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Objective

The objective of this investigation is to develop and evaluate
a new analytical approach for estimating site-dependent earthquake
ground motion for engineering design purposes. The analytical
approach is based on assuming physical models for the earthquake
source, path wave-propagation effects, and nonlinear soil response
at the site, then calculating ground motion using a combination of
seismic (layer matrix) and finite element methods. The approach is
structured to potentially provide a three-dimensional ground motion
capability, although the nonlinear soil response calculations are
here limited to one dimension. The predictive capabilities of this
approach were examined by comparing ground motion calculations to
empirically derived ground motion trends and to ground motion
simulations performed using the equivalent Tinear method.

Principal Results

The most significant results of this work are the following:
(1) A superior soil model, the -endochronic model, has been
introduced to site evaluation studies. (2) Comparison of the
endochronic model with the conventional equivalent linear model has
shown the latter to yield excessively conservative ground motion
predictions for loose soil deposits in the near field.

Summary

For distances less than about 20 kilometers, there is minimal
earthquake ground motion data available, and substantial disagree-
ment exists among empirical relations for predicting design motion
characteristics in this distance range. This disagreement reflects
the uncertainties associated with extrapolation of the empirical
relations to short distances, where data is sparse. To the extent
one can construct adequate analytical models for the seismic source,
path wave-propagation effects, and site nonlinear response, it
becomes possible to simulate ground motion for geologic environ-
ments, distance ranges, and earthquake magnitudes for which data is
scarce or nonexistent.



The SH component of rock-site ground motion at distances 5,
10, and 30 kilometers was synthesized for an earthquake model which
consisted of an assemblage of discrete, circular cracks, repre-
senting a composite, extended source. It was found that strong
motion observations are, in general, inconsistent with a rupture
mechanism in which crack growth stops instantaneously. Once more
realistic rupture deceleration was incorporated into the model, the
SH component of motion alone was apparently adequate for simulating
ground motion consistent with observed peak acceleration, peak
velocity, and strong motion duration.

A new nonlinear constitutive model for soils, the endochronic
model, was fit to cyclic shear data for dry sand, and an equivalent
linear constitutive model was fit to the same sand data. Using the
endochronic model, close agreement was achieved between calculated
(solid curves) and observed (dashed curves) stress-strain behavior
of dry sand over 300 cycles of deformation, as illustrated below.
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Only-five parameters were required to accomplish the fit to the sand
data.

The nonlinear endochronic constitutive model and the base-rock
synthetic seismograms were employed to calculate ground motion at
sites on dry sand deposits, using a transient finite element method,
and these calculations were repeated with the equivalent linear
constitutive model, using the SHAKE code. The endochronic consti-
tutive model performed effectively in the finite element code under
the complex loading histories provided by the synthetic seismograms,
and it was verified that (i) loading and unloading always initiate
along the elastic slope, (ii) all hysteresis loops close, (iii) the
mode1 does not display the unrealistic "corners" displayed by
Iwan-type constitutive models when a loading or unloading curve
intersects a previous loading or unloading curve, (iv) appreciable
strain hardening is predicted for some loading histories, and (v)
cyclic creep, or ratcheting, develops under asymmetric loading.

The predicted ground motion obtained from the nonlinear calcu-

lations is consistent with empirical trends governing peak motion
where the trends are well-established by earthquake data. 1In the
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near-field, where bedrock acceleration peaks characteristically
exceed 0.1 to 0.2 g, nonlinear behavior sharply reduces the value of
peak soil acceleration, and the equivalent linear method did not re-
produce this effect. Earthquake data are consistent with this sharp
reduction in the near-field, as summarized in the following figure
comparing calculated peak accelerations for a dry sand deposit with
empirical peak acceleration relations deduced by Seed et al.
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The performance of the equivalent linear approximation for the
response of cohesionless soil depends on both the nature of the soil
deposit and the amplitude level of the base-rock acceleration. Peak
motion estimates by the equivalent linear method are adequate for
peak input accelerations less than 0.1 to 0.2 g, but are excessively
conservative for stronger input accelerations.
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The overestimate of peak motion by the equivalent linear method is
apparently due to an inability of the method to adequately model
energy loss in the uppermost several meters of the soil column.
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1. INTRODUCTION

1.1  BACKGROUND

For distances in the range 20 through 200 kilometers, where
the majority of the earthquake ground motion records have been
obtained, the empirical relations used to predict 1ikely char-
acteristics of ground motion important for earthquake-resistant
design agree to within a factor of two with the mean trends of the
available data. For distances less than 20 kilometers, which are of
the greatest interest to the seismic community, there are minimal
ground motion data, and substantial disagreement exists between the
empirical relations, reflecting the uncertainties associated with
extrapolation of these empirical relations to shorter distances.
There is some evidence also that the empirical relations, as a
group, may be quantitatively inaccurate for short distances. In a
recent study, Trifunac and Brady (1976) concluded that most previous
investigators have underestimated peak acceleration for distances
less than about 40 kilometers. The implications of such uncer-
tainties on structural safety and human life are enormous. In view
of the absence of significant ground motion data in the range of
greatest structural concern, and the divergence among the extrap-
olated empirical relations in this range, there is clearly a
critical need to develop reliable analytical methods that can be
used in seismic design to predict the 1likely features of strong
motion at distances relatively close to the earthquake focus.

The damage potential of an earthquake appears to be most
likely determined by several characteristics of the ground motion,
including the maximum velocity, maximum acceleration and the
response spectrum. Observations made after destructive earthquakes
have revealed a strong relationship between structural damage and
Tocal geology (see e.g., Seed and Schnabel, 1972; Schnabel, Seed and
Lysmer, 1972); in general, destruction is larger on soft soils than
on hard soils or rocks. Furthermore, observed damage patterns and



statistical analyses of recorded ground motion suggest that both the
stiffness and the depth of the soil deposit are important con-
siderations in the design of earthquake-resistant structures.
Response spectra also appear to be significantly dependent on Tlocal
geology (Newmark, et. al., 1972; Seed, et. al., 1976b; Mohraz, 1976).

The analytical tool predominantly used at the present time to
analyze seismic ground motion is the one-dimensional equivalent
linear method, originally proposed by Idriss and Seed (1968). In
this method, the soil medium is idealized as a series of thin hori-
zontal soil layers capable of transmitting only shear stresses. An
approximate one-dimensional constitutive model (termed an “equiv-
alent linear" model) is employed to describe the mechanical response
of the thin soil layers to vertically traveling shear waves driven
by bedrock undergoing horizontal motion.

The appropriate bedrock motion 1is usually inferred from the
recorded motion of nearby rock outcrops, if available, or simply
assumed. Recordings made on nearby rock outcroppings may, or may
not, be representative of the motions in the bedrock underlying the
soil deposit (Lysmer, Seed and Schnabel, 1971); the motion at depth
can only be inferred using some computational model. Furthermore,
such recordings provide suitable input for two- or three-dimensional
site analysis only if we prescribe a priori the spatial character of
the emergent wave field (e.g., vertically incident shear waves).

1.2 OBJECTIVE

The objective of this research program is to develop and
evaluate a new analytical approach for estimating 1local site
response to earthquake ground motion. The approach is based on (1)
an assumed, yet realistic, physical model of the earthquake source
and wave propagation path to the site, using theoretical seismo-
gram methods to compute base-rock seismic motion at the site, (2)
applying an advanced nonlinear constitutive model, the endochronic
model, to describe the hysteretic response of local soil deposits,
and (3) computing surface motion at the site using a transient,
dynamic finite element method. To the extent one can construct



adequate models for the seismic source, path wave propagation
effects, and site nonlinear response, it becomes possible to
simulate ground motion in geological environments for which no data
exist. Furthermore, the analytical approach 1is structured to
potentially provide a three-dimensional ground motion capability,
i.e., the theoretical seismic method, the endochronic constitutive
theory, and the transient finite element method each have been
developed within a fully three-dimensional framework.

The current study is limited, by the scope of the effort, to
two site geologies -- rock and cohesionless soil. The predictive
capabilities of the approach are examined by comparing ground motion
calculations for these two site geologies with (1) empirically
derived ground motion trends and (2) ground motion simulations by
the equivalent linear method. The main computational tools employed
in the study are: (1) a wavenumber-integration method for computing
synthetic near-field accelerograms, (2) a transient, dynamic finite
element method for computing the nonlinear response of soils, and
(3) the SHAKE seismic analysis code for computing soil response by
the equivalent linear method.

1.3  ORGANIZATION

Section 2 describes the construction of base-rock seismic
motion for a simplified model of the earthquake source, using a
theoretical seismogram method. The source model, assembled from
several superposed, discrete events, is motivated by some simple
observational and theoretical considerations about earthquakes.
Propagation of the earthquake disturbance through a stratified,
anelastic earth model 1is accomplished by a direct wavenumber
integration technique which is outlined in Appendix A; only the SH
contribution is included in the study, and some consequences of this
limitation are discussed. We also outline a procedure for
approximating a two-dimensional representation of the base-rock
ground motion; this procedure would provide convenient input for
two-dimensional numerical simulations of Tlocal site response.



Finally, we describe the synthetic ground motion which results from
the earthquake model, at three rock sites at 5, 10, and 30
kilometers from the source.

Section 3 describes a new endochronic constitutive model for
rate-independent, history-dependent response of soils. This new
model can describe the important features of the response of soils
to seismic-type loading, including hysteresis, hardening/softening,
densification and cyclic creep (ratcheting). A numerical method is
developed for the model to treat the case of simple shear. The
model 1is fit to cyclic shear data for dry sand. Finally, a
corresponding equivalent linear representation is derived from the
same data used in fitting the endochronic model. Appendix B
discusses the dependence adopted in the present study of the soil
model parameters on depth within the soil column.

Section 4 applies the constitutive models of Section 3 and the
base-rock ground motions of Section 2 to compute soil site ground
motion. Particular attention is accorded to the numerics associated
with the simple shear (one-dimensional) endochronic model under
complex loading histories; the resulting FORTRAN subroutine is
listed in Appendix C. The performance of the endochronic model in
the numerical wave propagation code is examined, as is the sen-
sitivity of computed ground motion to details of the soil profile.
Finally, results from the nonlinear ground motion calculations are
compared with trends in ground motion data and to ground motion
computed by the equivalent linear method.

The nonlinear soil site computations reported in Section 4 are
one-dimensional. We had hoped to exercise the multidimensional
capability of the analytical method by performing in addition a
small number of nonlinear, two-dimensional simulations. However, in
the course of the study, a numerical problem related to the computa-
tional difficulties posed by the new endochronic model in two- and
three-dimensional deformations was identified. Numerous attempts to



resolve this difficulty during the course of the work were unsuc-
cessful. Most recently, however, a promising approach has been un-
covered (see Appendix D for further details) and efforts are pre-
sently underway to fully explore this.

1.4 CONTRIBUTORS

3 scientists contributed to the work described

A number of S
in this report. Section 2 describing the synthesis of rock site
ground motion, was written by H. Swanger. Section 3, which de-
scribes the nonlinear and equivalent linear soil models, was written
by H. E. Read and K. J. Cheverton. Section 4, describing the soil
site calculations, was written by S. M. Day, with important contri-

butions from K. J. Cheverton.
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2. ROCK SITE GROUND MOTION SIMULATION

2.1  INTRODUCTION

Traditionally, observed ground motion has been the major
source of input for studies of site and engineering structure-
specific effects, such as nonlinear soil response or soil-structure
interaction problems. Use of actual recorded ground motion as input
for site specific modeling assures realistic freauency content and
duration for the particular circumstances under which the ground
motion was recorded, and results from empirical studies are often
used to modify the amplitudes of recorded motion for applications to
distances and magnitudes for which no strong ground motion
recordings are available.

There are some applications, however, where observed ground
motion and empirically motivated extrapolations of amplitudes may
not be sufficient for describing input ground motion with proper
charcteristics. Examples of circumstances are:

(1) Very short distances, where data are sparse and
empirical extrapolation is uncertain.

(2) Very large earthquakes where motion may have
larger amplitudes and TJlonger durations than
previously recorded ground motion.

(3) Response at the frequencies of interest may
depend strongly on the rock structure with
depth (i.e., long periods).

(4) Response is sensitive to two- or three-di-

mensional propagation effects, which cannot be
extracted from ground motion recordings alone.

In such circumstances an alternative to ohserved ground motion
is synthetic ground motion. Synthetic ground motions most often
applied in engineering applications involve generation of a random
signal which possesses a prescribed duration and spectral shape
(Housner and Jennings, 1964, for example). Such procedures have
evolved considerably to include more of the physical phenomena



associated with time histories of strong motion accelerograms (Wong
and Trifunac, 1979, for example). This "engineering" approach to
construction of synthetic ground motion still depends strongly on
empirical results, namely observed peak values and durations, which
may not be adequate in all circumstances.

An alternative approach is to assume physical models for the
earthquake source and propagation of seismic waves through the earth
and compute the corresponding ground motion which is a consequence
of the physical model assumed. This "seismological" approach to the
problem, in theory at least, has several benefits over the engi-
neering approach. If one can construct reasonable models for the
seismic source and propagation effects, one can justifiably simulate
ground motion 1in geological environments for which no data exist,
and perhaps compute motion for close distances and large magnitudes
which is more reliable than extrapolation of observed motion. In
addition, effects due to directionalized rupture and source radia-
tion pattern, which are not included in empirical relationships, can
be dealt with rigorously.

In practice, the seismological approach to synthesis of design
motion has many problems. Our knowledge of the earthquake source is
rather limited as to details important to the high frequency (1
through 10 Hz) radiation. It has been suggested that Tlocalized
features, such as stress concentrations (Hanks, 1974; McGarr, et
al., 1979) or fracture barriers (Aki, 1979), may control the high
frequency radiation in the near field. Such processes may be
difficult to duplicate in any deterministic source model. The
response of the earth is often difficult to model. Complete
layered-medium response is wusually costly to compute for high
frequencies, and there are circumstances where plane layered earth
models are not adequate, such as when topographic effects are
important (Boore, 1972; Wong and Jennings, 1975). The uncertainties
about the exact nature of the physical processes in earthquakes
which make deterministic synthesis difficult are, of course, not



accounted for in any empirical extrapolation procedure. What has
yet to be determined is whether the uncertainties 1in the final
results of the complicated process of deterministic modeling are
comparable to or less than the uncertainties in using the simple
process of empirical scaling.

There have been very few attempts to synthesize the
characteristics of strong ground accelerations using conventional
earthquake source models, and most previous studies employed a
certain degree of artificial randomness in the source description to
obtain time histories with observed characteristics (Del Mar
Technical Associates, (1978 and 1979), for example). It has not
been determined what particular elements of the earthquake source
model are necessary for obtaining the frequency content and
amplitude decay with distance commonly observed in near-field
recordings of acceleration.

In this study we use synthetic rock site ground motions
generated by a very simple source model. It has been found that the
durations and decay of peak amplitudes with distance observed from
moderate earthquakes can be modeled adequately. The source model
used is a sum of discrete crack approximations lagged appropriately
to simulate slightly incoherent rupture. An essential feature of
the model is the suppression of the strong stopping phases usually
predicted from conventional source models. The response of the
earth was modeled using complete SH-wave layered-medium Green's
functions. The 1966 Parkfield, California, earthquake was used as a
qualitative guide in specifying the source model parameters and the
layered earth structure.

2.2 SOURCE MODEL

There are a wide variety of source models available in the
seismic literature which have been wused 1in the synthesis of
earthquake ground motions. Unfortunately, nearly all models
available have demonstrated their usefulness only at relatively low
frequencies (< 1 Hz). A recurring theme in the seismic literature



is that because of the complicated nature of observed strong motion
accelerations, the earthquake source must be rather complicated on a
small spatial scale. It has been argued that earthquakes must be
inherently complicated to be consistent with observed trends in
seismicity (Hanks, 1979; Andrews, 1979). These inferred complica-
tions have led several authors to construct stochastic models of the
source details (Boore and Joyner, 1978; Del Mar Technical
Associates, 1979; Kanamori, 1979).

Close examination of strong ground motion recordings and
short-period teleseismic recordings suggests that the high frequency
radiation in many earthquakes is controlled by a few discrete
sources of energy associated with stress concentrations or fracture
barriers, and that the dimensions of these sources are often
considerably smaller than the overall source dimensions inferred
from surface ground breakage, aftershock distributions, or
teleseismic modeling. Some examples are the 1971 San Fernando,
California, earthquake (Hanks, 1974; Bache and Barker, 1978;
Bouchon, 1978), the 1975 Pocatello, Idaho, earthquake (Bache, et
al., 1980), and the 1975 Horse Canyon, California, earthquake
(Hartzell and Brune, 1979).

Motivated by such observations, we constructed a model of a
moderate earthquake consisting of a few small, discrete events.
Each discrete event was assumed to be an independent release of
prescribed stress. The dynamics of rupture do not physically permit
truly independent stress-drop sources, since the release of stress
of one source will change the stress field of the others. However,
the results of numerical studies by Day (1979) employing a fracture
criterion and spontaneous rupture suggest that superposition of such
sources may be a reasonable approximation in many cases.

The radiation from each discrete event in the model is
represented by a geometrical far-field approximation (Fraunhofer
approximation) of the radiation due to a simple dynamic shear crack
embedded in a wholespace, convolved with the point-source response
(Green's function) of the layered medium. The crack approximation
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to the fault slip history is described below. The wholespace
radiation from a shear crack is, or course, takeoff-angle (or
wavenumber) dependent, and for simplicity we assume that the
appropriate far-field source-time function is that corresponding to
the direct S-wave arrival. For all cases in this study, the source
is located in the uniform half-space underlying the layered model,
and most of the high freguency energy arrives at times very near the
direct wave arrival.

2.3  CIRCULAR SHEAR CRACK REPRESENTATION

Several closed-form analytic approximations to the slip
history of a circular shear crack with uniform stress-drop are
available. These are generally motivated by the early analytical
solution of Kostrov (1964) and numerical simulations, like Madariaga
(1976), which include the stopping of rupture. Boatwright (1980)
provides a summary of available analytic expressions. Even though
simple expressions for the slip history on the fault exist, simple
representations of the geometrical far-field radiation, in general,
do not. The exception is the model of Sato and Hirasawa (1973).

The Sato and Hirasawa model (which we will call the S & H
model) is simply an expanding, constant rupture velocity, circular
crack for which slip everywhere on the crack terminates instantane-
ously when the rupture reaches a prescribed radius. Their model is
not a rigorous dynamic solution, as shown by the numerical solution
of Madariaga (1976). His calculations revealed that termination of
slip actually occurs only when healing phases propagate inward from
the fault edge at the P and S velocities of the medium. The
advantage of the S & H model 1is that its geometrical far-field
radiation can be obtained analytically in closed form. Given the
geometry shown in Figure 2.1, the geometrical far-field acceleration
can be written

11
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Figure 2.1, Coordinate system conventions used. Shaded area represents
the fault surface.
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as8 = compressional and shear velocities, respectively in
the source region,

c =a Or B

H(t) = Heaviside step function

§(t) = delta function

The time domain behavior is shown in Figure 2.2. Acceleration
initiates as a step which continues until the arrival of the
stopping phase from the edge of the fault nearest the observer.
From that time until the time of arrival of the stopping phase from
the farthest edge of the fault, the acceleration is constant.

There are several noteworthy characteristics of the
accelerations. The high frequency content is clearly dominated by
the stopping phases, which are (mathematically) delta functions.
These cause the far-field displacement spectrum to decay as m'z at
high frequencies. The amplitudes of the first stopping phase and
the step initiating the motion contain terms of K(1 - K)'1 and
(1 - k%)™
early parts of the motion rather strong functions of the rupture

respectively. These terms make the amplitudes of the

velocity and the azimuth of the observer from the fault normal. For
example, with a rupture velocity of 0.98, where 8 is the shear speed
of the medium, the amplitudes of the initiation phase in the plane
of the fault and at the fault normal differ by more than a factor of
27. For a given slip velocity, changing the rupture velocity from
0.88 to 0.98 causes the initiation phase to increase by a factor 4.5
in the plane of the fault, but only by 1.1 at the fault normal.

Sato and Hirasawa motivated their model with a static
interpretation of the source displacement field shape and
amplitude. Consequently, the relationship between stress drop and
slip velocity at the crack center is given as

b =2 ye L 1ave
0 " H u
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Typical shape of the Sato and Hirasawa model geometrical far-
field acceleration. Arrows represent delta functions.
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where ¢ is the stress drop and u the medium shear modulus.

A rigorous expression using dynamic considerations was derived
by Kostrov (1964) and computed by Dahlen (1974). For rupture
velocities near B8, the dynamic results suggest a better approxi-
mation to be

)~ g
D, = 0.8 V " (2-3)

and this relationship is used here.

The delta-function dependence in the stopping phase will, of
course, be smoothed by an attenuating medium, but even with reason-
able values for the intrinsic attenuation Q'l, it appears that the
predicted stopping phases are much too strong to be consistent with
near-field observations. The amplitude of the phase can be roughly
estimated, given linear attenuation, using the asymptotic formulas
of Kjartansson (1979). He suggests the peak time domain amplitude
of a causal, attenuated pulse to be roughly CQ/R times the strength
of the input delta function, where C is the signal velocity and R is
the distance traveled. For example, Hanks (1974) suggested that the
initiation event for the 1971 San Fernando, California, earthquake
had a stress drop of 350 to 1400 bars over a fault radius of 3 to 6
km. We can estimate the relative peak amplitudes of the initiation
and stopping phases observed at Pacoima Dam, R = 15 kilometer and
very near the plane of the fault. Figure 2.3 shows the values
predicted by the S & H model for a 400 bar stress drop and 5
kilometer fault radius, for a 0 of 100. Except when the rupture
velocity is near the shear velocity, the stopping phase is estimated
to be considerably larger than the initiation phase. Only
relatively slow rupture velocities can predict reasonable values.
Since the absolute values depend on many poorly constrained
parameters, the relative values are the most meaningful. If actual
recordings are examined (Figure 2.4), the step-like feature is
evident on all three components of motion about 2.5 sec into the
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dicted by thea S & H model for a 400 bar stress drop and
5 km fault radius, assuming a Q of 100.
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record. After approximately 0.6 sec, there is a sudden downward
phase indicating some kind of stopping, but the peak amplitudes are
at best comparable to the initiation phase, on the order of 0.5 g.
A better evaluation of the model is achieved by using the stopping
time (t = 0.6 sec) to constrain the fault radius L = Vt/(1 - K).
When this is done, the predicted stopping phase is 7 to 8 times
larger than the predicted initiation phase for all rupture
velocities between 0.58 and 0.99s.

Clearly, the stopping phases of the S & H model are much too
strong, in a Tlinearly attenuating medium, to be reasonable. There
are numerous explanations for this inadequacy of the model, and a
detailed discussion will not be undertaken. There are two items
worth discussing -~ the mode of healing and the abruptness with
which rupture growth terminates. The S & H solution does not treat
healing rigorously. Numerical solutions suggest that the healing of
the fault when rupture propagation terminates is not instantaneous,
as assumed by the S & H model, but propagates inward at the seismic
signal velocities. The approximate treatment of healing is probably
not as influential in controlling peak acceleration as it may at
first seem; Madariaga's (1976) numerical solution, which treats
healing more rigorously, has an w_z far-field displacement
spectrum indicating that it, too, gives singular acceleration.

Of greater importance is the manner in which rupture growth
stops. In the S & H model, rupture stopping is very idealized. The
propagating rupture decelerates instantaneously along a smooth,
prescribed boundary (a circle). The values of observed peak
accelerations suggest that this approximation is unacceptable for
predicting the characteristics of high freguency radiation.

Clearly, a decelerating model of rupture is needed. The
D-model of Boatwright (1980) would be an appropriate choice, hut at
present no simple far-field representation of the motion from this
model is available. Although an analytic far-field solution is not
essential, it does add considerable flexibility to the calculations
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and facilitates interpretation of computed waveforms. As an alter-
native to employing a rigorous numerical solution for a decelerating
rupture model, we choose, for simplicity, to alter the form of the
far-field radiation from the S & H model to have a deemphasized
stopping phase. The most convenient way to do this is to assume
that the rupture decelerates over an annular region of width S. The
stopping phase will then be smoothed out over a time proportional to
S. For simplicity we use a smoothing function F, where

D L G- BT R 2o | NE

where ¥ refers to the first and second stopping phases
respectively. The delta functions become boxes whose height and
duration depend on the source-receiver direction relative to the
fault normal. This modification provides the desired effects at the
cost of introducing a new parameter, S. The modified time domain
far-field acceleration is shown in Figure 2.5. Note that the
transition from the positive to negative steps is also smoothed,
causing the stopping phase to be trapezoidal. Attenuation of the
medium will further smooth the sharp features of motion.

In summary, the Sato and Hirasawa crack approximation appears
to be unreasonable when high frequency radiation is of interest.
The large stopping phases predicted by the model are, in general,
too large to be consistent with observed values of acceleration
close to earthquakes. A more acceptable model for the radiation
from a stress concentration apparently requires a deemphasis of the
high frequency radiation due to the stopping of rupture. Here we
choose an alternative representation of the far-field radiation from
an isolated release of stress which includes a smoothing of these
stopping phases.
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2.4  THE SH-WAVE RESPONSE OF LAYERED EARTH MODELS

The response of rock site geologic structure is approximated
by the complete SH-wvave response for a linearly viscoelastic,
plane-layered halfspace, computed by a direct wavenumber integration
method. The procedure used is quite similar to that of Apsel
(1979). The numerical procedures are described more completely in
Appendix A.

The precise procedure differs from Apsel (1979) in only a few
details. A complex frequency is introduced to permit equal-step
sampling of the Fourier-Bessel integrals, an approach similar to
that of Bouchon (1978). The total SH motion for a horizontal point
force at the surface is computed within the halfspace by a recursion
on the coefficients of up- and down-going waves. Reciprocity
relationships are then used to obtain the surface response to any
buried point force or point dislocation. The causal,
frequency-independent Q operator of Kjartansson (1979) is used in
each layer to model anelastic attenuation.

The use of discrete sources described earlier makes the use of
layered medijum response more practical than if a coherent rupture
response were desired. To model coherent rupture, one needs a very
dense sampling of the Green's function, which can be quite costly to
compute. Here we use at most eight Green's function evaluations per
seismogram.

The classification "rock site" 1is reserved for sites which
have no, or very thin, soil profiles. One often assumes that the
particulars of the rock site have little to do with determining the
amplitudes and frequency content of the surface motion. This is
certainly not true for the long periods (1 through 10 seconds),
(Swanger and Boore, 1978). 1In the present study we have found that
rather innocent 1ooking layered structures can also cause amplifi-
cation of the high frequencies over the uniform half-space re-
sponse. The amplitudes of the high-frequency arrivals are very
complicated functions of depth and range. The behavior found here
js quite similar to that found by DELTA (1978).
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The SH-wave response is, of course, not a complete response.
Leaving out the P-SV motion will cause some problems. We would
expect the seismograms to be somewhat simpler without the presence
of high-frequency P wave energy, which is not affected by attenu-
ation as much as is S wave energy. We would also expect SH nodes in
the radiation pattern to be more obvious. In other words,
contributions from rupture through an SH-node will leave a quiet
zone in the record which would be filled in by P-SV motion in actual
recordings.

2.5 INCIDENT ANGLE DECOMPOSITION

When a two- or three-dimensional description of the input
motion 1is desired for computing near-surface soil response or
soil-structure interaction, synthetic ground motion provides a
natural description of the multi-dimensional characteristics of the
motion. When Tlayered medium solutions are computed in the fre-
quency-wavenumber domain, an approximate separation by angle of
incidence can be conveniently made before a final seismogram is
computed.

Even though no two-dimensional soil response calculations were
made in this study, an effort was made to decompose synthetic rock
site -motion by angle of incidence. Though this process appears
straightforward in theory, it has some difficulties in practice.
The difficulties arise because the time domain signal from a given
A ray-parameter (or angle of incidence), or a range of ray-parameters,
is, in general, not causal (see Chapman, 1978). In the near-field
there is also no guarantee that one can associate a given angle of
incidence with a single horizontal wavenumber. This is most easily
seen in the simplest of examples, a spherical wave in a whole
space. In the time-space domain a spherical wave might be written

u(R, t) = % s (t - R/C)
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where ¢ is the velocity of propagation and A is a constant. In the
frequency-space domain

SR, o) = A e—in/C

R

and in a cylindrical frequency-wavenumber domain

oo
ulk, w) = A kdk e'rlh J (kr)
n 0
0
) wz 1/2
n=k-—§ Ren>0
. 2

Pyl
i

1/2
s

It is usually assumed that the horizontal wavenumber k is related to
the incident angle e through the relationship

wSine
k = c

Note ‘that the representation of a wave which one would expect, at
any observer point, to contain a single angle of incidence actually
consists of an integral over all wavenumbers. It is only for large
w and r that this integral will be dominated by a narrow range of
k. It is clear that separation by angle of incidence through
filtering in the w-k domain may have problems at close distances.

As an example, we attempted a decomposition of a near-field
Green's function by computing the response due to overlapping
triangular wavenumber filters corresponding to various ranges of
angles of incidence and assumed k = msinels1 where By is the
shear velocity in the shallowest rock layer. Overlapping windows
were used to avoid truncation effects. Figure (2.6) shows the
complete seismogram and the seismogram components for 15 degree
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incident-angle windows. Note that the Tlargest component is larger
in amplitude than the complete seismogram, and considerable
destructive interference occurs between bands. Although the above
decomposition is approximate, it provides a convenient means for
introducing realistic seismic motion into multi-dimensional non-
linear site simulations. It 1is clear that the input wave field
spans a wide range of incidence angles, and the assumption of a
single input angle can be quite poor.

2.6 SYNTHETIC ROCK SITE MOTIONS

In this section we describe the ground motions simulated using
the individual elements described in the previous sections. For
this purpose the 1966 Parkfield, California, earthquake is used as a
guide to construction of a reasonable source model of a moderate
sized event, and the near-field recordings of this event are used to
verify the amplitudes and durations of the synthesized ground
motions at close distance. We are not attempting to "model" the
Parkfield ground motion recordings, but only trying to obtain
qualitative agreement in amplitudes and durations of observed motion.

Details of the Parkfield event such as the fault Tlength and
the depth of rupture appear to be only partially understood, con-
sidering the range of model parameters which have been used to model
the near-field displacement observations. Most studies suggest that
rupture extended past Station Number 2 to the south, while some
evidence suggests termination of rupture at Gold Hill, 10 kilometers
to the north of Station Number 2 (Lindh and Boore, 1974). Bouchon
(1979) suggests that the characteristics of motion recorded at
Station Number 2 require very shallow rupture under Station Number
2, including significant radiation coming from slip in the near-
surface sediments. Archuleta and Day (1980) obtained satisfactory
fits to displacement histories at all stations using a much deeper
rupture. It appears that the conclusions reached by these authors
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are strongly dependent on the type of source model assumed and on
the manner in which the response of the near surface sediments is
dealt with.

Here we assume a fault length of 34 kilometers and a fault
width of 6 kilometers. The fault is divided into eight slightly
overlapping, discrete sources, each with diameter equal to the fault
width. For simplicity we will assume that each source has identical
properties except for time of initiation. The time of initiation is
controlled by a "global" rupture velocity. The free parameters are
the stress drop, "local" rupture velocity, the smoothing parameter,
stopping, the global rupture velocity, and the source depth. These
parameters were varied until the strong motion duration, maximum
acceleration, and maximum velocity observed at Stations Number 5 and
8 were approximated.

Table 2.1 summarizes the source parameters used for the
discrete sources. The constraint of fitting observed duration, peak
acceleration, and peak velocity required a fast 1local rupture
velocity (0.98) with a relatively deep source (7.5 kilometers). The
total moment of the eight sources is approximately 2 or 3 times
larger than values normally quoted for Parkfield. This 1is to be
expected since we are employing bi-directional rupture sources; the
time .domain contributions from these sources will be dominated by
the rupture toward the observer and the rupture going away will
affect only the long periods. The stress drop used is only a local
stress drop; the area over which stress is released in this model is
less than the total area which would be inferred assuming a
rectangular fault surface containing all of the discrete sources.

Figure 2.7 shows the geometry of the source and recejvers.
The global rupture advances toward the stations, which are located
on a Tine normal to the fault strike.
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TABLE 2.1

DISCRETE SOURCE PARAMETERS USED

Local and global rupture velocity 3.15 km/sec
Coherent rupture radius 2.2 km

Smoothed rupture radius 0.8 km

Stress drop 95 bars

Moment 7 x 1025 dyne—cm
Depth 7.5 km
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Figure 2.7. Source and receiver geometry. Receiver distances are mea-
sured from the surface projection of the fault plane.
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The layered structure used (Table 2.2) was taken from Anderson
(1974). The layer shear Q's used were upper bounds of the observed
values quoted by DELTA (1978).

The computed velocities and accelerations are shown in Figure
2.8. The motions shown are the parallel (with respect to the fault
strike) component, which for all cases was larger than the
perpendicular component. At the close stations, the largest motions
are caused by the closest discrete source. At 30 kilometers the
last few sources contribute almost equally.

The recording at 5 kilometers has a quiet period just before
the onset of the largest motion. This is due to the global rupture
passing through an SH-wave node. The second to last discrete source
gives virtually no contribution because of this effect. This is not
realistic, since P-SV waves would radiate significantly at these
azimuths, and would fill in the quiet area. The point-source
approximation of the local rupture also exaggerates the effect of
the node in the SH-wave double-couple radiation pattern.

Local seismic directivity plays a strong role in determining
the overall shape of the waveforms. At the 5 kilometer station the
waveform from each discrete source is rather narrow. At more dis-
tant stations, the waveforms broaden. The superposition of wavelets
of similar shape from the discrete sources leads to unusual looking
seismograms. The discrete source model would probably give better
results if the sources had the varied dimensions and rupture char-
acteristics which would be inferred from a more detailed modeling of
the data.

The response spectra from the three distances are shown in
Figures 2.9, 2.10, and 2.11. The pseudo-velocity spectrum at 5§
kilometers is somewhat differently shaped from these at the distant
sites. The distant sites have peaked spectra, an effect which is
probably related to the periodicity of arrivals from the discrete
sources. The long period behavior observed is due to the smoothing
performed to the S g H far-field time histories. The smoothing
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TABLE 2.2

LAYERED STRUCTURE

Shear
Thickness Velocity Density
(km) (km/sec) (gm/cm3)
0.28 0.98 2.10
1.27 1.62 2.55
2.19 2.89 2.63
3.76 3.46 2.85
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operator preserves the integral of acceleration but not that of
velocity. This causes an overestimation of the frequency content
beyond 3 sec periods at 10 and 30 kilometers but has almost no
effect on the time window used at 5 kilometers. In cases where long
periods are also of interest, more appropriate operators can be
employed.

The source parameters were normalized to give reasonable fits
to observed peak velocity and acceleration at 5 kilometers and 10
kilometers distance. The motion at 30 kilometers was not used to
constrain the source model. When the peak values obtained at that
distance were compared to recorded values (Figure 2.12), reasonable
agreement was found with observations. One would expect the
accelerations at such distances to be a sensitive function of the
intrinsic attenuation assumed for the earth model. The values for
shear Q employed here are upper bounds of observed values and have
only a small effect on the computed amplitudes. The decay of
amplitude with distance is more strongly dependent on geometrical
spreading and radiation pattern of the source. Even though shear
Q's are probably the most poorly constrained earth parameters, the
near-field motion may not be too sensitive to the values assumed.

2.7 SUMMARY AND CONCLUSIONS

A simple earthquake model consisting of discrete sources of
concentrated stress release was used to synthesize the high fre-
quency ground motion near a moderate-sized seismic event. A far-
field radiation approximation was determined for each discrete
source and was convolved with the appropriate Green's function for
SH-wave radiation in a layered earth structure. An important modi-
fication made to published far-field radiation from propagating
shear cracks is the smoothing of stopping phases radiated from the
fault edges.

The 1966 Parkfield, California, earthquake was used as a guide
to specifying the source parameters. These parameters were chosen
to obtain time histories, at distances of 5 and 10 km from the
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fault, with strong motion duration, peak acceleration, and peak
velocity similar to those observed at Parkfield accelerograph
stations number 5 and 8. Using the same source model, ground motion
was also synthesized for a receiver at 30 km from the fault, and the
computed values of peak acceleration and velocity agree well with
those observed from moderate-sized earthquakes at that distance.

The procedure employed here has several advantages over others
which have been proposed. The use of a few discrete sources is con-
siderably more practical economically than attempting a detailed
integration over a large fault surface. The discrete source ap-
proach, when used with a layered earth response, can apparently pro-
duce complexity in the computed acceleration comparable to that ob-
served 1in actual accelerograms, and this is achieved without re-
course to purely statistical artifices. It has been suggested in
the seismological literature that stress concentrations may be the
most reasonable physical explanation for such complexity in observed
acceleration.

Certain details of the procedure as applied in this study can
be improved. It was assumed here that all sources were equally
spaced over the fault and had the same source parameters. This is
evidenced to some degree by the artificial regularities apparent in
the computed time histories. Varying the size and location of the
discrete events to more closely model the details of observed
acceleration and velocity would substantially improve the scheme.
The addition of P-SV radiation is also needed to improve results,
and the required computational tools are currently being assembled.
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3. SITE SOIL MODELS

3.1 BACKGROUND

Because of increasing interest 1in the seismic safety and
design of nuclear power plants, earth dams and other large civil
systems, there has been considerable research activity during the
past decade to more fully understand the behavior of soils under
cyclic Tloading. Typical seismic disturbances produce highly
irregular and complex loading of in situ soils, resulting from
near-cyclic stress waves involving numerous reversals in the sign of
the stress rate. When soils are subjected to such loading, they
exhibit substantial noncoincidence of unloading-reloading paths
(hysteresis), and strong dependence of the hysteresis on the history
of deformation.

Early seismic designs were performed with highly simplified
methods of analysis which treated the soil as linearly elastic
material. For seismic disturbances of small amplitude, the use of
elastic soil models is reasonable; however, such small amplitude
disturbances are generally of no great concern to the seismic
community. For seismic disturbances of sufficient magnitude to
produce structural damage, the use of elastic models for soil
response is unrealistic, since it implies stress levels in the soil
that may be many times higher than the strength exhibited by the
soil in the laboratory.

Today, the approach most commonly used by the earthquake
engineering community to investigate seismic ground motion is the
equivalent linear method (Idress and Seed, 1968). In this approach,
the response of a soil-over-bedrock site is assumed to be governed
by vertically traveling SH waves induced in the soil by the motion
of the underlying bedrock. Soil behavior is modeled in an
approximate manner by an equivalent 1linear shear model, whose
properties are selected through an iterative procedure in accord
with the average strain occurring at various depths in the soil.
The equivalent linear method is attractive from a computational and

39



an applications standpoint, and has provided adequate answers for
many problems of interest. For the case of strong seismic dis-
turbances, in which soil behavior is decidedly nonlinear, there is,
however, some question about the accuracy of the equivalent linear
method, and a number of investigations have recently been undertaken
to examine this question, using truly nonlinear soil models. From
these, it has been found that important differences arise between
the response of a site predicted by truly nonlinear methods and that
predicted by the equivalent 1linear method, especially for large
amplitude motions (Joyner and Chen, 1975; Valera, et al, 1978;
Taylor and Larkin, 1978). The nonlinear soil models that have been
used in these nonlinear studies include the Ramberg-0sgood model
(Streeter, Wylie and Rickart, 1974; Faccioli, Santayo and Leon,
1973), an elasto-plastic model (Richart, 1975), Iwan-type or
sub-layer models (Joyner and Chen, 1975; Valera, et al, 1978, Taylor
and Larkin, 1978; Bieber and Hovland, 1980), and the FLM model
(Finn, Lee and Martin, 1975). '

Each of the nonlinear models mentioned above has certain
limitations in describing the general response of soils to the type
of loading produced by a seismic disturbance. Some of the models
are strictly one-dimensional, most do not allow for the effect of
deformation history on hysteretic response, and none are capable of
describing the phenomenon termed cyclic creep (ratcheting), which is
commonly observed 1in soils subjected to cyclic Tloading about a
prestressed state.

Recent advancements in computer technology have now made
multi-dimensional nonlinear finite element analyses economically
feasible for ground motion studies. As a result, there has been
considerable activity during the past several years to develop
multi-dimensional models for predicting the response of soils
during cyclic loading.* Also, one such model has recently been used

*For an excellent summary of the latest advancements in the
development of multi-dimensional soil models for describing cyclic
behavior, see Pande and Zienkiewicz (1980).
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in conjunction with a large finite element <code to analyze
seismic-induced ground motion and corresponding soil-structure
interaction (Isenberg, Vaughn and Sandler, 1978). It appears that
the potential reduction in present design conservatism of nuclear
power plants and other large civil systems that may be achievable
through the use of such advanced methods of analysis could lead to
very substantial savings in design and construction costs.

In the following sections, the two soil models utilized in the
present study are described in detail. The first of these is the
new endochronic model, which has just been recently introduced, and
the second model is the equivalent linear model. Both models are
applied to the cyclic simple shear data for drained sand reported by
Cuellar, Bazant, Krizek and Silver (1977).

3.2 THE ENDOCHRONIC SOIL MODEL

In 1971, a new approach for modeling the rate-independent yet
history-dependent response of inelastic materials was proposed
(valanis, 197la; 1971b). This theory, called endochronic, was
three-dimensional, and it differed from the previous theories of
plasticity in that it did not require the concept of yield surface
for its development. The theory was based on the hypothesis that
the current state of stress in a material is a linear functional of
the entire history of inelastic deformation, with the history
defined with respect to a time scale, called intrinsic time, which
is itself a property of the material at hand.

In the early efforts to apply the endochronic theory to real
materials, attention was focussed mainly on metals (Valanis, 1974;
Valanis and Wu, 1975; and Valanis, 1975). From this work, it became
apparent that the theory was capable of predicting not only the
gross features of inelastic metal response hut also some observed
features of metal plasticity that lay beyond the scope of existing
plasticity theories. Furthermore, since the theory provided an
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approach for modeling materials having a vanishing elastic region
and for which inelastic strain develops gradually from the onset of
loading, its potential for modeling soils was quickly recognized
(Bazant, 1974). In subsequent work, the ability of the endochronic
approach to describe important features of soil behavior, including
densification, hysteresis and Tliguefaction of sand under cyclic
simple shear was demonstrated (Bazant and Krizek, 1976; Cuellar,
Bazant, Krizek and Silver, 1977). The work of Bazant and his
co-workers was, nevertheless, largely limited to simple shear, and
there was a need to explore the potential of the theory under more
complex states of deformation.

The original endochronic theory, which Bazant adopted and
modified to encompass several effects characteristic of soils was,
however, wunable to predict closed hysteresis 1loops for small
unload-reload processes under one-dimensional conditions. For such
processes, the theory predicted a slope at the reloading point that
was smaller than the unloading slope at the same point. This
feature of the theory did not appear to be in agreement with the
observed behavior of most materials, including soils, although it
must be admitted that there are very few data available on the
response of materials to such processes to either verify or
invalidate this feature of the theory. Nonetheless, it seemed
reasonable to assume that most materials exhibit elastic behavior
at, and in the small neighborhood of, the point of unloading, and
this was not the case with the original endochronic theory.
Furthermore, some suspicions were raised that the small unload-
reload feature of the theory could lead to numerical difficulties if
the model was used in conjunction with computer codes to analyze
wave propagation problems (Sandler, 1978), although this was never
demonstrated numerically in a well-defined wave propagation problem.

In 1978, 53 developed a general endochronic model for soils,
which was intended for use in conjunction with advanced finite
element codes for analyzing seismic ground motion and soil-structure
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interaction problems (Valanis and Read, 1978; Read and Valanis,
1979). From this investigation, a soil model was developed which
provided several improvements over the earlier theory but still
suffered from the Tlack of hysteresis 1loop closure for small
unload-reload processes, although some degree of improvement in this
regard was obtained.

3 reexamined the problem of

In a subsequent investigation, S
hysteretic loop closure, and from this effort, a new endochronic
soil model was formulated (Valanis, 1979; valanis and Read, 1979;
Valanis and Read, 1980). The new theory 1is not only free of the
undesirable small unload-reload response feature, but provides
greater modeling capability with remarkably few material
parameters. It also has the capability to describe most of the
features of soil behavior important for seismic Tloading, including
densification, dilatancy, strain hardening/softening, hysteresis and

cyclic creep (ratcheting).

In the present study, the new endochronic soil model is used
to describe the behavior of the soil (sand) at the site under
consideration. The simple shear version of the model used for this
purpose 1is described below and its application to cyclic simple
shear data for drained sand is illustrated.

3.2.1 Endochronic Model for Simple Shear of Sand

A detailed development and discussion of the basic equations
that describe the new endochronic soil theory has been recently
given (Valanis and Read, 1979, 1980), and will not be repeated
here. Instead, we go directly to the equations that describe simple
shear behavior, which are listed below:

z
de

- H ) 98 4y 3-1

s (ZL!~ o(z-2') g z (3-1)

ds = G(dy-2de) (3=2)

dz =[de| (3-3)
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Here, s represents the shear stress, y 1is the engineering shear
strain, 2e denotes the plastic strain component, and z is the
intrinsic time. Furthermore, G represents the elastic shear
modulus, H(z) is a hardening/softening function, and o denotes a
weakly singular kernel function having the property o5(0) =« . FEq.
3-1 is the inelastic constitutive relation that describes the shear
stress as a linear functional of the plastic strain history, while
Eq. 3-2 is simply an incremental form of Hooke's law. Egq. 3-3
defines the monotonically increasing intrinsic time in terms of the
increment of plastic strain. The above system of equations contains
two functions, H(z) and o(z-z'), whose forms must be specified for a
given material.

In the case of loose sand, the following forms of H and »
appear to provide an excellent description of the cyclic simple
shear over many cycles of deformation:

e--k(z-z')

o(z-z') = T (3-4)

H(z) = Hp + (Ho = Hgy) (1-eT1Z) (3-5)

where k, Ho’ He and n are material-dependent constants.

‘Upon substituting Eqs. 3-4 and 3-5 into Eq. 3-1, and
considering a deformation history involving numerous reversals in
the shear strain rate, it can be shown (Valanis and Read, 1979) that
Eq. 3-1 can be recast in the following form:

s = H(z) {F(z) - ZlF(z-zl)- F(z—zz)

(3-6)
+ o (D" F(zz,) } ;

where 21’ 22, .ee zn denote the values of the intrinsic time z

at which reversals in the sign of the shear strain rate have
occurred, and F(z) is defined as:
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F(z) = Erf(Vkz ) (3-7)

where Erf ( ) denotes the error function. Equations 3-2, 3-3 and
3-6, with H(z) and F(z) defined by Egs. 3-5 and 3-7, constitute a
set of simultaneous equations that can be solved by numerical
methods to give the shear stress s for a prescribed shear strain
history.

It is worthwhile to point out a feature of the simple shear
model described above that can greatly increase the computing
efficiency of a numerical scheme for these equations. Note that the
right hand side of Eg. 3-6 contains an increasing number of terms as
the number of cycles, and hence the number of reversals in the sign
of the shear strain rate, increases. In general, there will be 2n+l
terms after n cycles of deformation. Also, the values of the 2n
22, 22n must be retained in computer
memory. This implies that when there are many cycles of

quantities Zys

deformation, the model could become computationally unattractive.

Some important advantages occur from a computing standpoint,
however, 1if the function F(z) has a form which saturates to a
limiting value as z increases, which is the case for the F(z) given
in Eq. 3-7.* When saturation, or near saturation, of a term occurs
there is, of course, no further need to calculate the term, since
for 511 future deformation the intrinsic time continues to increase
and the term remains at its limiting value. Similar comments apply
also to the general term F(z—zi). Secondly, when a term F(z—zi)
saturates, it no longer becomes necessary to retain in computer

j
are less than 2 under some circumstances, this can significantly

memory the value of z., or for that matter, any of the zj which

reduce the computer storage requirement.

*When the function F(z) has a form that saturates to a Tlimiting
value as z increases, we can say that the corresponding endochronic
model exhibits "fading memory."
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Using the simplifications noted above, a numerical scheme was
formulated to calculate the shear stress from a prescribed strain
history. Further developments were required, however, to obtain a
numerical scheme adequate for treating the complex strain histories
encountered in the numerical wave propagation simulations. Those
developments will be described in Section 4.3.1. The governing
system of equations was solved by an iterative approach based on
Newton's method, using the computer subroutine described in Appendix
C.

3.2.2 Application of Model to Cyclic Data for Sand

Cuellar, Bazant, Krizek and Silver (1977) have presented
considerable data on the response of drained sand to numerous cycles
of simple shear. Their studies were performed with a simple shear
device that was a modified version of the type initially designed by
the Norwegian Geotechnical Institute. The cyclic tests were
performed on cylindrical samples of sand, which were enclosed in a
wire-reinforced membrane. The end surfaces of the cylindrical
samples were subjected to cyclic relative displacements normal to
the axis of the samples, while a fixed distance was maintained
between these surfaces. The frequency of the cyclic relative
disp]écemeﬁt was 1 Hz. Moreover, each test was conducted with a
dead load applied to the specimen along the direction of the
cylinder axis.

Although the experimental device described above is commonly
referred to as a "simple shear" device, it is well known that the
states of stress that it produces in a soil specimen are not
strictly simple shear. In order to have simple shear, uniform shear
stresses would have to be applied over the entire surface of the
sample, including the curved lateral surface of the cylindrical
specimen; this is not, of course, the boundary condition applied by
the wire-reinforced flexible membrane. Furthermore, although such
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tests are typically performed under a constant vertical load, one
finds that the pressure in the soil does not remain constant during
a test, but increases due to the build-up of the lateral stresses
from hardening.

A detailed analysis of the response of sand in the type of
cyclic simple shear device described above has recently been
performed with a dynamic finite element code (Bazant, Krizek and
Shieh, 1979). The results from this study reveal that the
calculated cyclic response of sand in simple shear device is similar
to that calculated under the assumption of simple shear.
Consequently, this result provides some rationale for using data
from such devices to evaluate material parameters in simple shear
models.

On this basis, the endochronic simple shear model described
earlier was applied to the cyclic simple shear data for drained sand
given by Cuellar, Bazant, Krizek and Silver (1977). The particular
data considered corresponded to an initial relative density of 45
percent, an applied vertical stress of 192 kPa, and a peak shear
strain of 0.3 percent.

The initial state from which the intrinsic time z is measured
was taken to be the state prior to the initiation of shearing. A
more precise treatment would take the compressed state of the mate-
rial prior to the application of the vertical load as the initial
state. However, no information was available on the deformation
that occurred during vertical load application, and consequently the
corresponding increment in intrinsic time could not be determined.

Using the numerical subroutine 1listed in Appendix C, the
endochronic simple shear model was fit to the cyclic simple shear
data by an iterative procedure. This was achieved by using the
actual strain history measured during the experiments to drive the
calculations. Moreover, a uniform strain increment of ay = 0.01
percent was used in the calculations. Excellent agreement between
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the data and the calculations was obtained over 300 cycles of
response with the following values of the simple shear model

parameters:
G = 39.5 MPa Ho = 74.7 kPa
H0 = 28.73 kPa n = 61.2 (3-8)
k = 1500

The calculated stress-strain paths for cycles 1, 2, 10 and 300,
based on the values of the parameters listed above, are shown in
Figure 3.1. Also shown on these figures are the corresponding
experimental data from Cuellar, Bazant, Krizek and Silver (1977),
which 1is denoted by the open circles; the dashed curves in these
figures are simply smooth curves drawn through the data. The close
agreement between the calculated and observed response of the sand
over 300 cycles of deformation illustrates. the powerful capability
of the new endochronic theory to describe the complex hysteretic
behavior of soils over many cycles of deformation. Note also, that
the model requires only five parameters to accomplish this.

Another interesting feature of the endochronic soil model is
its abjlity to describe cyclic creep, or ratcheting, a commonly
observed characteristic of soils subjected to cyclic loading about a
prestressed state. To 1illustrate the ability of the model to
describe this phenomenon, the simple shear model described above was
cycled between stress 1limits of 28.73 kPa and 2.39 kPa for 30
cycles, after initial 1loading to the upper stress limit. The
calculated responses of the model for cycles 1 to 3, 10 and 30 is
shown in Figure 3.2, which illustrates the growth in strain that
occurs with increasing cycles of deformation. Note that the
predicted response approaches elastic behavior with increasing
cycles of deformation due to the hardening present in the model.

3.3  THE EQUIVALENT LINEAR MODEL

The endochronic model described 1in the previous section
accurately simulates the stress-strain response of geologic
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Figure 3.2. Response of endochronic shear model to asymmetric cyclic
deformation, illustrating the phenomenon of cyclic creep
(ratcheting).
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materials experiencing cyclic deformation. Furthermore, and in
contrast to conventional equivalent linear models, the endochronic
model is a three-dimensional theory. On the other hand, the model
can only be used in computer codes which permit nonlinear material
response and solve boundary value problems by direct time integ-
ration. Thus, the potentially greater accuracy of the endochronic
mode] relative to  conventional, inherently  one-dimensional
equivalent linear models must be weighed against the increased cost
associated with its utilization.

To assess differences 1in response predictions between the
endochronic model and more conventional theories of soils, an
equivalent 1linear model was derived for the dry sand described
earlier and incorporated into the SHAKE code. 1In the eaquivalent
linear approach, the soil profile 1is divided into a set of
horizontal layers and strain dependent material properties for the
constituent soils specified. In each layer, constant, wuniform
material properties are determined iteratively, the iteration
process terminating when the strains computed in each layer match
the strains used to evaluate layer material properties.

The SHAKE code models each layer using linear viscoelastic
theory wherein the complex-valued shear modulus takes the

frequency-insensitive form
G* = G(1 + 2i8). (3-9)

Here 8 1S a measure of the soil critical dampling ratio, G is the

elastic shear modulus, and i = (—1)1/2.

Equivalence between the equivalent 1linear model and the
endochronic theory was established using the method described in
Joyner and Chen (1975). In that method the viscoelastic model was
exercised around the shear strain path

Yy = 'ymax cos w t (3—10)

G and 8 were determined such that the maximum shear stress,
and the enerqy dissipation per unit volume per cycle, W,
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equalled that of the endochronic model when it was cycled between

the strain Timits - < v < For the endochronic theory

max = ¥ = Ymax®
a typical first cycle hystersis loop is shown in Figure 3.3. As can
be seen in the fiqure, the loop is not closed, thus S max was taken
to be the average of the stress at the beginning and end of the

cycle, i.e., (s, + 52)/2. The energy dissipation W was computed

1
as the area inside the loop.

Energy dissipation per cycle for the viscoelastic model is

2nlw
W =J/f S vy dt = ¢ Ymax Smax sin ¢ (3-11)
()
where
sin s = 28/(1 + 432) 1z (3-12)

For the harmonic strain history, Ea. (3-10), we have

S = vpax O(1 * 432) 172 (45 (ot + &) (3-13)
Thus, from Ea. (3-13)
2y 1/2
Smax = Ymax O(1 *+ 487) . (3-14)

From Eas. (3-11) to (3-14) it follows that

W, 2 2 2 2\=-1/2
8 = 2(" Y max S max ~ W) (3-15)
2 1/2
S 2
max W
G = > -2 (3-16)
Ymax T max

To account for strain magnitude sensitivity, G and 8 were
computed for five values of Ymax > then logarithmic interpolation
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was used in the SHAKE code to compute G and g8 at intermediate values
of strain. In the present program the material modeled was the
crystal silica number 20 sand, discussed by Cuellar, et al (1977),
and the computed values of G and 8, along with values of Ymax®
Smax and W are given in Table 3.1. All material properties were
based on experimental data obtained from simple shear tests where

the confining pressure was 114.9 kPa.
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TABLE 3.1

STRAIN DEPENDENT SHEAR MODULI G AND CRITICAL DAMPING RATIOS

Ymax

10-5
10-4
10-3
10-2
10-1

g USED IN SHAKE CALCULATIONS.

CONFINING PRESSURE WAS 114.9 kPA.

Smax (kPa)
0.196 1.446
1.815 1.182
12.293 4.3
41.489 5.79
69.042 1.38

W (J/m3)

X

X

X

10-5
10-2
100
102
104

56

G (MPa)
19.56
18.14
12.21

3.716
0.532

8
0.001763
0.01037
0.056066
0.24776
0.41406



4. SOIL SITE GROUND MOTION

4.1  INTRODUCTION

In Section 2, a deterministic approach was employed to con-
struct synthetic accelerograms at a range of distances from a
strike-s1ip fault. The synthetic ground motion was evaluated for
sites on rock (shear velocity equal to 980 m/sec). The method,
though Timited to SH waves, incorporated source finiteness, elastic
response of the crust, and anelastic attenuation, in a fairly
rigorous manner.

For soils, however, the linear viscoelastic treatment used for
rock sites would be inappropriate. Section 3 described a new non-
linear constitutive model appropriate for soils, the endochronic
model, and illustrated 1its capability to describe cyclic simple
shear data for dry sand. Then, an equivalent linear representation
was derived for the same dry sand simplie shear data.

In this section, we extend the modeling study of ground motion
to sites on cohesionless soil. Our primary objective is to examine
the predictive capabilities of the deterministic modeling approach
to site-dependent ground motion estimation, taking account of the
nonlinear response of soil deposits. The capabilities of the
approach are evaluated through comparisons with ground motion data
and equivalent linear analyses.

The sites studied are assumed to overlie the earth structure
employed in Section 2 so that the synthetic accelerograms computed
in Section 2 provide the upgoing wave motion at the base of the soil
deposit. The response of the soil deposit is described by the endo-
chronic model of dry sand developed in Section 3.2.2. The transient
response of the soil deposit is then obtained by a finite element
method, assuming simple shear deformation (vertically propagating SH
waves) in the soil column. We repeat the analysis of the soil
column response using the SHAKE code with the equivalent linear re-
presentation derived in Section 3.3. Section 4.2 describes the set
of calculations which was performed for the study, Section 4.3
describes the numerical methods employed, and Section 4.4
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presents and discusses the numerical results. In the discussion of
results, detailed consideration is given to (1) the performance of
the endochronic constitutive model in describing complex stress
histories, (2) the sensitivity of the nonlinear analysis to details
of the soil profile discretization, (3) comparison of the nonlinear
results with trends in earthquake data, and (4) comparison of the
nonlinear solutions with those obtained using the equivalent linear
model.

4.2 DESCRIPTION OF THE NONLINEAR NUMERICAL STUDIES

Table 4.1 summarizes the eight problems treated in this
study. Three different soil profiles, denoted A, B, and C, were
considered. We also considered three different depths to bedrock --
10, 30, and 100 meters. Finally, four different synthetic
accelerograms were assumed for the bedrock input motion: the
bedrock accelerograms at 5, 10, and 30 km distance, respectively,
from Section 2, as well as the synthetic accelerogram at 5 km
distance, rescaled to give a peak acceleration of 1 g. Table 4.1
also summarizes the peak acceleration and velocity values obtained
at the ground surface in each calculation. No equivalent linear
analysis was performed for soil profiles B and C, since these pro-
files were introduced to check the sensitivity of the nonlinear
ca1cu1ations to small variations in the soil profile.

4.2.1. Soi1 Profiles Employed

Three soil profiles, denoted A, B, and C, were examined in
this study. Each approximates the properties of the drained sand to
which the endochronic constitutive model was fit in Section 3.2.2.%*

* The values of the endochronic soil model parameters for dry sand
(G, k, and n) given in Section 3.2.2., Equation 3-8, differ from
those reported in Valanis and Read (1980), due to an error in the
earlier report. The numerical calculations described here were
completed prior to discovery of this error, and employed the
numerical values G = 19.75 mPa, k = 750, n = 30.6. Since the
objectives of this study do not rely on replicating the response
of a particular soil sample, this discrepancy is not of concern.
Nevertheless, one of the nonlinear calculations was subsequently
repeated using numerical values consistent with the experimental
data fit in Section 3.2.2, with the result that peak values of
acceleration and velocity obtained using the two sets of soil
parameters differed by only a few percent.
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The depth dependences of the shear modulus, G, and the shear

strength, H are discussed in Appendix B, and the three soil

profiles differ in the way in which such depth dependences are
approximated. In Profile A, the depth dependences are averaged over
layers which vary in thickness, with a minimum thickness of 2 meters
in the upper part of the profile; the resulting values of G, H_ and
the shear velocity, vs, are shown in Figure 4.1. In Profile B,
shown in Figure 4.2., the very low values of G and H_ present in the
uppermost layer of Profile A have been increased, and the remainder
of Profile B is a smoothed version of Profile A. Profile C is

assigned uniform values of G and H_, as shown in Figure 4.2.

In each case, the soil deposit is assumed to have a uniform
density of 1462 kg/m3, and to overlie a base-rock with density
2100 kg/m3, and and to have a shear velocity 980 m/sec. The
endochronic simple shear parameters k and n, and the ratio HO/Hw,
are assumed to be independent of depth.

4.2.2. The Input Ground Motion

As already noted, the base-rock input transients for the soil
site analyses were developed from the synthetic accelerograms gen-
erated for rock sites at distances of 5, 10, and 30 kilometers from
a simple strike-slip fault model. The method of driving the soil
column accounts for the fact that the base-rock motion is modified
by the presence of the soil. The upgoing wave motion computed for
rock sites is imposed at the base of the soil by means -of superposed
body forces, while downgoing waves produced by the presence of the
soil and free surface are transmitted back into the base-rock.

An alternate approach would have been to drive the soil
calculations using actual accelerograms recorded on bedrock at
various source-receiver distances. An advantage of that approach
would have been to eliminate uncertainties associated with our
simplistic source model and our neglect of the P-SV wave contri-
bution to ground motion. However, the Tlatter might also be a
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disadvantage of using recorded motion, since our model of soil
response assumes that the disturbance in the soil propagates as a
shear wave.

A principal advantage of using theoretically derived driving
motion is that the source-model and base-rock characteristics can be
fixed, leading to a consistent set of distance-dependent ground-
motion estimates. We can isolate the effects of surface geology and
distance from the source. A second significant advantage of using
synthetic input motion is that the one-dimensional study of soil
response can readily be extended to two-dimensional configurations.
Recorded accelerograms provide a suitable input for two-dimensional
site simulations only if we prescribe the spatial character of the
emergent wave field (e.g., vertically emergent shear waves); the
theoretical methods, on the other hand, are capable of providing a
complete description of wave type and angle of incidence. Although
we did not extend our soil modeling to two-dimensions, because of
computational obstacles encountered with the endochronic model (see
Appendix D), a theoretical aporoach to specifying multi-dimen-
sional seismic input motion for two-dimensional geologies was pre-
sented in Section 2.

4.3  NUMERICAL METHODS

The nonlinear soil response calculations were performed using
the SWIS (Stress Waves in Solids) code (Frazier and Petersen, 1974),
modified to accommodate the endochronic constitutive model. SWIS is
a finite element code for the transient analysis of one-, two-, and
three-dimensional, Tlinear or nonlinear continua. The corresponding
analyses with the equivalent linear technique were performed with
the SHAKE code (Schnabel, et al., 1972), which is based on the
Haskell matrix method (Haskell, 1953) for plane-layered media.
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4.3.7 Nonlinear Calculations Using SWIS

The SWIS finite element code employs a lumped-mass, explicit
time-stepping method to integrate the equations of motion of a con-
tinuum. A stiffness matrix is not assembled and stored; element-
centered stresses are stored and updated from strain-rates, and
nodal restoring forces are computed by one-point quadratures. In
fact, for one-dimensional calculations, the method is indistin-
guishable from that of explicit, Lagrangian finite difference
codes. Details of the numerical method are given in Frazier and
Petersen (1974), and here we discuss only the use of artificial
viscosity, the specification of the incoming motion, and the
numerical treatment of the endochronic constitutive model.

The numerical method accurately propagates frequency compo-
nents with wavelengths greater than roughly 8 to 10 element dimen-
sions. Shorter wavelengths become significantly dispersed as a
consequence of the discretization, and, unless damped out, spurious
high-frequency oscillations result and eventually contaminate the
numerical solution. Such high-frequency contamination would be
particularly damaging because of the memory, and ratcheting capa-
bility, of the endochronic theory; furthermore, from a computational
efficiency standpoint, each strain-rate reversal adds a term to the
constitutive expression, as reference to Equation 3-6 will reveal.

The explicit integration method does not inherently damp the
short wavelength components of the numerical solution (aside from
the hysteretic damping present in the endochronic model). For this
reason, artificial viscosity was introduced into the algorithm. The
artificial viscosity leads to an attenuation mechanism for harmonic
elastic waves proportional to frequency squared. Using a minimum
element dimension of 0.5 meters at the top of the soil column de-
scribed in Figure 4.1, for example, increasing to 1.6 meters at the
base, an artificial viscosity can be assigned which is sufficient to
suppress virtually all spurious oscillations without significantly
attenuating frequencies lower than 10 Hz. Thus, for frequencies of
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interest, the artificial viscosity in the calculation does not sig-
nificantly disturb the rate-independent properties of the endo-
chronic constitutive model.

The introduction of the incoming motion at the base of the
soil column, as well as the transmitting boundary condition which
simulates the presence of a base-rock halfspace, were treated by a
straightforward modification of the scheme employed by Joyner and
Chen (1975), and we refer the reader to their paper for details. 1In
their scheme, the transmitting boundary coincides with the soil-hed-
rock interface, and the upgoing wave motion is introduced by super-
imposing an appropriate traction on the transmitting boundary. In
our variant, the uppermost part of the bedrock is represented by the
lowermost two elements in the finite element column and was ter-
minated below by a transmitting boundary; the upgoing wave was
generated by appropriate body forces applied at the top of the
bedrock. This modification was introduced for convenience and does
not alter the efficacy of the scheme.

The endochronic simple shear model discussed in Section 3.2.1
requires solution of a set of simultaneous, nonlinear equations
(Equations 3-2, 3-3, and 3-6) for each finite element at each time
step. Given the shear strain increment dy, we use an iterative pro-
cedure based on Newton's method to solve for the intrinsic time
increment dz such that both Equations 3-2 and 3-6 return the same
shear stress increment ds. That is, we seek zeroes of the function
1(dz):

I(dz)

G[dy - 2 sgn (dy)dz J- H(z + dz) [Erfvﬁ?(z + dz)

N n+1
-2 (-1) Erf Vvk(z +dz -z )J + H(z) l Erf (Vkz)

n n

=1
N
-2 2: (-1)" *1 Erf vk(z - Zn) J (4-1)

n=1
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where H(z) and k are as defined in Section 3.2.1, z is the value of
intrinsic time at the previous time step, z, is the intrinsic time

associated with the nth

strain-rate reversal, and N 1is the number
of reversals in the sign of the strain-rate which have occurred in
an element. Once we have obtained dz, we can calculate ds from

Hooke's Law:
ds = G[dy - 2 sgn (dy)dz] (4-2)

The function I(dz) has infinite slope at dz = 0 whenever a
strain-rate reversal occurs. In order to obtain a well-behaved
numerical scheme, we make a change of variable in Equation 4-1 from
dz to w, where w = y/dz. The modified equation for w is then more
readily solved by Newton's method, and adequate accuracy is
generally acquired in 2 or 3 iterations.

The summations in Equation 4-1 involve a term for each
strain-rate reversal which has occurred in the element; it is also
necessary to. store the intrinsic time z, associated with each
reversal. These features require considerable computation time and
computer storage, and we have invoked two simplifications in an
effort to control the length of these series. First, we note that
the error functions in the series "“"saturate" to the value 1 for
large. values of the argument. If sufficient plastic strain accrues
in an element, the leading terms can be successively replaced by =
2. Unfortunately, this simplification has proven to be of minimal
utility in the present calculations, which involve complex loading
histories, sometimes exhibiting many cycles of nearly elastic
loading and unloading.

The second simplification makes use of the observation that
successive terms in the series have opposite signs, and that the
derivative of each term is a monotonically decreasing function of
j¢1 — Zj IS small compared to
, the i and 1i+1 terms can be neglected, since

the argument. If the difference z

1/2
(Z - z1+1)

differentiation of the error function leads to the approximation
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Erfvk(z - z1.+1) - Erf vk(z - Zi)

k k(z -z, 1/2
z-ﬁ/;'e ( 1+1) (z - zi+17 / (Zi+1 - Zi)‘

The criterion that the i and i+1 terms are deleted whenever (z
1/2
)

- z >> (zi+1- zi) has been used effectively in the

i+
fini;e]'e1ement calculations and substantially reduces the compu-
tational effort and required storage. This criterion corresponds to
the physical notion of "fading memory," i.e., the material loses
memory of small, nearly elastic hysteresis loops once they have been
succeeded by significant amounts of plastic strain. Generally, it
was found in practice that retention of 10 to 20 reversal terms was
sufficient. An exception was the uppermost element; the free sur-
face condition resulted in low strains in this element, and 20 to 30

reversal terms had to be retained to achieve the desired accuracy.

Appendix C lists the FORTRAN subroutine for the endochronic
constitutive model of simple shear of dry sand which was used in the
present study in conjunction with the SWIS finite element code.

4.3.2 Equivalent Linear Calculations with SHAKE

The computer code SHAKE, (Schnabel, et. al., 1972) was used in
this .program for the equivalent 1linear calculations. The code
computes the response induced in a system of homogeneous, visco-
elastic layers, of infinite horizontal extent, by a vertically
travelling shear wave. Acceleration, strain and stress histories
are first computed in the frequency domain, using interlayer
displacement and stress compatibility conditions, and are then
transformed to the time domain using a fast Fourier Transform
algorithm.

The soil profile motion is driven by an acceleration history,
the object motion, that can be applied to any layer. After being
transformed to the frequency domain all contributions to the object
motion above a user specified maximum frequency are removed. The
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SHAKE code assumes strain dependent material properties. Starting
with an initial gquess for layer shear moduli and critical damping
ratios, the code iterates until the material properties at the
beginning of an iteration correspond to the strains predicted at the
end of the iteration; typically no more than five iterations are
necessary. The SHAKE code accounts for the depth dependence of soil
shear moduli by assuming

)1/2

6 = 6y (o /op (4-3)

where

on =9y (1 +2 KO)/3, o, = ogd. (4-4)
Here % is the soil confining pressure, 7, is the vertical
stress caused by soil overburden, Ko is the user defined coef-
ficient of earth pressure and on is the reference confining pres-

sure at which G equals GR. In the present study

K0 = 0.4, op = 114.9 kPa. (4-5)

Before SHAKE could be used in this investigation, two coding errors
had to be corrected. As received, SHAKE calculated stress histories
by multiplying strain histories by the elastic shear modulus; thus,
computed stress-strain histories for cyclic loading exhibited no
hysteresis. This was corrected by identifying the stress history
with the inverse fast Fourier transform of the product of complex
shear modulus, Equation (3.9), and the complex-valued strain Fourier
components. The other, less obvious, error was incorrect dynamic
dimensioning of the temporary storage array AA, the consequence of
which was that some fast Fourier transformation information computed
at the beginning of program execution was inadvertently set to zero
before being used to compute stress and strain histories. This
error was corrected in the main routine by adding 8 to the variable
NS so that it was defined as

NS = NAA +2 (NAMAX + 4) (4-5)
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A total of six analyses was performed, corresponding to problems 1
to 3 and 6 to 8 of Table 4.1. Layer thicknesses used to model the
100 m soil profile are shown in Figure 4.3. The number of layers is
the maximum permitted in SHAKE. For the 10 m (30 m) analyses, the
layering was identical to the top 10 m (30 m) of the 100 m profile.
In each analysis the object motion was an acceleration history con-
sisting of 1000 values at 0.01 sec intervals. However, all compo-
nents for frequencies greater than 20 Hz were discarded to reduce
computation time. In all calculations, removal of the high fre-
guency Fourier component changed the peak input acceleration by no
more than 1.5 percent.

4.4  NUMERICAL RESULTS

Figures 4.4 and 4.5 show acceleration and velocity waveforms
at the surface of the soil for several of the nonlinear studies.
Figure 4.4 displays the effects of soil thickness on these wave-
forms, and Figure 4.5 depicts the different character of the surface
motion at the three site-to-fault distances. One effect of in-
creasing the soil thickness is to lengthen the characteristic period
associated with the peak acceleration and velocity. A second effect
is, of course, to lengthen the resonance period governing the late-
time reverberations. The waveform differences evident in Figure 4.5
among the three receiver locations are largely associated with the
differences in bedrock motion discussed in Section 2; directivity,
and anelastic and geometric attenuation along the propagation path
from the source, are largely responsible for the differences in fre-
quency content and amplitude.

Table 4.1 summarizes the peak motions (acceleration and
velocity) obtained from the present analyses. Note that in all
cases except Problem 8, the nonlinear analyses give soil site peak
accelerations which are significantly smaller than the corresponding
rock site peak acceleration. Furthermore, the equivalent 1linear
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Figure 4.3. Soil layering used in SHAKE calculations.
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method substantially overestimates peak accelerations compared with
the nonlinear analyses, again excepting Problem 8. Peak velocity is
also overestimated by the eguivalent 1linear method, though by a
smaller amount.

In this section we analyze the results of the nonlinear cal-
culations in detail and compare them with the equivalent 1linear
results. Section 4.4.1 examines the constitutive behavior of the
endochronic model 1in the nonlinear calculations. Section 4.4.2.
examines the sensitivity of the nonlinear results to details of the
soil profile; results of Problems 4, 5, and 6 representing Profiles
B, C, and A respectively, are compared. Section 4.4.3 compares the
calculated peak motion obtained by our analytical method with
empirical peak motion relationships derived from earthquake ground
motion data. Section 4.4.4., compares the nonlinear results to those
obtained by the equivalent Tinear method.

4.4.1. Peformance of the Endochronic Constitutive Model

The endochronic model employed in this study has perhaps the
most advanced capabilities for modeling the hysteretic behavior of
soils of any of the existing soil models. Within the context of
simple shear, to which the current study is limited, the modeling
capability of the theory includes hardening, cyclic creep (rat-
cheting) and elastic behavior for infinitesimal unloading or re-
loading following a strain-rate reversal. The latter capabhility was
absent from earlier versions of the endochronic theory, and led to
criticism of the theory's suitability for numerical wave propagation
calculations (Sandler, 1978). The new theory, used in the present
study, does not, however, suffer from this objection, and to demon-
strate the excellent behavior of this model in wave propagation
studies, the details of computed stress-strain paths are provided.

Figures 4.6 through 4.11 show the stress-strain paths
computed at several different depths in the soil deposit for the six
nonlinear calculations performed for Profile A -- Problems 1 through
3 and 6 through 8. Triangles on the curves delimit 0.5 second time
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intervals. Taken together, these figures verify two anticipated
features of the model. First of all, loading and unloading indeed
invariably initiate along a slope corresponding to the shear
modulus. Second, all hysteresis loops close.

A third feature of the endochronic model evident in these
figures relates to the absence of abrupt "corners" in the stress-
strain paths. Pyke (1979) has discussed several inadequacies
associated with those soil models satisfying a generalized set of
Masing criteria, when subjected to irreqular, transient Tloading.
This category would include many standard soil models, including the
Iwan class of models. In particular, Pyke noted that wunder
irregular loading, these models exhibit sharp corners in the stress-
strain path, in conflict with experimental results. This phenomenon
occurs in Iwan-type models whenever a loading or unloading curve
intersects a previous 1loading or unloading curve. Figures 4.6
through 4.11 demonstrate that such unrealistic behavior is not
displayed by the endochronic model; discontinuities of slope occur
only at points of loading rate reversal, in agreement with obser-
vations.

Figure 4.7 shows that energy dissipation, as indicated by
hystereﬁis loop area, is greater at shallow depths than it is near
the center and base of the soil deposit. The four subsequent
figures each give results at 0.25, 5.5, 10.5, and 15.5 meters depth,
and among these depths, the greatest dissipation in each case
apparently occurs at 5.5 meters depth. It will be seen in Section
4.4.4. that this is approximately the depth above which the peak
motion estimates from the equivalent Tlinear method diverge from
those of the nonlinear method.

A particularly vivid illustration of hardening occurs in
Figure 4.8. There are several cycles of motion between stress
Timits of approximately + 8 kPa, followed by a Tlarge, highly
dissipative strain cycle, followed by several more cycles between +
8 kPa. The secant modulus associated with the latter cyclic motion
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is nearly 50 percent greater than that of the initial cyclic motion,
thereby illustrating the significant hardening that occurs through
the deformation history.

Finally, we note that the capability of the endochronic model
to describe cyclic creep (ratcheting) under asymmetric loading is
well illustrated, for dinstance, in Figures 4.6, 4.8 and 4.10.
Cyclic creep 1is commonly observed in soils subjected to cyclic
loading about some prestressed state, and leads to an accumulation
of strain with successive cyclic loading.

4.4.2 Sensitivity to Soil Profile Details

The depth dependences of shear modulus and shear strength
deduced in Appendix B for loose sand imply that both approach zero
as depth below the surface decreases. Nonlinear calculations 4, 5,
and 6 for Profiles B, C, and A, respectively, based on the same
input seismogram (5 km site) and soil thickness (30 meters), are
compared here to delineate the sensitivity of computed motion to the
details of the soil profile.

Figure 4.12 shows maximum values of shear stress and strain
obtained as functions of depth for the three cases. Peak stresses
for Profiles A and B are indistinguishable; peak stress for Profile
C coincides with the other two cases down to about 7 meters, then
diverges somewhat. Peak strain is similar for Profiles A and B
below about 3 meters depth; Profile B gives somewhat smoother
results, reflecting the smoother approximation of the shear modulus
and shear strength depth dependence. At shallower depths, however,
Profile A results in a large strain concentration at about 2 meters
depth which is absent in the calculation for Profile B. Peak strain
for Profile C is lower than for the other 2 cases, for depths above
20 meters, and decreases smoothly toward zero near the surface.

Figure 4.13 shows maximum values of acceleration and velocity
as functions of depth for the three cases. Both peak acceleration
and peak velocity for Profiles A and B are nearly identical
throughout the soil column. Both peak acceleration and velocity are
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somewhat lower for Profile C, particularly around 10 meters depth;
at the surface, however, peak acceleration for Profile C is nearly
the same as for the other two cases, and peak velocity is only 20
percent lower for Case C. Apparently peak ground motion is not
sensitive to the precise manner in which the depth dependence of
shear modulus and shear strength are discretized, although maximum
shear strain can be sensitive to this discretization. We have not
shown comparisons of time histories of motion, but these also are
very similar for all three cases, and nearly indistinguishable for
Profiles A and B.

4.4.3 Comparison of Peak Motion Estimates with Empirical Trends

Inferences about site-dependent ground motion are severely
limited by the absence of sufficient strong motion data for
distances less than 20 kilometers. It is important, therefore, that
analytical methods be developed to supplement the empirical approach
to ground motion prediction. The current study has focussed
attention on an admittedly idealized configuration -- the source is
simplified, the soil deposit is taken to be a loose, drained sand,
and the P-SV wave contribution to ground motion has heen neglected.
In spite of these idealizations, the approach does account in a
fairly consistent manner for such distance-dependent effects as
anelastic attenuation, dispersion, and earthquake source finiteness;
furthermore, the endochronic soil model was found to reproduce very
accurately the type of behavior a cohesionless soil would exhibit
under conditions of simple shear.

It is worthwhile to examine the site-dependent peak motion
estimates obtained from this study to establish to what extent they
are consistent with well-established empirical trends and to what
extent they support the statistically marginal inferences. A number
of studies have attempted to delineate the effect of site geologic
conditions on peak ground motion, and on its attenuation with dis-
tance from the energy source. Duke et al. (1972) and Donovan
(1973) concluded from analysis of strong motion data from the 1971
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San Fernando earthquake that, for near-field sites, peak accel-
erations recorded on rock are generally higher than peak acceler-
ations recorded on soil, whereas at distances greater than 40 to 50
kilometers, soil sites experience higher peak accelerations. Seed
et. al. (1976a) studied data from 8 western United States earth-
quakes with magnitudes of about 6.5. They similarly found that peak
acceleration was higher on rock than on soil in the near-field (dis-
tance less than ~40 kilometers); furthermore, it was their finding
that peak acceleration attenuates more slowly with distance for
stiff soil sites than for sites on rock, and more slowly still for
sites on deep, cohesionless soil. Trifunac and Brady (1976)
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