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PART 1

THE PERMIAN REEF COMPLEX OF
THE GUADALUPE MOUNTAINS

P. A. SCHOLLE



Introduction
Setting

The Permian Basin region (fig. 1) provides an excellent opportunity to
study the interrelationships of depositional facies, diagenetic alteration
patterns, oil generation and migration, and ultimately, petroleum potential
and production. The entire depositional spectrum from far-back-reef to deep
basin can be observed in the Guadalupe and Delaware Mountains with little or
no structural deformation and very slight vegetation or soil cover. The reef
complex of this region is also dissected by a series of deep canyons cut at
right angles to the regional facies strike. These canyons provide cross-
sectional views of the lateral and vertical relations of environments through
time. Finally, the region is rather exceptional in that, at the end of
Guadalupian time, the entire suite of facies was essentially preserved
(pickled) by extremely rapid deposition of evaporites (anhydrite, halite,
sylvite, and more exotic salts). These evaporites filled the Delaware Basin
and even covered adjacent shelf areas. Thus, original facies relations were
preserved from extensive erosional modification, and late Tertiary uplift,
coupled with dissolution of the very soluble evaporites, has led to
resurrection of original (Permian) topography (Plate 1, in pocket), greatly
facilitating facies reconstructione.

In addition to the advantages provided by these outcrops, the Permian
Basin has a wealth of subsurface data. More than 30,000 exploration wells and
150,000 development wells have been drilled in the Permian Basin region. All
the outcrop facies of the Guadalupe, Delaware, and Glass Mountains are
encountered in the subsurface Delaware Basin, Northwest Shelf, and Central
Basin Platform as well as in the Midland Basin, and to a lesser degree, the
Marfa Basin (fig. 1). Thus, the associations of oil and gas with specific
depositional and diagenetic facies can be rather clearly established in this
region.

Previous studies

A number of classic studies have been completed on the "Permian reef
complex" of Texas and New Mexico which have established an excellent
stratigraphic and sedimentologic framework for the region. Three early
studies (King, 1948; Adams and Frenzel, 1950; Newell, and others, 1953), in
particular, presented the overall outlines of our modern concept of reef-
related depositional environments. Subsequent studies, including those of
Babcock (1977), Dunham (1972), Esteban and Pray (1977), Harms (1974), Hayes
(1964), Mazzullo and Cys (1977), Meissner (1969), Schmidt (1977), Tyrell
(1969) and others, have fleshed in the details of many of the depositional
environments and have contributed to our understanding of the diagenetic
history of the region. 1In spite of this, however, few areas have more
unresolved geological controversies than the Permian reef complex. Not a
single one of the facies represented in the spectrum of bhasinal to far-back-
reef settings has not evoked a variety of opinions as to its origin or
significance. Thus, although the overall environmental framework of facies is
generally agreed upon, much work remains to be done omn specific
interpretations.



Depositional and stratigraphic setting

The Permian reef complex is characterized by three sections of time
equivalent but lithologically very dissimilar rocks. The first facies
consists of thick masses of finely laminated siltstones and sandstones with
thinner, interbedded black-gray limestone bodies. The second facies contains
massive, light-gray limestones overlying steeply bedded, partially
dolomitized, blocky limestone rubble. The third zone contains tan, fine-
grained, medium-bedded dolomites with interbedded evaporites and red to brown
sandstone and siltstone units.

As early as the late 1920°s, it was recognized that this represented a
basin-reef-back reef sequence of environments (Lloyd, 1929; Crandall, 1929;
Blanchard and Davis, 1929). These conclusions were drawn largely on litho-
logic criteria. Subsequent work (eg. King, 1948; Newell and others, 1953;
Babcock, 1977) on faunal, floral, sedimentologic, and stratigraphic aspects of
these units has confirmed the initial conclusions. Never-the-less, consider-
able controversy exists over whether the Capitan Formation, the second facies
mentioned above, represents a 'true" or "ecologic'" reef. The controversy is
well summarized in Cys and others, 1977. Various workers have considered the
Capitan to represent an unconsolidated shelf margin skeletal bank, or mound
(Lang, 1937; Achauer, 1969), a true barrier reef (Newell and others, 1953), or
an uninterupted slope facies (King, 1948). Others have felt that the abund-
ance of inorganic, early submarine cement indicated that the wave-resistant
nature of the Capitan '"reef'" was a result of primarily inorganic rather than
organic processes making this a "cement reef' rather than an "organic or
ecologic reef" (Schmid and Klement, 1971). Basically, the problem boils down
to the recognition of in-situ, frame-building organisms in the Capitan
Formation. If these can be recognized (in quantity), and we believe they can
be, then the complex can reasonably be called a reef. The biological diver-
sity of this environment (see table 1); the abundance of framework calcareous
sponges, bryozoans, and hydrocorallines; the ubiquitous presence of encrust-
ing organisms (Tubiphytes, Archaeolithoporella, Girvanella, and other groups);
the remarkably high productivity of organisms (generating vast masses of reef
and fore-reef skeletal debris); the presence of major volumes of inorganic,
radial-fibrous, originally aragonitic cements; and the large-scale fragmenta-
tion and disruption of fabrics by wave and current activity are all features
of the Permian reef complex which are highly analogous to modern reefs.
Indeed, much of the semantic confusion over the reef nature of the Capitan
Formation is largely a product of the "fair-weather'" examination of modern
reefs. On a clear, calm day when most geologists venture forth, the modern
reef is a truly wave-resistant structure consisting of abundant, in-situ
framework organisms. The day after a hurricane, however, much of this "wave-
resistant framework" has been smashed into rubble which accumulates within the
reef or is transported into deeper water settings. Indeed, quarries in
Pleistocene or older reefs show only a small percentage of in-place framework
organisms coupled with extensive encrustation and submarine cementation of
reef debris.



Each of the major depositional facies of the Permian Basin will be
examined during this field excursion and so the other, non-reef facies will
not be extensively described here. The generalized facies patterns are shown
in figure 2 and Table 1. The back reef area consists of skeletal sand banks,
islands, lagoons, and sabkhas. From the farthest back-reef area to the reef
these sediments include: nodular gypsum and anhydrite beds interlayered with
red siltstones; tan, aphanocrystalline dolomitic mudstone beds with evaporite
crystal casts; interbedded thin, laminated sandstone-siltstone units; pure,
locally stromatolitic or calcisphere-rich, dolomitized carbonate mudstones;
dolomitized pelletal mudstones; dolomitized pisolitic grainstones; partially
dolomitized green algal-foraminiferal grainstones; and a very narrow zone of
reef-derived, back-reef rubble.

The basinal areas contain turbidites and slumps of reef- and back-reef-
derived carbonate material. Some of it accumulated as thin sheets of fine-
grained debris which spread over much of the basin. The bulk of the carbonate
debris accumulated near its sources along the margins of the basin (in a few
cases reworked inteo submarine mounds or "lithoherms'" by contour currents).

The main volume of basinal sediment is finely laminated sandstone and
siltstone also transported from the shelf to the basin by gravity~driven
currents.

It must be kept in mind that, although the three rock packages mentioned
above are lateral time-equivalents of each other and have approximately the
same overall thickness, this equivalence does not necessarily extend to
smaller scale units. Thus, laminated sandstones which are tens to hundreds of
meters thick in the basin facies may have essentially no equivalents in the
reef or back-reef sections. Likewise, reef and back-reef limestone and
dolomite sequences which, again, may be tens to hundreds of meters thick, will
commonly thin to less than a meter toward the basin center. So although
large-scale overall age equivalence is present, we must also think in terms of
non-synchronous or ''reciprocal" sedimentation on smaller scales (Wilson, 1967;
Meissner, 1972). This reciprocal sedimentation may be related to tectonic
movements or eustatic fluctuations in sea level which shift the locus of
active sedimentation or change the balance of influx of clastic terrigenous
versus carbonate sediment.

The abrupt lateral facies changes in these Permian sediments are
reflected in the complex stratigraphic terminology which has been applied to
these units.

The detailed stratigraphic nomenclature of the Permian Basin will not be
discussed here as the terminology of King (1948) and Newell and others (1953)
will be followed with only minor modification. Stratigraphic nomenclature,
correlations, and age designations for shelf, shelf edge, and basin units are
shown in Table 2 and figure 3.



The Permian Basin region was subdivided during Guadalupian and earlier
Permian time into a series of smaller basins and platforms (fig. 1). The
orientation of these features was largely controlled by pre-Permian northwest-
southeast oriented faulting of the Ancestral Rockies trend. These early
lineaments, still visible in the Sierra Diablo Mountains, were modified by
gentle, late Pennsylvanian and early Permian flexures. An even greater
modification was produced by differential sedimentation. Original structural
relief was significantly accentuated by higher rates of sedimentation of
shallow water carbonate deposits on structural "highs" compared with lower
rates on structural "lows". Thus, basins which were only a few tens of feet
deep at the start of Permian time eventually had water depths in excess of
1,500 £t by the close of Guadalupian time.

The three major facies packages mentioned earlier--basin, reef, and back-
reef--are strictly controlled by these structural sedimentologic features.
Basinal facies cover the entire region of Delaware and Midland Basins. Reef
facies are discontinuously distributed both in space and time but generally
are confined to a very narrow belt bounding the platform areas. The back-reef
province, in its broad sense, covers much of the platform areas.

The interrelationships between these facies are governed by a number of
factors. Eustatic sealevel stands and(or) relative rates of subsidence versus
sedimentation, as mentioned earlier, can lead to 'reciprocal" sedimentation
patterns. FEcological conditions, such as water temperature, salinity,
turbidity, or other factors, can affect reef formation and, thus, overall
facies patterns. Indeed, just within the Permian facies of the Guadalupe
Mountains region, oune can see remarkable variations in microfacies patterns.
Bank margins of non-reefal bioclastic calcarenite are present in some
intervals (Victorio Peak and Getaway units). Reefs which prograde largely
horizontally out over reef talus are dominant at other times (upper Capitan
unit). Yet other reefs which build up almost vertically in the section form
the bank margin in the Goat Seep unit. Finally, terrigenous sand sheets cover
the entire region from back-reef to basin at other times. So the discussion
of facies patterns in the Permian Basin region must take into account these
major variations in modifying factors. This excursion will focus primarily on
the upper Capitan interval as this is the best exposed and most intensely
studied part of the section. It must be kept in mind, however, that this is
just one of a number of facies patterns which can be observed in the region.

The climatic setting of the Permian reef complex also had a major
influence on both depositional and diagenetic processes. The region lay at
the western margin of a broad alluvial plain to the east of the Appalachian
area. The basin was presumably connected to a major western and southern
ocean by narrow channels (fig. 1). The entire region lay within 10 degrees of
the Permian equator and, as evidenced by the extensive back-reef evaporite
deposits, clearly had a hot and very arid climate.



During Guadalupian and earlier Permian time water circulation in the
Delaware Basin was apparently adequate to maintain normal marine salinity of
the surface water along the bank margins. Waters penetrating deeper onto the
banks were evaporatively concentrated to high salinities. Generation of heavy
brines on the banks, which periodically flowed into the basin, may have
contributed to euxinic, stratified water masses in the deeper parts of the
Delaware and Midland Basins. Progressive restriction of the passageways
between the Delaware Basin and the "open oceanic'" areas to the south and west
led to apparent salinity increases and extinction of reef growth in the region
at the close of the Guadalupian. Continued aridity, coupled with restricted
influx of marine waters led to the deposition of more than 2,000 ft of
evaporite sediments in the Delaware Basin, completely filling the topographic
depression left after Guadalupian time.

The extreme aridity of the region also had other influences.
Transportation of clastic terrigenous debris was dominated by eolian
processes. Equilibrium eolian deflation surfaces (sabkhas) are present in
back-reef areas and dune migration may have been responsible for transport of
a significant volume of sand to the shelf edge from where it could be moved
into the basin, especially during low stands of sea level. Aridity also
presumably prevented the formation of extensive karstification during sea
level drops, allowed the development of widespread '"coastal caliche", and led
to the formation of hypersaline brines which may have contributed to the
extensive dolomitization of back=-reef carbonate sediments.

The question of relative sealevel changes, mentioned previously as part
of the model of "reciprocal sedimentation", should also be examined further.
Regional subsidence, local tectonic effects, eustatic sealevel stands, and
epirogenic movements all can play a role in relative sealevel stands. Other
factors, such as variations in sedimentation rate, also can yield apparent
changes due to progradation or retrogression of shorelines. Numerous authors
have pointed out that cyclic sedimentation of one sort or another is
widespread in the Permian Basin in Pennsylvanian as well as Permian strata
(eg. Meissner, 1969; Silver and Todd, 1969). Cyclic sedimentation operated at
a number of scales involving fractions of an inch to hundreds of feet of
sediment and were superimposed on an apparently long-term drop in sea level
throughout the Late Permian. Known Late Pennsylvanian to Early Permian
glaciation may have contributed to some of the cycles by creating periodic
eustatic sea level changes. Although dating of these southern hemisphere
glacial events is far from exact due to the provinciality and endemism of the
floras and faunas present, glaciation is not considered to extend into the
Late Permian and thus may not explain Guadalupian cycles and the global
regression at the close of Guadalupian time. Epeirogenic events, late
orogenic deformation in Appalachian and Hercynian regions, and variations in
seafloor spreading may account for Late Permian cycles. Moreover, regional
basin subsidence patterns may have been episodic and could also have
contributed to the cyclicity of sedimentation.

(2]
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Diagenetic Patterns

Generalized patterns of diageunesis in the Guadalupian section are
outlined in figure 2 and table 1. The back reef area is characterized by the
highest average porosities. These areas, which were the topographically
highest facies in the complex, were frequently subjected to subaerial exposure
and freshwater diagenesis. Evaporitic conditions in restricted lagoons and
sabkhas led to the formation of evaporite minerals (gypsum and anhydrite).
the withdrawal of these calcium sulphate minerals from the shelfal waters led
to elevated Mg/Ca ratios and perhaps also to the formation of dolomitizing
brines as in the modern Persian Gulf. Alternatively, but less probably,
freshwater input and mixing with marine pore fluids may have led to
dolomitization through '"brine mixing" ('"Dorag" dolomite). Thus, the back reef
areas of the Permian reef complex are typified by calcareous grainstounes and
mudstones with a mixture of preserved primary porosity and secondary porosity
related to such factors as early freshwater cementation and leaching, early
dolomitization, or late (mesogenetic) dissolution of evaporite minerals.

The reef facies has very low average porosities. Small-scale
permeability is very low but large-scale permeability is quite high as a
result of fracturing. Porosity in this facies was completely obliterated by
submarine cements probably within a few tens to hundreds of years after the
time of reef deposition. These relatively coarse, radial, fibrous crusts of
orginally aragonitic(?) cement formed within open pores in these Permian reefs
just as in many modern reefs. Futher porosity destruction was accomplished by
the infiltration of muddy, pelletal, internal sediment into remnant pores.

This type of cementation affected not just the reef-crest sediments but
extended for several hundred feet down the fore-reef slope (a feature also
seen 1n modern reefs). Thus, the upper fore-reef slope also has very low
porosities. The lower half of the fore-reef talus facies has more complex
diagenetic relations. Lesser amounts of submarine cementation are seen
here. However, medium-crystalline, relatively late, very strongly fabric-
selective dolomitization is present within this environment and has resulted
in the replacement of about 1/2 of the original carbonate material in this
facies. The source of dolomitizing fluids may be either from the overlying
back-reef facies or from the hypersaline basin waters of Castile and Salado
time. Such dolomitization has not led to significant secondary porosity in
this facies, however.

The toe of the fore-reef slope is characterized by compaction and
silicification. Calcitic fossil fragments, especially brachiopods, bryozoans,
and echinoderms, were selectively and delicately silicified by chert,
chalcedony, and megaquartz. In some cases, silicification extended to
aragonitic fossils or formed non-selective chert nodules which cross-cut
primary fabric elements. The source of silica most likely is from siliceous
sponges and radiolarians which lived in lower slope and (or) basinal settings.

The basin facies is typified by calcite and very subordinate quartz
cementation of sandstones as well as compaction of sandstone, siltstone,
shale, and carbonate beds. Porosity in finer-grained basinal sandstones can
be quite high (as high as 27 percent; Williamson, 1977, p. 414) with
corresponding permeabilities in the tens to hundreds of millidarcies.



Recent Models

The Permian depositional and diagenetic patterns described here (and
summarized in figs. 2 and 3 and in table 1) can be matched quite closely in
some modern settings. The basinal relations can be modeled in the
Mediterranean, the Black Sea, and to some degree, in the Bahamas-Florida
area. The restricted circulation and partially euxinic conditions can be
found, to some degree, in the Red Sea, Mediterranean, and Black Sea during the
Tertiary or Quaternary; but the deep, relatively elongate, structurally
controlled basins surrounded by steep, reefal escarpments bordering isolated
platform areas are best modeled in the Bahamas. The suite of facies from
fore-reef debris, reef, back-reef rubble, near-back-reef skeletal sands and
muds, islands, restricted lagoons, and finally supra-tidal facies seen in the
Permian is remarkably similar to the general facies spectrum found in the
Florida XKeys-Florida Bay area. Yet climatically and paleogeographically, the
Permian of west Texas and New Mexico was much more like the arid, continent-
interior southwestern margin of the Persian Gulf than the high-rainfall,
ocean-margin region of south Florida. Thus, the lagoons and sabkhas of the
Trucial Coast of the Persian Gulf provide an excellent analog for the far-
back-reef areas of the Permian.

It is clear, then, that no single area today provides a complete or exact
analog for the Permian Basin. Yet if we combine the climatic factors of the
Persian Gulf with the tectonic-sedimentologic patterns of the Florida-Bahamas
region and the hydrographic factors of the Mediterranian-Black-Sea-Red Sea
area we can very closely approximate the patterns seen in the Permian.

0il and Gas Production

The Permian Basin has had hydrocarbon production for nearly 60 years and
is one of the most prolific petroleum provinces in Worth America. To date,
"approximately 91.6 billion barrels of oil-in-place and about 106.2 trillion
cu ft of dissolved/associated and non-associated gas-—-in-place have been
discovered in the Permian Basin" (Dolton and others, 1979. p. 1). Production
from the Permian Basin extends from the Cambrian (Wilberns Fm.) to the
Cretaceous (thin carbonate units) although production from units younger than
Permian is negligible. Paleozoic reservoirs produce o0il from depths of less
than 500 to greater than 14,000 ft and also produce gas from depths of less
than 500 ft to greater than 21,000 ft (Dolton and others, 1979). The Permian
section is mainly oil productive with greater than 65 billion barrels of oil-
in-place (71 percent of the total discovered in the Permian Basin) having been
discovered to date (in 2,188 pools). Non-associated gas production, on the
other hand, comes predominantly from pre-Mississippian strata. Permian units
contain only about 6.3 trillion cu ft of non-associated gas-~in-place (about 13
percent of the total for the Permian Basin). However, Permian units contain
32.7 trillion cu ft of associated/dissolved gas—in-place (54 percent of the
Permian Basin total) (Dolton and others, 1979).

The predominance of 0il production from Permian units is clearly related
to their relatively shallow burial in this region where virtually all Permian
strata are found at present—day burial depths of less than 15,000 ft.
Furthermore, virtually all production from Permian rocks comes from units at
less than 10,000 ft burial depths; most of it from less than 5,000 ft depths
(Dolton and others, 1979).



"The four provincial series of the Permian do not contain hydrocarbons in
equal amounts. The largely evaporitic Ochoan rocks have accounted for only
about 6 million bbls of discovered oil in-place, less than 0.0l percent of the
Permian’s 65 billion bbls" (Dolton, and others, 1979, p. 24).

"By contrast, the Guadalupian has accounted for 67 percent of all Permian
0il found and 62 percent of all Permian gas. The Leonardian follows with 28
percent of the oil and 32 percent of the gas. The Wolfcampian contains 5
percent of the oil and 10 percent of the total Permian gas. These amounts are
directly related to the progressive development of reefs and back-reef lagoons
beginning in the Wolfcampian, increasing in the Leonardian, and culminating in
the development of the Capitan reef complex in the Guadalupian.

Hydrocarbon traps in Permian rocks are largely a combination of
stratigraphic and structural types, although each type does occur alone. the
intricate stratigraphic interfingering of lithologies responsible for trapping
much of the Permian o0il has resulted largely from the constantly shifting...
sedimentary environments. Primary sealing mechanisms are porosity and
permeability barriers of carbonate, evaporite or shale.

About 40 percent of the [Permian] reservoirs are limestone, 29 percent
are dolomite and 29 percent are sandstone. Porosities range from 1.5 to 25
percent and reservoir permeabilities from 0.02 to 200 millidarcies.

Recovery factors range from a low of 7.6 percent to a high of 47.5
percent. The fractured siltstone Spraberry reservoir of the Midland Basin has
a very low recovery factor, although the volume of oil in-place is the largest
of any single Permian pool. The average recovery factor for the Permian
System is 25 percent.'" (Dolton and others, 1979, p. 24).

Detailed production (not reserve) figures for oil and gas fields
developed in selected TLeonardian, Guadalupian, and Ochoan units are shown in
Table 3 (listed by county). Production totals for each producing
stratigraphic unit are given in Table 4 along with a grand total for all these
strata in the Permian Basin region. Only units which will be seen on this
field trip have been included in these tables. Extensive production from age-
equivalent but differently named units from the Central Basin Platform,
Midland Basin, and Eastern Shelf have not been listed. DNata for these tables
was supplied by the Petroleum Data System, University of Oklahoma, Norman,
Oklahoma.

Even a cursory examination of these tables will show that there is no
production from the Capitan, Victorio Peak, or Goat Seep reef or fore-reef
facies which were tightly cemented at the seafloor shortly after deposition.
The vast bulk of production (greater than 90 percent) is from primary or early
diagenetic secondary porosity in back reef dolomites and sandstones of the
Tansill, Yates, Seven Rivers, Queen, and Grayburg Formations or the open shelf
facies of the San Andres Limestone. A second, much smaller, peak of
production comes from channel sandstones of the Delaware Mountain Group
(particularly in the Bell Canyon Fm.) and basinal limestones of the Bell
Canyon Fm. or Bone Spring Limestone. More significant oil reserves in basinal
sandstones are found in the Midland Basin. There, the Spraberry Fu. has more
than 8 billion barrels of oil-in-place. However, recovery factors of less
than 10 percent indicate ultimately recoverable reserves of about 534,000,000
barrels of oil.



Individual channels in the '"Ramsey Interval" near the top of the Bell
Canyon Fm. are up to 100 ft thick, 1/4 to 4 miles wide, and 50 miles in length
(Williamson, 1977). These channels have a very pronounced regional trend (NE-
SW for the "Ramsey") which strongly controls the shape and distribution of
basinal oil fields.

In this setting, then, back-reef environments account for greater than 90
percent of all hydrocarbon production with basinal sediments accounting for
the rest. Reef and fore~reef facies are totally non-productive. Clearly,
penecontemoraneous and early burial diagenesis played a major role in
controlling the distribution of reservoirs. Evaporite formation and
dissolution, synsedimentary dolomitization, early vadose and phreatic leaching
and cementation, coupled with probable early oil migration from rapidly
deposited and buried, overpressured source rocks in the basins, led to
outstanding reservoir characteristics on the shelf. Early submarine
cementation obliterated reservoirs on the shelf edge and slope long before oil
migration. TFinally, some basinal reservoirs may have been preserved from
compactional porosity loss by overpressuring beneath 2,000 or more feet of
rapidly deposited evaporites.

The source for most of this Permian oil is presumably from the euxinic,
relatively organic carbon~rich, basinal sediments such as the Bone Spring
Limestone and some intervals within the Delaware Mountain Group. Although
these units generally have organic carbon contents of less than 1 percent
(King, 1948; Palacas, oral commun., 1978), their carbonate composition, great
thickness, and intervening sandy, permeable zones may mean that they can act
as very efficient source rocks. 0il reservoired in the basinal facies, then,
has probably migrated only a short distace from source to reservoir. Much of
the o0il in the back~-reef sections, however, presumably moved upsection or
laterally through fractured reef sediments to get from source to reservoir.
The fracturing of the reef was essentially contemporaneous with deposition
(because of compaction of the thick, underlying reef talus) and thus, even
syndepositional reef cementation probably did not significantly retard fluid
movement. Indeed, even today, the tightly cemented reef zone has the highest
permeability of any of the Guadlaupian bank-to-basin facies (Motts, 1968).

Current estimates of the volume of undiscovered hydrocarbons in-place for
Permian rocks of the Permian Basin are that "at the 95 and 5 percent
probabilities, 1.0 to 6.0 billion bbls of o0il in-place (1.5 to 9.2 percent of
the discovered Permian crude o0il) remain undiscovered, while 0.7 to 4.1
trillion cu ft of dissolved/associated gas in-place (2.2 to 12.4 percent of
the discovered dissolved/associated gas) remain undiscovered. Finally, 0.2 to
0.6 trillion cu ft of non-associated gas in-place (3 to 21 percent of the
discovered non-associated gas) remain undiscovered. Most of these
undiscovered in-place hydrocarbons occur above 10,000 ft" (Dolton and others,
1979, p. 47).

"These undiscovered amounts will probably occur in circumstances similar
to known fields and pools with respect to reservoir characteristics, seals,
source beds, and nature of the hydrocarbons. Traps will probably be
predominantly stratigraphic. The undiscovered deposits are likely to be
distributed in undrilled areas surrounded by or flanking known production.
Such flanking areas are in the western part of the Northwestern Shelf, the
western areas of the Delaware Basin, and the southern and western parts of the
Val Verde Basin." (Dolton and others, 1979, p. 47).
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Studies have shown that 'undiscovered pool sizes are small; only at the 5
percent probability is there a chance of occurrence of an oil pool of 16
million bbls or larger, or a non-associated gas pool of 24 billion cu ft or
larger." (Dolton and others, 1979, p. 47).

Concluding Notes

For further general discussions of Permian Basin depositional and
diagenetic facies patterns the papers by King (1948), Newell and others
(1953), Hayes (1964), and Cys and others (1977), are recommended. Other, more
specific papers, can be found in the extensive bibliography on the Permian
Basin region given at the end of this section of the guidebook.

Further discussions of the specific details of facies patterns and
diagensis are also presented in the roadlog section of this guidebook. The
log is based, in large part, on preexisting guidebooks (Nelson and Haigh,
1958; West Texas Geological Society, 1960 and 1969; Hobbs, Roswell, and West
Texas Geological Societies, 1962; Roswell Geological Society, 1964; Dunham,
1972; Pray, 1975; and Pray and Esteban, 1977). However, this guidebook has
extensive additional commentary on wany localities and is organized
differently from previous guides. All roadlogs are based on continuous routes
with side trips being presented as separate, supplementary logs. Thus, the
trip from El Paso to Carlsbad is logged as a continuous route with the
excursions to McKittrick Canyon, Walnut Canyon, and Dark Canyon-Rocky Arroyo
being listed as separately logged routes. This adds complexity to a bus tour
but makes the logs much easier to use on car trips. Furthermore, for ease of
use, all figures are in a single section after the roadlogs. Roadlog routes
are shown in fig. 4. A generalized geologic map of the Guadalupe Mountains
area is presented in Plate 2 (in pocket).
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EL PASO TO CARLSBAD ROADLOG
Cumul. Mileage
From From
Mileage E1 Paso Carlsbad Description
0.0 0.0 159.4 Leave Caballero Motel; turn right (heading east)
on U.S. Highway 62 and 180 (Montana Avenue).

0.6 0.6 158.8 Intersection with Airway Road (airport about 1/2 mi to
left); continue straight ahead.
6.5 7.1 152.3 Stabilized (vegetated) dunes of clastic terrigenous

debris blown from the floor of the Hueco Bolson,
the flat, intermontane basin we have been and are
continuing to cross. The Hueco Bolson is one of the
southernmost grabens of the Basin and Range Province
and is bounded on the west by the Franklin Mountains
and on the east by the Hueco and Sacramento ranges.
To the north, near the Texas-New Mexico border, the
the Hueco Bolson is separated from the Tularosa Basin
(which has completely internal drainage) by a low
ridge. The Hueco Bolson has external drainage along
its southeastern side through the Rio Grande
River valley. The average elevation of the Hueco
Bolson is approximately 4,000 ft, and the basin
averages 25 mi in width and 80 mi in length.
"A recent (1967) USGS seismic and gravity profile
across the Hueco Bolson from the base of the Franklin
Mountains to the base of the Hueco Mountains
indicates a deep structural trough bounded on the
west by a large normal fault. The maximum thickness
of the Hueco Bolson fill in the center of this
trough is calculated to be about 9,000 feet."
(McGlasson and Seewald, 1969). The bolson fill
ranges in age from Miocene to Holocene; the
Pleistocene deposits are particularly thick, with
local accumulations of as much as 5,000 ft of
Pleistocene alluvial and lacustrine sediment (Strain,
1969).

8.6 150.8 El Paso city limit.

11.7 147.7 Junction with Texas FM Road 659 to Ysleta (on right)
and start of two-lane section of U.S. Highway 62 and
180; continue straight ahead. The intensely block-
faulted, low-relief (ca. 1,000-1,500 ft) Hueco
Mountains can be seen directly ahead. Precambrian to
Tertiary igneous, metamorphic and sedimentary rocks
are exposed in this range (see fig. 5). Cerro Alto,
the highest peak, is a Tertiary syenite porphyry
intrusive. The Permian (Wolfcampian to early
Leonardian) section of the Hueco Mountains contains
nearly 2,000 ft of limestone and very subordinate
shale. The pre-Permian sedimentary section consists
of a lower interval of Cambrian to Mississippian
strata (mainly limestones and dolomites) and an
upper interval of Pennsylvanian limestones, shales,
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and subordinate sandstones. The upper and lower
intervals each contain up to 2,000-4,000 ft of
section. The lower interval shows disconformable
contacts typical of stable shelf sections, whereas
the upper interval contains angular unconformities
indicative of the increased tectonic activity and
bank—-to-basin differentiation of that time period.

Throughout this trip, the bank-to-basin facies
sequences we see will be related in one way or
another to the initial, structurally controlled
topographic variations generated during this Pennsyl-
vanian and Permian deformation. The folding and
faulting of this period, part of the Ancestral
Rockies movements, generally trends northwest-
southeast. The Diablo Platform, Orogrande Basin,
Pedernal High, Northwest Shelf, and Delaware Basin
(fig. 1) were among the many major physiographic
features formed during this time interval. This
primary structural relief was, in most cases,
strongly modified by subsequent differential
sedimentation.

Loose (unvegetated) dunes deposited by winds from the
northwest which lose velocity and drop sand near the
base of the Hueco Mountains. The hills on the right
(largely covered by dunes) are made of Wolfcampian
limestones of the Hueco Group.

Quarry in Hueco Group limestone on the right. The
limestone here is about 97 percent pure CaCOj5 and
the quarry exposes a single, thin, fusulinid-rich
bed about 3/4 of the distance up the rock face.

Lower part of Hueco Group is exposed in hill on right.
The unconformable contact between the Hueco limestone
and the underlying lower part of the Peunnsylvanian
Magdalena Limestone is exposed in the low knob at the
base of the eastern slope of the hill. This
unconformity is an indication of pre-Permian uplift
and erosion on the Powwow anticline.

Exposures of the Mississippian Helms and Pennsylvanian
Magdalena Formations in hills on left.

Quarry at 2:00 o”clock in Magdalena Limestone
The very pure (99.8 percent CaCO3) limestones
in this quarry, as well as those from the quarry
at mile 18.6, were formerly transported to El Paso
where they were calcined to Cal (quick lime).

Junction with Texas SF Road 2775 to Hueco Tanks State
Park; continue straight ahead.

Hills on left capped by Magdalena Limestone. The
southeast dips visible here are on the flank of the
Powwow anticline. The Jones No. 1l Sorley well,
drilled a few miles west on the crest of the
Powwow anticline, encountered Precambrian granites
at 2,172 ft depth. Helms Peak (elevation 5,409 ft)
at 2:00 o’clock is capped by limestones of the Hueco
Canyon Formation unconformably overlying middle
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Magdalena Limestone.

Entering Powwow Canyon.

Road cut in middle Magdalena Limestone.

Road cut in middle Magdalena Limestone.

Roadside park on left. The unconformity at the base of
the Permian is clearly visible directly ahead. On
the western side of the Hueco Mountains this uncon-
formity cuts down to the Ordovician El1 Paso Limestone.
In the outcrop directly ahead, the unconformity is
between the Magdalena Limestone and the basal Hueco
Group.

Road cut in upper 130 ft of Magdalena Limestone.

Road cut in the basal part of the Permian Hueco Group
(including the poorly exposed Powwow Conglomerate and
the overlying upper member of the Hueco Canyon
Formation). The Powwow Conglomerate varies locally
in thickness but is about 30 ft thick in this
area. Tt contains red shales, siltstones, and
chert- and limestone-pebble conglomerates.

Another redbed interval (the Deer Mountain

Shale) occurs near the top of the Hueco

Group. These redbeds are considered to be the
southern tongues of the thick, predominantly redbed
Abo Formation of the Sacramento Mountains.

Road cut in Hueco Canyon Formation, mainly shelfal
limestones.

Hueco Inn on left. Continued Hueco Group outcrops for
next twelve miles.

Forty Mile Hill (elevation 5,427 ft). Leaving Hueco
Mountains; emerging onto Diablo Plateau.

Roadside rest area on left with view of numerous
extrusive and intrusive igneous features to the north
and northeast in the Cornudas Mountains. The central,
high volcanic cone is San Antonio Peak (7,020 ft).

Limestones of Hueco Group in road cut.

Road on Lower Cretaceous Campagrande Formation.

Junction with Texas Ranch Road 2317; continue straight
ahead. Molesworth Mesa, which lies to the south, is
composed of Cretaceous Trinity and Fredricksburg
sediments.

Mountains at 9:00 o’clock are the Sierra Tinaja Pinta,
a breached laccolith. The anticlinal structure in
the center is composed of Bone Spring Limestone and
is flanked by sediments of the Yeso Formation.

Junction with Texas Ranch Road 1111; continue straight
ahead.

The Antelope Hills, containing basal Cretaceous sand-
stones cut by a Tertiary sill, are visible at 3:00
o’clocke.

Road is on Bone Spring Limestone.

Junction with Texas Farm Road 1437 to Dell City on
left; continue straight ahead. 7Nell City is a
farming community in the Salt Flat Bolson which has
grown up as a consequence of the .development of wells
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drawing Pleistocene(?) ground water from the bolson-
fill. Rapid depletion of the water supply (use
exceeds recharge) and increasing soil salinites
indicate a short or very expensive continued
existence for agriculture in this region.

74.6 84.8 Road crosses basal Cretaceous sandstones and passes
into Bone Spring Limestone.
81.1 78.3 Los Alamos Hills can be seen to the south of the high-

way, in foreground. Leonardian to basal Guadalupian
rocks are exposed here.

82.1 77.3 Junction with Texas ¥4 Road 1576 to Dell City. Turn
left for view stop.

82.35 77.05 STOP I-1. This location provides an excellent wview of
the Guadalupe and Delaware Mountains and the Salt
Flat Bolson (in which we are now standing). We can
see a magnificent panorama including the Upper
Permian section of the Guadalupe Mountains, about 20
miles to the northeast. This 5,000 ft escarpment is
formed by a major north-south trending normal fault
system which marks the eastern boundary of the Salt
Flat Bolson. To the northwest and west we can see
the Cornudas Mountains, Cerro Diablo, and Sierra
Tinaja Pinta, a series of Tertiary igneous plugs and
lava flows. To the south lies the Sierra Diablo
range which is terminated by the Babb flexure zone, a
monocline, at its northern end. Upper Permian
(Guadalupian) limestones and sandstones of the Cherry
Canyon Formation compose the two mesas to the north
of the Babb flexure. Also visible beyond these mesas
is Sierra Prieta, another Tertiary intrusive.
Finally, to the southeast, Tpper Permian strata, pri-
marily Brushy Canyon Formation basinal
sandstones, are visible in the face of the long
Delaware Mountain escarpment.

Because the Guadalupe Mountains are the major focus
of this portion of the field trip, let us take a
closer look at that range (fig. 6). Although the
topography of the eastern side of the Guadalupe
Mountains is controlled almost entirely by the un-
deformed primary facies distribution of the
Guadalupian sediments, the western face is completely
controlled by Tertiary normal faults. Thus, on the
on the western side, strata with a northeast-south-
west facies strike are obliquely transsected by a
north-south trending fault zone. Furthermore, we are
viewing the exposure obliquely which makes accurate
geologic observation even more difficult.

Tor reference purposes let us name the major peaks
on the Guadalupe Mountain skyline. From south to
north these include the massif of E1 Capitan
(elevation 8,078 ft), Guadalupe Peak (the highest
point in Texas at 8,751 ft), Shumard Peak (8,626 ft),
an unnamed spur off Shumard Peak (about 8,350 ft),
Bartlett Peak (8,513 ft), and Bush Mountain (8,676 ft).



The massive, light colored rocks, which compose the
upper parts of El Capitan, fuadalupe, and Shumard
Peaks, are Upper Permian (Guadalupian) Capitan
limestones and dolomites (see fig. 6 and table 2).
Most of this mass is thick-bedded, fore-reef talus
(largely of Rader age) which dips steeply (up to 35
degrees) to the southeast, into the basinal sediments
of the Delaware Basin. The top of Guadalupe and
nearby peaks, however, have true Capitan reef facies
and even back-reef sediments. The Capitan reef and
fore-reef strata undoubtedly originally extended sev-
eral miles further south in this region but have been
trimmed back by subsequent erosion.

To the north, Bartlett Peak is capped by the oldest
exposed Capitan reef limestones which overlie rubble
of an older (Goat Seep) reef. The area to the north
of Bush Mountain contains the main reef-massif of the
Goat Seep as well as age equivalent back-reef calcar-
enites and terrigenous sandstones (Queen and
Grayburg) which stand out clearly as vegetated
zones on the mountain slope. "At Guadalupe Peak the
smooth slopes below the Capitan are Cherry Canyon and
Brushy Canyon sandstones. North of Shumard Peak the
upper part of the Cherry Canyon grades into Goat Seep
reef. A tongue of Cherry Canyon sandstone continues
northward under the Goat Seep reef and grades into
small reefs and reefy lime banks in the southern
Brokeoff Mountains, and into bedded back~-reef rocks
in the central Brokeoff Mountains. There Boyd
has measured approximately 600 feet of beds which
he calls the San Andres formation, and Frenzel, con-
siders to be lower San Andres . . .

The rugged cliffs outcropping below the Delaware
sand slopes are cut from the dark-bedded Bone Spring
limestone of Leonard age. Between El Capitan and
Shumard Peak the top of the Bone Spring limestone
rises over 1000 feet and this is the Bone Spring
flexure described by King. Below Shumard Peak the
upper part of the Bone Spring has changed to the
gray Victorio Peak . . . , a reefy lime-bank facies.
The Brushy Canyon sandstone onlaps the Bone Spring
flexure and is absent in the slope below Bartlett
Peak" (West Texas Geological Society, 1960, p. 50).

The bulk of the strata just described represent
just two major phases of basinal progradational
£11ling (Pray, 1975). The Victorio Peak Dolomite and
the underlying Bone Spring Limestone form the older
(Leonardian) phase. This sequence represents at
least two to three miles of basinal infilling and
progradation of shelf facies during the accumulation
of about 1,000 ft of section (McDaniel and Pray,
1967). '"The Leonardian bank margin was eroded in
latest Leonardian and/or in early Guadalupian time,
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and a major transgression of basin facies dark car-
bonates (Cutoff shaly member of Xing) brought basinal
environments far to the north, overlapping Leonardian
basin, basin margin, and shelf deposits alike" (Pray,
1975, p. 5). Presumably this transgression was a
consequence either of major regional subsidence or
of eustatic sea level rise, perhaps associated with
the latest stages of Permian glaciation.

This transgression was followed by the second major
cycle of progradation, represented by Goat Seep
and Capitan reef complexes. These units built the
Guadalupian shelf edge outward several miles by
filling in a basin of 1,000 to 1,800 ft depth with
steeply dipping, reef-derived debris beds which are
clearly visible at the southern end of the Guadalupe
escarpment. It is the upper part of this prograda-
tional sequence which will occupy much of our
attention on this trip.

Turn around and return to U.S. Highway 62 and 180.

Turn left on U.S. Highway 62 and 180.

Crossing northern extension of East Diablo fault
with the Salt Flat basin down-thrown on the eastern
side.

Historical marker near site of former spring-fed oasis
(Crow Springs) and a relay station of the Butterfield
Overland Stage. The Butterfield route (see cover
illustration) was established in 1858 and passed through
the area of Guadalupe Pass (Pine Springs). This route
lasted only about one year, however, before the entire
line was shifted south to the approximate course of the
present Interstate 10 through the Davis Mountains.

OPTIONAL STOP. Center of playa area of Salt ¥lat.

This major graben, the easternmost of the Basin and
Range province, formed in middle to late Tertiary time.
The basin {is about 60 mi long and 10 mi wide and has
been the site of continuous alluvial, fluvial, and
lacustrine sedimentation since the middle Tertiary.
The thickness of sediments in the basin probably is
many thousands of feet. Basin margin sediments
include coarse gravels and sands alternating with
clays derived from the weathering of the adjacent
mountains (especially the Guadalupe and Sierra Diablo
ranges). Because there is no natural outlet for the
basin, all drainage is internal and sediments become
finer-grained toward the basin center. Several im-
portant aquifers are present within the basin fill
and these are currently being exploited for irriga-
tion in areas such as Dell City to the northwest.
Modern saline playas occur in the Salt Flat area of
Texas and the Crow Flat area of New Mexico and Texas,
in the topographically lowest parts of the basin
(elevations about 3,630 ft). These playas form in
a region of low rainfall (about 9 or 10 in/yr
average) and high evaporation (about 80 in/yr)
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(Dunham, 1972). Thus, groundwater, which stands at a
level near the playa surface, is drawn upward and is
evaporated, leading to gradually increasing
salinities. These high salinities greatly restrict
vegetation and allow eolian deflation of the rather
fine-grained playa preciptates.

Pits excavated in the playa sediments reveal firm
but not hard, fine-grained, laminated, non-fossil-
iferous lacustrine materials. Modern gypsum and
minor halite are the dominant evaporite minerals but
calcite, aragonite, and dolomite have also been found
in the playa sediments either as primary or secondary
minerals (see Friemez, 1966; and Dunham, 1972, for
further details). C age dating and geological
mapping of basinal units indicates that much of the
sediment found at the surface today may be relict
from a larger Pleistocene pluvial lake (King, 1948;
Dunham, 1972). Eolian deflation has piled up some of
of these primary and secondary minerals as dunes
along the margins of the playa area.

Halite has been mined from the surface of the
playa in areas to the south of the road although
halite is not preserved to any extensive degree in
buried sediments. This salt was a most highly
valued commodity in the 1880°s and was used for food
preservation, final curing of hides, and other °
purposes. It was such a valuable substance that it
was hauled by mule- and ox-drawn vehicles for many
hundreds of miles over the southwest trail to Fort
Quitman, then to San Elizaro, Franklin (now El Paso),
Paso del Norte (now Juarez), and on to Chihuahua
City. Disputes between Mexican and American mining
interests in the area led to the El Paso Salt War of
1877. The conflict culminated in the battle of San
Elizaro (then the county seat of El Paso County).
Improved(?) food preservation techniques and more
economical sources of salt have eliminated the
relatively small-scale mining in this area.

On the south side of the road the Paso Tex oil
pipeline can be seen sitting on trestles; on the
north side of the road the El Paso Natural Gas
pipeline to the Pacific Coast is buried beneath
playa sediments.

Gypsum-bearing dunes are derived from deflation of the
nearby playa surface.

Eastern edge of the Salt Flat BRasin.

Folded and downfaulted blocks of Upper Permian on the
left.,

Beacon Hill on the left is composed of Capitan Lime-
stone with Rader Limestone at the base of the hill.
This is the southern end of the Patterson Hills which
consist of complexly faulted and folded Upper Permian
limestones. Farther north are the Brokeoff
Mountains.
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El Paso Natural Gas Co. Guadalupe Compressor station
on the left.

Road cut in Bell Canyon Formation.

Road cut in Bell Canyon Formation.

Road cut in Cherry Canyon Formation; note greenish
bentonite beds.

Road cut in downfaulted Bell Canyon Formation.

Road cut in Cherry Canyon Formation. The Patterson
Hills to the left are capped by Capitan-age lime-
stone.

Road cut in Cherry Canyon Formation exposing contact
with Brushy Canyon Formation at east end of outcrop.

Junction with Texas Highway 54 to Van Horn on right.
Keep left for Carlsbad.

OPTIONAL STOP. An excellent view of the south end of
the Guadalupe Mountains here shows the clear
relations between reef, fore-reef, and basinal
facies (fig. 7). Ahead and to the right, is the
escarpment of the Delaware Mountains composed of
Brushy Canyon and Cherry Canyon basinal sediments
mainly sandstones and siltstones). The Delaware Moun-—
tain ridge is capped by the resistant Getaway Limestone
which is exposed near the radar station visible at the
top of the cliff. The Getaway Limestone Member occurs
at a level about 100-200 ft above the base of the Cherry
Canyon Formation and, in this area, is a very
fossiliferous, gray to black limestone. Note the
abundance of lenticular, channelized bedding in the
Brushy Canyon and basal Cherry Canyon sections
exposed in the Delaware Mountains escarpment. This
entire sequence was apparently deposited in water
depths of at least several hundred feet by a com-
bination of density currents, mass flows, localized
slumps, and perhaps even contour currents. Much of
the darker material visible in the cliff face repre-
sents relatively fine-grained overbank or non-
channelized flows. The lighter-colored, lenticular
sediments are coarser-grained, massive, channel-
fill sandstones. Finally, at the very base of the
escarpment, a dark ledge of the basinal Bone Spring
Limestone is exposed.

To the left we can see the great mass of Capitan
Limestone which forms the upper part of El Capitan.
The Capitan Limestone in this face represents a fore-
reef rubble facies which is the time equivalent of
the Hegler, Pinery, and Rader Members of the Bell
Canyon Formation. Below the massive (1,000-1,500 ft
thick) limestone, gently sloping deposits of the
Cherry Canyon Formation are evident. 'The three
distinctly visible ledges represent in ascending
order the three basinal limestone tongues of this
formation named Getaway, South Wells, and Manzanita"
(K. W. Klement, in West Texas Geological Society,
1969, p. 18). The rest of the lower slopes of El
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Capitan are composed of Brushy Canyon Formation.

The lateral flattening of dips from El Capitan
to the Delaware Mountains is not a result of de-
formation, but rather represents a primary facies
transition from reef to basin. The thick, steeply
dipping, rubbly limestones of the fore-reef facies
thin rapidly toward the basin so that 100 or more feet
of reef limestone may have a time equivalent 1-5 ft
thick limestone in the center of the Delaware Basin.
The color change from the light colored, largely
oxidized beds of the reef and fore-reef to the dark
colored, organic carbon-rich, anoxic basinal facies
can also be seen in these exposures.

It should be pointed out that the great thicknesses
of basinal sandstones (about 3,500 ft of Delaware
Mountain Group), although derived from the shelf,
have only thin equivalents in the back-reef facies
and are virtually absent in the reef itself. 1In
part, this may reflect the fact that much of the
basinal sandstone was apparently transported from
the north and north-east, across the Central Basin
Platform and the then-filled Midland Basin from
sources in the Pedernal Massif and the Arbuckle
and Wichita uplifts (Watson, 1979; Bozanich, 1979).
Thus, much of the sand influx may have been funneled
through gaps in the reef in areas not currently ex-
posed in outcrop. There is evidence, however, from
submarine channel orientation, other current
direction indicators, stratigraphic relations of
basinal sandstones and fore-reef carbonate rocks,
and the presence of numerous, if thin, back-reef
sandstone beds, that some sand moved across the north-
western part of the basin margin along which we are
now standing.

Thus, in all probability, another explanation must
be sought for the inverse relationship of thick
carbonate and thin sandstone units on the shelf
and thin carbonate and thick sandstone units in the
basin. Silver and Todd (1969) and Meissner (1972)
proposed similar concepts of reciprocal sedimentation
to explain these observations. This model suggests
that the carbonate sediments were deposited during
high eustatic sea level stands. During these times
of strong surface-water circulation, reefs flourished
and climates were arid. The shelf areas had massive
carbonate buildups which maintained the shelf edge at
or near sea level. During this time, terrigenous
sands were largely trapped in back-reef lagoons or in
continental basins. The evaporitic conditions led to
the formation of saline bottom-waters and a density-
stratified basinal water column. This, in turn, led
to largely euxinic, sediment starved conditions on
the floor of the basin.

During lowered sea level stands, on the other hand,



eolian and fluvial(?) transport of large volumes of
well-sorted arkosic sand to the shelf edge provided

a massive supply of unconsolidated material on the
upper slope. From there the sands were reworked into
the basin by a variety of gravitationally driven
current mechanisms. Subsequent transgression in the
next cycle removed virtually all traces of sand from
the tightly cemented shelf-edge limestones.

Thus, in the reciprocal sedimentation concept, al-
though there is overall time-equivalence of the shelf
and basin sediments, they are not exact time-
equivalents when looked at in detail. The thick,
basinal sandstones are equivalent, in most cases,
to hiatuses in reef deposition and to thin sandstone
beds in back-reef areas. Thick reef and back-reef
limestones are equivalent to very thin, black lime-
stones in the basin.

1.4 98.7 60.7 STOP II-2. This outcrop, faulted at its northern end,
exposes Bone Spring Limestone in its basinal facies.
This Leonardian limestone, the oldest unit exposed in
the Guadalupe and Delaware Mountains, reaches at
least 1,700 ft thickness in this area (King, 1948).
A thickness of 3,123 ft has been measured for the
combined Hueco Limestone-Bone Spring Limestone
interval in the Updike well near El Capitan. This
combined section thickens to greater than 4,500 ft in
the Delaware Mountains to the south (King, 1948, p.
13). At this locality we can see typical, dark gray
to black, cherty, interbedded limestones and
calcareous shales which are the dominant lithology
of the basinal part of the Bone Spring Limestone.
Fossils, especially small ammonites, can be found at
this locality, but are generally restricted to
isolated, granular or calcarentic beds. Bedding
surfaces in the basinal Bone Spring Limestone
are typically wavy. Both the limestone and the
shale units contain considerable amounts of organic
matter and may have acted as source rocks within
this basin. 1Indeed, trapped oil can be found even
on outcrop in small cavities in the Bone Spring
Limestone.

0.4 99.1 60.3 Road cut in Brushy Canyon sandstone.

0.5 99.6 59.8 Jell exposed, lenticular, sandstone channel

deposits of the Brushy Canyon Formation are
visible in the distance on both the left and
right sides (fig. 8).

1.6 101.2 58.2 STOP II-3. An exposure of basinal Brushy Canyon
Formation, the lowest unit in the Delaware Mountain
Group. The feature of special interest at this
locality is the exposed margin of a submarine
channel (fig. 9). Such channels are common in
this formation and, at least in this area, generally
trend northwest-southeast, that is, perpendicular to
the shelf margin.
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At this locality, we can see dark-colored, graded,
relatively fine-~grained sandstones, siltstones,
and shales in thin beds with some soft-sediment
deformation features. These are abruptly cut by
a uniform, thick-bedded, sandstone-filled channel.
Both types of sediments were clearly soft, even
fluid, at the time of deposition, as shown by the
fact that the channel margins are extensively deformed
by sand injection.

Hayes (1964), Jacka and others (1968), Payne
(1979), Berg (1979) and other authors have
interpreted these or similar deposits as sub-
marine fans. The graded, finer-grained sediments
are considered to be interchannel or overbank tur-
bidity~current deposits. The cut and fill, massive
sandstones are interpreted as part of an anastomosing
system of fan channels, eventually abandoned or
filled by sand transport. Harms (1974), on the other
hand, proposed that the finer-grained sediments were
deposited by density overflows which dropped sus-
pended sediments as they moved out over density
interfaces within the water column rather than at the
sediment-water interface. The channels were cut,
according to Harms, by saline and cold density cur-
rents (rather than turhidity currents) which formed
on the shelf. The sand fillings of the channels
were also laid down by density currents.

In either case, these large (commonly more than
1/2 mile wide and 50-100 ft thick) channelized
sandstones, surrounded by lower permeability silt-
stones and shales, represent significant potential
stratigraphic traps. This is especially true because
of the close spatial association of these sandstones
and the potential basinal source rocks. TIndeed,
exploration efforts to date have located more
than 100 o0il and gas fields which produce from
channel-sandstone reservoirs of the Delaware Mountain
Group, primarily (but not exclusively) from the Bell
Canyon Formation (see table 3).

0.5 101.7 57.7 Roadside rest areas on left and right. T¥%xcellent views
of El Capitan (fig. 10) and the Delaware Mountaius
escarpment. Again, the bank~to-basin traunsitions of
the Capitan Limestone and its equivalents are well

shown.

0.7 102.4 57.0 Road cuts in sandstones and siltstones of the Brushy
Canyon Forwmation.

0.4 102.8 56.6 OPTIONAL STOP. View along the Delaware Mountains

escarpment on the right. Outcrops on the left
consist of upper Brushy Canyon Formation sandstones
with oriented fusulinid Foraminifera (fig. 11)

which were reworked into the Delaware Basin from

the adjacent Worthwest Shelf. 1In thin section one
sees compaction of the sandstones, some quartz
overgrowth cement (minor), clacite cementation (very
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extensive), numerous fine-grained carbonate clasts
mixed with well-rounded and well-sorted quartz and
feldspar grains. The detraital carbonate grains

show intense pressure solution, especially where they
are in direct contact with the less soluble quartz

or feldspar grains.

An enigmatic Brushy Canyon~Cherry Canyon contact is
exposed in this outcrop. The contact strikes N 30° E
and dips at about 17 degrees to the southeast.

This relationship has been variously explained as a
fault contact, an erosion surface, or a large and
coherent slide mass. Note the abundant high=-angle
faults in the outcrops in this area. They generally
have only minor offsets (although a few have 100 ft
or greater throw) and are part of the Tertiary block
fault system which marks the western boundary of the
Guadalupe and Delaware Mountains.

OPTIONAL STOP. Shales, siltstones, and sandstones of
the Cherry Canyon Formation are seen here. They show
a number of interesting sedimentary features including
a large channel, graded beds, flame structures,
ripple marks, slump folds, and abundant horizontal
laminatiog. Again, as for the Brushy Canyon section,
evidence is present for the involvement of both
traction and suspension processes in the deposition
of these units.

The Cherry Canyon Formation is about 1,000 ft thick
in this area and thickens to about 1,300 ft in the
subsurface sections measured to the east. Organic
carbon-rich shales and limestones within the Cherry
Canyon Formation may have acted as source rocks for
a significant part of the oil in the Permian strata
of the Delaware Basin.

Road cut in Tertiary-Quaternary alluvium.

Thin-bedded Cherry Canyon Formation exposed on
right.

Rest area on left.

Fault zone. Graded carbonate beds are present in the
Cherry Canyon Formation at this locality.

Crest of Guadalupe Pass (elevation 5,695 ft). Pine
Springs Canyon is visible to the left; the Pine
Springs Camp and gas station are just ahead. The
cliffs to the left (10:00 o“clock) are composed of
Guadalupian basinal facies from the base to the
middle of the slope; that is overlain by a thick zone
of fore-reef rubble which, in turn, is capped by a
thin zone of preserved reef limestone. The Getaway
Limestone is visible in hills on the right and
overlying sediments of the Cherry Canyon Formation
are present in the slopes ahead and to the left.

The greenish outcrops in these slopes (for example
on Nipple Hill, directly ahead) are intercalated
bentonite beds (volcanic ash) and shales in the
Manzanita Limestone Member of the Cherry Canyon
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Formation. U.S. Highway 62-180 is still cut

through the extensively faulted zone on the

western side of the Guadalupe and Delaware Mountains.
Numerous small faults are present here, as they have
been in most of the outcrops we have passed in the
last 10 to 15 miles. The ruins of a way-station of
short-1lived Butterfield Overland Stage route are
located behind the Texas Highway Department garage
on the left. As with other parts of this route, the
station was abandoned in 1859.

Guadalupe Mountains National Park headquarters (Frijole
Station) on the left. This park is one of the newest
in the Wational Park system, having opened in 1972,
In 1978 approximately 60 percent of the park was
designated as wilderness area, precluding any large-
scale development. The establishment of the park
resulted, in large part, from the concern and gener-
osity of Wallace Pratt, one of the first geologists
of the original Humble 0il and Refining Co., who lived
for many years in the McKittrick Canyon area. Pratt’s
gift to the government of more than 5,000 acres was
the first concrete step toward the formation of this
park.

Exposures of Cherry Canyon Formation sandstone; this
section is just below the South Wells Limestone
Member.

Quaternary fanglomerates in road cuts.

Road cuts in Cherry Canyon Formation. The South Wells
Limestone Member is present at the top of this ex-
posure and consists of thin-bedded sandstone and
thin, lenticular, brachiopod-bearing limestones.

The limestone beds range in thickness from a few
inches to a few feet and are generally micritic. The
intercalation of thin limestones and sandstones tends
to lower the erosional resistance of this unit and
therefore it does not form a prominent scarp. This
is not true of the other limestone members of the
Cherry Canyon Formation, however.

We are descending off the Rader Ridge. The ridge is
capped by the Rader Limestone Member of the Bell
Canyon Formation (the third named member up from
the base of the formation). We are now, once again,
passing through the upper part of the Cherry Canyon
Formation.

Nickle Creek Exxon Station on the left. The greenish,
bentonitic beds of the Manzanita Limestone Member
are visible at 11:00 o’clock, about half way up the
hill.

Road cut in Manzanita Limestone. The Manzanita 1is
between 100 and 150 ft thick in this area.

STOP II-4. This section shows a major submarine slide
deposit at the base of the Rader Member of the Bell
Canyon Formation. The southwestern end of the out-
crop consists of laminated sandstones and siltstones



of an unnamed member of the Bell Canyon Formation.
At the top of this sandstone is a conglomerate zone
with limestone blocks set in a sandstone matrix.

The limestone clasts are very poorly sorted and range
from pea-sized pebbles to car-sized boulders (fig.
12). The clasts are non~dolomitic, generally light-
colored limestones derived from the Capitan reef and
upper fore-reef environments. Above this zone of
bouldery rubble is a thick, graded bed of similar,
but finer grained, carbonate clasts with carbonate
matrix and cement. This, in turn, is capped by a
series of thin-bedded, fine-grained, dark-colored
limestones which are typical of the basinal
limestone members of the Bell Canyon Formation.

This slide deposit is one of several which have
found in the Delaware Basin. Three superimposed
slides within the Rader Member make up the hummocky
Rader Ridge in this area. Other slides are locally
present in the Manzanita Member of the Cherry Canyon
Formation and at the top of the Lamar Member of the
Bell Canyon Formation (Newell and others, 1953, p. 69-
77). These are, however, exceptional and localized
events which move rvreef- and slope-derived material
far beyond the range of the normal fore-reef rubble
fans. For example, the outcrop we are at represents
a slender, perhaps channelized, tongue of rubble
which extends off a broader slide. This tongue of
transported debris extends nearly five miles into
the basin from the reef crest. This deposit has
been shown to thin rapidly from reef to basin (Newell
and others, 1953). It is nearly 100 ft thick at the
base of the steep fore-reef slope but has thinned to
less than 10 €t at this locality.

The mechanism of transport of the limestone clasts
probably is largely as a submarine slide or debris
flow. The volume of material involved is comparable
to that of large, documented, subaerial landslides
(Newell and others, 1953, p. 77). As with subaerial
landslides, there is remarkably little disturbance of
underlying soft sediment substrates. The incorpor-
ation of sandstone matrix with limestone boulders,
and the channelized or abruptly terminated margins
of the slides indicates that there was some erosion
and inclusion of the underlying Bell Canyon sand-
stone in the slide. There may also have been some
subsidence or foundering of the large, heavy, lime-
stone blocks into the underlying sands.

The event which triggered the slide also,
apparently, led to the generation of a turbidity
current which deposited the thick graded bed which
overlies the slide. This association appears to be
a common one and has even been observed in modern
submarine slides.

The Rader Limestone Member has a total thickness
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of about 15 ft in this area, and about 10 ft is
exposed at this outcrop. The unit thickens to a
maximum of about 120 ft within about 3 miles as one
approaches the basin margin (to the northwest).

1 112.6 46.8 Road cuts in Rader Limestone.

.5 113.1 46.3 STOP I[-5. Well-sorted, subarkosic sandstones of the
Bell Canyon Formation showing remarkable uniformity
of bedding and horizontal lamination. The Bell
Canyon Formation is about 700 ft thick at its type
locality, but has been reported to be as thick as
860 ft in subsurface sections (Hayes, 1964, p. 14).
As with the other basinal sandstone units of the
Delaware Mountain Group, the depositional mechanisms
of the Bell Canyon sandstones have been exten-
sively debated. The abundance of horizontal
lamination and the apparently euxinic conditions in
the basin center lend credence to the idea of density
overflows and suspension deposition of much of the
sand and silt. On the other hand, the presence of
numerous subparallel erosional channels, most of
them oriented from northeast to southwest, indicates
that seafloor erosion, transportation, and deposition
by long-lived density underflows, turbidity currents,
or grain flows were also important.

More than 100 oil and gas fields have been dis-
covered in the Bell Canyon Formation as of 1979
(table 3). These "are stratigraphic-~hydrodynamic
traps which occur where sandstone-filled channels
are incised into less permeahle interchannel sand-
stone" (Williamson, 1979, p. 39). These channels are
as much as 5 miles wide, 100 ft deep, and 50 miles
long and the shape and orientation of these channels
clearly controls the size, trend, and productivity
of oil and gas fields.

0.7 113.8 45.6 Entrance to McKittrick Canyon day-use area of the

Guadalupe Mountains National Park on the left. See

McKittrick Canyon supplementary roadlog.

0.1 113.9 45.5 The escarpment ahead is formed by the Lamar Limestone
Member of the Bell Canyon Formation.
1.0 114.9 44,5 STOP II-6. This section exposes basinal, black,

laminated limestones and shales of the Lamar Lime-
stone Member (fig. 13). Some features indicative
of turbidite deposition of platform-derived, fine-
grained carbonate sediment can also be seen. The
Lamar is largely unfossiliferous at this locality.
It becomes datrker and more organic carbon-rich
toward the basin center; indeed, all benthic or-
ganisms are absent from these basin-center sediments.
Conversely, the unit becomes lighter colored and more
fossiliferous toward the basin margin. It seems,
therefore, that euxinic conditions were largely re-
stricted to the deepest parts of the Delaware Basin
(Babcock, L. C., 1977).

In this area, relatively near the basin margin, a
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moderately diverse fauna which includes burrowing
pelecypods, siliceous sponges, holothurians, and
conodonts, is evidence that conditions here were

not uniformly anaerobic (Babcock, L. C., 1977).

Yet the evaporite crystal casts found on many bedding
surfaces, the organic carbon-rich sediment, and the
widespread preservation of very fine-scale lamination
all indicate that largely, euxinic, evaporitic bottom
waters occupied this region during much of Lamar time.
Presumably, the dominantly anocix conditions were
periodically relieved by input of turbidity

currents bringing sediment-laden, oxygenated waters
downslope into the basin. These events were probably
accompanied by short-lived but widespread colonization
of the basin floor by benthic organisms.

The lateral thickness variations of the Lamar
follow a similar pattern of basin-margin to basin-
center change. The Lamar thins from 300 ft along the
Capitan slope, to approximately 20-30 ft in this area,
to as little as 6 ft in outcrops about 17 miles from
the basin edge, and eventually to only a few feet of
silty shale in subsurface sections near the basin
center (Tyrrell, 1969; Babcock, L. C., 1977).

The Lamar is the youngest limestone unit in the
Guadalupian part of the Delaware Basin. As such, it
is a lateral facies equivalent of the uppermost part
of the Capitan Limestone on the shelf edge, and the
Tansill Formation in back-reef, shelf-interior areas.

1.2 116.1 43.0 Roadside rest area on right. Excellent exposures of
reef and fore-reef deposits can be seen to the
southwest. The exposed part of the reef becomes
progressively older toward the south. The crest of
the reef at the southern end of its outcrop (near
Guadalupe Peak) is approximately 1,000 ft lower
stratigraphically than the reef exposed at Walnut
Canyon, about 25 miles to the north of this location.
This implies that the face of the reef has heen eroded
back by at least 1/2 mile in the southern Guadalupe
Mountains region.

7.9 124.0 35.4 Straight ahead lies the solution escarpment of the
Castile evaporites. We are driving on a surface of
Quaternary gravels which lie on the basal limestone
and shale unit of the Castile and on the Lamar Lime-

stone.

1.4 125.4 34.0 Junction with Texas Ranch Road 652 on the right.
Continue straight ahead.

0.1 125.5 33.9 Texas-New Mexico state line. Welcome to New Mexico.

1.6 127.1 32.3 Notice the difference in vegetation on the gravel
surface on which we are now driving versus that on
the hills of Castile gypsum and anhydrite directly
ahead.

0.5 127.6 31.8 STOP 1I-7. Excellent exposures of the Castile Form-—

ation in deep roadcuts. This unit is the oldest
post=Guadalupian sediment in the region and conformably
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overlies the Guadalupian Bell Canyon Formation.

The Castile is entirely confined to the Delaware
Basin and does not extend onto the adjacent shelf
areas. It has a thin, basal limestone and shale

zone which may be a lateral facies equivalent of the
very youngest part of the Capitan and Tansill Forma-
tions. The bulk of the Castile, however, consists of
a thick section of laminated anhydrite with intervals
of laminated halite. The Castile Formation has been
reported to reach a maximum thickness of 1,550 to
2,000 ft in subsurface sections in the northeastern
part of the Delaware Basin (King, 1948, p. 89).

The Castile grades conformably upward into the
Ochoan Salado Formation; the Salado contains lam-
inated halite, anhydrite, sylvite, polyhalite, and
even more soluble evaporite minerals. The extreme
solubility of its components means that the Salado
does not generally appear in outcrop. Indeed in
this area, much (or all) of the Salado may have
been removed by erosion. The Salado does, however,
form a wedge of sediment which thickens toward the
the northeast to a maximum of greater than 2,000 ft
(Anderson and others, 1972, p. 82). 1In the
northeastern part of the Delaware Basin, the
Salado is extensively mined for potash minerals.
Unlike the Castile, the Salado Formation extends
beyond the borders of the Delaware Basin onto the
surrounding shelf areas where it generally lies
directly on Guadalupian carbonate rocks. The
Salado, in turn, is unconformably overlain by the
dolomitic Upper Permian Rustler Formation, the Dewey
Lake Redbeds, and younger units. The pre-Rustler un-
conformity shows extensive Permian tilting and erosion
for, in places (particularly the southwestern part
of the region), it has completely removed the Salado,
allowing the Rustler to lie directly on the
Castile Formation or Guadalupian carbonate rocks.

The onset of Castile evaporite deposition coincided
closely with the termination of reef growth around
the Delaware Basin margin. It is not entirely clear
whether this is a causal or coincidental relation-
ship. Eustatic sea level drop, tectonic movements,
reef growth, or other factors could have increased
the restriction of influx of normal marine water into
this already partially barred basin. This, coupled
with the extreme aridity and high evaporation rates
in the area, may have led to drastic increases in
the salinity of basin water, with the associated
killing of the salinity-sensitive reef organisms and
the eventual start of evaporite deposition. It
must be emphasized, however, that although the
changes in depositional patterns at the Guadalupian-
Ochoan transition were dramatic, the causes of these
changes may have been considerably more subtle.
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Strongly evaporitic conditions existed throughout
Guadalupian time as, apparently did hypersaline
stagnant bottom waters in the basin. Marine

influx from the south was certainly present during
Guadalupian time to maintain normal marine conditions
in the surface waters of the Delaware Basin.

This influx must have continued through much of
Ochoan time, if in a somewhat more restricted form,
to supply the salts of the Castile and Salado
Formations. Thus, it appears most likely that it was
a gradual change in marine water supply versus evap-~
orative water removal which led to the abrupt shift
from carbonate to evaporite sedimentation, presumably
when a critical salinity level was reached. This
gradual (but not perfectly continuous) salinity
transition apparently continued through Ochoan time,
leading to deposition of anhydrite, then halite and
sylvite, and eventually the true bittern salts

found in the northeastern Delaware Basin.

The Castile Formation, then, represents an evapo-
rite filling of the approximately 1,800 ft deep basin
left at the end of Guadalupian time. Although there
may have been some drop in basinal water levels, the
Castile clearly was deposited in deep water as
indicated by the complete absence of shallow-water
sedimentary structures and the presence of fine-
scale lamination. The laminae consist of regular
(although variable thickness) alternations of white
anhydrite laminae and darker laminae containing a
mixture of organic matter and calcite (fig. l4). The
anhydrite-calcite couplets average 1-2 mm in thick-
ness throughout the Castile Formation (Anderson and
others, 1972 p. 73). On outcrop, the anhydrite may
have been altered to gypsum (this locality has both
gypsum and anhydrite exposed according to S. D. Kerr
in Dunham, 1972). The laminations have remarkable
lateral continuity, as one might expect for deeper-
water evaporites, and individual laminae have been
traced for more than 70 miles (Anderson and others,
1972). Contortion and deformation structures
(fig. 15) are post-depositional and presumably re-
present volume changes due to hydration and/or
dehydration reactions.

The laminations of the Castile Formation (as well
as those in the uppermost Bell Canyon and Salado
Formations) have been interpreted as annual varves
(Udden, 1924; Anderson and others, 1972). The
calcite and organic-matter layers represent periodic
(annual?) freshening of the water and the development
of plankton blooms. The anhydrite layers represent
restricted, more evaporitic conditions. Approxi-
mately 260,000 such cycles have been counted in the
uppermost Bell Canyon-Castile-Salado sequence. This
implies extremely rapid deposition of thousands
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of feet of evaporites in the Delaware Basin, a common
situation with major evaporite deposits.

The evaporite filling of the Delaware Basin is
largely responsible for the spectacular exposures
of the Guadalupian facies which we are seeing on this
trip. The complete plugging of the "hole" left at th
close of Capitan reef growth and the subsequent,
Tertiary, removal of that plug has left us with
resurrected Guadalupian topography and facies re-
lations in this area.

The Castile and Salado evaporites may also have had
a major impact on the 0il and gas distribution in the
Permian Basin. The rapid burial of basinal source
rocks to depths sufficient for oil and (or) gas gener
ation is one probable effect. It is quite possible
that compactional geopressuring of the basinal sedi-
ments resulted from the rapid deposition. This may
have eventually aided the early migration of hydro-
carbons from the basin, before deep burial and de-
struction of porosity in potential shelf reservoirs.
Overpressuring and early o0il migration may have
been significant factors in the excellent hydrocarbon
productivity of the Permian Basin region. The early
movement may also explain why primary porosity and
early diagenetic porosity modifications, rather than
later diagenetic porosity types, are so important
in many Permian Basin reservoirs. Finally, the
extensive blanketing of both shelf and basin by
an impermeable cover of evaporites clearyly pro~-
vided an outstanding seal for the entire region.

Note hummocky, solution-generated topography on top of
the Castile evaporite. These are the Yeso Hills.

White’s City visible directly ahead in the distance.
The valley to the left is developed on the upper-
most Bell Canyon strata (Lamar and post-Lamar beds).
The Capitan reef escarpment can be seen plunging to
the north beneath Ochoan and younger sediments as a
consequence of structural tilting. To the south, the
reef rises higher and higher on the skyline to the
point where it has been removed by erosion.

The buildings at the entrance to Carlsbad Caverns
can be seen on the ridge top at about 11:00 o”clock.

Zone of Quaternary rubble probably dervied from
dissolution of upper Castile or Salado evaporites.
Several thin, weathered, basaltic igneous dikes cut
the evaporite section in this area.

Roadside rest area on left.

At a point approximately 300 ft east of the highway,
loose boulders of Lower Cretaceous (Commanchean)
limestone have been described by W. B. Lang who
interpreted them as fragments of widespread
Cretaceous cover down-dropped and preserved in
solution pipes cut into the Ochoan evaporites.

Entrance road to Slaughter and Rattlesnake Canyons and
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New Cave on left. Both Rattlesnake and Slaughter
Canyon have excellent exposures of the late
Guadalupian fore-reef, reef, and back-reef facies
(see Pray and Esteban, 1977). Continue straight
ahead.

Highway 1is still on Castile Formation. The mouth of
Slaughter Canyon is visible at about 8:00 o’clock; the
mouth of Rattlesnake Canyon can be seen at about 9:00
o”“clock. The northwest-southeast trending Huapache
Monocline crosses the Capitan reef front between
these two canyons.

Quaternary gravel in road cut.

Beautiful downtown White’s City. Junction with New
Mexico Highway 7 to Walnut Canyon and Carlsbad
Caverns on left. See separate '"Walnut Canyon"
supplementary road log. Continue on U.S. Highway 62-
180 to Carlsbad, New Mexico.

Bridge over Jurnigan Draw. Rustler Formation red
beds can be seen in middle distance on right.

Junction with New Mexico Highway 396 on right. The
Black River oil field is located to the right; the
field produces 42° API gravity oil from sandstones and
siltstones just beneath the Lamar Limestone member
of the Bell Canyon Formation at about 1,950 ft
depth. The hills to the left are composed of
Capitan reef limestone.

Road cut in Rustler Formation.

Road cut in Rustler Formation.

Junction with Dark Canyon Road on left near old
Frontier Trading Post and Museum. The hills to
the west are composed of Tansill Formation near-
back-reef limestones and dolomites. The one well
Dark Canyon oil field lies about 1/2 mile to the
west. Completed in 1952, the field produced from
an 11 ft pay zone in Delaware Mountain sandstone at
1,876 ft. The well continued to produce for many
years at 10 to 12 BOPD. Continue straight ahead for
Carlsbad. See supplementary "Dark Canyon-Sitting
Bull Falls-Rocky Arroyo" roadlog for route to left.

In the foreground to the left are the Frontier Hills
composed of Ochoan Rustler Formation sediments which
dip southeastward into the Delaware Basin. The
Rustler Formation in this area cousists of dolomite,
red beds, fine-grained sandstones, and minor gypsum.
The Rustler overlies the Salado Formation in the
Delaware Basin but lies directly on the Capitan Lime-
stone in the ridge west of the Frontier Hills.

Carlsbad city limit.

Quaternary caliche exposed in pits on right.

Caverns City Air Terminal (Carlsbad municipal airport)
entrance on left. The Hackberry Hills to the west
are composed mainly of Tansill dolomites and upper
Yates dolomites and sandstone---both back-reef facies
equivalents of the uppper part of the Capitan reef.
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The reef itself is completely buried beneath
younger sediments in this area. The back-reef
equivalents are exposed only because of the gentle
(approximately 5 degree) eastward dip of the
Guadalupian strata in this area.

158.3 1.1 Rodeway Inn on right.

158.4 1.0 Holiday Inn on right.

158.7 0.7 Ocotillo Hills located to the northeast.

159.4 0.0 Junction with U.S. Highway 285 to Pecos, Texas on the

right. Road log ends here.
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MCKITTRICK CANYON ROADLOG
Mileage Cum.

Mileage

0.0 0.0 Junction of U.S. Highway 62-180 with paved road to McKittrick
Canyon day-use area (mileage 113.8 on El Paso-Carlsbad
road log). Take McKittrick Canyon road. Most of this new
road is cut in the McCombs to Rader interval of the Bell
Canyon Fm. The cliffs on the right (north) are capped by
the Lamar Limestone Member.

0.4 0.4 The view ahead is directly into the steeply dipping Capitan
fore-reef talus deposits.

1.6 2.0 The view to the northwest shows the exhumed Delaware Basia

margin, largely stripped of its evaporite filling. The
reef-massif is characterized by an apparent lack of bedding
and a strongly developed vertical joint pattern which trends
parallel to the reef front. These were penecontemporaneous
growth faults probably produced by compaction of the 1,500~
2,000 ft of largely unconsolidated reef talus over which
the reef was prograding. The penecontemporaneous formation (and
filling) of the joints is shown by the fact that locally one
finds specialized Permian faunas lining fracture walls. The
joints are also filled with submarine calcite cement
crusts, Permian siltstones, soll crusts, and other
materials.

Steeply dipping fore-reef deposits are visible down-
slope from the reef and these form a smooth transition
to the nearly flat-lying toe-of-slope and basinal deposits
seen at the base of the escarpment.

2.0 4.0 Outcrops of massive, fine-grained, toe-of-slope deposits of the
Lamar Limestone on the left. Large-scale lenticular bedding is
clearly visible. Although largely composed of micritic
limestone, these deposits contain a significant reefal fauna.
Thus, they were originally interpreted as bioherms formed in
deep water (depths probably in excess of 1,600 ft). However,
recent studies of the Florida Straits and similar areas
have shown that such deposits can be produced by a combina-
tion of down-slope reworking of reefal debris, along-
slope transport and deposition by contour currents, and
submarine cementation. Thus, these lenticular deposits
may be analogous to the "lithoherms" of the Florida-Bahamas
region.

0.3 4.3 McKittrick Canyon parking area. STOP II-1. We will walk up
the stream bed for a short distance (about 1/2 mi) and then
climb up the spur on the south side of McKittrick Canyon,
an approximately 1,000 ft climb. Please wear sturdy hiking
boots as we will be crossing sharp rock- and cactus-covered
terraine. Also remember that we are now in the Guadalupe
Mountains National Park and rock hammering or collecting is
not allowed without a permit.

Finally, the difficulty of the terraine, the size of
the group, and the lack of a clearly marked trail make it
imperative that we all stay together as a group. PLEASE,
DO NOT WANDER OFF ON YOUR OWN OR IN SMALL SUBGROUPS. We



33

will keep the pace slow enough so that we can all remain
together.

The purpose of this stop is to examine the toe-of-slope
and fore-reef facies transitions of the Capitan Limestone
and its equivalents. Although it would bhe pleasanter if
this facies change could be seen without resorting to a
strenuous climb, this is not possible. It must be remem-
bered that the facies transition is one which took place on
a 30 degree slope over a vertical distance of more than
1,000 ft; thus, the vertical component is an important one.
Also, these facies are exposed only in areas south of
White’s City and are easily accessible only in Rattlesnake,
Slaughter, and McKittrick Canyons. All three areas require
extensive climbing and McKittrick provides the best visual
continuity of lateral facies.

Our upward climb will take us across a number of dif-
ferent Bell Canyon units (fig. 16). We start at the level
of the Rader Limestone, and cross several unnamed sandstone
units, and the McCombs Limestone before reaching the Lamar
Limestone. We will then descend along the Lamar dip-slope and
view the lateral changes within a single unit.

Because there is no well-marked path, it is not possible
to provide a detailed description of this tour. However,
it is possible to provide a general picture of the salient
features of the route. We start in the thin-bedded, dark-
colored, micritic limestones of the Rader. 3Bryozoans and
brachiopods are the most commonly seen megafossils. Chert
nodules and silicified (originally calcitic) organisms
abound (fig. 17) with the silica having been derived from
siliceous sponges (fig. 18) and radiolarians which lived or
accumulated in the down-slope area. The only other
macroscopic diagenetic feature visible is compactional
deformation around fossils, concretions, nodules, or all
ochtonous blocks of reefal debris (fig. 19). Channels
filled with cross-bedded reef~ and slope-derived debris
and large blocks of reef limestone also can be seen locally
in these beds.

As we move upslope, we will see thick packages of fine-
grained, well-sorted sandstone and siltstone interbedded
with the limestone members. The sandstones are compo-
sitionally identical to the thin back-reef sandstone and
siltstone units we will see at other localities. The
up-slope interfingering of discrete, basinward-dipping
sandstone and carbonate units indicates that both
were derived from the shelf. The sandstones also show
extensive evidence of down-slope current transport
including cross-bedding, channels, ripple marks, and
other features. The farther upslope we move the more
dominant the carbonate units become; at the same time,
the sandstones become thinner and eventually pinch out
entirely. The carbonate units become progressively
more massive and coarser-grained in an up-slope
direction (fig. 20); the carbonate grains also tend to be
more clearly recognizable as reef- and slope-derived
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skeletal fragments. The fact that this is primarily reef
rubble is clear from the abundance of original framework
producing organisms, such as calcareous sponges and
bryozoans, as well as the organic euncrustation and sub-
marine cementation of many of the clasts. 1In local areas,
massive, sorted, and channelized grain flow and turbidity
current deposits of carbonate material are visible. 1In
most areas, however, these units have little obvious
internal structure.

The diagenesis of these units is complex. Many of the
clasts of calcareous debris underwent submarine cement-
ation in their original environment of formation. Sub-
sequent alteration in the down-slope depositional environ-
ment included (at least locally) partial, late-diagenetic
dolomitization (fig. 21), leaching of aragonitic grains,
and medium-crystalline calcite cementation. Compaction
is not extensive in these units, but grain fracturing is
common (fig. 22), and porosity is generally quite low.

As we approach the crest of the hill, apparently in situ
and exteusively encrusted material becomes dominant.

Some of this may represent blocks of debris too large to
recognize, but most of it presumably indicates in situ
lithification and encrustation of material at the base of
the active reef-forming area by organic and inorganic
agencies. Reef growth, algal encrustation and inorganic
(submarine) cementation extends into water depths of
several hundred feet in many modern tropical reef areas.
Similar patterns are to be expected in the Permian.

Thus, although the zone of major faunal growth and
diversity lay upslope from the highest point we will ascend
to, some in gitu growth of reef organisms, algal encrusta-
tions, and submarine cementation presumably extended down-
slope into the areas we are crossing.

The view from the small peak we have climbed is one of
the finest in the Guadalupe Mountains from a geological
perspective. This vantage point allows us to look direct-
ly at the north wall of McKittrick Canyon (fig. 16) and
largely eliminates the problem of apparent dips which
complicated our earlier paunoramas. The vast bulk of the
sediments which make up the lower 3/4th of the north wall
of McKittrick consist of Capitan fore-reef debris (fig. 16).
In many areas, particularly near the mouth of the canyon,
the steep, dip (nearly 30 degrees) of these rubble beds is
apparent. The gradual flattening of those dips to the
near-horizontality of the basinal Bell Canyon sediments is
equally apparent in that area. Indeed, the uppermost
basinal limestone (the Lamar) can be traced as a virtually
continuous bed from basin to shelf (fig. 16) as it rises more
than 1,700 ft. The same transition can be viewed in the
shelf-edge escarpment visible to the north and northeast.

Above the bedded Capitan talus lies a massive, nearly
completely unbedded zone of the Capitan reef-massif
(fig. 16). The massive character is a consequence of both
the original skeletal framework with its encrusted
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(boundstone) fabric, and the massive, penecontemporaneous
cementation which completely pervaded the reef and obliter-
ated virtually all porosity. Although particularly well
developed at its eastern end, the reef massif can be traced
continuously toward the west. In this direction, the reef
passes lower and lower in the section but continues to
overlie thick, reef-talus deposits. Thus, from this
vantage point we can see that the Capitan reef built

upward nearly 1,000 ft during the time in which it pro-
graded out over its own debris; the debris, furthermore,
filled in a basin of between 1,000 and 2,000 ft water depth.

The ratio of reef rubble to in situ reef is extremely
high, a fact noted by many workers. As pointed out by
Dunham (1972), however, this is not a surprising situation.
In modern reef-forming areas, the zone of significant reef
growth is narrow, both laterally and vertically. The
active growth zone is but a thin veneer on the upper and
frontal edge of the reef platform. Much of this in situ
material 1is eventually broken up by storms and reworked
reworked down the fore-reef slope. New organisms grow in
the reef crest area only to be reduced to rubble as well.
Vast quantities of material are formed within the reef zone
but only a small fraction of this volume remains in that
environment. Most is swept away into fore-reef or back-
reef settings. Thus, the vast amounts of rubble visible
in the Capitan complex are not a valid piece of evidence to
deny the existence of a true reef in this area. Rather,
the rubble serves as evidence that the shelf edge was
occupied by a faunally diverse assemblage of organisms with
remarkably high rates of sediment production.

Above and to the west of the Capitan reef-massif, a wedge
of flat lying, well bedded, back-reef sediments (Tansill and
Yates Fms.) can be seen (fig. 16). The wedge thickens to
the west where older sediments are exposed. The sediments
(mainly green algal-fusulinid grainstones) of the near-
back-reef Tansill can be seen to pass into and over the
Capitan reef-massif and perhaps even to spill over onto
the slope in front of the reef. This may be an indication
that reef growth ceased before the end of carbonate
sedimentation in the area. In that case, the final phase
of shelf-edge deposition would have been marked by
unconsolidated skeletal sand shoals rather than a barrier
reef.

The spectacular view of facies relations on the north
wall of McKittrick Canyon is matched by the vista to the
north and northeast. It shows present-day topography
which virtually exactly matches that of late Guadalupian
time. Back-reef sediments mark the upland surface of the
Northwest Shelf; Capitan reef sediments, characterized by
their vertical, strike-parallel jointing, delineate the upper
margin or rim of the Delaware Basin; steeply dipping slope
deposits compose the flanks of the escarpment; and flat-lying
basinal deposits of the upper Bell Canyon Fm. compose the
floor of the present basin to the east-northeast (the
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Delaware Basin). The exhumation of this Permian topography

is entirely a consequence of the thick, (Castile)

evaporite filling of the remnant Delaware Basin in Ochoan

time, and its subsequent dissolution during the Tertiary.
To the east and southeast, a series of cuesta scarps of

the various limestone members of the Delaware Mountain

Group are visible. These culminate in the major escarp-

ment of the Delaware Mountains, capped by the Getaway Ls.
On our descent down the dip slope of the Lamar, on

which we are now standing, we will see a progressive

change in the character of the rock. We will see greater

amounts of finer-grained, darker-colored, less encrusted,

and less obviously detrital sediment as we move downslope.

Silicification will increase we approach the base of the slope.
We will eat lunch in the parking lot at the mouth of

McKittrick Canyon and will then retrace our route back to

U.S. Highway 62 and 180.

8.6 Junction with U.S. Highway 62 and 180. Turn right for El
Paso or left for Carlsbad at mileage 113.8 on the El1 Paso-
Carlsbad roadlog.
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WALNUT CANYON ROADLOG
Mileage Cum.
Mileage

0.0 0.0 Junction with U.S. Highway 62-180 and New Mexico Highway 7
in White’s City, New Mexico at mileage 141.3 (reverse mileage
18.1) on El1 Paso-Carlsbad roadlog. Take NM Highway 7
toward Carlsbad Caverns.

0.5 0.5 STOP I-2. Carlsbad Caverms National Park entrance sign. Park
along road or in dirt lot oun south side of road. This
locality, at the entrance to Walnut Canyon, provides excellent
exposures of the reef and near-back-reef facies of the upper
Capitan Limestone and Tansill and Yates Formations. In
this area, the fore-reef facies and part of the reef have
been buried beneath the thick Ochoan (and some thin
Tertiary-Quaternary) filling of the Delaware Basin. The
Castile Fm., although completely or partially removed in areas
to the southwest, has been preserved in this area because
of the northeastward tilting of this region. Thus, only a
small exposure of the reef-crest and its transition to the
near-back-reef are exposed. Because an outstanding guide-
book is available for the entire Walnut Canyon route (Pray
and Esteban, 1977), only rather brief descriptions will be
given for these localities (this site corresponds to
Locality guide I, stops I and II of Pray and Esteban,

1977).

We will examine the rock spur between Walnut Canyon,
and Bat Cave Canyon (fig. 23). We will pay particular
attention to several fresh outcrops in Bat Cave Canyon
for these expose the reef fabric in an unweathered and umore
readily visible state. Please note, however, that much of
this exposure is within the National Park boundaries and
thus collecting permits are required for sampling.

Babcock (1974) noted a distinct zonation of the reef. He
recognized an Archaeolithoporella-nodular boundstone,
a phylloid algal boundstone, and a Tubiphytes-sponge
boundstone/packstone (fig. 23) as well as some transitional
zones. In all these facies there are four salient elements:
1) an in situ framework of oriented organisms; 2) encrust-
ing and binding organisms which added stability to the
framework; 3) internal sediment of skeletal fragments,
pellets, or other grains which lodged in open pores in
the framework; and 4) submarine cement crusts filling
virtually all remnant porosity.

The dominant framework organism in this complex is the
calcareous sponge (fig. 24). Many different types
existed here, including members of the genera Guadalupia,
Amblysiphonella, Cystaulete, and Cystothalamia. Other
organisms such as Tubiphytes (of probematic affinities),
stromatolitic blue-green algae, phylloid algae, and
bryozoans also form significant framework elements, at
least locally.

Encrustation and stabilization of this skeletal framework
was accomplished by Archaeolithoporella (a possible alga),
Tubiphytes (found as both framework and encrusting forms),
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Solenopora (a probable red alga), and other, less common
organisms (fig. 25). Such encrustation, seen also in modern
reefs, probably contributed greatly to the strengthening

of the reef framework.

Internal sediment, although not a significant factor in
the lithification of the reef, did play an imporant role
in infilling and occluding the primary reef porosity.
Internal sediments generally are found as laminated,
geopetal fabrics, sometimes with interlayered submarine
cements (fig. 26). The internal sediments contain a
specialized fauna including foraminifers, ostracods,
echinoids, pelecypods and other organisms which presumably
lived within interstices in the reef framework.

Submarine cements form a very important component of the
Permian reef. Coarse fans of radial-fibrous crystals fill
much of the primary porosity in the reef and make up more
than half the total volume of rock in many locations. The
cement fans, probably originally aragonite, are commonly
interlayered with Archaeolithoporella or other encrusting
organisms (fig. 25). The submarine cements are restricted
to a relatively narrow zone which extends from several hundred
feet down the fore-reef slope to perhaps one half mile
shelfward of the reef crest. Very similar relations have
been seen in modern reefs such as in Belize, Florida,
the Bahamas, and Jamaica. 1In these areas, as in the
Permian, submarine cementation, largely in the form of
aragonitic and high-Mg calcite fans and crusts, are re-
stricted to the reef face, upper fore-reef, and near-back-
reef zomes.

After seeing these major fabric elements where they are
unweathered and well exposed in Bat Cave Canyon we will
cross the spur to Walnut Canyon. FExamine the sediments on
this traverse and try to recognize the same fabrics where
they are more iatensely weathered. Also examine the
fracture fillings along Walnut Canyon.

We will now walk up Walnut Canyon examining the trans-
ition from reef to near-back-reef areas, eventually cross-
ing from the south to the north side of Walnut Canyon.

On this traverse, be sure to note changes in bedding
character as well as sediment composition. Also note
the remarkably rapidity of the lateral lithologic changes.
The most obvious change is from a boundstone fabric to one
of grainstones and packstones containing ooids and skeletal
grains. Cephalopods, foraminifers, pelecypods, gastropods,
and most importantly, dasycladacean green algae, particularly
Mizzia and Macroporella, rapidly supplant sponges and
bryozoans as the major skeletal components. Bedding in
these well-sorted grainstounes is massive and indistinct
(fig. 27) but still is far better defined than in the reef
facies. Grain size ranges from coarse silt to coarse sand;
sorthing moderately good to excellent. Coated grains and
ooids form a significant percentage of the total sediment
(figs. 27, 28 and 29).

Sediments further up-canyon (farther back-reef) show
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increasing amounts of dolomite, fenestral fabrics, coated
(pisolitic) grains, algal(?) lamination, carbonate
breccias, "tepee structures'", and thin, clastic terri-
genous sandstone-siltstone units.
The abrupt facies transition from reef to back-reef
is similar to that seen in many modern settings. In the
Florida Keys on the western side of Andros Island in the
Bahamas, for examples, the change from reefal boundstones
to skeletal, back~reef grainstones takes place over
distances of just a few tens to hundreds of feet. The
near~back~reef areas in Florida and the Bahamas generally
consists of complex, small~scale mircofacies of green-algal
(Halimeda) grainstomnes, grapestones (coated and coalesced
grains), ooids, skeletal fragments, and other lithologies.
In areas such as the Joulter’s Cay region of the Bahamas, one
can see these grainstone types closely intermingled as a
series of submarine sand waves, islands, tidal channels,
and beaches. Associated with these grainstones are mudstone-
wackestone microfacies in sheltered areas of tidal flats and
back~barrier coves. The extremely varied lithologies in the
Permian near-back-reef setting presumably reflects similarly
complex microfacies patterns. This is also evident in the
intimate mixture of diagenetic patterns in the Permian near-
back~reef sediments. Submarine as well as vadose phreatic
nonmarine cements are all present in local zones in this
area probably as a result of local (island facies) input
of nonmarine fluids.
Return to vehicle(s) and proceed up-canyon.

Near~back-reef Mizzia-dominated grainstones on right which
we have examined in our previous traverse.

Cross Walnut Canyon.

Pisolite~bearing dolomites and faulted upper Yates sandstones
in roadcut.

Upper Yates and lower Tansill sediments in canyon walls.
This locality exposes mainly pisolitic dolomites and
sandstones and is an excellent area for examining tepee
structures.

Exhibit area on right.

Road cuts on right expose Yates Fm. dolomite and sandstone.

Parking area on left with exposures of pisolitic dolomites,
tepee structures, and sandstones of Yates Fm.

Exhibit area (showing botanical diversity of the area) on
the left. Canyon wall on left has exposures of Yates Fm.,
including the large, sand~filled cavern described by
Dunham (1972, Stop II-5).

Sharp bend in road; primitive road on right can be used
as parking area to view exposures of Yates Fm. just ahead.

STOP III~7. Outstanding exposures of pisolitic dolomites
of the upper Yates Fm. (see Pray and Esteban, 1977; Dunham,
1972). This locality illustrates numerous cycles of
pisolitic sediments (termed "Walnutite cycles" by Pray and
Esteban, 1977). Tepee structures (fig. 30) can be seen both
in this outcrop and in the distant canyon wall to the north.
The main small-scale features to be seen at this outcrop are
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the abundant pisoliths which range from B-B-size to golf
ball-size. They have concentric laminations of thin car-
bonate coatings around nuclei of fractured pisoliths (fig, 31)
or, rarely, marine fossils. The pisoliths, which have been
completely replaced by aphanocrystalline dolomite, occur in
cyclic beds, commonly with reverse grading (fig. 31). 1In some
(but not most) cases, pisoliths have intergrown or interlocking
textures. There 1s considerable evidence to show that these
pisoliths had original aragonite composition, now replaced by
dolomite. They are associated with sheet cracks (broad bands
of displacive, fibrous carbonate, presumably also originally
aragonite but now dolomite or calcite; fig. 32). These dis-
placive crusts are related to the origin of the tepee
structures of this area for the tepees are expansion

polygons formed by a volume increase of the associated
sediments. This was most likely accomplished by in situ,

near surface, displacive growth of aragonite and (or)
evaporite minerals.

The origin of pisoliths and tepee structures in these
sediments has been the subject of numerous studies and con-
siderable controversy. Extensive discussions of these
problems have been presented recently by Dunham (1972),
Esteban and Pray (1977), and Pray and Esteban (1977) and so
will be only briefly outlined here.

Basically there are two hypotheses: 1) the "all wet"
model which proposes that the pisoliths were formed by
organic (algal) or inorganic coating of grains in a
shallow-water shelf setting with each grain acting as a
free, clastic particle; and 2) the "caliche" hypothesis
which suggests that pisoliths formed in situ as part of
cyelic, reverse graded, caliche profiles which formed by
alteration of carbonate sediment brought into the area by
storms or other episodic processes. Advocates of either
model can point to modern analogs (mainly from the Persian
Gulf and Red Sea areas) with scattered, small-scale
accumulations of aragonitic pisoliths in marginal marine,
hypersaline settings. Yet nowhere have we discovered an
analog which comes close to modeling the breadth and
abundance of pisoliths that one sees in the Permian.

The differences of interpretation of these deposits, al-
though important from the point of view of fully under-
standing the. sediments, are not of great significance to
the explorationist. There can be little argument that this
facies must have stood as a paleotopographic high-point in
Guadalupian time. The persistence of this facies in space
and time (it is present in Seven Rivers, Yates, and Tansill
rocks), 1its consistent geometry (an elongate facies, para-
1lel to the reef trend), and its equally consistent juxta-
position between open marine (grainstones with a high
faunal diversity) and restricted (hypersaline mudstounes and
evaporites) environments indicate that the pisolite facies
must have been a major hydrographic barrier. Nowhere in
the world today are evaporitic mudstones and open marine,
faunally diverse sediments in close proximity without
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having an intervening barrier. It seems likely that to act
as such a barrier, the region would have had to be sub-
aerially exposed (except for tidal channels) and this

would favor the caliche interpretation. It is possible,
however, that broad, low relief, tidal flats could also act
as partial hydrographic barriers. Finally, it is possible
that a combination of processes could have acted. A number
of different pisoliths can be seen in the Permian strata.
These range from the small, irregularly coated grains seen
at Stops III-2 and I-2 (and which almost certainly formed
in a marine setting) to the larger, smoother, and more ex—-
tensively encrusted grains present at this locality. Thus,
a number of different origins can be envisioned for the
different pisolith types.

The tepee structures and sheet cracks found in associa-
tion with pisolitic sediments can also be interpreted as
either marine or nonmarine. Displacive aragonite crusts
and tepees have been noted in submarine cemented areas
within the Persian Gulf itself as well as in coastal
caliches and sabkha surfaces of the surrounding, subaerial-
exposed coastlines.

Exhibit area on left; the thin sandstone-siltstone unit which

marks the Tansill-Yates contact is exposed on the left.
The road ascends into Tansill Fm. dolomites.

Cave entrance parking lot. Stop I-3. We will do the com-

plete walking tour of Carlsbad Caverns -~ the Roswell
Geological Society 1964 field trip guidebook provides a
trail log of the caverns (Sanchez, 1964). The cave is cut
primarily in the Capitan Limestone but the entrance and all
of the upper level are in the back-reef dolomites of the
Tansill and Yates Fms. The lowest parts of the cave are
cut in steeply-dipping fore-reef talus of the Capitan, down
to a level approximately 850 ft below the entrance.

This level is presumably related to the regional ground-
water discharge surface in the Pecos valley to the northeast.
The history of development of the cave is extensively de-
scribed by Jagnow (1979). The location and orientation of
the Capitan reef and its early fracture system have con-
trolled, to a large degree, the geometry of the local cave
systems. Pliocene and Pleistocene uplift allowed percola-
tion of phreatic groundwater through the joint system and
eventual excavation of the caverns. The subsequent vadose
history of the cave led to introduction (and later partial
removal) of clay, silt, sand, and gypsum fills as well as
calcitic speleothems. The cave is largely inactive today
except for some areas in the lowest cave levels.

The outcrops at the southwest end of the parking lot
provide exposures of tepee structures, sheet cracks, and
pisolitic sediments of the Tansill Fm. We will probably
not have time to visit these outcrops, but similar features
are seen at Stop III-7.

Return down Walnut Canyon.

Junction with U.S. Highway 62-180 in White’s City. End of

supplementary roadlog. Turn left for El Paso or right for
Carlsbad and rejoin main roadlog at mileage 141.2 (reverse
mileage 18.1).
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DARK CANYON = SITTING BULL FALLS-ROCKY ARROYO ROADLOG

Cum. Mileage

Mileage Clock=- Counter-
wise clockwise
loop loop

0.0 0.0 80.1 Head west on paved road to Dark Canyon at mileage
151.3 (reverse mileage 8.1) on El Paso-Carlsbad
roadlog.

0.4 0.4 79.7 The Hanson and Yates, King No. 1 well on the right
is the entire Dark Canyon oil field. MNumerous
offset wells were dry holes.

0.8 1.2 78.9 Rustler Formation dolomite, sandstone, and gypsum
make up the low Frontier Hills ahead.

1.5 2.7 77.4 Rustler Formation outcrops in hills on both sides
of road.

1.2 3.9 76.2 Mouth of Dark Canyon. We have left the Delaware
Basin and are now on the Northwest Shelf in the
northeastern part of the Guadalupe Mountains.
Bedded Capitan Limestone outcrops are present on
both sides of the canyon.

0.15 4.05 76.05 Road intersection; take sharp right.
0.20 4.25 75.85 STOP III-1. We will examine the reef to near-

back-reef transition in the uppermost part of
the Capitan and lower Tansill Formations.
These sediments have been mapped as reefal
Capitan limestones by Motts (1962) and as bhack-
reef limestones of the Tansill Formation by
Relley (1971). Tyrrell (1969) and Toomey and
Cys (1977) presented extensive evidence to show
that this locality provides an exposure of the
transition beds between the Capitan and Tansill
carbonates. Clearly, the major part of the reef
front is buried beneath basinal sediments in this
area but shelfward facies are well exposed.
Thus, we can examine the near-back-reef skeletal
grainstones containing ooids and algally coated
grains, dasycladacean green algae (particularly
Mizzia and Macroporella), crinoids, helerophontid
gastropods, fusulinid Foraminifera, Tubiphytes-
Archaeolithoporella colonies, and sponges
(fig. 33). These rocks are similar in many ways
to the sediments seen at the up-canyon end of the
first stop in Walnut Canyon (Stop I-2) which
would indicate that we are probably at, or only
a short distance shelfward, of the main reef
facies. Note the consistent change in bedding
character as we walk in a shelfward direction.
The abruptness of the facies transition seen
here and in Walnut Canyon in the near-back reef
setting is very similar to modern facies transi-
tions in areas such as Florida or the Bahamas.
There, as here, reefal debris tends to move
primarily into fore-reef talus; back-reef sands



43

are dominated by grains of green algal origin
(Halimeda in modern sediments; Mizzia in the
Permian) ooids or coated grains, and other
particles of shelf origin. Submarine shoals,
channels, islands, and patch reefs have local
distribtuion and complex, virtually unpredict-
able, patterns. Such modern setting appear to
be excellent analogs for these older environ-
ments.

We will not be able to stay within the Tansill
Formation in our entire traverse through
the Capitan—equivalent shelf strata because
erosion has removed much of the far-back-reef
Tansill. We will see facies equivalents in
older (but still Capitan-—-equivalent) strata of
the Yates and Seven Rivers Formations. Evidence
from remaining outcrops and subsurface data in-
dicate that similar shelfward facies transitions
occurred in all three back-reef units (fiz. 34).
The general sequence of facies frow the shelf-
edge landward tends to be reef; massive,
skeletal (mainly green algal) grainstones;
bedded and cross-bedded oolitic grainstones;
dolomitized, fenestral grainstones and
pisolitic mudstones; coarse, pisolitic, dolo-
mitized grainstones with tepee structures;
stromatolitic or pelloidal dolomitized mud-
stones; pure, calcisphere-bearing, dolomitic
mudstones; with evaporite crystal casts and (or)
collapse breccias; nodular gypsum or anhydrite
units; and finally red siltstones.

Throughout this facies suite, thin but later—
ally persistent, fine-grained sandstone and
siltstone beds are found. These sandstone-silt-
stone units, especially common in the Yates
Formation, generally pinch out before reaching
the reef facies; in several areas these sand-
stones approach within a few hundred yard of the
reef. In the Yates (and the older Queen)
strata, these terrigenous beds make up at
least 1/3 of the formation thickness, are
excellent regional correlation markers, and
can act as reservoir units.

Because there was extensive (2-3 mile) bhasin-
ward progradation of facies during Capitan de-
position, the facies previously described as
being lateral equivalents can also be seen to
some degree in vertical sequence, a fact which
has significant influence on the early diagene-
tic history of much of the sediment package.
Figure 34 shows the progressive basinward
shift of the evaporite-carbonate transition
zones in successively younger, Capitan-equiva-
lent back-reef units. Thus, the progradation
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of shallow-water, subaerial, or restricted
environments over more normal marine sections
may have allowed very early input of freshwater
or hypersaline brines into unconsolidated and
geochemically unstable sediments. Indeed, sedi-
ments from the shelfward edge of this outcrop to
the platform interior show extensive signs of
vadose as well as phreatic leaching and cementa-
tion combined with virtually complete, very
finely crystalline dolomite replacement. The
approximate thickness of back reef units of the
Artesia Group in this region are (in ascending
order): Grayburg Fm., 400-500 ft; Queen Fm.,
200-400 ft; Seven Rivers Fm., 450-5600 ft; Yates
Fm., 300-400 ft; and Tansill Fm., 100-325 ft
(all data from Kelley, 1971). The transitions
from carbonate to evaporite facies generally
occur within 5 to 15 miles shelfward of the bank
margin or reef throughout the history of the
Artesia Group (fig. 34). Turn around and return
to main road.

0.20 4.45 75.65 Intersection with main Dark Canyon road; turn
right.
0.55 5.0 75.1 STOP III-2 at junction with small dirt road on

left. Park and walk down road to cliff out-
crop on south side of canyon. This locality
(equivalent to part of Dunham’s (1972) Stop I-
1) exposes dolomites and calcitic dolomites

of the near-back-reef Tansill Formation. A
wide variety of sediment types are present here,
typical of the complex, small-scale microfacies
patterns in this paleogeographic zone. We can
see pisolitic mudstones, birdseye dolomites,
cross~bedded green-algal grainstones, and other
lithologies intimately intermingled at this
site. Fusulinid Foraminifera, belerophontid
gastropods, pelecypods, green algae, and
probable blue-green algae are particularly
abundant in these sediments.

These beds apparently represent a series of
islands or banks (cross—bedded grainstones;
fig. 35), subaerial and intertidal flats
(birdseye fabrics; fig. 36), restricted or
sheltered mud accumulation sites (pisolitic
mudstones), and intervening tidal channels

fossiliferous packstones and grainstones).
These facies patterns are quite similar to ones
found in the Bahamas in regions such as Joulter’s
Cay, or in Trucial Coast barrier-lagoon complexes
of the Persian Gulf.

Diagenetically, these Permian microfacies are
equally complex. Within this outcrop one can
find microscopic examples of submarine cement as
well as vadose and phreatic freshwater cements
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(figs. 37 to 39). Porosities in this zone are
variable but include some of the highest values
found anywhere in the Guadalupian facies
spectrum.

74.8 STOP III-3. Cross stream wash and examine two
outcrops on north side of valley. The Tansill-
Yates contact is exposed in the western part of
the outcrop, marked by a thin sandstone-siltstone
unit. We can see algally laminated dolomites,
fusulinid grainstones, pisolitic beds, probable
Permian breccia pipes, as well as infiltrated,
red, lateritic soils in solution enlarged frac-
tures and voids. The pisolitic microfacies was
postulated by Dunham (1972) to be one of the
highest paleotopographic zones in the Capitan
complex. Pisolitic "caliche" zones and solution
features would thus be a probable result of even
minor relative sea level drops during deposition.
The red void-fillings consist of kaolinite,
hematite, quartz, goethite, illite, and
amorphous iron oxide, a reasonable composition
for a solution residue in this area. More
extensive discussion of this facies will be
given at Walnut Canyon (STOP III-7).

The thin sandstone-siltstone bed at the Yates-
Tansill contact is typical of such terrigenous
units in this area. They are generally 1-8 ft
thick, well-sorted, very fine sandstone or
coarse siltstone, and have subarkosic or arkosic
composition. Dunham (1972) showed that a pro-
gressive decrease in feldspar content of these
units from shelf interior to the Capitan shelf
margin is directly matched by a progressive
increase in kaolinite content. Thus, these
clastic terrigenous beds were probably uni-
formly arkosic but the near-reef sections
underwent more intense post-depositional
alteration.

In spite of their relative thinness, these
sandstone-siltstone beds have great lateral ex-~-
tent, particularly parallel to the reef trend,
and serve as excellent stratigraphic marker
beds (DeFord and Riggs, 1941). Some low-angle
channel structures and ripples can be seen,
locally, in these units, but generally these
sediments are horizontally laminated or
structureless. They presumably represent large-
ly wind-transported material; the horizontal
lamination may have resulted from dune migration
over an equlilibrium deflation surface (sabkha)
or from depostion in extremely shallow, lagoonal
waters.

74.4 Optional Stop. Pisolitic dolomites with "tepee"
structures well exposed on south side of
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valley. Note laminated sandstone-siltstone unit
interrupting and truncating some "tepees". The
sandstone-siltstone is the uppermost part of the
Yates Fm.; overlying dolomites are in the
Tansill Fm.

Yates outcrop on left contains pisolitic dolomite
and sandstone.

Yates Fm.(?) pisolitic dolomite with evaporite
crystal casts on right.

Yates Fm.(?) outcrop of thick-bedded, dolomitic
mudstones with sparse evaporite crystal casts.

Dolomitic mudstones, peloidal grainstones, and
pisolitic beds of Yates Fm.(?) on right.

Yates Fm.(?) dolomitized peloidal grainstones on
left.

Road junction; continue straight ahead to Sitting
Bull Falls.

STOP III-4. Walk down stream to outcrops on north
side of valley. Exposure of thin-bedded,
aphanocrystalline to very finely crystalline
dolomitic mudstone with extensive evaporite
crystal casts, pyrite nodules, and contorted,
probably stromatolitic zones. These penecontem—
poraneously dolomitized mudstones contain
pellets, some peloids, scarce encrusting fora-
minifers, and numerous calcispheres. These
sediments, with their sparse assemblage of
salinity tolerant organisms and evaporite
minerals, apparently represent a shallow,
hypersaline lagoon similar to those found today
in many areas of the Persian Gulf.

Road junction; bear right.

Start gravel road; continue straight ahead.

W.G. Smith ranch road on right; continue straight
ahead. Road is on Seven Rivers Fm.

Road intersection on right; continue straight
ahead on main road.

STOP III-5. Interbedded thin-bedded, dolomitized
mudstones and red, far-back-reef siltstones of
the Seven Rivers Fm. on left. The Seven Rivers
is the oldest Capitan-—equivalent unit in the
Artesia Group. These outcrops have been mapped
as basal Yates Fm. by Motts (1962) but have been
considered to belong to the Seven Rivers by
most other workers. WNote the uniformity of the
aphanocrystalline to very-finely-crystalline
replacement dolomite. The environment pre-
sumably represents a shallow lagoonal or lower
sabkha environment.

Medium-scale contortions visible in Seven Rivers
Fm. These were probably caused by near-surface
dissolution of interbedded gypsum and anhydrive,
although the Seven Rivers consists mainly of
dolomites and siltstones in this area.
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Road intersection on left; continue straight
ahead.

Road intersection on left; bear right on main
road.

Varicolored sediments on right are interbedded
massive gypsum, dolomite, and red beds of Seven
Rivers Fm.

Ranch road on left; continue straight ahead.

STOP III-6. Borrow pit in gypsum of Seven
Rivers Formation. Surface weathering makes
viewing of gypsum outcrops a frustrating exer-
cise; most are altered to a very great degree
with a solution residue covering most fabric
elements. This borrow pit exposes the freshest
samples easily accessible to a field trip group.
Gray-white gypsum with a nodular, enterolithic
texture can be seen in isolated blocks scattered
around the pit (fig. 40). This "chicken-wire"
fabric may be related to a sabkha origin of the
evaporite, but may also be a consequence of
dehydration-rehydration reactions during
burial and uplift. (although the unit is gypsum
on outcrop, it is generally anhydrite in the
subsurface). The '"chicken-wire" texture, with
thin clay films between gypsum nodules, also
been interpreted as the product of displacive
growth of subaqueous gypsum in silty-clayey
sediments in a shallow-water lagoon (Sarg,
in Pray and Esteban, 1977).

On the left one can see a reentrant of the
Seven Rivers Embayment, an extensive planar
feature developed by dissolution of the
evaporites of the Seven Rivers Fm.

Road junction to right; continue straight ahead.

Road on left; continue straight ahead on main
road.

Ranch house on right. Well drilled to left
(Humble’s Bandanna Point Unit No. 1 gas
well) was completed as a gas producer from
Morrowan (Pennsylvanian) sandstone. It en-
countered the following units: San Andres
Fm. (top at 750 ft depth); Bone Spring Ls.
(2,815 ft); Wolfcamp limestone (7,150 ft),
Pennsylvanian (7,550 ft); Mississippian
(Chester) (10,234 ft). Woodford Shale
(10,868 ft); Devonian (10,932 ft); Montoya
Group (11,622 ft); Simpson Group (11,995 ft);
and Ellenburger Group (12,050 ft) (data from
Hobbs, Roswell and West Texas Geological
Societies, 1962 Field Trip Committee, 1962,

p. 18).

Azotea Mesa on right is composed of Seven Rivers
Fm. gypsum capped by a prominent dolomitic
ledge. The ridge ahead in the distance
consists of Queen and Grayburg beds downwarped
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along the Huapache Monocline. We are now
entering the main part of the Seven Rivers
Embayment'with the road on thin alluvium over
Queen Fm.

Intersection with New Mexico Highway 137 (a paved
road from El Paso Gap to Carlsbad). Turn left
toward El1 Paso Gap. Guadalupe Mountains ahead
in distance; road traverses the Seven Rivers
Embayment atop the Queen Fm.

Junction with road to Sitting Bull Falls on right;
turn right.

Queen Fm.(?) redbeds, dolomites, and evaporites on
right.

Road crosses approximate Queen-Grayburg contact
and passes onto Grayburg Fm.

Entering Lincoln National Forest.

Road crosses first wash and traverses Huapache
monocline ahead.

Road crosses onto San Andres Limestone.

Lenticular, partly silicified, skeletal grain-
stones of the San Andres, probably filling
channels, on right at base of slope near stream
crossing. Brown, thin-bedded Cherry Canyon
sandstone beds can be seen in cliffs on right.
This tongue of the generally basinal Cherry
Canyon Fm. extends many miles into the shelf
environment in this area. The Cherry Canyon
sandstone tongue is 164 ft thick near the
mouth of Sitting Bull Canyon.

A massive upper San Andres bioherm, overlain by
Grayburg Fm. is visible ahead on right. Note
lenticular bedding to the left of the bioherm.

Junction of Sitting Bull Canyon and Last Chance
Canyon (along which have been travelling).

Road turns into Sitting Bull Canyon. Cliff on
north side of Last Chance Canyon (on right)
has exposures of lower San Andres Ls. (at

very base) overlain by the thick sandstone
tongue of the Cherry Canyon Fm.; the upper

San Andres, bioherm-bearing limestone and
Grayburg Fm. sandstones and carbonates

form the top of the section. A major angular
discordance is visible between the Cherry Canyon
sandstone tongue and the upper San Andres

Ls. A more subtle angular discordance is also
present between the upper San Andres and the
Grayburg Fm.

Excellent exposures of the lower San Andres,
here extensively dolomitized, can be examined
by walking up Last Chance Canyon for a few
hundred feet.

The Cherry Canyon-San Andres unconformity is well
exposed on both sides of the road.

Cherry Canyoun sandstone outcrops with well
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developed cross-bedding are visible on right.

Parking area for Sitting Bull Falls. Lunch stop at
picnic benches. The entire cliff on the north-
west side of the picnic area is formed of modern
travertine which can be examined in numerous
fallen blocks. A short walk to the active
waterfall area shows travertine in the process
of formation. Calcium bicarbonate and carbon
dioxide saturated waters emerge from springs in
the Grayburg and San Andres units a short dis-
tance (about 1 mile) upstream from the falls.
Warming of the waters, combined with release of
CO0, from waters plunging over the falls, induces
precipitation of calcium carbonate. The with-
drawal of CO, from the water by the numerous
algae and higher plants which abound at the
falls also contributes to the calcite precipita-
tion. These plants are then incorporated within
the calcite, later to rot away. This accounts
for the unusual fabric seen in the travertine
blocks.

If you climb up or under the waterfalls,
please take great care as the rocks here are
very slippery. The other walls of the canyon
in this area expose the Cherry Canyon sandstone
tongue in their lower part, the upper San Andres
Limestone in the middle part, and Grayburg Fm. in
the upper part. WNote the biohermal or bank
structures in the San Andres; they were probably
deposited as fusulinid grainstone banks rather
than as true reefs.

Return down-canyon to the El Paso Gap-Carlsbad
road.

Junction with Wew Mexico Highway 137 (E1 Paso Gap-
Carlsbad road). Note West Hess Hills at 2:00
to 3:00 o’clock and Azotea Mesa at 10:00 to 11:00
o’ clock---both are composed of gypsum, red silt-
stones, and dolomites of the Seven Rivers Fm.

Turn left toward Carlsbad.

Unpaved Dark Canyon road on right; continue
straight ahead. Road is on Queen Fm.

Road now crossing the approximate contact be-
tween the Queen and Seven Rivers Fms. The
road is located almost directly on this
contact for the next few miles, with Queen
sediments on the left and Seven Rivers on the
right.

Hills ahead and to the right are composed of Seven
Rivers evaporites and red siltstones.

The strongly developed vertical gullying is
characteristic of the evaporite facies of the
Guadalupian far-back-reef units and contrasts
sharply with the horizontal bedding which
dominates in areas of carbonate facies within
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these same units (fig. 41). Most of these hills
are capped by the resistant '"Azotea Tongue"
(usage of Sarg, 1976), a dolomite unit in the
Seven Rivers TFm.

53.0 27.1 Road passes from Seven Rivers Embayment into Rocky
Arroyo.
53.6 26.5 Road is at the level of the contact of the Queen

Fm. (Shattuck Sandstone unit of Sarg, 1976) and
Seven Rivers Fm. We are nearly 1 mile shelfward
(northwest) of the carbonate-evaporite transi-
tion of the Seven Rivers Fm. (Sarg, 1976). This
transition is remarkably abrupt (within about
500 ft) and remains in approximately the same
location for nearly 200 ft of section (Bates,
1942; Pray and Esteban, 1977). This Seven
Rivers facies transition has been shown by

Sarg (1976) to be related to a depositional
ridge in the underlying Shattuck Sandstone of
the Queen Fm.

The gullied hillside on the southeast side of
the road has good exposures of the Seven Rivers
evaporite facies (see Pray and Esteban, 1977,
Stop VIT). The section is dominated by bedded,
nodular, mosaic gypsum with thin, pelletal or
grapestone-~bearing dolomites and red, gypsum-
cemented, sandy siltstones.

Note invigorating, heady aroma of hydrocarbons
in the air; it emanates from the Indian Basin gas
field about 0.3 miles ahead.

53.7 26.4 Low road cuts on right are Queen Fm. (Shattuck
Sandstone). Conical hill visible to the north
of the road is "The Tepee" and is capped by the
resistant "Azotea Tongue'" a massive dolomite of
the Seven Rivers Fm. Underlying Seven Rivers
evaporites, the Shattuck Sandstone and dolomites
of the Queen Fm. are also exposed.

56.0 24,1 Intersection with road on left leading to Marathon
0il Co. Indian Basin gas field and plant. Pro-
duction here is from Upper Pennsylvanian and
Lower Permian reservoirs. Continue on main
road.

56.1 24,0 Optional stop. Excellent view of the carbonate-
evaporite facies transition in the Seven Rivers
Fm. (see description of Stop VI in Pray and
Esteban, 1977) on north wall of Rocky Arroyo.
This extremely rapid transition can be seen in a
narrow, nearly vertical, band in the upper half
to two-thirds of the far wall of the valley.

The transition is visible because of the
radically different weathering patterns of

the evaporite (vertical gullying) and carbonate
(horizontal bedding) facies. The transition was
was first described by Bates (1942) and has been
recently examined by Sarg (1976).
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Also exposed in the lower part of the cliff is
the upper dolomite and the overlying Shattuck
Sandstone unit of the Queen Tm. The Shattuck,
generally about 90 ft thick in this region,
thickens to about 140 ft beneath the carbonate-
evaporite transition and may have been partly
reponsible for the generation of restricted,
evaporitic conditions shelfward of this point
during Seven Rivers deposition (Sarg, in Pray
and Esteban, 1977).

Optional stop. Excellent exposures of Shattuck

Sandstone (Queen Fm.) on the right (see Dunham,
1972, Stop I-5; Pray and Esteban, 1977, southwest
end of Stop VIII). The saundstone has broad,
channel-like structures with northwest-

southeast axes.

Continuation of previous outcrop. These medium=-

to thin-bedded dolomites, about 12 mi shelfward
of the Capitan scarp, are generally placed in the
Seven Rivers Fm.; Sarg (1976), however, included
them in the Queen Fm. Some interesting collapse
breccias occur in these strata, which were in-
cluded by Dunham (1972) in his "calcisphere
dolomite wackestone" facies. The largest
breccia occurs as an isolated pocket in a thick,
light-tan dolomite bed. The breccia has large,
angular clasts of dolomite with corroded and
altered borders (fig 42). The clasts are held
in a partial matrix of microcrystalline calcite,
internal sediment (green illite-kaolinite clay
and quartz silt), and coarsely crystalline,
blocky, late, sparry calcite cement. Consider-
able remnant porosity also is present in the
breccia zones.

Pray and Esteban (1977) argued for a modern
karstic origin for these features; Dunham (1972)
postulated a Permian origin, presumably related
to weathering and dissolution of evaporite
minerals. Note the abundant evidence of associ-
ated evaporite (mainly gypsum) crystal casts in
these dolomites.

Cyclic deposits of dolomite and red, silty shales.

Generally grouped in the Seven Rivers Fm., these
sediments were included in the uppermost part of
the Shattuck Sandstone (Queen Fm.) by Sarg (1976)
and Esteban and Pray (1977; see description for
Stop VIII). These strata have been interpreted
as "dolocalcrete cycles" with evidence of re-
peated deposition, exposure, weathering, and
calichification (Pray and Esteban, 1977).

Note also the abundant crystal- and nodule-casts
of former gypsum (some voids now partly filled
with calcite; see fig. 43).

A thick section of Seven Rivers dolomitic pack-
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stones and mudstones of probable lagoonal origin
exposed on left. Note absence of evaporites and
red beds.

Strata exposed behind Shafer Ranch are fossil-
ferous, dolomitic, pelletal packstones.

Dry wash across Rocky Arroyo with massive traver-
tine deposits exposed on left.

Small cemetery on right. Cliffs to southeast
expose Seven Rivers Fm. fossiliferous, dolomitic,
pelletal packstones containing ostracodes, calci-
spheres, and some small foraminifers. Queen Fm.
(Shattuck Sandstone) 1is exposed at the cliff
base.

On the south side of the arroyo are cliffs
exposing thin-bedded dolomite of the Seven
Rivers Fm. dominated by pelletal wackestone
and mudstone. Stromatolitic(?) units have been
described from this locality (Sarg, 1976).
Other, similar outcrops are along road on left.

Road cuts to left are Seven Rivers dolomite
(Dunham’s (1972) Stop I-6). This section,

11.7 miles shelfward of the Capitan escarpment,
consists of thin-bedded, stromatolitic(?),
dolomitic wackestone with pellets, ostracodes,
and calcispheres. In and along the stream
valley, travertine is abundant along with
travertine-cemented gravels.

The dolomite in these sediments, as in most
of the back-reef areas, is very finely crystal-
line to aphanocrystalline and appears
to be of very early diagenetic origin.
Formation of early dolomite is probably
related to restricted circulation in these
back-reef lagoonal areas, precipitation of
CaS0, minerals, and consequent increase in
Mg/Ca ratios of lagoonal and interstitial fluids.
Contact of Mg-rich surface and interstitial waters
with unstable aragonitic muds has led to partial
dolomitization of modern carbonate muds in the
Persian Gulf and this most likely took place
in the Permian back-reef areas as well. The
exact mechanisms of this dolomitization (reflux
brine movement, evaporative pumping, and other
models) are debated even in modern setting and
are even more disputed for the Permian examples.

Leaving Rocky Arroyo. Outcrops to the south are
upper Seven Rivers Fm. Yates Fm. is present on
the crest and eastern side of the hills to the
south.

Junction with U.S. Highway 285; turn right toward
Carlsbad. The road here is on Quaternary
alluvium overlying Yates Fm. The Seven Rivers
Hills, to the northwest, are the type section
of the Seven Rivers Fm. (Meinzer and others,
1926).
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Bridge crossing over Rocky Arroyo.

Interbedded dolomites and red-brown sandstone
of the Yates Fm. on both left and right.

Yates Fm. exposed in road cut.

Yates Fm. exposed in road cut.

Intersection of US Highway 285 with US 285
(Truck Route) on right. Continue left om
main US Highway 285.

Basal Tansill Fm. is exposed in low cuts on beth
sides of road. Thin-bedded to laminated dolo-
mitic mudstones with evaporite (anhydrite?)
crystal casts can be found just below road
level to the west. All back-reef units dip
gently basinward in this area.

The Ocotillo Hills at 1:00 o’clock and Avalon
Hills at 11:00 to 12:00 o’clock are composed
of back-reef Tansill and Yates evaporitic
dolomites. The hills are the topographic
expression of an anticlinal structure over
the buried Capitan reef, one of many such
structures in the shelf area to the north and
west of Carlshbad.

Thin-bedded Tansill dolomites with evaporite
crystal casts present in roadcut. The type
locality of the Tansill Fm., as described by
DeFord and Riggs (1941), is located nearby in the
Ocotillo Hills.

Gently dipping Tansill and Yates sediments in
canyon to right are on eastern flank of the
Tracy Dome.

Tansill dolomite overlying Yates sandstone is
exposed in canyon on right.

Pecos River on left. Tansill Fm. in road cuts on
right.

Living Desert State Park turn-off on right.
Carlsbad city center (junction of US Highways 62—
180 (from north) and 285); La Caverna Hotel).

Continue straight ahead.

Intersection of US Highways 62-180 (from south)
and 285 (from southeast).
Roadlog ends.





































































Table l.--Correlations between faunal and sedimentary

features and depositional environment (Data partially
adapted from Newell and others (1953) and Schmidt (1977))

[C= common; P= present; R= rare; * indicates feature is
Absence of
any symbol indicates feature is absent or extremely rare]

generally or always detrital or allochthonous.

Relative abundance in stratigraphic unit
and/or environment

Feature Artesia Group Capitan Ls. Bell
Canyon Fm.
Sabkha- Pisolite Near Reef Forereef Basin
lagoon facies back-reef crest Up. Lo.
Fauna:
Ostracodes P R P R R R R
Calcispheres C P P P
Stromatolites P P R P P
Dasyclad algae R C R R* R*
Fusulinids P C R R*  R* P
Other
Foraminifera P R P P R R R
Gastropods R C P R
Pelecypods R c P
Red algae P C P
Echinoderms R P P P P R
Brachiopods P P P C R
Calcareous
sponges C C p*
Hydrozoans C C
Tubiphytes (o C
Bryozoans C C P
Ammonoids R R R R R
Siliceous
sponge spicules C P
Conodonts R P
Radiolarians P
Fish R
Carbonate rock types:
Boundstone P R C C P*
Grainstone C C P P P
Packstone
Wackestone R P P P C C P
Mudstone C P P R R P C
Non-carbonate rock types:
Shale C
Siltstone C P R P C
Sandstone C P R P C



Table l.--Continued.

Feature

Sabkha-
lagoon

Artesia Group

Pisolite
facies

Near
back-reef

Capitan Ls.

Reef Forereef
crest Up. Lo.

Bell
Canyon Fm..
Basin

Organic carbon-
rich units

Grain types:
Skeletal
Pelletal
Pisolitic/oolit
Intraclastic

Sedimentary
structures:
Lamination
Bedding
Synsedimentary

fractures
Channels
Cross=bedding
Graded bedding
Breccias

ic

PO R

[eNe]

Tepee structures

Diagenetic features:

Dolomitization
Chertification

Evaporite nodules C

Freshwater
cements
Marine cements

Primary porosity P

Secondary
porosity
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Table 4.--Cumulative o0il and gas production for selected

stratigraphic units from the Permian Basin of west Texas

and southeastern New Mexico-

Producing Cumulative Cumulative
Formation No. of Pools oil production gas production
(bbls) (Mcf)
Bone Spring Ls. 36 10,836,946 26,107
Capitan Fm. 0 0 0
Castile Fm. 10 177,449 0
Delaware Mountain Gp. 228 147,838,929 444,186
Goat Seep Ls. 0 0 0
Grayburg Fm. 173 3,257,310,434 17,265,940
Queen Fm. 179 527,719,866 1,254,017,480
Rustler Fm. 5 1,019,685 0
San Andres Ls. 435 3,605,905,136 36,433,294
Seven Rivers Fm. 91 921,401,640 823,028
Tansill Fm. 12 229,717 0
Victorio Peak Ls. 0 0 0
Yates Fm. 159 609,064,948 1,710,628,578
Yeso Fm. 15 202,411,700 803,437,919
Total
all units 1343 9,283,916,450 3,823,076,532

! Data from Table 3,
of Oklahoma.
those pools and production data reported through the PDS

system.

Most data current through 1977.
through earlier years,
years, by field or pool.

however;

Petroleum Data System (PDS),
Data may not be complete as it includes only

reported only through earlier years.

Includes production from the Bell Canyon,

Some fields only reported
see Table 3 for reporting

Most data current through 1977 but some fields may be

Cherry Canyon,

and Brushy Canyon Formations and the Lamar Ls.

Oniversity
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UPPER PALEOZOIC BIOHERMS

IN THE NORTHERN SACRAMENTO MOUNTAINS

Introduction

Exposures of Upper Paleozoic strata in the northern Sacramento Mountains
offer a superb opportunity to view varied carbonate lithologies, local facies
changes, and the products of diagenesis within a variety of shelf and slope
carbonate buildups. Similar buildups occur in the subsurface in nearby New
Mexico, Texas and Utah basins and are known to be excellent hydrocarbon reser-
voirs. They have been targets of exploration in the area for the last quarter
century.

We will visit three types of mounds and discuss their similarities and
differences in the field. On Day IV, we will study phylloid algal mounds,
structures which are widespread throughout the United States (Wray, 1968). We
will compare a Virgilian mound (Pennsylvanian), which is largely a carbonate mud
accumulation, with a Wolfcampian mound (Permian) that contains copious amounts of
submarine cement. On Day V, we will visit an Osagean (Mississippian) buildup
composed of a muddy core facies and crinoidal sand flank beds. This mound is
similar to Lower Carboniferous mounds of Europe, known as Waulsortian Mounds and
named from occurrences near Waulsort, Belgium.

The exposures provide a cross-sectional view of the rocks, but it is not
possible to develop a regional picture of facies realtionships in a few days as
may be done for the Permian Basin. The Permian part of this field course visits
an area where erosion and evaporite solution produced outcrops that may be rel-
atively easily related to a paleogeographic framework. 1In contrast, strata in
the northern Sacramento Mountains dip into the subsurface a few miles to the east

of the outcrops, and they are downfaulted below the Tularosa Valley to the west.
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The northern Sacramento Mountain area was closer to sources of terrigenous
clastic sediments than the Carlsbad area during the late Paleozoic. The Pedernal
land mass repeatedly shed material south and west to the Alamogordo area. Some
of the tectonism which occurred during this time is evidenced in the Sacramento
Mountains by Late Paleozoic faulting. Some tectonism may also be reflected in
the sediments themselves, which show evidence of repeated, relative sea level
changes, probably of both tectonic and eustatic origin.

In the northern Sacramento Mountains we will continue to investigate many
of the themes developed in the Carlsbad area, but now in a considerably different
setting. These themes include facies relationships, faunal and lithologic variation,
reef models, marine cementation, subaerial exposure, porosity and permeability
development and preservation. They are themes which are increasingly incorporated
into modern exploration scenarios and are well illustrated by the outcrops we will
visit.

Summary of Significance to Petroleum Exploration

The general geology of the northern Sacramento Mountains has been worked out
by Pray (1952, 1961) and Otte (1959b), who provided the framework for many later,
more detailed studies. Pray (1959) summarizes work in the area before 1950.
Excellent general field guides to the area have been published by Pray (1959) and
Butler (1977). Pray (1975) has recently edited a field guide to shelf-edge and
basin facies limestones in the Sacramento Mountains. Figure 1 indicates the posi-
tion of our field stops on a generalized stratigraphic section for the northern
Sacramento Mountains.

Several processes discussed and developed at outcrops in the Permian Reef
complex will again be evoked to explain observations on these older bioherms.

The significance of these processes varies from buildup to buildup, and the internal
structure and composition of the bioherms reflect these differences. Some buildups

are cement-rich, some mud-rich, some contain shallow-water fossils, some deep-water
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fossils. We will try to extract as much interpretive data as possible from bioherm
outcrops. Such observations will help to interpret similar rocks in the subsurface.

In contrast to the Capitan Reef, which does not produce o0il in the subsurface,
bioherms similar to those we visit in the Sacramento Mountains do form excellent
reservoirs. Phylloid algal limestones, like those at Virgil and Yucca mounds, form
reservoir rocks at Aneth Field (Elias, 1963; Irwin, 1963; Peterson and Ohlen, 1963),
Ismay Field (Choquette and Traut, 1963), New Lucia Field (Toomey and Winland, 1973),
Lusk Field (Thornton and Gaston, 1968), several fields in the "Horseshoe Atoll"
(Vest, 1970), and Saunders and Conley fields (Kerr, 1969). These studies show, in
some cases, direct association of subsurface porosity and the presence of phylloid
algae. Porosity takes the form of shelter pores beneath algal blades in mudstones
and wackestones, intergranular porosity in algal plate grainstones, and secondary
porosity in leached algal plate mudstones. In some cases porosity and permeability
are provided by fracturing or dolomitization in this facies. Several of the associ-
ated lithologies also provide excellent reservoir rock, some of which are oolitic,
crinoidal and fusulinid grainstones. It is significant that production from many
fields appears to be from the shelf-edge buildups themselves and not from fore-reef
or back-reef facies. Fields along the Abo Trend (LeMay, 1972) and the Kemnitz-
Townsend Trend (Malek-Aslani, 1970) occur at the shelf edge, a position occupied
by the tight Capitan Limestone in younger units to the south. Early submarine
cementation is a major factor in the lack of oil production from the Capitan reef.

The retention of porosity in the subsurface is still a topic of considerable
study. We see little matrix porosity in outcrops of Late Paleozoic mounds (although
vugs are characteristic of the lower Virgil Mound). The original porosity in these
carbonate sediments was very high (40-85%), and the processes involved in such
great porosity loss have not been well documented. One of the best documented
cases of porosity loss in carbonate sands comes from studies of the crinoidal sand

of the Lake Valley Formation.
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Hydrocarbon reservoirs in rocks similar to those that occur in the Lake Valley
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