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Plane wave reflection coefficients for compressional
wave in water incident on a "soft" seafloor
with gas-charged sediment

Gary Boucher

Interest in gas-charged sediment at shallow depths beneath the seafloor

(Carlson and Molnia, 1978; Kvenvolden and others, 1977; Molnia and others, 1978)

raises a requirementgfor quantitative or semi-quantitative techniques to study
the nature and distribution of such sediment. A number of seismic experiments
may be envisioned to study the effects of gas in the sediment, some of which

involve only a reinterpretation of existing data. Holmes and Thor (1980), for

example, interpreted the absence of a direct water-wave arrival on multichannel
seismic traces in areas of known gas-charged sediments as being due to refraction
of acoustic energy away from the water layer. As an aid to thinking about this
particular problem, as well as the more direct problem of designing acoustic
experiments for analysis of gas-charged sediments, I have written an interactive
computer program to make quick calculations of the plane-wave reflection coeffi-
cients for the interface between a liquid and a solid halfspace for arbitrary
values of the elastic constants and densities, as a function of angle of inci-
dence of the sound wave (fig. 1). Some illustrative results are presented here,
and the computer program is included as an appendix.

Ewing, Jardetzky, and Press (1957), pages 76-81, give expressions for the
plane wave reflection and transmission coefficients for the interface between
a liquid and a solid halfspace. The formulas for the reflection coefficient for
the reflected P wave, and the transmission coefficients for the transmitted P-

wave and the converted S-wave are, respectively,
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Hre r is the density, a and b are the contangents of the angles of incidence
for compressional waves and shear waves, resp., ¢ is the phase velocity, and
s is the shear-wave velocity. Primes (') refer to the solid medium. The
quantities a' and b' may be imaginary, so the reflection and transmission
coefficients are complex. Other quantities that may be of interest are the

energy partition ratios for the various wave types E E'p. and E' s which
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The computer program, named pwrefcoeff is written in PL1 language for the
Honeywell 68/80 Multics system, but could easily be converted to Fortran
language. It is included as an appendix for the convenience of those interested
in making their own calculations.

The particular case of interest in this paper is that of gas-charged
sediment on the seafloor. The compressional velocity may be substantially less
than that of sea water, typically by as much as 25%. This condition may prevail
in nature when gas in the bubble phase is present in a large percentage of the
pore space of the sediment. In soft, porous sediments the shear velocity is

typically less than 300 m/sec. The effect of free gas displacing the water in



the sediment would be an increase in the shear velocity relative to the fluid-
saturated case, in contrast to its effect on the compressional velocity.

The Table showsthe results of the computer program for two examples. The
data for the square root of the energy ratios are more appropriate for actual
measurements than are the complex reflection coefficients, since the former
are real numbers. For observations in the liquid layer, they are easily inter-
preted as amplitude reflectivities.

Having in mind the practical problem of "prospecting" for gas-charged
sediments by measuring the amplitude of waves reflected from the sea floor, I shall
limit the restof the discussion to consideration of the reflected compressional
wave. The compressional wave reflected from the bottom is frequently a strong
arrival whose arrival time is known exactly, making it convenient for semiquan-
titative analysis.

Fig. 2 illustrates the difference in behavior between the "hard" bottom,
typical of gas-free sediment with the speed of sound in the bottom greater than
that in the water, and the "soft" bottom, with lower bulk density and sound
velocity less than that of water. In the usual seismic situation, the observable
data are limited to the reflected compressional wave. Hence the significant
difference in the two situations is essentially the strong minimum in reflectivity
at moderately large angles of incidence for the "soft" bottom, compared with
the very large reflectivity prevailing at all angles greater than 60 degrees
for the "hard" bottom.

Judgments to be made in the field are not necessarily so clear-cut as
these idealized examples indicate. Reflection coefficients involve products
of density and elastic constants, making it necessary to consider variations
of both sets of parameters. When this is done, it becomes apparent that
variations in density are relatively insignificant compared to variations in

compressional wave speed in the bottom, for plausible ranges of both parameters.



For a fixed compressional wave speed less than that of water, the variation

in reflectivity at low angles of incidence is more significant than that at

high angles, but it is still rather small. The principal effect of decreasing
the density is a slow, progressive leftward shift of the location of the minimum
reflectivity point. Fig. 3 (a) illustrates this.

In contrast, for a plausible variation of compressional wave speed, with
density held constant (fig. 3b), there are dramatic variations in the behavior
of the reflectivity of the bottom. In general, for values of compressional
wave speed less than that of the overlying water, there is a pronounced minimum
of reflectivity at moderately large angles of incidence, the location of the
minimum progressing towards smaller angles of incidence as the velocity decreases.
For very low values of compressional velocity, the location of this minimum
effectively moves far to the left, and for extremely low values (0.8 km/sec)
it is absent altogether, A compressional wave speed as low as 0.8 km/sec
would be unusual, but Schubel (1974) presents evidence for the existence of
gas-charged sediment with a compressional velocity less than 250 m/sec in

Chesapeake Bay. Schwartz and others (1973) found velocities near 760 m/sec in

Miocene deltaic sands in the Attaka oil field. For wave speeds greater than
that of the overlying water, there is no pronounced minimum in the reflectivity
function, and reflectivity approaches unity for all moderately large angles of
incidence. This range of situations is jllustrated in fig. 3 (b), where
compressional wave speed is the parameter.

In order to complete the discussion, I should mention two aspects of the
problem that I have ignored. First relates to the need for a more elaborate
model to represent an actual field situation correctly. Plane wave reflection
coefficients are useful, but they are not strictly applicable to spherically
propagating waves such as might be generated by an airgun system. Quantitative

analysis of the reflection coefficients would benefit from the more elaborate



theory. In addition, the ocean bottom is often inhomogeneous, and in particular
layered. This may give rise to interesting frequency-dependent effects, which
do not appear in the discussion of plane waves propagating in halfspaces.

The second point is that it is tempting to use measurements of the amplitude
of the bottom reflection derived from multichannel seismic streamer data to
determine behavior as a function of angle of incidence of the reflected waves.
In this case it is important to remember that the "sections" of a multichannel
streamer are normally made rather long, with the express intent of suppressing
Tow-velocity, obliquely-travelling waves like the bottom reflection. Thus an
appropriate correction for the directivity function of the streamer elements
would be important. An experiment designed to "prospect" for gas-charged sedi-
ments in the way described in this paper would use omnidirectional hydrophones
located at moderate depth, and would need to preserve true amplitude data.

Each field situation must be regarded separately, in terms of what is
known of bottom geology, density, and the behavior of compressional velocity
in the bottom. Some general conclusions may still be derived from this simple
series of numerical experiments. The most significant conclusion is that in
the range of angles of incidence greater than about 60%, but less than about
85%, there is a very large difference in reflectivities to be expected between
"soft" and "hard" bottoms, except when the compressional wave speed is quite
near to that of sound in sea water. There are differences among the curves at
smaller angles of incidence, but they may be too small to be resolved. The
most general statement one could make is this: Very high reflectivity in the
range of 50° to 80° angles of incidence is diagnostic of relatively high com-
pressional velocities in the bottom, implying the absence of significant free

gas in the sediment.



REFERENCES

Carlson, Paul R., and Molnia, Bruce F., 1978, Submarine Faults and slides
on the continental shelf, northern Gulf of Alaska: Marine Geotechnology,
v. 2, p. 275-290.

Ewing, M., Jardetzky, W.S., and Press, F.,(1957) Elastic Waves in Layered Media:

McGraw-Hill, New York, 380 p.

Holmes, Mark, and Thor, Devin R., 1980, Distribution of gas-charged sediment
in Norton Basin, Northern Bering Sea, in International Assoc. of Sedimen-
tologists Symposium: North Sea Analogues, Fall, 1979: (in press).

Kvenvolden, Keith A., Redden, George D., and Carlson, Paul R., 1977, Hydrocarbon
gases in sediments of eastern Gulf of Alaska: Am. Assoc. Petrol. Geol.
Bull., v. 61, p. 806, (abstract).

Molnia, Bruce F., Carlson, Paul R., and Kvenvolden, Keith, A., 1978, Gas-charged
sediment areas in the northern Gulf of Alaska: Geological Society of
America Abstracts of Papers, v. 10, no. 7, p. 458,

Schubel, J. R., 1974, Gas bubbles and the acoustically impenetrable, or turbid,
character of some estuarine sediments in, I. R. Kaplan (e.d.) Natural

Gases in Marine Sediments: Plenum Press, New York, pp. 275-297.

Schwartz, C. M., G. H., Laughbaum, Jr., B. S. Samsu, and J. D. Armstrong, 1973,
Geology of the Attaka oil field, East Kalimantan, Indonesia, in Proceedings,

Second Annual Convention Indonesian Petroleum Association, pp. 195-215.



FIGURE CAPTIONS

Schematic diagram of the interface between liquid (sea-water) and a
solid (bottom sediment) halfspaces, showing a compressional wave Pinc
incident on the seafloor at angle of incidence i, giving rise to a

reflected sound wave Pref and, in the solid medium, a transmitted com-
pressional wave Pipan and with angles of incidence i and J, respectively,

and a converted shear wave S. Heavy lines represent raypaths, perpendicular
to plane wavefronts. In this particular situation, the compressional wave
speed in the bottom is greater than that in water, whereas the shear wave
speed in the bottom is less than either of the other two.

Comparison between a "hard" bottom, in which the compressional wave speed

is greater than that of water, and a "soft" bottom, in which the compressional
wave speed is substantially less than that of water. The latter situation

is unlikely to occur unless the sediment pore-space is largely filled with

a gas rather than with water. Bulk density is in specific gravity units,
such as g/cm3. The ordinate, the square root of the energy partition ratio,
is the same as the amplitude ratio for the liquid medium, except that it is
real and positive, and it is related to the amplitude that would be observed
on a seismic trace.

Plots of the square root of the energy partition ratio for the reflected
compressional wave, equivalent to "reflectivity." In (a) bulk density is

the parameter for various families of curves. The compressional velocity

in the bottom is less than that of water, corresponding to a soft or "gassy"
bottom, where other quantities are held fixed. Variations between curves

are progressive with increasing bulk density, and are not dramatic.



In (b), the compressional velocity in the bottom is the variable parameter,
and the variations between curves are rather dramatic, particularly at the
change from a compressional velocity greater than to less than that of sound
in water. The dashed curve for 0.8 km/sec represents an unusual situation, but
one that should be interpreted carefully, should it be encountered. The arrow
is intended to clarify the progression in the family of curves from higher to

lTower velocity.
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