Gamma-ray spectrometric and semiquantitative spectrographic analytical data of the thorium and rare-earth disseminated deposits in the southern Bear Lodge Mountains, Wyoming.

by

Mortimer H. Staatz, Nancy M. Conklin, Carl M. Bunker,
and Charles A. Bush

Open-File Report 80-785
1980

This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey standards.
Introduction

The purpose of this report is to present analytical data on 343 samples taken in the thorium and rare-earth disseminated deposits in the southern Bear Lodge Mountains. The results obtained from some or all of these data have been used first in resource calculations made on these deposits (Staatz and others, 1979, p. 23-27) and second in an overall description of these deposits and their surrounding geology (Staatz, in press).

The southern Bear Lodge Mountains occupy an area of approximately 110 km2 just north of the town of Sundance in Crook County, Wyoming. The Bear Lodge dome underlies most of this area. It consists of a core of Tertiary intrusive rocks that has domed up the surrounding sedimentary rocks of Paleozoic and Mesozoic age. The central core of Tertiary intrusive rocks, mainly trachyte and phonolite, was formed by multiple intrusions of alkalic igneous rocks, during a period of at least 20 million years. This alkalic igneous core has an oval outcrop pattern and is exposed over an area about 8.8 km long by 3.5 km wide. Separate, smaller intrusive bodies also intrude the sedimentary rocks along the flanks of the dome. In the southern half of the core, isolated bodies of granite of Precambrian age are surrounded by the Tertiary alkalic rocks. After most of the igneous rocks were intruded the rocks in the central and north-central parts of the core were fractured, altered, and many of the fractures filled with sanidine-rich vein material. The greater part of this material occurs in thin veinlets that, with their surrounding host rock, make up the disseminated deposits. Most of the veinlets range from fracture coatings to veins as much as 0.6 cm thick. The fractures and the emplaced veinlets are numerous, crisscrossing, and strike in many directions. Dips are variable. Some 26 veins, ranging in thickness from 5 cm to 1.7 m, are also found in the area, but they are not included in the disseminated deposits.
The resources of these veins are small, and their description and chemistry have been reported elsewhere (Staatz and others, 1979, p. 17-18; Staatz, in press). Data in table 1 are entirely on samples taken from the disseminated deposits.

The veinlets in the disseminated deposits are brown, black, or gray. The color generally depends on the abundance of various iron and manganese oxides. Goethite tends to color the veinlets shades of brown; the presence of pyrolusite, cryptomelane, or finely disseminated specular hematite gives the veinlets a black color. Only where these oxides are lacking, or present in only small amounts does a vein show the color of the other minerals present. The principal thorium and rare-earth minerals are brockite and monazite. In addition, rare earths also occur in bastnaesite and weinschenkite. Sanidine is the principal gangue mineral. Common accessory minerals include magnetite, barite, rutile, and brookite.

The size and boundaries of the deposits, may be sharp or gradational. Most of the alkalic rocks have been altered after their emplacement and neither the outline nor relative grade is visually determinable. The position and grade of the disseminated deposits can be determined by either chemical or radiometric analyses. In order to determine the general outline of the disseminated deposits, radiometric readings were taken over the entire igneous central core of the Bear Lodge dome, an area of approximately 30 km2, with a Mount Sopris scintillation counter. A contour map made from some 537 readings was compiled. Individual readings in this survey ranged from 125 to 2,000 counts per second. The area of principal interest, however, lies within the 400 counts-per-second contour. This contour, shown on figure 1, was used to select the area to be sampled in detail.
Methods of present study

All samples analyzed were taken either of bed rock or of dump material that had been dug out of bed rock. The greater part of the alkalic intrusive rocks is covered by several centimeters to a few meters of overburden. Outcrops are common along ridges. Many bulldozer trenches were made in the area in the early 1950's during exploration for rare earth-veins. In addition, there are scattered hand-dug pits that were made in prospecting for other metals during the first part of the twentieth century. Our sampling was done principally in the bulldozer trenches, either along the sides of the trenches or from the dumps. In addition we also sampled outcrops exposed in small hand-dug pits, along ridges, and in road cuts. All samples were chip samples and were taken so as to represent the average disseminated deposit at the sample locality. Veins 5 cm or more thick are widely scattered, few in number, and were not included in sampling. Although these veins would undoubtedly be mined along with the smaller veinlets in any mining operation, their relatively small volume and much higher grade would disproportionately affect the grade of the disseminated deposits. Most of the samples lie within the 400 count-per-second contour. The locations of all the samples taken are shown on figure 1.

The samples weighed 2 to 3 kg, and were ground to -20 mesh. A 600-gm split was measured out of every sample and used by Bunker and Bush to analyze for thorium (Th), radium equivalent uranium (RaeU), and potassium (K) on a gamma-ray spectrometer. From a total of about 340 samples, 192 samples were chosen for semiquantitative spectrographic analyses by Conklin. These samples were selected to give a representative geographic coverage. A split of approximately 150 g was taken for this purpose and ground to -150 mesh. In addition, the various mineral components of some samples were separated by a
heavy liquid and a magnetic separator. The various minerals were identified by X-ray diffraction, and the results of the mineralogic work are given in a separate report (Staatz, in press).
Chemical Analyses

The results of the chemical analyses are given in table 1. Thorium, uranium, and potassium were analyzed by a quantitative gamma-ray spectrometer that measures over 512 channels with a 12.7 cm diameter by 10.2 cm thick NaI crystal. This method has a precision of ±3 percent. Thorium content of the 343 samples ranges from 9.3 to 990 parts per million (ppm). Of these samples, 265 contained at least 50 ppm thorium. The uranium content of these same samples ranges from 1.8 to 346 ppm. Only five samples, however, contained as much as 80 ppm uranium and only one sample contained more than 120 ppm.

All other elements analyzed were done by semiquantitative spectrographic analyses. Results were grouped into several levels bracketed by 1.2, 0.83, 0.56, 0.38, 0.26, 0.18, 0.12, and so forth, and then reported as mid-values between these brackets. Thus, the numbers reported would be 1, 0.7, 0.5, 0.3, 0.2, 0.15, 0.1, and so forth. The precision of a reported value is approximately plus or minus one level. The lower limit of detection varies from element to element. This lower limit is generally a constant for any specific element, but in some samples large amounts of another element will produce interfering lines on the spectrographic plate and raise the limit of detection. This accounts for the variation in the lower limit of detection shown for some elements in table 1. The original semiquantitative spectrographic analyses furnished data on 57 elements. We have reported on 34 of these elements (table 1). We have eliminated a few like silicon and aluminum, which occur in all samples in amounts greater than 10 percent, as well as many elements, such as arsenic, boron, gold, antimony, and tungsten, which occur in insignificant amounts in all samples. In addition we give a value for total rare earths, which is the sum of all individual rare earths whose values lay above the limit of detection. Rare earths are probably the
most economically significant metals in these deposits. The total rare earth content of the 192 samples ranges from 47 to 27,145 ppm. Of these samples, 171 contain in excess of 500 ppm total rare earths, and 54 contain in excess of 5,000 ppm.
Present work and acknowledgments

The first 38 samples listed in table 1 were collected by Staatz between 1974 and 1977, while he was making a geologic map of the area. The rest of the samples were taken during the summer of 1979 during a detailed study of the disseminated deposits. During the summer of 1979, Staatz was assisted in the sampling program for various periods by Russell F. Dubiel, Timothy E. Mower, and David F. Piske, Jr. Sample preparation was carried out by Isabelle K. Brownfield, Timothy E. Mower, and William F. Robinson IV.
References cited

Table 1.—Chemical analyses of samples from the principal Tertiary intrusive mass in the southern Bear Lodge Mountains.

<table>
<thead>
<tr>
<th>Locality No.</th>
<th>Sample No.</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
<th>33</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MHS-30-77</td>
<td>MHS-29-77</td>
<td>MHS-31-77</td>
<td>MHS-110-75</td>
<td>MHS-81-75</td>
<td>MHS-45-77</td>
<td>MHS-32-77</td>
<td>MHS-33-77</td>
<td>MHS-52-77</td>
<td></td>
</tr>
<tr>
<td>Element</td>
<td>In parts per million</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorium</td>
<td>104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lanthanum</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerium</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Praseodymium</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neodymium</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samarium</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europium</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gadolinium</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbium</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dysprosium</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmium</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erbium</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thulium</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ytterbium</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lutetium</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yttrium</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total rare earths</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bismuth</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicobium</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zirconium</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Analyzed by gamma-ray spectrometer by C. M. Bunker and C. A. Bush.
2 Analyzed by semi-quantitative six-step spectrographic method by N. M. Conklin.
Table 1.—Chemical analyses of samples from the principal Tertiary intrusive mass in the southern Bear Lodge Mountains. — Continued

<table>
<thead>
<tr>
<th>Locality No.</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>40</th>
<th>41</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>In parts per million</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiourium¹</td>
<td>193</td>
<td>260</td>
<td>285</td>
<td>123</td>
<td>350</td>
<td>149</td>
<td>135</td>
<td>197</td>
<td>74</td>
</tr>
<tr>
<td>Uranium¹</td>
<td>8</td>
<td>19</td>
<td>25</td>
<td>10</td>
<td>13</td>
<td>5</td>
<td>63</td>
<td>42</td>
<td>17</td>
</tr>
<tr>
<td>Lanthanum²</td>
<td>150</td>
<td>300</td>
<td>1,500</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
</tr>
<tr>
<td>Cerium</td>
<td>300</td>
<td>2,000</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
</tr>
<tr>
<td>Prasodymium²</td>
<td><100</td>
<td>M.D.</td>
<td>300</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
</tr>
<tr>
<td>Neodymium²</td>
<td>300</td>
<td>1,500</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
</tr>
<tr>
<td>Samarium²</td>
<td><100</td>
<td>M.D.</td>
<td>300</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
</tr>
<tr>
<td>Europium²</td>
<td><100</td>
<td>M.D.</td>
<td><100</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
</tr>
<tr>
<td>Gadolinium²</td>
<td><50</td>
<td>M.D.</td>
<td>150</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
</tr>
<tr>
<td>Terbium²</td>
<td><300</td>
<td>M.D.</td>
<td><300</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
</tr>
<tr>
<td>Dysprosium²</td>
<td><50</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
</tr>
<tr>
<td>Holmium²</td>
<td><20</td>
<td>M.D.</td>
<td><20</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
</tr>
<tr>
<td>Erbium²</td>
<td><50</td>
<td>M.D.</td>
<td><50</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
</tr>
<tr>
<td>Thulium²</td>
<td><20</td>
<td>M.D.</td>
<td><20</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
</tr>
<tr>
<td>Ytterbium²</td>
<td>200</td>
<td>N.D.</td>
<td>30</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
</tr>
<tr>
<td>Lutetium²</td>
<td><30</td>
<td>M.D.</td>
<td><30</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
</tr>
<tr>
<td>Yttrium²</td>
<td>70</td>
<td>M.D.</td>
<td>700</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
</tr>
<tr>
<td>Total rare earths</td>
<td>822</td>
<td>N.D.</td>
<td>6,480</td>
<td>N.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
</tr>
<tr>
<td>Barium²</td>
<td>1,500</td>
<td>N.D.</td>
<td>3,000</td>
<td>N.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
</tr>
<tr>
<td>Beryllium²</td>
<td><1.5</td>
<td>M.D.</td>
<td><1.5</td>
<td>N.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
</tr>
<tr>
<td>Bismuth²</td>
<td>10</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
</tr>
<tr>
<td>Copper²</td>
<td>300</td>
<td>M.D.</td>
<td>200</td>
<td>N.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
</tr>
<tr>
<td>Lead²</td>
<td>1,000</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
</tr>
<tr>
<td>Manganese²</td>
<td>30</td>
<td>N.D.</td>
<td>200</td>
<td>N.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
</tr>
<tr>
<td>Molybdenum²</td>
<td>70</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
</tr>
<tr>
<td>Niobium²</td>
<td>1,500</td>
<td>N.D.</td>
<td>1,000</td>
<td>N.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
</tr>
<tr>
<td>Tin²</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
</tr>
<tr>
<td>Vanadium²</td>
<td>150</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
</tr>
<tr>
<td>Zinc²</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td>N.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
</tr>
<tr>
<td>Zirconium²</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
<td>M.D.</td>
</tr>
</tbody>
</table>

In percent

<table>
<thead>
<tr>
<th>Element</th>
<th>Calcium²</th>
<th>Iron²</th>
<th>Magnesium²</th>
<th>Phosphorus²</th>
<th>Potassium¹</th>
<th>Sodium²</th>
<th>Titanium²</th>
</tr>
</thead>
<tbody>
<tr>
<td>In parts per million</td>
<td>.07</td>
<td>1.5</td>
<td>.3</td>
<td><.2</td>
<td>11.3</td>
<td>1.5</td>
<td>.15</td>
</tr>
<tr>
<td>In percent</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
</tbody>
</table>
Table 1.—Chemical analyses of samples from the principal Tertiary intrusive mass in the southern Bear Lodge Mountains. — Continued

[Symbols: N.D. = not determined; < = less than value indicated; > = greater than value indicated]

<table>
<thead>
<tr>
<th>Locality No.</th>
<th>43</th>
<th>44</th>
<th>45</th>
<th>46</th>
<th>47</th>
<th>48</th>
<th>49</th>
<th>50</th>
<th>51</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>In parts per million</td>
<td>In percent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorium1</td>
<td>132</td>
<td>74</td>
<td>102</td>
<td>116</td>
<td>68</td>
<td>990</td>
<td>202</td>
<td>470</td>
<td>120</td>
</tr>
<tr>
<td>Uranium1</td>
<td>16</td>
<td>11</td>
<td>40</td>
<td>9</td>
<td>11</td>
<td>90</td>
<td>8</td>
<td>34</td>
<td>13</td>
</tr>
<tr>
<td>Lanthane2</td>
<td>N.D.</td>
<td>500</td>
<td>1,500</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Cerium2</td>
<td>N.D.</td>
<td>1,000</td>
<td>1,500</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Praesodymium2</td>
<td>N.D.</td>
<td>150</td>
<td>200</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Neodymium2</td>
<td>N.D.</td>
<td>700</td>
<td>1,500</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Samarium2</td>
<td>N.D.</td>
<td>150</td>
<td>200</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Europium2</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Gadolinium2</td>
<td>N.D.</td>
<td>70</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Terbium2</td>
<td>N.D.</td>
<td><300</td>
<td><300</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Dysprosium2</td>
<td>N.D.</td>
<td><50</td>
<td><500</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Holmium2</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Erbium2</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Thulium2</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Ytterbium2</td>
<td>N.D.</td>
<td>3</td>
<td>3</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Lutetium2</td>
<td>N.D.</td>
<td><30</td>
<td><30</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Yttrium2</td>
<td>N.D.</td>
<td>100</td>
<td>100</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Total rare earths</td>
<td>N.D.</td>
<td>2,673</td>
<td>5,153</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Barium2</td>
<td>N.D.</td>
<td>5,000</td>
<td>3,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Beryllium2</td>
<td>N.D.</td>
<td>3</td>
<td>7</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Bismuth2</td>
<td>N.D.</td>
<td><10</td>
<td>15</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Copper2</td>
<td>N.D.</td>
<td>70</td>
<td>30</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Lead2</td>
<td>N.D.</td>
<td>30</td>
<td>700</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Manganese2</td>
<td>N.D.</td>
<td>3,000</td>
<td>7,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Molybdenum2</td>
<td>N.D.</td>
<td>15</td>
<td>30</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Niobium2</td>
<td>N.D.</td>
<td>70</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Strontium2</td>
<td>N.D.</td>
<td>1,500</td>
<td>1,500</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Tin2</td>
<td>N.D.</td>
<td>10</td>
<td><10</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Vanadium2</td>
<td>N.D.</td>
<td>200</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Zinc2</td>
<td>N.D.</td>
<td><300</td>
<td>700</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Zirconium2</td>
<td>N.D.</td>
<td>150</td>
<td>100</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Calcium2</td>
<td>N.D.</td>
<td>.3</td>
<td>.07</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Iron2</td>
<td>N.D.</td>
<td>3</td>
<td>7</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Magnesium2</td>
<td>N.D.</td>
<td>.7</td>
<td>.3</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Phosphorus2</td>
<td>N.D.</td>
<td><.2</td>
<td><.2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Potassium3</td>
<td>10.8</td>
<td>10.9</td>
<td>9.9</td>
<td>10.2</td>
<td>10.6</td>
<td>6</td>
<td>9.8</td>
<td>10.4</td>
<td>11.2</td>
</tr>
<tr>
<td>Sodium2</td>
<td>N.D.</td>
<td>.7</td>
<td>.7</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Titanium2</td>
<td>N.D.</td>
<td>.3</td>
<td>.2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Locality No.</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>-------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Element</td>
<td>In parts per million</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorium</td>
<td>74</td>
<td>135</td>
<td>133</td>
<td>345</td>
<td>335</td>
<td>225</td>
<td>292</td>
<td>110</td>
<td>49</td>
</tr>
<tr>
<td>Uranium</td>
<td>27</td>
<td>11</td>
<td>346</td>
<td>117</td>
<td>69</td>
<td>29</td>
<td>24</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Lanthanum</td>
<td>1,500</td>
<td>700</td>
<td>7,000</td>
<td>N.D.</td>
<td>7,000</td>
<td>2,000</td>
<td>N.D.</td>
<td>1,500</td>
<td>N.D.</td>
</tr>
<tr>
<td>Cerium</td>
<td>1,500</td>
<td>1,500</td>
<td>7,000</td>
<td>N.D.</td>
<td>10,000</td>
<td>7,000</td>
<td>N.D.</td>
<td>1,500</td>
<td>N.D.</td>
</tr>
<tr>
<td>Prasodymium</td>
<td>500</td>
<td>150</td>
<td>700</td>
<td>N.D.</td>
<td>1,000</td>
<td><100</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
</tr>
<tr>
<td>Neodymium</td>
<td>1,500</td>
<td>700</td>
<td>3,000</td>
<td>N.D.</td>
<td>7,000</td>
<td>1,500</td>
<td>N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samarium</td>
<td>300</td>
<td>150</td>
<td>500</td>
<td>N.D.</td>
<td>1,500</td>
<td>300</td>
<td>N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europium</td>
<td><100</td>
<td><100</td>
<td>150</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
</tr>
<tr>
<td>Gadolinium</td>
<td>150</td>
<td>70</td>
<td>150</td>
<td>N.D.</td>
<td>300</td>
<td>150</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
</tr>
<tr>
<td>Terbium</td>
<td><300</td>
<td><300</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td><300</td>
<td>N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dysprosium</td>
<td><500</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td><500</td>
<td>200</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
</tr>
<tr>
<td>Holmium</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td>30</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
</tr>
<tr>
<td>Erbium</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thulium</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ytterbium</td>
<td>7</td>
<td>2</td>
<td>15</td>
<td>N.D.</td>
<td>15</td>
<td>10</td>
<td>N.D.</td>
<td>3</td>
<td>N.D.</td>
</tr>
<tr>
<td>Lutecium</td>
<td><30</td>
<td><30</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td><30</td>
<td>N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yttrium</td>
<td>150</td>
<td>70</td>
<td>150</td>
<td>N.D.</td>
<td>300</td>
<td>100</td>
<td>N.D.</td>
<td>100</td>
<td>N.D.</td>
</tr>
<tr>
<td>Total rare earths</td>
<td>5,457</td>
<td>3,342</td>
<td>18,665</td>
<td>N.D.</td>
<td>26,845</td>
<td>11,260</td>
<td>N.D.</td>
<td>4,123</td>
<td>N.D.</td>
</tr>
<tr>
<td>Barium</td>
<td>3,000</td>
<td>2,000</td>
<td>7,000</td>
<td>N.D.</td>
<td>7,000</td>
<td>2,000</td>
<td>N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>N.D.</td>
<td>7</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
</tr>
<tr>
<td>Bismuth</td>
<td><10</td>
<td><10</td>
<td>15</td>
<td>N.D.</td>
<td>30</td>
<td>15</td>
<td>N.D.</td>
<td>15</td>
<td>N.D.</td>
</tr>
<tr>
<td>Copper</td>
<td>150</td>
<td>50</td>
<td>70</td>
<td>N.D.</td>
<td>150</td>
<td>500</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
</tr>
<tr>
<td>Lead</td>
<td>150</td>
<td>150</td>
<td>300</td>
<td>N.D.</td>
<td>700</td>
<td>500</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
</tr>
<tr>
<td>Manganese</td>
<td>700</td>
<td>200</td>
<td>7,000</td>
<td>N.D.</td>
<td>150</td>
<td>500</td>
<td>N.D.</td>
<td>3,000</td>
<td>N.D.</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>N.D.</td>
<td>200</td>
<td>150</td>
<td>N.D.</td>
<td>30</td>
<td>N.D.</td>
</tr>
<tr>
<td>Niobium</td>
<td>150</td>
<td>150</td>
<td>2,000</td>
<td>N.D.</td>
<td>200</td>
<td>200</td>
<td>N.D.</td>
<td>30</td>
<td>N.D.</td>
</tr>
<tr>
<td>Strontium</td>
<td>2,000</td>
<td>1,500</td>
<td>3,000</td>
<td>N.D.</td>
<td>2,000</td>
<td>1,000</td>
<td>N.D.</td>
<td>3,000</td>
<td>N.D.</td>
</tr>
<tr>
<td>Tin</td>
<td><10</td>
<td><10</td>
<td>15</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>150</td>
<td>150</td>
<td>700</td>
<td>N.D.</td>
<td>700</td>
<td>300</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
</tr>
<tr>
<td>Zinc</td>
<td><300</td>
<td><300</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td><300</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
</tr>
<tr>
<td>Zirconium</td>
<td>200</td>
<td>150</td>
<td>100</td>
<td>N.D.</td>
<td>200</td>
<td>200</td>
<td>N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In percent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>.07</td>
<td>.03</td>
<td>.2</td>
<td>N.D.</td>
<td>.1</td>
<td>.03</td>
<td>N.D.</td>
<td>.07</td>
<td>N.D.</td>
</tr>
<tr>
<td>Iron</td>
<td>3</td>
<td>2</td>
<td>>10</td>
<td>N.D.</td>
<td>7</td>
<td>>10</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
</tr>
<tr>
<td>Magnesium</td>
<td>.07</td>
<td>.07</td>
<td>.7</td>
<td>N.D.</td>
<td>.07</td>
<td>.05</td>
<td>N.D.</td>
<td>.015</td>
<td>N.D.</td>
</tr>
<tr>
<td>Phosphorus</td>
<td><.2</td>
<td><.2</td>
<td>.2</td>
<td>N.D.</td>
<td><.2</td>
<td><.2</td>
<td>N.D.</td>
<td><.2</td>
<td>N.D.</td>
</tr>
<tr>
<td>Potassium</td>
<td>10.7</td>
<td>11.8</td>
<td>8.4</td>
<td>4.4</td>
<td>8.4</td>
<td>8.2</td>
<td>4.9</td>
<td>9.7</td>
<td>9.4</td>
</tr>
<tr>
<td>Sodium</td>
<td>.7</td>
<td>.7</td>
<td>.5</td>
<td>N.D.</td>
<td>.7</td>
<td>.5</td>
<td>N.D.</td>
<td>.7</td>
<td>N.D.</td>
</tr>
<tr>
<td>Titanium</td>
<td>.3</td>
<td>.3</td>
<td>.5</td>
<td>N.D.</td>
<td>.2</td>
<td>.2</td>
<td>N.D.</td>
<td>.15</td>
<td>N.D.</td>
</tr>
<tr>
<td>Locality No.</td>
<td>Sample No.</td>
<td>MHS-33-75</td>
<td>MHS-28-75</td>
<td>MHS-2-79</td>
<td>MHS-3-79</td>
<td>MHS-4-79</td>
<td>MHS-5-79</td>
<td>MHS-6-79</td>
<td>MHS-7-79</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>61</td>
<td>81</td>
<td>36</td>
<td>1.7</td>
<td>23</td>
<td>62</td>
<td>22</td>
<td>21</td>
<td>22</td>
<td>33</td>
</tr>
<tr>
<td>62</td>
<td>82</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>6.7</td>
<td>10</td>
<td>5.2</td>
<td>4.7</td>
<td>7.4</td>
</tr>
<tr>
<td>63</td>
<td>83</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>64</td>
<td>84</td>
<td>300</td>
<td>N.D.</td>
<td>100</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>65</td>
<td>85</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
</tr>
<tr>
<td>66</td>
<td>86</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
</tr>
<tr>
<td>67</td>
<td>87</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
</tr>
<tr>
<td>68</td>
<td>88</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
</tr>
<tr>
<td>69</td>
<td>89</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
</tr>
<tr>
<td>71</td>
<td>91</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
</tr>
<tr>
<td>72</td>
<td>92</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
</tr>
<tr>
<td>73</td>
<td>93</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
</tr>
<tr>
<td>74</td>
<td>94</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td>N.D.</td>
</tr>
<tr>
<td>75</td>
<td>95</td>
<td>7</td>
<td>N.D.</td>
<td>3</td>
<td>N.D.</td>
<td>3</td>
<td>N.D.</td>
<td>3</td>
<td>N.D.</td>
</tr>
<tr>
<td>76</td>
<td>96</td>
<td>30</td>
<td>N.D.</td>
<td>30</td>
<td>N.D.</td>
<td>30</td>
<td>N.D.</td>
<td>30</td>
<td>N.D.</td>
</tr>
<tr>
<td>77</td>
<td>97</td>
<td>827</td>
<td>N.D.</td>
<td>433</td>
<td>N.D.</td>
<td>483</td>
<td>N.D.</td>
<td>433</td>
<td>N.D.</td>
</tr>
<tr>
<td>78</td>
<td>98</td>
<td>700</td>
<td>N.D.</td>
<td>3,000</td>
<td>N.D.</td>
<td>2,000</td>
<td>N.D.</td>
<td>1,500</td>
<td>N.D.</td>
</tr>
<tr>
<td>79</td>
<td>99</td>
<td>5</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
<td>2</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
</tr>
<tr>
<td>80</td>
<td>100</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
</tr>
<tr>
<td>81</td>
<td>101</td>
<td>30</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>30</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
</tr>
<tr>
<td>82</td>
<td>102</td>
<td>50</td>
<td>N.D.</td>
<td>30</td>
<td>N.D.</td>
<td>30</td>
<td>N.D.</td>
<td>30</td>
<td>N.D.</td>
</tr>
<tr>
<td>83</td>
<td>103</td>
<td>1,500</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
</tr>
<tr>
<td>84</td>
<td>104</td>
<td><3</td>
<td>N.D.</td>
<td>20</td>
<td>N.D.</td>
<td>30</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
</tr>
<tr>
<td>85</td>
<td>105</td>
<td>50</td>
<td>N.D.</td>
<td>20</td>
<td>N.D.</td>
<td>15</td>
<td>N.D.</td>
<td>30</td>
<td>N.D.</td>
</tr>
<tr>
<td>86</td>
<td>106</td>
<td>1,500</td>
<td>N.D.</td>
<td>7,000</td>
<td>N.D.</td>
<td>5,000</td>
<td>N.D.</td>
<td>3,000</td>
<td>N.D.</td>
</tr>
<tr>
<td>87</td>
<td>107</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
</tr>
<tr>
<td>88</td>
<td>108</td>
<td>200</td>
<td>N.D.</td>
<td>700</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
<td>700</td>
<td>N.D.</td>
</tr>
<tr>
<td>89</td>
<td>109</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td>N.D.</td>
</tr>
<tr>
<td>90</td>
<td>110</td>
<td>700</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
<td>200</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

In percent

<table>
<thead>
<tr>
<th>Calcium</th>
<th>Iron</th>
<th>Magnesium</th>
<th>Phosphorus</th>
<th>Potassium</th>
<th>Sodium</th>
<th>Titanium</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>1</td>
<td><.2</td>
<td>4.4</td>
<td>7</td>
<td>.7</td>
</tr>
<tr>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>.07</td>
<td>N.D.</td>
<td>.3</td>
<td>N.D.</td>
<td>3.1</td>
<td>.7</td>
<td>.7</td>
</tr>
<tr>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>11.1</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>11.2</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>.15</td>
<td>N.D.</td>
<td>1.5</td>
<td>N.D.</td>
<td>10.3</td>
<td>9.7</td>
<td>N.D.</td>
</tr>
<tr>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>11.1</td>
<td>11.1</td>
<td>N.D.</td>
</tr>
<tr>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>11.6</td>
<td>N.D.</td>
</tr>
<tr>
<td>.07</td>
<td>N.D.</td>
<td>.15</td>
<td>N.D.</td>
<td>.2</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
</tbody>
</table>
Table 1.—Chemical analyses of samples from the principal Tertiary intrusive mass
in the southern Bear Lodge Mountains. — Continued
[Symbols: N.D. — not determined; < − less than value indicated; > − greater than value indicated]

<table>
<thead>
<tr>
<th>Locality No.</th>
<th>70</th>
<th>71</th>
<th>72</th>
<th>73</th>
<th>74</th>
<th>75</th>
<th>76</th>
<th>77</th>
<th>78</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In parts per million</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorium³</td>
<td>74</td>
<td>22</td>
<td>51</td>
<td>25</td>
<td>22</td>
<td>42</td>
<td>69</td>
<td>141</td>
<td>94</td>
</tr>
<tr>
<td>Uranium¹</td>
<td>14</td>
<td>11</td>
<td>16</td>
<td>6.8</td>
<td>6.1</td>
<td>13</td>
<td>8.2</td>
<td>24</td>
<td>8.7</td>
</tr>
<tr>
<td>Lanthanum²</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td>150</td>
<td>300</td>
<td>N.D.</td>
<td>300</td>
</tr>
<tr>
<td>Cerium²</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td>150</td>
<td>300</td>
<td>N.D.</td>
<td>300</td>
</tr>
<tr>
<td>Praseodymium²</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td></td>
</tr>
<tr>
<td>Neodymium²</td>
<td>N.D.</td>
<td>100</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td>100</td>
<td>150</td>
<td>N.D.</td>
<td>300</td>
</tr>
<tr>
<td>Samarium²</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td></td>
</tr>
<tr>
<td>Europium²</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td></td>
</tr>
<tr>
<td>Gadolinium²</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td>Terbium²</td>
<td>N.D.</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td><300</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td></td>
</tr>
<tr>
<td>Dysprosium²</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td>Holmium²</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td></td>
</tr>
<tr>
<td>Erbium²</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td>Thulium²</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td></td>
</tr>
<tr>
<td>Ytterbium²</td>
<td>N.D.</td>
<td>3</td>
<td>N.D.</td>
<td>3</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lutetium²</td>
<td>N.D.</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td><30</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td></td>
</tr>
<tr>
<td>Yttrium²</td>
<td>N.D.</td>
<td>30</td>
<td>N.D.</td>
<td>30</td>
<td>150</td>
<td>N.D.</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total rare earths</td>
<td>N.D.</td>
<td>433</td>
<td>N.D.</td>
<td>433</td>
<td>957</td>
<td>N.D.</td>
<td>977</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium²</td>
<td>N.D.</td>
<td>3,000</td>
<td>N.D.</td>
<td>1,500</td>
<td>3,000</td>
<td>N.D.</td>
<td>3,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium²</td>
<td>N.D.</td>
<td>3</td>
<td>N.D.</td>
<td>3</td>
<td>2</td>
<td>N.D.</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bismuth²</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td>15</td>
<td>10</td>
<td>N.D.</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>Copper²</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>30</td>
<td>70</td>
<td>500</td>
<td>N.D.</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Lead²</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
<td>70</td>
<td>300</td>
<td>1,500</td>
<td>N.D.</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>Manganese²</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>7</td>
<td>7</td>
<td>70</td>
<td>N.D.</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Molybdenum²</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>30</td>
<td>150</td>
<td>150</td>
<td>N.D.</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Niobium²</td>
<td>N.D.</td>
<td>20</td>
<td>N.D.</td>
<td>30</td>
<td>30</td>
<td>N.D.</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strontium²</td>
<td>N.D.</td>
<td>7,000</td>
<td>N.D.</td>
<td>3,000</td>
<td>3,000</td>
<td>3,000</td>
<td>N.D.</td>
<td>3,000</td>
<td></td>
</tr>
<tr>
<td>Ti²</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>Vanadium²</td>
<td>N.D.</td>
<td>500</td>
<td>N.D.</td>
<td>300</td>
<td>300</td>
<td>700</td>
<td>N.D.</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>Zinc²</td>
<td>N.D.</td>
<td><300</td>
<td>N.D.</td>
<td><200</td>
<td><200</td>
<td>300</td>
<td>N.D.</td>
<td><200</td>
<td></td>
</tr>
<tr>
<td>Zirconium²</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
<td>300</td>
<td>700</td>
<td>300</td>
<td>N.D.</td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>

| In percent |
Calcium²	N.D.	.07	N.D.	.1	.15	.3	N.D.	.3	
Iron²	N.D.	3	N.D.	7	3	10	N.D.	7	
Magnesium²	N.D.	.07	N.D.	.15	.3	.15	N.D.	.07	
Phosphorus²	N.D.	<.2	N.D.	<.2	<.2	<.2	N.D.	<.2	
Potassium¹	11.5	11.8	11.3	6.5	6.3	10.4	9.8	9.4	11.5
Sodium²	N.D.	.7	N.D.	5	3	.7	N.D.	.7	
Titanium²	N.D.	.3	N.D.	.7	.3	1.5	N.D.	.7	
Table 1—Chemical analyses of samples from the principal Tertiary intrusive mass

<table>
<thead>
<tr>
<th>Locality No.</th>
<th>79</th>
<th>80</th>
<th>81</th>
<th>82</th>
<th>83</th>
<th>84</th>
<th>85</th>
<th>86</th>
<th>87</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample No.</td>
<td>MHS-</td>
<td>MHS-</td>
<td>MHS-</td>
<td>MHS-</td>
<td>MHS-</td>
<td>MHS-</td>
<td>MHS-</td>
<td>MHS-</td>
<td>MHS-</td>
</tr>
<tr>
<td>Element</td>
<td>In parts per million</td>
<td>In percent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorium¹</td>
<td>118</td>
<td>93</td>
<td>191</td>
<td>130</td>
<td>181</td>
<td>126</td>
<td>35</td>
<td>202</td>
<td>75</td>
</tr>
<tr>
<td>Uranium¹</td>
<td>7.3</td>
<td>7.7</td>
<td>7.4</td>
<td>3.1</td>
<td>5.4</td>
<td>9.4</td>
<td>25</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Lanthanum²</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>300</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Cerium²</td>
<td>300</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
<td>100</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Prasodymium²</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Neodymium²</td>
<td>200</td>
<td>N.D.</td>
<td>100</td>
<td>N.D.</td>
<td>150</td>
<td>100</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Samarium²</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Europium²</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Gadolinium²</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Terbium²</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td><300</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Dysprosium²</td>
<td><70</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td>50</td>
<td><50</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Holmium²</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Erbium²</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Thulium²</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Ytterbium²</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
<td>7</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Lutetium²</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td><30</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Yttrium²</td>
<td>150</td>
<td>N.D.</td>
<td>100</td>
<td>N.D.</td>
<td>100</td>
<td>70</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Total rare earths</td>
<td>957</td>
<td>N.D.</td>
<td>657</td>
<td>N.D.</td>
<td>907</td>
<td>527</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Barium²</td>
<td>3000</td>
<td>N.D.</td>
<td>2000</td>
<td>N.D.</td>
<td>3000</td>
<td>3000</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Beryllium²</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
<td>10</td>
<td>30</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Bismuth²</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Copper²</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>300</td>
<td>70</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Lead²</td>
<td>70</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
<td>70</td>
<td>30</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Manganese²</td>
<td>1500</td>
<td>N.D.</td>
<td>2000</td>
<td>N.D.</td>
<td>2000</td>
<td>1500</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Molybdenum²</td>
<td>70</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
<td>70</td>
<td>70</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Mischium²</td>
<td>30</td>
<td>N.D.</td>
<td>30</td>
<td>N.D.</td>
<td>50</td>
<td>20</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Strontium²</td>
<td>2000</td>
<td>N.D.</td>
<td>2000</td>
<td>N.D.</td>
<td>2000</td>
<td>3000</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Titan²</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Vanadium²</td>
<td>700</td>
<td>N.D.</td>
<td>700</td>
<td>N.D.</td>
<td>700</td>
<td>300</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Zinc²</td>
<td><200</td>
<td>N.D.</td>
<td>200</td>
<td>N.D.</td>
<td>300</td>
<td><200</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Zirconium²</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
<td>70</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>In percent</td>
<td>Calcium²</td>
<td>0.3</td>
<td>N.D.</td>
<td>0.7</td>
<td>N.D.</td>
<td>0.15</td>
<td>0.3</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>Iron²</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
<td>5</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>Magnesium²</td>
<td>0.3</td>
<td>N.D.</td>
<td>0.3</td>
<td>N.D.</td>
<td>0.7</td>
<td>0.07</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>Phosphorus²</td>
<td><2</td>
<td>N.D.</td>
<td><2</td>
<td>N.D.</td>
<td><2</td>
<td><2</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>Potassium¹</td>
<td>11.0</td>
<td>11.1</td>
<td>11.0</td>
<td>11.1</td>
<td>11.0</td>
<td>11.2</td>
<td>11.4</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>Sodium²</td>
<td>0.7</td>
<td>N.D.</td>
<td>0.7</td>
<td>N.D.</td>
<td>0.7</td>
<td>0.3</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>Titanium²</td>
<td>0.7</td>
<td>N.D.</td>
<td>0.5</td>
<td>N.D.</td>
<td>0.7</td>
<td>0.3</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
</tbody>
</table>
Table 1.—Chemical analyses of samples from the principal Tertiary intrusive mass in the southern Bear Lodge Mountains. —Continued

<table>
<thead>
<tr>
<th>Element</th>
<th>N.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thorium 1</td>
<td>150</td>
<td>134</td>
<td>128</td>
<td>54</td>
<td>166</td>
<td>68</td>
<td>51</td>
<td>179</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Uranium 1</td>
<td>33</td>
<td>13</td>
<td>24</td>
<td>41</td>
<td>12</td>
<td>65</td>
<td>19</td>
<td>56</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Lanthanum 2</td>
<td>N.D.</td>
<td>300</td>
<td>3,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>5,000</td>
<td>150</td>
<td>5,000</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>Cerium 2</td>
<td>N.D.</td>
<td>700</td>
<td>3,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>7,000</td>
<td>150</td>
<td>3,000</td>
<td>1,500</td>
<td></td>
</tr>
<tr>
<td>Prasodymium 2</td>
<td>N.D.</td>
<td>100</td>
<td>300</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1,500</td>
<td><100</td>
<td>700</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Neodymium 2</td>
<td>N.D.</td>
<td>300</td>
<td>1,500</td>
<td>N.D.</td>
<td>N.D.</td>
<td>7,000</td>
<td>150</td>
<td>5,000</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>Samarium 2</td>
<td>N.D.</td>
<td>150</td>
<td>300</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1,500</td>
<td><100</td>
<td>700</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Europium 2</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td><100</td>
<td><200</td>
<td><100</td>
<td></td>
</tr>
<tr>
<td>Gadolinium 2</td>
<td>N.D.</td>
<td>70</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>200</td>
<td><50</td>
<td>300</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Terbium 2</td>
<td>N.D.</td>
<td><300</td>
<td><300</td>
<td>N.D.</td>
<td>N.D.</td>
<td><300</td>
<td><300</td>
<td><300</td>
<td><300</td>
<td></td>
</tr>
<tr>
<td>Dysprosium 2</td>
<td>N.D.</td>
<td>50</td>
<td>70</td>
<td>N.D.</td>
<td>N.D.</td>
<td>300</td>
<td><50</td>
<td>150</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Holmium 2</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
</tr>
<tr>
<td>Erbium 2</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td>Thulium 2</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
</tr>
<tr>
<td>Ytterbium 2</td>
<td>N.D.</td>
<td>7</td>
<td>7</td>
<td>N.D.</td>
<td>N.D.</td>
<td>15</td>
<td>7</td>
<td>30</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Lutecium 2</td>
<td>N.D.</td>
<td><30</td>
<td><30</td>
<td>N.D.</td>
<td>N.D.</td>
<td><30</td>
<td><30</td>
<td><30</td>
<td><30</td>
<td></td>
</tr>
<tr>
<td>Yttrium 2</td>
<td>N.D.</td>
<td>150</td>
<td>200</td>
<td>N.D.</td>
<td>N.D.</td>
<td>300</td>
<td>70</td>
<td>700</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Total rare earths</td>
<td>N.D.</td>
<td>8,527</td>
<td>8,527</td>
<td>N.D.</td>
<td>N.D.</td>
<td>22,965</td>
<td>677</td>
<td>17,580</td>
<td>3,343</td>
<td></td>
</tr>
<tr>
<td>Barium 2</td>
<td>N.D.</td>
<td>3,000</td>
<td>3,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>2,000</td>
<td>3,000</td>
<td>7,000</td>
<td>3,000</td>
<td></td>
</tr>
<tr>
<td>Beryllium 2</td>
<td>N.D.</td>
<td>7</td>
<td>1.5</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1.5</td>
<td>1.5</td>
<td>7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Bismuth 2</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>Copper 2</td>
<td>N.D.</td>
<td>150</td>
<td>10,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td>300</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead 2</td>
<td>N.D.</td>
<td>70</td>
<td>300</td>
<td>N.D.</td>
<td>N.D.</td>
<td>300</td>
<td>150</td>
<td>150</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Manganese 2</td>
<td>N.D.</td>
<td>10,000</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>300</td>
<td>150</td>
<td>10,000</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Molybdenum 2</td>
<td>N.D.</td>
<td>30</td>
<td>100</td>
<td>N.D.</td>
<td>N.D.</td>
<td>30</td>
<td>150</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Niobium 2</td>
<td>N.D.</td>
<td>30</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>15</td>
<td>15</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Strontium 2</td>
<td>N.D.</td>
<td>5,000</td>
<td>3,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>5,000</td>
<td>7,000</td>
<td>2,000</td>
<td>7,000</td>
<td></td>
</tr>
<tr>
<td>Tl 2</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>Vanadium 2</td>
<td>N.D.</td>
<td>700</td>
<td>700</td>
<td>N.D.</td>
<td>N.D.</td>
<td>700</td>
<td>700</td>
<td>300</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Zinc 2</td>
<td>N.D.</td>
<td>300</td>
<td><200</td>
<td>N.D.</td>
<td>N.D.</td>
<td>500</td>
<td>300</td>
<td>2,000</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Zirconium 2</td>
<td>N.D.</td>
<td>150</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>300</td>
<td>300</td>
<td>70</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Calcium 2</td>
<td>N.D.</td>
<td>0.15</td>
<td>0.07</td>
<td>N.D.</td>
<td>N.D.</td>
<td>0.1</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Iron 2</td>
<td>N.D.</td>
<td>7</td>
<td>7</td>
<td>N.D.</td>
<td>N.D.</td>
<td>3</td>
<td>7</td>
<td>>10</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Magnesium 2</td>
<td>N.D.</td>
<td>0.7</td>
<td>0.03</td>
<td>N.D.</td>
<td>N.D.</td>
<td>0.07</td>
<td>0.15</td>
<td>0.015</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Phosphorus 2</td>
<td>N.D.</td>
<td><0.2</td>
<td><0.2</td>
<td>N.D.</td>
<td>N.D.</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>Potassium 1</td>
<td>3.1</td>
<td>10.4</td>
<td>9.0</td>
<td>8.3</td>
<td>8.3</td>
<td>9.2</td>
<td>11.6</td>
<td>7.2</td>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td>Sodium 2</td>
<td>N.D.</td>
<td>0.7</td>
<td>0.7</td>
<td>N.D.</td>
<td>N.D.</td>
<td>0.7</td>
<td>0.7</td>
<td>0.3</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Titanium 2</td>
<td>N.D.</td>
<td>0.3</td>
<td>0.7</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1.5</td>
<td>0.3</td>
<td>0.3</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>Element</td>
<td>In parts per million</td>
<td>In percent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorium</td>
<td>172</td>
<td>14,120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>91</td>
<td>5,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lanthanum</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerium</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Praseodymium</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neodymium</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samarium</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europium</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gadolinium</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbium</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dysprosium</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmium</td>
<td>50</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erbium</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thulium</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ttterbium</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lutetium</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yttrium</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total rare earths</td>
<td>N.D.</td>
<td>14,120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>N.D.</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>7</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bismuth</td>
<td>15</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>7,000</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>700</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>150</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>100</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niobium</td>
<td>150</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>5,000</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>15</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>700</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td><200</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zirconium</td>
<td>300</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>N.D.</td>
<td>.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>N.D.</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>.15</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td><.2</td>
<td>N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>10.6</td>
<td>9.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>N.D.</td>
<td>.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td>N.D.</td>
<td>.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symbols: N.D. - not determined; < - less than value indicated; > - greater than value indicated.
Table 1.—Chemical analyses of samples from the principal Tertiary intrusive mass in the southern Bear Lodge Mountains. - Continued

<table>
<thead>
<tr>
<th>Locality No.</th>
<th>107</th>
<th>108</th>
<th>109</th>
<th>110</th>
<th>111</th>
<th>112</th>
<th>113</th>
<th>114</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>In parts per million</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorium</td>
<td>154</td>
<td>128</td>
<td>184</td>
<td>464</td>
<td>94</td>
<td>198</td>
<td>529</td>
<td>110</td>
<td>49</td>
</tr>
<tr>
<td>Uranium</td>
<td>23</td>
<td>11</td>
<td>15</td>
<td>16</td>
<td>8.2</td>
<td>13</td>
<td>53</td>
<td>17</td>
<td>40</td>
</tr>
<tr>
<td>Lanthanum</td>
<td>N.D.</td>
<td>1,000</td>
<td>1,500</td>
<td>N.D.</td>
<td>1,500</td>
<td>N.D.</td>
<td>3,000</td>
<td>2,000</td>
<td>5,000</td>
</tr>
<tr>
<td>Cerium</td>
<td>N.D.</td>
<td>1,500</td>
<td>1,500</td>
<td>N.D.</td>
<td>1,500</td>
<td>N.D.</td>
<td>3,000</td>
<td>3,000</td>
<td>5,000</td>
</tr>
<tr>
<td>Praseodymium</td>
<td>N.D.</td>
<td>150</td>
<td>300</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>700</td>
<td>300</td>
<td>700</td>
</tr>
<tr>
<td>Neodymium</td>
<td>N.D.</td>
<td>1,500</td>
<td>1,500</td>
<td>N.D.</td>
<td>700</td>
<td>N.D.</td>
<td>3,000</td>
<td>1,500</td>
<td>5,000</td>
</tr>
<tr>
<td>Samarium</td>
<td>N.D.</td>
<td>300</td>
<td>300</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>700</td>
<td>300</td>
<td>700</td>
</tr>
<tr>
<td>Europium</td>
<td>N.D.</td>
<td><100</td>
<td>100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td>100</td>
<td><100</td>
<td>100</td>
</tr>
<tr>
<td>Gdolinmium</td>
<td>N.D.</td>
<td>150</td>
<td>150</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
<td>300</td>
<td>70</td>
<td>150</td>
</tr>
<tr>
<td>Terbium</td>
<td>N.D.</td>
<td><300</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td><300</td>
<td><300</td>
</tr>
<tr>
<td>Dysprosium</td>
<td>N.D.</td>
<td><70</td>
<td>70</td>
<td>N.D.</td>
<td><70</td>
<td>N.D.</td>
<td>100</td>
<td><70</td>
<td><70</td>
</tr>
<tr>
<td>Holmium</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Erbium</td>
<td>N.D.</td>
<td><50</td>
<td><100</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><100</td>
<td><50</td>
<td><100</td>
</tr>
<tr>
<td>Thulium</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Ytterbium</td>
<td>N.D.</td>
<td>7</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Lucretium</td>
<td>N.D.</td>
<td><30</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td><30</td>
<td><30</td>
</tr>
<tr>
<td>Yttrium</td>
<td>N.D.</td>
<td>150</td>
<td>100</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>300</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Total rare earths</td>
<td>N.D.</td>
<td>4,757</td>
<td>5,527</td>
<td>N.D.</td>
<td>4,227</td>
<td>N.D.</td>
<td>11,207</td>
<td>7,327</td>
<td>16,807</td>
</tr>
<tr>
<td>Barium</td>
<td>N.D.</td>
<td>7,000</td>
<td>3,000</td>
<td>N.D.</td>
<td>5,000</td>
<td>N.D.</td>
<td>10,000</td>
<td>5,000</td>
<td>7,000</td>
</tr>
<tr>
<td>Beryllium</td>
<td>N.D.</td>
<td>1.5</td>
<td>1.5</td>
<td>N.D.</td>
<td>1</td>
<td>N.D.</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Bismuth</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td>15</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Copper</td>
<td>N.D.</td>
<td>70</td>
<td>50</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
<td>70</td>
<td>70</td>
<td>150</td>
</tr>
<tr>
<td>Lead</td>
<td>N.D.</td>
<td>150</td>
<td>150</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
<td>700</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Manganese</td>
<td>N.D.</td>
<td>1,500</td>
<td>3,000</td>
<td>N.D.</td>
<td>1,500</td>
<td>N.D.</td>
<td>1,500</td>
<td>3,000</td>
<td>5,000</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>N.D.</td>
<td>50</td>
<td>20</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
<td>100</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>Niobium</td>
<td>N.D.</td>
<td>150</td>
<td>70</td>
<td>N.D.</td>
<td>50</td>
<td>N.D.</td>
<td>300</td>
<td>70</td>
<td>150</td>
</tr>
<tr>
<td>Strontium</td>
<td>N.D.</td>
<td>2,000</td>
<td>3,000</td>
<td>N.D.</td>
<td>2,000</td>
<td>N.D.</td>
<td>1,500</td>
<td>2,000</td>
<td>2,000</td>
</tr>
<tr>
<td>Tin</td>
<td>N.D.</td>
<td>10</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td>15</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Vanadium</td>
<td>N.D.</td>
<td>700</td>
<td>150</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Zinc</td>
<td>N.D.</td>
<td><200</td>
<td>300</td>
<td>N.D.</td>
<td><200</td>
<td>N.D.</td>
<td>300</td>
<td>300</td>
<td>700</td>
</tr>
<tr>
<td>Zirconium</td>
<td>N.D.</td>
<td>150</td>
<td>70</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
<td>70</td>
<td>150</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
</tr>
<tr>
<td>Iron</td>
</tr>
<tr>
<td>Magnesium</td>
</tr>
<tr>
<td>Phosphorus</td>
</tr>
<tr>
<td>Potassium</td>
</tr>
<tr>
<td>Sodium</td>
</tr>
<tr>
<td>Titanium</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>116</td>
</tr>
<tr>
<td>Element</td>
</tr>
<tr>
<td>Thorium</td>
</tr>
<tr>
<td>Uranium</td>
</tr>
<tr>
<td>Lanthanum</td>
</tr>
<tr>
<td>Cerium</td>
</tr>
<tr>
<td>Prasodymium</td>
</tr>
<tr>
<td>Neodymium</td>
</tr>
<tr>
<td>Samarium</td>
</tr>
<tr>
<td>Europium</td>
</tr>
<tr>
<td>Gadolinium</td>
</tr>
<tr>
<td>Terbium</td>
</tr>
<tr>
<td>Dyprosium</td>
</tr>
<tr>
<td>Holmium</td>
</tr>
<tr>
<td>Erbium</td>
</tr>
<tr>
<td>Thulium</td>
</tr>
<tr>
<td>Ytterbium</td>
</tr>
<tr>
<td>Lutetium</td>
</tr>
<tr>
<td>Yttrium</td>
</tr>
<tr>
<td>Total rare earths</td>
</tr>
<tr>
<td>Barium</td>
</tr>
<tr>
<td>Beryllium</td>
</tr>
<tr>
<td>Bismuth</td>
</tr>
<tr>
<td>Copper</td>
</tr>
<tr>
<td>Lead</td>
</tr>
<tr>
<td>Manganese</td>
</tr>
<tr>
<td>Molybdenum</td>
</tr>
<tr>
<td>Nickel</td>
</tr>
<tr>
<td>Strontium</td>
</tr>
<tr>
<td>Tin</td>
</tr>
<tr>
<td>Vanadium</td>
</tr>
<tr>
<td>Zinc</td>
</tr>
<tr>
<td>Zirconium</td>
</tr>
</tbody>
</table>

In percent										
Calcium	.07	N.D.	N.D.	.3	N.D.	.3	N.D.	N.D.	N.D.	N.D.
Iron	>10	N.D.	N.D.	7	N.D.	7	N.D.	N.D.	N.D.	N.D.
Magnesium	.3	N.D.	N.D.	.7	N.D.	.7	N.D.	N.D.	N.D.	N.D.
Phosphorus	<.2	N.D.	N.D.	.3	N.D.	<.2	N.D.	N.D.	N.D.	N.D.
Potassium	10.4	10.0	11.2	11.0	11.2	11.2	9.1	9.9		
Sodium	.7	N.D.	N.D.	.7	N.D.	1.5	N.D.	N.D.	N.D.	N.D.
Titanium	.3	N.D.	N.D.	.7	N.D.	.7	N.D.	N.D.	N.D.	N.D.
Table 1.—Chemical analyses of samples from the principal Tertiary intrusive mass
in the southern Bear Lodge Mountains. - Continued

<table>
<thead>
<tr>
<th>Locality No.</th>
<th>125</th>
<th>126</th>
<th>127</th>
<th>128</th>
<th>129</th>
<th>130</th>
<th>131</th>
<th>132</th>
<th>133</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>In parts per million</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thoriun</td>
<td>107</td>
<td>242</td>
<td>210</td>
<td>191</td>
<td>252</td>
<td>699</td>
<td>168</td>
<td>170</td>
<td>775</td>
</tr>
<tr>
<td>Uranium</td>
<td>42</td>
<td>14</td>
<td>28</td>
<td>7.4</td>
<td>23</td>
<td>29</td>
<td>9.5</td>
<td>8.6</td>
<td>63</td>
</tr>
<tr>
<td>Lanthanum</td>
<td>5,000</td>
<td>3,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>2,000</td>
<td>5,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>5,000</td>
</tr>
<tr>
<td>Cerium</td>
<td>7,000</td>
<td>3,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>2,000</td>
<td>7,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>7,000</td>
</tr>
<tr>
<td>Prasodymium</td>
<td>700</td>
<td>700</td>
<td>N.D.</td>
<td>N.D.</td>
<td>200</td>
<td>700</td>
<td>N.D.</td>
<td>N.D.</td>
<td>700</td>
</tr>
<tr>
<td>Neodymium</td>
<td>3,000</td>
<td>3,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1,500</td>
<td>3,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>7,000</td>
</tr>
<tr>
<td>Samarium</td>
<td>700</td>
<td>300</td>
<td>N.D.</td>
<td>N.D.</td>
<td>200</td>
<td>700</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1,000</td>
</tr>
<tr>
<td>Europium</td>
<td>100</td>
<td>100</td>
<td>N.D.</td>
<td>N.D.</td>
<td><100</td>
<td>100</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
</tr>
<tr>
<td>Gadolinium</td>
<td>150</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>70</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>300</td>
</tr>
<tr>
<td>Terbium</td>
<td><300</td>
<td><300</td>
<td>N.D.</td>
<td>N.D.</td>
<td><300</td>
<td><300</td>
<td>N.D.</td>
<td>N.D.</td>
<td><300</td>
</tr>
<tr>
<td>Dysprosium</td>
<td>50</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>70</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
</tr>
<tr>
<td>Holmium</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td>N.D.</td>
<td><20</td>
<td>30</td>
<td>N.D.</td>
<td>N.D.</td>
<td><20</td>
</tr>
<tr>
<td>Erbium</td>
<td><100</td>
<td><50</td>
<td>N.D.</td>
<td>N.D.</td>
<td><50</td>
<td><100</td>
<td>N.D.</td>
<td>N.D.</td>
<td><100</td>
</tr>
<tr>
<td>Thulium</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td>N.D.</td>
<td><20</td>
</tr>
<tr>
<td>Ytterbium</td>
<td>15</td>
<td>15</td>
<td>N.D.</td>
<td>N.D.</td>
<td>15</td>
<td>30</td>
<td>N.D.</td>
<td>N.D.</td>
<td>15</td>
</tr>
<tr>
<td>Lutecium</td>
<td><30</td>
<td><30</td>
<td>N.D.</td>
<td>N.D.</td>
<td><30</td>
<td><30</td>
<td>N.D.</td>
<td>N.D.</td>
<td><30</td>
</tr>
<tr>
<td>Tantulum</td>
<td>300</td>
<td>700</td>
<td>N.D.</td>
<td>N.D.</td>
<td>500</td>
<td>1,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>700</td>
</tr>
<tr>
<td>Total rare earths</td>
<td>17,015</td>
<td>11,115</td>
<td>N.D.</td>
<td>N.D.</td>
<td>6,555</td>
<td>17,860</td>
<td>N.D.</td>
<td>N.D.</td>
<td>22,015</td>
</tr>
<tr>
<td>Barium</td>
<td>3,000</td>
<td>7,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>3,000</td>
<td>7,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>7,000</td>
</tr>
<tr>
<td>Serylum</td>
<td>3</td>
<td>1.5</td>
<td>N.D.</td>
<td>N.D.</td>
<td>15</td>
<td>7</td>
<td>N.D.</td>
<td>N.D.</td>
<td>3</td>
</tr>
<tr>
<td>Bismuth</td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
<td>N.D.</td>
<td><10</td>
<td><15</td>
<td>N.D.</td>
<td>N.D.</td>
<td>50</td>
</tr>
<tr>
<td>Copper</td>
<td>300</td>
<td>70</td>
<td>N.D.</td>
<td>N.D.</td>
<td>70</td>
<td>100</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
</tr>
<tr>
<td>Lead</td>
<td>300</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td>300</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1,500</td>
</tr>
<tr>
<td>Manganese</td>
<td>100,000</td>
<td>2,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>70</td>
<td>70</td>
<td>N.D.</td>
<td>N.D.</td>
<td>30,000</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>50</td>
<td>300</td>
<td>N.D.</td>
<td>N.D.</td>
<td>300</td>
<td>500</td>
<td>N.D.</td>
<td>N.D.</td>
<td>100</td>
</tr>
<tr>
<td>Cobalt</td>
<td>70</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>70</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>300</td>
</tr>
<tr>
<td>Strontium</td>
<td>2,000</td>
<td>2,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1,500</td>
<td>2,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>2,000</td>
</tr>
<tr>
<td>Tin</td>
<td><15</td>
<td><15</td>
<td>N.D.</td>
<td>N.D.</td>
<td><15</td>
<td>10</td>
<td>N.D.</td>
<td>N.D.</td>
<td><15</td>
</tr>
<tr>
<td>Vanadium</td>
<td>300</td>
<td>700</td>
<td>N.D.</td>
<td>N.D.</td>
<td>700</td>
<td>700</td>
<td>N.D.</td>
<td>N.D.</td>
<td>300</td>
</tr>
<tr>
<td>Zinc</td>
<td>1,500</td>
<td><300</td>
<td>N.D.</td>
<td>N.D.</td>
<td><300</td>
<td><200</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1,500</td>
</tr>
<tr>
<td>Zirconium</td>
<td>300</td>
<td>300</td>
<td>N.D.</td>
<td>N.D.</td>
<td>300</td>
<td>300</td>
<td>N.D.</td>
<td>N.D.</td>
<td>70</td>
</tr>
</tbody>
</table>

In percent

<p>| Calcium | .07 | .07 | N.D. | N.D. | .07 | .07 | N.D. | N.D. | 5 |
| Iron | >10 | 7 | N.D. | N.D. | 7 | 7 | N.D. | N.D. | >10 |
| Magnesium | .7 | .3 | N.D. | N.D. | .15 | .03 | N.D. | N.D. | .7 |
| Phosphorus | <.2 | <.2 | N.D. | N.D. | <.2 | <.2 | N.D. | N.D. | <.2 |
| Potassium | 7.8 | 11.6 | 10.3 | 12.1 | 10.6 | 10.0 | 10.9 | 8.7 | 8.6 |
| Sodium | .7 | .7 | N.D. | N.D. | .7 | .7 | N.D. | f N.D. | .7 |
| Titanium | .7 | .7 | N.D. | N.D. | .7 | .7 | N.D. | N.D. | .7 |</p>
<table>
<thead>
<tr>
<th>Locality No.</th>
<th>136</th>
<th>135</th>
<th>136</th>
<th>138</th>
<th>139</th>
<th>140</th>
<th>141</th>
<th>142</th>
<th>143</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>In parts per million</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorium</td>
<td>525</td>
<td>238</td>
<td>123</td>
<td>26</td>
<td>7L</td>
<td>266</td>
<td>642</td>
<td>273</td>
<td>361</td>
</tr>
<tr>
<td>Uranium</td>
<td>42</td>
<td>11</td>
<td>15</td>
<td>9.4</td>
<td>6.6</td>
<td>9.1</td>
<td>18.9</td>
<td>15.7</td>
<td>14.7</td>
</tr>
<tr>
<td>Lanthanum</td>
<td>3,000</td>
<td>3,000</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
<td>N.D.</td>
<td>3,000</td>
<td>1,500</td>
<td>3,000</td>
</tr>
<tr>
<td>Cerium</td>
<td>7,000</td>
<td>3,000</td>
<td>N.D.</td>
<td>700</td>
<td>N.D.</td>
<td>N.D.</td>
<td>5,000</td>
<td>2,000</td>
<td>3,000</td>
</tr>
<tr>
<td>Praseodymium</td>
<td>700</td>
<td>300</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td>N.D.</td>
<td>700</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Neodymium</td>
<td>3,000</td>
<td>1,500</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
<td>N.D.</td>
<td>3,000</td>
<td>1,500</td>
<td>3,000</td>
</tr>
<tr>
<td>Samarium</td>
<td>700</td>
<td>300</td>
<td>N.D.</td>
<td>100</td>
<td>N.D.</td>
<td>N.D.</td>
<td>700</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Europium</td>
<td>100</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td>N.D.</td>
<td>100</td>
<td><100</td>
<td>100</td>
</tr>
<tr>
<td>Gadolinium</td>
<td>200</td>
<td>150</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td>N.D.</td>
<td>300</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Terbium</td>
<td><300</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td>N.D.</td>
<td>N.D.</td>
<td><300</td>
<td><300</td>
<td><300</td>
</tr>
<tr>
<td>Dysprosium</td>
<td>150</td>
<td>70</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Holmium</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td>N.D.</td>
<td>30</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Erbium</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td>N.D.</td>
<td><100</td>
<td><50</td>
<td><50</td>
</tr>
<tr>
<td>Thulium</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>YTterbium</td>
<td>15</td>
<td>7</td>
<td>N.D.</td>
<td>3</td>
<td>N.D.</td>
<td>N.D.</td>
<td>20</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Lutetium</td>
<td><30</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td>N.D.</td>
<td>N.D.</td>
<td><30</td>
<td><30</td>
<td><30</td>
</tr>
<tr>
<td>Tertiium</td>
<td>300</td>
<td>200</td>
<td>N.D.</td>
<td>30</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1,000</td>
<td>300</td>
<td>500</td>
</tr>
<tr>
<td>Total rare earths</td>
<td>15,165</td>
<td>8,527</td>
<td>N.D.</td>
<td>1,433</td>
<td>N.D.</td>
<td>N.D.</td>
<td>14,000</td>
<td>6,150</td>
<td>10,435</td>
</tr>
<tr>
<td>Barium</td>
<td>7,000</td>
<td>7,000</td>
<td>N.D.</td>
<td>3,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>10,000</td>
<td>7,000</td>
<td>7,000</td>
</tr>
<tr>
<td>Beryllium</td>
<td>3</td>
<td>1.5</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
<td>N.D.</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Bismuth</td>
<td>20</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td>N.D.</td>
<td><15</td>
<td><10</td>
<td><15</td>
</tr>
<tr>
<td>Copper</td>
<td>150</td>
<td>150</td>
<td>N.D.</td>
<td>100</td>
<td>N.D.</td>
<td>N.D.</td>
<td>100</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>Lead</td>
<td>700</td>
<td>150</td>
<td>N.D.</td>
<td>50</td>
<td>N.D.</td>
<td>N.D.</td>
<td>700</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Manganese</td>
<td>30,000</td>
<td>3,000</td>
<td>N.D.</td>
<td>2,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>10,000</td>
<td>10,000</td>
<td>15,000</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>300</td>
<td>150</td>
<td>N.D.</td>
<td>30</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Niobium</td>
<td>300</td>
<td>100</td>
<td>N.D.</td>
<td>30</td>
<td>N.D.</td>
<td>N.D.</td>
<td>500</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>Strontium</td>
<td>2,000</td>
<td>2,000</td>
<td>N.D.</td>
<td>5,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>2,000</td>
<td>1,000</td>
<td>2,000</td>
</tr>
<tr>
<td>Tin</td>
<td><15</td>
<td><15</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td>N.D.</td>
<td>20</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Vanadium</td>
<td>300</td>
<td>300</td>
<td>N.D.</td>
<td>700</td>
<td>N.D.</td>
<td>N.D.</td>
<td>700</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>Zinc</td>
<td>700</td>
<td><200</td>
<td>N.D.</td>
<td><200</td>
<td>N.D.</td>
<td>N.D.</td>
<td>700</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Zirconium</td>
<td>150</td>
<td>150</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
</tbody>
</table>

Table 1.—Chemical analyses of samples from the principal Tertiary intrusive mass in the southern Bear Lodge Mountains. — Continued

(Symbols: N.D. - not determined; < - less than value indicated; > - greater than value indicated)

<table>
<thead>
<tr>
<th>Locality No.</th>
<th>136</th>
<th>135</th>
<th>136</th>
<th>138</th>
<th>139</th>
<th>140</th>
<th>141</th>
<th>142</th>
<th>143</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>In percent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>.07</td>
<td>.2</td>
<td>N.D.</td>
<td>.15</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1.5</td>
<td>.7</td>
<td>.3</td>
</tr>
<tr>
<td>Iron</td>
<td>>10</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
<td>N.D.</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Magnesium</td>
<td>.15</td>
<td>.7</td>
<td>N.D.</td>
<td>.7</td>
<td>N.D.</td>
<td>N.D.</td>
<td>.15</td>
<td>.3</td>
<td>.3</td>
</tr>
<tr>
<td>Phosphorus</td>
<td><.2</td>
<td><.2</td>
<td>N.D.</td>
<td><.2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>.3</td>
<td><.2</td>
<td><.2</td>
</tr>
<tr>
<td>Potassium</td>
<td>10.3</td>
<td>11.7</td>
<td>8.2</td>
<td>11.6</td>
<td>6.0</td>
<td>11.2</td>
<td>10.8</td>
<td>11.5</td>
<td>10.8</td>
</tr>
<tr>
<td>Sodium</td>
<td>.7</td>
<td>.7</td>
<td>N.D.</td>
<td>.7</td>
<td>N.D.</td>
<td>N.D.</td>
<td>.7</td>
<td>.7</td>
<td>1.5</td>
</tr>
<tr>
<td>Titanium</td>
<td>.7</td>
<td>.3</td>
<td>N.D.</td>
<td>.7</td>
<td>N.D.</td>
<td>N.D.</td>
<td>.7</td>
<td>.7</td>
<td>.5</td>
</tr>
</tbody>
</table>
Table 1.—Chemical analyses of samples from the principal Tertiary intrusive mass in the southern Bear Lodge Mountains—Continued

<table>
<thead>
<tr>
<th>Locality No.</th>
<th>144</th>
<th>145</th>
<th>146</th>
<th>147</th>
<th>148</th>
<th>149</th>
<th>150</th>
<th>151</th>
<th>152</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>In parts per million</td>
<td>In percent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorium¹</td>
<td>430</td>
<td>216</td>
<td>188</td>
<td>183</td>
<td>126</td>
<td>171</td>
<td>181</td>
<td>127</td>
<td>52</td>
</tr>
<tr>
<td>Uranium¹</td>
<td>10.2</td>
<td>2.9</td>
<td>5.5</td>
<td>4.6</td>
<td>9.9</td>
<td>20</td>
<td>19</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>Lanthanum²</td>
<td>700</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1,500</td>
<td>N.D.</td>
</tr>
<tr>
<td>Cerium²</td>
<td>1,500</td>
<td>N.D.</td>
<td>700</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>2,000</td>
<td>N.D.</td>
</tr>
<tr>
<td>Praseodymium²</td>
<td>200</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>200</td>
<td>N.D.</td>
</tr>
<tr>
<td>Neodymium²</td>
<td>1,500</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1,500</td>
<td>N.D.</td>
</tr>
<tr>
<td>Samarium²</td>
<td>300</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
</tr>
<tr>
<td>Europium²</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
</tr>
<tr>
<td>Gadolinium²</td>
<td>150</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>100</td>
<td>N.D.</td>
</tr>
<tr>
<td>Terbium²</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td><300</td>
<td>N.D.</td>
</tr>
<tr>
<td>Dysprosium²</td>
<td>70</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
</tr>
<tr>
<td>Holmium²</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
</tr>
<tr>
<td>Erbium²</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
</tr>
<tr>
<td>Thulium²</td>
<td><10</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
</tr>
<tr>
<td>Ytterbium²</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>10</td>
<td>N.D.</td>
</tr>
<tr>
<td>Lutetium²</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td><30</td>
<td>N.D.</td>
</tr>
<tr>
<td>Yttrium³</td>
<td>300</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
</tr>
<tr>
<td>Total rare earths</td>
<td>4,727</td>
<td>N.D.</td>
<td>1,677</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>5,830</td>
<td>N.D.</td>
</tr>
<tr>
<td>Barium²</td>
<td>7,000</td>
<td>N.D.</td>
<td>3,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>7,000</td>
<td>N.D.</td>
</tr>
<tr>
<td>Beryllium²</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
</tr>
<tr>
<td>Bismuth²</td>
<td>20</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>10</td>
<td>N.D.</td>
</tr>
<tr>
<td>Copper²</td>
<td>100</td>
<td>N.D.</td>
<td>100</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
</tr>
<tr>
<td>Lead²</td>
<td>700</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
</tr>
<tr>
<td>Manganese²</td>
<td>5,000</td>
<td>N.D.</td>
<td>3,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
</tr>
<tr>
<td>Molybdenum²</td>
<td>700</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
</tr>
<tr>
<td>Niobium²</td>
<td>200</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
</tr>
<tr>
<td>Strontium²</td>
<td>2,000</td>
<td>N.D.</td>
<td>1,500</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>2,000</td>
<td>N.D.</td>
</tr>
<tr>
<td>Tin²</td>
<td>15</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td><15</td>
<td>N.D.</td>
</tr>
<tr>
<td>Vanadium²</td>
<td>700</td>
<td>N.D.</td>
<td>700</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>700</td>
<td>N.D.</td>
</tr>
<tr>
<td>Zinc²</td>
<td><200</td>
<td>N.D.</td>
<td><200</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
</tr>
<tr>
<td>Zirconium²</td>
<td>150</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

In percent

<p>| Calcium² | 7 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 7 | N.D. |
| Iron² | 3 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 10 | N.D. |
| Magnesium² | .7 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | .15 | N.D. |
| Phosphorus² | <.2 | N.D. | <.2 | N.D. | N.D. | N.D. | N.D. | <.2 | N.D. |
| Potassium¹ | 10.8 | 8.8 | 10.5 | 8.9 | 10.4 | 10.4 | 10.4 | 9.9 | 10.4 |
| Sodium² | 1.5 | N.D. | 3 | N.D. | N.D. | N.D. | N.D. | .7 | N.D. |
| Titanium² | .7 | N.D. | .7 | N.D. | N.D. | N.D. | N.D. | .7 | N.D. |</p>
<table>
<thead>
<tr>
<th>Locality No.</th>
<th>153</th>
<th>154</th>
<th>155</th>
<th>156</th>
<th>157</th>
<th>158</th>
<th>159</th>
<th>160</th>
<th>161</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample No. MHS-</td>
<td>MHS-</td>
<td>MHS-</td>
<td>MHS-</td>
<td>MHS-</td>
<td>MHS-</td>
<td>MHS-</td>
<td>MHS-</td>
<td>MHS-</td>
<td>MHS-</td>
</tr>
<tr>
<td>90-79</td>
<td>91-79</td>
<td>92-79</td>
<td>93-79</td>
<td>94-79</td>
<td>95-79</td>
<td>96-79</td>
<td>97-79</td>
<td>98-79</td>
<td></td>
</tr>
<tr>
<td>Element</td>
<td>Thorium</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Uranium</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Lanthanum</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Cerium</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Praseodymium</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Neodymium</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Samarium</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Europium</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Gadolinium</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Terbium</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Dysprosium</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Holmium</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Erbium</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Thulium</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Ytterbium</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Lutetium</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Yttrium</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total rare earths</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Barium</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Beryllium</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Bismuth</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Molybdenum</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Niobium</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Tin</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Zirconium</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
</tr>
<tr>
<td>Iron</td>
</tr>
<tr>
<td>Magnesium</td>
</tr>
<tr>
<td>Phosphorus</td>
</tr>
<tr>
<td>Potassium</td>
</tr>
<tr>
<td>Sodium</td>
</tr>
<tr>
<td>Titanium</td>
</tr>
</tbody>
</table>
Table 1: Chemical analyses of samples from the principal Tertiary intrusive mass in the southern Bear Lodge Mountains. - Continued

(Symbols: N.D. = not determined; < - less than value indicated; > - greater than value indicated)

<table>
<thead>
<tr>
<th>Locality No.</th>
<th>162</th>
<th>163</th>
<th>164</th>
<th>165</th>
<th>166</th>
<th>167</th>
<th>168</th>
<th>169</th>
<th>170</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>In parts per million</td>
<td>In percent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorium(^1)</td>
<td>466</td>
<td>212</td>
<td>175</td>
<td>203</td>
<td>311</td>
<td>234</td>
<td>161</td>
<td>123</td>
<td>291</td>
</tr>
<tr>
<td>Uranium(^1)</td>
<td>6.2</td>
<td>3.8</td>
<td>9.0</td>
<td>6.1</td>
<td>4.6</td>
<td>9.0</td>
<td>4.0</td>
<td>11</td>
<td>23</td>
</tr>
<tr>
<td>Lanthanum(^2)</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>300</td>
<td>700</td>
<td>N.D.</td>
<td>300</td>
<td>1,500</td>
</tr>
<tr>
<td>Cerium(^2)</td>
<td>300</td>
<td>200</td>
<td>300</td>
<td>300</td>
<td>500</td>
<td>1,500</td>
<td>N.D.</td>
<td>700</td>
<td>1,500</td>
</tr>
<tr>
<td>Praseodymium(^2)</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>100</td>
<td>200</td>
<td>N.D.</td>
<td><70</td>
<td>200</td>
</tr>
<tr>
<td>Neodymium(^2)</td>
<td>300</td>
<td>150</td>
<td>300</td>
<td>300</td>
<td>500</td>
<td>1,500</td>
<td>N.D.</td>
<td>300</td>
<td>1,000</td>
</tr>
<tr>
<td>Samarium(^2)</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>300</td>
<td>N.D.</td>
<td><100</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Europium(^2)</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td></td>
</tr>
<tr>
<td>Gadolinium(^2)</td>
<td>150</td>
<td>150</td>
<td>70</td>
<td>70</td>
<td>150</td>
<td>100</td>
<td>N.D.</td>
<td><50</td>
<td>150</td>
</tr>
<tr>
<td>Terbium(^2)</td>
<td><300</td>
<td><300</td>
<td><300</td>
<td><300</td>
<td><300</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td></td>
</tr>
<tr>
<td>Dysprosium(^2)</td>
<td>70</td>
<td><70</td>
<td><70</td>
<td>70</td>
<td>70</td>
<td><70</td>
<td>N.D.</td>
<td><50</td>
<td>70</td>
</tr>
<tr>
<td>Holmium(^2)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td></td>
</tr>
<tr>
<td>Erbium(^2)</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td>Thulium(^2)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td></td>
</tr>
<tr>
<td>Ytterbium(^2)</td>
<td>75</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>N.D.</td>
<td>7</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Lutetium(^2)</td>
<td><30</td>
<td><30</td>
<td><30</td>
<td><30</td>
<td><30</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td></td>
</tr>
<tr>
<td>Yttrium(^2)</td>
<td>200</td>
<td>150</td>
<td>150</td>
<td>300</td>
<td>300</td>
<td>150</td>
<td>N.D.</td>
<td>70</td>
<td>300</td>
</tr>
<tr>
<td>Total rare earths</td>
<td>1,330</td>
<td>965</td>
<td>1,130</td>
<td>1,355</td>
<td>2,085</td>
<td>4,457</td>
<td>N.D.</td>
<td>1,373</td>
<td>4,935</td>
</tr>
<tr>
<td>Barium(^2)</td>
<td>3,000</td>
<td>3,000</td>
<td>3,000</td>
<td>3,000</td>
<td>3,000</td>
<td>3,000</td>
<td>N.D.</td>
<td>3,000</td>
<td></td>
</tr>
<tr>
<td>Selenite(^2)</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>N.D.</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Bismuth(^2)</td>
<td><15</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>Copper(^2)</td>
<td>70</td>
<td>70</td>
<td>150</td>
<td>30</td>
<td>70</td>
<td>100</td>
<td>N.D.</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Lead(^2)</td>
<td>70</td>
<td>30</td>
<td>30</td>
<td>70</td>
<td>50</td>
<td>70</td>
<td>N.D.</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Manganese(^2)</td>
<td>3,000</td>
<td>1,500</td>
<td>7,000</td>
<td>3,000</td>
<td>3,000</td>
<td>15,000</td>
<td>N.D.</td>
<td>3,000</td>
<td></td>
</tr>
<tr>
<td>Molybdenum(^2)</td>
<td>150</td>
<td>30</td>
<td>70</td>
<td>150</td>
<td>150</td>
<td>70</td>
<td>N.D.</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Niobium(^2)</td>
<td>150</td>
<td>30</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>150</td>
<td>N.D.</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Strontium(^2)</td>
<td>1,000</td>
<td>1,000</td>
<td>1,500</td>
<td>1,500</td>
<td>3,000</td>
<td>3,000</td>
<td>N.D.</td>
<td>7,000</td>
<td></td>
</tr>
<tr>
<td>Tin(^2)</td>
<td>15</td>
<td><10</td>
<td>15</td>
<td><10</td>
<td>10</td>
<td>15</td>
<td>N.D.</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>Vanadium(^2)</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>N.D.</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Zinc(^2)</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td>N.D.</td>
<td><200</td>
<td></td>
</tr>
<tr>
<td>Zirconium(^2)</td>
<td>100</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>150</td>
<td>150</td>
<td>N.D.</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Calcium(^2)</td>
<td>1.5</td>
<td>.7</td>
<td>.7</td>
<td>1</td>
<td>.5</td>
<td>.7</td>
<td>N.D.</td>
<td>1.5</td>
<td>.15</td>
</tr>
<tr>
<td>Iron(^2)</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Magnesium(^2)</td>
<td>.2</td>
<td>.15</td>
<td>.7</td>
<td>.7</td>
<td>.15</td>
<td>.15</td>
<td>N.D.</td>
<td>.7</td>
<td>.5</td>
</tr>
<tr>
<td>Phosphorus(^2)</td>
<td><.2</td>
<td><.2</td>
<td><.2</td>
<td><.2</td>
<td><.2</td>
<td><.2</td>
<td>N.D.</td>
<td><.2</td>
<td><.2</td>
</tr>
<tr>
<td>Potassium(^1)</td>
<td>11.8</td>
<td>11.0</td>
<td>11.1</td>
<td>9.8</td>
<td>11.1</td>
<td>12.0</td>
<td>9.4</td>
<td>9.6</td>
<td>10.5</td>
</tr>
<tr>
<td>Sodium(^2)</td>
<td>.7</td>
<td>3</td>
<td>1.5</td>
<td>3</td>
<td>2</td>
<td>.7</td>
<td>N.D.</td>
<td>3</td>
<td>.7</td>
</tr>
<tr>
<td>Titanium(^2)</td>
<td>.7</td>
<td>.7</td>
<td>.7</td>
<td>.7</td>
<td>.7</td>
<td>N.D.</td>
<td>.3</td>
<td>.3</td>
<td></td>
</tr>
</tbody>
</table>
Table 1.—Chemical analyses of samples from the principal Tertiary intrusive mass
in the southern Bear Lodge Mountains. — Continued

<table>
<thead>
<tr>
<th>Locality No.</th>
<th>171</th>
<th>172</th>
<th>173</th>
<th>174</th>
<th>175</th>
<th>176</th>
<th>177</th>
<th>178</th>
<th>179</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>In parts per million</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorium</td>
<td>290</td>
<td>96</td>
<td>205</td>
<td>296</td>
<td>70</td>
<td>83</td>
<td>502</td>
<td>343</td>
<td>327</td>
</tr>
<tr>
<td>Uranium</td>
<td>21</td>
<td>18</td>
<td>12</td>
<td>3.9</td>
<td>10</td>
<td>11</td>
<td>75</td>
<td>37</td>
<td>22</td>
</tr>
<tr>
<td>Lanthanum</td>
<td>3,000</td>
<td>1,500</td>
<td>300</td>
<td>N.D.</td>
<td>300</td>
<td>1,500</td>
<td>3,000</td>
<td>N.D.</td>
<td>3,000</td>
</tr>
<tr>
<td>Cerium</td>
<td>3,000</td>
<td>2,000</td>
<td>700</td>
<td>N.D.</td>
<td>300</td>
<td>1,000</td>
<td>7,000</td>
<td>N.D.</td>
<td>3,000</td>
</tr>
<tr>
<td>Praseodymium</td>
<td>500</td>
<td>200</td>
<td>100</td>
<td>N.D.</td>
<td><100</td>
<td>100</td>
<td>700</td>
<td>N.D.</td>
<td>300</td>
</tr>
<tr>
<td>Neodymium</td>
<td>3,000</td>
<td>1,500</td>
<td>700</td>
<td>N.D.</td>
<td>300</td>
<td>500</td>
<td>7,000</td>
<td>N.D.</td>
<td>2,000</td>
</tr>
<tr>
<td>Samarium</td>
<td>300</td>
<td>200</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
<td>1,500</td>
<td>N.D.</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Europium</td>
<td>100</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>100</td>
<td>N.D.</td>
<td><100</td>
<td></td>
</tr>
<tr>
<td>Gadolinium</td>
<td>300</td>
<td>70</td>
<td>70</td>
<td>N.D.</td>
<td><70</td>
<td><70</td>
<td>300</td>
<td>N.D.</td>
<td>150</td>
</tr>
<tr>
<td>Terbiun</td>
<td><300</td>
<td><300</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td></td>
</tr>
<tr>
<td>Dysprosium</td>
<td>70</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td>100</td>
<td>N.D.</td>
<td>70</td>
</tr>
<tr>
<td>Holmium</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td>30</td>
<td>N.D.</td>
<td><20</td>
</tr>
<tr>
<td>Erbium</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
</tr>
<tr>
<td>Thulium</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
</tr>
<tr>
<td>Ytterbium</td>
<td>15</td>
<td>7</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
<td>5</td>
<td>15</td>
<td>N.D.</td>
<td>10</td>
</tr>
<tr>
<td>Lutetium</td>
<td><30</td>
<td><30</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td><30</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
</tr>
<tr>
<td>Terriium</td>
<td>300</td>
<td>70</td>
<td>70</td>
<td>N.D.</td>
<td>70</td>
<td>70</td>
<td>300</td>
<td>N.D.</td>
<td>200</td>
</tr>
<tr>
<td>Total rare earths</td>
<td>10,585</td>
<td>5,547</td>
<td>2,097</td>
<td>N.D.</td>
<td>1,127</td>
<td>3,325</td>
<td>20,095</td>
<td>N.D.</td>
<td>9,030</td>
</tr>
<tr>
<td>Barium</td>
<td>3,000</td>
<td>3,000</td>
<td>5,000</td>
<td>N.D.</td>
<td>3,000</td>
<td>3,000</td>
<td>7,000</td>
<td>N.D.</td>
<td>5,000</td>
</tr>
<tr>
<td>Beryllium</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>N.D.</td>
<td>1.5</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Bismuth</td>
<td><10</td>
<td>15</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td>150</td>
<td>N.D.</td>
<td>15</td>
</tr>
<tr>
<td>Copper</td>
<td>70</td>
<td>150</td>
<td>70</td>
<td>N.D.</td>
<td>100</td>
<td>300</td>
<td>150</td>
<td>N.D.</td>
<td>70</td>
</tr>
<tr>
<td>Lead</td>
<td>200</td>
<td>700</td>
<td>150</td>
<td>N.D.</td>
<td>70</td>
<td>200</td>
<td>5,000</td>
<td>N.D.</td>
<td>1,500</td>
</tr>
<tr>
<td>Manganese</td>
<td>5,000</td>
<td>3,000</td>
<td>3,000</td>
<td>N.D.</td>
<td>3,000</td>
<td>150</td>
<td>70</td>
<td>N.D.</td>
<td>70</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>150</td>
<td>70</td>
<td>300</td>
<td>N.D.</td>
<td>20</td>
<td>30</td>
<td>150</td>
<td>N.D.</td>
<td>70</td>
</tr>
<tr>
<td>Niobium</td>
<td>150</td>
<td>70</td>
<td>300</td>
<td>N.D.</td>
<td>50</td>
<td>30</td>
<td>1,000</td>
<td>N.D.</td>
<td>150</td>
</tr>
<tr>
<td>Strontium</td>
<td>1,500</td>
<td>700</td>
<td>1,500</td>
<td>N.D.</td>
<td>1,500</td>
<td>3,000</td>
<td>3,000</td>
<td>N.D.</td>
<td>2,000</td>
</tr>
<tr>
<td>Tin</td>
<td><10</td>
<td><15</td>
<td>30</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td>15</td>
<td>N.D.</td>
<td><10</td>
</tr>
<tr>
<td>Vanadium</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td>N.D.</td>
<td><200</td>
<td><200</td>
<td>N.D.</td>
<td><200</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>150</td>
<td>150</td>
<td>300</td>
<td>N.D.</td>
<td>200</td>
<td>300</td>
<td>150</td>
<td>N.D.</td>
<td>300</td>
</tr>
</tbody>
</table>

In percent

Calcium	.15	.3	.3	N.D.	.3	.07	.15	N.D.	.07
Iron	7	7	7	N.D.	7	7	7	N.D.	7
Magnesium	.7	1.5	1.5	N.D.	1.5	.03	.07	N.D.	.07
Phosphorus	<.2	<.2	<.2	N.D.	<.2	<.2	<.2	N.D.	<.2
Potassium	10.4	10.8	10.9	9.5	9.9	9.2	9.9	10.7	11.1
Sodium	1	.7	3	N.D.	3	1.5	.7	N.D.	.7
Titanium	.7	.7	.7	N.D.	.3	.3	1	N.D.	.7
Table 1.—Chemical analyses of samples from the principal Tertiary intrusive mass in the southern Bear Lodge Mountains. — Continued

<table>
<thead>
<tr>
<th>Locality No.</th>
<th>180</th>
<th>181</th>
<th>182</th>
<th>183</th>
<th>184</th>
<th>185</th>
<th>186</th>
<th>187</th>
<th>188</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>In parts per million</td>
</tr>
<tr>
<td>Thorium²</td>
<td>144</td>
<td>103</td>
<td>103</td>
<td>118</td>
<td>112</td>
<td>53</td>
<td>377</td>
<td>176</td>
<td>141</td>
</tr>
<tr>
<td>Uranium¹</td>
<td>19</td>
<td>7.0</td>
<td>14</td>
<td>23</td>
<td>38</td>
<td>20</td>
<td>42</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>Lanthanum²</td>
<td>N.D.</td>
<td>500</td>
<td>N.D.</td>
<td>1,500</td>
<td>700</td>
<td>3,000</td>
<td>3,000</td>
<td>2,000</td>
<td>N.D.</td>
</tr>
<tr>
<td>Cerium²</td>
<td>N.D.</td>
<td>700</td>
<td>N.D.</td>
<td>1,500</td>
<td>1,000</td>
<td>3,000</td>
<td>3,000</td>
<td>3,000</td>
<td>N.D.</td>
</tr>
<tr>
<td>Prasodymium²</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td>150</td>
<td>150</td>
<td>500</td>
<td>500</td>
<td>150</td>
<td>N.D.</td>
</tr>
<tr>
<td>Neodymium²</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
<td>1,000</td>
<td>700</td>
<td>3,000</td>
<td>3,000</td>
<td>1,500</td>
<td>N.D.</td>
</tr>
<tr>
<td>Samarium²</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>200</td>
<td>150</td>
<td>300</td>
<td>300</td>
<td>200</td>
<td>N.D.</td>
</tr>
<tr>
<td>Eurotium²</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
</tr>
<tr>
<td>Gadolinium²</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
<td>70</td>
<td>70</td>
<td>150</td>
<td>150</td>
<td>70</td>
<td>N.D.</td>
</tr>
<tr>
<td>Terbium²</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td>150</td>
<td>150</td>
<td>70</td>
<td>150</td>
<td>70</td>
<td>N.D.</td>
</tr>
<tr>
<td>Dysprosium²</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
</tr>
<tr>
<td>Holmium²</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td>150</td>
<td>150</td>
<td>70</td>
<td>300</td>
<td>70</td>
<td>N.D.</td>
</tr>
<tr>
<td>Erbium²</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
</tr>
<tr>
<td>Thulium²</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td>150</td>
<td>150</td>
<td>70</td>
<td>150</td>
<td>70</td>
<td>N.D.</td>
</tr>
<tr>
<td>Ytterbium²</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td>150</td>
<td>150</td>
<td>70</td>
<td>150</td>
<td>70</td>
<td>N.D.</td>
</tr>
<tr>
<td>Lutetium²</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
</tr>
<tr>
<td>Yttrium²</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
</tr>
<tr>
<td>Total rare earths</td>
<td>N.D.</td>
<td>1,877</td>
<td>N.D.</td>
<td>4,577</td>
<td>2,845</td>
<td>10,107</td>
<td>10,330</td>
<td>6,993</td>
<td>N.D.</td>
</tr>
<tr>
<td>Barium²</td>
<td>N.D.</td>
<td>3,000</td>
<td>N.D.</td>
<td>3,000</td>
<td>3,000</td>
<td>1,500</td>
<td>1,500</td>
<td>7,000</td>
<td>3,000</td>
</tr>
<tr>
<td>Seryllium²</td>
<td>N.D.</td>
<td>15</td>
<td>N.D.</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>N.D.</td>
</tr>
<tr>
<td>Bismuth²</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>Copper²</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
<td>70</td>
<td>70</td>
<td>30</td>
<td>150</td>
<td>70</td>
<td>N.D.</td>
</tr>
<tr>
<td>Lead²</td>
<td>N.D.</td>
<td>100</td>
<td>N.D.</td>
<td>150</td>
<td>150</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>N.D.</td>
</tr>
<tr>
<td>Manganese²</td>
<td>N.D.</td>
<td>7,000</td>
<td>N.D.</td>
<td>700</td>
<td>300</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>N.D.</td>
</tr>
<tr>
<td>Molybdenum²</td>
<td>N.D.</td>
<td>30</td>
<td>N.D.</td>
<td>70</td>
<td>70</td>
<td>150</td>
<td>700</td>
<td>150</td>
<td>N.D.</td>
</tr>
<tr>
<td>Niobium²</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
<td>150</td>
<td>70</td>
<td>70</td>
<td>500</td>
<td>150</td>
<td>N.D.</td>
</tr>
<tr>
<td>Strontium²</td>
<td>N.D.</td>
<td>3,000</td>
<td>N.D.</td>
<td>3,000</td>
<td>3,000</td>
<td>2,000</td>
<td>3,000</td>
<td>3,000</td>
<td>N.D.</td>
</tr>
<tr>
<td>Tin²</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><15</td>
<td>N.D.</td>
</tr>
<tr>
<td>Vanadium²</td>
<td>N.D.</td>
<td>700</td>
<td>N.D.</td>
<td>300</td>
<td>300</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>N.D.</td>
</tr>
<tr>
<td>Zinc²</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td>N.D.</td>
</tr>
<tr>
<td>Zirconium²</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
<td>200</td>
<td>700</td>
<td>700</td>
<td>200</td>
<td>150</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In percent</th>
<th>Calcium²</th>
<th>Iron²</th>
<th>Magnesium²</th>
<th>Phosphorus²</th>
<th>Potassium¹</th>
<th>Sodium²</th>
<th>Titanium²</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.D.</td>
<td>.07</td>
<td>N.D.</td>
<td>.07</td>
<td>.07</td>
<td>.07</td>
<td>.07</td>
<td>N.D.</td>
</tr>
<tr>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>N.D.</td>
</tr>
<tr>
<td>N.D.</td>
<td>.15</td>
<td>N.D.</td>
<td>.07</td>
<td>.07</td>
<td>.3</td>
<td>.07</td>
<td>.03</td>
</tr>
<tr>
<td>N.D.</td>
<td><.2</td>
<td>N.D.</td>
<td><.2</td>
<td><.2</td>
<td><.2</td>
<td><.2</td>
<td>N.D.</td>
</tr>
<tr>
<td>10.3</td>
<td>10.9</td>
<td>10.8</td>
<td>10.7</td>
<td>7.9</td>
<td>8.5</td>
<td>8.4</td>
<td>9.8</td>
</tr>
<tr>
<td>N.D.</td>
<td>.7</td>
<td>N.D.</td>
<td>.7</td>
<td>.7</td>
<td>.5</td>
<td>.7</td>
<td>.7</td>
</tr>
<tr>
<td>N.D.</td>
<td>.7</td>
<td>N.D.</td>
<td>.7</td>
<td>.3</td>
<td>.7</td>
<td>.3</td>
<td>.7</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>189</td>
<td>190</td>
<td>191</td>
<td>192</td>
<td>193</td>
<td>194</td>
<td>196</td>
<td>197</td>
</tr>
</tbody>
</table>

Element

<table>
<thead>
<tr>
<th>Element</th>
<th>In parts per million</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thorium¹</td>
<td>183 78 79 116 123 272 116 83 55</td>
</tr>
<tr>
<td>Uranium¹</td>
<td>15 22 11 13 13 21 27 33 11</td>
</tr>
<tr>
<td>Lanthanum²</td>
<td>1,500 N.D. N.D. N.D. 150 2,000 N.D. N.D. 150</td>
</tr>
<tr>
<td>Cerium²</td>
<td>2,000 N.D. N.D. N.D. 1,500 3,000 N.D. N.D. 150</td>
</tr>
<tr>
<td>Praseodymium²</td>
<td>200 N.D. N.D. N.D. 150 300 N.D. N.D. <100</td>
</tr>
<tr>
<td>Neodymium²</td>
<td>1,500 N.D. N.D. N.D. 700 3,000 N.D. N.D. 150</td>
</tr>
<tr>
<td>Samarium²</td>
<td>300 N.D. N.D. N.D. 150 700 N.D. N.D. <100</td>
</tr>
<tr>
<td>Europium²</td>
<td><100 N.D. N.D. N.D. <100 150 N.D. N.D. <100</td>
</tr>
<tr>
<td>Gadolinium²</td>
<td>150 N.D. N.D. N.D. 100 700 N.D. N.D. <50</td>
</tr>
<tr>
<td>Terbium²</td>
<td><300 N.D. N.D. N.D. <300 <300 N.D. N.D. <300</td>
</tr>
<tr>
<td>Dysprosium²</td>
<td>70 N.D. N.D. N.D. <70 150 N.D. N.D. <50</td>
</tr>
<tr>
<td>Holmium²</td>
<td><20 N.D. N.D. N.D. <20 20 N.D. N.D. <20</td>
</tr>
<tr>
<td>Erbium²</td>
<td><100 N.D. N.D. N.D. <50 <50 N.D. N.D. <50</td>
</tr>
<tr>
<td>Thulium²</td>
<td><20 N.D. N.D. N.D. <20 <20 N.D. N.D. <20</td>
</tr>
<tr>
<td>Ytterbium²</td>
<td>7 N.D. N.D. N.D. 7 15 N.D. N.D. 7</td>
</tr>
<tr>
<td>Lutetium²</td>
<td><30 N.D. N.D. N.D. <30 <30 N.D. N.D. <30</td>
</tr>
<tr>
<td>Yttrium²</td>
<td>150 N.D. N.D. N.D. 150 300 N.D. N.D. 70</td>
</tr>
<tr>
<td>Total rare earths</td>
<td>5,877</td>
</tr>
<tr>
<td>Barium²</td>
<td>3,000 N.D. N.D. N.D. 3,000 7,000 N.D. N.D. 1,500</td>
</tr>
<tr>
<td>Beryllium²</td>
<td>15 N.D. N.D. N.D. <1.5 2 N.D. N.D. 7</td>
</tr>
<tr>
<td>Bismuth²</td>
<td><10 N.D. N.D. N.D. <10 <10 N.D. N.D. <10</td>
</tr>
<tr>
<td>Copper²</td>
<td>70 N.D. N.D. N.D. 70 70 N.D. N.D. 70</td>
</tr>
<tr>
<td>Lead²</td>
<td>150 N.D. N.D. N.D. 300 300 N.D. N.D. 30</td>
</tr>
<tr>
<td>Manganese²</td>
<td>150 N.D. N.D. N.D. 150 3,000 N.D. N.D. 150</td>
</tr>
<tr>
<td>Molybdenum²</td>
<td>30 N.D. N.D. N.D. 70 150 N.D. N.D. <3</td>
</tr>
<tr>
<td>Niobium²</td>
<td>300 N.D. N.D. N.D. 150 70 N.D. N.D. 10</td>
</tr>
<tr>
<td>Strontium²</td>
<td>1,500 N.D. N.D. N.D. 1,500 1,500 N.D. N.D. 1,500</td>
</tr>
<tr>
<td>Tin²</td>
<td><10 N.D. N.D. N.D. <10 15 N.D. N.D. <10</td>
</tr>
<tr>
<td>Vanadium²</td>
<td>700 N.D. N.D. N.D. 300 300 N.D. N.D. 300</td>
</tr>
<tr>
<td>Zinc²</td>
<td>300 N.D. N.D. N.D. <200 300 N.D. N.D. <200</td>
</tr>
<tr>
<td>Zirconium²</td>
<td>150 N.D. N.D. N.D. 500 150 N.D. N.D. 300</td>
</tr>
</tbody>
</table>

In percent

<table>
<thead>
<tr>
<th>Element</th>
<th>In percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium²</td>
<td>0.07 N.D. N.D. N.D. 0.07 0.15 N.D. N.D. 0.15</td>
</tr>
<tr>
<td>Iron²</td>
<td>7 N.D. N.D. N.D. 7 7 N.D. N.D. 3</td>
</tr>
<tr>
<td>Magnesium²</td>
<td>0.07 N.D. N.D. N.D. 0.07 0.3 N.D. N.D. 0.07</td>
</tr>
<tr>
<td>Phosphorus²</td>
<td><.2 N.D. N.D. N.D. <.2 <.2 N.D. N.D. <.2</td>
</tr>
<tr>
<td>Potassium¹</td>
<td>10.8 10.0 11.6 11.1 10.0 11.3 9.9 6.4 8.2</td>
</tr>
<tr>
<td>Sodium²</td>
<td>0.07 N.D. N.D. N.D. 0.07 0.7 N.D. N.D. 10</td>
</tr>
<tr>
<td>Titanium³</td>
<td>0.3 N.D. N.D. N.D. 0.7 0.7 N.D. N.D. 0.3</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>Element</td>
<td>In parts per million</td>
</tr>
<tr>
<td>Thorianium(^1)</td>
<td>52</td>
</tr>
<tr>
<td>Thorium(^1)</td>
<td>12</td>
</tr>
<tr>
<td>Lanthanum(^2)</td>
<td>N.D.</td>
</tr>
<tr>
<td>Cerium(^2)</td>
<td>N.D.</td>
</tr>
<tr>
<td>Praseodymium(^2)</td>
<td>N.D.</td>
</tr>
<tr>
<td>Neodymium(^2)</td>
<td>N.D.</td>
</tr>
<tr>
<td>Samarium(^2)</td>
<td>N.D.</td>
</tr>
<tr>
<td>Europium(^2)</td>
<td>N.D.</td>
</tr>
<tr>
<td>Gadolinium(^2)</td>
<td>N.D.</td>
</tr>
<tr>
<td>Terbium(^2)</td>
<td>N.D.</td>
</tr>
<tr>
<td>Dysprosium(^2)</td>
<td>N.D.</td>
</tr>
<tr>
<td>Holmium(^2)</td>
<td>N.D.</td>
</tr>
<tr>
<td>Erbium(^2)</td>
<td>N.D.</td>
</tr>
<tr>
<td>Thulium(^2)</td>
<td>N.D.</td>
</tr>
<tr>
<td>Titterbium(^2)</td>
<td>N.D.</td>
</tr>
<tr>
<td>Lutetium(^2)</td>
<td>N.D.</td>
</tr>
<tr>
<td>Ytterbium(^2)</td>
<td>N.D.</td>
</tr>
<tr>
<td>Total rare earths</td>
<td>N.D.</td>
</tr>
<tr>
<td>Barium(^2)</td>
<td>N.D.</td>
</tr>
<tr>
<td>Beryllium(^2)</td>
<td>N.D.</td>
</tr>
<tr>
<td>Bismuth(^2)</td>
<td>N.D.</td>
</tr>
<tr>
<td>Copper(^2)</td>
<td>N.D.</td>
</tr>
<tr>
<td>Lead(^2)</td>
<td>N.D.</td>
</tr>
<tr>
<td>Manganese(^2)</td>
<td>N.D.</td>
</tr>
<tr>
<td>Molybdenum(^2)</td>
<td>N.D.</td>
</tr>
<tr>
<td>Niobium(^2)</td>
<td>N.D.</td>
</tr>
<tr>
<td>Strontium(^2)</td>
<td>N.D.</td>
</tr>
<tr>
<td>Tin(^2)</td>
<td>N.D.</td>
</tr>
<tr>
<td>Vanadium(^2)</td>
<td>N.D.</td>
</tr>
<tr>
<td>Zinc(^2)</td>
<td>N.D.</td>
</tr>
<tr>
<td>Zirconium(^2)</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

In percent

Calcium\(^2\)	N.D.	.07	.07	1.5	N.D.	.15	.15	N.D.	.15
Iron\(^2\)	N.D.	3	7	7	N.D.	7	7	N.D.	7
Magnesium\(^2\)	N.D.	.03	.07	.07	N.D.	.7	.3	N.D.	.7
Phosphorus\(^2\)	N.D.	<.2	<.2	<.2	N.D.	<.2	<.2	N.D.	<.2
Potassium\(^1\)	6.2	6.2	11.1	11.1	11.2	11.5	11.9	10.0	10.9
Sodium\(^2\)	N.D.	3	.3	.7	N.D.	.7	.7	N.D.	1.5
Titanium\(^2\)	N.D.	.15	.7	.7	N.D.	.7	.7	N.D.	.7
Table 1.—Chemical analyses of samples from the principal Tertiary intrusive mass in the southern Bear Lodge Mountains. - Continued

<table>
<thead>
<tr>
<th>Locality No.</th>
<th>209</th>
<th>214</th>
<th>215</th>
<th>216</th>
<th>217</th>
<th>218</th>
<th>219</th>
<th>220</th>
<th>221</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thorium</td>
<td>21</td>
<td>1.18</td>
<td>90</td>
<td>154</td>
<td>64</td>
<td>106</td>
<td>106</td>
<td>85</td>
<td>137</td>
</tr>
<tr>
<td>Uranium</td>
<td>5.8</td>
<td>22</td>
<td>13</td>
<td>6.8</td>
<td>13</td>
<td>16</td>
<td>49</td>
<td>14</td>
<td>39</td>
</tr>
<tr>
<td>Lanthanum</td>
<td>150</td>
<td>N.D.</td>
<td>1,500</td>
<td>500</td>
<td>300</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1,500</td>
<td>N.D.</td>
</tr>
<tr>
<td>Cerium</td>
<td>300</td>
<td>N.D.</td>
<td>1,500</td>
<td>700</td>
<td>300</td>
<td>N.D.</td>
<td>N.D.</td>
<td>2,000</td>
<td>N.D.</td>
</tr>
<tr>
<td>Praseodymium</td>
<td><100</td>
<td>N.D.</td>
<td>200</td>
<td>150</td>
<td><100</td>
<td>N.D.</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
</tr>
<tr>
<td>Neodymium</td>
<td>150</td>
<td>N.D.</td>
<td>1,500</td>
<td>700</td>
<td>300</td>
<td>N.D.</td>
<td>N.D.</td>
<td>2,000</td>
<td>N.D.</td>
</tr>
<tr>
<td>Samarium</td>
<td><100</td>
<td>N.D.</td>
<td>300</td>
<td>150</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>700</td>
<td>N.D.</td>
</tr>
<tr>
<td>Europium</td>
<td><100</td>
<td>N.D.</td>
<td><200</td>
<td>700</td>
<td><100</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
</tr>
<tr>
<td>Gadolinium</td>
<td><50</td>
<td>N.D.</td>
<td>150</td>
<td>70</td>
<td>70</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
</tr>
<tr>
<td>Terbium</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td><300</td>
<td><300</td>
<td>N.D.</td>
<td>N.D.</td>
<td><300</td>
<td>N.D.</td>
</tr>
<tr>
<td>Dysprosium</td>
<td><50</td>
<td>N.D.</td>
<td>70</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
</tr>
<tr>
<td>Holmium</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
</tr>
<tr>
<td>Erbium</td>
<td><50</td>
<td>N.D.</td>
<td><100</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
</tr>
<tr>
<td>Thulium</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
</tr>
<tr>
<td>Ytterbium</td>
<td>3</td>
<td>N.D.</td>
<td>15</td>
<td>7</td>
<td>7</td>
<td>N.D.</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
</tr>
<tr>
<td>Yttrium</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td><30</td>
<td><30</td>
<td>N.D.</td>
<td>N.D.</td>
<td><30</td>
<td>N.D.</td>
</tr>
<tr>
<td>Total rare</td>
<td>633</td>
<td>N.D.</td>
<td>5,385</td>
<td>2,447</td>
<td>1,197</td>
<td>N.D.</td>
<td>N.D.</td>
<td>7,027</td>
<td>N.D.</td>
</tr>
<tr>
<td>Earths</td>
<td>1,500</td>
<td>N.D.</td>
<td>3,000</td>
<td>5,000</td>
<td>3,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>7,000</td>
<td>N.D.</td>
</tr>
<tr>
<td>Beryllium</td>
<td>2</td>
<td>N.D.</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>N.D.</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
</tr>
<tr>
<td>Bismuth</td>
<td><10</td>
<td>N.D.</td>
<td>10</td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
<td>N.D.</td>
<td>20</td>
<td>N.D.</td>
</tr>
<tr>
<td>Copper</td>
<td>150</td>
<td>N.D.</td>
<td>70</td>
<td>30</td>
<td>70</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
</tr>
<tr>
<td>Lead</td>
<td>30</td>
<td>N.D.</td>
<td>200</td>
<td>70</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1,000</td>
<td>N.D.</td>
</tr>
<tr>
<td>Manganese</td>
<td>70</td>
<td>N.D.</td>
<td>7,000</td>
<td>3,000</td>
<td>3,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>3,000</td>
<td>N.D.</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>7</td>
<td>N.D.</td>
<td>150</td>
<td>30</td>
<td>20</td>
<td>N.D.</td>
<td>N.D.</td>
<td>30</td>
<td>N.D.</td>
</tr>
<tr>
<td>Niobium</td>
<td>15</td>
<td>N.D.</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>N.D.</td>
<td>N.D.</td>
<td>100</td>
<td>N.D.</td>
</tr>
<tr>
<td>Strontium</td>
<td>1,500</td>
<td>N.D.</td>
<td>1,500</td>
<td>3,000</td>
<td>3,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1,500</td>
<td>N.D.</td>
</tr>
<tr>
<td>Tin</td>
<td><10</td>
<td>N.D.</td>
<td><15</td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
<td>N.D.</td>
<td>15</td>
<td>N.D.</td>
</tr>
<tr>
<td>Vanadium</td>
<td>700</td>
<td>N.D.</td>
<td>300</td>
<td>700</td>
<td>500</td>
<td>N.D.</td>
<td>N.D.</td>
<td>700</td>
<td>N.D.</td>
</tr>
<tr>
<td>Zinc</td>
<td><200</td>
<td>N.D.</td>
<td>700</td>
<td><200</td>
<td>300</td>
<td>N.D.</td>
<td>N.D.</td>
<td>700</td>
<td>N.D.</td>
</tr>
<tr>
<td>Zirconium</td>
<td>300</td>
<td>N.D.</td>
<td>300</td>
<td>200</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

In percent

<p>| Calcium | 0.1 | N.D. | 0.3 | 0.3 | 0.3 | N.D. | N.D. | 0.15 | N.D. |
| Iron | 7 | N.D. | 10 | 7 | 7 | N.D. | N.D. | >10 | N.D. |
| Magnesium | 0.07| N.D. | 0.7 | 0.7 | 0.7 | N.D. | N.D. | 0.15 | N.D. |
| Phosphorus | <.2 | N.D. | <.2 | <.2 | <.2 | N.D. | N.D. | <.2 | N.D. |
| Potassium | 10.6| 10.6| 10.3| 10.6|10.8 | 10.4| 11.3| 11.1| 11.2 |
| Sodium | 1.5 | N.D. | 1 | 0.7 | 0.7 | N.D. | N.D. | 0.3 | N.D. |
| Titanium | .7 | N.D. | .3 | .3 | .3 | N.D. | N.D. | .3 | N.D. |</p>
<table>
<thead>
<tr>
<th>Local No.</th>
<th>222</th>
<th>223</th>
<th>224</th>
<th>225</th>
<th>227</th>
<th>228</th>
<th>229</th>
<th>230</th>
<th>231</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In parts per million</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cerium
Europium
Thorium
Samarium
Lutecium
Ytterbium
Thulium
Dysprosium
Yttrium

Total rare earths	3,377	N.D.	9,135	5,227	N.D.	N.D.	673	N.D.	10,585
Beryllium	7,000	N.D.	3,000	7,000	N.D.	N.D.	3,000	N.D.	15,000
Bismuth	3	N.D.	3	N.D.	3	N.D.	1.5	N.D.	30
Copper	7	N.D.	150	150	N.D.	N.D.	70	N.D.	100
Lead	7	N.D.	1,000	700	N.D.	N.D.	15	N.D.	1,000
Manganese	2,000	N.D.	15,000	15,000	N.D.	N.D.	1,500	N.D.	3,000
Molybdenum	5	N.D.	30	70	N.D.	N.D.	<3	N.D.	300
Niobium	150	N.D.	100	70	N.D.	N.D.	15	N.D.	300
Strontium	1,500	N.D.	1,500	3,000	N.D.	N.D.	1,500	N.D.	1,500
Tin	<10	N.D.	<10	<10	N.D.	N.D.	<10	N.D.	30
Vanadium	300	N.D.	700	300	N.D.	N.D.	300	N.D.	1,500
Zinc	300	N.D.	700	700	N.D.	N.D.	<200	N.D.	300
Zirconium	70	N.D.	70	70	N.D.	N.D.	70	N.D.	700

| In percent |

Calcium	0.07	N.D.	0.3	0.3	N.D.	N.D.	0.7	N.D.	0.7
Iron	7	N.D.	10	7	N.D.	5	N.D.	10	
Magnesium	0.3	N.D.	0.7	0.7	N.D.	1.5	N.D.	1	
Phosphorus	<0.2	N.D.	<0.2	<0.2	N.D.	<0.2	N.D.	<0.2	
Potassium	11.2	11.3	10.6	10.3	10.0	11.8	12.0	10.0	9.5
Sodium	0.3	N.D.	0.3	0.3	N.D.	0.7	N.D.	0.7	
Titanium	0.3	N.D.	0.3	0.3	N.D.	0.3	N.D.	0.7	
Table 1.—Chemical analyses of samples from the principal Tertiary intrusive mass in the southern Bear Lodge Mountains. - Continued

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>In parts per million</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Element</td>
<td></td>
<td>Th, U, La, Ce, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yt, Tm, Y, Ba, Be, Nb, Zr, V, Ti, K, Na, Fe, Mn, N.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorium</td>
<td>1</td>
<td>53</td>
<td>145</td>
<td>99</td>
<td>158</td>
<td>86</td>
<td>231</td>
<td>319</td>
<td>154</td>
<td>100</td>
</tr>
<tr>
<td>Uranium</td>
<td>1</td>
<td>6.7</td>
<td>14</td>
<td>27</td>
<td>9.1</td>
<td>14</td>
<td>7.1</td>
<td>14</td>
<td>12</td>
<td>21</td>
</tr>
<tr>
<td>Lanthanum</td>
<td>2</td>
<td>150</td>
<td>200</td>
<td>N.D.</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>70</td>
</tr>
<tr>
<td>Cerium</td>
<td>2</td>
<td>150</td>
<td>300</td>
<td>N.D.</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>70</td>
</tr>
<tr>
<td>Praseodymium</td>
<td>2</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
</tr>
<tr>
<td>Neodymium</td>
<td>2</td>
<td>150</td>
<td>200</td>
<td>N.D.</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>70</td>
</tr>
<tr>
<td>Samarium</td>
<td>2</td>
<td><100</td>
<td>100</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
</tr>
<tr>
<td>Europium</td>
<td>2</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
</tr>
<tr>
<td>Gadolinium</td>
<td>2</td>
<td><30</td>
<td><70</td>
<td><70</td>
<td><50</td>
<td><70</td>
<td><70</td>
<td><50</td>
<td><70</td>
<td><50</td>
</tr>
<tr>
<td>Terbium</td>
<td>2</td>
<td><300</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td><300</td>
<td><300</td>
<td><300</td>
<td><300</td>
<td><300</td>
</tr>
<tr>
<td>Dysprosium</td>
<td>2</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td><70</td>
<td><50</td>
<td><50</td>
</tr>
<tr>
<td>Holmium</td>
<td>2</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Erbium</td>
<td>2</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td><50</td>
</tr>
<tr>
<td>Thulium</td>
<td>2</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Ytterbium</td>
<td>2</td>
<td>7</td>
<td>10</td>
<td>N.D.</td>
<td>15</td>
<td>3</td>
<td>7</td>
<td>30</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Lutetium</td>
<td>2</td>
<td><30</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td><30</td>
<td><30</td>
<td><30</td>
<td><30</td>
<td><30</td>
</tr>
<tr>
<td>Tetrabium</td>
<td>2</td>
<td>70</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
<td>30</td>
<td>100</td>
<td>300</td>
<td>150</td>
<td>70</td>
</tr>
<tr>
<td>Total rare earths</td>
<td></td>
<td>527</td>
<td>960</td>
<td>N.D.</td>
<td>665</td>
<td>533</td>
<td>557</td>
<td>900</td>
<td>657</td>
<td>497</td>
</tr>
<tr>
<td>Barium</td>
<td>2</td>
<td>1,500</td>
<td>1,500</td>
<td>N.D.</td>
<td>1,500</td>
<td>1,500</td>
<td>1,500</td>
<td>1,500</td>
<td>1,500</td>
<td>700</td>
</tr>
<tr>
<td>Beryllium</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>N.D.</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>15</td>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>Bismuth</td>
<td>2</td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Copper</td>
<td>2</td>
<td>30</td>
<td>70</td>
<td>N.D.</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>15</td>
</tr>
<tr>
<td>Lead</td>
<td>2</td>
<td>30</td>
<td>30</td>
<td>N.D.</td>
<td>30</td>
<td>15</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>150</td>
</tr>
<tr>
<td>Manganese</td>
<td>2</td>
<td>1,500</td>
<td>1,500</td>
<td>N.D.</td>
<td>1,500</td>
<td>1,500</td>
<td>1,500</td>
<td>1,500</td>
<td>1,500</td>
<td>700</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>2</td>
<td>30</td>
<td>30</td>
<td>N.D.</td>
<td>5</td>
<td><3</td>
<td>15</td>
<td>7</td>
<td>30</td>
<td>7</td>
</tr>
<tr>
<td>Niobium</td>
<td>2</td>
<td>20</td>
<td>30</td>
<td>N.D.</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>15</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>Strontium</td>
<td>2</td>
<td>1,000</td>
<td>700</td>
<td>N.D.</td>
<td>1,500</td>
<td>1,500</td>
<td>1,500</td>
<td>1,500</td>
<td>1,500</td>
<td>1,500</td>
</tr>
<tr>
<td>Tin</td>
<td>2</td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Vanadium</td>
<td>2</td>
<td>150</td>
<td>300</td>
<td>N.D.</td>
<td>700</td>
<td>700</td>
<td>300</td>
<td>700</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>Zinc</td>
<td>2</td>
<td><200</td>
<td><200</td>
<td>N.D.</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td><200</td>
</tr>
<tr>
<td>Zirconium</td>
<td>2</td>
<td>150</td>
<td>150</td>
<td>N.D.</td>
<td>300</td>
<td>150</td>
<td>100</td>
<td>150</td>
<td>150</td>
<td>700</td>
</tr>
</tbody>
</table>

| In percent |
Calcium	2	.3	.3	N.D.	1.5	.5	1	1.5	.7	.05
Iron	2	7	7	N.D.	7	5	7	7	7	3
Magnesium	2	.7	.3	N.D.	.05	.7	.03	.07	.07	.1
Phosphorus	2	<.2	<.2	N.D.	<.2	<.2	<.2	<.2	<.2	<.2
Potassium	1	11.0	12.2	7.1	11.3	9.6	11.7	11.0	7.6	5.9
Sodium	2	1.5	.3	N.D.	.7	3	.7	1.5	3	3
Titanium	2	.7	.7	N.D.	.7	.3	.3	.3	.3	.07
Table 1.—Chemical analyses of samples from the principal Tertiary intrusive mass in the southern Bear Lodge Mountains. - Continued

(Symbol: N.D. - not determined; < - less than value indicated; > - greater than value indicated)

<table>
<thead>
<tr>
<th>Locality No.</th>
<th>241</th>
<th>242</th>
<th>243</th>
<th>244</th>
<th>245</th>
<th>246</th>
<th>247</th>
<th>248</th>
<th>249</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thoriun⁴</td>
<td>36</td>
<td>51</td>
<td>92</td>
<td>103</td>
<td>136</td>
<td>136</td>
<td>28</td>
<td>108</td>
<td>83</td>
</tr>
<tr>
<td>Uranium¹</td>
<td>5.0</td>
<td>6.1</td>
<td>26</td>
<td>17</td>
<td>45</td>
<td>5.9</td>
<td>8.5</td>
<td>20</td>
<td>37</td>
</tr>
<tr>
<td>Lanthanum²</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td>700</td>
<td>5,000</td>
<td>700</td>
<td>N.D.</td>
<td>3,000</td>
<td>3,000</td>
</tr>
<tr>
<td>Cerium²</td>
<td>N.D.</td>
<td>N.D.</td>
<td>200</td>
<td>1,500</td>
<td>7,000</td>
<td>700</td>
<td>N.D.</td>
<td>3,000</td>
<td>3,000</td>
</tr>
<tr>
<td>Prasylodymium²</td>
<td>N.D.</td>
<td>N.D.</td>
<td><100</td>
<td>150</td>
<td>1,000</td>
<td><100</td>
<td>N.D.</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>Neodymium²</td>
<td>N.D.</td>
<td>N.D.</td>
<td>70</td>
<td>700</td>
<td>5,000</td>
<td>300</td>
<td>N.D.</td>
<td>3,000</td>
<td>3,000</td>
</tr>
<tr>
<td>Samarium²</td>
<td>N.D.</td>
<td>N.D.</td>
<td><100</td>
<td>150</td>
<td>700</td>
<td>150</td>
<td>N.D.</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Europium²</td>
<td>N.D.</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td><150</td>
<td><200</td>
<td>N.D.</td>
<td>150</td>
<td>100</td>
</tr>
<tr>
<td>Gadolinium²</td>
<td>N.D.</td>
<td>N.D.</td>
<td><50</td>
<td>70</td>
<td>300</td>
<td>100</td>
<td>N.D.</td>
<td>150</td>
<td>300</td>
</tr>
<tr>
<td>Terbium²</td>
<td>N.D.</td>
<td>N.D.</td>
<td><300</td>
<td><300</td>
<td><300</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td><300</td>
</tr>
<tr>
<td>Dysprosium²</td>
<td>N.D.</td>
<td>N.D.</td>
<td><50</td>
<td><70</td>
<td>100</td>
<td>50</td>
<td>N.D.</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Holmium²</td>
<td>N.D.</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Erbium²</td>
<td>N.D.</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td><100</td>
<td><50</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
</tr>
<tr>
<td>Thulium²</td>
<td>N.D.</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Ytterbium²</td>
<td>N.D.</td>
<td>N.D.</td>
<td>7</td>
<td>7</td>
<td>15</td>
<td>7</td>
<td>N.D.</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Lutetium²</td>
<td>N.D.</td>
<td>N.D.</td>
<td><30</td>
<td><30</td>
<td><30</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td><30</td>
</tr>
<tr>
<td>Yttrium²</td>
<td>N.D.</td>
<td>N.D.</td>
<td>50</td>
<td>150</td>
<td>300</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Total rare earths</td>
<td>N.D.</td>
<td>N.D.</td>
<td>477</td>
<td>3,427</td>
<td>19,563</td>
<td>2,157</td>
<td>N.D.</td>
<td>10,530</td>
<td>10,630</td>
</tr>
<tr>
<td>Barium²</td>
<td>N.D.</td>
<td>N.D.</td>
<td>700</td>
<td>3,000</td>
<td>5,000</td>
<td>3,000</td>
<td>N.D.</td>
<td>7,000</td>
<td>5,000</td>
</tr>
<tr>
<td>Beryllium²</td>
<td>N.D.</td>
<td>N.D.</td>
<td>15</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>N.D.</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Bismuth²</td>
<td>N.D.</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Copper²</td>
<td>N.D.</td>
<td>N.D.</td>
<td>15</td>
<td>150</td>
<td>300</td>
<td>30</td>
<td>N.D.</td>
<td>150</td>
<td>100</td>
</tr>
<tr>
<td>Lead²</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td>70</td>
<td>100</td>
<td>70</td>
<td>N.D.</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Manganese²</td>
<td>N.D.</td>
<td>N.D.</td>
<td>300</td>
<td>3,000</td>
<td>7,000</td>
<td>7,000</td>
<td>N.D.</td>
<td>3,000</td>
<td>3,000</td>
</tr>
<tr>
<td>Molybdenum²</td>
<td>N.D.</td>
<td>N.D.</td>
<td>7</td>
<td>150</td>
<td>70</td>
<td>70</td>
<td>N.D.</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Niobium²</td>
<td>N.D.</td>
<td>N.D.</td>
<td>30</td>
<td>70</td>
<td>150</td>
<td>70</td>
<td>N.D.</td>
<td>70</td>
<td>150</td>
</tr>
<tr>
<td>Strontium²</td>
<td>N.D.</td>
<td>N.D.</td>
<td>300</td>
<td>3,000</td>
<td>500</td>
<td>1,500</td>
<td>N.D.</td>
<td>1,000</td>
<td>3,000</td>
</tr>
<tr>
<td>Tin²</td>
<td>N.D.</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Vanadium²</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td>300</td>
<td>700</td>
<td>300</td>
<td>N.D.</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>Zinc²</td>
<td>N.D.</td>
<td>N.D.</td>
<td><200</td>
<td>300</td>
<td>300</td>
<td><300</td>
<td>N.D.</td>
<td>1,500</td>
<td>300</td>
</tr>
<tr>
<td>Zirconium²</td>
<td>N.D.</td>
<td>N.D.</td>
<td>700</td>
<td>150</td>
<td>150</td>
<td>300</td>
<td>N.D.</td>
<td>70</td>
<td>150</td>
</tr>
<tr>
<td>In percent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium²</td>
<td>N.D.</td>
<td>N.D.</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.15</td>
<td>N.D.</td>
<td>.3</td>
<td>.3</td>
</tr>
<tr>
<td>Iron²</td>
<td>N.D.</td>
<td>N.D.</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>N.D.</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>Magnesium²</td>
<td>N.D.</td>
<td>N.D.</td>
<td>.15</td>
<td>.7</td>
<td>.7</td>
<td>.7</td>
<td>N.D.</td>
<td>.7</td>
<td>.7</td>
</tr>
<tr>
<td>Phosphorus²</td>
<td>N.D.</td>
<td>N.D.</td>
<td><.2</td>
<td><.2</td>
<td><.2</td>
<td><.2</td>
<td>N.D.</td>
<td><.2</td>
<td><.2</td>
</tr>
<tr>
<td>Potassium¹</td>
<td>5.8</td>
<td>7.4</td>
<td>7.5</td>
<td>11.2</td>
<td>10.4</td>
<td>11.1</td>
<td>11.9</td>
<td>8.3</td>
<td>9.9</td>
</tr>
<tr>
<td>Sodium²</td>
<td>N.D.</td>
<td>N.D.</td>
<td>3</td>
<td>.7</td>
<td>.7</td>
<td>.7</td>
<td>N.D.</td>
<td>.3</td>
<td>.7</td>
</tr>
<tr>
<td>Titanium²</td>
<td>N.D.</td>
<td>N.D.</td>
<td>.07</td>
<td>.3</td>
<td>.7</td>
<td>.3</td>
<td>N.D.</td>
<td>.3</td>
<td>.7</td>
</tr>
<tr>
<td>Locality No.</td>
<td>250</td>
<td>251</td>
<td>252</td>
<td>253</td>
<td>254</td>
<td>255</td>
<td>256</td>
<td>257</td>
<td>258</td>
</tr>
<tr>
<td>-------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>In parts per million</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thorium</td>
<td>59</td>
</tr>
<tr>
<td>Uranium</td>
<td>9.2</td>
</tr>
<tr>
<td>Lanthanum</td>
<td>300</td>
</tr>
<tr>
<td>Cerium</td>
<td>500</td>
</tr>
<tr>
<td>Praseodymium</td>
<td><100</td>
</tr>
<tr>
<td>Neodymium</td>
<td>300</td>
</tr>
<tr>
<td>Samarium</td>
<td>100</td>
</tr>
<tr>
<td>Europlum</td>
<td><100</td>
</tr>
<tr>
<td>Gadolinium</td>
<td>70</td>
</tr>
<tr>
<td>Terbium</td>
<td><300</td>
</tr>
<tr>
<td>Dysprosium</td>
<td><50</td>
</tr>
<tr>
<td>Holmium</td>
<td><20</td>
</tr>
<tr>
<td>Erbium</td>
<td><50</td>
</tr>
<tr>
<td>Thulium</td>
<td><20</td>
</tr>
<tr>
<td>Ytterbium</td>
<td>3</td>
</tr>
<tr>
<td>Lutetium</td>
<td><30</td>
</tr>
<tr>
<td>Yttrium</td>
<td>70</td>
</tr>
<tr>
<td>Total rare earths</td>
<td>1,343</td>
</tr>
<tr>
<td>Barium</td>
<td>3,000</td>
</tr>
<tr>
<td>Beryllium</td>
<td>1.5</td>
</tr>
<tr>
<td>Bismuth</td>
<td><10</td>
</tr>
<tr>
<td>Copper</td>
<td>70</td>
</tr>
<tr>
<td>Lead</td>
<td>30</td>
</tr>
<tr>
<td>Manganese</td>
<td>7,000</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>150</td>
</tr>
<tr>
<td>niobium</td>
<td>70</td>
</tr>
<tr>
<td>Strontium</td>
<td>3,000</td>
</tr>
<tr>
<td>Tin</td>
<td><10</td>
</tr>
<tr>
<td>Vanadium</td>
<td>150</td>
</tr>
<tr>
<td>Zinc</td>
<td>200</td>
</tr>
<tr>
<td>Zirconium</td>
<td>150</td>
</tr>
<tr>
<td>Calcium</td>
<td>.15</td>
</tr>
<tr>
<td>Iron</td>
<td>7</td>
</tr>
<tr>
<td>Magnesium</td>
<td><.3</td>
</tr>
<tr>
<td>Phosphorus</td>
<td><.2</td>
</tr>
<tr>
<td>Potassium</td>
<td>11.6</td>
</tr>
<tr>
<td>Sodium</td>
<td>.7</td>
</tr>
<tr>
<td>Titanium</td>
<td>.3</td>
</tr>
</tbody>
</table>

In percent:
- Calcium: .15
- Iron: 7
- Magnesium: .3
- Phosphorus: <.2
- Potassium: 11.6
- Sodium: .7
- Titanium: .3

Table 1.—Chemical analysies of samples from the principal Tertiary intrusive mass in the southern Bear Lodge Mountains—Continued.

Symbols: N.D. = not determined; < - less than value indicated; > - greater than value indicated
Table 1.—Chemical analyses of samples from the principal Tertiary intrusive mass in the southern Bear Lodge Mountains. — Continued

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In parts per million</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thorium(^1)</td>
<td>593</td>
<td>201</td>
<td>86</td>
<td>90</td>
<td>91</td>
<td>105</td>
<td>961</td>
<td>36</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Uranium(^1)</td>
<td>24</td>
<td>14</td>
<td>23</td>
<td>31</td>
<td>9.2</td>
<td>25</td>
<td>44</td>
<td>7.8</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>Lanthanum(^2)</td>
<td>1,500</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1,000</td>
<td>1,500</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cerium(^2)</td>
<td>1,500</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1,500</td>
<td>1,500</td>
<td>N.D.</td>
<td>N.D.</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prasodymium(^2)</td>
<td>300</td>
<td>N.D.</td>
<td>N.D.</td>
<td>300</td>
<td>300</td>
<td>N.D.</td>
<td>N.D.</td>
<td><100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neodymium(^2)</td>
<td>1,500</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1,500</td>
<td>1,500</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Samarium(^2)</td>
<td>500</td>
<td>N.D.</td>
<td>N.D.</td>
<td>300</td>
<td>300</td>
<td>N.D.</td>
<td>N.D.</td>
<td><100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Europium(^2)</td>
<td><200</td>
<td>N.D.</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td>N.D.</td>
<td><100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gadolinium(^2)</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td>100</td>
<td>N.D.</td>
<td>N.D.</td>
<td><70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terbium(^2)</td>
<td><300</td>
<td>N.D.</td>
<td>N.D.</td>
<td><300</td>
<td><300</td>
<td>N.D.</td>
<td>N.D.</td>
<td><300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dysprosium(^2)</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>70</td>
<td>70</td>
<td>N.D.</td>
<td>N.D.</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Holmium(^2)</td>
<td><20</td>
<td>N.D.</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td>N.D.</td>
<td><20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erbium(^2)</td>
<td><100</td>
<td>N.D.</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td>N.D.</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thulium(^2)</td>
<td><20</td>
<td>N.D.</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td>N.D.</td>
<td><20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ytterbium(^2)</td>
<td>30</td>
<td>N.D.</td>
<td>N.D.</td>
<td>7</td>
<td>7</td>
<td>N.D.</td>
<td>N.D.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lutetium(^2)</td>
<td><30</td>
<td>N.D.</td>
<td>N.D.</td>
<td><30</td>
<td><30</td>
<td>N.D.</td>
<td>N.D.</td>
<td><30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yttrium(^2)</td>
<td>300</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td>70</td>
<td>N.D.</td>
<td>N.D.</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total rare earths</td>
<td>5,930</td>
<td>N.D.</td>
<td>N.D.</td>
<td>4,977</td>
<td>5,147</td>
<td>N.D.</td>
<td>N.D.</td>
<td>607</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barium(^2)</td>
<td>7,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>5,000</td>
<td>5,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1,500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beryllium(^2)</td>
<td>7</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1.5</td>
<td>1.5</td>
<td>N.D.</td>
<td>N.D.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bismuth(^2)</td>
<td><10</td>
<td>N.D.</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
<td>N.D.</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copper(^2)</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td>30</td>
<td>N.D.</td>
<td>N.D.</td>
<td><70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead(^2)</td>
<td>200</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td>200</td>
<td>N.D.</td>
<td>N.D.</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manganese(^2)</td>
<td>30,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1,500</td>
<td>70</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Molybdenum(^2)</td>
<td>100</td>
<td>N.D.</td>
<td>N.D.</td>
<td>30</td>
<td>70</td>
<td>N.D.</td>
<td>N.D.</td>
<td><3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niobium(^2)</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>70</td>
<td>70</td>
<td>N.D.</td>
<td>N.D.</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strontium(^2)</td>
<td>7,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1,500</td>
<td>2,000</td>
<td>N.D.</td>
<td>N.D.</td>
<td>3,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tin(^2)</td>
<td>15</td>
<td>N.D.</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
<td>N.D.</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vanadium(^2)</td>
<td>700</td>
<td>N.D.</td>
<td>N.D.</td>
<td>300</td>
<td>300</td>
<td>N.D.</td>
<td>N.D.</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zinc(^2)</td>
<td>300</td>
<td>N.D.</td>
<td>N.D.</td>
<td>300</td>
<td><200</td>
<td>N.D.</td>
<td>N.D.</td>
<td><200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zirconium(^2)</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>

In percent	Calcium\(^2\)	.3	N.D.	N.D.	.07	.07	N.D.	N.D.	N.D.	2
	Iron\(^2\)	7	N.D.	N.D.	7	3	N.D.	N.D.	N.D.	3
	Magnesium\(^2\)	.3	N.D.	N.D.	.15	.05	N.D.	N.D.	N.D.	.7
	Phosphorus\(^2\)	<.2	N.D.	N.D.	<.2	<.2	N.D.	N.D.	N.D.	<.2
	Potassium\(^1\)	10.7	10.9	11.3	10.6	12.0	10.2	6.8	8.7	9.4
	Sodium\(^2\)	.7	N.D.	N.D.	.3	.3	N.D.	N.D.	N.D.	1.5
	Titanium\(^2\)	.3	N.D.	N.D.	.3	.3	N.D.	N.D.	N.D.	.3
Table 1. — Chemical analyses of samples from the principal Tertiary intrusive mass in the southern Bear Lodge Mountains. — Continued

<table>
<thead>
<tr>
<th>Locality No.</th>
<th>269</th>
<th>270</th>
<th>271</th>
<th>272</th>
<th>273</th>
<th>274</th>
<th>275</th>
<th>276</th>
<th>277</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>In parts per million</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thorium¹</td>
<td>65</td>
</tr>
<tr>
<td>Uranium¹</td>
<td>5.7</td>
</tr>
<tr>
<td>Lanthanum²</td>
<td>150 N.D.</td>
</tr>
<tr>
<td>Cerium²</td>
<td>200 N.D.</td>
</tr>
<tr>
<td>Prasodymium²</td>
<td><100 N.D.</td>
</tr>
<tr>
<td>Neodymium²</td>
<td>150 N.D.</td>
</tr>
<tr>
<td>Samarium²</td>
<td><100 N.D.</td>
</tr>
<tr>
<td>Europium²</td>
<td><100 N.D.</td>
</tr>
<tr>
<td>Terbium²</td>
<td><300 N.D.</td>
</tr>
<tr>
<td>Dysprosium²</td>
<td><50 N.D.</td>
</tr>
<tr>
<td>Holmium²</td>
<td><20 N.D.</td>
</tr>
<tr>
<td>Erbium²</td>
<td><50 N.D.</td>
</tr>
<tr>
<td>Thulium²</td>
<td><20 N.D.</td>
</tr>
<tr>
<td>Ytterbium²</td>
<td>3 N.D.</td>
</tr>
<tr>
<td>Lutetium²</td>
<td><30 N.D.</td>
</tr>
<tr>
<td>Yttrium²</td>
<td>30 N.D.</td>
</tr>
<tr>
<td>Total rare earths</td>
<td>533 N.D.</td>
</tr>
<tr>
<td>Bartium²</td>
<td>2,000 N.D.</td>
</tr>
<tr>
<td>Beryllium²</td>
<td>3 N.D.</td>
</tr>
<tr>
<td>Bismuth²</td>
<td><10 N.D.</td>
</tr>
<tr>
<td>Copper²</td>
<td>300 N.D.</td>
</tr>
<tr>
<td>Lead²</td>
<td>30 N.D.</td>
</tr>
<tr>
<td>Manganese²</td>
<td>700 N.D.</td>
</tr>
<tr>
<td>Molybdenum²</td>
<td>5 N.D.</td>
</tr>
<tr>
<td>Niobium²</td>
<td>15 N.D.</td>
</tr>
<tr>
<td>Strontium²</td>
<td>3,000 N.D.</td>
</tr>
<tr>
<td>Tin²</td>
<td><10 N.D.</td>
</tr>
<tr>
<td>Vanadium²</td>
<td>500 N.D.</td>
</tr>
<tr>
<td>Zinc²</td>
<td><200 N.D.</td>
</tr>
<tr>
<td>Zirconium²</td>
<td>150 N.D.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium²</td>
</tr>
<tr>
<td>Iron²</td>
</tr>
<tr>
<td>Magnesium²</td>
</tr>
<tr>
<td>Phosphorus²</td>
</tr>
<tr>
<td>Potassium¹</td>
</tr>
<tr>
<td>Sodium²</td>
</tr>
<tr>
<td>Titanium²</td>
</tr>
</tbody>
</table>
Table 1—Chemical analyses of samples from the principal Tertiary intrusive mass in the southern Bear Lodge Mountains. [Continued]

(Symbols: N.D. = not determined; < - less than value indicated; > - greater than value indicated)

<table>
<thead>
<tr>
<th>Locality No.</th>
<th>278</th>
<th>279</th>
<th>280</th>
<th>281</th>
<th>282</th>
<th>283</th>
<th>284</th>
<th>285</th>
<th>286</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>In parts per million</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorium<sup>1</sup></td>
<td>231</td>
<td>179</td>
<td>58</td>
<td>131</td>
<td>.69</td>
<td>123</td>
<td>73</td>
<td>45</td>
<td>42</td>
</tr>
<tr>
<td>Uranium<sup>1</sup></td>
<td>17</td>
<td>34</td>
<td>28</td>
<td>21</td>
<td>6.2</td>
<td>14</td>
<td>4.6</td>
<td>6.1</td>
<td>5.8</td>
</tr>
<tr>
<td>Lanthanum<sup>2</sup></td>
<td>700</td>
<td>2,000</td>
<td>N.D.</td>
<td>2,000</td>
<td>N.D.</td>
<td>700</td>
<td>150</td>
<td>150</td>
<td>N.D.</td>
</tr>
<tr>
<td>Cerium<sup>2</sup></td>
<td>1,000</td>
<td>3,000</td>
<td>N.D.</td>
<td>3,000</td>
<td>N.D.</td>
<td>1,500</td>
<td>150</td>
<td>300</td>
<td>N.D.</td>
</tr>
<tr>
<td>Praseodymium<sup>2</sup></td>
<td>150</td>
<td>300</td>
<td>N.D.</td>
<td>500</td>
<td>N.D.</td>
<td>150</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
</tr>
<tr>
<td>Neodymium<sup>2</sup></td>
<td>700</td>
<td>1,500</td>
<td>N.D.</td>
<td>3,000</td>
<td>N.D.</td>
<td>700</td>
<td>150</td>
<td>150</td>
<td>N.D.</td>
</tr>
<tr>
<td>Samarium<sup>2</sup></td>
<td>200</td>
<td>300</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
<td>200</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
</tr>
<tr>
<td>Europium<sup>2</sup></td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
</tr>
<tr>
<td>Terbium<sup>2</sup></td>
<td><300</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td><300</td>
<td><300</td>
<td>N.D.</td>
</tr>
<tr>
<td>Dysprosium<sup>2</sup></td>
<td>50</td>
<td>70</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
</tr>
<tr>
<td>Holmium<sup>2</sup></td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
</tr>
<tr>
<td>Erbium<sup>2</sup></td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
</tr>
<tr>
<td>Thulium<sup>2</sup></td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
</tr>
<tr>
<td>Ytterbium<sup>2</sup></td>
<td>7</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>N.D.</td>
</tr>
<tr>
<td>Lutetium<sup>2</sup></td>
<td><30</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td><30</td>
<td><30</td>
<td>N.D.</td>
</tr>
<tr>
<td>Yttrium<sup>2</sup></td>
<td>150</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>70</td>
<td>150</td>
<td>70</td>
<td>N.D.</td>
</tr>
<tr>
<td>Total rare earths</td>
<td>3,057</td>
<td>7,427</td>
<td>N.D.</td>
<td>9,177</td>
<td>N.D.</td>
<td>3,395</td>
<td>607</td>
<td>675</td>
<td>N.D.</td>
</tr>
<tr>
<td>Barium<sup>2</sup></td>
<td>3,000</td>
<td>3,000</td>
<td>N.D.</td>
<td>1,500</td>
<td>N.D.</td>
<td>3,000</td>
<td>700</td>
<td>1,500</td>
<td>N.D.</td>
</tr>
<tr>
<td>Beryllium<sup>2</sup></td>
<td>7</td>
<td>7</td>
<td>N.D.</td>
<td>3</td>
<td>N.D.</td>
<td>3</td>
<td>15</td>
<td>10</td>
<td>N.D.</td>
</tr>
<tr>
<td>Bismuth<sup>2</sup></td>
<td><10</td>
<td>20</td>
<td>N.D.</td>
<td>20</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
</tr>
<tr>
<td>Copper<sup>2</sup></td>
<td>30</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
<td>70</td>
<td>50</td>
<td>N.D.</td>
</tr>
<tr>
<td>Lead<sup>2</sup></td>
<td>150</td>
<td>700</td>
<td>N.D.</td>
<td>700</td>
<td>N.D.</td>
<td>200</td>
<td>70</td>
<td>50</td>
<td>N.D.</td>
</tr>
<tr>
<td>Manganese<sup>2</sup></td>
<td>150</td>
<td>2,000</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
<td>70</td>
<td>1,500</td>
<td>700</td>
<td>N.D.</td>
</tr>
<tr>
<td>Molybdenum<sup>2</sup></td>
<td>70</td>
<td>150</td>
<td>N.D.</td>
<td>100</td>
<td>N.D.</td>
<td>150</td>
<td>30</td>
<td>15</td>
<td>N.D.</td>
</tr>
<tr>
<td>Niobium<sup>2</sup></td>
<td>150</td>
<td>150</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
<td>70</td>
<td>30</td>
<td>15</td>
<td>N.D.</td>
</tr>
<tr>
<td>Strontium<sup>2</sup></td>
<td>3,000</td>
<td>3,000</td>
<td>N.D.</td>
<td>3,000</td>
<td>N.D.</td>
<td>1,500</td>
<td>700</td>
<td>3,000</td>
<td>N.D.</td>
</tr>
<tr>
<td>Tin<sup>2</sup></td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
</tr>
<tr>
<td>Vanadium<sup>2</sup></td>
<td>700</td>
<td>700</td>
<td>N.D.</td>
<td>700</td>
<td>N.D.</td>
<td>700</td>
<td>700</td>
<td>300</td>
<td>N.D.</td>
</tr>
<tr>
<td>Zinc<sup>2</sup></td>
<td><200</td>
<td><200</td>
<td>N.D.</td>
<td><200</td>
<td>N.D.</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td>N.D.</td>
</tr>
<tr>
<td>Zirconium<sup>2</sup></td>
<td>150</td>
<td>200</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
<td>150</td>
<td>300</td>
<td>200</td>
<td>N.D.</td>
</tr>
<tr>
<td>Calcium<sup>2</sup></td>
<td>.07</td>
<td>.15</td>
<td>N.D.</td>
<td>.15</td>
<td>N.D.</td>
<td>.07</td>
<td>.7</td>
<td>.3</td>
<td>N.D.</td>
</tr>
<tr>
<td>Iron<sup>2</sup></td>
<td>3</td>
<td>7</td>
<td>N.D.</td>
<td>3</td>
<td>N.D.</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>N.D.</td>
</tr>
<tr>
<td>Magnesium<sup>2</sup></td>
<td>.07</td>
<td>.07</td>
<td>N.D.</td>
<td>.3</td>
<td>N.D.</td>
<td>.07</td>
<td>.7</td>
<td>.3</td>
<td>N.D.</td>
</tr>
<tr>
<td>Phosphorus<sup>2</sup></td>
<td><.2</td>
<td><.2</td>
<td>N.D.</td>
<td><.2</td>
<td>N.D.</td>
<td><.2</td>
<td><.2</td>
<td><.2</td>
<td>N.D.</td>
</tr>
<tr>
<td>Potassium<sup>1</sup></td>
<td>10.5</td>
<td>9.7</td>
<td>8.9</td>
<td>8.2</td>
<td>10.8</td>
<td>11.7</td>
<td>6.3</td>
<td>6.8</td>
<td>7.9</td>
</tr>
<tr>
<td>Sodium<sup>2</sup></td>
<td>.3</td>
<td>.7</td>
<td>N.D.</td>
<td>.2</td>
<td>N.D.</td>
<td>.7</td>
<td>.7</td>
<td>3</td>
<td>N.D.</td>
</tr>
<tr>
<td>Titanium<sup>2</sup></td>
<td>.3</td>
<td>.3</td>
<td>N.D.</td>
<td>.3</td>
<td>N.D.</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>N.D.</td>
</tr>
<tr>
<td>Locality No.</td>
<td>287</td>
<td>288</td>
<td>289</td>
<td>290</td>
<td>291</td>
<td>293</td>
<td>294</td>
<td>295</td>
<td>297</td>
</tr>
<tr>
<td>-------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Sample No.</td>
<td>MHS-</td>
<td>MHS-</td>
<td>MHS-</td>
<td>MHS-</td>
<td>MHS-</td>
<td>MHS-</td>
<td>MHS-</td>
<td>MHS-</td>
<td>MHS-</td>
</tr>
<tr>
<td>Element</td>
<td>In parts per million</td>
<td>In percent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorium</td>
<td>87</td>
<td>40</td>
<td>49</td>
<td>158</td>
<td>117</td>
<td>69</td>
<td>177</td>
<td>178</td>
<td>146</td>
</tr>
<tr>
<td>Uranium</td>
<td>7.0</td>
<td>9.0</td>
<td>5.6</td>
<td>3.5</td>
<td>11.3</td>
<td>9.0</td>
<td>7.1</td>
<td>8.2</td>
<td>5.2</td>
</tr>
<tr>
<td>Lanthanum 2</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>1,500</td>
<td>N.D.</td>
<td>700</td>
<td>700</td>
<td>150</td>
</tr>
<tr>
<td>Cerium 2</td>
<td>150</td>
<td>N.D.</td>
<td>200</td>
<td>N.D.</td>
<td>3,000</td>
<td>N.D.</td>
<td>1,500</td>
<td>700</td>
<td>200</td>
</tr>
<tr>
<td>Praseodymium 2</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
<td>100</td>
<td><100</td>
</tr>
<tr>
<td>Neodymium 2</td>
<td>100</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>700</td>
<td>N.D.</td>
<td>700</td>
<td>700</td>
<td>150</td>
</tr>
<tr>
<td>Samarium 2</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>200</td>
<td>150</td>
<td><100</td>
</tr>
<tr>
<td>Europium 2</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td><100</td>
</tr>
<tr>
<td>Gadolinium 2</td>
<td>70</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
<td>100</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Terbium 2</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td><300</td>
<td><300</td>
</tr>
<tr>
<td>Dysprosium 2</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td>70</td>
<td><50</td>
<td><50</td>
</tr>
<tr>
<td>Holmium 2</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Erbium 2</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td><50</td>
</tr>
<tr>
<td>Thulium 2</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Ytterbium 2</td>
<td>3</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
<td>10</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Lutetium 2</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td><30</td>
<td><30</td>
</tr>
<tr>
<td>Yttrium 2</td>
<td>70</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
<td>200</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Total rare earths</td>
<td>540</td>
<td>N.D.</td>
<td>577</td>
<td>N.D.</td>
<td>5,647</td>
<td>N.D.</td>
<td>3,630</td>
<td>2,493</td>
<td>647</td>
</tr>
<tr>
<td>Barium 2</td>
<td>1,500</td>
<td>N.D.</td>
<td>1,500</td>
<td>N.D.</td>
<td>3,000</td>
<td>N.D.</td>
<td>3,000</td>
<td>3,000</td>
<td>2,000</td>
</tr>
<tr>
<td>Beryllium 2</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
<td>10</td>
<td>N.D.</td>
<td>15</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Bismuth 2</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Copper 2</td>
<td>100</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>100</td>
<td>N.D.</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Lead 2</td>
<td>150</td>
<td>N.D.</td>
<td>30</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
<td>150</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>Manganese 2</td>
<td>3,000</td>
<td>N.D.</td>
<td>1,500</td>
<td>N.D.</td>
<td>7,000</td>
<td>N.D.</td>
<td>3,000</td>
<td>7,000</td>
<td>3,000</td>
</tr>
<tr>
<td>Molybdenum 2</td>
<td>30</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
<td>30</td>
<td>N.D.</td>
<td>20</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Niobium 2</td>
<td>10</td>
<td>N.D.</td>
<td>15</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Strontium 2</td>
<td>1,500</td>
<td>N.D.</td>
<td>3,000</td>
<td>N.D.</td>
<td>3,000</td>
<td>N.D.</td>
<td>3,000</td>
<td>2,000</td>
<td>1,500</td>
</tr>
<tr>
<td>Tin 2</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Vanadium 2</td>
<td>300</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
<td>700</td>
<td>N.D.</td>
<td>700</td>
<td>500</td>
<td>700</td>
</tr>
<tr>
<td>Zinc 2</td>
<td>300</td>
<td>N.D.</td>
<td><200</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
<td><200</td>
<td><200</td>
<td><200</td>
</tr>
<tr>
<td>Zirconium 2</td>
<td>150</td>
<td>N.D.</td>
<td>200</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
<td>70</td>
<td>300</td>
</tr>
<tr>
<td>Calcium 2</td>
<td>.15</td>
<td>N.D.</td>
<td>1</td>
<td>N.D.</td>
<td>.15</td>
<td>N.D.</td>
<td>.07</td>
<td>.07</td>
<td>.5</td>
</tr>
<tr>
<td>Iron 2</td>
<td>3</td>
<td>N.D.</td>
<td>3</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Magnesium 2</td>
<td>.15</td>
<td>N.D.</td>
<td>.7</td>
<td>N.D.</td>
<td>.3</td>
<td>N.D.</td>
<td>.07</td>
<td>.07</td>
<td>.7</td>
</tr>
<tr>
<td>Phosphorus 2</td>
<td><.2</td>
<td>N.D.</td>
<td><.2</td>
<td>N.D.</td>
<td><.2</td>
<td>N.D.</td>
<td><.2</td>
<td><.2</td>
<td><.2</td>
</tr>
<tr>
<td>Potassium 1</td>
<td>8.3</td>
<td>8.8</td>
<td>6.1</td>
<td>7.9</td>
<td>10.2</td>
<td>10.8</td>
<td>11.1</td>
<td>11.1</td>
<td>9.5</td>
</tr>
<tr>
<td>Sodium 2</td>
<td>3</td>
<td>N.D.</td>
<td>5</td>
<td>N.D.</td>
<td>1</td>
<td>N.D.</td>
<td>.7</td>
<td>.7</td>
<td>3</td>
</tr>
<tr>
<td>Titanium 2</td>
<td>.3</td>
<td>N.D.</td>
<td>.5</td>
<td>N.D.</td>
<td>.3</td>
<td>N.D.</td>
<td>.3</td>
<td>.5</td>
<td>.5</td>
</tr>
</tbody>
</table>
Table 1.—Chemical analyses of samples from the principal Tertiary intrusive mass
in the southern Bear Lodge Mountains. — Continued

<table>
<thead>
<tr>
<th>Locality No.</th>
<th>298</th>
<th>299</th>
<th>300</th>
<th>301</th>
<th>302</th>
<th>303</th>
<th>304</th>
<th>305</th>
<th>306</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>In parts per million</th>
<th>In percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thorium</td>
<td>116</td>
<td>0.02</td>
</tr>
<tr>
<td>Uranium</td>
<td>6.4</td>
<td>0.23</td>
</tr>
<tr>
<td>Lanthanum</td>
<td>150</td>
<td>0.26</td>
</tr>
<tr>
<td>Cerium</td>
<td>200</td>
<td>0.3</td>
</tr>
<tr>
<td>Praseodymium</td>
<td><100</td>
<td><0.2</td>
</tr>
<tr>
<td>Neodymium</td>
<td>150</td>
<td>0.22</td>
</tr>
<tr>
<td>Samarium</td>
<td><100</td>
<td><0.2</td>
</tr>
<tr>
<td>Europium</td>
<td><100</td>
<td><0.2</td>
</tr>
<tr>
<td>Gdolinium</td>
<td><50</td>
<td><0.07</td>
</tr>
<tr>
<td>Terbium</td>
<td><300</td>
<td><0.5</td>
</tr>
<tr>
<td>Dyosprosium</td>
<td><50</td>
<td><0.07</td>
</tr>
<tr>
<td>Holmium</td>
<td><20</td>
<td><0.03</td>
</tr>
<tr>
<td>Erbium</td>
<td><50</td>
<td><0.07</td>
</tr>
<tr>
<td>Thulium</td>
<td><20</td>
<td><0.03</td>
</tr>
<tr>
<td>Ytterbium</td>
<td>7</td>
<td>0.01</td>
</tr>
<tr>
<td>Lutetium</td>
<td><30</td>
<td><0.04</td>
</tr>
<tr>
<td>Yttrium</td>
<td>100</td>
<td>0.16</td>
</tr>
<tr>
<td>Total rare earths</td>
<td>607</td>
<td>1.1</td>
</tr>
<tr>
<td>Barium</td>
<td>1,500</td>
<td>21.8</td>
</tr>
<tr>
<td>Beryllium</td>
<td>7</td>
<td>0.1</td>
</tr>
<tr>
<td>Bismuth</td>
<td><10</td>
<td><0.1</td>
</tr>
<tr>
<td>Copper</td>
<td>100</td>
<td>1.3</td>
</tr>
<tr>
<td>Lead</td>
<td>50</td>
<td>0.7</td>
</tr>
<tr>
<td>Manganese</td>
<td>1,500</td>
<td>21.8</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>30</td>
<td>0.4</td>
</tr>
<tr>
<td>Niobium</td>
<td>20</td>
<td>0.3</td>
</tr>
<tr>
<td>Strontium</td>
<td>3,000</td>
<td>42.3</td>
</tr>
<tr>
<td>Ti</td>
<td><10</td>
<td><0.1</td>
</tr>
<tr>
<td>Vanadium</td>
<td>300</td>
<td>0.4</td>
</tr>
<tr>
<td>Zinc</td>
<td><200</td>
<td><0.3</td>
</tr>
<tr>
<td>Zirconium</td>
<td>150</td>
<td>0.2</td>
</tr>
<tr>
<td>Calcium</td>
<td>.3</td>
<td><0.01</td>
</tr>
<tr>
<td>Iron</td>
<td>7</td>
<td>0.1</td>
</tr>
<tr>
<td>Magnesium</td>
<td>.15</td>
<td><0.02</td>
</tr>
<tr>
<td>Phosphorus</td>
<td><.2</td>
<td><0.01</td>
</tr>
<tr>
<td>Potassium</td>
<td>8.6</td>
<td>1.2</td>
</tr>
<tr>
<td>Sodium</td>
<td>3</td>
<td><0.1</td>
</tr>
<tr>
<td>Titanium</td>
<td>.3</td>
<td><0.01</td>
</tr>
</tbody>
</table>
Tab. 1.—Chemical analyses of samples from the principal Tertiary intrusive mass in the southern Bear Lodge Mountains — Continued

<table>
<thead>
<tr>
<th>Locality No.</th>
<th>307</th>
<th>308</th>
<th>309</th>
<th>310</th>
<th>311</th>
<th>312</th>
<th>313</th>
<th>314</th>
<th>315</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>In parts per million</td>
<td>In percent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorium</td>
<td>182</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>8.0</td>
<td>6.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lanthanum</td>
<td>N.D.</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerium</td>
<td>N.D.</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Praseodymium</td>
<td>N.D.</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neodymium</td>
<td>N.D.</td>
<td><50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmium</td>
<td>N.D.</td>
<td><50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gadolinium</td>
<td>N.D.</td>
<td><50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbium</td>
<td>N.D.</td>
<td><300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dysprosium</td>
<td>N.D.</td>
<td><70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmium</td>
<td>N.D.</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erbium</td>
<td>N.D.</td>
<td><50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thulium</td>
<td>N.D.</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yttrium</td>
<td>N.D.</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total rare earths</td>
<td>657</td>
<td>2,857</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>N.D.</td>
<td>1,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>N.D.</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bismuth</td>
<td>N.D.</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>N.D.</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>N.D.</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>N.D.</td>
<td>700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>N.D.</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niobium</td>
<td>N.D.</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>N.D.</td>
<td>1,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>N.D.</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>N.D.</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>N.D.</td>
<td><200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zirconium</td>
<td>N.D.</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In percent</td>
<td>4.5</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>N.D.</td>
<td>.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>N.D.</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>N.D.</td>
<td>.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td>N.D.</td>
<td><.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>10.3</td>
<td>8.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>N.D.</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td>N.D.</td>
<td>.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1.—Chemical analyses of samples from the principal Tertiary intrusive mass in the southern Bear Lodge Mountains. — Continued

<table>
<thead>
<tr>
<th>Locality No.</th>
<th>316</th>
<th>317</th>
<th>318</th>
<th>319</th>
<th>320</th>
<th>321</th>
<th>322</th>
<th>323</th>
<th>324</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>In parts per million</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorium¹</td>
<td>45</td>
<td>69</td>
<td>116</td>
<td>36</td>
<td>37</td>
<td>106</td>
<td>203</td>
<td>65</td>
<td>39</td>
</tr>
<tr>
<td>Uranium¹</td>
<td>6.3</td>
<td>7.9</td>
<td>8.3</td>
<td>6.6</td>
<td>7.1</td>
<td>9.0</td>
<td>7.2</td>
<td>5.6</td>
<td>5.0</td>
</tr>
<tr>
<td>Lanthanum²</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
</tr>
<tr>
<td>Cerium²</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
</tr>
<tr>
<td>Praseodymium²</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
</tr>
<tr>
<td>Neodymium²</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
</tr>
<tr>
<td>Samarium²</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
</tr>
<tr>
<td>Europium²</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
</tr>
<tr>
<td>Gadolinium²</td>
<td><50</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
</tr>
<tr>
<td>Terbium²</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
</tr>
<tr>
<td>Dysprosium²</td>
<td><50</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
<td><70</td>
<td>N.D.</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
</tr>
<tr>
<td>Holmium²</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
</tr>
<tr>
<td>Erbium²</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
</tr>
<tr>
<td>Thulium²</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
</tr>
<tr>
<td>Ytterbium²</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
</tr>
<tr>
<td>Lutetium²</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td>N.D.</td>
<td>N.D.</td>
<td><30</td>
<td>N.D.</td>
</tr>
<tr>
<td>Yttrium²</td>
<td>70</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
</tr>
<tr>
<td>Total rare earths</td>
<td>577</td>
<td>N.D.</td>
<td>797</td>
<td>N.D.</td>
<td>657</td>
<td>N.D.</td>
<td>477</td>
<td>N.D.</td>
<td>477</td>
</tr>
</tbody>
</table>

Element	In percent								
Calcium²	.5	N.D.	.7	N.D.	.5	N.D.	N.D.	.3	N.D.
Iron²	7	N.D.	3	N.D.	7	N.D.	N.D.	3	N.D.
Magnesium²	.3	N.D.	.3	N.D.	.3	N.D.	N.D.	.15	N.D.
Phosphorus²	<.2	N.D.	<.2	N.D.	<.2	N.D.	N.D.	<.2	N.D.
Potassium¹	6.4	8.7	9.7	7.3	7.5	8.1	8.8	7.0	5.0
Sodium²	3	N.D.	3	N.D.	3	N.D.	N.D.	3	N.D.
Titanium²	.5	N.D.	.3	N.D.	.7	N.D.	N.D.	.3	N.D.
Table 1.—Chemical analyses of samples from the principal Tertiary intrusive mass in the southern Bear Lodge Mountains. — Continued

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Element</td>
<td>In parts per million</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thorium</td>
<td>61</td>
<td>269</td>
<td>49</td>
<td>152</td>
<td>121</td>
<td>45</td>
<td>62</td>
<td>46</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Uranium</td>
<td>5.5</td>
<td>27</td>
<td>11</td>
<td>9.4</td>
<td>6.6</td>
<td>3.7</td>
<td>7.5</td>
<td>6.7</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>Lanthanum</td>
<td>150</td>
<td>300</td>
<td>N.D.</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Cerium</td>
<td>150</td>
<td>500</td>
<td>N.D.</td>
<td>300</td>
<td>200</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Praseodymium</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td>N.D.</td>
<td><100</td>
</tr>
<tr>
<td></td>
<td>Neodymium</td>
<td>150</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
<td>150</td>
<td>100</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Samarium</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td>N.D.</td>
<td><100</td>
</tr>
<tr>
<td></td>
<td>Europium</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td>N.D.</td>
<td><100</td>
</tr>
<tr>
<td></td>
<td>Gadolinium</td>
<td><50</td>
<td>70</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td>N.D.</td>
<td><50</td>
</tr>
<tr>
<td></td>
<td>Terbium</td>
<td><300</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td><300</td>
<td><300</td>
<td>N.D.</td>
<td>N.D.</td>
<td><300</td>
</tr>
<tr>
<td></td>
<td>Dysprosium</td>
<td><50</td>
<td>70</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td>N.D.</td>
<td><50</td>
</tr>
<tr>
<td></td>
<td>Holmium</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td>N.D.</td>
<td><20</td>
</tr>
<tr>
<td></td>
<td>Erbium</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td>N.D.</td>
<td><50</td>
</tr>
<tr>
<td></td>
<td>Thulium</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td>N.D.</td>
<td><20</td>
</tr>
<tr>
<td></td>
<td>Ytterbium</td>
<td>7</td>
<td>10</td>
<td>N.D.</td>
<td>7</td>
<td>15</td>
<td>2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Lutetium</td>
<td><30</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td><30</td>
<td><30</td>
<td>N.D.</td>
<td>N.D.</td>
<td><30</td>
</tr>
<tr>
<td></td>
<td>Yttrium</td>
<td>70</td>
<td>200</td>
<td>N.D.</td>
<td>100</td>
<td>150</td>
<td>30</td>
<td>N.D.</td>
<td>N.D.</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Total rare</td>
<td>527</td>
<td>1,300</td>
<td>N.D.</td>
<td>707</td>
<td>665</td>
<td>432</td>
<td>N.D.</td>
<td>N.D.</td>
<td>577</td>
</tr>
<tr>
<td></td>
<td>earths</td>
<td>1,500</td>
<td>1,500</td>
<td>N.D.</td>
<td>1,000</td>
<td>2,000</td>
<td>1,500</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1,500</td>
</tr>
<tr>
<td></td>
<td>Barium</td>
<td>7</td>
<td>10</td>
<td>N.D.</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>N.D.</td>
<td>N.D.</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Beryllium</td>
<td>10</td>
<td>10</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
<td>N.D.</td>
<td><10</td>
</tr>
<tr>
<td></td>
<td>Bismuth</td>
<td>100</td>
<td>150</td>
<td>N.D.</td>
<td>70</td>
<td>70</td>
<td>15</td>
<td>N.D.</td>
<td>N.D.</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>30</td>
<td>30</td>
<td>N.D.</td>
<td>30</td>
<td>30</td>
<td>50</td>
<td>N.D.</td>
<td>N.D.</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>700</td>
<td>15,000</td>
<td>N.D.</td>
<td>700</td>
<td>700</td>
<td>300</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1,500</td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>7</td>
<td>20</td>
<td>N.D.</td>
<td>10</td>
<td>7</td>
<td>3</td>
<td>N.D.</td>
<td>N.D.</td>
<td><3</td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
<td>15</td>
<td>30</td>
<td>N.D.</td>
<td>30</td>
<td>70</td>
<td>10</td>
<td>N.D.</td>
<td>N.D.</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
<td>1,000</td>
<td>2,000</td>
<td>N.D.</td>
<td>1,500</td>
<td>1,500</td>
<td>500</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1,500</td>
</tr>
<tr>
<td></td>
<td>Tin</td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
<td>N.D.</td>
<td><10</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>500</td>
<td>700</td>
<td>N.D.</td>
<td>300</td>
<td>700</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td><200</td>
<td>300</td>
<td>N.D.</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td>N.D.</td>
<td>N.D.</td>
<td><200</td>
</tr>
<tr>
<td></td>
<td>Zirconium</td>
<td>130</td>
<td>100</td>
<td>N.D.</td>
<td>150</td>
<td>700</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>200</td>
</tr>
</tbody>
</table>

In percent:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>3</td>
<td>3</td>
<td>N.D.</td>
<td>3</td>
<td>N.D.</td>
<td>3</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1.5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>7</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
<td>3</td>
<td>N.D.</td>
<td>N.D.</td>
<td>7</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>15</td>
<td>.07</td>
<td>N.D.</td>
<td>.15</td>
<td>.15</td>
<td>.15</td>
<td>N.D.</td>
<td>N.D.</td>
<td>.15</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td><.2</td>
<td><.2</td>
<td>N.D.</td>
<td><.2</td>
<td><.2</td>
<td><.2</td>
<td>N.D.</td>
<td>N.D.</td>
<td><.2</td>
<td><.2</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>10.3</td>
<td>7.6</td>
<td>8.6</td>
<td>7.7</td>
<td>5.3</td>
<td>7.9</td>
<td>7.1</td>
<td>7.2</td>
<td>10.3</td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>3</td>
<td>.7</td>
<td>N.D.</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>N.D.</td>
<td>N.D.</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td>3</td>
<td>.3</td>
<td>N.D.</td>
<td>.3</td>
<td>.7</td>
<td>.2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>.3</td>
<td>.7</td>
<td></td>
</tr>
</tbody>
</table>
Table 1.—Chemical analyses of samples from the principal Tertiary intrusive mass in the southern Bear Lodge Mountains. — Continued

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Element</td>
<td>In parts per million</td>
<td>In percent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thorium1</td>
<td>56</td>
<td>23</td>
<td>10</td>
<td>143</td>
<td>65</td>
<td>70</td>
<td>58</td>
<td>32</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Uranium1</td>
<td>5.6</td>
<td>4.8</td>
<td>2.8</td>
<td>7.5</td>
<td>6.6</td>
<td>7.0</td>
<td>6.8</td>
<td>5.2</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>Lanthanum2</td>
<td>N.D.</td>
<td>300</td>
<td>30</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cerium2</td>
<td>N.D.</td>
<td>300</td>
<td><150</td>
<td>200</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Praseodymium2</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neodymium2</td>
<td>N.D.</td>
<td>150</td>
<td><70</td>
<td>150</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Samarium2</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Europium2</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gadolinium2</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terbium2</td>
<td>N.D.</td>
<td><300</td>
<td><300</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dysprosium2</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Holmium2</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erbium2</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thulium2</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ytterbium2</td>
<td>N.D.</td>
<td>5</td>
<td>2</td>
<td>10</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lutetium2</td>
<td>N.D.</td>
<td><30</td>
<td><30</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yttrium2</td>
<td>N.D.</td>
<td>50</td>
<td>15</td>
<td>150</td>
<td>N.D.</td>
<td>100</td>
<td>N.D.</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total rare earths</td>
<td>N.D.</td>
<td>805</td>
<td>47</td>
<td>660</td>
<td>N.D.</td>
<td>477</td>
<td>N.D.</td>
<td>607</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barium2</td>
<td>N.D.</td>
<td>700</td>
<td>1,000</td>
<td>1,500</td>
<td>N.D.</td>
<td>700</td>
<td>N.D.</td>
<td>1,500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beryllium2</td>
<td>N.D.</td>
<td>15</td>
<td>1.5</td>
<td>10</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bismuth2</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copper2</td>
<td>N.D.</td>
<td>300</td>
<td>100</td>
<td>100</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead2</td>
<td>N.D.</td>
<td>300</td>
<td>30</td>
<td>30</td>
<td>N.D.</td>
<td>30</td>
<td>N.D.</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manganese3</td>
<td>N.D.</td>
<td>700</td>
<td>300</td>
<td>1,500</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
<td>1,500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Molybdenum3</td>
<td>N.D.</td>
<td>30</td>
<td>7</td>
<td>5</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niobium3</td>
<td>N.D.</td>
<td>70</td>
<td>10</td>
<td>30</td>
<td>N.D.</td>
<td>.30</td>
<td>N.D.</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strontium2</td>
<td>N.D.</td>
<td>700</td>
<td>700</td>
<td>1,500</td>
<td>N.D.</td>
<td>1,500</td>
<td>N.D.</td>
<td>3,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tin2</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vanadium2</td>
<td>N.D.</td>
<td>1,500</td>
<td>150</td>
<td>500</td>
<td>N.D.</td>
<td>500</td>
<td>N.D.</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zinc2</td>
<td>N.D.</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td>N.D.</td>
<td><200</td>
<td>N.D.</td>
<td><200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zirconium2</td>
<td>N.D.</td>
<td>300</td>
<td>150</td>
<td>300</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>

[Symbols: N.D. = not determined; < < less than value indicated; > > greater than value indicated]
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>In parts per million</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorium<sup>1</sup></td>
<td>9.3</td>
<td>45</td>
<td>25</td>
<td>67</td>
<td>54</td>
<td>46</td>
<td>21</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Uranium<sup>1</sup></td>
<td>1.8</td>
<td>5.6</td>
<td>3.8</td>
<td>3.4</td>
<td>5.8</td>
<td>7.4</td>
<td>5.7</td>
<td>6.8</td>
<td>5.5</td>
</tr>
<tr>
<td>Lanthanum<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td>100</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
</tr>
<tr>
<td>Cerium<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td>200</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>300</td>
</tr>
<tr>
<td>Praseodymium<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
</tr>
<tr>
<td>Neodymium<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td>100</td>
<td>70</td>
<td>N.D.</td>
<td>N.D.</td>
<td>100</td>
<td>N.D.</td>
<td>150</td>
</tr>
<tr>
<td>Samarium<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
</tr>
<tr>
<td>Europium<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
</tr>
<tr>
<td>Gadolinium<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td><300</td>
<td><300</td>
<td>N.D.</td>
<td>N.D.</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
</tr>
<tr>
<td>Terbium<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
</tr>
<tr>
<td>Dysprosium<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
</tr>
<tr>
<td>Holmium<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
</tr>
<tr>
<td>Erbium<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
</tr>
<tr>
<td>Thulium<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
</tr>
<tr>
<td>Ytterbium<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td>7</td>
<td>3</td>
<td>N.D.</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
<td>5</td>
</tr>
<tr>
<td>Lutetium<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td><30</td>
<td><30</td>
<td>N.D.</td>
<td>N.D.</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
</tr>
<tr>
<td>Yttrium<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td>7</td>
<td>30</td>
<td>N.D.</td>
<td>N.D.</td>
<td>50</td>
<td>N.D.</td>
<td>50</td>
</tr>
<tr>
<td>Total rare earths</td>
<td>N.D.</td>
<td>N.D.</td>
<td>527</td>
<td>353</td>
<td>N.D.</td>
<td>N.D.</td>
<td>457</td>
<td>N.D.</td>
<td>655</td>
</tr>
<tr>
<td>Barium<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td>1,500</td>
<td>1,500</td>
<td>N.D.</td>
<td>N.D.</td>
<td>700</td>
<td>N.D.</td>
<td>1,000</td>
</tr>
<tr>
<td>Beryllium<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td>1.5</td>
<td>1.5</td>
<td>N.D.</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
</tr>
<tr>
<td>Bismuth<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
</tr>
<tr>
<td>Copper<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td>20</td>
<td>15</td>
<td>N.D.</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
<td>7</td>
</tr>
<tr>
<td>Lead<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td>20</td>
<td>20</td>
<td>N.D.</td>
<td>N.D.</td>
<td>20</td>
<td>N.D.</td>
<td>20</td>
</tr>
<tr>
<td>Manganese<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td>700</td>
<td>300</td>
<td>N.D.</td>
<td>N.D.</td>
<td>700</td>
<td>N.D.</td>
<td>1,500</td>
</tr>
<tr>
<td>Molybdenum<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td>7</td>
<td><3</td>
<td>N.D.</td>
<td>N.D.</td>
<td><3</td>
<td>N.D.</td>
<td>5</td>
</tr>
<tr>
<td>Niobium<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td>30</td>
<td><10</td>
<td>N.D.</td>
<td>N.D.</td>
<td>15</td>
<td>N.D.</td>
<td>30</td>
</tr>
<tr>
<td>Strontium<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td>300</td>
<td>300</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1,500</td>
<td>N.D.</td>
<td>2,000</td>
</tr>
<tr>
<td>Tin<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
</tr>
<tr>
<td>Vanadium<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td>200</td>
<td>200</td>
<td>N.D.</td>
<td>N.D.</td>
<td><200</td>
<td>N.D.</td>
<td><200</td>
</tr>
<tr>
<td>Zinc<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td><200</td>
<td><200</td>
<td>N.D.</td>
<td>N.D.</td>
<td><200</td>
<td>N.D.</td>
<td><200</td>
</tr>
<tr>
<td>Zirconium<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td>150</td>
<td>N.D.</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>300</td>
</tr>
<tr>
<td>In percent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td>.3</td>
<td>.7</td>
<td>N.D.</td>
<td>N.D.</td>
<td>.7</td>
<td>N.D.</td>
<td>3</td>
</tr>
<tr>
<td>Iron<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td>3</td>
<td>3</td>
<td>N.D.</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
</tr>
<tr>
<td>Magnesium<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td>.07</td>
<td>.15</td>
<td>N.D.</td>
<td>N.D.</td>
<td>.15</td>
<td>N.D.</td>
<td>.3</td>
</tr>
<tr>
<td>Phosphorus<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td><.2</td>
<td><.2</td>
<td>N.D.</td>
<td>N.D.</td>
<td><.2</td>
<td>N.D.</td>
<td><.2</td>
</tr>
<tr>
<td>Potassium<sup>1</sup></td>
<td>1.8</td>
<td>5.6</td>
<td>5.9</td>
<td>5.2</td>
<td>6.0</td>
<td>7.1</td>
<td>7.9</td>
<td>5.6</td>
<td>4.6</td>
</tr>
<tr>
<td>Sodium<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td>3</td>
<td>3</td>
<td>N.D.</td>
<td>N.D.</td>
<td>3</td>
<td>N.D.</td>
<td>7</td>
</tr>
<tr>
<td>Titanium<sup>2</sup></td>
<td>N.D.</td>
<td>N.D.</td>
<td>.3</td>
<td>.15</td>
<td>N.D.</td>
<td>N.D.</td>
<td>.3</td>
<td>N.D.</td>
<td>.5</td>
</tr>
</tbody>
</table>
Table 1.—Chemical analyses of samples from the principal Tertiary intrusive mass in the southern Bear Lodge Mountains. — Continued

<table>
<thead>
<tr>
<th>Locality No.</th>
<th>355</th>
<th>356</th>
<th>357</th>
<th>358</th>
<th>359</th>
<th>360</th>
<th>361</th>
<th>362</th>
<th>372</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>In parts per million</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Thorium</td>
<td>25</td>
<td>87</td>
<td>32</td>
<td>38</td>
<td>44</td>
<td>58</td>
<td>46</td>
<td>60</td>
<td>64</td>
</tr>
<tr>
<td>Uranium</td>
<td>5.6</td>
<td>7.9</td>
<td>8.3</td>
<td>7.3</td>
<td>7.6</td>
<td>14</td>
<td>7.2</td>
<td>5.0</td>
<td>4.4</td>
</tr>
<tr>
<td>Lanthanum</td>
<td>N.D.</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
</tr>
<tr>
<td>Cerium</td>
<td>N.D.</td>
<td>200</td>
<td>300</td>
<td>200</td>
<td>N.D.</td>
<td>200</td>
<td>N.D.</td>
<td>200</td>
<td>N.D.</td>
</tr>
<tr>
<td>Praseodymium</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
</tr>
<tr>
<td>Neodymium</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
</tr>
<tr>
<td>Samarium</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
</tr>
<tr>
<td>Europium</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
</tr>
<tr>
<td>Gadolinium</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
</tr>
<tr>
<td>Terbium</td>
<td>N.D.</td>
<td><300</td>
<td><300</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td>N.D.</td>
</tr>
<tr>
<td>Dysprosium</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
</tr>
<tr>
<td>Holmium</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
</tr>
<tr>
<td>Erbium</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
</tr>
<tr>
<td>Thulium</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
</tr>
<tr>
<td>Ytterbium</td>
<td>N.D.</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Lutetium</td>
<td>N.D.</td>
<td><30</td>
<td><30</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td>N.D.</td>
</tr>
<tr>
<td>Yttrium</td>
<td>N.D.</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>N.D.</td>
<td>100</td>
<td>N.D.</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Total rare earths</td>
<td>N.D.</td>
<td>577</td>
<td>675</td>
<td>577</td>
<td>N.D.</td>
<td>527</td>
<td>N.D.</td>
<td>523</td>
<td>573</td>
</tr>
<tr>
<td>Barium</td>
<td>N.D.</td>
<td>1,500</td>
<td>1,500</td>
<td>1,500</td>
<td>N.D.</td>
<td>2,000</td>
<td>N.D.</td>
<td>3,000</td>
<td>1,500</td>
</tr>
<tr>
<td>Beryllium</td>
<td>N.D.</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Bismuth</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Copper</td>
<td>N.D.</td>
<td>70</td>
<td>300</td>
<td>300</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>Lead</td>
<td>N.D.</td>
<td>50</td>
<td>30</td>
<td>50</td>
<td>N.D.</td>
<td>50</td>
<td>N.D.</td>
<td>70</td>
<td>150</td>
</tr>
<tr>
<td>Manganese</td>
<td>N.D.</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>N.D.</td>
<td>700</td>
<td>N.D.</td>
<td>1,500</td>
<td>2,000</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>N.D.</td>
<td>30</td>
<td>30</td>
<td>70</td>
<td>N.D.</td>
<td>30</td>
<td>N.D.</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Niobium</td>
<td>N.D.</td>
<td>70</td>
<td>30</td>
<td>20</td>
<td>N.D.</td>
<td>15</td>
<td>N.D.</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Strontium</td>
<td>N.D.</td>
<td>3,000</td>
<td>7,000</td>
<td>3,000</td>
<td>N.D.</td>
<td>1,500</td>
<td>N.D.</td>
<td>1,500</td>
<td>2,000</td>
</tr>
<tr>
<td>Tin</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Vanadium</td>
<td>N.D.</td>
<td>500</td>
<td>700</td>
<td>700</td>
<td>N.D.</td>
<td>700</td>
<td>N.D.</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>Zinc</td>
<td>N.D.</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td>N.D.</td>
<td><200</td>
<td>N.D.</td>
<td><200</td>
<td>300</td>
</tr>
<tr>
<td>Zirconium</td>
<td>N.D.</td>
<td>300</td>
<td>300</td>
<td>200</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>Calcium</td>
<td>N.D.</td>
<td>1.5</td>
<td>3</td>
<td>.7</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
<td>.7</td>
<td>.3</td>
</tr>
<tr>
<td>Iron</td>
<td>N.D.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>N.D.</td>
<td>3</td>
<td>N.D.</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Magnesium</td>
<td>N.D.</td>
<td>.7</td>
<td>.7</td>
<td>.15</td>
<td>N.D.</td>
<td>.15</td>
<td>N.D.</td>
<td>.3</td>
<td>.3</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>N.D.</td>
<td><.2</td>
<td><.2</td>
<td><.2</td>
<td>N.D.</td>
<td><.2</td>
<td>N.D.</td>
<td><.2</td>
<td><.2</td>
</tr>
<tr>
<td>Potassium</td>
<td>3.8</td>
<td>7.2</td>
<td>8.0</td>
<td>9.5</td>
<td>8.3</td>
<td>8.0</td>
<td>8.4</td>
<td>6.5</td>
<td>6.5</td>
</tr>
<tr>
<td>Sodium</td>
<td>N.D.</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>N.D.</td>
<td>1.5</td>
<td>N.D.</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Titanium</td>
<td>N.D.</td>
<td>.3</td>
<td>.3</td>
<td>.7</td>
<td>N.D.</td>
<td>.3</td>
<td>N.D.</td>
<td>.3</td>
<td>.3</td>
</tr>
</tbody>
</table>
Table 1.—Chemical analyses of samples from the principal Tertiary intrusive mass
in the southern Bear Lodge Mountains. — Continued

<table>
<thead>
<tr>
<th>Locality No.</th>
<th>373</th>
<th>374</th>
<th>375</th>
<th>376</th>
<th>377</th>
<th>378</th>
<th>379</th>
<th>380</th>
<th>382</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Thorium^1</td>
<td>70</td>
<td>67</td>
<td>55</td>
<td>228</td>
<td>20</td>
<td>33</td>
<td>27</td>
<td>28</td>
<td>35</td>
</tr>
<tr>
<td>Uranium^2</td>
<td>9.2</td>
<td>11</td>
<td>5.5</td>
<td>12</td>
<td>5.7</td>
<td>7.6</td>
<td>6.5</td>
<td>5.9</td>
<td>6.4</td>
</tr>
<tr>
<td>Lanthanum^2</td>
<td>N.D.</td>
<td>100</td>
<td>N.D.</td>
<td>150</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
</tr>
<tr>
<td>Cerium^2</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
<td>200</td>
<td>N.D.</td>
<td>200</td>
<td>N.D.</td>
<td>200</td>
</tr>
<tr>
<td>Neodymium^2</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
</tr>
<tr>
<td>Samarium^2</td>
<td>N.D.</td>
<td><70</td>
<td>N.D.</td>
<td>150</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>150</td>
</tr>
<tr>
<td>Europium^2</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
<td>N.D.</td>
<td><100</td>
</tr>
<tr>
<td>Gadolinium^2</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
</tr>
<tr>
<td>Terbium^2</td>
<td>N.D.</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
<td>N.D.</td>
<td><300</td>
</tr>
<tr>
<td>Dysprosium^2</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
</tr>
<tr>
<td>Holmium^2</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
<td>N.D.</td>
<td><20</td>
</tr>
<tr>
<td>Erbium^2</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
<td>N.D.</td>
<td><50</td>
</tr>
<tr>
<td>Lutetium^2</td>
<td>N.D.</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
<td>N.D.</td>
<td><30</td>
</tr>
<tr>
<td>Yttrium^2</td>
<td>N.D.</td>
<td>30</td>
<td>N.D.</td>
<td>30</td>
<td>50</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
<td>30</td>
</tr>
<tr>
<td>Total rare earths</td>
<td>N.D.</td>
<td>283</td>
<td>N.D.</td>
<td>483</td>
<td>553</td>
<td>N.D.</td>
<td>577</td>
<td>N.D.</td>
<td>533</td>
</tr>
<tr>
<td>Barium^2</td>
<td>N.D.</td>
<td>1,000</td>
<td>N.D.</td>
<td>1,500</td>
<td>1,500</td>
<td>N.D.</td>
<td>1,500</td>
<td>N.D.</td>
<td>1,000</td>
</tr>
<tr>
<td>Beryllium^2</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
<td>7</td>
<td>7</td>
<td>2</td>
<td>N.D.</td>
<td>5</td>
<td>N.D.</td>
</tr>
<tr>
<td>Bismuth^2</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
<td>N.D.</td>
<td><10</td>
</tr>
<tr>
<td>Copper^2</td>
<td>N.D.</td>
<td>70</td>
<td>N.D.</td>
<td>30</td>
<td>150</td>
<td>N.D.</td>
<td>100</td>
<td>N.D.</td>
<td>70</td>
</tr>
<tr>
<td>Lead^2</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>70</td>
<td>30</td>
<td>N.D.</td>
<td>30</td>
<td>N.D.</td>
<td>30</td>
</tr>
<tr>
<td>Molybdenum^2</td>
<td>N.D.</td>
<td>150</td>
<td>N.D.</td>
<td>1,000</td>
<td>1,500</td>
<td>N.D.</td>
<td>1,500</td>
<td>N.D.</td>
<td>300</td>
</tr>
<tr>
<td>Strontium^2</td>
<td>N.D.</td>
<td>30</td>
<td>N.D.</td>
<td>7</td>
<td>15</td>
<td>N.D.</td>
<td>7</td>
<td>N.D.</td>
<td><3</td>
</tr>
<tr>
<td>Zirconium^2</td>
<td>N.D.</td>
<td>30</td>
<td>N.D.</td>
<td>30</td>
<td>15</td>
<td>N.D.</td>
<td>15</td>
<td>N.D.</td>
<td>30</td>
</tr>
<tr>
<td>Tin^2</td>
<td>N.D.</td>
<td>30</td>
<td>N.D.</td>
<td>30</td>
<td>15</td>
<td>N.D.</td>
<td>15</td>
<td>N.D.</td>
<td>30</td>
</tr>
<tr>
<td>Vanadium^2</td>
<td>N.D.</td>
<td>30</td>
<td>N.D.</td>
<td>30</td>
<td>15</td>
<td>N.D.</td>
<td>15</td>
<td>N.D.</td>
<td>30</td>
</tr>
<tr>
<td>Zinc^2</td>
<td>N.D.</td>
<td><200</td>
<td>N.D.</td>
<td><200</td>
<td><200</td>
<td>N.D.</td>
<td><200</td>
<td>N.D.</td>
<td><200</td>
</tr>
<tr>
<td>Zirconium^2</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
<td>300</td>
<td>300</td>
<td>N.D.</td>
<td>300</td>
<td>N.D.</td>
<td>150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium^2</td>
</tr>
<tr>
<td>Iron^2</td>
</tr>
<tr>
<td>Magnesium^2</td>
</tr>
<tr>
<td>Phosphorus^2</td>
</tr>
<tr>
<td>Potassium^1</td>
</tr>
<tr>
<td>Sodium^2</td>
</tr>
<tr>
<td>Titanium^2</td>
</tr>
</tbody>
</table>
Table 1.—Chemical analyses of samples from the principal Tertiary intrusive mass in the southern Bear Lodge Mountains. — Continued
[Symbols: N.D. = not determined; < - less than value indicated; > - greater than value indicated]

<table>
<thead>
<tr>
<th>Locality No.</th>
<th>383</th>
<th>384</th>
<th>385</th>
<th>386</th>
<th>387</th>
<th>388</th>
<th>389</th>
<th>390</th>
<th>391</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>In parts per million</td>
<td>In percent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorium</td>
<td>43</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>5.5</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lanthanum</td>
<td>150</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerium</td>
<td>200</td>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prasodymium</td>
<td><100</td>
<td><0.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neodymium</td>
<td>150</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samarium</td>
<td><100</td>
<td><0.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europium</td>
<td><100</td>
<td><0.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gadolinium</td>
<td><50</td>
<td><0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbium</td>
<td><300</td>
<td><1.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dysprosium</td>
<td><50</td>
<td><0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmium</td>
<td><20</td>
<td><0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erbium</td>
<td><50</td>
<td><0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thulium</td>
<td><20</td>
<td><0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ytterbium</td>
<td>3</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lutetium</td>
<td><30</td>
<td><0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yttrium</td>
<td>70</td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total rare earths</td>
<td>573</td>
<td>2.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>1,500</td>
<td>6.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>5</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bismuth</td>
<td><10</td>
<td><0.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>70</td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>15</td>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>1,500</td>
<td>6.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>5</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niobium</td>
<td>20</td>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>1,500</td>
<td>6.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td><10</td>
<td><0.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>300</td>
<td>1.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td><200</td>
<td><0.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zirconium</td>
<td>300</td>
<td>1.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>.7</td>
<td>.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>7</td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>.3</td>
<td>.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td><.2</td>
<td><.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>6.9</td>
<td>2.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>7</td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td>.5</td>
<td>.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1.—Chemical analyses of samples from the principal Tertiary intrusive mass in the southern Bear Lodge Mountains. — Continued

[Symbols: N.D. = not determined; < = less than value indicated; > = greater than value indicated]

<table>
<thead>
<tr>
<th>Locality No.</th>
<th>Sample No.</th>
<th>MHS-</th>
<th>MHS-</th>
<th>MHS-</th>
<th>MHS-</th>
<th>MHS-</th>
<th>MHS-</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>In parts per million</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thorium</td>
<td>42</td>
</tr>
<tr>
<td>Uranium</td>
<td>5.5</td>
</tr>
<tr>
<td>Lanthanum</td>
<td>150</td>
</tr>
<tr>
<td>Cerium</td>
<td>200</td>
</tr>
<tr>
<td>Praseodymium</td>
<td><100</td>
</tr>
<tr>
<td>Neodymium</td>
<td>150</td>
</tr>
<tr>
<td>Samarium</td>
<td><100</td>
</tr>
<tr>
<td>Europium</td>
<td><100</td>
</tr>
<tr>
<td>Gadolinium</td>
<td><50</td>
</tr>
<tr>
<td>Terbium</td>
<td><300</td>
</tr>
<tr>
<td>Dysprosium</td>
<td><50</td>
</tr>
<tr>
<td>Holmium</td>
<td><20</td>
</tr>
<tr>
<td>Erbium</td>
<td><50</td>
</tr>
<tr>
<td>Thulium</td>
<td><20</td>
</tr>
<tr>
<td>Ytterbium</td>
<td>7</td>
</tr>
<tr>
<td>Lutetium</td>
<td><30</td>
</tr>
<tr>
<td>Yttrium</td>
<td>70</td>
</tr>
<tr>
<td>Total rare earths</td>
<td>577</td>
</tr>
<tr>
<td>Barium</td>
<td>1,500</td>
</tr>
<tr>
<td>Beryllium</td>
<td>7</td>
</tr>
<tr>
<td>Bismuth</td>
<td><10</td>
</tr>
<tr>
<td>Copper</td>
<td>70</td>
</tr>
<tr>
<td>Lead</td>
<td>30</td>
</tr>
<tr>
<td>Manganese</td>
<td>1,500</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>2</td>
</tr>
<tr>
<td>Niobium</td>
<td>30</td>
</tr>
<tr>
<td>Strontium</td>
<td>1,500</td>
</tr>
<tr>
<td>Tin</td>
<td><10</td>
</tr>
<tr>
<td>Vanadium</td>
<td>700</td>
</tr>
<tr>
<td>Zinc</td>
<td><200</td>
</tr>
<tr>
<td>Zirconium</td>
<td>500</td>
</tr>
<tr>
<td>Calcium</td>
<td>.1</td>
</tr>
<tr>
<td>Iron</td>
<td>5</td>
</tr>
<tr>
<td>Magnesium</td>
<td>.3</td>
</tr>
<tr>
<td>Phosphorus</td>
<td><.2</td>
</tr>
<tr>
<td>Potassium</td>
<td>7.9</td>
</tr>
<tr>
<td>Sodium</td>
<td>3</td>
</tr>
<tr>
<td>Titanium</td>
<td>.2</td>
</tr>
</tbody>
</table>

In percent

<table>
<thead>
<tr>
<th>Element</th>
<th>In percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>.1</td>
</tr>
<tr>
<td>Iron</td>
<td>5</td>
</tr>
<tr>
<td>Magnesium</td>
<td>.3</td>
</tr>
<tr>
<td>Phosphorus</td>
<td><.2</td>
</tr>
<tr>
<td>Potassium</td>
<td>7.9</td>
</tr>
<tr>
<td>Sodium</td>
<td>3</td>
</tr>
<tr>
<td>Titanium</td>
<td>.2</td>
</tr>
</tbody>
</table>