A COMPUTER PROGRAM FOR
SIMULATING GEOHYDROLOGIC
SYSTEMS 1N H/RE[DIMENSIONS

BY DR POSSON., G.A. HEARNE J.V. TRACY

AND P.F. FRENZEL

0.S. GEOLOGICAL SURVEY
OPEN FILE §0-421

FREFARCD liN CCOPCRATICN WITH THE
~ U.s. BUREAU .OF INDIAN AFFAIRS AND
THE NEW MEXICO STATE ENGINEERS . OFFICE

.REPRODUCED FROM BEST AVAILABLE COPY |

MARCH 1980

UNITED STATES DEPARTMENT OF THE INTERIOR
Cecil D. Andrus, Secretary
GEOLOGICAL SURVEY

H., William Menard, Director

For additional information write to:

U.S. Geological Survey
P.0. Box 26659 :
Albuquerque, New Mexico 87125

Contents

ABSTRACT

INTRODUCTION

CAUTION TO USERS AND DISCLAIMER _—

REPRESENTATION OF GEOHYDROLOGIC SYSTEMS

Representation of /the aquifer system

Geohydrologic systems in which storage in confining
beds is not significant

Geohydrologic systems in which storage in confining
beds is significant -

Combined water—-table and artesian aquifer systems —---

Representation of the boundary conditions -————————=————u-

Specified head
Specified flux
Head-dependent source/sink -

DATA PROCESSING TECHNIQUES

Control Data Corporation Cyber—170 model 176 computer
architecture
Array storage - - ‘
Layer swapping, labelled COMMON blocks, and redundant
subroutines —-—-—-—--
Overlay structure

Main overlay - et

PROGRAM NMFD3D ---
SUBROUTINE FORCTIO
SUBROUTINE BUFBKT and alternate entry point
BUFBKI -
SUBROUTINE BUFEOF
SUBROUTINE BUFIN
SUBROUTINE BUFOQUT - -
SUBROUTINE BUFREW
SUBROUTINE CHECKA, CHECKB, AND CHECKC ---=-————-
SUBROUTINE COMPN and alternate entry point
COMPNL -
SUBROUTINE HYDROG -
SUBROUTINE LIMAP -
SUBROUTINE LINE

III

Page

14
14
15

17

18
22

27
30

31

31
31

34
34
34
35
35
36

36
38
38
39

Contents - Continued

£

Page
DATA PROCESSING TECHNIQUES - continued
Overlay structure - continued
Main overlay - concluded

SUBROUTINE LJUST ——- 39
SUBROUTINE LOCLEV -- —-—— - 39
IDENT MEM - 39
SUBROUTINE OUTPT 40
SUBROUTINE PRDATE -- —_— 41
SUBROUTINE PRENT 41
SUBROUTINE PRARY ———————————————— 41
SUBROUTINE PRMAP 41
IDENT REMARKS - 44
SUBROUTINE RIVERQ 44
SUBROUTINE RMOPEN 46
SUBROUTINE RMCLOS 46
SUBROUTINE RMGET - 46
SUBROUTINE RMPUT —- 47
IDENT RQUEST 47
SUBROUTINE SAVHYD - —— 47
SUBROUTINE SKIPJOB - 47
SUBROUTINE TCOFRC —— 438
SUBROUTINE TCOFZ 48
SUBROUTINE TRANS 49
SUBROUTINE BLOCK DATA 3 49
Data entry overlay 50
PROGRAM DATAIN - 50

Comment statements describing data input
blocks -- - - 50
NAMELIST processing ——— 51
Logical switches and restarting ————————=-- 54
Location offset variables LC 55
Scalor and file initialization 55
Definition of headers, symbols, and cubes - 56
Layer initialization 63
Initialization of grid-related parameters - 64
SUBROUTINE ALTRAN 64
SUBROUTINE ITCOEF 64
SUBROUTINE ITPARM 65
SUBROUTINE SETLIM ——— — 65

1y

Contents - Continued

Page
DATA PROCESSING TECHNIQUES - concluded
Overlay structure - concluded
Computational overlay — —_—— 65
PROGRAM COMPUTE ———— 66
SUBROUTINE CLAY ===mm=mmm == e 67
SUBROUTINE NEWPER and alternate entry points,
NEWSTP and NEWIT —-—————=——=—n 68
Entry NEWPER —-——==--~ - 68
Entry NEWSTP —mmmm—mm e 70
Entry NEWIT =mmmmm——m—————————— e e e e 70
SUBROUTINE PIS —=-—-—- - 71
SUBROUTINES PISAl, PISBl, and PISCl —-——————m—emr 71
SUBROUTINES PISA2, PISB2, and PISC2 —————————m—m 72
SUBROUTINE REINIT - ——————— 73
SUBROUTINE SIP —=mmmmmmmm e o e e 73
SUBROUTINES SIPAl, SIPBl, and SIPCl --——————m—— 74
SUBROUTINES SIPA2, SIPB2, and SIPC2 ———m——————m—- 74
SUBROUTINE WTTRAN —-—-— —_— ——— 74
Description of file structures - ————— e 75
Implicit record manager I/0 - ————————— e 75
Description of HDUMP —~—-—r—==——= 79
Description of META ———————————————————— o 79
Description of BAKIN ————————r——rmmmm e 80
Description of BAKOUT -—————-- ——— 80
Description of INPUT e e 80
Description of OUTPUT 80
Description of CBSFIL ———- - 81
Description of MASS1 and MASS2 81
Explicit record manager 1/0 - - - 82
Description of MSFIT -—- -~ - 82
Description of TRFIT ~———=—m———m—— e e 83
PROGRAM INPUT REQUIREMENTS --—-- - —— 83
Data input block 1: Cyber job control at Kirtland AFB --- 84
Data input block 2: NAMELIST $CONTROL 90
Data input block 3: I/0 control record ———~—~—~=m———————- 95

Contents - Concluded

PROGRAM INPUT REQUIREMENTS - concluded

Data input block 4: NAMELIST S$INLIST
Data input block 5: HEADERS
Data input block 6:
7-
8

SYMBOLS
Data input block 7: 3D INPUT
Data input block 8: 2D INPUT —

Data input block 9: OUTPUT CUBES
Data input block 10:, ENDOFCUBES

Data input block 11: NAMELIST $NEWPP ——-————————————e————
Data input block 12: NAMELIST $NEWELL
Data input block 13 NAMELIST $NEWRIV —-———=——
Data input block l4: End-of-file

.s oo

SELECTED REFERENCES —--—
APPENDIX I: Compiling a simulation program at Kirtland AFB -—-

APPENDIX II: FLECS - FORTRAN language with extended control
structures

APPENDIX III: 1Input and output for example simulation——two-
aquifer, steady-state problem with discharge wells and
surface recharge -

APPENDIX 1V: Input and selected output for example simulation—-—
two—aquifer problem with a head-dependent source/sink boundary
defined to represent a stream

APPENDIX V: Input and selected output for example simulation--
two—aquifer problem with transient leakage -

APPENDIX VI: Program variable definitions and cross-
reference

APPENDIX VII: Simulation program listing, in FLECS —————————--

APPENDIX VIII: Simulation program listing, in FORTRAN —-—=——=-

VI

Page

98
106
109
109
117
119
123
123
124
125
126

126

128

142

142

169

192

210
254

520

Illustrations

Page
Figure l.——Geometry of the confining layer 8
2.——Percent difference between the cumulative volume of

leakage computed with the model approximation and

Hantush's analytical results for 8 "mode'" values =~ 12
3.--Schematic of layer-swapping algorithm, labelled

COMMON block allocation, and redundant subroutines:

Five layer example 28
4.—-Examples of NAMELIST syntax ——-—— —_— 52
5.--Job control for data input - 85
6.—Coding form for input of I/O control card

(Block 3) - — 96
7.--Coding form for simulation header (Block 5) =——=——=- 107
8.--Coding form for input of symbol-value pairs

(Block 6) - - 110
9,--Coding form for input of 3-D variables (Block 7)

showing fields 1-26 and the default locations of

13 variables ——— 113
10.—-Coding form for input of 3-D variables (Biock 7)

showing fields 1-26 and the default locations of

15 variables - - 114
11.--Coding form for input of 3-D variables (Block 7)

showing fields 1-26 and the default locations of

18 variables 115
12,--Coding form for input of 3-D variables (Block 8)

showing fields 1-26 and the default locations of

20 variables - 116
13.--Coding form for input of 2-D variables (Block 8)

showing fields 1-8 and permissible keywords =—-———-— 118
14.-~Coding form for specifying "cube" output (Block 9)

showing fields 1-13 and permissible keywords —-——-—- 120

I~1.--Flow diagram for compiling program at AFWL -——=—————- 129

VII

Illustrations - Concluded

Page
Figure II-1.--FLECS control structures 143
III-1.--Schematic illustration of two-aquifer, steady-
state problem with discharge wells and surface
recharge (adapted from Trescott, 1975) ====————- 144
IV~-1.~--Schematic 1llustration of two-aquifer problem
with a head-dependent source/sink boundary defined
to represent a stream - 170
V-1.—Modeled aquifer system of Appendix V 193
Tables
Table l.--Array pointers and offset variables -- 24
2.,~-Overlay structure and subroutine list for NMFD3D --——-- 32
3.——Mass-balanée parameters accumulated in subroutines
CHECKA, CHECKB, CHECKC - - 37
4 ,~-METAPLOT subroutines called by this program ———————=-—- 42
5.~-DIRECT commands for METAPLOT - 45
6.~-Variables named in NAMELIST blocks 53
7 .~=Output-cube variable, CUBDEF ——=—=- ———— 58
8.——Map scale variables 59
9.—-Variables defining extent of output cubes ———————————== 60
10.—Hydrograph variables 62
11.~-Files declared on PROGRAM statement 77
12.—-Number of 3-D array variables per node (NVPN) =——===———-- 100

VIII

Tables — Concluded

Page
Table 13.--Default values for the LC... variables —————————=———e——o 108
14.--Acceptable combinations of keywords, numbers, and
symbols for Block 9 (OUTPUT CUBES) ---- - 121
III-1.—Input deck to compile the program used in
Appendixes III, IV, and V —===-mmmommmmmm e e 145
IT11-2.—Input deck for simulation of two-aquifer, steady-
state problem with discharge wells and surface
recharge - —-—= —— -- 146
IV-1.--Input deck for steady-state stage of two-aquifer
problem with a head-dependent source/sink
boundary defined to represent a stream —-———=———————-—- 171
IV-2.—-Input deck for transient stage of two-aquifer
problem with a head-dependent source/sink
boundary defined to represent a stream ————————————-= 183

IX

A computer program for simulating geohydrologic

systems in three dimensions

by

D. R. Posson, G. A. Hearne, J. V. Tracy, and P. F. Frenzel

ABSTRACT

This document is directed toward individuals who wish to use a
computer program to simulate ground-water flow in three dimensions.
The strongly implicit procedure (SIP) numerical method used to solve
the set of simultaneous equations is based on the computer programs
published by Trescott (1975) and Trescott and Larson (1976). New
data processing techniques and program input and output options are
emphasized. Theoretical development is minimized, referring to other
sources for this information.

The aquifer system to be modeled may be heterogeneous and
anisotropic, and may include both artesian and water—table
conditions. Systems which consist of well defined alternating layers
of highly permeable and poorly permeable material may be represented
by a sequence of equations for two dimensional flow in each of the
highly permeable units. Boundaries where head or flux 1is
user—specified may be irregularly shaped. The program also allows
the user to represent streams as limited-source boundaries when the
stream flow is small in relation to the hydraulic stress on the
system.

The data-processing techniques relating to '"cube" input and
output, to swapping of layers, to restarting of simulation, to
free-format NAMELIST dinput, to the details of each subroutine's
logic, and to the overlay program structure are discussed. The
program is capable of processing large models that might overflow
computer memories with conventional programs. Suggestions are given
for the modeler wishing to convert this code to computers not
manufactured by Control Data Corporation. The program is written
completely in the FLECS structured programming language, and produces
standard FORTRAN source statements.

Detailed 1instructions for selecting program options, for
initializing the data arrays, for defining '"cube" output lists and
maps, and for plotting hydrographs of calculated and observed heads
and/or drawdowns are provided. Output may be restricted to those
nodes of particular interest, thereby reducing the volumes of
printout for modelers, which may be critical when working at remote
terminals. '"Cube" input commands allow the modeler to set aquifer
parameters and initialize the model with very few input records.

Appendixes provide instructions to compile the program,
definitions and cross-references for program variables, summary of
the FLECS structured FORTRAN programming language, listings of the
FLECS and FORTRAN source code, and samples of input and output for
example simulations.

INTRODUCTION

The computer program documented in this report simulates the
flow of ground water in a three-dimensional aquifer system. The
numerical method used to solve the set of simultaneous equations is
the strongly implicit procedure (SIP) described by Stone (1968) for
two dimensional problems, extended to three dimensions by Weinstein,
Stone, and Kwan (1969) and published as computer code documentation
by Trescott (1975) and Trescott and Larson (1976). The modeler must
evaluate the applicability of the program to the specific
geohydrologic system that he intends to simulate.

The aquifer system may be hetergeneous and anisotropic and may
include both artesian and water—-table conditions. The physics of the
flow field may be approximated by eitcher of two basic sets of
simultaneous equations. For an aquifer system in which storage in
confining beds is not significant, the flow field may be described by
the equation for the flow of ground water in three dimensions. For
an aquifer system in which storage in confining beds is significant,
the flow field may be described by a sequence of equations for two
dimensional horizontal flow in each of the more permeable beds
coupled by the equations for one-dimensional vertical flow through
the poorly permeable beds.

The computer program allows both specified-head and
specified-flux boundaries. At a specified~head boundary, the head is
not allowed to change during any given interval of time. At a
specified-flux boundary, the flow into or out of the aquifer system
is not allowed to change during any given interval of time. The
computer program also allows head-dependent source/sink boundaries at
which the flow rate 1is calculated to represent recharge from or
discharge to a stream.

The program documented in this report differs from earlier
computer codes in several major respects. The data array structure
and data processing techniques used in this code allow the economical
processing of extremely large grids, essentially unconstrained by the
physical limits of a computers' memory. A layer swapping algorithm
is utilized, based on the techniques developed for the "HULL"
programs by Matuska, Durrett, etal (1973). The program is written
completely in structured FORTRAN and uses the FLECS structured
precompiler written by Beyer (1975). The output from FLECS includes
standard FORTRAN IV for the CDC Cyber-176 computers. The FLECS code
is listed in Appendix VII and the FORTRAN code is 1listed in
Appendix VIII.

The input/output logic within the program is totally different
than the schemes used in Trescott and Larson (1976). The user
selects run—-time options using the free-format NAMELIST I/0. Data
grid initialization uses "cube" input techniques, which drastically
reduces the number and complexity of input records. Output '"cubes"
may be defined to reduce the volume of printed output and focus the
output on areas of greatest interest to the modeler. Operation of
the program from a remote terminal is thereby made more efficient.
Extensive backup and restart logic has been designed into the code to
allow the modeler to break up 1long or complex simulations into
stages. Thus, the user may review results and modify the model
parameters as desired. The I/0 structure and program design ease the
logistics of changing grid schemes and reinitializing the estimates
of geohydrologic parameters compared to earlier simulation programs.

The data processing techniques designed into the program are
outlined in an effort to assist the user and to indicate potential
problem areas if attempting to run this code at computer facilities
that do not have CDC Cyber computers available. Detailed
instructions on the input data structure, together with examples of
input and output, should: facilitate the actual use of this program.

References to other publications are provided which discuss the
physics of ground-water flow, the finite-difference solution of
partial differential equations, structured programming languages and

s e CEL A £ ~1 ~ -~ -~
the specafics of Control PData Corperaction Cyber computor scftuare.

This report 1is the result of cooperation between the
U.S. Geological Survey, the U.S. Bureau of Indian Affairs, and the
Office of the New Mexico State Engineer.

CAUTION TO USERS AND DISCLAIMER

The user of this program is cautioned to verify that the program
is in fact functioning as intended for the specific data being used.
Not all options have been exhaustively tested; therefore, the program
is subject to revision as any subsequent errors are encountered. The
user 1s advised to contact the authors and obtain information as to
revisions in the program which may have been made since this document
was released. In spite of these cautions, the program is believed to
be operational as described.

The data processing techniques wused in the program were
developed on computers manufactured by Control Data Corporation. The
use of the brand name in this report is for identification purposes
only and does not imply endorsement by the U.S. Geological Survey.

REPRESENTATION OF GEOHYDROLOGIC SYSTEMS

If the geohydrologic system to be simulated is a simple aquifer,
a two-dimensional model may be adequate. The three-dimensional model
is capable of simulating the response of complex aquifer systems. An
aquifer system is a heterogeneous body of intercalated permeable and
less permeable material which acts as a hydraulic unit of regional
extent. The computer program documented herein evolved from that of
Trescott (1975) as modified by Trescott and Larson (1976).

Representation of the aquifer system

The digital simulation of geohydrologic systems requires that
the continuous functions of space and time be made discrete. A
rectangular block-centered grid (in which variable grid spacing 1is
permitted) is used to form the finite difference approximations for
the derivatives in the flow equations.

Geohydrologic systems in which storage

in confining beds is not significant

If confining beds are thin relative to the vertical dimension of
the cells of the model, each cell will represent several beds of both
permeable and less permeable material. In the macroscopic scale of
the model the cell is homogeneous although possibly anisotropic. The
flow field may be described by the equation for ground-water flow in
three dimensions. ’

3 ah 3 3h 3 ahy . 2b
(A)'Si"(Kx % + 5;—(Ky '5§) + 52—(Kz 539 SS st t W (x,y,z,t)

in which
Kx, Ky’ KZ are the E{draulic conductivities in the x, y, and
z directions (LT 7);
h is the hydraulic head (L);
SS is the specific storage (L_l);
W is the volumetric flux per unit volume (T—l).

This is equivalent to Trescott's equation 3 (Trescott, 1975, p. 3),
and may be solved by the computer program.

Alternately, equation A can be multiplied by the thickness of
the hydraulic unit and expressed as:

(8 2 2+ 2 2 +p 2k, 2D = 5224 bW (ny,2,0)
in which
Tx’ T. are the transmissivities in the x and y direction (LZT—I);
KZ ’ is the hydraulic conductivity in the z direction (LT_l);
h is the hydraulic head (L);
S is the storage coefficient (dimensionless);
b is the thickness of the hydraulic unit (L);
W is the volumetric flux per unit volume (T—l).

This is equivalent to Trescott's equation 4 (Trescott and Larson,
1976, p. XV) and may be solved by the computer program.

The finite-difference approximation and the solution algorithm
used by the computer program are described by Trescott (1975).

5

Geohydrologic systems in which storage

in the confining beds 1s significant

An aquifer system which consists of alternmating well-defined
layers of highly permeable and poorly permeable material requires
special consideration if the confining beds are thick relative to the
vertical dimension of the model's cells. Steady—-state flow in such a
system may be simulated with equation A or B. However, the time
dependent flow through the confining beds is complicated by the
storage properties of the confining beds. To approximate the
transient response with equation A or B would require that the
confining bed be represented by several 1layers of cells. This
approach has practical limitations because computer costs are
directly related to storage and computation requirements.

The three-dimensional flow field may be approximately described
by a sequence of equations for two—dimensional flow in each of the
highly permeable beds coupled by the equations for one-dimensional
vertical flow through the confining beds.

8 (p by . 3y 3hy _ g oh
(C) 3% (TX BX) + -8—}-7.(Ty -53’—) S -5-E-+ bW (X,y,z,t) + QL (x,y,z,t)
in which

QL is the volumetric flux per unit area from the confining

beds (LT-I);
and the other variables are as defined for equation B.

The leakage between aquifers is augmented by the change in
storage in the intervening confining bed. The release of this water
is delayed by the time of propagation of the change in head
verticaily through the confiuiung bed. A vVery approximate mcthed tac
implemented by Bredehoeft and Pinder to simulate this leakage (1970).
In the three-dimensional model (Trescott, 1975), no provision was
made for simulation of transient leakage in layered systems, as a
more general method was being investigated. The method described
below has been incorporated into the general three-dimensional code
and is a rather general approximation of transient leakage that is
consistent with the preservation of mass in the confining layer. The
method has wide applicability and 1is, 1in general, quite accurate.
The assumptions and limitations are discussed in the following
sections, and a comparison with an analytic solution of Hantush
(1960) is presented.

Analysis.--The method is derived from the approximation of a general,
analytical solution of one-dimensional flow through a confining
layer. The analysis considers a vertical line between the overlying
and underlying nodes in one such layer. The results are applied to
all node pairs separated by confining layers in a given flow system.
The geometry of the confining layer is depicted in figure 1. The
heads in the underlying and overlying aquifers vary continuously in
time; the flow in the aquifers is assumed to be horizontal, and the
flow in the confining layer is assumed to be vertical. This
assumption is generally wvalid if a permeability ratio of
approximately 100 exists between the aquifer and the confining layer.
The flow in the confining layer is described by the preservation of
mass and the assumed applicability of the Darcy momentum equation.
The resulting mass equation and boundary conditions are given by:

[£2

2
9h
2

D1
(D1) . v:

7” W
!
o
-e

(D2) h (z,0) = (1, (o) = 1, (o)) %, + Hy (0);

(03) h (o,t) = H; (t);

(D4) h (b',t) = H, (t)

in which,
h(z,t) is the head in the confining layer at time t and
height z above aquifer 1 (L);
b' is the thickness of the confining layer (L);
K' is vertical hydraulic conductivity of the confining

layer (LT—l);

S'S is the specific storage of the confining layer (L *);
H1 is the head in aquifer 1 (L); and
H2 is the head in aquifer 2 (L).

DL 7

-

I

Qa2 AQUIFER 2
CONFINING LAYER
b' K', Ss
Qi
Y l
Y P!
i : AQUIFER 1
|
! ! T,S
! |

Y,

Figure 1.--Geometry of the confining layer.

The flow in the confining 1layer is assumed to be initially
steady. The general solution of these equations 1is given by
equations E,

(E1) h (2,£) = (H, (&) = H (£)) £+ H (¢)

+ fg ﬁl (t) G (t-t, b'-z) dt

+ fg ﬁz (1) G (t-t, z) dt

in which
e o1y 2 2,
82) ¢ (t,2) = 2R 5" LR g (DKt o, amz,
m - n 012 g
s

with the dot (.) denoting differentiation with respect to time.

Generally only the flow to or from a given aquifer is of
interest, so that, by application of Darcy's law at the confining
layer boundaries (o, b'), the flux into each aquifer may be
determined. These are given by equations F.

(FL) Qq () = 5 1(m, (&) - 1 ()

ro
+ 70 H2 (1) g (t=-1) dt

1
o

J él (1) £ (t-1) dt]

and

~

[t}
l}
¢

(F2) Q, (t) [(H1 (t) - H, \ty)

o

+ fg Hl (1) g (t=-1) drt

-Jo B, (v £ (-1 an

in which:

- t
(F3) £ () =2 I exp (B—E5
n=1 b'" s
s
and
n=owx 2 2
- K't
(Fi) g (¢) =2 I exp [(F—) (-1)"]
n=1 b' S's

The functions f(t) and g(t) are frequently denoted as the memory and
influence functions respectively.

Approximations.-—The details of the approximations are given in a
report by Tracy which is in preparation (March, 1980). Only the
essentials are presented here to provide a basic understanding of the
approach. First, the time derivations are approximated in the same
fashion as the change in aquifer storage; that is, the derivative is
assumed to be a constant over a given time step so that the integrals
in equations (Fl) and (F2) become the sum of a set of integrals over
each time step, with the current time step integral being handled
implicitely.

The only other approximations necessary are to approximate the
functions f(t) and g(t) by finite exponential series which preserve
water mass in the confining layer and also converge to the infinite
series as more terms are incorporated. The number of terms, N, is
called the '"mode". Because the integrals for each value of n
(n = 1, N) must be saved for each node in each confining layer, it is
preferred to retain only a small number of terms. Therefore, very
accurate approximations of the functions f(t) and g(t) are desired to
be economical with respect to the number of terms retained. The
finite series take the forms:

n=N —a? n? k't
(Gl) £ (t)y I b exp (——-2—————)
n=1 b'" 8!
S
and
n=N 2 2
- T '
(G2) g (2 I ¢ exp (25
n=1 b' S'S

10

The coefficients, bn and cn (n = 1,N), are calculated by the
program and are only a function of N, the number of terms retained in
the series. They are not a function of either confining layer or
aquifer properties, and may, therefore, be applied uniformly to all

points in all aquifers that are continguous to any confining layer.

Because the fluxes, ql(t) and qz(t) change exponentially with
time, the actual formulation calculates a change in volume over a
time step

t+ At
(H1) av; (at) = tf q; (¥) dr
and applies_a time average flux
(H2) q; (t) = Avl(At)

At
during the time step.

Discussion.--The method has been compared with a problem for which
Hantush (1960) developed the analytical solution. (This problem is
the same one described by Trescott, 1976, in the leakage discussion
of the two-dimensional model). The system consists of an aquifer
which 1is pumped, an overlying confining layer, and an overlying
aquifer which is quiescent. For the lower aquifer the transmissivity
is 0.1 ftzls, the storage is 1 x 10_4, and the thickness is 1 foot.
For the confining bed the vertical" hydréulic conductivity is
1x 10_7 ft/s, the specific storage is 1 x IO—S/ft, and the thickness
is 100 feet. The discharge is 1 ft3/s.

rigure 2 depicts the comparison of the analytic soluiiou aud itle
numerical approximation. The cumulative volume of leakage for modes
greater than 2 1is accurate to less than 2 percent error for
nondimensional time (—E%E——) larger than 10—2. For the time smaller

b'"s?
s

than this, although the percent difference is large, leakage 1is a
small percentage of the volume of water being pumped. Since most of
the volumetric transient 1leakage occurs between 10_2 and 5 x lO-1
nondimensional times, the method seems adequate for most simulations
of leaky systems.

11

*san|eA @pow, g J40j S3|nsal |edjlA|eUE S,ysSnlueH pue uojjew xoudde

[epow 3yl y3iim paindwod Sb6E¥Ed| 4O DWN|[OA DA]IB|NWND BYJ UDIMIDQ DIUBUD4}Ip IUSDJ3g--*Z 24nb614

».WNA.DV '
] WL SSITINOISN3IN!IA

1-01 . 2-0l €-0l v-0l
T Ty T T T T T T 177 T T I I L A T T ol-
O £ °

o - Ol
- 4oz
~ - 0¢
- —0b
~ ~0¢
I T R T B ! T I B J I I T B T ! 09

12

3IN3Y¥34410 LN3J¥3d

The method that has been implemented into the three-dimensional
code to simulate transient leakage 1is sufficiently general to be
applicable to most model usage. The approximations are efficient and
sufficiently accurate to simulate most leakage problems. However, if
the period of simulation extends, over a very small range of
nondimensional time, less than 10 ~, the present method will not
accurately predict the leakage. Some effort is presently being made
to alleviate this restriction. The computer code is designed to
allow restart during a transient simulation; however, care must be
taken to specify the same number of leakage modes (N) during the
simulation restart.

Combined water—table and artesian aquifer systems

In water-table aquifers, transmissivity is a function of the
saturated thickness of the hydraulic unit and the appropriate storage
coefficient 1is the specific yield. The special computations of
transmissivity and storage coefficient required by a combined
- water-table and artesian aquifer system (Trescott, Pinder, and
Larson, 1976, pp. 10-11) are included in the computer code.

The water—table may be represented in one of two manners. In
one, the top layer of cells may represent the water—table conditions
(as in Trescott, 1975). The hydraulic conductivity and elevation of
the bottom of the hydraulic unit need only be specified for the top
layer of cells. The hydraulic conductivity and bottom elevation are
two~dimensional arrays. ©Each cell of the top layer may represent
water—table conditions and will become inactive (transmissivity set
to zero) when the saturated thickness becomes nonpositive.

In the other, the computer program allows for each cell in the
model to represent artesian or water—-table conditions or becone
desaturated. A cell is treated as artesian if the overlying cell is
active (that is, if the transmissivity of the overlying cell is
greater than zero). If the overlying cell is not active (that is,
the transmissivity of the overlying cell is =zero), the cell may
represent artesian or water—table conditions or be inactive depending
on the relative magnitudes of the head simulated for the node in the
center of the cell and the elevations associated with the bottom and
top of the cell. The hydraulic conductivity and bottom elevation are
specified as three-dimensional arrays. The top elevation 1is
calculated as the bottom elevation plus the thickness. The cell is
artesian if the head is above the top, water table if the head is
between the top and the bottom, and inactive if the head is below the
bottom.

13

Representation of the boundary conditions

Specified-head, specified-flux, and head-dependent source/sink
boundaries may be represented using the computer program. Changes in
boundary conditions with time are represented by dividing the total
simulation into discrete intervals. The first eschelon of
subdivision (such as steady-state, history, and projected future) are
called stages. Each stage may be subdivided into pumping periods.
Each pumping period is subdivided into time steps as described by
Trescott (1975, p. II-3, II-1). Changes in boundary conditions may
occur between time steps, pumping periods, or stages.

Specified head

A specified~head boundary can be used to represent parts of the
aquifer system where the head is constant over the time interval
being simulated. Recharge areas can be represented as specified-head
boundaries for steady—-state simulations. Areas along major rivers or
beyond the influence of hydraulic stress can be represented as
specified-head boundaries for transient simulations.

Specified flux

Specified-flux boundaries can be used to represent parts of the
aquifer system where the flux rate is constant during the time
interval being simulated. A no-flow boundary is a special case of
the specified-flux boundary. The algorithm requires that the modeled
area be surrounded by a no-flow boundary. Other boundaries may be
specified within this shell.

Specified-flux boundaries may be defined such that the flow rate
is independent of the simulated heads. These fluxes may represent
well withdrawal or injection, ground-water flows beyond the influence
of hydraulic stress, or recharge.

14

Recharge 1is defingi in a two—-dimensional array as the volumetric
flux per unit area (LT ~) to the upper layer of cells. The flow rate
is constant for each stage of the simulation.

Well wighdrawal or injection is defined for each well as the
flow rate (L /T) when solving equations B or C or the flow rate per
unit thickness (L°/T) when solving equation A. The flow rate is
constant for each pumping period of the simulation. For each well
the location (row, column, and layer of the cell) is associated with
the rate of withdrawal or injection in convenient units and the index
for the appropriate conversion factor. The computer program
accumulates in each node the total rate of withdrawal or injection
for all wells in the cell. These constant fluxes may be either reset
to zero between pumping periods with new flow rates defined each
pumping period or accumulated throughout the simulation with changes
in flow rates defined each pumping period.

Head-dependent source/sink

A head-dependent source/sink boundary can be used to represent
recharge from or discharge to streams, including streams whose flow
is small relative to the. hydraulic stress. The nodes selected to
represent streams are grouped into reaches such that the interior
nodes of each reach are isolated from other reaches. The user
defines each reach and the nodes within the reach in the order in
which they are to be processed.

The flow available in the first node of each reach is the total
of the flow specified by the user (for each pumping period) and the
flow routed to this reach from other reaches. As each node is
processed, the flow available in the stream is modified by the volume
gained fram or lost to the aquifer svstem. At the end of each reach
the flow available in the stream may be routed to the first node of
another reach.

To route the flows in this manner the constant-flow rates are
estimated each time step from the head simulated for the previous
time step. This explicit calculation forces two restrictions on the
use of this boundary condition. First, multiple time steps with a
finite storage coefficient are needed to simulate a steady-state
condition. And second, for transient simulations the time step
should be small relative to the intervals over which the hydraulic
stress is varied.

15

The constant flow rate at each stream node is estimated from
Darcy's Law which can be written in finite-difference form as

% ""KA(hR' hA)
d

in which
3.-1
QR is the flow rate (LT 7);
K is the hydraulic conductivity (L Tnl) of the river bed;
A is the area of flow (L2);
h is the head in the river (L);
h is the head in the aquifer (L); and
d is the distance over which the head gradient occurs (L).

For the computer program this is expressed as

= WAL -
(1) QR K'A (hR hA)
in which
A! is the surface area of the cell (L2);

K!' is a constant of proportionality which accounts for the
hydraulic conductivity, the percentage of the area of the
cell through which flow occurs, and the distance over which
the head difference occurs (T—l).

Flow rates from the river to the aquifer system are further
restricted to be the lesser of the flow calculated by equation I, the
maximum iniiiiration rate {as defined by the user), and tie flow
available in the stream.

16

DATA PROCESSING TECHNIQUES

The program described in this document departs from program
design and data-processing techniques which have become customary
with intensively computational simulation programs. Features are
presented which consolidate and build on design characteristics of
recent simulation programs with which the authors have become
familiar. Primary among these is the "HULL" code developed by
Matuska, Durrett and others (1973) at the Air Force Weapons
Laboratory, Kirtland AFB, during the period 1970-1973. "HULL" is a
modular set of programs, written in English and FORTRAN. It was
developed after the signing of the atmospheric test ban treaty to
simulate the energy flow and ©particle transport effects of
thermonuclear explosions. Many of the ideas incorporated into the
design of the program described in this report have origins in the
innovative thinking of the authors of "HULL". In particular, the
techniques relating to layer swapping and array structure on Control
Data mainframes stem from "HULL".

These and other techniques are used to facilitate those aspects
of digital ground-water modeling which have been cumbersome and which
have 1limited the practical application of computer programs to
aquifer simulation. The size of central memory on computers has
historically limited the size of models which may be run. Techniques
presented in this document may be used to run models of wvirtually
unlimited size. Further, 1large simulations could be run on
minicomputers using these techniques assuming that sufficient disc
storage were available.

Array storage and subscripting have been renovated to reduce the
computation overhead associated with '"number-crunching" code. The
input/output scheme, using "cube" data initialization and list/map
output methods, drastically reduces the number of input records
required to 1initialize even the largest of grids and reduces the
volume of printed output produced. This aids modelers, especially
those working from remote terminals.

FORTRAN has been the language traditionally used for
finite~difference simulations because of its efficient use of central
processing units and 1ts familiar and convenient mathematics-like
notation. FORTRAN, however, is not a ''structured" language. As
such, the inherent 1logic of a program tends to be obscured by
"housekeeping" necessities such as GO TO statements, statement
numbers, and countless conditional statements with associated
branches. As a result of this, modifications to FORTRAN programs
require extensive knowledge of the total program logic and are quite
error—prone.

17

This program 1is written in the structured language, FLECS
(Fortran Language with Extended Control Structures, Beyer, 1975).
The program is modular. The data-input module is coded as one
overlay, and the SIP computational module is another overlay.
Subroutines which are shared by both exist in the '"main" overlay.
Each subprogram 1is further divided into self-contained modules
defined by the extent of the FLECS control structures. Each module
may be modified with little concern about the contents or purpose of
other modules within the program. The program contains no GO TO
statements, and the logic of each subprogram flows naturally from the
top to the bottom of the code.

In addition to 1listing the source code (Appendix X), FLECS
translates the FLECS source code into standard FORTRAN, which is then
compiled in the usual manner. The FLECS-produced FORTRAN executes
approximately five to ten percent more slowly than FORTRAN written
directly as FORTRAN, Similarly, FORTRAN produces code which 1is
slower than comparable code written in Assembler. However, the
benefits accruing to the programmer who uses a structured language,
like FLECS, outweigh this drawback.

Control Data Corporation Cyber—-170 model 176

computer architecture

This program was developed initially on a CDC-6600 computer
using the SCOPE 3.2 operating system. It was then adapted to the
CDC-7600 using SCOPE 2.0. Finally, it was readapted to the Cyber-170
amudel 178 computer using the NOS/RE operating svstem. The FTN3
FORTRAN compiler was used on the CDC-6600, and the FTN4 FORTRAN
compiler has been used on subsequent mainframes. The CDC Cyber-170
model 176, commonly referred to as the Cyber-176, 1is the
semiconductor memory version of the CDC-~7600. Although the Cyber-176
differs from the CDC-7600 in many ways, this code may be run on
either of the 7000 class mainframes. Some simulations may be run on
the CDC-6600, however the 6000 is limited in memory size and may not
run most simulations satisfactorily. The wuser may specify the
mainframe at execution time with the use of the MF6000=,.TRUE. or the
MF7000=.TRUE statements in data input block 2. Refer to Appendix II.

18

The Cyber—176 has three different types of on-line memory in its
design. Each type assigns memory in 60-bit words. A single word may
contain one integer, or one floating-point value, or ten alphanumeric
BCD characters. Integers are signed and must be in the inclusive
range of magnitudes from ~-(2**59 - 1) to +(2**59 -1), or
approximately 16 significant digits. Floating—point values are
signed and must be in the inclusive range of magnitudes from 10#*#*-293
to 10**+322, or approximately 14 significant digits. Logical
variables (those with two states, .TRUE. or .FALSE.) are negative
when .TRUE. and positive when .FALSE.

SCM, small '"core”" memory, also called '"Level 1" memory, has
become a generic term for .the "central memory" of the Cyber-176, even
though it is a misnomer. SCM is in fact semiconductor, not '"core",
memory. SCM has the fastest cycle time of the three memory types.
It 1is also the most expensive to occupy and has the smallest
addressing space, limited to 131,072 decimal words due to the 18-bit
address registers. In order to be executed by the CPU, all program
instructions must be resident in SCM. SCM is the default "Level" of
memory allocated by FORTRAN for all instructions, constants and
arrays. SCM may explicitly be requested by the FORTRAN programmer by
specifying:

0 1 2 3 4 5 6 7

123456789012345678901234567890123456789012345678901234567890123456789012345678
LEVEL 1, variable-names, array-names, etc.

within the data specification portion of a FORTRAN program. (CDC

Fortran Extended Manual, p. 3-13). SCM utilizes direct addressing
methods.

19

LCM, large 'core" memory, has also become a generic term for the
"extended memory" of the Cyber-176. LCM may be ‘"core" or
semiconductor. The acronym ECS, extended "core" storage, is used for
large memory on the CDC-6600 computers. LCM may be defined as
"Level 2" or "Level 3". When defined as:

0 1 2 3 4 5 6 7
123456789012345678901234567890123456789012345678901234567890123456789012345678

LEVEL 2, variable-names, array-names, etc.
variables and arrays which are stored in LCM are word-addressable.
Individual words of LCM may be addressed in much the same way that
individual words of SCM are addressed. For example, if:

0 1 2 3 4 5 6 7
123456789012345678901234567890123456789012345678901234567890123456789012345678
LEVEL 2, X

COMMON /LABREL/ X(...)

X(I)=Y

the value of the SCM variable Y would be moved to the LCM location of

X(I). Y is stored in SCM by default, since it has not explicitly
been defined in a "LEVEL 2" statement.

20

The significance of the "LEVEL 2" type variables becomes clear
when we discuss the third type of Cyber-176 memory, LCM "LEVEL 3".
Variables defined using:

0 1 2 3 4 5 6 7
123456789012345678901234567890123456789012345678901234567890123456789012345678
LEVEL 3, X
COMMON /LABEL/ X(...)

FORTRAN specifications are placed in LCM storage, just as "LEVEL 2"
variables are. The programmer may move blocks of data to and from
"LEVEL 3" LCM by means of the CDC FORTRAN 1library subroutine
"MOVLEV". The syntax of this subroutine call is:

0 1 2 3 4 5 6 7
123456789012345678901234567890123456789012345678901234567890123456789012345678
CALL MOVLEV(from,to,number—of-words-to-be~transferred)

While "LEVEL 3" arrays are quite useful for high speed transfers of
contiguous block of data, there is no way on the Cyber-176 to address
individual words of "LEVEL 3" LCM other than successive calls to
MOVLEV with each call transferring one word.

All variables and arrays defined in LCM, whether "LEVEL 2" or
"LEVEL 3", must be defined both within labelled COMMON blocks and in
the "LEVEL 2" or "LEVEL 3" statements per se. As a result, no
variable may be defined within both "LEVEL 2" and "LEVEL 3" since no
variable may be defined within two different labelled COMMON blocks.

LCM "LEVEL 2" may utilize direct addressing methods when the sum
of LCM required by a program is less than 131,072 words. No single
labelled COMMON block may exceed 131,072 words. When the sum of LCM
required by a program exceeds 131,072 words, indirect addressing
mathnde must bhe requested from the FORTRAN compiler by using the
Cyber control card

0 1 2 3 4 5 6 7
123456789012345678901234567890123456789012345678901234567890123456789012345678
FIN(eueoo,LCM=I,...)

when compiling the program (refer to Appendix I). Addressing of LCM

"LEVEL 3" block transfers through the use of subroutine MOVLEV will

also use direct or indirect addressing methods depending on the
optional use of this FTN parameter.

21

This program wuses all three types of Cyber-176 memory.
Variables and small arrays which are frequently used are stored in
SCM. Larger arrays and variables which are 1less frequently
referenced are stored in LCM, "LEVEL 2", Finally, LCM "LEVEL 3" is
used as a mass storage device for layer-swapping for those
simulations which will fit within the addressing limits of LCM. At
the time of this publication, the limit is 360K words, or sufficient
space for 14,000 to 21,000 nodes depending on program options
selected. Simulations which exceed this capacity must use rotating
mass storage (RMS), i.e. discs, as the mass storage device for
layer-swapping. Refer to the wvariables USELCM and USERMS in
Appendix II, input block 2 for details of mass storage selection.

RMS may be used with a variety of file structures and processing
modes on the Cyber-176. The CDC software package known as '"Record
Manager" (Cyber Record Manager Manual, 1978) handles all FORTRAN I/0.
Record Manager may be wused implicitly, such as when FORTRAN
sequential READ or WRITE statements are executed, or it may be used
explicitly by using various subroutine CALL statements which access
the Cyber Record Manager library.

This program uses Record Manager implicitly through READ, WRITE,
BUFFER IN, BUFFER OUT, REWIND, ENDFILE and NAMELIST. It uses Record
Manager explicitly for word—-addressable disc processing of transient
leakage arrays and for layer-swapping when the USERMS=.TRUE,
parameter is defined in data input block two.

Array storage

The SIP numerical method calculates the hydraulic head at each
node in the three-dimensional grid as a function of the hydrologic
parameters pertaining to that node and the adjacent nodes in the
row (Y), column (X), and layer (Z) directions. Thus, to calculate
head change at one node requires that the parameters for only seven
nodes be in the computer memory. It is theoretically possible to
swap the data for sets of seven nodes into memory in succession as
one sweeps along rows, columns, and layers such that the minimum
computer memory is required. The swapping overhead, however, may be
quite large as I/0 channel activity is typically slower and more
expensive than central memory and CPU activity. The compromise
between these opposing factors used in this program is that complete
layers of the grid are swapped between central memory and some
peripheral device on a demand basis. Thus, as SIP sweeps through the
three-dimensional grid vertically, only the layer currently active
and the layers above and below the active layer reside in physical
memory. The other layers defined for the simulation reside on a
peripheral device. Within the program, the active (middle) 1layer
uses the variable named HXB. The layer above uses the variable named
HXA, and the layer below uses the variable named HXC.

22

The clear advantage of using this technique is that a computer
need only to be as large as three layers of a model. Thus,
simulations designed for multi-layered aquifer systems which might
not have fit into existing computers before may be run. The '"HULL"
code, from which this technique has been adapted, extends the
swapping algorithm. Within "HULL", the user defines the maximum
memory which he wishes to use and the program segments of the model
grid such that it will demand-swap the appropriate number of nodes.
Only coincidentally will this technique happen to swap precisely one
layer at a time.

Parameters defined for each node are typically stored in arrays.
Previous programs utilized three-dimensional arrays referenced by
three subscripts. Subsequent programs have reduced the
subscript-calculating overhead by arranging the arrays into
sequential memory locations and utilizing a one-dimensional subscript
calculation. This technique reduces the number of multiplications in
each subscript calculation from three to one and the number of adds
and subtracts from five to one (CDC Fortran Extended 4 Manual,
p. 1-17). The "HULL" group has estimated that heavily computational
three-dimensional code which is subscripted in the conventional
manner may use up to 40 percent of its CPU cycles in nothing but
subscript calculations.

This program defines a one-dimensional array for each of the
three memory resident layers (HXA, HXB, HXC). Each array is
dimensioned large enough to store all parameters for all nodes in
each layer and is stored in one FORTRAN labelled COMMON block per
layer. Further, all parameters for each node are stored in
sequential memory locations. Each parameter is offset from the first
location of memory for this node by a constant (LC...) defined at
run—time. Thus, all nodes contain NVPN words (the number of
variables per node) stored in contiguous locations.

The variables used to define node and variable offset locations
are shown in table 1.

Since each layer is treated as a one-dimensional array of size
NWPL, the concept of "rows" and "columns" exists only to provide a
“context with which the modeler can relate. From a data-nrocessing
design viewpoint, each layer is treated as one 1long row (the
one—-dimensional array) which consists of NNPL (the number of nodes
per layer) consecutive nodes, each with NVPN consecutive words. The
program can refer to the node within the next "column" by adding the
constant NVPN to the current location. The node in the next "row" is
referenced by adding NWPR (the number of words per row) to the
current location. LFWIN 1s the location of the first word of this
node in HXB. LFWTN also refers to the location of the first word of
the node above (HXA(LFWTN)) and of the node below (HXC(LFWTN)). If
the complete three-dimensional grid were treated as a single
one-dimensioned array, as the "HULL" code does, then '"layers" would
become superfluous as a data-processing reality, just as '"rows'" and
"columns" are in this program.

23

Table l.-~Array pointers and offset variables

Variable Default

Name Value Definition

NVPN 0 Number of variables per node;

NROW 0 Number of rows; |

NNPC 0 Number of nodes per column. This is identical
to NROW;

NCOL 0 Number of columns;

NNPR 0 Number of nodes per row. This is identical
to NCOL;

NNPL 0 Number of nodes per layer. NNPL = NCOL * NROW;

NNAL 0 Number of nodes, all layers.

NNAL = NNPL * NLAYER;

NWPR 0 Number of words per row. NWPR = NVPN * NNPR;
NWPC 0 Number of words per column. NWPC = NVPN * NNPC;
NWPL 0 Number of words per layer. NWPL = NVPN #* NNPL;
NWAL 0 Number of words, all layers.

NWAL = NVPN * NNAL;

LFWTIN none Location of the- first word of this node. Each
variable is offset from LFWTN by one of
the constants, LC... defined below;

LCPHI 0 Location offset for PHI, hydraulic head;

LCWEL 1 Location cffsct for WEL, node pumping rate:

LCSTR 2 Location offset for STRT, head at beginning of
simulation;

LCT 3 Location offset for T, transmissivity;

LCS 4 Location offset for S, storage coefficient;

LCTR 5 Location offset for TR, directional transmissivity

in the row direction;

24

Table l.--Array pointers and offset variables - Continued

Variable Default

Name Value Definition

LCTC 6 Location offset for TC, directional
transmissivity in the column direction;

LCTK 7 Location offset for TK, directional
transmissivity in the vertical direction;

LCEL 8 Location offset for EL, element of upper triangular
factor U;

LCFL 9 Location offset for FL, element of upper triangular
factor U;

LCGL 10 Location offset for Gl, element of upper triangular
factor U;

LCV 11 Location offset for V, head change within one
iteration;

LCXI 12 Location offset for XI, head change within one
timestep;

LCBOT 13 Location offset for BOT, bottom elevation of each
cell LCBOT is used only for 3-D water table
problems;

LCPERM 14 Location offset for PERM, hydraulic conductivity of
unconfined cells, " LCPERM is used only for 3-D
water table problems;

LCTL 13 or Location offset for TL, element of transient leakage

15 from confining layers. Default is 13 unless 3-D
water table is defined, in which case default
ic 15;
LCTLK 14 or Location offset for TLK, vertical element of transient
16 leakage from confining layers. Default is 14
unless water table is defined, in which case
default is 16.
LCSL 15 or Location offset for SL, exponential element of
17 transient leakage from confining layers.

Default is 15 unless 3 water table is defined,
in which case default is 17.

25

Table l.-—-Array pointers and offset variables - Concluded

Variable Default
Name Value Definition
LCZCB 16 or Location offset for ZCB, thickness of
18 confining bed for transient leakage
problems. Default is 16 unless 3-D
water table is defined, in which case
default is 18,
LCRATE 17 or Location offset for RATE, vertical conductivity
19 of confining bed for transient leakage.

Default is 17 unless 3-D water table is
defined, in which case default is 19,

26

Layer swapping, labelled COMMON blocks, and redundant subroutines

As in the three-dimensional simulation program written by
Trescott (1975), this program numbers layers from the bottom
(layer 1) to the top (layer NLAYER). The program sweeps through the
grid, alternating between the SIP normal ("SIP") and the SIP reverse
("PIS") subroutines. "SIP" sweeps through the grid from bottom to
top while "PIS" sweeps from top to bottom, each subroutine being used
alternately to reduce accumulated errors. As a result, the program
must swap layers into memory in the order which the correct
subroutine demands. During a "downward" sweep, layer NLAYER is first
loaded into HXB, then layer NLAYER-1 is loaded into HXC. HXA is
vacant. Calculations are performed on HXB. When processing is
complete on layer NLAYER, "PIS" will begin processing layer NLAYER-1.
Thus, layer NLAYER must be "moved" to array HXA, layer NLAYER-1 must
be "moved" to HXB, and layer NLAYER-2 must be loaded from peripheral
storage into HXC. All calculations are performed on array HXB, the
"middle" layer. When processing on layer NLAYER~1 is complete, the
program swaps layer NLAYER (HXA) to peripheral storage, ''moves" HXB
to HXA, 'moves" HXC to HXB, and loads layer NLAYER-3 into HXC from
peripheral storage. This process continues until layer 1, the bottom
layer, has been operated on by "PIS". 1If the problem has not
converged, the process 1is repeated from bottom to top, wusing
subroutine '"SIP" for the next iteration, and so forth until
convergence. Figure 3 is a schematic of the layer-swapping algorithm
and displays the relationship of the layers. Subroutines BUFIN and
BUFOUT are called to perform the actual swapping of layers between
central memory and the peripheral device selected by the user at
run—-time.

27

‘a|dwexs JsAeB|-9A|4 :sdul3nouqns

juepunpas pue ‘uojledo||e %20(q ;040D Polaqe| ‘wyljsobie Bbujddems-usAE| jO O3ewdydG--*¢ 24nbi4

z49d1s‘14ddis axXy 1 2081410814 aXH S / /
OXH rA gno1 OXH V OWOT / 1 x9fLe] /
VXH 1 VXH S - - -

TVdIS‘1VdIs aXH r4 29S1d°19S1d gXH b / /
OXH € VWO1 OXH € 4RO / 7 19he1 /
VXH r4 VXH Y —————

T0dIS“10dIS aXH € ZVSId‘1Vs1d 4XH € / /
OXH Ul ORO1 OXH rA VHO'1 . ¢ 9he] /
VXH € VXH € e e e e

29d18°‘149d1S 4XH V] T0SI1d“10S1d 4XH [4 / /
OXH S gnO'1 OXK 1 OWO'1 / y ake] /
VXH y VXH [/o /

TVdIS1VdIS 4XH S VHO'1 78814 ‘14S1d 9XH 1 GWOT / ¢ I3keT] /

saujInoaqns Lexay da3is NOWINOD saujlinoaqns Leaay daig NOWHWOD

Yams TIVD Yarms TIVD

(dIs) dsoms paead

(S1d) dooms paemumog

7=HdAVIN

E=-YIAVIN

C=YdAVIN

T=-93AVIN

YAAVIN

Joke]

28

This program avoids much of this layer "moving" by employing the
programming technique known as redundant subroutines. As used in
this program, redundant subroutines are subroutines which are
identical except that HXA, HXB, and HXC appear in different labelled
COMMON blocks. Recall that each array HXA, HXB, and HXC resides in
its own labelled COMMON block. Subroutines SIPBl and SIPB2 use HXA
in labelled COMMON block LCMA, HXB in labelled COMMON block LCMB, and
HXC in labelled COMMON block LCMC. "SIP" calls these subroutines
when the "top" layer is in LCMA, the "middle" layer in LCMB, and the
"bottom" layer in LCMC during the bottom to top sweep. When
calculations are complete on the bottom layer and are to commence on
layer 2, subroutines SIPAl and SIPA2 are called rather than SIPBl and
SIPB2. These routines are identical to SIPBl and SIPB2 except that
in SIPAl and SIPA2 the '"top" layer is in LCMC, the 'middle" layer is
in LCMA, and the "bottom" layer is in LCMB. What is now the '"middle"
layer was the "top" layer when the layer below was being operated on,
what is now the "bottom" layer was the '"middle" 1layer, and what is
now the '"top" layer was swapped in from peripheral storage after the
previous '"bottom" layer (now not needed) was swapped to peripheral
storage. When this layer has been operated upon, a similar swap will
occur, and then subroutines SIPCl and SIPC2 will be ‘executed. The
"top" is now in LCMB, the "middle" is now in LCMC, and the "bottom"
is now in LCMA.

Similar swapping occurs during the downward sweep, with
subroutine "PIS" calling PISAl and PISA2, PISBl and PISB2, and PISCI
and PISC2 in sequence according to whether LCMA, LCMB, or LCMC
contain the "middle" 1layer. It would be possible to accomplish what
the redundant subroutines accomplish simply by passing the "top",
"middle", and "bottom" arrays as formal parameters in a Fortran CALL
statement. However, the use of COMMON rather than CALL parameters is
computationally faster since the linking to the COMMON addresses is
done once at compile time whereas the 1linking to CALL formal
parameter addresses must be done at execution time every time the
array 1is referenced. The additional memory used by the redundant
subroutines is quite small since no additional array space 1is
required or allocated.

The CYBER wutility program UPDATE (Control Data Corporation,
1978d) is used to facilitate the programming required for labelled
COMMON blocks and redundant subroutines. One master copy of the
source code for each COMMON block and redundant subroutine is
maintained on UPDATE's program library. If the programmer commands
UPDATE to include a verbatim copy of a COMMON block, it is made only
to the master copy of that COMMON block. All occurrences of that
block throughout the source code will be changed automatically by
UPDATE. Not only is the programmer overhead reduced, but the
programmer is assured that a change made to the master copy of one of
the redundant subroutines or COMMON blocks will correctly be made to
all other copies.

29

Overlay structure

" The program consists of three overlays. The "main" overlay is
always resident in memory. It contains the main program, which calls
the other overlays in sequence, and a variety of general purpose
subroutines used by all three overlays. The "main" overlay first
loads the data-input overlay. This overlay contains program DATAIN.
The function of this overlay is to interpret the program options
selected by the user; to initialize data arrays either from input
records, from a '"restart" file, or from both; to define output
"eubes"; and to calculate the iteration parameters and the
directional transmissivities. Once the input functions are complete,
control returns to the "main" overlay. The "main" overlay then
directs the system to load and execute the computational overlay.
This overlay contains program COMPUTE and all computational
subroutines associated with the strongly implicit procedure (SIP).
When computations are complete, control transfers back to the '"main"
overlay, Subroutine OUTPT is then executed during which listings,
maps, and/or hydrographs may be produced. At the users option, a
file may be created from which the simulation may be restarted.

There are many advantages of using an overlay program structure
for hydrologic modeling programs. Computer memory, and therefore
memory expenses, are minimized since code which is not essential at
the moment does not reside in memory. When initialization data is
being read, the computational algorithm is not required in memory.
When iterating, initialization code is not required. Shared logic,
such as routines to swap layers, resides in the 'main" overlay
available to all overlays.

Since the overlay structure is inherently modular, code
developed for this application may be shared when developing future
numerical methods. For example, the DATAIN overlay may be used to
restart, input data, and initialize arrays for any rectangular grid
model. It is not dependent on the use of the SIP algorithm. As new
algorithms are developed, new computational overlays may be added to
this structure. The proper numerical method may be selected as an
input ortion: In this manper memnrv wonld not be allocated to conde
not required by the numerical method selected.

The transfer value of using common logic can be considerable.
Since DATAIN may be used for many different simulators, there would
be no need for users of this program to learn new input schemes or
data processing procedure when selecting alternate numerical methods.
Program development costs may be reduced since future modules will
use large portions of the existing code, particularly the troublesome
data-input and user-output routines. As users become trained in the
logistics of using this code, future training courses may concentrate
on the hydrologic aspects of modeling rather than on the details of
program use.

30

Main overlay

The main overlay includes the main program, PROGRAM NMFD3D, and
subroutines which are called by the primary overlays. The Cyber-176
FORTRAN compiler FTIN4 requires that all Record Manager subroutines
must reside in the main overlay. All labelled COMMON blocks which
are to be used to pass data from one primary overlay to another must
be named in the main overlay. All LCM labelled COMMON blocks must be
specified in the main overlay, regardless of their use within primary
overlays. Table 2 displays the logical relationship of the main and
primary overlays.

PROGRAM NMFD3D.—The main program serves seven functions. 1) It
defines the files which will be wused during program execution,
2) It provides the correct location for defining all labelled COMMON
blocks as required by the compiler. 3) It initializes the plotting
package and line printer. 4) It calls the DATAIN overlay which sets
the program options and initializes data arrays. 5) It calls the
computational overlay after the data input overlay is finished.
6) It prints hydrographs, if any are defined, after the
computational overlay is finished. 7) It closes the Cyber Record
Manager files, if any were open. If no errors were encountered
during the execution of the simulation, the program will terminate
with the dayfile message, ''STOP NORMAL". The dayfile is a
chronological printed list of all Cyber job control commands and user
messages executed during a given run,

SUBROUTINE FORCIO.--This subroutine is never called. It exists
solely to force the Cyber loader to load certain Cyber Record Manager
routines into the main overlay.

31

NVILIM
¢0dISx
10dISx
Cd4dISx
T4dISx
¢VdISy
IVdISx

dIs

LINIHY
C¢OSIdx
10S1dx
¢4STIdy
19S1dx
ZVSIdx
TVSIdx

S1d
JIMAN “ SIMAN ‘ dHdMIAN
AVTID

JLAdHOD WVED0¥d
ON

AeTasao Laeuwrag
(0°7°agad) XVTYIAO

WITLIS
WaVdlI
d40011
NVALTV

NIVILVA RV¥90¥d
ON

Ketasno Aiewrag
(0°1°Qgad) AVINHAO

SOOI
NI Oy
OYHATY

SN
dVIdd
Advud
INTYd

CAAOREE|
LdInc
WK
A3T100"
Isnrn.
ANTT
dVHI".
90 UAT
NdROJ
OMOHHT %
IDFHC
VADUHD %
MIYANE
Lnodns
NIJOE
J034n¢d
dand ‘1ddng
0ID¥0.

AEAIRN WVIOO0dd
so)

LeTasao ureE]
(0°0°dgad) AVI¥IAO

QEAJINN 203 IST[SUFINOIQNS PUE SINIONIIS ABTIABAQ--°7 °7.qE]

$31SIT 2ufanoiqng

tuei8oad uren
;IUSapISaa shkenly
:9d£3 Le1aonQ
toweu LeTILAaQ

32

dLNdROD WVd90dd
ON

AeTaoao Aaeuwtad
(0°z¢dead) AVTYIAO

NIVIVd Wv¥50dd
ON

AeTaono Axewtagd
(0°1°0€ad) AVIYEAO

QuUTInoAqns jJjuepunpsld Sa3J0U8D g

Vivd 0014
SNVYL
ZJ001L

0¥400L
qgordiys
UAHAVS
IsAndy
1ndnd
LAoWy

JEAINN WYAD0¥d
sox

AeTI92A0 UTI)R
(0‘0‘aead) AVTEHAO

$3STIT mcﬁuzoupsw

:uex3oad utel
;,1USpTSaa skemly
:9d£3 Ae1aong
:oweu LeTIdA0

pepnTouo) - JEQIWN X0F ISTT 2uTInoaqns pue 9In3ionais %mﬂuw>nr|.m CRE LA

33

SUBROUTINE BUFBKT and alternate entry point BUFBKI.--Entry point
BUFBKI is called from PROGRAM DATAIN when RESTRT=.TRUE. That is,
BUFBKI reads the file named BAKIN when restarting from a previously
executed simulation. The logic will BUFFER IN a block from BAKIN to
a SCM array when formal parameter LL=0 and BUFFER IN a block from
BAKIN to a LCM array when formal parameter LL=1. The distinction is
critical since the compiler generates address differently for SCM and
LCM variables. Generally, the first call to BUFBKI loads the SCM
labelled COMMON blocks from BAKIN. The second call loads the LCM
labelled COMMON blocks from BAKIN. The third and subsequent calls
load the LCM arrays which hold the actual simulation data for all
layers, beginning with the bottom layer (layer 1). If transient
leakage is being used (TRLEAK=,TRUE.), the final calls 1load the
transient leakage arrays into Cyber Record Manager files from BAKIN.,

Entry point BUFBKT 1is <called from subroutine OUTPT when
SELRES=.TRUE. BUFBKT will write on the file named BAKOUT when this
simulation is complete if the user desires to save a snapshot of the
simulation for future restarting purposes. BUFBKT will BUFFER OUT
blocks from SCM to BAKOUT when formal parameter LL=0 and BUFFER OQUT
blocks from LCM to BAKOUT when LL=l1. The sequence of calls is
identical to those described for entry point BUFBKI.

SUBROUTINE BUFEQF.--Subroutine BUFEOF will write an end-of-~file mark
on file number FILENO if the user has selected USEBIO=.TRUE. in data
input Block 2. Pointers are updated to indicate that an EOF has been
written. If the user has selected USELCM=.TRUE. or USERMS=.TRUE. in
data input Block 2, a call to this subroutine updates the pointers
without writing an EOF.

SUBRCUTINC DBUFIN.--Subroutine BUFIN trancfare NWPL words of data for
a given layer of the model from a mass storage peripheral device to a
LCM array defined in the calling routine. If the call is for a layer
above the top or below the bottom of the model, BUFIN returns without
any data transfer. When USELCM=,TRUE., BUFIN transfers a layer from
LCM "LEVEL 3" to the calling routine. When USERMS=.TRUE., BUFIN
transfers a layer from the Cyber Record Manager file named MSFIT.
When USEBIO=.TRUE., BUFIN transfers a layer from a sequential file
LFNTBR (the 1logical file number to be read) after properly
positioning the file.

34

Transfers from LCM "LEVEL 3" are handled in one of two ways by
BUFIN depending on whether or not the LCM space used by the model
exceeds 131,072 words. When NWAL is less than 131,072, the program
maintains a table of pointers which define where each layer is stored
in LCM. These pointers are calculated dynamically by the program.
In the other case, the user must take care when compiling the program
to insure that the *DEFINE GT131K record is passed to Cyber UPDATE,
as described in Appendix I. This record will insure that the program
allocates LCM labelled COMMON blocks in such a manner that no single
block exceeds 131,072 words. Transfers to LCM "LEVEL 3" by BUFIN are
established at compile time, not at run time.

SUBROUTINE BUFOUT.--Subroutine BUFOUT transfers NWPL words of data
for a given layer of the model from an LCM array defined in the
calling program to a mass storage peripheral device. If the call is
for a layer above the top or below the bottom of the model, BUFOUT
returns without any data transfer. When USELCM=.TRUE., BUFOUT
transfers a layer from LCM "LEVEL 2" to LCM "LEVEL 3". When
USERMS=,TRUE., BUFOQUT transfers a layer from LCM "LEVEL 2" to the
Cyber Record Manager file named MSFIT. When USEBIO=.TRUE., BUFOUT
transfers a layer from LCM "LEVEL 2" to a sequential file LFNTBW (the
logical file number to be written) after properly positioning the
file.

Transfers to LCM "LEVEL 3" are handled by BUFOUT in a manner
identical to that described above for subroutine BUFIN. The user
must insure that the *DEFINE GT131K record is defined for Cyber
UPDATE when compiling the program when NWAL exceeds 131,072 words.

SUBROUTINE BUFREW.--Subroutine BUFREW rewinds the file with file
number FILENO when the user has selected USEBIO=.TRUE. in data input
Block 2. A call to BUFREW when riLENO is aliready posiiioned at
beginning of information will cause no operation to be performed. If
the user has selected USELCM=.TRUE. or USERMS=.TRUE., no operation is
performed.

35

SUBROUTINEs CHECKA, CHECKB, and CHECKC.--Subroutines CHECKA, CHECKB,
and CHECKC are used to calculate the system mass balance. They are
called from subroutine OUTPT at the end of each MODPRth timestep, at
the end of each pumping period, and at the end of the simulation.

The parameters displayed in table 3 are calculated for each
layer and ultimately summarized within subroutine OUTPT prior to
printing out. If the pumping period is complete, these routines will
write all head values out to the file named HDUMP when the switch
PHIDMP=,.TRUE. has been set in data input Block 2. HDUMP is available
to be read by user—-supplied post—processor and manipulated into
contour maps, hydrographs, or other user-written applications.

These three subroutines are redundant subroutines. They are
identical in all respects except for COMMON block definitions.
CHECKA is called when the '"middle" 1layer resides in LCM 1labelled
COMMON block LCMA. CHECKB is called when the "middle" layer resides
in LCMB. CHECKC is called when the "middle" layer resides in LCMC.

SUBROUTINE COMPN and alternate entry point COMPNL.--Subroutine COMPN
computes the numeric value of a 60-bit word transferred to it. The
word may contain an integer, a floating-point number, or a value
expressed in scientific notation. Leading and trailing blanks are
ignored by calling entry point COMPNL. Leading blanks are ignored,
and trailing blanks are treated as zeroes by calling entry point
COMPN.

This routine is particularly useful when reading input data in
free formats since it assumes nothing about the justification of the
coded text. In addition, it performs some error—checking and allows
the program to spot and point to errors in coding. FORTRAN formatted
READ statements might abort the run due to invalid data in numeric
fields.

Please note that COMPN utilizes CDC~dependent display code.
Specifically, the octal internal display codes of numeric characters
are tested, shifted, and masked in order to calculate the resultant
value.

36

Table 3.--Mass—-balance parameters accumulated in Subroutines

CFLUX
CFLXCH
CHDI1
CHD2
CHFLOW
PUMP
PUMPCH
QREFLX
STOR
UPFLOW

CHECKA, CHECKB, and CHECKC

Source from recharge wells

Injection into specified-head cells
Discharge to specified-head boundary
Source from specified-head boundary

Net flow to/from specified—head boundaries
Discharge from pumping wells

Pumpage from specified-head cells

Net recharge

Net flow from storage during timestep
Vertical flow between layers

If rivers are defined (NR . 0):

FLXR
FLXRN
FLXRP

Net loss/gain to/from rivers
Discharge to rivers
Source from rivers

If transient leakage is defined (TRLEAK=.TRUE.):

CHFLOW

FLEAK

FLXN

FLXP
FRMCLAY

Redefined to be net horizontal flow
to/from specified-head boundaries

Net vertical flow to/from confining
layers overlying or underlying
specified-head nodes

Discharge leakage to confining layers

Source leakage from confining layers

Net leakage rates to/from adjacent
confining layers

If water table conditions are defined (WTABLE=.TRUE.):

WSUR

Unconfined water surface

37

SUBROUTINE HYDROG.--Subroutine HYDROG plots time-head and
time-drawdown hydrographs. It 1is called only from the main program
at the normal conclusion of a run. The locations (row, column, and
layer) of the cells for which hydrographs are to be produced are
defined in data input Block 9. The number of hydrographs must not
exceed the numeric portion of the *DEFINE HYGXX record used when
compiling the program, where XX is the maximum number and must be 10,
20, 30, or 40.

HYDROG will produce a time-~head plot when HYD is defined in data
input Block 9. It will produce a time-drawdown plot when DHY is
defined. The user may define the time axis to be logarithmic (LOG)
or linear (LIN) and may define the scale of the time axis, the head
(or drawdown) axis, or both. The user may choose to plot observed
values as input by the user and head (or drawdown) values computed by
the model., If this option (@PBSHYD) is selected, HYDROG will plot
both observed and computed values on the same axes. The program will
adjust the scaling of the axes to assure that the minimum and maximum
head and time values will fit on the plot.

Instructions for selecting various hydrograph options, and for
entering the observed value sets, when desired, are available in
PROGRAM DATAIN instructions.

HYDROG produces plots by calling the METAPLOT (Conley, 1975)
general purpose plot package available at the AFWL computer center.
Users contemplating the transfer of this code to other computer
centers must provide similar plot subroutines in order to use this
feature. By using METAPLOT, all graphics produced by this program
are generated independent of plot devices. As such, METAPLOT may be
used as a post-processor to plot hydrographs on a 1line printer,
plotter, or other vector-drawing graphics output device. Please see
subroutine PRMAP for specifics on the use of METAPLOT.

printed output and alphanumeric contour maps according to the output
cubes defined by the user in data input Block 9. It is called from
subroutine OUTPT in the main overlay, from subroutine REINIT in the
computational overlay, and from program DATAIN in the data input
overlay.

38

SUBROUTINE LINE.--Subroutine ©LINE draws a vector between two
coordinates. It calls the METAPLOT subroutine PLOT. LINE is called
only from subroutine HYDROG.

SUBROUTINE LJUST.--Subroutine LJUST left-justifies a 60-bit word. It
is called from program DATAIN in the data input overlay. LJUST uses
CDC-dependent shift and mask instructions.

SUBROUTINE LOCLEV.--Subroutine LOCLEV positions a mass storage
sequential file for reading or writing when USEBIO=.TRUE. is defined
in data input Block 2. It performs no operation when USELCM=.TRUE.
or USERMS=.TRUE.

IDENT MEM.—Ident MEM 1is a routine written in CDC assembly language
(COMPASS 3 Reference Manual, 1974). It is used to alter the size of
SCM or LCM attached to a job. This program uses MEM first to
determine the field length of SCM and LCM in the main program, then
to adjust LCM to the amount required in program DATAIN, and finally
to adjust SCM to the size required for the computational overlay.
When compiling a model the user must follow the instructions in
Appendix I closely with regard to the EL=... parameter on the job
card. When running a model, the user must follow the instructions in
data input Block 1 for the EL=... parameter on the run-time job card
and the RFL(ECS=...) parameter in the run-time deck. MEM may abort
programs on some Cyber systems which have CMM, the CDC Common Memory
Manager software installed.

39

SUBROUTINE OUTPT.--Subroutine OUTPT is the primary output—-producing
routine in the program. It determines when to produce output, when
to calculate mass balance, when to create BAKOUT the restart output
file, and when to terminate the run due to errors. It is called from
program COMPUTE and from subroutine NEWPER, both in the computational
overlay.

Printed output is produced if:
1. The last timestep for a pumping period is complete; or

2. The maximum number of iterations allowed for a timestep is
exceeded (ITMAX is defined by the user in data input
Block 4); or

3. The MODPR'th timestep within a pumping period is complete
(MODPR is defined by the user in data input Block 4); or

4., A well node has gone dry; or
5. The simulation is complete.

Mass balance calculations produced in the redundant subroutines
CHECKA, CHECKB, and CHECKC are made each time printed output is to be
produced. OUTPT then calls SAVHYD to save hydrograph time/head (or
drawdown) pairs. It then calls LIMAP which produces the list and/or
map output for the output cubes defined by the user in data input
Block 9. After all 1layers have been analysed for mass balance
contributions, OUTPT summarizes mass balance calculations and prints
out the summary. It then prints out a table of head changes for each
iteration of the current timestep and a table of the number of
iterations for all timesteps during the current pumping period.

Before returning to the calling routine, OUTPT checks to see
whether the simulation is complete. If complete, OUTPT checks
SELRES, the select restart options which the user may have set in
data input Block 2, When SELRES=.TRUE., OUTPT either requests a
permanent file or a magnetic tape from the operating system depending
on the rantents of data input Blech 3, Once reguesteu, OUTIT
proceeds to call BUFBKT to transfer a snapshot of SCM and LCM to the
restart output file named BAKOUT. When TRLEAK=.TRUE., OUTPT then
dumps the contents of the transient leakage Cyber Record Manager file
named TRFIT to BAKOUT. Finally, if the simulation has terminated on
an error condition, OUTPT prints appropriate messages in the dayfile
and terminates, If the simulation has terminated normally, OUTPT
returns to the calling routine which returns to the main program.

40

SUBROUTINE PRDATE.--Subroutine PRDATE prints the run date on the
printer output file, It is called from OUTPT, PRARY and PRMAP in the
main overlay, and from subroutine ITPARM in the data input overlay.
The date which it prints is defined in program DATAIN from the system
subroutine DATE.

SUBROUTINE PRENT.--Subroutine PRENT prints the name of each
subroutine called during execution of the program. It is called from
various routines only when TRACE=,TRUE. is set in data input Block 2.
This option 1s normally only selected when debugging the program
logic. The use of this option by users will produce an enormous
amount of debug print.

SUBROUTINE PRARY.--Subroutine PRARY prints formated lists of array
values according to the output cubes defined by the user in data
input Block 9. It is called from subroutines LIMAP and OUTPT in the
main overlay and by subroutine NEWPER in the computational overlay.

PRARY is capable of producing listings of any or all of the NVPN
three-dimensional variables, drawdown, river data, well pumping data,
recharge data, or unconfined water surface data for any cube defined
by the user. Listings for the permeability and bottom elevation of
two-dimensional water table cells may also be produced if the program
was compiled with the *DEFINE 2DBTPRM option selected. Routines
which call subroutine PRARY pass to PRARY the layer number, the
address of the LCM array containing data for this layer, an option
code which selects the type of listing, and a cube number.

SUBROUTINE PRMAP.--Subroutine PRMAP plots alphanumeric contour maps
of various arrays according to the output cubes defined by the user
in data input Block 9. It is called only from subroutine LIMAP in
the main overlay.

PRMAP uses subroutines (table 4) which are in the '"Metaplot"
subroutine library at the AFWL computer center (Conley, 1976). Those
users familiar with other standard plot packages will notice a strong
similarity, both in function and in syntax, between the Metaplot
calls and the calls of the other packages. Users who intend to
install this code on computer systems other than the AFWL system (or
other systems where Metaplot 1s available) should be certain to link
to the appropriate plot libraries for these routines.

41

Table 4.--Metaplot subroutines called by this program

1. PLOTS Initialize Metaplot logic and logical file;
2, SCREEN Define the physical plot size, in inches. - For the

purposes of this program, we assume that the user
is "plotting" on the terminal line printer. Thus,
the plot size is 12 inches in the X axis
(horizontal) and 10 inches in the Y axis (vertical)
per segment.,

3. VWPORT The viewport defines that portion of the screen which
is to be used for plotting, in inches. The X and Y
limits defined by this subroutine must be a subset
of the SCREEN limits. XMIN and XMAX or YMIN and
YMAX may be reversed to produce mirror images.

4, WINDOW The window is the exact size of the viewport and is
defined in "data" units. The subsequent vector and
text plotting calls will be mapped into the window,
which in turn is mapped into the viewport and screen
by Metaplot. Attempts to plot outside the window
result in error messages being displayed by Metaplot
at execution time. These error messages may be
generated during map segmentation and should be

ignored.
5. NUMBER Plot a numeric value at some X,Y coordinate.
6. SYMBOL Plot an alphanumeric string at some X,Y coordinate.
7. PLOT Terminate this plot when the third formal parameter

equals -3. When the third argument is 2, the "pen"
moves to (X,Y) with the "pen'" up. When the third
argument is 3, the "pen" moves to (X,Y) with the
"pen" down.

42

PRMAP performs a number of functions. It first determines which
type of map is desired. The user may select a map of any of the NVPN
variables, a map of drawdown, or a map of the unconfined water
surface (if WTABLE=.TRUE.). It then inspects the size of the grid by
summing the DELX and DELY variables and scales the grid according to
the default or user—-defined scale factors. If the scaled map 'is less
than 10 by 12 inches in size, plotting begins. If the scaled map is
larger, PRMAP will automatically segment the plot so that the map
scale will be preserved. NXSEG segments will be plotted edge to edge
in the X direction. NYSEG segments will be plotted edge to edge in
the Y direction. Each segment will be 1labeled by output 'cube"
number, by variable being . plotted, by pumping period and timestep
number, by row and column number, and by the areal distances within
the extent of the X and Y axes.

This routine will attempt to plot an alphanumeric symbol
corresponding to the magnitude of the variable being plotted at the
- center of each cell. If a cell spans two or more segments, PRMAP
will plot the alphanumeric symbol at the cell boundary opposite to
the segment boundary. If a cell contains active pumping wells, a "W"
plots next to the alphanumeric symbol. The alphanumeric symbol (0-9
and A-J) plotted depends on the contour interval defined by the user
in data input Block 9 (the default CONINT = 10. feet) and the number
of plot characters selected which is defined by the user in data
input Block 4 (the default NPCH = 10, and the maximum NPCH = 20).
The NPCH plot symbols are used in sequence in a circular manner. For
example, if the contour interval is 100. feet, the base elevation is
0. feet, and ten plot symbols (0-9) are being used, then the plot
symbol "1" will be used for the elevations from 100. - 199.9 feet,
1100. -~ 1199.9 feet, and so forth. The symbol "2" will be used from
200. - 299.9, 1200. - 1299.9, and so forth. PRMAP prints out a table
of the actual values assigned to each symbol at the bottom of each
segment and on the output file.

Metaplot creates a plot file which is independent of the plotter
device the user plans to plot upon. This file is named META by this
program. The META file may be processed after the completion of the
simulation run to produce plotter output on a plot device. The
program DIRECT from the librarvy named METALIB is loaded as described
in Appendix I to "direct" the META plot file to a plot device. Those
users who have vector plotters attached to their terminals may use
DIRECT to "direct" the META plot file to those plotters. DIRECT
reads the META plot file and translates it into the plot command
structure required for specific devices. In the case of printer
plots, DIRECT will plot 132-character lines at a density of eight
lines per inch. For Calcomp, Gould, and Tektronix plotters, DIRECT
will produce vector plot commands appropriate to those devices.

43

To "direct" the META file to devices, the user must first attach
the Metaplot library and inform the system that it is a library.

Place the card:
LIBRARY(METALIB)

immediately before the RFL(ECS=...) card in the deck. Then, after
the card:

FD3D.
insert the card:
DIRECT(META,...)

Table 5 displays the DIRECT commands required for each plot device.
When selecting the PRINTER, the plots will print at a computer
terminal. When selecting other plot devices for plotting at a
terminal, the file PLOTFIL must be transmitted from CDC to the
terminal. The details of such transmission will depend on the
characteristics of the terminal.

More than one DIRECT command may be executed if plot output is
desired on more than one device.

IDENT REMARKS$.--Ident REMARKS written in CDC assembly language
displays alphanumeric message on the job dayfile.

SUBROUTINE RIVERQ.--Subroutine RIVERQ distributes river flow along
cach river reach defined by tha nee». Tt is called from subroutine
NEWPER in the computational overlay only when the number of rivers
(NR) is greater than zero. The program must have been compiled with
the option *DEFINE RIVERS defined for this subroutine to be included
in the code.

44

Table 5.--DIRECT commands for METAPLOT

Device

Line Printer

CalComp 565

III FR80 microfilm
Gould electrosta;ié
CalComp 702 flat bed

Tektronix

45

Control card

DIRECT

DIRECT

DIRECT

DIRECT

DIRECT

DIRECT

(META, , PRII\;TER)
(META, PLOTFIL,
(META, PLOTFIL,
(META, PLOTFIL,
(META, PLOTFIL,

(META, ,TEKTRNX)

CF)
M1)
G4)

F7)

RIVERQ first sets the river recharge rate array (QRA) to zero
for each cell, then sets the total river flow array (TQ) to zero for
each river. For each river reach (NR), RIVERQ routes a fixed flow
(QS) downstream from the first cell of the reach. The river gains
water from the aquifer system or loses water to it as a function of
the head difference between the river bottom and the unconfined water
surface, the vertical conductivity of the river cell, and the area of
the river cell. The program limits the connection between the river
and the ground-water system with the variable QMAX which is defined
in data input Block 4., If the river reach has flow remaining, it is
routed to the next river cell downstream. The last river cell of the
river reach may contribute to the first river cell of another
downstream river reach. The user defines the downstream order of
river reaches in data input Block 4 using the variable NRC.

Appendix IV is an example simulation of a two—aquifer problem
that uses RIVERQ.

SUBROUTINE RMOPEN.--Subroutine RMOPEN opens a Cyber Record Manager
word—-addressable file. It is called from program DATAIN in the data
entry overlay. RMOPEN must be called once and only once for each
word-addressable file before the file may be read or written. RMOPEN
will be called for the file named MSFIT if USERMS=.TRUE. It will be
called for the file named TRFIT if TRLEAK=.TRUE.

SUBROUTINE RMCLOS.--Subroutine RMCLOS closes a Cyber Record Manager
word-addressable file. It is called from program NMFD3D in the main
overlay. RMCLOS will be called for the file named MSFIT if
USERMS=.TRUE. It will be <called for the file named TRFIT if
TRLEAK=.TRUE.

SUBROUTINE RMGET.-——Subroutine RMGET reads data from a Cyber Record
Manager word—addressable file. It is called from subroutines BUFIN
and OUTPT in the main overlay and from subroutine CLAY in the
computational overlay.

46

SUBROUTINE RMPUT.--Subroutine RMPUT writes data to a Cyber Record
Manager word—addressable file. It is called from subroutine BUFOUT
in the main overlay, from subroutine CLAY in the computational
overlay, and from program DATAIN in the data entry overlay.

IDENT RQUEST.--IDENT RQUEST written in CDC assembly language requests
a magnetic tape or permanent file from the computer system. It is
called from program DATAIN in the data entry overlay and from
subroutine OUTPT in the main overlay.

SUBROUTINE SAVHYD.--Subroutine SAVHYD stores hydrograph time-value
pairs at the end of a timestep. It is called from subroutine REINIT
in the computational overlay at the end of each timestep within a
pumping period, and from subroutine OUTPT in the main overlay at the
end of each pumping period and at the end of the simulation. Head
values are saved for each hydrograph cell when HYD is defined in data
input Block 9. Drawdown values (STRT - PHI) are saved when DHY is
defined.

SUBROUTINE SKIPJOB.--Subroutine SKIPJOB terminates a run with the
messages:

ABORT RUN - SKIPJOB

STOP "SKIPJOB"

printed in the job dayfile. It is called from subroutines BUFIN,
BUFOUT, and RQUEST in the main overlay when unrecoverable hardware
errors<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>