) and Lohmann and Meyers (1977). Approximately two-thirds of the core consists of mud. The major faunal component is fenestrate bryozoa. Local cement-rich pockets in the core facies contain bryozoan fragments coated with banded, isopachous cement, which is cloudy when viewed in thin section. This cement was interpreted as marine in origin by Pray (1965a, 1965b). cloudy cements contain inclusions of microdolomite, as illustrated by Lohmann and Meyers (1977), and are believed to be diagenetically altered high-Mg calcite marine cement. The origin of Muleshoe Bioherm and similar Lower Carboniferous mud mounds had been the topic of considerable conjec-Are the muddy cores the result of currents piling up fine-grained sediment? The circular plan view of some mounds would make this possibility unlikely. How much sediment may have been trapped or baffled by bryozoan fronds or crinoid thickets? What was the source of the Why are the flank beds so distinct and sharply separate from the core facies? What role did submarine cement play in building these mounds? Many of these questions cannot be answered very satisfactorily. Volumetrically,

cement is not nearly as important in the core facies of

Figure 10

Figure 11

Muleshoe Bioherm as it is in the Laborcita lithoherms. Submarine cement by itself did not build Muleshoe Bioherm, but it would take only a small amount to act as a binding agent to hold the core facies together. were the case, then the next question is why did the cement form here, localized in this mound? The sandy flank beds evoke clear visions of crinoidal meadows on the sides of the bioherm, but why not on the top or in the center, where the core facies predominates? Was the central position of the bioherm dominated by some mud-producing organism that decayed so completely that no trace is left behind? Or, was the center isolated from nutrientrich currents, which fed animals on the sides of the bioherm? Wilson (1975: p. 165-167) suggests formation through a combination of hydrologic accumulation and baffling by crinoids and bryozoa to form the muddy core facies. currents winnowed the sides of the bioherm.

Again, it is interesting to draw comparisons between these mounds and modern lithoherms in the Straights of Florida. The processes involved in their formation include (1) hydrologic accumulation, (2) biogenic sediment contribution and biologic entrapment of sediment, and (3) subsea lithification by marine cement. An organic framework, typical in modern reefs, is absent in these Mississippian mounds and is not a requirement for mound growth. Although organisms and hydrologic regime are not directly comparable between modern lithoherms and Muleshoe Bioherm, a combination of the three processes active in modern lithoherms could probably account for the features we see in these Mississippian buildups.

The diagenesis in non-biohermal Lake Valley sediments has been studied in considerable detail during the last 10 years. Using cathodoluminescent petrography, Meyers (1974) found five generations of cement in crinoidal grainstones like those we observe off the flanks of Muleshoe Bioherm. Most of this cement occurs as syntaxial overgrowths on crinoidal sands. Marine cements like those in the bioherm core facies are rare in interbioherm areas. clear overgrowths are interpreted to have formed in a freshwater aquifer that occupied Lake Valley sediments during periods of sea level change and regional subaerial expo-Careful examination of cements at post-Lake Valley unconformities revealed three cement zones to be pre-Rancheria Formation and two more to be post-Rancheria but pre-Gobbler deposition. These two periods of subaerial exposure led to a great porosity loss in these sediments and resulted in 90-95% of the total intergranular cement in Lake Valley grainstones (Meyers, 1978).

From outcrop of core facies beneath the Muleshoe "arch," hike back downslope to vehicles.

OPTIONAL STOP. Retrace route east along the base of the bioherm escarpment about 150 yards to a prominent gully. Cross gully and scramble up dipslope, angling westward to top of bioherm. <u>CAUTION</u>! The route is considerably more steep and more difficult than that below. Use careful judgment in making this climb. Excellent exposures of steep flank beds are crossed during the ascent and the

exposure gives one a real "feel" for the original depositional slope. On top there are well exposed examples of core mudstones, submarine cements and clastic dikes. The best exposures are above the cliffs in the southwest side of the bioherm. Cross the top of the bioherm to the north side for excellent view of the upper Lake Valley members lapping the sides of the bioherm and the unconformable relationships between the Lake Valley, Rancheria and Gobbler Formations. A descent can be made down the gully between the bioherm and surrounding strata of the north side. Contour around the base of the bioherm to the southwest side, and then descend the slope to Muleshoe Canyon and back to the vehicles.

Retrace route back to US 54.

			10111100 10011 100 100 111
4.8	16.7	80.2	Junction of ranch road and US 54. Turn left (south) on US 54.
5.2	21.9	75.0	Isolated buttes to the right are of varied origin. The
			closest is composed of Tertiary intrusives. Those beyond
			are outcrops of the Hueco and Yeso Formations. The San
			Andres Mts. are the prominent range in the background. This
			·
			block-faulted range exposes a complete south-central New
			Mexico Paleozoic section from Precambrian basement on the
			east through Permian San Andres Formation on the west side
			of the range.
9.5	31.4	65.5	Stabilized reddish sand dunes in valley floor. Jarilla Mts.
			ahead on right expose Pennsylvanian and Permian sediments
			and Cretaceous and Tertiary intrusives. Southern end of
			the Sacramento Mts. and the Otero Mesa are in the distance
			to the left. The Otero Mesa is composed of the Yeso and
			Hueco Fms.
14.5	45.9	51.0	Orogrande town limit.
0.2	46.1	50.8	Orogrande Post Office.
4.3	50.4	46.5	Directly west are the Organ Mts., a southern extension of
			the San Andres Mts. They expose large areas of Cretaceous
			and Tertiary volcanics and some Precambrian intrusives and
			Paleozoic sediments.
18.0	68.4	28.5	North end of Franklin Mts. at about 1 o'clock.
			To the right are the Hueco Mts. in the distance. The bulk
			of the Hueco Mts. is Pennsylvanian and Permian, but the
			highest peaks are Cretaceous and Tertiary intrusives.
7.7	76.1	20.8	Texas state line and El Paso city limit. Note: we are
	, , , ,	-0.0	really quite a way from El Paso at this point.
8.7	84.8	12.1	Junction with Texas 2529. Take 45° left turn onto McCombs
			Street for airport or Caballero Motel. Continue straight
			ahead for downtown El Paso. This route goes to the air-
			port.
2.0	86.8	10.1	Bear right onto Railroad Drive.
3.1	89.9	7.0	Take overpass (Marshall Road).
3.3	93.2	3.7	Take left on Fred Wilson Road.
1.8	95.0	1.9	Fred Wilson Road makes a sharp right.
1.9	96.9	0.0	Left turn to entrance of El Paso airport.
	, , ,	0.0	Total to the distance of TT 1000 GTT Page.

Figure 3. View from Fresnal Box Canyon Vista showing downdrag on Bug Scuffle Limestone Member of the Gobbler Formation on the eastern side of the Fresnal Fault.

Figure 4. View of Virgil Bioherm from south side of Dry Canyon. Note steeply dipping flank beds in massive, cliff-forming limestones. Beds which cap the bioherm drape over the west end of the exposure.

Figure 5. Field trip route (dashed) for STOP IV-1, around west end of Virgil Bioherm.

HT 6-90%

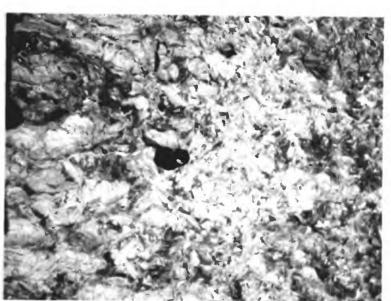


Figure 6. Yucca Mound looking across gully to southeast. Dark line indicates break in slope from landward (left) to seaward (right) side of the mound.

Figure 7. Laborcita lithoherms illustrating mounded dark bands (cement-rich) and draping light bands (mud-rich). Field route for STOP IV-2 indicated by dashed line.

Figure 8. Mottled and lumpy texture of lithoherm core consisting of patches of light mud (some well laminated beneath hand lens) and dark cement.

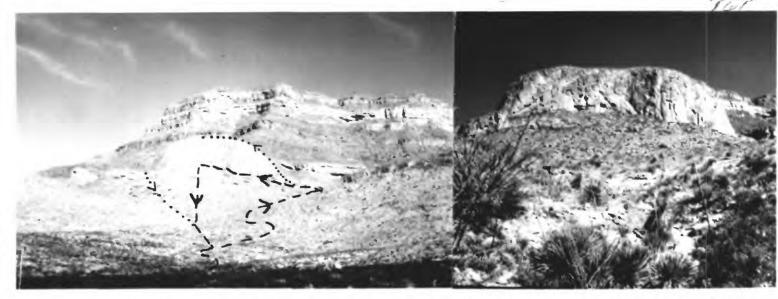


Figure 9. Left: field trip route for STOP V-1 (dashed, see roadlog for details) and optional route (dotted). Right: detail of Muleshoe Bioherm illustrating arched and dipping flank beds exposed in southwestern escarpment. Core facies is exposed beneath center of arch.

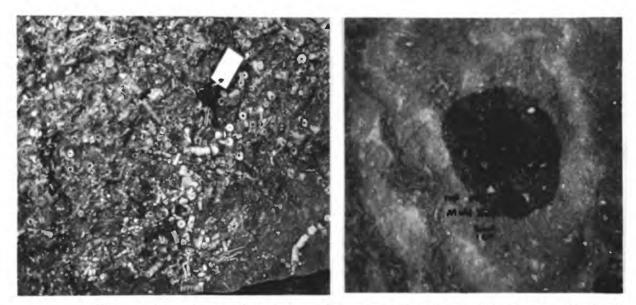


Figure 10. Left: typical outcrop (bedding plane) of Muleshoe crinoidal grainstone illustrating poor sorting and articulated sections of crinoid columnals. Right: Labyrinthine appearance of bryozoan fragments coated with marine cement. Outcrop of core facies on top of bioherm.

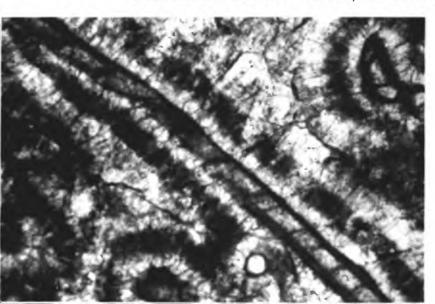


Figure 11. Photomicrograph of bryozoan fragments coated with banded, cloudy cement. This cement is interpreted as syndepositional, marine cement. Field of view is 3 mm.

TOP 4 - 90%

OBAC	воисн с	1964 09058 010 0015805542 1978
YSTACK	CISCO	1971 0007222306
LONE	WOLFCAMP	1953 07774 038 0000124020 1974
APACHE SPRINGS	WOLFCAMP	1955 07929 007 0000009630 1978

Eddy County, New Mexico

PARRISH RANCH	CISCO	1964	07744	010	00000004168	1974	
INDIAN HILLS	CISCO	1963	07316	016			
AUALON	CISCO	1973	09280	020			
ANTELOPE SINK	CISCO	1968	06148	054			0003039272
CEDAR LAKE	CISCO	1963			8741 010000000	1978	
BOYD	CISCO	1972	07138	062			0000289664
ATOKA, WEST	CISCO	1973					0000192520
FORDINKUS	CISCO	1969					0000097620
SPRING	CISCO (UPPER PENN)	1966	08004	024			0037759496
DARK CANYON	CISCO CANYON	1964	09255	034			0000008250
ROCKY ARROYO	L. WOLFCAMF	1971	06563				0001007098
CARLSBAD, SOUTH	WOLFCAMP	1973					0000504791
SHUGART	WOLFCAMP	1961	09615		0000012018 1977	1977	
CORRAL DRAW	WOLFCAMP	1975	09648	022			0000035902
CARLSBAD	WOLFCAMP	1967	95960				0000573458
DAGGER DRAW	WOLFCAMP	1965	07554	010			0000182310
WINCHESTER	WOLFCAMF	1973					0002507467
BURTON FLAT, NORTH	WOLFCAMP	1975	90880	026			0003379611
CARLSBAD, EAST	WOLFCAMP	1975					0001691838
WINCHESTER, NORTH	WOLFCAMP	1976			0000005750 1977	1977	
LOGAN DRAW	WOLFCAMP	1974	06582				0000755363
CEMETARY	WOLFCAMP	1975					0000016666
PHANTOM DRAW	WOLFCAMF	1975	10621	028			0000526750
STINCTED TER	WOLFCAMP	1966	09112	040	0000180620 1978	8791	

045 0000085/28 1778 0002939958 0000249210	0000061980 1978 0000078078 1978 0000091832 1978)0000078000 1978)000010374 1978)006008892 1978)000001404 1978)000009914 1978)0000780086 1978	0000104826	0002832808	0000224022 0000191378 0000516608
1960 11111 043 0 1967 12785 1962 10690	1960 05740 010 0 1960 08685 012 0 1954 07390 040 0	012 (08179 039 (08753	09622 09007 024 (1974 1975	1975 1975	1975 1976 1977
WOLFCAMP WOLFCAMP WOLFCAMP	WOLFCAMP WOLFCAMP WOLFCAMP	WOLFCAMP WOLFCAMP WOLFCAMP	WOLFCAMP WOLFCAMP WOLFCAMP	WOLFCAMP WOLFCAMP	WOLFCAMP WOLFCAMP	WOLFCAMP WOLFCAMP WOLFCAMP
REMUDA FADUCA BIG EDDY	PENASCO LOCO HILLS EMPIRE	CANYON MCMILLAN HENSHAW	PARKWAY LA HUERTA EMPIRE, SOUTH	BLACK RIVER AVALON	ROCKY ARROYO, SOUTH CEMETARY, NORTH	CORRAL DRAW BURTON FLAT, EAST PADUCA, SOUTH

Lea County, New Mexico

HIGHTOWER		1972		Ĭ	0000003446	1978	
LA RICA		1972			0000037504	1978	
TOWNSEND	ABO		08724	_	0000073908	1978	
BRUNSON, SOUTH	ABO	1975		_	0000080568	1978	
MONUMENT, NORTH	ABO	1977		Ī	0000012282	1978	
FLYING M	ROUGH	1963	09421 (014 (0000014466	1975	
FLYING M, SOUTH	BOUGH	1965	29060	010	0001103213	1975	
ALLISON	воибн	1954	06960	020	0042182286	1978	
RANGER LAKE	вопен	1970	09939 (039 (0000402720	1978	
INBE, EAST	BOUGH C	1967	10000		0000103246	1974	
LANE	BOUGH C	1962	03960	025 (0001347532	1974	
LANE SOUTH	воибн с	1962	89960	_	0001830129	1974	
ALLISON, EAST	воисн с	1961	62960	_	0000020766	1974	
INBE	BOUGH C	1962	09862 (011	0031966608	1978	
CROSSROADS	BOUGH LS.	1949	09750 (015	0004135516	1978	
CAFROCK, EAST	CISCO	1970					0000148081
JENKINS	CISCO	1963	09737 (018	0004197066	1978	
MESCALERO, NORTH	CISCO	1968	00680	022	0000924924	1978	
TOWNSEND	CISCO	1972	10794 (920	0000015818	1978	
PETERSON	CISCO	1971	07632 (035			0000675574
VACUUM	CISCO	1976		_	0000036128	1978	
KEMNITZ, SOUTH	CISCO	1977		Ī	0000007946	1978	
KEMNITZ, WEST	CISCO	1957		_	0000005110	1978	
HUME	CISCO	1977		_	0000004126	1978	

	0000094981 0004362780 0003767274 0000038880 0046904118	
1978 1978 1978 1978 1978 1978 1978 1978	19 78 8 19 78 8 19 78 8 19 78 8 19 78 8 11 9 7 8 11 9 7	1978 1978 1978
0000240276 00003557332 00029721828 000030131342 00004698104 00000430232 00001204376 00001204376 00001204376 00001204376 00001204376 000000000000000000000000000000000000	0000332772 0000332772 000000000332434 000001032344 00000103234 0000118734 0000118734 0000118734 0000118734 0000118734 0000118734 00000118734 00000118734 00000118734 00000118734 00000118734 00000118734 00000118734 00000118734 00000118734 00000118734 00000118734 00000118734	00004/8652 0000514052 0000255524
00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	018 018
111446 111446 100589 100368 1003883 1003883 1003883 1003883 1003883 1003883 1003883 1003880 1009880 1009880 1009880 1009880 1009880 1009880 1009880 1009880	00000000000000000000000000000000000000	10390 08400 09688
1965 1966 1966 1966 1966 1966 1966 1966	10000000000000000000000000000000000000	1961 1953 1955
CISCO PENN CISCO PENN LOWER WOLFCAMP LOWER WOLFCAMP LOWER WOLFCAMP LOWER WOLFCAMP PENN PENN PENN PENN PENN PENN PENN PE	WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP	WULFCAMF WOLFCAMP
KEMNITZ VACUUM, NORTHWEST VACUUM, NORTH KEMNITZ CERCA MORTON LANE FOUR LAKES SAUNDERS, SOUTH ANDERSON RANCH RANGER LAKE MESCALERO HIGHTOWER TULK, SOUTH KEMNITZ, SOUTH BAUM CHAMBERS ANDERSON RANCH, SOUTH INE	TABLE FAIRVIEW MILLS YOUNG MOORE LEA, SOUTHEAST OSUDO, SOUTH RED HILLS TULK, NORTH VACUUM, SOUTH VACUUM, EAST ECHOLS FIELD RANCH SANMAL SHOE BAR TONTO TONTO TONTO LOVINGTON BRONCO BUFFALO DENTON, SOUTH DOGIE DRAW LUSK, SOUTH	MALJAMAK CAFROCK, EAST GLADIOLA, SOUTH

																				0000038314														
1978 1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	0	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978
0007330930									0000476192				0000326160	0037189734	0010763696	0003577712	0000622144	0000147476	0001014764		0000003112		0000011402			0001404462	0000404962			0000005462	0000055290	0000043206	00000005302	0011882512
020	010	012	017				831	015	010	115	014	054	030	029	035	022				010	012							123						020
09555	10357	09994	08848	80860	10834	10126	9860	08320	09604	10001	09648	10622	10236	10410		10285	89980	10350	09855	10396	08840		10290	10628		10456	10732	10656		11692				09580
1951										1961				1952	1962							1969	970		1973			1975	1975	1974	1976	1977	1976	1952
WOLFCAMP WOLFCAMP	WOLFCAMF	WOLFCAMP	WOLFCAMP	WOL.FCAMP	WOLFCAMP	WOL.F.CAMP	WOLFCAMF	WOLFCAMF	WOLFCAMF	WOLFCAMP	WOLFCAMP	WOLFCAMF	WOLFCAMF	WOLFCAMP	WOL.FCAMP	WOL.FCAMP	WOLFCAMP	WOLFCAMP	WOLFCAMP	WOLFCAMF	WOLFCAMP	WOLFCAMF	WOLFCAMP	WOLFCAMP	WOLFCAMP	WOLFCAMP	WOLFCAMP	WOLFCAMP	WOLFCAMP	WOLFCAMP	WOL. F.CAMP	WOLFCAMP	WOLFCAMP	WOLFCAMP - PENN
GLADIOLA ANDERSON RANCH	AUSTIN	BAGLEY, EAST	BAGLEY, NORTHEAST	BAISH	BAISH, NORTH	KING	SAUNDERS	MESCALERO, NORTH	JENKINS	KNOWLES, SOUTH	LANE	LEAMEX	osnio	TOWNSEND	ANDERSON RANCH, NORTH	CAUDILL	BAGLEY, NORTH	CORBIN, SOUTH	VACUUM, NORTHWEST	WILSON	BAGLEY	CINEY	CORBIN, EAST	MORTON, EAST	HUMBLE CITY	SHOE BAR, NORTH	LUSK, EAST	AIRSTRIP	BAGLEY, SOUTHEAST	ROCK LAKE	DAISEY	TRINITY	JAL, WEST	LAZY J

Roosevelt County, New Mexico

ALLISON, WEST	воибн с	1962 09793 00	4 0000088667	1974
FRAIRIE, EAST	BOUGH C	1961 09698 0000010113 1974	0000010113	1974
FETERSON, SOUTH	CISCO	1972 07706	0000001964	1975
PRAIRIE, SOUTH	CISCO	09653	0005777356	1978
TANNEYHILL	CISCO	1972 07602 004		0001012664
PETERSON, SOUTH	CISCO	_	0000031966 1978	1978
SQUYRES	ZZWA	1961 08380	0000010198	1978
BLUITT	WOLFCAMP	1959 08022 036		0019795776
TODE	WOLFCAMP	1970	0000782832	1978
FRAIRIE, SOUTH	WOLFCAMP	1976		1978

Andrews County, Texas

HUTEX	DEAN	1959 (09595	125	0001062344	1977
ANDREWS, SOUTH	WICHITA	_	08116	0.00	0000002548	1977
BLOCK 11, SOUTHWEST	WOLFCAMP		07950	025	0000081204	1977
C-RANCH	WOLFCAMP		10008	030	0000002810	1977
	WOLFCAMP		08320	025	0000001220	1977
FULLERTON, EAST	WOL.FCAMP		08542	011	0000004663	1977
FULLERTON	WOLFCAMP		86080	020	0000216492	1977
INEZ, NORTH	WOLFCAMF		10346	296	0000044922	1977
MARKE, NORTH	WOLFCAME	-	99660	151	0000007101	1977
MAGULEX	WOLF CAMP		07744	9 K	0000004455	17//
MAKIN TANA	WULFUAMF	1931	90700	014	000013/341	19//
MITTIONS FORT	WOLFURE LOTETAND		09764	900	0000123/19	1077
PAN-ROD	WOLFCAMF		26860	075	0000042646	1977
TRIPLE-N	WOLFCAME	_	08518	045	0000031667	1977
OLASCO	WOLFCAMF		10151	014	0000027890	1977
ANDREWS, SOUTH	WOL.FCAMP	1953 (09183	030	0011771585	1977
ANDREWS	WOLFCAMP		96280	012	0016824634	1977
	WOLFCAMP	_	08492	046	0016720049	1977
	WOL.FCAMP	-	07618	043	0000048762	1977
	WOLFCAMP	-	09413	022	0000137731	1977
	WOLFCAMF		08210	034	0000550644	1977
DEEP ROCK	WOLFCAMP	_	08583	026	0000172286	1977
EMMA	WOLFCAMF	_	08393	004	0000041578	1977
FASKEN	WOLFCAMP	_	08571	025	0005525287	1977
FUHRMAN	WOLFCAMP	_	08230	042	0000011317	1977
FULLERTON, SOUTH	WOLFCAMP	_	08245	045	0003582452	1977
HUTEX, NORTH	WOLFCAMP		10058	800	0000574838	1977
INEZ	WOLFCAMP	_	09316		0000057651	1977
MCFARLAND	WOLFCAMP	_	09134	126	0004457311	1977
MEANS, SOUTH	WOLFCAMP	_	09378	036	0002639839	1977
MIDLAND FARMS	WULL CAMF	-	09559	080	740/9/4000	17//
	WOLFCAMP	_	09227	073	0020028840	1977
	WOLFCAMP		08644	056	0000143351	1977
PARKER, WEST	WOLFCAMF		08640	040	0000563615	1977
PARKER	WOL.FCAMP		08554	890	0001735910	1977
SHAFTER LAKE	WOL.F.CAMF	-	08405	020	0011834952	1977
	WOLFCAMP	_	08430	018	0022535521	1977
	WOLFCAMP	_	08262	010	0000687442	1977
WEMAC, SOUTH	WOLFCAMP	_	08786	010	0001560502	1977
WEMAC	WOL.FCAMP	1953 (08708	164	0002962128	1977

						167	
1959 08895 010 0000315521 1977 1957 08783 040 0000627631 1977 1956 08290 120 0000228111 1977 1968 07798 032 0000016934 1977	County, Texas	1950 06791 044 0055619555 1977 1951 07100 007 0010600601 1977 1948 06490 030 0000091999 1977 1954 06393 041 0000022773 1977 1950 05912 025 0000268289 1977 1954 06063 0000554269 1977 1973 08392 0000008003 1977	County, Texas	1967 08325 0000005473 1977	County, Texas	1955 04358 005 000000376 1977 1950 03940 015 0000973646 1977 1951 03985 013 0000058945 1977 1963 03696 005 00003651937 1977 1961 03632 008 0000035498 1977 1961 03632 009 0000146498 1977 1972 05718 016 0000013234 1977 1962 08135 006 0000014788 1977 1962 08135 006 0000014788 1977 1962 03856 011 0000018589 1977 1956 08280 010 0000018589 1977 1956 08280 010 0000018555 1977 1956 08280 010 0000018555 1977 1956 08280 010 0000018555 1977 1956 08280 010 0000018555 1977 1956 08280 010 0000018555 1977 1956 08280 010 0000018555 1977 1956 08280 010 000003855 1977 1956 08280 010 000003375 1977 1956 08316 050 000003375 1977 1960 06010 084 0000022299 1977 1965 08316 050 000003375 1977	
WOLFCAMP DETRITAL WOLFCAMP, REEF WOLFCAMP, NORTH	Borden	CISCO FENNSYLVANIAN FERMIAN WOLFCAMP WOLFCAMP WOLFCAMP	Cochran	WOLFCAMP	Coke C	CISCO MOLFCAMP WOLFCAMP	
PARKER WEMAC, NORTH FASKEN MARTIN, WEST		KEINECKE HOBO GAIL, SOUTH HOBO REINECKE CANNING VON ROEDER ZANT-BORDEN		LEVELLAND, NORTH		MCCUTCHEN MCCUTCHEN MECUTCHEN, WEST WENDKIRK, NORTH FURT CHADBOURNE WENDKIRK, EAST BLACKWELL MILLICAN, WEST BLOCK 31, NORTHWEST DOUNE, EAST DOUNE, EAST BLOCK 31, NORTHWEST DUNE, EAST DUNE, EAST EDWARDS 04 H. E. A. JAX LEA, SOUTH SAGE CANYON SAGE CANYON	

0000647333							
	1975	1975	1977	1977	1977	1977	1977
	0000002200	000004325	0080229000	0002002569	0000126620	0000032003	0001297740
045	100	070	020	003	070	229	080
5670	05435	05420	07710	07925	05320	06058	05684
1960	1961	1958	1957	1967	1958	1968	1958
WOL.F.CAMF	WOLFCAMP	WOLFCAMP	WOLFCAMP	WOLFCAMP	WOLFCAMP	WOLFCAMP	WOL.FCAMP
SAND HILLS, WEST	SAND HILLS	MCKEE	DUNE	EDWARDS 04, SOUTH	MCKEE	ROEFKE	SAND HILLS

Crockett County, Texas

		0000749560	0000102004											0000687346			0009555493							0008352995						
1977 1977	1977				1977	1977	1977	1977	1977	1977	1977	1977		_		1975	_		1977	1977	1977	1677	1977		1977	1977		1977		1977
0000001936	0000025752				0000000282	0000030179	0000004477	0000008436	0000114377		0000043085	0000000557				0000004213			0000268016				0000277136		0000007743	0001343028		0000063685		0000501842
008			040		095			013	016	004			015		056	900				015			004		012	002		036		028
06440 05460 05800	04930 05012	08101	06040	06065	06347	05220	06379	05790	06155	06224	05016	05320	05512	03596	06100	06260	02060	04520	05670	06100	05108	5487	05940	05728	06322	05564	26290	06292	02820	05950
1953 1955 1947							1958				1966		-	1966		1968							0261	1959 (1967				1954
CISCO CISCO CISCO LIME		WOLFCAMP	WOL.F.CAMF	WOLFCAMP	WOLFCAMP	WOLFCAMP	WOLFCAMP	WOLFCAMP	WOLFCAMP	WOLFCAMP	WOLFCAMP	WOLFCAMP	WOLFCAMP	WOLFCAMF	WOLFCAMP	WOL.F.CAMP	WOLFCAMF						WOLFCAMP	WOLFCAMP DETRITAL	WOLFCAMF, LO	WOLFCAMP, LO.				WOLFCAMP, UPPER
SHANNON CLARA COUCH CLARA COUCH		OZONA, SOUTHWEST	TIPPETT, EAST	TIPPETT	DONHAR	EL CINCO, EAST	K C ♠			TIPFETT, NORTH	TIPPETT	VAUGHN	CLARA COUCH	MORRISON	TIPPETT		TIPPETT, WEST	EULEEONOE	CLARA COUCH		.	<u>.</u>	TIFFETT, NORTH		<u>.</u>	TIPPETT, WEST	LLEddil			

ACKERLY, NORTH			Dawson County, Texas	
1964 08762 000003237 1964 08762 00003237 1964 08762 02233875 1964 08762 0263237 1964 08762 0263237 1964 08762 026323875 1964 08762 0264 000012972 1964 08762 0264 000012972 1964 08762 0264 0000012972 1964 08762 0264 0000012972 1964 08762 0264 0000012972 1964 08762 0264 02642 0268 02642649 1964 08762 0264249 1964 08762 0264249 1964 08762 0264249 1964 08762 0264249 1964 08762 02642449 1964 08762 02642449 1964 08762 02642449 1964 08762 0264249 1964 08762 02642449 1964 08762 02642449 1964 08762 02642449 1964 08762 0264249 1964 08762 02642334 1964 08762 026424		CISCO	72 08766 0000922490 1	
Hear	SPARENBURG	DEAN	08762 0000032737 197	
HWEST	ACKERLY	DEAN	08215 037 0000126032 1	
HHEST FEAN SAND 1957 08200 112 0000121972 1	TEX-HAMON	TIFAN	09555 0000 000538875 1	
HWEST DEAN SAND 1954 09580 096 0000077854 1954 08282 066 0000007864 1954 08282 066 0000007864 1954 08282 066 0000002068 1954 08282 066 0000002068 1954 08282 066 000002068 1954 08282 066 0000033438 1965 08429 004 000033438 1965 08429 004 000033438 1965 08282 066 000033438 1965 08282 066 000033438 1965 08282 0600033438 1965 08282 0600033438 1965 08282 0600033438 1965 08282 0600033438 1965 08282 0600033438 1965 08882 08882 08000233438 1965 08882 08882 08000233438 1965 08882 08882 08000233438 1965 08000233438 1965 08000233438 1965 08000233438 1965 0800003334 1965 08884 041 000023381 1965 08884 041 00002348235 1965 08684 081 00003348235 1965 08684 081 00003348235 1966 0800003348 1966 0800003348 1966 080000334 1966 08648 0800003348 1966 0800003348 1966 0800003348 1966 08648 0800000334 1966 080000334 1966 080000334 1966 0800000334 1966 0800000334 1966 0800000334 1966 0800000334 1966 08000000334 1966 08000000334 1966 08000000334 1966 080000000334 1966 080000000000000000000000000000000000			08200 112 0000121972 1	
H DEAN SAND 1954 08282 066 0000001080			09580 094 0000077854 1	
DEAN SAND 1954 08172 035 0224260431 1954 08172 035 0224260431 1954 08172 035 0224260431 1954 08172 035 0224260431 1954 08172 035 0224260431 1954 08172 035 0224249 1954 08270 00000523438 1954 08172 035 0224349 1954 0828 000005189105 1954 0828 00000533438 1954 0828 00000533438 1954 0828 00000533428 1954 0828 00000533428 1954 0828 00000533411 1954 0457 0000973811 1954 0457 0000973811 1954 0457 0000973811 1954 0457 0000973811 1954 0457 0000973811 1954 0457 0000973811 1954 0457 0000053352 1955 0848 010 000017814 1955 0848 010 000017814 1955 0848 010 000017814 1955 0848 010 0000033002 1956 0848 010 0000035002 1956 0848 010 0000035002 1956 0848 010 0000035002 1956 0857 1956 08000035002 1956 0857 1956 08000035002 1956 0857 1956 0800003538 1956 08000003538 1956 08000035002 1956 080000035002 1956 08000035002 1956 08000035002 1956 08000035002 1956 08000035002 1956 08000035002 1956 08000035002 1956 08000035002 1956 08000035002 1956 08000035002 1956 080000035002 1956 08000035002 1956 08000035002 1956 08000035002 1956 08000035002 1956 08000035002 1956 08000035002 1956 08000035002 1956 08000035002 1956 08000035002 1956 080000			08282 044 0000001080 1	
MOLECAMP 1964 09270 000002068 1965 08429 0000023434 1965 08429 0000033438 1965 08429 0000033438 1965 08429 0000033438 1965 08429 0000033438 1965 08429 0000033438 1965 08429 0000033438 1965 08429 0000033438 1965 08429 0000033438 1965 08429 0000033428 1965 08429 0000033428 1965 08429 0000033428 1965 08429 0000033422 1966 08429 0000033422 1966 08429 0000033422 1966 08429 0000033422 1966 08429 0000033422 1966 08429 0000033422 1966 08429 0000033422 1966 08429 0000033422 1966 08429 0000033422 1966 08429 0000033429 1966 08429 0000033429 1966 08429 0000033429 1966 08429 000003360 1966 08429 000003360 1966 08429 000003360 1966 08429 000003360 1966 08429 000003360 1966 08429 000003360 1966 08429 00000003360 1966 08429 0000003360 1966 08429 00000003360 1966 08429 00000003360 1966 08429 00000003360 1966 08429 0000003360 1966 08429 00000003360 1966 08429 00000003360 1966 08429 0000000003360 1966 08429 0000000003360 1966 08429 00000000000000000000000000000000000			08172 035 0024260431 1	
MOLECAME 1945 08429 004 0000523438 1946 08381 1946 08381 1946 08381 1946 0824 08429 084 0000533438 1946 0828 08429 084 0000533438 1946 0828 08429 084 0000533438 1946 0828 08429 084 08000533438 1946 0828 08429 084 08000533438 1946 0828 08429 084 08000533438 1946 0828 08429 084 08000533811 1946 0828 08429 084 08000533811 1948 08429 084 08000533811 1948 08429 084 08000533811 1948 08429 084 08000533811 1948 08429 084 0800053331 1948 08429 084 0800053331 1948 0848 0818 08429 0844 0861 08000548235 1948 0824 0820 080003202 1948 0824 0829 0800053802 1948 0824 0820 080003202 1948 0824 0820 0800053829 1948 0824 0820 080003202 1948 0824 0820 080003202 1948 0824 0820 080003202 1948 0824 0820 080003202 1948 0824 0820 080003202 1948 0824 0820 080003202 1948 0824 0820 080003202 1948 0824 0820 080003202 1948 0824 0820 080003202 1948 0824 0820 080003202 1948 0824 0820 080003202 1948 0824 0820 080003202 1948 0824 0824 080003202 1948 0824 0824 080003202 1948 0824 0824 080003202 1948 0824 0824 080003202 1948 0824 0824 080003202 1948 0824 0824 080003202 1948 0824 0824 080003202 1948 0824 0824 080003202 1948 0824 08000003202 1948 0824 0824 0800003202 1948 0824 0824 0800003202 1948 0824 0824 0800003202 1948 0824 0800000003202 1948 0824 080000000320 1948 0824 08000000000000000000000000000000	PATRICIA	Ŧ.	00020	
WOLFCAMP 1961 09381 0000333438 1964 0928 00009541649 1958 08497 006 00009541649 1958 08497 006 00009541649 1958 08497 006 00009541649 1958 08497 006 0000233428 1958 08497 006 0000233428 1958 08454 028 0000233428 1958 08454 028 0000233428 1958 08454 028 0000233428 1958 08459 038 0000948255 1958 04660 004 0000233411 1958 04660 004 0000233972 1958 04660 004 0000233972 1958 04660 004 0000233972 1958 04660 004 0000233972 1958 04660 004 0000233972 1958 04660 004 0000233972 1958 04660 004 0000233972 1958 04660 004 0000238939 1958 04660 004 0000748339 1958 04660 004 000074839 1958 04660 004 000032002 1958 04660 004 000074839 1958 04660 00460 00460 00460 1958 04660 00460 1958 04660 00460 1958 04660 00460 1958 04660 00460 1958 04660	BLOCK 35	WOLL CAME	08429 004 0000672349 1	
MOLECAME 1958 08497 006 00009515419	SCHWINI	HOLECANE	09381 000033348 1	
THAMERING 1953 08424 028 00007581947 1954 08424 028 00007581947 1954 08424 028 0000233626 1954 08424 028 0000233626 1954 08424 028 0000233626 1954 08424 028 0000233626 1954 08424 038 0000233626 1954 0842 03 00000233626 1954 0842 03 0000233626 1954 0842 03 00000233626 1954 0842 03 00000233626 1954 0842 03 00000233626 1954 0842 03 00000233626 1954 0842 03 00000248235 1955 0848 041 0000248235 1955 0848 041 0000178164 1955 0848 05 0000096620 1955 0848 05 0000096620 1956 0848 05 00000968394 1954 08230 017 0000088394 1954 08230 017 0000032002 1954 08230 017 0000032002 1956 0848 05 00000056202 1956 0848 05 00000056202 1956 0848 05 00000056202 1956 0848 05 00000056202 1956 0848 05 00000056202 1956 0848 05 00000056202 1956 0848 05 00000056202 1956 0848 05 00000056202 1956 0848 05 00000056202 1956 0848 05 00000056202 1956 0848 05 000000056202 1956 0848 05 000000056202 1956 0848 05 000000056202 1956 0848 05 00000000056202 1956 0848 05 0000000000000000000000000000000	9 U 10107		1 DO 100 000 000 100 00	
MOLFCAMP Dickens County, Texas Dickens County, Texas Dickens County, Texas Dickens County, Texas TANNEHILL 1957 04564 002 0000233626 1 1968 04679 0000973811 1 1968 04679 0000973811 1 1968 04679 0000948235 1 1958 04660 004 0000323972 1 1958 04660 004 0000323972 1 1958 04660 004 0000323972 1 1958 04660 004 0000323972 1 1958 04660 004 0000323972 1 1958 04660 004 00003248235 1 1958 04660 004 00003248235 1 1958 04660 004 00003248235 1 1958 04660 004 00003248235 1 1958 04660 004 00003248235 1 1958 04660 004 00003248235 1 1958 04660 004 000032602 1 1968 04660 004 000032602 1 1968 04660 004 000032602 1 1968 04660 004 000032637 1 1968 04660 004 00000043 1 1968 04660 000000043 1 1968 07720 220 0000010588 1 1968 07720 220 0000010768 1 1968 07720 220 000001768 1 1968 07720 270 0000001768 1	ع د		0849/ 006 0000961649 1	
Dickens County, Texas Dickens County, Texas	a. □ □	WOLFCAMP	08624 028 0000231913 1	
EAST TANNEHILL 1957 04564 002 0000233626 TANNEHILL 1972 04402 003 0000021301 SGUTH TANNEHILL 1972 04402 003 0000021301 TANNEHILL 1972 04402 003 0000021301 TANNEHILL 1958 04660 004 0000323972 TANNEHILL 1958 04660 004 00003292023 EAST CISCO 1966 08848 055 0000032002 WOLFCAMP 1951 08224 020 00000359780 WOLFCAMP 1952 08650 114 0000359780 WOLFCAMP 1956 09870 014 0000105387 WOLFCAMP 1956 08475 020 0000292623 ST WOLFCAMP 1968 07720 220 0000236866			County,	
EAST TANNEHILL 1969 04574 00000973811 1968 04679 1000021301 1968 04679 000021301 1968 04679 000021301 1968 04679 00003237972 1953 04401 010 0000248235 1953 04401 010 0000248235 1953 04401 010 0000248235 1953 04401 010 00003248235 1953 04401 010 00003248235 1953 04401 010 0000178164 01500 0178164 01500 0178164 01500 017800 0178164 01780 017800 0178164 01852 08684 041 0000178164 1955 08684 041 0000178164 1955 08684 041 0000178164 1955 08684 052 00003200 018616 08687 0868 017 000003200 018616 08687 0868 018616 0868394 0868 018616 0868394 0868 018616 0868394 0868 018616 0868394 0868 0868394 0868 0868 0868394 0868 0868 0868394 0868 0868 0868 0868 0868 0868 0868 086	OUCK CREEK	TANNEHILL	957 04564 002 0000233626 19	
TANNEHILL 1972 04402 003 000021301 SOUTH TANNEHILL 1968 04679 0000848506 TANNEHILL 1958 04660 004 0000323972 TANNEHILL 1958 04660 004 0000323972 TANNEHILL 1958 04660 004 0000323972 CISCO		TANNEHIII	04574 0000973811 1	
SGUTH TANNEHILL 1968 04679 00000828306 TANNEHILL 1958 04660 004 0000323972 TANNEHILL 1958 04660 004 0000323972 TANNEHILL 1958 04660 004 00003248235 ECCOT COUNTY, Texas ECCOT C		TONNETT	0.107 0.000	
CREEK SOUTH TANNEHILL 1758 04401 010 0000323972		TANNELLI	0440E 000 0000E0E1	
TANNEHILL			1 0200102000 V V V V V V V V V V V V V V V V V	
Ector County, Texas CISCO		TANKERIE	04660 004 0000563778 1 04401 010 00000348311	
ECLOT County, Texas ELLY ELLY CISCO 1966 08895 005 0000310033 1955 08684 012 0000178164 CISCO EN, SOUTH CISCO 1966 08846 012 0000178164 1966 08846 012 00000966020 1966 08846 012 00000966020 1966 08846 012 00000966020 1966 08846 012 00000966020 1966 08846 012 00000966020 1966 08846 012 00000968394 WOLFCAMP WO	, +1,Cl. 2.	I FII KIN KELLI I A KELE		
EN, NORTH CISCO 1955 08895 005 0000310033 1955 08684 041 0000178164 CISCO CISCO CISCO 1955 08684 041 0000178164 CISCO CISCO CISCO 1955 08684 041 0000178164 CISCO			County,	
ELLY CISCO COO COO CISCO COO COO CISCO COO CISCO COO COO CISCO COO CISCO COO COO COO CISCO COO COO CISCO COO COO COO COO COO COO COO COO COO		CISCO	66 08895 005 0000310033 19	
EN, SOUTH CISCO EN, SOUTH CISCO EN, SOUTHEAST CISCO EN, SOUTHEAST CISCO EN, SOUTHEAST CISCO MOLFCAMP WOLFCAMP WOOCOOCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCC	CONNELLY	CISCO	08484 041 0000178144 1	
ER, SOUTH CISCO CISCO MOLFCAMP BORING WOLFCAMP	COWDEN	CISCO	08846 012 0004009026 1	
ER, SOUTHEAST CISCO 1966 08584 052 0000518015 MOLFCAMP 1966 08584 052 0000518015 MOLFCAMP 1966 08584 052 00000518015 MOLFCAMP 1961 08224 020 0000032002 MOLFCAMP 1965 08650 114 0000359780 MOLFCAMP 1966 09870 032 000000743 MOLFCAMP 1966 09870 014 0000105387 MOLFCAMP 1960 08475 020 000009151 MOLFCAMP 1960 08475 020 0000292023 MOLFCAMP 1960 08475 020 0000292023 MOLFCAMP 1960 08475 020 000023686 MOLFCAMP 1960 08475 020 000023686		CISCO	020.20.00.00.00.00.00.00.00.00.00.00.00.	
BORING WOLFCAMP 1953 08230 017 0000085394 WOLFCAMP WOLFCAMP 1961 08224 020 00000359780 MOLFCAMP 1965 08650 114 0000359780 MOLFCAMP 1965 10020 032 000000743 WOLFCAMP 1956 10020 032 000000743 WOLFCAMP 1956 09870 050 0000056252 WOLFCAMP 1956 09870 050 0000056252 WOLFCAMP 1956 09870 014 0000105387 WOLFCAMP 1956 09870 014 0000105387 WOLFCAMP 1956 08475 020 0000292023 MOLFCAMP 1958 07720 220 000010768 MOLFCAMP 1956 08720 220 000010768		01800	08584 052 0000518015 1	
EN WOLFCAMP 1961 08224 020 000032002 BORING WOLFCAMP 1952 08650 114 0000359780 R WOLFCAMP 1956 10020 032 0000000743 WOLFCAMP 1956 09870 050 0000056252 WOLFCAMP 1956 09870 050 0000056252 WOLFCAMP 1946 07795 070 0000008151 SMITH, WEST WOLFCAMP AN, SOUTH WOLFCAMP AN, SOUTH WOLFCAMP AN, SOUTH WOLFCAMP 1960 06695 037 000023686	Abbis	WOLFCAMP	08230 017 0000086394 1	
BORING WOLFCAMP 1952 08450 114 0000359780 R WOLFCAMP 1956 10020 032 0000000743 WOLFCAMP 1956 09870 050 0000056252 WOLFCAMP 1956 09870 014 0000105387 BNTHH, WEST WOLFCAMP 1960 08475 070 0000292023 AN, SOUTH WOLFCAMP 1960 06495 037 000023686	COMPEN	WOLFCAMP	08224 020 0000032002	
MOLFCAMP 1956 10020 032 000000743 MOLFCAMP 1956 09870 050 0000056252 MOLFCAMP 1956 09870 014 0000105387 MOLFCAMP 1946 07795 070 000009151 MOLFCAMP 1960 08475 020 0000292023 MOLFCAMP 1960 08475 020 000010768 MOLFCAMP 1960 06695 037 0000236866 MOLFCAMP 1960 06695 037 0000236866 MOLFCAMP MOLFCAMP 1960 06695 037 0000236866 MOLFCAMP MO	MAC-BORING	WOLFCAMP	08650 114 0000359780	
WOLFCAMP 1956 09870 050 0000056252 WOLFCAMP 1956 09870 014 0000105387 WOLFCAMP 1946 07795 070 0000008151 SMITH, WEST WOLFCAMP 1960 08475 020 0000292023 AN, SOUTH WOLFCAMP 1960 06695 037 0000236866	PBAR	WOLFCAMP	10020 032 0000000743	
WOLFCAMP 1956 09870 014 0000105387 WOLFCAMP 1946 07795 070 0000008151 WOLFCAMP 1960 08475 020 0000292023 SMITH, WEST WOLFCAMP 1968 07720 220 000010768 AN, SOUTH WOLFCAMP 1968 07720 220 000010768	P001.	WOLFCAMP	09870 050 0000056252	
WOLFCAMP 1946 07795 070 0000008151 KEN, SOUTH WOLFCAMP 1960 08475 020 0000292023 DSMITH, WEST WOLFCAMP 1968 07720 220 000010768 DAN, SOUTH WOLFCAMP 1960 06695 037 0000236864	P00L	WOLFCAME	956 09870 014 0000105387	
WOLFCAMP 1960 08475 020 0000292023 WOLFCAMP 1968 07720 220 0000010768 WOLFCAMP 1960 06695 037 0000236866		WOLFCAMP	946 07795 070 0000008151	
WOL.FCAMP 1948 07720 220 0000010748 WOL.FCAMP 1940 06495 037 0000236864	FASKEN, SOUTH	WOLFCAME	960 08475 020 0000292023	
SOUTH WOLFCAMP 1960 06695 037 0000236866 19	GOLDSMITH, WEST	WOL.F.CAMP	68 07720 220 0000010768	
		WOLFCAMP	60 06695 037 0000236866 19	

																												1	170	,		
		0000466096																														
1977 1977 1977 1977 1977 1977 1977				1977	1977	1977		1977	1977	67	1977	1977	1977	1977	1977	1977	1977	1977	1977	1977	1977		1777	1977		1977	1977	1977	\sim		1977	1771
0000071705 0000327450 0000593650 00002315710 0000064932 00000036825 0000006502				0000068178	တေ	0000380666	0000002630	0000005278	0000061337	0000012944	0000107865	00000128293	0000017203	0000061830	0000010175	0000174684	0000002987	0000042073	0000015232	0000033786	0000303101	0000011199	00002/3922	0002178595	·O	0000001125	0000107752	0000013434	2090000000	0000001098	9890000000	0000028428
056 044 044 030 030 032 212				015			00.0					004		0.1	033		002		002			014	7 000	000			007	005	011	004	013	
06790 009492 07018 07604 07470 09640 07535	Texas	02364	Texas	03865	03372	03810	03887	03510	03213	03408	03516	03104	03206	03612	03228	03107	03962	03104	03405	03553	03620	03556	03801	03940	03443	02015	03725	03384	03219	285	363	07.620
1966 1963 1963 1959 1959 1959	Edwards County, ⁷	1960	Fisher County, ¹	1958	1937	1955	1956	1949	1953	1955	1951	1948	1970	1953	1965		1964	1970		n.	ر در	1965	1004	2761	1952	1956		1964	1957	9	1956	1767
WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP	Edw	cisco	F1		CAMP COLURADO	CISCO CIECO LOUED			FLIPPEN	ZHATH.	Z 1	2 14 14 14 14 14 14 14 14 14 14 14 14 14	FLIFFEN	FLIFFEN	FLIPER FILE		7 T T T T T T T T T T T T T T T T T T T				ra .	HOFE LIME		LIME	E CREE		Щ	— إيدا	بنا	ابد	ACOULE CREEK	_
JORDAN MOOSE SONNY B WHEELER YARBROUGH & ALLEN COWDEN, SOUTHEAST MAC-BORING		ROCKSPRINGS		BENNETT		CATHERAY	ROBY-GOOLSBY	ROBY	IIA	FALAUA	KALLER GOBY	SYLVESTER, SOUTH			MCCAULLEY, NORTH		TOLAR, NOKIH	CATHY	ROUND TOP	ROBY	Z	BURAK BOHAN: RABH	TOTAL STORY	ROTAN	DOWELL	EIVANS	HARGROVE	HOWARD, SOUTH		SYLVESTER, SOUTH	WEERS COLLED	

0000258248	
1977 1977 1977 1977 1977 1977 1977 1977	1977 1977 1977 1977 1977 1977 1977 1977
0000184781 0000920007 0010098543 0010098543 0000000111 000000011180 0000011180 0000011180 0000011180 0000011180 0000011180 0000011180 0000011180 0000011180 0000011180 0000011180 0000011180 0000011180 0000011180 0000011180 0000011180 0000011180 0000011180 0000011180 0000011180	0000008987 0000029585 0000020409 00000134955 0000134955 0000134955 0000134955 0000134955 0000134955 0000134953 00000531343 00000531343 0000654854 00000434289 00000444289
004 003 005 005 005 005 005 005 006 007 007 007 008 008 008 009 008 009 009 009 009 009	014 0035 0015 017 017 037 037 037 037 037
03886 02545 02657 03816 03930 03679 03560 03563 03784 03784 03788 03788 03788 03788 03788 03788 03788 03788	Texas 08946 09142 09267 100134 09361 09125 09200 09200 09200 09200 09200 09200 09200 09200
1965 1955 1966 1966 1961 1972 1972 1973 1974 1974 1974 1975 1975 1975 1976 1976 1976 1976 1976 1976 1976	Gaines County, 1964 1957 1965 1963 1963 1953 1960 1955 1960 1960 1960 1956
NOODLE CREEK NOODLE CREEK NOODLE CREEK SWASTIKA	WOLFCAMP
BARBARA MOORE ESKOTA RAVEN CREEK ROUGH DRAW ROUGH DRAW ROUND TOP, NORTHWEST KEELER-WIMBERLY, NORTH BLOCKLINE ROBY ROBY ROBY ROLLINE, WEST JIM-LEW ROUND TOP BLOCKLINE, WEST JIM-LEW ROLLINE, WEST JIM-LEW ROLLINE, WEST JIM-LEW ROUND TOP RO	JENKINS, SOUTHEAST NORMAN FENCE WASSON, NORTH AMROW, NORTH ROTTENFIELD NORMAN, SOUTH ALSABROOK BOTTENFIELD BRO D, E, B, D, E, B, HUAT, EAST HUAT, EAST SEMINOLE, WEST SEMINOLE TOBY-JO WASSON, EAST

BALE, EAST SEMINOLE KAY SEMINOLE HUAT WASSOM, EAST WASSON, EAST	WOLFCAMP WOLFCAMP LIME WOLFCAMP REEF WOLFCAMP, LOWER WOLFCAMP, LOWER WOLFCAMP, LOWER WOLFCAMP, LOWER	1971 09799 007 0000104890 1977 1972 10005 0000845261 1977 1963 09259 009 0000900936 1977 1959 10349 022 0001629351 1977 1962 09162 0000039780 1977 1962 10226 0000001656 1977 1964 08733 019 0000071184 1977
	Garza C	County, Texas
ROCKER A, SOUTH RED LOFLIN, NORTH TOBE	WOLFCAMP WOLFCAMP WOLFCAMP	1957 05422 0000014496 1977 1961 06042 0000012877 1977 1951 04660 050 0000047949 1977
	Glasscock	County, Texas
	CAMP CAMP CAMP CAMP CAMP CAMP CAMP CAMP	07596 010 0000295016 08154 016 0000002795 07642 007 0000000523 07140 00000024638 07226 018 0000210396 08215 015 0000255769 07920 044 0001058752 07914 043 0000409906 08246 005 00006052346 09220 009 0000606205 07986 013 0000007791 Texas 01841 005 0000061293 02604 005 0000061293 02602 004 0000058535 02602 004 0000058535 02602 004 0000058535
WOLF CAMP LIVENGODD STAMFORD, NORTHWEST PARDUE, NORTH LIVENGOD, SOUTH SLOPOKE STAMFORD, WEST WOLF CAMP	HOFE KING SAND KING SAND KING UPPER SWASTIKA SWASTIKA SWASTIKA	1964 01472 008 0000300369 1977 1955 02337 007 0000162749 1977 1957 02326 010 0000081257 1977 1953 02107 008 0000026069 1977 1956 02308 007 0000395011 1977 1957 02795 013 0000060342 1977 1951 02485 009 0002350018 1977 1963 01639 0000747512 1977

	Нос	Hockley County, Te	Texas			
LEVELLAND	CISCO LIME	1971 09	09380 014	0000074636	1977	
	CACC COURT				///	
M-L-3 1061 11361 1	ECLTCARF	507		6066500000	1/6/	
JUDELI KELLE Ambel And	WULL CEMP	407	260 81980		1 % / /	
MUKELANI	WULF CAMP				1977	
FERIECUSI	WOLF CAMP		0		1977	
KOFEST WEST	WULL CAME	1955 08	08775 050	0000001946	1977	
TENGENE BERUCK	WULT LAME		•	68690000	1,6/1	
LEVELLAND, NUKTHEAST	WOLLF CAMP	_			1977	
OLAUENE CLAUENE	WOLFCAMP, LOWER	1963 08	318 1 778	00000000704	1977	
	Но	Howard County, Te	Texas			
MOSS LAKE	CISCO	1966 07	7932 025	0000013818	1977	
	CISCO	10	42 00	000049561	1977	
MODESTA, SOUTH	01800	296		000043743	1977	
	01800	952		000005567	1977	
WRIGHT RANCH	CISCO REEF				1977	
MODESTA, NORTH	DEAN			0000004101	1977	
BROOKING, NORTHEAST	DEAN	1970 08	08123 101		1977	
	WOLFCAMP			0000104609	1977	
LUTHER, NORTH	WOL.FCAMP				1977	
ODANIEL	WOL.F.CAMF	1957 06			1977	
	WOLFCAMP			0000088932	1977	
VEALMOOR, EAST	WOL.F.CAMF		960 050		1977	
CINCENT, NORTH	WOLFCAMP			000000697	1977	
HOWARD-GLASSCOCK	WOLFCAMP		441 035	_	1977	
MORGAN RANCH	WOLFCAMF			_		
HUTTO, SOUTH	WOLFCAMP	964			1977	
VEALMOOR, NORTHEAST	WOLFCAMP			000034571	1977	
STOLHAN	WOLFCAMP			0000165782	1977	
MOSS CREEK		0	_		1977	
HUTTO, SOUTH	WOLFCAMF, UPPER	0		0000348271	1977	
HOWARD-GLASSCOCK	8915 WOLFCAMP	1966 09	042	000000288	1977	
		Irion County, T	Texas			
DOVE CREEK	02813	1965 05	05980 038	0000003485	1975 1977	
DOVE CREEN BROOKS, SOUTH O. H. TETANGLE	CISCO				1977 1977	
J. T. C. T. A. P. T. C. C. C. C.		: }				

-	_	
1	7	,

		174
1977 1977 1977 1977 1977 1977 1977	1977 1977 1977 1977 1977 1977 1977 1977	1977 1977 1977 1977
0000001524 0000000481 00000046971 0000010700 0000019758 00000219758 0000054232	0000263479 0000074831 0001471419 0000345424 0000034518 00000240548 00000240548 00000240548 00000240548 00000240548 00000240548 0000126125 0001296125 0000168245 0000168245 0000168245 0000168245 0000168245 0000168245 0000168245 00000000168245	0000159870 0003721008 0000203733 0000004323
288 020 030 005 005 013	035 040 040 001 0007 0007 0008 014	014 005 010
05806 05806 05864 05800 06830 06230 05216 05232	Cexas 0.453 0.453 0.454 0.455	1exas 01685 01624 02324 01864
1967 1960 1968 1968 1964 1964 1974 1977	Kent County, 1 1952 1963 1964 1965 1972 1972 1974 1952 1943 1943 1943 1954 1957 1957 1957 1957 1957 1957 1957 1957	Knox County, 1950 1956 1959 1959
WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP	COGDELL SAND NOODLE CREEK TANNEHILL	CISCO CISCO TANNEHILL TANNEHILL
ROCKER B, EAST S. W. T. TANKERSLEY SHERWOOD WARDLAW THREE MERTZON TANKERSLEY ARDEN, SOUTHEAST SUGG-IRION TANKERSLEY	COGDELL, EAST ROUGH DRAW, NORTH WALLACE RANCH, NORTHEAST ROUGH DRAW, NORTH WALLACE RANCH ANDREW NOODLE CREEK ATKINS-FLEMING TONI C BROWNING COGDELL BATEMAN RANCH BUZZARD PEAK SFRINGER VALLEY VIEW BUZZARD PEAK SFRINGER VALLEY VIEW BUZZARD PEAK SFRINGER	EARL WISDOM GOREE A P C BUCKSTACK

CARTER-GIFFORD	TANNEHILL	1957 02304 005 0000013081 1977
CHRISTIE-STEWART	TANNEHILL.	01749 006 0000033653 1
FAYE	TANNEHILL	4 008 0000039382
TAYE	TANNEHILL	02056 004 0000103293 1
	FANCEMILL	02103 006 0000013086 197
7. T. C.	TANNEHILL	412 010 0000012357 1
COLDER NORTHEAST	TANNELLL	0/ 01088 0/1 0000/20108 17/ 40 01447 004 0000/57554 197
	TANKET	61 01692 004 0000017548
HENRY-HAMILTON	TANNEHILL	967 02416 005 0000041338 1
HOL DER	TANNEHILL	01852 007 0000005473 197
J. E. K.	TANNEHILL	57 02308 003 0000005644
UNGMAN	TANNEHILL	02124 004 0000020676 1
KNOX CITY, NORTH	TANNEHILL.	7 02252 0000008064
KNOX CITY	TANNEHILL	02296 006 0000309479 1
· ;	TANNEHILL.	957 01870 010 0000135322 197
	TANNEHILL	957 01867 004 0000030811
	TANNEHILL	02162 0000001206
MUNITAL EAST	I ANNEHILL I ANNEHILL	1958 01960 006 0000035697 1977
		02000 000 0000014/4
THEFTHY NODES	TONNETLL	02084 002 000016290
FLUTLER YOUTE	TANKEDIEL	/1 / V COCCOCCOCC
	TANNETTI	/ VELOS VOT VOVOCUELOR 1//
> a < x + Z + < 0	TANNETHE	70/ GEGGG GGG GGGGT/G9
071010 0701010	TANACHIL	73/ OIBOI COB COCCOOX314 17/ OEG 03069 013 00000E367183
OINTCARA MODILITACH	TANKEDIEL	700 OKO49 OIK COCCURSOL
TEXOME, NORTHERS!	TONSETTE	7 00001/1321 1 3 000007454 1
TEXUMA	TANKET	757 VIVE 005 0000009451 1
	TANTEL	954 01981 010 0000003524 197
GOREE, SOUTHWEST	TANNEHILL	961 01679 0000006577 1
JARVIS, NORTHEAST	TANNEHILL	02037 003 0000034844 197
	TANNEHILL	01848 0000018149
080A	TANNEHILL	01940 004 0000003706
GOREE	TANNEHILL	01799 0000035363 197
AJAX	TANNEHILL	956 02085 010 0000163998 197
BOOE	TANNEHILL	966 01995 006 0000053938 197
	TANKEHILL	963 02110 018 0000141632 197
ZGE-100	HANNEHIL.	962 01542 007 0000015294 197
		956 01604 002 0000383365 197
	TANNEHILL	01908 002 0000247792 197
HACKATHORN, EAST	TANNEHILL	965 02000 010 0000238921 197
	- FINE TILL	73/ UZUSS UUS UUUU/808/K IY/
	- PRNEHILL.	956 01816 015 0000263484 19
CAKOLS Expos pass soparings	TANNEHILL	95/ 0206/ 008 0000518184 19/
STRUK CILY, RUKLHERUL	THILL	0/ 0/3/0 000 000014/803 19/
	TARRETILL	57 01903 010 0000230347 197
FLUMLEE, NUKTHWEST	- DZZEHILL.	50 02064 006 00000/4025 19/
TLUMLEE Teva k a: east	- FRRETLL - TANNELTI-	7/AT 98040000 0T3 0000192089 TAD
	Physical Late.	00 VI/VO VOM VVVVALABALIVA 177

			170
1977 1977 1977 1977 1977 1977 1977 1977	1977		1927 1927 1927 1927 1927 1927 1927
0000598185 0000168886 0000141458 00002237047 00000233288 0000128825 0000155998 00000023328	328000000000000000000000000000000000000	0 4 4 4 4 11 0 4 7 11 11 11 11 11 11 11 11 11 11 11 11 1	0002217266 0000133631 0000161519 0000263549 0000050895 0000050076
07 06 06 07 03	502		021 021 026 070 052 080 170 020 014
02570 0 01940 0 01958 0 02012 0 02022 0 01856 02202 0 02258 02258 0 02250 0	" o	MANO PARANTA P	09544 09022 09870 09800 09800 09125 09833
1958 1963 1959 1959 1950 1950 1950 1950 1950 1950	Coun	County	1966 1966 1962 1947 1958 1951 1961 1961
TANNEHILL TANNEHILL TANNEHILL TANNEHILL TANNEHILL TANNEHILL, UPPER TANNEHILL, UPPER TANNEHILL, UPPER TANNEHILL, UPPER WOLFCAMP WOLFCAMP	Martin	DEAN DEAN DEAN DEAN DEAN DEAN DEAN DEAN	DEAN WOLFCAMP DEAN WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP
TWO TEE VOSS, SOUTH VOSS, SOUTHEAST VOSS FLUMLEE GOREE, WORTHWEST REED GOREE, WEST KNOX CITY REED A & K BIG FOUR	HIBUN MEAN WHEN	DRAW, DRAW, DRAW, DRAW DRAW OVE, SOU VE STREET STREET STREET	MIDLAND, EAST SPRABERRY AZALEA MIDLAND, SOUTH NOBLES RUTH SCHARBAUER HI-LONESOME PAKKS WARFIELD

SWEETIE PECK Virey War-San Virey	WOLFCAMP, LO. WOLFCAMP, LOWER WOLFCAMP, LOWER	1950 09849 164 1956 09095 014 1956 09795 031 1958 09234 045	00000103493 0000027302 0000431925 0000049115	1977 1977 1977 1977
	Mitchell	ell County, Texas		
STERLING, NORTHWEST RAY ALBAUGH	WOLFCAMP WOLFCAMP	1968 08700 020 1966 04426 034	0000003947 0000080967	1977 1977
	ON	Nolan County, Texas		
HYLTON, NORTHWEST	BRECKENKIDGE	03930	1	1977
AULI BECKHAM, WEST	CISCO	1957 04194 010		1977
	CISCO	958 04170		1977
GROUP	CISCO	953		1977
	CISCO REFE	1956 0403/	0000164195	1977
E		953 04049		
GROUP		04170		
MARY NEAL	CISCO SAND	1953 04072 015		1977
LUKIS HAT TOP MOUNTAIN. NOETH	COOK I TME		0000008920	1977
	លេ	03750		1977
	FLIPPEN	953 03726	0000093402	1977
	GARDNER			1977
		996		1977
WALLS, SUDIH		966 05360	00000000000	1977
WATTS, SOUTH	CARDNER LINE GARDNER SAND	1954 05452 006	0000003582	1977
WATTS		954 05548	0001689681	1977
FAUER	GUNSIGHT	951		1977
HARDER		04290		1977
LIVIDE HAI E	NING SAND	703 03/20 OFF 0004F		19//
SWEFTWATER, SOUTH	RUCHLE CREEN SUASTIKA	1933 02933 008 1945 04054 003	0000000439	1.4.7.7
	TANNEHILL	957 03600		1977
NENA LUCIA	WOLFCAMP SAND	06036	0000073	
	Pe	Pecos County, Texas		
SHEFFIELD, SOUTHWEST HOKIT, NORTHWEST	CISCO	966 07428	0000013740	1977
SHEFFIELD SHEFFIELD, NORTHWEST	C1SC0 C1SC0	1962 06622 032 1957 07035 020	0000172478	
	CISCO	960 05909	0000119804	1977
		3000	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, , , ,

74 11 37 37		49 31 44	79 50 35	0 0	
0000239374 0000325711 0000080966 0000018887		0006026649 0000095281 0062693544	0020082579 0001080450 0000397585	0105725800	
0000		000	3000	000	
1977	1977 1977 1977 1977 1977 1977 1977	1975	C / 4 T	1977 1977 1977 1977 1977 1977 1977	1977 1977 1977 1977
00000644313	0000000483 000000147133 00000001800 0000002935 00000023666 000000033666	0000015572		0001154612 00001146035 00000101793 0000548767 0003116072 0000017824 0000003199 0000003199	0000010923 0000010976 0000012705 0000000053
017 018 024 075 040 040	010 010 020 000 033 033	050 128 005 230 279	027 664 4	275 074 1113 1111 068 078 078 045 045	019 127 026 633
4 4 5 4 5 5 M	7467 750 750 750 750 750	11300 04968 08931 05165 10349			Texas 07841 06420 07004 07283 07370
1966 1969 1959 1958 1970 1971		1965 1958 1967 1950 1967	1960 1969 1971 1973 1973	i	1955 1962 1962 1965 1965
				<u>.</u> نى	Reagan
				DETRITAL DETRITAL, REEF LO. LOWER LOWER LOWER UPPER	
CISCO HUECO LAMAR WOLFCAMP WOLFCAMP WOLFCAMP	WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP	WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP	WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP	* * * * *	DEAN DEAN DEAN DEAN
SHEFFIELD, SOUTHWEST TIPPETT, WEST COYANOSA LINTERNA PUCKETT GOMEZ, NORTH PUCKETT, NORTH PECKED GRANDE	HEINER, SUUTH HOKIT, NORTH MAC DER MCKENZIE MESA PRIEST & BEAVERS, WEST ROJO CABALLOS ROXIE WINDY MESA	ATHEY CHENDT GREY RANCH PECOS VALLEY SURVEY 16	< □	ATHEY ATHEY FECOS-SHEARER, WEST FECOS VALLEY ATHEY, EAST COYANOSA COYANOSA ABELL HOKIT, NORTHWEST HOKIT, NORTHWEST HOKIT, NORTHWEST ACPEC TIPPETT, SOUTH	CENTRALIA DRAW ROCKER B, SOUTH ROCKER B, SOUTHWEST SANTA RITA, SOUTH CALVIN

	399 576 540		993	
	0000187399		0003181993	
1977 1977 1977 1977 1977	1977 1977 1977	1977	1975 1977 1977 1977 1975 1975	1977 1977 1977 1977 1977 1977 1977
0000046698 0020013733 0000025675 0000017877 0000009700	0000004657	0000085167	0000001258 000000171 00000073313 00000002708 0000000227105	0000035716 0000016006 0000865732 0001213705 00001213705 00001213705 000015577169 0000173331
04 120 70 162 20 009 58 074 48 152 70 025	20 018 93 136 82 17 120 10 010 17 113	į.	55 065 54 012 11 004 52 020 72 020	\$6 66 67 67 68 60 60 60 60 60 60 60 60 60 60 60 60 60
069 073 079 074 088 075	153 108 108 099 110	3 10345 y, Texas	4 06395 1 06364 8 02612 8 06311 3 03400 6 05602 9 06437 6 05612 3 07712 8 04072	, Texas 3 05036 0 05049 0 05045 5 05045 5 06795 1 06180 2 06180 2 06180 3 04660
1956 1965 1966 1959 1958 1958	Reeves County, 1963 1953 1947 1964 1969	1968 Schleicher County	1964 1961 1958 1958 1955 1956 1973 1973	Scurry County, 1968 1970 1957 1955 1951 1951 1951 1953 1953
DEAN DEAN WOLFCAMP WOLFCAMP WOLFCAMP	WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP	WOLFCAMP Sc	CANYON CISCO CISCO HENDERSON UPFER WOLFCAMP WOLFCAMP WOLFCAMP	CISCO CISCO CISCO CISCO CISCO CIME CISCO SAND CISCO SAND CISCO SAND CISCO SAND CISCO SAND WOLFCAMF
BIG LAKE CALVIN BARBEE BARNHART SAUNDERS SEVEN D	BALMORHEA ROJO CABALLOS, WEST CABLE VERHALEN WORSHAM-BAYER BARILLA	HUBAN	VELREX VELREX F & H VELREX H. A. T. VELREX, SOUTHWEST FLYING ANCHOR VELREX, SOUTHWEST WESTERN EMPIRE	TONTO TONTO FULLER, SOUTHEAST TONTO, NORTHEAST RIDE GEORGE PARKS KELLY-SNYDER BROWN DIAMOND M DIAMOND M COGDELL

Texas
County,
Sterling

	CISCO	1972 07984 030 0000022471 1977
	CISCO	1974 06973 0000235126 1977
	WOLFCAMP	1966 07460 012 0000093700 1977
	WOLFCAMP	1966 05118 010 0000002531 1977
NORTHEAST	WOLFCAMP	1966 04479 005 0000001507 1977
	WOLFCAMP	1964 05963 010 0000011619 1977
	WOLFCAMP	1963 06318 011 0000005112 1977
	WOLFCAMF	1966 05962 014 0000004740 1977
	WOLFCAMF	1964 05068 004 0000001858 1977
	WOLFCAMP	1967 07206
	WOLFCAMP	1974 06531 0000002086
	WOLFCAMP	1962 07334 026 0003195340 1977
	WOLFCAMF	05086
	WOL.FCAMP	1963 06694 018 0000192201 1977
	WOLFCAMP	1967 07244 008 0000251057 1977
	WOLFCAMP	1969 07064 043 0000572689 1977
	WOLFCAMP, LO.	1963 06888 020 0000576789 1977
	WOLFCAMP, LOWER	1963 06888 007
	WOLFCAMP, LOWER	1969 06970 056 0000101555 1977
	WOLFCAMP, LOWER -B-	1962 07430 014 0002369977 1977
	WOLFCAMP, NORTH	1969 05989 094 0000002814 1977
	WOLFCAMF, UF.	042 0000090303
	WOLFCAMP, UPPER	1963 06746 036 0002770616 1977
	WOL.F.O	1968 07330 034 0000015187 1977
	WUL.F.U	0/000 004

Stonewall County, Texas

FLAT TOP 166	CISCO LOWER	1963 0	3871	0.14	03871 014 0000025245	1977
CRACKERJACK	CISCO SAND	1974 0	04634		0000045486	1977
TRI-STAR	GUNSIGHT	1973 0	3033		0000002813	1977
BROWNIE	HOPE LIME	1966 0	03958		0000049665	1977
FLAT TOP, SOUTH	NOODLE CREEK	1951 0	02685 (013	0000898802	1977
FLAT TOP, SOUTH	SWASTIKA	_	03438 (005	0000025029	1977
FLAT TOP 113	SWASTIKA	_	03112 (001	0000015740	1977
FLAT TOP 123	SWASTIKA	_	03162 (800	0000005482	1977
FLAT TOP 124	SWASTIKA	1954 ()	03291 (001	0000008598	1977
FLAT TOP 140	SWASTIKA			041	0000108892	1977
FLAT TOP 162	SWASTIKA	_	03486 (800	0000107663	1977
MOUTRAY MOORE	SWASTIKA	1950 0	03659 (003	0000052426	1977
ANTOINETTE	SWASTIKA	_	03448		0000000813	1977
BIGGS	SWASTIKA	1959 0	03202 (012	0000227583	1977
FLAT TOP 145	SWASTIKA		03320 (001	0000042279	1977
FLAT TOP 147	SWASTIKA	1959 0		900	0000047619	1977

		181
	00003868313 0003868313 0000314717 0002314717	
005 0000047703 1977 005 0000106832 1977 006 0000058919 1977 008 00000215160 1977 010 0000234602 1977 010 0000357377 1977 010 0000357377 1977 010 0000354602 1977 010 0000459994 1977 002 00004499994 1977 005 0000459994 1977 005 0000459994 1977 006 00004357941 1977 006 000043479 1977 008 0000043479 1977 008 0000043479 1977	020 0000026206 1977 010 036 037	050 0000058553 1977 021 0002534118 1977 020 0000016167 1977 018 0001275820 1977 060 0043105493 1977 030 0002442162 1977 350 0039415596 1977
1955 03182 0 1955 02646 0 1958 02645 0 1963 03424 0 1971 03446 0 1958 03102 0 1958 03102 0 1958 03229 0 1958 03280 0 1959 03480 0 1971 02623 0 1973 03705 1973 03705 1979 02654 0 1959 02654 0	Texas 1 05860 3 04279 5 04210 6 04185 7 05460 7 05200 7 05250 7 05250	1948 09400 1952 10032 1957 10032 1954 08846 1950 08505 1953 09860 1950 09712
TANNEHILL TANNEHILL, LOWER TANNEHILL, LOWER TANNEHILL, LOWER TANNEHILL, LOWER TANNEHILL, UPPER	CISCO CISCO A WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP	CISCO CISCO REEF WOLFCAMP WOLFCAMP WOLFCAMP
BERTHA CLARICE HAMKICK METCALF PEACOCK, NORTHWEST OLD GLORY, WEST GLORIA GAY, WEST GUEST MULLEN RANCH PEACOCK, NORTH S. L. C. V. G. O. WILLFOND CREEK BEN, SOUTH GLORIA GAY, WEST CAROL ANN E. O. C CLARICE S. L. C.	EIGHT MILE DRAW MIERS, EAST WALLACE SAWYER WALLACE, WEST MIERS, EAST MIERS, EAST BROWN-BASSETT BROWN-BASSETT HOGE RANCH K M	MOUND LAKE STATEX COROCO ADAIR, NORTHEAST ADAIR TOKIO, SOUTH

	Tom	Tom Green County, Texas	
DEVILS COURTHOUSE KENNEMER, EAST SUSAN PEAK SUSAN PEAK CARGILE JU-JAN-JAC MUNN-GREEN	CISCO CISCO CISCO CANYON CISCO CANYON WOLFCAMP WOLFCAMP	1955 03830 014 0000218373 1977 1948 04724 025 1950 04535 025 0001745033 1977 1957 05684 035 0000052386 1977 1954 04549 011 0000021010 1977 1975 06883 000000459 1977	
	Upt	Upton County, Texas	
AMACKER-TIPPETT HAZEL WILLRODE BENEWIM	CISCO CISCO CISCO	1956 09060 053 0000117124 1977 1956 09998 074 0000000766 1977 1955 08795 020 0000584231 1977	
AMACKER-TIPPETT NEAL RANCH AMACKER-TIPPETT AMACKER-TIPPETT BLOCK 42 BLOCK 43 BLOCK 4	WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP	1954 09090 058 1972 10218 040 000001024 1975 1959 10200 063 000006029 1977 1958 08507 008 0000135152 1977 1964 08433 002 00000025711 1977 1957 09597 024 0000043621 1977 1953 05638 013 000004754 1977 1961 07630 043 0000001072 1977 1962 09206 056 00000020182 1977 1945 08628 046 00000164203 1977 1956 07170 024 000001257 1977 1955 09765 095 0000012557 1977 1955 09765 095 0000012557 1977	ю Ф
WILSHIRE WINDHAM HELUMA DAVIS J. S. L. ADAMC AMACKER-TIPPETT B. F. P. EGASUS	WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP WOLFCAMP	032 0000038801 100 0032 000001494 1 051	: C

		Ward County, Texas
BLOCK 17 LOCKRINGE	LAMAR LIME	1963 05014 020 0000150969 1977 1967 12314 034 0000
MONAHANS	WOLFCAMP	07109 033 0000045030 1977
R. O. C.	WOLFCAMP	10389 0000013857
	WOL. F.CAMF	11615 016
WAR-WINK, SOUTH	WOLFCAMP	12908
WICKETT	WOLFCAMP	08060 029 0000399269
BOSTWICK LOCKRINGE	WOLFCAMP WOLFCAMP	0000002520 197 0000003886 197
		Winkler County, Texas
MONAHANS, NORTH	CISCO	08196 084 0000073109
KEYSTONE, SOUTHEAST	WOLFCAMP	1968 07643 065 0000017415 1977
	WOLFCAME	07068 005 0000010572
WINKLER. SOUTH	MOLFCAME	08768 020 0000001697
	WOLFCAMP	12808
EMPEROR	WOLFCAMP	1960 07255 016 003303930
M SNIKI	WOLFCAMP	08190 070
WHEELER, NORTHWEST	WOLFCAMP	07656 144 0000107673
- 1	WOLFCAMP	12808
		Yoakum County, Texas
FITZGERALD	WOLFCAMP	
LIMITED	WOL FCAMP	09698 008 0000012183 19
VENIS	WOLFCAMP	10010 050
BRAHANEY	WOLFCAMP	09028 087 0000305738
BRONCO, EAST	WOLFCAME	09013 003 0000228218
BRONCO	WOLFCAMF	183 0000317760
NANTE MAY	WOLFCAMF	08772
REA	WOLFCAMP	017 0000167300
WPD	WOLFCAMP	1968 08916 0000486832 1977

Selected Bibliography

- Adams, J. E., Frenzel, H. N., Rhodes, M. L., and Johnson, D. P., 1951, Starved Pennsylvanian Midland Basin (Texas): American Association of Petroleum Geologists Bulletin, v. 35, p. 2600-2606.
- Armstrong, A. K., 1962, Stratigraphy and paleontology of Mississippian system in southwestern New Mexico and adjacent southeastern Arizona: New Mexico Bureau of Mines and Mineral Resources, Memoir 8. 95 p.
- 1967, Biostratigraphy and carbonate facies of the Mississippian Arroyo

 Penasio Formation, north-central New Mexico: New Mexico Bureau of Mines and

 Mineral Resources, Memoir 20. 80 p.
- Backman, G. O., 1975, New Mexico: in McKee, E. D., and Crosby, E. J., editors,

 Paleotectonic Investigations of the Pennsylvanian System in the United States:

 USGS Professional Paper 853, part 1, p. 233-243.
- Ball, S. M., Pollard, W. D., and Roberts, J. W., 1977, Importance of phylloid algae in development of depositional topography: in Frost, S. H., Weiss, M. P., and Saunders, J. B., editors, Reefs and Related Carbonates Ecology and Sedimentology: American Association of Petroleum Geologists, Studies in Geology No. 4, p. 239-260.
- Bowsher, A. L., 1948, Mississippian bioherms in the northern part of the Sacramento Mountains, New Mexico: The Compass, v. 25, p. 21-28.
- Butler, J. H., 1977, Geology of the Sacramento Mountains, Otero County, New Mexico:
 West Texas Geological Society Publication No. 1977-68. 216 p.
- Choquette, P. W., and Traut, J. D., 1963, Pennsylvanian carbonate reservoirs, Ismay Field, Utah and Colorado: in Bass, R. O., and Sharps, S. L., editors, Shelf Carbonates, Paradox Basin: Four Corners Geological Society, Fourth Field Conference. 273 p.
- Cline, L. M., 1959, Preliminary studies of the cyclical sedimentation and paleontology of upper Virgil strata of the La Luz area: in Guidebook, Sacramento Mountains,

- New Mexico: Permian Basin Section of the Society of Economic Paleontologists and Mineralogists and Roswell Geological Society. 306 p.
- Cys, J. M., and Mazzullo, S. J., 1977, Biohermal submarine cements, Laborcita Formation (Permian), northern Sacramento Mountains, New Mexico: in Butler, J., editor, Geology of the Sacramento Mountains, Otero County, New Mexico: West Texas Geological Society Publication No. 1977-68, p. 39-51.
- Delgado, D. J., and Pray, L. C., 1977, Stop "C-3" The Laborcita Formation: in

 Butler, J. H., editor, Geology of the Sacramento Mountains, Otero County, New

 Mexico: West Texas Geological Society Publication No. 1977-68, p. 173-183.
- Elias, G. K., 1963, Habitat of Pennsylvanian algal bioherms, Four Corners area:

 in Bass, R. O., and Sharps, S. L., editors, Shelf Carbonates, Paradox Basin:

 Four Corners Geological Society, Fourth Field Conference, p. 185-203.
- Irwin, Jr., C. D., 1963, Producing carbonate reservoirs in the Four Corners area:

 in Bass, R. O., editor, Shelf Carbonates of the Paradox Basin: Four Corners

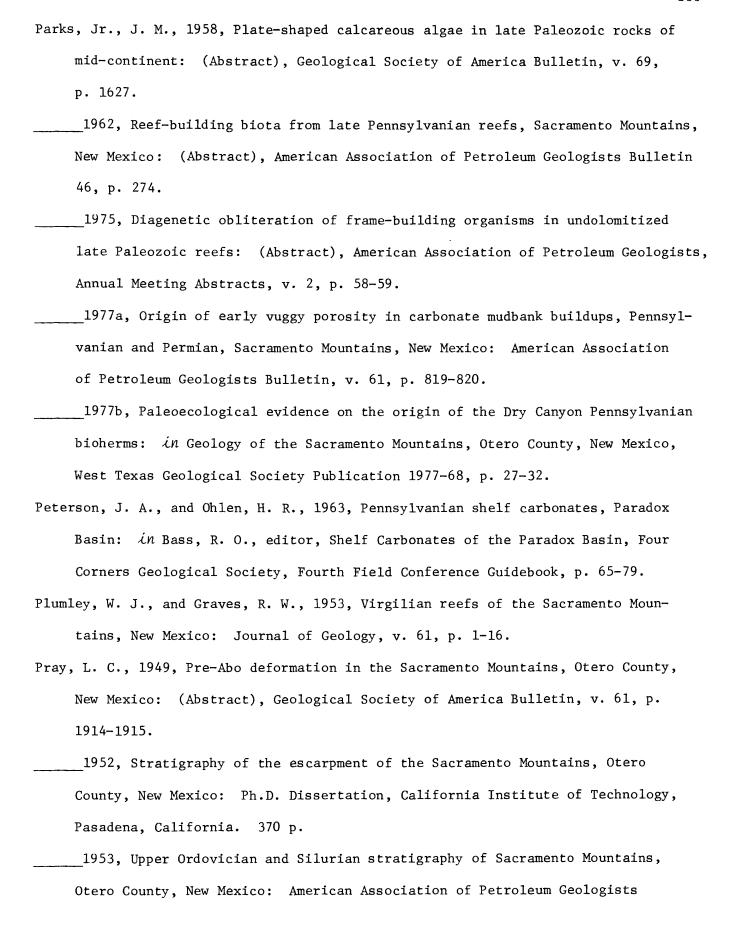
 Geological Society, Fourth Field Conference Guidebook, p. 144-148.
- Jerome, S. E., Campbell, D. D., Wright, J. S., and Vitz, H. E., 1965, Geology and ore deposits of the Sacramento (High Rolls) mining district, Otero County,

 New Mexico: New Mexico Bureau of Mines and Mineral Resources Bulletin 86. 30 p.
- Kerr, Jr., S. D., 1969, Algal-bearing carbonate reservoirs of Pennsylvanian age, West Texas and New Mexico: (Abstract), American Association of Petroleum Geologists Bulletin, v. 53, p. 726-727.
- Konishi, K., and Wray, J. L., 1961, Eugonophyllum, a new Pennsylvanian and Permian algal genus: Journal of Paleontology, v. 35, p. 659-666.
- Kottlowski, F. E., 1960a, Summary of Pennsylvanian sections in southwestern New Mexico and eastern Arizona: New Mexico Bureau of Mines and Mineral Resources Bulletin 66. 187 p.
- 1968, Sedimentational influence of Pedernal Uplift: (Abstract), American Association of Petroleum Geologists Bulletin, v. 52, no. 1, p. 197.

- Laudon, L. R., and Bowsher, A. L., 1941, Mississippian formations of the Sacramento Mountains, New Mexico: American Association of Petroleum Geologists Bulletin, v. 25, p. 2107-2160.
- _____1949, Mississippian formations of southwestern New Mexico: Geological Society of America Bulletin, v. 60, p. 1-88.
- LeMay, W. J., 1972, Empire Abo Field, southeast New Mexico: in King, R. E., editor, Stratigraphic Oil and Gas Fields: American Association of Petroleum Geologists Memoir 16, p. 472-480.
- Lohmann, K. C., and Meyers, W. J., 1977, Microdolomite inclusions in cloudy prismatic calcites: a proposed criterion for former high-magnesium calcites:

 Journal of Sedimentary Petrology, v. 47, p. 1078-1088.
- Macintyre, I. G., 1977, Distribution of submarine cements in a modern Caribbean fringing reef, Galeta Point, Panama: Journal of Sedimentary Petrology, v. 47, p. 503-516.
- Malek-Aslani, M., 1970, Lower Wolfcampian Reef in Kemnitz Field, Lea County, New Mexico: American Association of Petroleum Geologists Bulletin, v. 54, p.2317-35.
- Mazzullo, S. J., and Cys, J. M., 1979, Marine aragonite sea-floor growths and cements in Permian phylloid algal mounds, Sacramento Mountains, New Mexico:

 Journal of Sedimentary Petrology, v. 49, p. 917-936.
- McKee, E. D., and Crosby, E. J., 1975, Paleotectonic Investigations of the Penn-sylvanian system of the United States: USGS Professional Paper 853, part III.
- Meyer, R. F., 1966, Geology of Pennsylvanian and Wolfcampian rocks in southeast


 New Mexico: New Mexico Bureau of Mines and Mineral Resources, Memoir 17.

 123 p.
- Meyers, W. J., 1974, Carbonate cement stratigraphy of the Lake Valley Formation (Mississippian), Sacramento Mountains, New Mexico: Journal of Sedimentary Petrology, v. 44, p. 837-861.
- 1978, Carbonate cements: their regional distribution and interpretation in Mississippian limestones of southwestern New Mexico: Sedimentology, v. 25, p. 371-400.

, and James, A. T., 1978, Stable isotopes of cherts and carbonate cements of the Lake Valley Formation (Mississippian), Sacramento Mountains, New Mexico: Sedimentology, v. 25, p. 105-124. , and Lohmann, K. C., 1978, Microdolomite-rich syntaxial cements: proposed meteoric-marine mixing zone phreatic cements from Mississippian limestones, New Mexico: Journal of Sedimentary Petrology, v. 48, p. 475-488. Miller, F., 1969, The San Andres reef zone: in Summers, W. K., and Kottlowski, F. E., editors, The San Andres Limestone, a Reservoir for Oil and Water in New Mexico: New Mexico Geological Survey Special Publication No. 3, p. 27-31. Neumann, A. C., Kofoed, J. W., and Keller, G. H., 1977, Lithoherms in the Straits of Florida: Geology, v. 5, p. 4-10. Otte, Jr., C., 1954, Wolfcampian reefs of the northern Sacramento Mountains, Otero County, New Mexico: (Abstract), Geological Society of America Bulletin, v. 65, p. 1291-1292. 1959a, The Laborcita Formation of late Virginian-early Wolfcampian age of the northern Sacramento Mountains, Otero County, New Mexico: in Guidebook, Sacramento Mountains, New Mexico: Permian Basin Section of the Society of Economic Paleontologists and Mineralogists and Roswell Geological Society. 306 p. 1959b, Late Pennsylvanian and early Permian stratigraphy of the northern Sacramento Mountains, Otero County, New Mexico: New Mexico Bureau of Mines and Mineral Resources Bulletin 50. 111 p. , and Parks, Jr., J. M., 1963, Fabric studies of Virgil and Wolfcamp bioherms, New Mexico: Journal of Geology, v. 73, p. 380-396. Oppel, T. W., 1959, The Pennsylvanian-Permian contact in lower Fresnal Canyon, Sacramento Mountains, New Mexico: in Guidebook, Sacramento Mountains, New

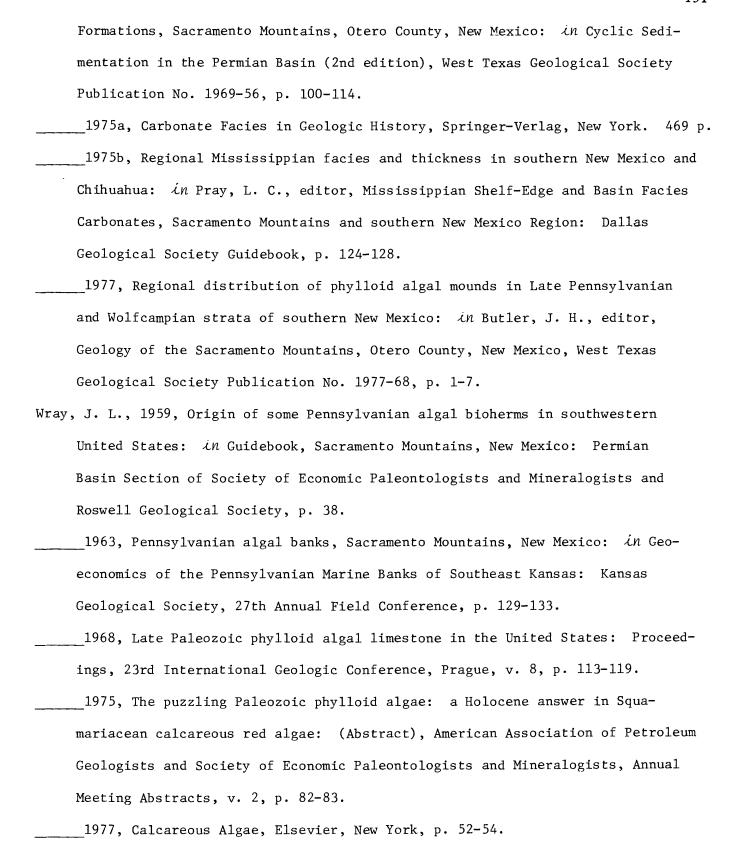
Mexico: Permian Basin Section of the Society of Economic Paleontologists and

Mineralogists and Roswell Geological Society. 306 p.

Bulletin, v. 37, p. 1894-1918.
1954, Outline of the stratigraphy and structure of the Sacramento Mountain
Escarpment: New Mexico Geological Society Fifth Field Conference Guidebook,
Southeastern New Mexico, p. 92-107.
1958a, Fenestrate bryozoan core facies, Mississippian bioherms, southwestern
United States: Journal of Sedimentary Petrology, v. 28, p. 261-273.
1958b, Pennsylvanian sedimentation of the Sacramento Mountains area, New
Mexico: (Abstract), Third Annual Meeting Permian Basin Section of Society
of Economic Paleontologists and Mineralogists, Midland, Texas. p. 7.
1959, Outline of the stratigraphy and structure of the Sacramento Mountain
escarpment of New Mexico: in Guidebook, Sacramento Mountains, New Mexico:
Permian Basin Section of Society of Economic Paleontologists and Mineralogists
and Roswell Geological Society, p. 86-130.
1961, Geology of the Sacramento Mountains escarpment, Otero County, New
Mexico: New Mexico Bureau of Mines and Mineral Resources Bulletin 35. 144 p.
1965a, Limestone clastic dikes in Mississippian bioherms, New Mexico: (Ab-
stract), Geological Society of America Special Paper 82, p. 154-155.
1965b, Clastic limestone dikes and marine cementation, Mississippian bioherms
New Mexico: (Abstract), Permian Basin Section of Society of Economic Paleon-
tologists and Mineralogists, Third Seminar on Sedimentation, Program, p. 21-22.
1969, Micrite and carbonate cement, genetic factors in Mississippian bioherms:
(Abstract), North American Paleontologic Conference, Program.
1975, Mississippian shelf-edge and basin facies carbonates, Sacramento Moun-
tains and southern New Mexico region: Dallas Geological Society Guidebook.
140 p.
, and Bowsher, A. L., 1952, Fusselman Limestone of the Sacramento Mountains,
New Mexico: (Abstract), Geological Society of America Bulletin, v. 63, p. 1342
, and Graves, R. L., 1954, Desmoinesian facies of the Sacramento Mountains,

- New Mexico: (Abstract), Geological Society of America Bulletin, v. 65, p. 1295.

 _______, and Wray, J. L., 1963, Porous algal facies (Pennsylvanian) Honaker Trail,


 San Juan Canyon, Utah: &n Bass, R. O., and Sharps, S. L., editors, Shelf

 Carbonates, Paradox Basin: Four Corners Geological Society Fourth Field

 Conference. 273 p.
- Thornton, D. E., and Gaston, Jr., H. H., 1968, Geology and development of the Lusk Strawn Field, Eddy and Lea Counties, New Mexico: American Association of Petroleum Geologists Bulletin, v. 52, p. 66-81.
- Toomey, D. F., 1976, Paleosynecology of a Permian plant dominated marine community:

 Neues Jahrb. Geologie u. Paläontologie Abh., v. 152, p. 1-18.
- ______, and Winland, H. D., 1973, Rock and biotic facies associated with Middle
 Pennsylvanian (Desmoinesian) algal buildup, Nena Lucia Field, Noland County,
 Texas: American Association of Petroleum Geologists Bulletin, v. 57, p. 10531074.
- phylloid algal organic buildup, northern Sacramento Mountains, New Mexico: in Geology of the Sacramento Mountains, Otero County, New Mexico: West Texas Geological Society Publication No. 1977-68. p. 9-26.
- ______1977b, Evolution of Yucca Mound Complex, late Pennsylvanian phylloid algal buildup, Sacramento Mountains, New Mexico: American Association of Petroleum Geologists Bulletin, v. 61, p. 2115-2133.
- Vest, E. L., 1970, Oil fields of Pennsylvanian-Permian Horseshoe Atoll, West Texas:

 in Halbouty, M., editor, Geology of Giant Petroleum Fields: American Association of Petroleum Geology Memoir 14, p. 185-203.
- Wilson, J. L., 1967, Cyclic and reciprocal sedimentation in Virgilian strata of southern New Mexico: Geological Society of America Bulletin, v. 78, p. 805-818.
- _____1969, Influence of local structure in sedimentary cycles of Beeman and Holder

