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Objective

The objective of this investigation is to develop and evaluate 
a new analytical approach for estimating site-dependent earthquake 
ground motion for engineering design purposes. The analytical 
approach is based on assuming physical models for the earthquake 
source, path wave-propagation effects, and nonlinear soil response 
at the site, then calculating ground motion using a combination of 
seismic (layer matrix) and finite element methods. The approach is 
structured to potentially provide a three-dimensional ground motion 
capability, although the nonlinear soil response calculations are 
here limited to one dimension. The predictive capabilities of this 
approach were examined by comparing ground motion calculations to 
empirically derived ground motion trends and to ground motion 
simulations performed using the equivalent linear method.

Principal Results

The most significant results of this work are the following: 
(1) A superior soil model, the endochronic model, has been 
introduced to site evaluation studies. (2) Comparison of the 
endochronic model with the conventional equivalent linear model has 
shown the latter to yield excessively conservative ground motion 
predictions for loose soil deposits in the near field.

Summary

For distances less than about 20 kilometers, there is minimal 
earthquake ground motion data available, and substantial disagree­ 
ment exists among empirical relations for predicting design motion 
characteristics in this distance range. This disagreement reflects 
the uncertainties associated with extrapolation of the empirical 
relations to short distances, where data is sparse. To the extent 
one can construct adequate analytical models for the seismic source, 
path wave-propagation effects, and site nonlinear response, it 
becomes possible to simulate ground motion for geologic environ­ 
ments, distance ranges, and earthquake magnitudes for which data is 
scarce or nonexistent.



The SH component of rock-site ground motion at distances 5, 
10, and 30 kilometers was synthesized for an earthquake model which 
consisted of an assemblage of discrete, circular cracks, repre­ 
senting a composite, extended source. It was found that strong 
motion observations are, in general, inconsistent with a rupture 
mechanism in which crack growth stops instantaneously. Once more 
realistic rupture deceleration was incorporated into the model, the 
SH component of motion alone was apparently adequate for simulating 
ground motion consistent with observed peak acceleration, peak 
velocity, and strong motion duration.

A new nonlinear constitutive model for soils, the endochronic 
model, was fit to cyclic shear data for dry sand, and an equivalent 
linear constitutive model was fit to the same sand data. Using the 
endochronic model, close agreement was achieved between calculated 
(solid curves) and observed (dashed curves) stress-strain behavior 
of dry sand over 300 cycles of deformation, as illustrated below.

Crete 2

Only-five parameters were required to accomplish the fit to the sand 
data.

The nonlinear endochronic constitutive model and the base-rock 
synthetic seismograms were employed to calculate ground motion at 
sites on dry sand deposits, using a transient finite element method, 
and these calculations were repeated with the equivalent linear 
constitutive model, using the SHAKE code. The endochronic consti­ 
tutive model performed effectively in the finite element code under 
the complex loading histories provided by the synthetic seismograms, 
and it was verified that (i) loading and unloading always initiate 
along the elastic slope, (ii) all hysteresis loops close, (iii) the 
model does not display the unrealistic "corners" displayed by 
Iwan-type constitutive models when a loading or unloading curve 
intersects a previous loading or unloading curve, (iv) appreciable 
strain hardening is predicted for some loading histories, and (v) 
cyclic creep, or ratcheting, develops under asymmetric loading.

The predicted ground motion obtained from the nonlinear calcu­ 
lations is consistent with empirical trends governing peak motion 
where the trends are well-established by earthquake data. In the
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near-field, where bedrock acceleration peaks characteristically 
exceed 0.1 to 0.2 g, nonlinear behavior sharply reduces the value of 
peak soil acceleration, and the equivalent linear method did not re­ 
produce this effect. Earthquake data are consistent with this sharp 
reduction in the near-field, as summarized in the following figure 
comparing calculated peak accelerations for a dry sand deposit with 
empirical peak acceleration relations deduced by Seed et_ aj_.
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The performance of the equivalent linear approximation for the 
response of cohesionless soil depends on both the nature of the soil 
deposit and the amplitude level of the base-rock acceleration. Peak 
motion estimates by the equivalent linear method are adequate for 
peak input accelerations less than 0.1 to 0.2 g, but are excessively 
conservative for stronger input accelerations.
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The overestimate of peak motion by the equivalent linear method is 
apparently due to an inability of the method to adequately model 
energy loss in the uppermost several meters of the soil column.
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1. INTRODUCTION

1.1 BACKGROUND

For distances in the range 20 through 200 kilometers, where 
the majority of the earthquake ground motion records have been 
obtained, the empirical relations used to predict likely char­ 
acteristics of ground motion important for earthquake-resistant 
design agree to within a factor of two with the mean trends of the 
available data. For distances less than 20 kilometers, which are of 
the greatest interest to the seismic community, there are minimal 
ground motion data, and substantial disagreement exists between the 
empirical relations, reflecting the uncertainties associated with 
extrapolation of these empirical relations to shorter distances. 
There is some evidence also that the empirical relations, as a 
group, may be quantitatively inaccurate for short distances. In a 
recent study, Trifunac and Brady (1976) concluded that most previous 
investigators have underestimated peak acceleration for distances 
less than about 40 kilometers. The implications of such uncer­ 
tainties on structural safety and human life are enormous. In view 
of the absence of significant ground motion data in the range of 
greatest structural concern, and the divergence among the extrap­ 
olated empirical relations in this range, there is clearly a 
critical need to develop reliable analytical methods that can be 
used in seismic design to predict the likely features of strong 
motion at distances relatively close to the earthquake focus.

The damage potential of an earthquake appears to be most 
likely determined by several characteristics of the ground motion, 
including the maximum velocity, maximum acceleration and the 
response spectrum. Observations made after destructive earthquakes 
have revealed a strong relationship between structural damage and 
local geology (see e.g., Seed and Schnabel, 1972; Schnabel, Seed and 
Lysmer, 1972); in general, destruction is larger on soft soils than 
on hard soils or rocks. Furthermore, observed damage patterns and



statistical analyses of recorded ground motion suggest that both the 
stiffness and the depth of the soil deposit are important con­ 

siderations in the design of earthquake-resistant structures. 
Response spectra also appear to be significantly dependent on local 

geology (Newmark, et^. a1_., 1972; Seed, et_. al_., 1976b; Mohraz, 1976).

The analytical tool predominantly used at the present time to 
analyze seismic ground motion is the one-dimensional equivalent 

linear method, originally proposed by Idriss and Seed (1968). In 

this method, the soil medium is idealized as a series of thin hori­ 

zontal soil layers capable of transmitting only shear stresses. An 
approximate one-dimensional constitutive model (termed an "equiv­ 
alent linear" model) is employed to describe the mechanical response 
of the thin soil layers to vertically traveling shear waves driven 
by bedrock undergoing horizontal motion.

The appropriate bedrock motion is usually inferred from the 

recorded motion of nearby rock outcrops, if available, or simply 
assumed. Recordings made on nearby rock outcroppings may, or may 
not, be representative of the motions in the bedrock underlying the 
soil deposit (Lysmer, Seed and Schnabel, 1971); the motion at depth 
can only be inferred using some computational model. Furthermore, 
such recordings provide suitable input for two- or three-dimensional 
site analysis only if we prescribe a priori the spatial character of 
the emergent wave field (e.g., vertically incident shear waves).

1.2 OBJECTIVE

The objective of this research program is to develop and 
evaluate a new analytical approach for estimating local site 

response to earthquake ground motion. The approach is based on (1) 

an assumed, yet realistic, physical model of the earthquake source 
and wave propagation path to the site, using theoretical seismo- 

gram methods to compute base-rock seismic motion at the site, (2) 
applying an advanced nonlinear constitutive model, the endochronic 

model, to describe the hysteretic response of local soil deposits, 
and (3) computing surface motion at the site using a transient, 
dynamic finite element method. To the extent one can construct



adequate models for the seismic source, path wave propagation 
effects, and site nonlinear response, it becomes possible to 
simulate ground motion in geological environments for which no data 
exist. Furthermore, the analytical approach is structured to 
potentially provide a three-dimensional ground motion capability, 
i.e., the theoretical seismic method, the endochronic constitutive 
theory, and the transient finite element method each have been 
developed within a fully three-dimensional framework.

The current study is limited, by the scope of the effort, to 
two site geologies   rock and cohesionless soil. The predictive 
capabilities of the approach are examined by comparing ground motion 
calculations for these two site geologies with (1) empirically 
derived ground motion trends and (2) ground motion simulations by 
the equivalent linear method. The main computational tools employed 
in the study are: (1) a wavenumber-integration method for computing 
synthetic near-field accelerograms, (2) a transient, dynamic finite 
element method for computing the nonlinear response of soils, and 
(3) the SHAKE seismic analysis code for computing soil response by 
the equivalent linear method.

1.3 ORGANIZATION

Section 2 describes the construction of base-rock seismic 
motion for a simplified model of the earthquake source, using a 
theoretical seismogram method. The source model, assembled from 
several superposed, discrete events, is motivated by some simple 
observational and theoretical considerations about earthquakes. 
Propagation of the earthquake disturbance through a stratified, 
anelastic earth model is accomplished by a direct wavenumber 
integration technique which is outlined in Appendix A; only the SH 
contribution is included in the study, and some consequences of this 
limitation are discussed. We also outline a procedure for 
approximating a two-dimensional representation of the base-rock 
ground motion; this procedure would provide convenient input for 
two-dimensional numerical simulations of local site response.



Finally, we describe the synthetic ground motion which results from 
the earthquake model, at three rock sites at 5, 10, and 30 
kilometers from the source.

Section 3 describes a new endochronic constitutive model for 

rate-independent, history-dependent response of soils. This new 
model can describe the important features of the response of soils 

to seismic-type loading, including hysteresis, hardening/softening, 

densification and cyclic creep (ratcheting). A numerical method is 

developed for the model to treat the case of simple shear. The 

model is fit to cyclic shear data for dry sand. Finally, a 

corresponding equivalent linear representation is derived from the 
same data used in fitting the endochronic model. Appendix B 

discusses the dependence adopted in the present study of the soil 
model parameters on depth within the soil column.

Section 4 applies the constitutive models of Section 3 and the 
base-rock ground motions of Section 2 to compute soil site ground 
motion. Particular attention is accorded to the numerics associated 
with the simple shear (one-dimensional) endochronic model under 
complex loading histories; the resulting FORTRAN subroutine is 
listed in Appendix C. The performance of the endochronic model in 
the numerical wave propagation code is examined, as is the sen­ 

sitivity of computed ground motion to details of the soil profile. 

Finally, results from the nonlinear ground motion calculations are 

compared with trends in ground motion data and to ground motion 

computed by the equivalent linear method.

The nonlinear soil site computations reported in Section 4 are 
one-dimensional. We had hoped to exercise the multidimensional 

capability of the analytical method by performing in addition a 
small number of nonlinear, two-dimensional simulations. However, in 
the course of the study, a numerical problem related to the computa­ 
tional difficulties posed by the new endochronic model in two- and 
three-dimensional deformations was identified. Numerous attempts to



resolve this difficulty during the course of the work were unsuc­ 
cessful. Most recently, however, a promising approach has been un­ 
covered (see Appendix D for further details) and efforts are pre­ 
sently underway to fully explore this.

1.4 CONTRIBUTORS

3 A number of S scientists contributed to the work described
in this report. Section 2 describing the synthesis of rock site 
ground motion, was written by H. Swanger. Section 3, which de­ 
scribes the nonlinear and equivalent linear soil models, was written 
by H. E. Read and K. J. Cheverton. Section 4, describing the soil 
site calculations, was written by S. M. Day, with important contri­ 
butions from K. J. Cheverton.



2. ROCK SITE GROUND MOTION SIMULATION 

2.1 INTRODUCTION

Traditionally, observed ground motion has been the major 
source of input for studies of site and engineering structure- 

specific effects, such as nonlinear soil response or soil-structure 
interaction problems. Use of actual recorded ground motion as input 
for site specific modeling assures realistic freauency content and 

duration for the particular circumstances under which the ground 
motion was recorded, and results from empirical studies are often 
used to modify the amplitudes of recorded motion for applications to 
distances and magnitudes for which no strong ground motion 

recordings are available.

There are some applications, however, where observed ground 

motion and empirically motivated extrapolations of amplitudes may 
not be sufficient for describing input ground motion with proper 

charcteristics. Examples of circumstances are:

(1) Very short distances, where data are sparse and 
empirical extrapolation is uncertain.

(2) Very large earthquakes where motion may have 
larger amplitudes and longer durations than 
previously recorded ground motion.

(3) Response at the frequencies of interest may 
depend strongly on the rock structure with 
depth (i.e., long periods).

(4) Response is sensitive to two- or three-di­ 
mensional propagation effects, which cannot be 
extracted from ground motion recordings alone.

In such circumstances an alternative to observed ground motion 
is synthetic ground motion. Synthetic ground motions most often 
applied in engineering applications involve generation of a random 
signal which possesses a prescribed duration and spectral shape 

(Housner and Jennings, 1964, for example). Such procedures have 

evolved considerably to include more of the physical phenomena



associated with time histories of strong motion accelerograms (Wong 
and Trifunac, 1979, for example). This "engineering" approach to 
construction of synthetic ground motion still depends strongly on 

empirical results, namely observed peak values and durations, which 
may not be adequate in all circumstances.

An alternative approach is to assume physical models for the 

earthquake source and propagation of seismic waves through the earth 
and compute the corresponding ground motion which is a consequence 

of the physical model assumed. This "seismological" approach to the 
problem, in theory at least, has several benefits over the engi­ 
neering approach. If one can construct reasonable models for the 

seismic source and propagation effects, one can justifiably simulate 

ground motion in geological environments for which no data exist, 
and perhaps compute motion for close distances and large magnitudes 
which is more reliable than extrapolation of observed motion. In 
addition, effects due to directionalized rupture and source radia­ 
tion pattern, which are not included in empirical relationships, can 
be dealt with rigorously.

In practice, the seismological approach to synthesis of design 
motion has many problems. Our knowledge of the earthquake source is 
rather limited as to details important to the high frequency (1 

through 10 Hz) radiation. It has been suggested that localized 

features, such as stress concentrations (Hanks, 1974; McGarr, et 

al., 1979) or fracture barriers (Aki, 1979), may control the high 
frequency radiation in the near field. Such processes may be 
difficult to duplicate in any deterministic source model. The 
response of the earth is often difficult to model. Complete 

layered-medium response is usually costly to compute for high 
frequencies, and there are circumstances where plane layered earth 
models are not adequate, such as when topographic effects are 
important (Boore, 1972; Wong and Jennings, 1975). The uncertainties 
about the exact nature of the physical processes in earthquakes 
which make deterministic synthesis difficult are, of course, not



accounted for in any empirical extrapolation procedure. What has 
yet to be determined is whether the uncertainties in the final 

results of the complicated process of deterministic modeling are 

comparable to or less than the uncertainties in using the simple 

process of empirical scaling.

There have been very few attempts to synthesize the 

characteristics of strong ground accelerations using conventional 
earthquake source models, and most previous studies employed a 

certain degree of artificial randomness in the source description to 

obtain time histories with observed characteristics (Del Mar 
Technical Associates, (1978 and 1979), for example). It has not 
been determined what particular elements of the earthquake source 
model are necessary for obtaining the frequency content and 
amplitude decay with distance commonly observed in near-field 
recordings of acceleration.

In this study we use synthetic rock site ground motions 
generated by a very simple source model. It has been found that the 
durations and decay of peak amplitudes with distance observed from 
moderate earthquakes can be modeled adequately. The source model 

used is a sum of discrete crack approximations lagged appropriately 
to simulate slightly incoherent rupture. An essential feature of 

the model is the suppression of the strong stopping phases usually 

predicted from conventional source models. The response of the 

earth was modeled using complete SH-wave layered-medium Green's 
functions. The 1966 Parkfield, California, earthquake was used as a 
qualitative guide in specifying the source model parameters and the 

layered earth structure.

2.2 SOURCE MODEL

There are a wide variety of source models available in the 
seismic literature which have been used in the synthesis of 
earthquake ground motions. Unfortunately, nearly all models 
available have demonstrated their usefulness only at relatively low 
frequencies (< 1 Hz). A recurring theme in the seismic literature



is that because of the complicated nature of observed strong motion 
accelerations, the earthquake source must be rather complicated on a 
small spatial scale. It has been argued that earthquakes must be 
inherently complicated to be consistent with observed trends in 

seismicity (Hanks, 1979; Andrews, 1979). These inferred complica­ 
tions have led several authors to construct stochastic models of the 
source details (Boore and Joyner, 1978; Del Mar Technical 
Associates, 1979; Kanamori, 1979).

Close examination of strong ground motion recordings and 

short-period teleseismic recordings suggests that the high frequency 

radiation in many earthquakes is controlled by a few discrete 

sources of energy associated with stress concentrations or fracture 

barriers, and that the dimensions of these sources are often 
considerably smaller than the overall source dimensions inferred 
from surface ground breakage, aftershock distributions, or 

teleseismic modeling. Some examples are the 1971 San Fernando, 
California, earthquake (Hanks, 1974; Bache and Barker, 1978; 
Bouchon, 1978), the 1975 Pocatello, Idaho, earthquake (Bache, et 

al., 1980), and the 1975 Horse Canyon, California, earthquake 
(Hartzell and Brune, 1979).

Motivated by such observations, we constructed a model of a 

moderate earthquake consisting of a few small, discrete events. 
Each discrete event was assumed to be an independent release of 
prescribed stress. The dynamics of rupture do not physically permit 
truly independent stress-drop sources, since the release of stress 
of one source will change the stress field of the others. However, 

the results of numerical studies by Day (1979) employing a fracture 

criterion and spontaneous rupture suggest that superposition of such 

sources may be a reasonable approximation in many cases.

The radiation from each discrete event in the model is 

represented by a geometrical far-field approximation (Fraunhofer 

approximation) of the radiation due to a simple dynamic shear crack 
embedded in a wholespace, convolved with the point-source response 
(Green's function) of the layered medium. The crack approximation
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to the fault slip history is described below. The wholespace 

radiation from a shear crack is, or course, takeoff-angle (or 
wavenumber) dependent, and for simplicity we assume that the 
appropriate far-field source-time function is that corresponding to 

the direct S-wave arrival. For all cases in this study, the source 
is located in the uniform half-space underlying the layered model, 
and most of the high frequency energy arrives at times very near the 
direct wave arrival.

2.3 CIRCULAR SHEAR CRACK REPRESENTATION

Several closed-form analytic approximations to the slip 
history of a circular shear crack with uniform stress-drop are 
available. These are generally motivated by the early analytical 
solution of Kostrov (1964) and numerical simulations, like Madariaga 
(1976), which include the stopping of rupture. Boatwright (1980) 

provides a summary of available analytic expressions. Even though 

simple expressions for the slip history on the fault exist, simple 

representations of the geometrical far-field radiation, in general, 

do not. The exception is the model of Sato and Hirasawa (1973).

The Sato and Hirasawa model (which we will call the S & H 

model.) is simply an expanding, constant rupture velocity, circular 

crack for which slip everywhere on the crack terminates instantane­ 

ously when the rupture reaches a prescribed radius. Their model is 
not a rigorous dynamic solution, as shown by the numerical solution 

of Madariaga (1976). His calculations revealed that termination of 
slip actually occurs only when healing phases propagate inward from 
the fault edge at the P and S velocities of the medium. The 
advantage of the S & H model is that its geometrical far-field 
radiation can be obtained analytically in closed form. Given the 
geometry shown in Figure 2.1, the geometrical far-field acceleration 
can be written

11



(r, 0; <J>)

Figure 2.1. Coordinate system conventions used. Shaded area represents 
the fault surface.
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cos

u_= cos 2e cos (2-1)

v cos & sin

with

4 1rD() V 2 

(1 - K 2 ) 2
H(t) - H(t -± (1 - K))

K)' Hit -y(l- K)l- H t - (1

- K)

TTDQ VL 

K(l + K) -T7 (1 + K)

where

D = slip velocity at center of crack

V = rupture velocity

L = fault radius

K = V/C sin &

t = reduced time.

(2-2)
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a,8 = compressional and shear velocities, respectively in 
the source region,

c = a or 8

H(t) = Heaviside step function

5(t) = delta function

The time domain behavior is shown in Figure 2.2. Acceleration 
initiates as a step which continues until the arrival of the 

stopping phase from the edge of the fault nearest the observer. 

From that time until the time of arrival of the stopping phase from 
the farthest edge of the fault, the acceleration is constant.

There are several noteworthy characteristics of the 
accelerations. The high frequency content is clearly dominated by

the stopping phases, which are (mathematically) delta functions.
_o 

These cause the far-field displacement spectrum to decay as to at

high frequencies. The amplitudes of the first stopping phase and

the step initiating the motion contain terms of K(l - K)~ and
2  2 (1 - K ) respectively. These terms make the amplitudes of the

early parts of the motion rather strong functions of the rupture 
velocity and the azimuth of the observer from the fault normal. For 

example, with a rupture velocity of 0.9e, where 8 is the shear speed 

of the medium, the amplitudes of the initiation phase in the plane 
of the fault and at the fault normal differ by more than a factor of 
27. For a given slip velocity, changing the rupture velocity from 
0.86 to 0.9e causes the initiation phase to increase by a factor 4.5 
in the plane of the fault, but only by 1.1 at the fault normal.

Sato and Hirasawa motivated their model with a static 
interpretation of the source displacement field shape and 
amplitude. Consequently, the relationship between stress drop and 

slip velocity at the crack center is given as

C) =|i V 1 « 1.1 V 1
0 /IT ]i ]i
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Figure 2.2. Typical shape of the Sato and Hirasawa model geometrical far- 
field acceleration. Arrows represent delta functions.
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where a is the stress drop and \i the medium shear modulus.

A rigorous expression using dynamic considerations was derived 

by Kostrov (1964) and computed by Dahlen (1974). For rupture 

velocities near e, the dynamic results suggest a better approxi­ 
mation to be

DQ « 0.8 V - (2-3)

and this relationship is used here.

The delta-function dependence in the stopping phase will, of 
course, be smoothed by an attenuating medium, but even with reason­ 
able values for the intrinsic attenuation Q , it appears that the 
predicted stopping phases are much too strong to be consistent with 
near-field observations. The amplitude of the phase can be roughly 

estimated, given linear attenuation, using the asymptotic formulas 
of Kjartansson (1979). He suggests the peak time domain amplitude 

of a causal, attenuated pulse to be roughly CQ/R times the strength 
of the input delta function, where C is the signal velocity and R is 
the distance traveled. For example, Hanks (1974) suggested that the 
initiation event for the 1971 San Fernando, California, earthquake 

had a stress drop of 350 to 1400 bars over a fault radius of 3 to 6 

km. We can estimate the relative peak amplitudes of the initiation 

and stopping phases observed at Pacoima Dam, R = 15 kilometer and 

very near the plane of the fault. Figure 2.3 shows the values 

predicted by the S & H model for a 400 bar stress drop and 5 
kilometer fault radius, for a 0 of 100. Except when the rupture 
velocity is near the shear velocity, the stopping phase is estimated 
to be considerably larger than the initiation phase. Only 
relatively slow rupture velocities can predict reasonable values. 
Since the absolute values depend on many poorly constrained 
parameters, the relative values are the most meaningful. If actual 

recordings are examined (Figure 2.4), the step-like feature is 
evident on all three components of motion about 2.5 sec into the
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Figure 2.3. Initiation-phase and stopping-phase amplitude as pre­ 
dicted by the S & H model for a 400 bar stress drop and 
5 km fault radius, assuming a Q of 100.
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record. After approximately 0.6 sec, there is a sudden downward 
phase indicating some kind of stopping, but the peak amplitudes are 

at best comparable to the initiation phase, on the order of 0.5 g. 
A better evaluation of the model is achieved by using the stopping 
time (t = 0.6 sec) to constrain the fault radius L = Vt/(l - K). 
When this is done, the predicted stopping phase is 7 to 8 times 
larger than the predicted initiation phase for all rupture 
velocities between 0.5e and 0.99s.

Clearly, the stopping phases of the S & H model are much too 
strong, in a linearly attenuating medium, to be reasonable. There 

are numerous explanations for this inadequacy of the model, and a 
detailed discussion will not be undertaken. There are two items 
worth discussing   the mode of healing and the abruptness with 

which rupture growth terminates. The S & H solution does not treat 
healing rigorously. Numerical solutions suggest that the healing of 
the fault when rupture propagation terminates is not instantaneous, 

as assumed by the S & H model, but propagates inward at the seismic 

signal velocities. The approximate treatment of healing is probably 
not as influential in controlling peak acceleration as it may at 
first seem; Madariaga's (1976) numerical solution, which treats

_o
healing more rigorously, has an u far-field displacement 
spectrum indicating that it, too, gives singular acceleration.

Of greater importance is the manner in which rupture growth 
stops. In the S & H model, rupture stopping is very idealized. The 
propagating rupture decelerates instantaneously along a smooth, 
prescribed boundary (a circle). The values of observed peak 
accelerations suggest that this approximation is unacceptable for 
predicting the characteristics of high frequency radiation.

Clearly, a decelerating model of rupture is needed. The 

D-model of Boatwright (1980) would be an appropriate choice, but at 

present no simple far-field representation of the motion from this 

model is available. Although an analytic far-field solution is not 
essential, it does add considerable flexibility to the calculations
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and facilitates interpretation of computed waveforms. As an alter­ 

native to employing a rigorous numerical solution for a decelerating 

rupture model, we choose, for simplicity, to alter the form of the 

far-field radiation from the S & H model to have a deemphasized 
stopping phase. The most convenient way to do this is to assume 

that the rupture decelerates over an annular region of width S. The 

stopping phase will then be smoothed out over a time proportional to 

S. For simplicity we use a smoothing function F, where

F- V S (1 * K) 
F= (1 T K)S

where + refers to the first and second stopping phases 
respectively. The delta functions become boxes whose height and 
duration depend on the source-receiver direction relative to the 
fault normal. This modification provides the desired effects at the 
cost of introducing a new parameter, S. The modified time domain 

far-field acceleration is shown in Figure 2.5. Note that the 
transition from the positive to negative steps is also smoothed, 
causing the stopping phase to be trapezoidal. Attenuation of the 

medium will further smooth the sharp features of motion.

In summary, the Sato and Hirasawa crack approximation appears 

to be unreasonable when high frequency radiation is of interest. 

The large stopping phases predicted by the model are, in general, 
too large to be consistent with observed values of acceleration 

close to earthquakes. A more acceptable model for the radiation 
from a stress concentration apparently requires a deemphasis of the 
high frequency radiation due to the stopping of rupture. Here we 

choose an alternative representation of the far-field radiation from 
an isolated release of stress which includes a smoothing of these 

stopping phases.
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2.4 THE SH-WAVE RESPONSE OF LAYERED EARTH MODELS

The response of rock site geologic structure is approximated 

by the complete SH-wave response for a linearly viscoelastic, 

plane-layered halfspace, computed by a direct wavenumber integration 
method. The procedure used is quite similar to that of Apse! 

(1979). The numerical procedures are described more completely in 
Appendix A.

The precise procedure differs from Apsel (1979) in only a few 

details. A complex frequency is introduced to permit equal-step 
sampling of the Fourier-Bessel integrals, an approach similar to 
that of Bouchon (1978). The total SH motion for a horizontal point 

force at the surface is computed witKin the halfspace by a recursion 
on the coefficients of up- and down-going waves. Reciprocity 
relationships are then used to obtain the surface response to any 
buried point force or point dislocation. The causal, 
frequency-independent Q operator of Kjartansson (1979) is used in 
each layer to model anelastic attenuation.

The use of discrete sources described earlier makes the use of 
layered medium response more practical than if a coherent rupture 

response were desired. To model coherent rupture, one needs a very 
dense sampling of the Green's function, which can be quite costly to 

compute. Here we use at most eight Green's function evaluations per 

seismogram.

The classification "rock site" is reserved for sites which 
have no, or very thin, soil profiles. One often assumes that the 

particulars of the rock site have little to do with determining the 

amplitudes and frequency content of the surface motion. This is 

certainly not true for the long periods (1 through 10 seconds), 
(Swanger and Boore, 1978). In the present study we have found that 
rather innocent -looking layered structures can also cause amplifi­ 
cation of the high frequencies over the uniform half-space re­ 
sponse. The amplitudes of the high-frequency arrivals are very 

complicated functions of depth and range. The behavior found here 

is quite similar to that found by DELTA (1978).
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The SH-wave response is, of course, not a complete response. 
Leaving out the P-SV motion will cause some problems. We would 
expect the seismograms to be somewhat simpler without the presence 

of high-frequency P wave energy, which is not affected by attenu­ 
ation as much as is S wave energy. We would also expect SH nodes in 
the radiation pattern to be more obvious. In other words, 

contributions from rupture through an SH-node will leave a quiet 
zone in the record which would be filled in by P-SV motion in actual 
recordings.

2.5 INCIDENT ANGLE DECOMPOSITION

When a two- or three-dimensional description of the input 

motion is desired for computing near-surface soil response or 
soil-structure interaction, synthetic ground motion provides a 
natural description of the multi-dimensional characteristics of the 

motion. When layered medium solutions are computed in the fre- 
quency-wavenumber domain, an approximate separation by angle of 

incidence can be conveniently made before a final seismogram is 
computed.

Even though no two-dimensional soil response calculations were 
made in this study, an effort was made to decompose synthetic rock 

site -motion by angle of incidence. Though this process appears 
straightforward in theory, it has some difficulties in practice. 
The difficulties arise because the time domain signal from a given 

ray-parameter (or angle of incidence), or a range of ray-parameters, 
is, in general, not causal (see Chapman, 1978). In the near-field 

there is also no guarantee that one can associate a given angle of 

incidence with a single horizontal wavenumber. This is most easily 

seen in the simplest of examples, a spherical wave in a whole 

space. In the time-space domain a spherical wave might be written

u(R, t) = £ 6 (t - R/c)
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where c is the velocity of propagation and A is a constant. In the 

frequency-space domain

u(R, to) = A
-iuR/C

and in a cylindrical frequency-wavenumber domain

u(k, = A/ M e-

1/2

> 0

R =
1/2

It is usually assumed that the horizontal wavenumber k is related to 

the incident angle o- through the relationship

k = ~~c~~

Note "that the representation of a wave which one would expect, at 
any observer point, to contain a single angle of incidence actually 
consists of an integral over all wavenumbers. It is only for large 
a) and r that this integral will be dominated by a narrow range of 
k. It is clear that separation by angle of incidence through 
filtering in the u-k domain may have problems at close distances.

As an example, we attempted a decomposition of a near-field 
Green's function by computing the response due to overlapping 
triangular wavenumber filters corresponding to various ranges of 
angles of incidence and assumed k = usin&/e, where e, is the 
shear velocity in the shallowest rock layer. Overlapping windows 
were used to avoid truncation effects. Figure (2.6) shows the 
complete seismogram and the seismogram components for 15 degree
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incident-angle windows. Note that the largest component is larger 
in amplitude than the complete seismogram, and considerable 

destructive interference occurs between bands. Although the above 

decomposition is approximate, it provides a convenient means for 
introducing realistic seismic motion into multi-dimensional non­ 

linear site simulations. It is clear that the input wave field 
spans a wide range of incidence angles, and the assumption of a 
single input angle can be quite poor.

2.6 SYNTHETIC ROCK SITE MOTIONS

In this section we describe the ground motions simulated using 
the individual elements described in the previous sections. For 

this purpose the 1966 Parkfield, California, earthquake is used as a 

guide to construction of a reasonable source model of a moderate 

sized event, and the near-field recordings of this event are used to 

verify the amplitudes and durations of the synthesized ground 

motions at close distance. We are not attempting to "model" the 
Parkfield ground motion recordings, but only trying to obtain 
qualitative agreement in amplitudes and durations of observed motion.

Details of the Parkfield event such as the fault length and 

the depth of rupture appear to be only partially understood, con­ 

sidering the range of model parameters which have been used to model 
the near-field displacement observations. Most studies suggest that 
rupture extended past Station Number 2 to the south, while some 
evidence suggests termination of rupture at Gold Hill, 10 kilometers 
to the north of Station Number 2 (Lindh and Boore, 1974). Bouchon 
(1979) suggests that the characteristics of motion recorded at 
Station Number 2 require very shallow rupture under Station Number 
2, including significant radiation coming from slip in the near- 

surface sediments. Archuleta and Day (1980) obtained satisfactory 

fits to displacement histories at all stations using a much deeper 
rupture. It appears that the conclusions reached by these authors
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are strongly dependent on the type of source model assumed and on 
the manner in which the response of the near surface sediments is 

dealt with.

Here we assume a fault length of 34 kilometers and a fault 

width of 6 kilometers. The fault is divided into eight slightly 

overlapping, discrete sources, each with diameter equal to the fault 
width. For simplicity we will assume that each source has identical 
properties except for time of initiation. The time of initiation is 

controlled by a "global" rupture velocity. The free parameters are 
the stress drop, "local" rupture velocity, the smoothing parameter, 

stopping, the global rupture velocity, and the source depth. These 

parameters were varied until the strong motion duration, maximum 
acceleration, and maximum velocity observed at Stations Number 5 and 

8 were approximated.

Table 2.1 summarizes the source parameters used for the 

discrete sources. The constraint of fitting observed duration, peak 

acceleration, and peak velocity required a fast local rupture 

velocity (0.90) with a relatively deep source (7.5 kilometers). The 
total moment of the eight sources is approximately 2 or 3 times 
larger than values normally quoted for Parkfield. This is to be 
expected since we are employing bi-directional rupture sources; the 

time domain contributions from these sources will be dominated by 
the rupture toward the observer and the rupture going away will 
affect only the long periods. The stress drop used is only a local 
stress drop; the area over which stress is released in this model is 
less than the total area which would be inferred assuming a 
rectangular fault surface containing all of the discrete sources.

Figure 2.7 shows the geometry of the source and receivers. 

The global rupture advances toward the stations, which are located 
on a line normal to the fault strike.
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TABLE 2.1 

DISCRETE SOURCE PARAMETERS USED

Local and global rupture velocity 3.15 km/sec

Coherent rupture radius 2.2 km

Smoothed rupture radius 0.8 km

Stress drop 95 bars

Moment 7 x 10^5 dyne-cm

Depth 7.5 km
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GLOBAL RUPTURE

  5 km 
= Discrete source location

= Observer locations
  10 km

30 km

Figure 2.7. Source and receiver geometry. Receiver distances are mea­ 
sured from the surface projection of the fault plane.
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The layered structure used (Table 2.2) was taken from Anderson 
(1974). The layer shear Q's used were upper bounds of the observed 

values quoted by DELTA (1978).

The computed velocities and accelerations are shown in Figure 
2.8. The motions shown are the parallel (with respect to the fault 
strike) component, which for all cases was larger than the 
perpendicular component. At the close stations, the largest motions 
are caused by the closest discrete source. At 30 kilometers the 
last few sources contribute almost equally.

The recording at 5 kilometers has a quiet period just before 
the onset of the largest motion. This is due to the global rupture 

passing through an SH-wave node. The second to last discrete source 
gives virtually no contribution because of this effect. This is not 
realistic, since P-SV waves would radiate significantly at these 

azimuths, and would fill in the quiet area. The point-source 
approximation of the local rupture also exaggerates the effect of 
the node in the SH-wave double-couple radiation pattern.

Local seismic directivity plays a strong role in determining 
the overall shape of the waveforms. At the 5 kilometer station the 
waveform from each discrete source is rather narrow. At more dis­ 
tant stations, the waveforms broaden. The superposition of wavelets 

of similar shape from the discrete sources leads to unusual looking 

seismograms. The discrete source model would probably give better 
results if the sources had the varied dimensions and rupture char­ 
acteristics which would be inferred from a more detailed modeling of 
the data.

The response spectra from the three distances are shown in 

Figures 2.9, 2.10, and 2.11. The pseudo-velocity spectrum at 5 

kilometers is somewhat differently shaped from these at the distant 

sites. The distant sites have peaked spectra, an effect which is 
probably related to the periodicity of arrivals from the discrete 

sources. The long period behavior observed is due to the smoothing 

performed to the S & H far-field time histories. The smoothing
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TABLE 2.2

LAYERED STRUCTURE

Thickness 

(km)

Shear 
Velocity 

(km/sec)
Density 

(gm/cm )

Shear 

0

0.28

1.27

2.19

3.76

0.98

1.62

2.89

3.46

2.10

2.55

2.63

2.85

50

100

200

350
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Figure 2.8. Simulated velocities and accelerations

32



SAND10HD5
10' w xR'^\R^^F-y T^T^ j^ "Tn-'^PTf:.r x'X \v>:$$y/ x x \xM--fe^'/'>; x\v1̂ ^ 

 : / V \ x-VXX>v-- ,' V x VA-Xvvv x x v \ -, .Vx..\*;
X X\X^vs^:>\ /XX'*&&£& /\ ̂ .'^'^S*
\Vy vv'A '^-/' vx Vx\\'- \^ ,\ - <\XX\ / W-'*. X N\ X ^ 

V^XxX /^^X^.^^\\ x^^^<X^^<^x ^>\X.\X

10'

10

\N/ V>-V>XAX\v.\\. x v>>v -^ ' xA--X x \-v^ -v''-V ; /-' V-v^^y>^^^^^^^X^> V\ ̂ X/x//yV x' 'v\x^^-x '\-''v 
S^Sv/ X X x y^>^/ x' ^ N v^yx<'  X ;

PERIOD CSEC.T
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operator preserves the integral of acceleration but not that of 
velocity. This causes an overestimation of the frequency content 
beyond 3 sec periods at 10 and 30 kilometers but has almost no 
effect on the time window used at 5 kilometers. In cases where long 
periods are also of interest, more appropriate operators can be 
employed.

The source parameters were normalized to give reasonable fits 
to observed peak velocity and acceleration at 5 kilometers and 10 

kilometers distance. The motion at 30 kilometers was not used to 

constrain the source model. When the peak values obtained at that 
distance were compared to recorded values (Figure 2.12), reasonable 
agreement was found with observations. One would expect the 
accelerations at such distances to be a sensitive function of the 

intrinsic attenuation assumed for the earth model. The values for 

shear Q employed here are upper bounds of observed values and have 

only a small effect on the computed amplitudes. The decay of 
amplitude with distance is more strongly dependent on geometrical 
spreading and radiation pattern of the source. Even though shear 
Q's are probably the most poorly constrained earth parameters, the 
near-field motion may not be too sensitive to the values assumed.

2.7 SUMMARY AND CONCLUSIONS

A simple earthquake model consisting of discrete sources of 

concentrated stress release was used to synthesize the high fre­ 
quency ground motion near a moderate-sized seismic event. A far- 

field radiation approximation was determined for each discrete 

source and was convolved with the appropriate Green's function for 
SH-wave radiation in a layered earth structure. An important modi­ 
fication made to published far-field radiation from propagating 

shear cracks is the smoothing of stopping phases radiated from the 
fault edges.

The 1966 Parkfield, California, earthquake was used as a guide 
to specifying the source parameters. These parameters were chosen 
to obtain time histories, at distances of 5 and 10 km from the
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fault, with strong motion duration, peak acceleration, and peak 

velocity similar to those observed at Parkfield accelerograph 

stations number 5 and 8. Using the same source model, ground motion 
was also synthesized for a receiver at 30 km from the fault, and the 
computed values of peak acceleration and velocity agree well with 
those observed from moderate-sized earthquakes at that distance.

The procedure employed here has several advantages over others 
which have been proposed. The use of a few discrete sources is con­ 
siderably more practical economically than attempting a detailed 

integration over a large fault surface. The discrete source ap­ 
proach, when used with a layered earth response, can apparently pro­ 
duce complexity in the computed acceleration comparable to that ob­ 
served in actual accelerograms, and this is achieved without re­ 

course to purely statistical artifices. It has been suggested in 

the seismological literature that stress concentrations may be the 

most reasonable physical explanation for such complexity in observed 
acceleration.

Certain details of the procedure as applied in this study can 

be improved. It was assumed here that all sources were equally 
spaced over the fault and had the same source parameters. This is 

evidenced to some degree by the artificial regularities apparent in 

the computed time histories. Varying the size and location of the 
discrete events to more closely model the details of observed 
acceleration and velocity would substantially improve the scheme. 
The addition of P-SV radiation is also needed to improve results, 
and the required computational tools are currently being assembled.
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3. SITE SOIL MODELS

3.1 BACKGROUND

Because of increasing interest in the seismic safety and 

design of nuclear power plants, earth dams and other large civil 
systems, there has been considerable research activity during the 

past decade to more fully understand the behavior of soils under 
cyclic loading. Typical seismic disturbances produce highly 

irregular and complex loading of in situ soils, resulting from 
near-cyclic stress waves involving numerous reversals in the sign of 
the stress rate. When soils are subjected to such loading, they 
exhibit substantial noncoincidence of unloading-reloading paths 

(hysteresis), and strong dependence of the hysteresis on the history 
of deformation.

Early seismic designs were performed with highly simplified 

methods of analysis which treated the soil as linearly elastic 
material. For seismic disturbances of small amplitude, the use of 

elastic soil models is reasonable; however, such small amplitude 
disturbances are generally of no great concern to the seismic 

community. For seismic disturbances of sufficient magnitude to 

produce structural damage, the use of elastic models for soil 

response is unrealistic, since it implies stress levels in the soil 
that may be many times higher than the strength exhibited by the 
soil in the laboratory.

Today, the approach most commonly used by the earthquake 
engineering community to investigate seismic ground motion is the 

equivalent linear method (Idress and Seed, 1968). In this approach, 

the response of a soil-over-bedrock site is assumed to be governed 
by vertically traveling SH waves induced in the soil by the motion 
of the underlying bedrock. Soil behavior is modeled in an 
approximate manner by an equivalent linear shear model, whose 
properties are selected through an iterative procedure in accord 
with the average strain occurring at various depths in the soil. 
The equivalent linear method is attractive from a computational and
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an applications standpoint, and has provided adequate answers for 
many problems of interest. For the case of strong seismic dis­ 

turbances, in which soil behavior is decidedly nonlinear, there is, 
however, some question about the accuracy of the equivalent linear 
method, and a number of investigations have recently been undertaken 
to examine this question, using truly nonlinear soil models. From 
these, it has been found that important differences arise between 

the response of a site predicted by truly nonlinear methods and that 
predicted by the equivalent linear method, especially for large 

amplitude motions (Joyner and Chen, 1975; Valera, et al, 1978; 
Taylor and Larkin, 1978). The nonlinear soil models that have been 
used in these nonlinear studies include the Ramberg-Osgood model 
(Streeter, Wylie and Rickart, 1974; Faccioli, Santayo and Leon, 

1973), an elasto-plastic model (Richart, 1975), Iwan-type or 
sub-layer models (Joyner and Chen, 1975; Valera, et_ aj_, 1978, Taylor 

and Larkin, 1978; Bieber and Hovland, 1980), and the FLM model 
(Finn, Lee and Martin, 1975).

Each of the nonlinear models mentioned above has certain 
limitations in describing the general response of soils to the type 
of loading produced by a seismic disturbance. Some of the models 
are strictly one-dimensional, most do not allow for the effect of 

deformation history on hysteretic response, and none are capable of 
describing the phenomenon termed cyclic creep (ratcheting), which is 

commonly observed in soils subjected to cyclic loading about a 

prestressed state.

Recent advancements in computer technology have now made 

multi-dimensional nonlinear finite element analyses economically 

feasible for ground motion studies. As a result, there has been 
considerable activity during the past several years to develop 
multi-dimensional models for predicting the response of soils 

during cyclic loading.* Also, one such model has recently been used

*For an excellent summary of the latest advancements in the 
development of multi-dimensional soil models for describing cyclic 
behavior, see Pande and Zienkiewicz (1980).
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in conjunction with a large finite element code to analyze 
seismic-induced ground motion and corresponding soil-structure 

interaction (Isenberg, Vaughn and Sandier, 1978). It appears that 

the potential reduction in present design conservatism of nuclear 
power plants and other large civil systems that may be achievable 

through the use of such advanced methods of analysis could lead to 
very substantial savings in design and construction costs.

In the following sections, the two soil models utilized in the 
present study are described in detail. The first of these is the 

new endochronic model, which has just been recently introduced, and 
the second model is the equivalent linear model. Both models are 

applied to the cyclic simple shear data for drained sand reported by 

Cuellar, Bazant, Krizek and Silver (1977).

3.2 THE ENDOCHRONIC SOIL MODEL

In 1971, a new approach for modeling the rate-independent yet 

history-dependent response of inelastic materials was proposed 
(Valanis, 1971a; 1971b). This theory, called endochronic, was 
three-dimensional, and it differed from the previous theories of 

plasticity in that it did not require the concept of yield surface 

for i.ts development. The theory was based on the hypothesis that 

the current state of stress in a material is a linear functional of 

the entire history of inelastic deformation, with the history 
defined with respect to a time scale, called intrinsic time, which 

is itself a property of the material at hand.

In the early efforts to apply the endochronic theory to real 
materials, attention was focussed mainly on metals (Valanis, 1974; 

Valanis and Wu, 1975; and Valanis, 1975). From this work, it became 
apparent that the theory was capable of predicting not only the 
gross features of inelastic metal response but also some observed 

features of metal plasticity that lay beyond the scope of existing 
plasticity theories. Furthermore, since the theory provided an
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approach for modeling materials having a vanishing elastic region 
and for which inelastic strain develops gradually from the onset of 

loading, its potential for modeling soils was quickly recognized 

(Bazant, 1974). In subsequent work, the ability of the endochronic 

approach to describe important features of soil behavior, including 
densification, hysteresis and liquefaction of sand under cyclic 

simple shear was demonstrated (Bazant and Krizek, 1976; Cuellar, 

Bazant, Krizek and Silver, 1977). The work of Bazant and his 
co-workers was, nevertheless, largely limited to simple shear, and 

there was a need to explore the potential of the theory under more 
complex states of deformation.

The original endochronic theory, which Bazant adopted and 
modified to encompass several effects characteristic of soils was, 
however, unable to predict closed hysteresis loops for small 

unload-reload processes under one-dimensional conditions. For such 
processes, the theory predicted a slope at the reloading point that 
was smaller than the unloading slope at the same point. This 
feature of the theory did not appear to be in agreement with the 

observed behavior of most materials, including soils, although it 
must be admitted that there are very few data available on the 
response of materials to such processes to either verify or 
invalidate this feature of the theory. Nonetheless, it seemed 
reasonable to assume that most materials exhibit elastic behavior 

at, and in the small neighborhood of, the point of unloading, and 

this was not the case with the original endochronic theory. 
Furthermore, some suspicions were raised that the small unload- 
reload feature of the theory could lead to numerical difficulties if 

the model was used in conjunction with computer codes to analyze 

wave propagation problems (Sandier, 1978), although this was never 
demonstrated numerically in a well-defined wave propagation problem.

In 1978, S developed a general endochronic model for soils, 
which was intended for use in conjunction with advanced finite 
element codes for analyzing seismic ground motion and soil-structure
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interaction problems (Valanis and Read, 1978; Read and Valanis, 
1979). From this investigation, a soil model was developed which 
provided several improvements over the earlier theory but still 

suffered from the lack of hysteresis loop closure for small 

unload-reload processes, although some degree of improvement in this

regard was obtained.
3 In a subsequent investigation, S reexamined the problem of

hysteretic loop closure, and from this effort, a new endochronic 
soil model was formulated (Valanis, 1979; Valanis and Read, 1979; 

Valanis and Read, 1980). The new theory is not only free of the 

undesirable small unload-reload response feature, but provides 

greater modeling capability with remarkably few material 
parameters. It also has the capability to describe most of the 
features of soil behavior important for seismic loading, including 
densification, dilatancy, strain hardening/softening, hysteresis and 
cyclic creep (ratcheting).

In the present study, the new endochronic soil model is used 
to describe the behavior of the soil (sand) at the site under 

consideration. The simple shear version of the model used for this 
purpose is described below and its application to cyclic simple 
shear data for drained sand is illustrated.

3.2.1 Endochronic Model for Simple Shear of Sand

A detailed development and discussion of the basic equations 

that describe the new endochronic soil theory has been recently 

given (Valanis and Read, 1979, 1980), and will not be repeated 
here. Instead, we go directly to the equations that describe simple 
shear behavior, which are listed below:

z

s = H(z)/ p(z-z') £r dz' (3-1)  b

ds = G(dY-2d&) (3-2) 

dz = del (3-3)
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Here, s represents the shear stress, y is the engineering shear 
strain, 2©- denotes the plastic strain component, and z is the 
intrinsic time. Furthermore, G represents the elastic shear 

modulus, H(z) is a hardening/softening function, and p denotes a 
weakly singular kernel function having the property p(0) = <« . Eq. 
3-1 is the inelastic constitutive relation that describes the shear 
stress as a linear functional of the plastic strain history, while 
Eq. 3-2 is simply an incremental form of Hooke's law. Eq. 3-3 
defines the monotonically increasing intrinsic time in terms of the 
increment of plastic strain. The above system of equations contains 

two functions, H(z) and p(z-z'), whose forms must be specified for a 

given material .

In the case of loose sand, the following forms of H and p 
appear to provide an excellent description of the cyclic simple 
shear over many cycles of deformation:

-k(z-z')
(3.4)

H(z) = H0 + (H^ - H0 ) d-e'^2 ) (3-5)

where k, H , H^ and n are material-dependent constants.

Upon substituting Eqs. 3-4 and 3-5 into Eq. 3-1, and 
considering a deformation history involving numerous reversals in 
the shear strain rate, it can be shown (Valanis and Read, 1979) that 
Eq. 3-1 can be recast in the following form:

s = H(z) F(z) - 2 F(Z-ZI )- F(z-z 2

F(z-zn )

where z,, z«, ... z denote the values of the intrinsic time z 

at which reversals in the sign of the shear strain rate have 

occurred, and F(z) is defined as:
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F(z) = Erf(VkF) (3-7)

where Erf ( ) denotes the error function. Equations 3-2, 3-3 and 

3-6, with H(z) and F(z) defined by Eqs. 3-5 and 3-7, constitute a 

set of simultaneous equations that can be solved by numerical 

methods to give the shear stress s for a prescribed shear strain 
history.

It is worthwhile to point out a feature of the simple shear 

model described above that can greatly increase the computing 
efficiency of a numerical scheme for these equations. Note that the 

right hand side of Eq. 3-6 contains an increasing number of terms as 

the number of cycles, and hence the number of reversals in the sign 
of the shear strain rate, increases. In general, there will be 2n+l 
terms after n cycles of deformation. Also, the values of the 2n 
quantities z,, z ? , ... z~ must be retained in computer 

memory. This implies that when there are many cycles of 

deformation, the model could become computationally unattractive.

Some important advantages occur from a computing standpoint, 
however, if the function F(z) has a form which saturates to a 
limiting value as z increases, which is the case for the F(z) given 
in Eq. 3-7.* When saturation, or near saturation, of a term occurs 
there is, of course, no further need to calculate the term, since 

for all future deformation the intrinsic time continues to increase 

and the term remains at its limiting value. Similar comments apply 

also to the general term F(z-z.)« Secondly, when a term F(z-z.) 

saturates, it no longer becomes necessary to retain in computer 
memory the value of z., or for that matter, any of the z. which 

are less than z.; under some circumstances, this can significantly 

reduce the computer storage requirement.

*When the function F(z) has a form that saturates to a limiting 
value as z increases, we can say that the corresponding endochronic 
model exhibits "fading memory."
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Using the simplifications noted above, a numerical scheme was 
formulated to calculate the shear stress from a prescribed strain 
history. Further developments were required, however, to obtain a 

numerical scheme adequate for treating the complex strain histories 

encountered in the numerical wave propagation simulations. Those 
developments will be described in Section 4.3.1. The governing 
system of equations was solved by an iterative approach based on 

Newton's method, using the computer subroutine described in Appendix 
C.

3.2.2 Application of Model to Cyclic Data for Sand

Cuellar, Bazant, Krizek and Silver (1977) have presented 
considerable data on the response of drained sand to numerous cycles 
of simple shear. Their studies were performed with a simple shear 
device that was a modified version of the type initially designed by 
the Norwegian Geotechnical Institute. The cyclic tests were 
performed on cylindrical samples of sand, which were enclosed in a 
wire-reinforced membrane. The end surfaces of the cylindrical 
samples were subjected to cyclic relative displacements normal to 
the axis of the samples, while a fixed distance was maintained 
between these surfaces. The frequency of the cyclic relative 

displacement was 1 Hz. Moreover, each test was conducted with a 

dead load applied to the specimen along the direction of the 

cylinder axis.

Although the experimental device described above is commonly 

referred to as a "simple shear" device, it is well known that the 
states of stress that it produces in a soil specimen are not 

strictly simple shear. In order to have simple shear, uniform shear 

stresses would have to be applied over the entire surface of the 
sample, including the curved lateral surface of the cylindrical 

specimen; this is not, of course, the boundary condition applied by 
the wire-reinforced flexible membrane. Furthermore, although such
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tests are typically performed under a constant vertical load, one 

finds that the pressure in the soil does not remain constant during 
a test, but increases due to the build-up of the lateral stresses 

from hardening.

A detailed analysis of the response of sand in the type of 
cyclic simple shear device described above has recently been 
performed with a dynamic finite element code (Bazant, Krizek and 

Shieh, 1979). The results from this study reveal that the 
calculated cyclic response of sand in simple shear device is similar 
to that calculated under the assumption of simple shear. 

Consequently, this result provides some rationale for using data 
from such devices to evaluate material parameters in simple shear 
models.

On this basis, the endochronic simple shear model described 
earlier was applied to the cyclic simple shear data for drained sand 

given by Cuellar, Bazant, Krizek and Silver (1977). The particular 
data considered corresponded to an initial relative density of 45 
percent, an applied vertical stress of 192 kPa, and a peak shear 
strain of 0.3 percent.

The initial state from which the intrinsic time z is measured 

was taken to be the state prior to the initiation of shearing. A 

more precise treatment would take the compressed state of the mate­ 

rial prior to the application of the vertical load as the initial 

state. However, no information was available on the deformation 

that occurred during vertical load application, and consequently the 
corresponding increment in intrinsic time could not be determined.

Using the numerical subroutine listed in Appendix C, the 
endochronic simple shear model was fit to the cyclic simple shear 
data by an iterative procedure. This was achieved by using the 
actual strain history measured during the experiments to drive the 
calculations. Moreover, a uniform strain increment of Ay = 0.01 

percent was used in the calculations. Excellent agreement between
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the data and the calculations was obtained over 300 cycles of 
response with the following values of the simple shear model 

parameters:

G = 39.5 MPa H^ = 74.7 kPa
HQ = 28.73 kPa n = 61.2 (3-8)
k = 1500

The calculated stress-strain paths for cycles 1, 2, 10 and 300, 
based on the values of the parameters listed above, are shown in 

Figure 3.1. Also shown on these figures are the corresponding 
experimental data from Cuellar, Bazant, Krizek and Silver (1977), 
which is denoted by the open circles; the dashed curves in these 
figures are simply smooth curves drawn through the data. The close 

agreement between the calculated and observed response of the sand 
over 300 cycles of deformation illustrates, the powerful capability 
of the new endochronic theory to describe the complex hysteretic 
behavior of soils over many cycles of deformation. Note also, that 

the model requires only five parameters to accomplish this.

Another interesting feature of the endochronic soil model is 
its ability to describe cyclic creep, or ratcheting, a commonly 

observed characteristic of soils subjected to cyclic loading about a 
prestressed state. To illustrate the ability of the model to 

describe this phenomenon, the simple shear model described above was 

cycled between stress limits of 28.73 kPa and 2.39 kPa for 30 
cycles, after initial loading to the upper stress limit. The 

calculated responses of the model for cycles 1 to 3, 10 and 30 is 
shown in Figure 3.2, which illustrates the growth in strain that 
occurs with increasing cycles of deformation. Note that the 

predicted response approaches elastic behavior with increasing 
cycles of deformation due to the hardening present in the model.

3.3 THE EQUIVALENT LINEAR MODEL

The endochronic model described in the previous section 
accurately simulates the stress-strain response of geologic
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Figure 3.2. Response of endochronic shear model to asymmetric cyclic 
deformation, illustrating the phenomenon of cyclic creep 
(ratcheting).
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materials experiencing cyclic deformation. Furthermore, and in 

contrast to conventional equivalent linear models, the endochronic 

model is a three-dimensional theory. On the other hand, the model 

can only be used in computer codes which permit nonlinear material 

response and solve boundary value problems by direct time integ­ 

ration. Thus, the potentially greater accuracy of the endochronic 

model relative to conventional, inherently one-dimensional 

equivalent linear models must be weighed against the increased cost 

associated with its utilization.

To assess differences in response predictions between the 

endochronic model and more conventional theories of soils, an 

equivalent linear model was derived for the dry sand described 

earlier and incorporated into the SHAKE code. In the equivalent 

linear approach, the soil profile is divided into a set of 

horizontal layers and strain dependent material properties for the 

constituent soils specified. In each layer, constant, uniform 

material properties are determined iteratively, the iteration 

process terminating when the strains computed in each layer match 

the strains used to evaluate layer material properties.

The SHAKE code models each layer using linear viscoelastic 

theory wherein the complex-valued shear modulus takes the 

frequency-insensitive form

G* = G(l + 2iB). (3-9)

Here B is a measure of the soil critical damplinq ratio, G is the
1/2 elastic shear modulus, and i = (-1) ' .

Equivalence between the equivalent linear model and the 

endochronic theory was established using the method described in 

Joyner and Chen (1975). In that method the viscoelastic model was 

exercised around the shear strain path

cos » ' (

G and B were determined such that the maximum shear stress, 

and the energy dissipation per unit volume per cycle, W,
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equalled that of the endochronic model when it was cycled between

the strain limits - y < Y < Y   For the endochronic theorymax max
a typical first cycle hystersis loop is shown in Figure 3.3. As can

be seen in the fiqure, the loop is not closed, thus s was takenmax
to be the average of the stress at the beginning and end of the 

cycle, i.e., (s. + s )/2. The energy dissipation W was computed 

as the area inside the loop.

Energy dissipation per cycle for the viscoelastic model is

s * dt - * Y smax s1n

where

sin 6 = 28/(l + 48 2 ) . (3-12) 

For the harmonic strain history, Eq. (3-10), we have

s = Vav 6(1 + 4B 2 ) cos (ut + 6) (3-13)

Thus, from Eq. (3-13)

smax ' * ^ + 48? >

From Eos. (3-11) to (3-14) it follows that

(3-15)

(3-16)

To account for strain magnitude sensitivity, G and B were

computed for five values of y ; then logarithmic interpolationmax "
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Figure 3.3. First cycle stress-strain response for crystal silica
No. 20 sand loaded in shear between fixed strain limits 
using endochronic model.
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was used in the SHAKE code to compute G and 3 at intermediate values 
of strain. In the present program the material modeled was the 
crystal silica number 20 sand, discussed by Cuellar, et al (1977),
and the computed values of G and e, along with values of ymav »max
s and W are given in Table 3.1. All material properties weremax y
based on experimental data obtained from simple shear tests where 
the confining pressure was 114.9 kPa.
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TABLE 3.1 

STRAIN DEPENDENT SHEAR MODULI G AND CRITICAL DAMPING RATIOS

6 USED IN SHAKE CALCULATIONS. 

CONFINING PRESSURE WAS 114.9 kPA.

Ymax
10-5

io-4
10-3

10-2

10-1

smax

0.

1.

12.

41.

69.

(kPa)

196

815

293

489

042

W (J/m3)

1.

1.

4.

5.

1.

446

182

3

79

38

X

X

X

X

X

10~5

10-2

10°

102

104

G (MPa)

19.

18.

12.

3.

0.

56

14

21

716

532

8

0.

0.

0.

0.

0.

001763

01037

056066

24776

41406
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4. SOIL SITE GROUND MOTION

4.1 INTRODUCTION

In Section 2, a deterministic approach was employed to con­ 
struct synthetic accelerograms at a range of distances from a 
strike-slip fault. The synthetic ground motion was evaluated for 
sites on rock (shear velocity equal to 980 m/sec). The method, 
though limited to SH waves, incorporated source finiteness, elastic 
response of the crust, and anelastic attenuation, in a fairly 
rigorous manner.

For soils, however, the linear viscoelastic treatment used for 
rock sites would be inappropriate. Section 3 described a new non­ 
linear constitutive model appropriate for soils, the endochronic 
model, and illustrated its capability to describe cyclic simple 
shear data for dry sand. Then, an equivalent linear representation 
was derived for the same dry sand simple shear data.

In this section, we extend the modeling study of ground motion 
to sites on cohesionless soil. Our primary objective is to examine 
the predictive capabilities of the deterministic modeling approach 
to site-dependent ground motion estimation, taking account of the 
nonlinear response of soil deposits. The capabilities of the 
approach are evaluated through comparisons with ground motion data 
and equivalent linear analyses.

The sites studied are assumed to overlie the earth structure 
employed in Section 2 so that the synthetic accelerograms computed 
in Section 2 provide the upgoing wave motion at the base of the soil 
deposit. The response of the soil deposit is described by the endo­ 
chronic model of dry sand developed in Section 3.2.2. The transient 
response of the soil deposit is then obtained by a finite element 
method, assuming simple shear deformation (vertically propagating SH 
waves) in the soil column. We repeat the analysis of the soil 
column response using the SHAKE code with the equivalent linear re­ 
presentation derived in Section 3.3. Section 4.2 describes the set 
of calculations which was performed for the study, Section 4.3 
describes the numerical methods employed, and Section 4.4
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presents and discusses the numerical results. In the discussion of 
results, detailed consideration is given to (1) the performance of 
the endochronic constitutive model in describing complex stress 

histories, (2) the sensitivity of the nonlinear analysis to details 
of the soil profile discretization, (3) comparison of the nonlinear 

results with trends in earthquake data, and (4) comparison of the 
nonlinear solutions with those obtained using the equivalent linear 
model.

4.2 DESCRIPTION OF THE NONLINEAR NUMERICAL STUDIES

Table 4.1 summarizes the eight problems treated in this 

study. Three different soil profiles, denoted A, B, and C, were 
considered. We also considered three different depths to bedrock   
10, 30, and 100 meters. Finally, four different synthetic 

accelerograms were assumed for the bedrock input motion: the 

bedrock accelerograms at 5, 10, and 30 km distance, respectively, 

from Section 2, as well as the synthetic accelerogram at 5 km 

distance, rescaled to give a peak acceleration of 1 g. Table 4.1 
also summarizes the peak acceleration and velocity values obtained 
at the ground surface in each calculation. No equivalent linear 
analysis was performed for soil profiles B and C, since these pro­ 

files were introduced to check the sensitivity of the nonlinear 
calculations to small variations in the soil profile.

4.2.1. Soil Profiles Employed

Three soil profiles, denoted A, B, and C, were examined in 
this study. Each approximates the properties of the drained sand to 
which the endochronic constitutive model was fit in Section 3.2.2.*

* The values of the endochronic soil model parameters for dry sand 
(G, k, and n) given in Section 3.2.2., Equation 3-8, differ from 
those reported in Valanis and Read (1980), due to an error in the 
earlier report. The numerical calculations described here were 
completed prior to discovery of this error, and employed the 
numerical values G = 19.75 mPa, k = 750, n = 30.6. Since the 
objectives of this study do not rely on replicating the response 
of a particular soil sample, this discrepancy is not of concern. 
Nevertheless, one of the nonlinear calculations was subsequently 
repeated using numerical values consistent with the experimental 
data fit in Section 3.2.2, with the result that peak values of 
acceleration and velocity obtained using the two sets of soil 
parameters differed by only a few percent.
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The depth dependences of the shear modulus, G, and the shear 
strength, H^, are discussed in Appendix B, and the three soil 

profiles differ in the way in which such depth dependences are 
approximated. In Profile A, the depth dependences are averaged over 
layers which vary in thickness, with a minimum thickness of 2 meters 
in the upper part of the profile; the resulting values of G, H^ and 
the shear velocity, V , are shown in Figure 4.1. In Profile B, 

shown in Figure 4.2., the very low values of G and Represent in the 
uppermost layer of Profile A have been increased, and the remainder 

of Profile B is a smoothed version of Profile A. Profile C is 

assigned uniform values of G and H^, as shown in Figure 4.2.

In each case, the soil deposit is assumed to have a uniform
3 density of 1462 kg/m , and to overlie a base-rock with density

3 2100 kg/m , and and to have a shear velocity 980 m/sec. The
endochronic simple shear parameters k and n» and the ratio H /H^, 

are assumed to be independent of depth.

4.2.2. The Input Ground Motion

As already noted, the base-rock input transients for the soil 
site analyses were developed from the synthetic accelerograms gen­ 
erated for rock sites at distances of 5, 10, and 30 kilometers from 

a simple strike-slip fault model. The method of driving the soil 
column accounts for the fact that the base-rock motion is modified 
by the presence of the soil. The upgoing wave motion computed for 
rock sites is imposed at the base of the soil by means -of superposed 
body forces, while downgoing waves produced by the presence of the 
soil and free surface are transmitted back into the base-rock.

An alternate approach would have been to drive the soil 
calculations using actual accelerograms recorded on bedrock at 
various source-receiver distances. An advantage of that approach 
would have been to eliminate uncertainties associated with our 
simplistic source model and our neglect of the P-SV wave contri­ 

bution to ground motion. However, the latter might also be a
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disadvantage of using recorded motion, since our model of soil 

response assumes that the disturbance in the soil propagates as a 

shear wave.

A principal advantage of using theoretically derived driving 
motion is that the source-model and base-rock characteristics can be 
fixed, leading to a consistent set of distance-dependent ground- 

motion estimates. We can isolate the effects of surface geology and 
distance from the source. A second significant advantage of using 

synthetic input motion is that the one-dimensional study of soil 
response can readily be extended to two-dimensional configurations. 
Recorded accelerograms provide a suitable input for two-dimensional 
site simulations only if we prescribe the spatial character of the 
emergent wave field (e.g., vertically emergent shear waves); the 
theoretical methods, on the other hand, are capable of providing a 
complete description of wave type and angle of incidence. Although 

we did not extend our soil modeling to two-dimensions, because of 
computational obstacles encountered with the endochronic model (see 

Appendix D), a theoretical approach to specifying multi-dimen­ 

sional seismic input motion for two-dimensional geologies was pre­ 
sented in Section 2.

4.3 NUMERICAL METHODS

The nonlinear soil response calculations were performed using 

the SWIS (Stress Waves in Solids) code (Frazier and Petersen, 1974), 
modified to accommodate the endochronic constitutive model. SWIS is 
a finite element code for the transient analysis of one-, two-, and 
three-dimensional, linear or nonlinear continua. The corresponding 

analyses with the equivalent linear technique were performed with 

the SHAKE code (Schnabel, et_ aj_., 1972), which is based on the 
Haskell matrix method (Haskell, 1953) for plane-layered media.
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4.3.1 Nonlinear Calculations Using SWIS

The SWIS finite element code employs a lumped-mass, explicit 

time-stepping method to integrate the equations of motion of a con­ 
tinuum. A stiffness matrix is not assembled and stored; element- 

centered stresses are stored and updated from strain-rates, and 
nodal restoring forces are computed by one-point quadratures. In 
fact, for one-dimensional calculations, the method is indistin­ 

guishable from that of explicit, Lagrangian finite difference 

codes. Details of the numerical method are given in Frazier and 
Petersen (1974), and here we discuss only the use of artificial 
viscosity, the specification of the incoming motion, and the 
numerical treatment of the endochronic constitutive model.

The numerical method accurately propagates frequency compo­ 
nents with wavelengths greater than roughly 8 to 10 element dimen­ 
sions. Shorter wavelengths become significantly dispersed as a 

consequence of the discretization, and, unless damped out, spurious 

high-frequency oscillations result and eventually contaminate the 

numerical solution. Such high-frequency contamination would be 

particularly damaging because of the memory, and ratcheting capa­ 
bility, of the endochronic theory; furthermore, from a computational 
efficiency standpoint, each strain-rate reversal adds a term to the 

constitutive expression, as reference to Equation 3-6 will reveal.

The explicit integration method does not inherently damp the 
short wavelength components of the numerical solution (aside from 
the hysteretic damping present in the endochronic model). For this 
reason, artificial viscosity was introduced into the algorithm. The 
artificial viscosity leads to an attenuation mechanism for harmonic 

elastic waves proportional to frequency squared. Using a minimum 
element dimension of 0.5 meters at the top of the soil column de­ 
scribed in Figure 4.1, for example, increasing to 1.6 meters at the 
base, an artificial viscosity can be assigned which is sufficient to 

suppress virtually all spurious oscillations without significantly 
attenuating frequencies lower than 10 Hz. Thus, for frequencies of

64



interest, the artificial viscosity in the calculation does not sig­ 
nificantly disturb the rate-independent properties of the endo- 

chronic constitutive model.

The introduction of the incoming motion at the base of the 

soil column, as well as the transmitting boundary condition which 

simulates the presence of a base-rock halfspace, were treated by a 
straightforward modification of the scheme employed by Joyner and 

Chen (1975), and we refer the reader to their paper for details. In 
their scheme, the transmitting boundary coincides with the soil-bed­ 
rock interface, and the upgoing wave motion is introduced by super­ 

imposing an appropriate traction on the transmitting boundary. In 
our variant, the uppermost part of the bedrock is represented by the 

lowermost two elements in the finite element column and was ter­ 

minated below by a transmitting boundary; the upgoing wave was 
generated by appropriate body forces applied at the top of the 
bedrock. This modification was introduced for convenience and does 
not alter the efficacy of the scheme.

The endochronic simple shear model discussed in Section 3.2.1 
requires solution of a set of simultaneous, nonlinear equations 
(Equations 3-2, 3-3, and 3-6) for each finite element at each time 
step. Given the shear strain increment dy, we use an iterative pro­ 

cedure based on Newton's method to solve for the intrinsic time 

increment dz such that both Equations 3-2 and 3-6 return the same 

shear stress increment ds. That is, we seek zeroes of the function 

Kdz):

I(dz) = c[dY - 2 sgn (d Y )dz ] - H(z + dz) [Erf /k~(z + dz)

N . n(-1)" L Erf Vk(z + dz - zj + H(z) 
rT^l n

Erf

- 2 £ (-l) n + l Erf Vk(z -zj | (4-1) 

= 0

n=
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where H(z) and k are as defined in Section 3.2.1, z is the value of
intrinsic time at the previous time step, z is the intrinsic timefh n
associated with the n strain-rate reversal, and N is the number 

of reversals in the sign of the strain-rate which have occurred in 

an element. Once we have obtained dz, we can calculate ds from 
Hooke's Law:

ds = G[dY - 2 sgn (dY )dz] (4-2)

The function I(dz) has infinite slope at dz = 0 whenever a 

strain-rate reversal occurs. In order to obtain a well-behaved 
numerical scheme, we make a change of variable in Equation 4-1 from 
dz to w, where w = Vdz. The modified equation for w is then more 
readily solved by Newton's method, and adequate accuracy is 

generally acquired in 2 or 3 iterations.

The summations in Equation 4-1 involve a term for each 

strain-rate reversal which -has occurred in the element; it is also
necessary to store the intrinsic time z associated with eachn
reversal. These features require considerable computation time and 
computer storage, and we have invoked two simplifications in an 

effort to control the length of these series. First, we note that 
the error functions in the series "saturate" to the value 1 for 

large, values of the argument. If sufficient plastic strain accrues 
in an element, the leading terms can be successively replaced by ± 
2. Unfortunately, this simplification has proven to be of minimal 
utility in the present calculations, which involve complex loading 
histories, sometimes exhibiting many cycles of nearly elastic 
loading and unloading.

The second simplification makes use of the observation that 

successive terms in the series have opposite signs, and that the 
derivative of each term is a monotonically decreasing function of
the argument. If the difference z. +1 - z. is small compared to1 1? ill
(z - z. +,) , the i and i+1 terms can be neglected, since

differentiation of the error function leads to the approximation
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ErfVk(z - zT - Erf Vk(z -

The criterion that the i and i+1 terms are deleted whenever (z
1 1? - z. +,) ' » (z-+i- z.) has been used effectively in the

finite element calculations and substantially reduces the compu­ 

tational effort and required storage. This criterion corresponds to 

the physical notion of "fading memory," i.e., the material loses 
memory of small, nearly elastic hysteresis loops once they have been 

succeeded by significant amounts of plastic strain. Generally, it 

was found in practice that retention of 10 to 20 reversal terms was 
sufficient. An exception was the uppermost element; the free sur­ 

face condition resulted in low strains in this element, and 20 to 30 
reversal terms had to be retained to achieve the desired accuracy.

Appendix C lists the FORTRAN subroutine for the endochronic 
constitutive model of simple shear of dry sand which was used in the 

present study in conjunction with the SWIS finite element code.

4.3.2 Equivalent Linear Calculations with SHAKE

The computer code SHAKE, (Schnabel, et. al., 1972) was used in 

this .program for the equivalent linear calculations. The code 

computes the response induced in a system of homogeneous, visco- 

elastic layers, of infinite horizontal extent, by a vertically 

travelling shear wave. Acceleration, strain and stress histories 

are first computed in the frequency domain, using interlayer 
displacement and stress compatibility conditions, and are then 
transformed to the time domain using a fast Fourier Transform 

algorithm.

The soil profile motion is driven by an acceleration history, 

the object motion, that can be applied to any layer. After being 
transformed to the frequency domain all contributions to the object 
motion above a user specified maximum frequency are removed. The
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SHAKE code assumes strain dependent material properties. Starting 

with an initial guess for layer shear moduli and critical damping 
ratios, the code iterates until the material properties at the 
beginning of an iteration correspond to the strains predicted at the 

end of the iteration; typically no more than five iterations are 
necessary. The SHAKE code accounts for the depth dependence of soil 
shear moduli by assuming

G = GR (am /a R ) 1/2 (4-3)

where

am = a v (1 + 2 KQ )/3, % = P gd. (4-4)

Here a is the soil confining pressure, a is the vertical 
stress caused by soil overburden, K is the user defined coef­ 

ficient of earth pressure and aR is the reference confining pres­ 

sure at which G equals GR . In the present study

KQ = 0.4, a R = 114.9 kPa. (4-5)

Before SHAKE could be used in this investigation, two coding errors 
had to be corrected. As received, SHAKE calculated stress histories 
by multiplying strain histories by the elastic shear modulus; thus, 

computed stress-strain histories for cyclic loading exhibited no 
hysteresis. This was corrected by identifying the stress history 
with the inverse fast Fourier transform of the product of complex 
shear modulus, Equation (3.9), and the complex-valued strain Fourier 
components. The other, less obvious, error was incorrect dynamic 
dimensioning of the temporary storage array AA, the consequence of 
which was that some fast Fourier transformation information computed 

at the beginning of program execution was inadvertently set to zero 
before being used to compute stress and strain histories. This 

error was corrected in the main routine by adding 8 to the variable 

NS so that it was defined as

NS = NAA +2 (NAMAX + 4) (4-6)
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A total of six analyses was performed, corresponding to problems 1 

to 3 and 6 to 8 of Table 4.1. Layer thicknesses used to model the 
100 m soil profile are shown in Figure 4.3. The number of layers is 

the maximum permitted in SHAKE. For the 10 m (30 m) analyses, the 
layering was identical to the top 10 m (30 m) of the 100 m profile. 

In each analysis the object motion was an acceleration history con­ 

sisting of 1000 values at 0.01 sec intervals. However, all compo­ 

nents for frequencies greater than 20 Hz were discarded to reduce 
computation time. In all calculations, removal of the high fre­ 
quency Fourier component changed the peak input acceleration by no 
more than 1.5 percent.

4.4 NUMERICAL RESULTS

Figures 4.4 and 4.5 show acceleration and velocity waveforms 
at the surface of the soil for several of the nonlinear studies. 
Figure 4.4 displays the effects of soil thickness on these wave­ 
forms, and Figure 4.5 depicts the different character of the surface 
motion at the three site-to-fault distances. One effect of in­ 

creasing the soil thickness is to lengthen the characteristic period 
associated with the peak acceleration and velocity. A second effect 

is, of course, to lengthen the resonance period governing the late- 

time reverberations. The waveform differences evident in Figure 4.5 

among the three receiver locations are largely associated with the 
differences in bedrock motion discussed in Section 2; directivity, 

and anelastic and geometric attenuation along the propagation path 

from the source, are largely responsible for the differences in fre­ 

quency content and amplitude.

Table 4.1 summarizes the peak motions (acceleration and 
velocity) obtained from the present analyses. Note that in all 

cases except Problem 8, the nonlinear analyses give soil site peak 
accelerations which are significantly smaller than the corresponding 

rock site peak acceleration. Furthermore, the equivalent linear
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Fiqure 4.3. Soil layering used in SHAKE calculations
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Figure 4.4. Computed surface acceleration and velocity time histories 
for three different soil deposit thicknesses (Problems 
1, 2, and 6). Also shown is the bedrock response. 
Distance from the fault in each case was 5 kilometers.
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Fiqure 4.5. Surface acceleration and velocity time histories computed 
for 30 meter deep soil sites at 5, 10, and 30 kilometer 
distance from source. (Problems, 6, 7 and 8).
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method substantially overestimates peak accelerations compared with 

the nonlinear analyses, again excepting Problem 8. Peak velocity is 
also overestimated by the equivalent linear method, though by a 

smaller amount.

In this section we analyze the results of the nonlinear cal­ 

culations in detail and compare them with the equivalent linear 
results. Section 4.4.1 examines the constitutive behavior of the 

endochronic model in the nonlinear calculations. Section 4.4.2. 
examines the sensitivity of the nonlinear results to details of the 
soil profile; results of Problems 4, 5, and 6 representing Profiles 
B, C, and A respectively, are compared. Section 4.4.3 compares the 
calculated peak motion obtained by our analytical method with 
empirical peak motion relationships derived from earthquake ground 

motion data. Section 4.4.4. compares the nonlinear results to those 
obtained by the equivalent linear method.

4.4.1. Peformance of the Endochronic Constitutive Model

The endochronic model employed in this study has perhaps the 

most advanced capabilities for modeling the hysteretic behavior of 

soils of any of the existing soil models. Within the context of 
simple shear, to which the current study is limited, the modeling 

capability of the theory includes hardening, cyclic creep (rat­ 

cheting) and elastic behavior for infinitesimal unloading or re­ 

loading following a strain-rate reversal. The latter capability was 

absent from earlier versions of the endochronic theory, and led to 

criticism of the theory's suitability for numerical wave propagation 

calculations (Sandier, 1978). The new theory, used in the present 
study, does not, however, suffer from this objection, and to demon­ 
strate the excellent behavior of this model in wave propagation 
studies, the details of computed stress-strain paths are provided.

Figures 4.6 through 4.11 show the stress-strain paths 
computed at several different depths in the soil deposit for the six 
nonlinear calculations performed for Profile A   Problems 1 through 
3 and 6 through 8. Triangles on the curves delimit 0.5 second time
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Fiqure 4.6. Stress-strain paths predicted by the endochronic model 
at several depths in the soil deposit (Problem 1).
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Figure 4.7. Stress-strain paths predicted by the endochronic model at 
several depths in the soil deposit (Problem 2).
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Figure 4.10. Stress-strain paths predicted by the endochronic model 
at several depths in the soil deposit (Problem 7).
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intervals. Taken together, these figures verify two anticipated 
features of the model. First of all, loading and unloading indeed 
invariably initiate along a slope corresponding to the shear 
modulus. Second, all hysteresis loops close.

A third feature of the endochronic model evident in these 
figures relates to the absence of abrupt "corners" in the stress- 

strain paths. Pyke (1979) has discussed several inadequacies 
associated with those soil models satisfying a generalized set of 

Masing criteria, when subjected to irregular, transient loading. 

This category would include many standard soil models, including the 

Iwan class of models. In particular, Pyke noted that under 

irregular loading, these models exhibit sharp corners in the stress- 

strain path, in conflict with experimental results. This phenomenon 

occurs in Iwan-type models whenever a loading or unloading curve 
intersects a previous loading or unloading curve. Figures 4.6 
through 4.11 demonstrate that such unrealistic behavior is not 

displayed by the endochronic model; discontinuities of slope occur 

only at points of loading rate reversal, in agreement with obser­ 
vations.

Figure 4.7 shows that energy dissipation, as indicated by 
hysteresis loop area, is greater at shallow depths than it is near 
the center and base of the soil deposit. The four subsequent 

figures each give results at 0.25, 5.5, 10.5, and 15.5 meters depth, 

and among these depths, the greatest dissipation in each case 

apparently occurs at 5.5 meters depth. It will be seen in Section 
4.4.4. that this is approximately the depth above which the peak 
motion estimates from the equivalent linear method diverge from 

those of the nonlinear method.

A particularly vivid illustration of hardening occurs in 

Figure 4.8. There are several cycles of motion between stress 

limits of approximately +; 8 kPa, followed by a large, highly 
dissipative strain cycle, followed by several more cycles between +_ 
8 kPa. The secant modulus associated with the latter cyclic motion
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is nearly 50 percent greater than that of the initial cyclic motion, 

thereby illustrating the significant hardening that occurs through 

the deformation history.

Finally, we note that the capability of the endochronic model 

to describe cyclic creep (ratcheting) under asymmetric loading is 
well illustrated, for instance, in Figures 4.6, 4.8 and 4.10. 

Cyclic creep is commonly observed in soils subjected to cyclic 

loading about some prestressed state, and leads to an accumulation 

of strain with successive cyclic loading.

4.4.2 Sensitivity to Soil Profile Details

The depth dependences of shear modulus and shear strength 
deduced in Appendix 8 for loose sand imply that both approach zero 
as depth below the surface decreases. Nonlinear calculations 4, 5, 
and 6 for Profiles B, C, and A, respectively, based on the same 

input seismogram (5 km site) and soil thickness (30 meters), are 

compared here to delineate the sensitivity of computed motion to the 

details of the soil profile.

Figure 4.12 shows maximum values of shear stress and strain 

obtained as functions of depth for the three cases. Peak stresses 
for Profiles A and B are indistinguishable; peak stress for Profile 
C coincides with the other two cases down to about 7 meters, then 

diverges somewhat. Peak strain is similar for Profiles A and B 

below about 3 meters depth; Profile B gives somewhat smoother 
results, reflecting the smoother approximation of the shear modulus 

and shear strength depth dependence. At shallower depths, however, 

Profile A results in a large strain concentration at about 2 meters 
depth which is absent in the calculation for Profile B. Peak strain 

for Profile C is lower than for the other 2 cases, for depths above 
20 meters, and decreases smoothly toward zero near the surface.

Figure 4.13 shows maximum values of acceleration and velocity 

as functions of depth for the three cases. Both peak acceleration 
and peak velocity for Profiles A and B are nearly identical 
throughout the soil column. Both peak acceleration and velocity are
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somewhat lower for Profile C, particularly around 10 meters depth; 
at the surface, however, peak acceleration for Profile C is nearly 
the same as for the other two cases, and peak velocity is only 20 

percent lower for Case C. Apparently peak ground motion is not 

sensitive to the precise manner in which the depth dependence of 

shear modulus and shear strength are discretized, although maximum 

shear strain can be sensitive to this discretization. We have not 

shown comparisons of time histories of motion, but these also are 

very similar for all three cases, and nearly indistinguishable for 
Profiles A and B.

4.4.3 Comparison of Peak Motion Estimates with Empirical Trends

Inferences about site-dependent ground motion are severely 
limited by the absence of sufficient strong motion data for 

distances less than 20 kilometers. It is important, therefore, that 
analytical methods be developed to supplement the empirical approach 

to ground motion prediction. The current study has focussed 
attention on an admittedly idealized configuration   the source is 
simplified, the soil deposit is taken to be a loose, drained sand, 

and the P-SV wave contribution to ground motion has been neglected. 
In spite of these idealizations, the approach does account in a 
fairly consistent manner for such distance-dependent effects as 

anelastic attenuation, dispersion, and earthquake source finiteness; 
furthermore, the endochronic soil model was found to reproduce very 

accurately the type of behavior a cohesionless soil would exhibit 

under conditions of simple shear.

It is worthwhile to examine the site-dependent peak motion 
estimates obtained from this study to establish to what extent they 

are consistent with well-established empirical trends and to what 
extent they support the statistically marginal inferences. A number 

of studies have attempted to delineate the effect of site geologic 
conditions on peak ground motion, and on its attenuation with dis­ 

tance from the energy source. Duke et al. (1972) and Donovan 
(1973) concluded from analysis of strong motion data from the 1971
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San Fernando earthquake that, for near-field sites, peak accel­ 
erations recorded on rock are generally higher than peak acceler­ 
ations recorded on soil, whereas at distances greater than 40 to 60 
kilometers, soil sites experience higher peak accelerations. Seed 
et. al. (1976a) studied data from 8 western United States earth­ 

quakes with magnitudes of about 6.5. They similarly found that peak 
acceleration was higher on rock than on soil in the near-field (dis­ 

tance less than ~40 kilometers); furthermore, it was their finding 
that peak acceleration attenuates more slowly with distance for 
stiff soil sites than for sites on rock, and more slowly still for 

sites on deep, cohesionless soil. Trifunac and Brady (1976) 
analyzed data from 57 earthquakes in the western United States and 

concluded that for magnitudes less than 6, peak accelerations are 

somewhat higher on rock sites than on soil sites. For magnitudes 
greater than 6, on the other hand, they found significant differ­ 

ences in peak accelerations for the two classes of sites. The 
analysis of Trifunac and Brady assumed however, that the distance- 

attenuation curve has a prescribed shape, and is independent of site 

geology. If peak acceleration on soil sites actually attenuates 

more slowly with distance than peak acceleration on rock sites, then 

the different behavior observed by Trifunac and Brady for the two 
magnitude classifications (less than magnitude 6 and greater than 
magnitude 6) might simply reflect a difference in the average 

distance to the energy source for observations in the two magnitude 
classes. Finally, Boore et. al. (1980) report no statistically 
significant difference between soil and rock site peak acceleration 
for the San Fernando earthquake.

Figure 4.14 contains plots of peak acceleration and peak 
velocity versus distance for the three rock site computations and 

three 30-meter-deep soil site computations (Problems 6, 7, and 8). 
The solid curves are from Boore et. al. (1980) and represent the 70 
percent prediction interval obtained from an analysis of strong 

motion data from earthquakes in the magnitude range 5.0 to 5.7. In 
their study, Boore et. al. limited consideration to data recorded at 
distances between 5 and 30 kilometers from the fault slippage, and
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did not differentiate the data in this magnitude class according to 
site geology. The peak accelerations and velocities calculated on 
rock sites all fall within the 70 percent prediction interval of 
Boore et. al. Recall that the source model was constrained to give 

peak acceleration and velocity values at 5 and 10 kilometers 

consistent with the Parkfield earthquake (magnitude 5.5), so the 

significant point here is that the same source model yields good 

agreement with the empirical trends at 30 kilometers distance as 
well.

The nonlinear soil site calculations corroborate rather 
strongly the inference that peak acceleration recorded on cohesion- 

less soil attenuates more slowly with distance than does peak accel­ 

eration recorded on rock. At 5 kilometers distance from the fault 

slippage, peak acceleration computed on the loose sand deposit is 
about 40 percent of that computed on rock, whereas at 30 kilometers 
distance, peak acceleration on the sand deposit exceeds that on rock 
by about a factor of 3.

Figure 4.15 summarizes the comparison in another manner. The 

solid and dashed curves relating peak acceleration for different 

site conditions to bedrock peak acceleration are taken from Seed et. 
al. (1976a) who derived them from empirical distance attenuation 

curves. The curves show the tendency for low-level acceleration 

peaks to be progressively more amplified by increasingly softer site 

conditions, and for acceleration peaks in excess of 0.1 to 0.2 g to 

be progressively more attenuated by increasingly softer site condi­ 

tions. The nonlinear calculations, represented by open circles, 

show a similar pattern; undoubtedly, the consideration of an artifi­ 
cially loose sand deposit in the present study has led to a strong 
enhancement of the trend, however, and accordingly we emphasize the 

qualitative agreement with the empirical trend rather than the 

quantitative results.

The triangles in Figure 4.15 show the corresponding results 
for the equivalent linear calculations. In each case, the equiv­ 
alent linear model leads to a peak acceleration of soil exceeding
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Figure 4.15. Relationship of peak soil site acceleration to peak bed­ 
rock acceleration for the soil site calculations of this 
study. The dashed and solid curves are from Seed, et al 
(1976a), and represent approximate relationships for 
various site conditions derived from empirical distance 
attenuation curves (the empirical curves above 0.3 g 
are based on extrapolation of ground motion data).



the bedrock value. The equivalent linear method is apparently 

incapable of adequately simulating the strong attenuative character 
of cohesionless soil under the high acceleration levels character­ 
istic of the near-field.

The dependence of peak velocity data on site conditions 

appears to be more consistent than that of peak acceleration. Seed 

et. aj_. (1976a), Trifunac and Brady (1976), and Boore et_. a]_. (1980) 
each find that peak velocity is systematically higher on soil sites 
than on rock sites. As Figure 4.14 shows, the computed velocity 
maxima are within the 70 percent prediction interval for the rock 

site calculations, and the least distant soil site calculation, and 

somewhat higher for the two more distant soil site calculations. 

Peak velocity is amplified by a factor of about 1.5 at 10 kilometers 
distance and 2.5 at 30 kilometers distance, which compares to 1.9 
for the empirically derived (distance-independent) estimate of 
Trifunac (1976) for magnitude 5.5 events.

In summary, the nonlinear calculations are consistent with 

empirical trends governing peak motion where the trends are well- 

established by earthquake data. In the near-field, where bedrock 

acceleration peaks characteristically exceed 0.1 to 0.2 g, nonlinear 
behavior is important in sharply reducing the value of peak soil 

acceleration, and the equivalent linear method did not reproduce 
this effect. Earthquake data are consistent with this sharp reduc­ 
tion in the near-field, but are sparse and inconclusive. Calculated 
peak velocities show amplification on soil sites comparable to that 

inferred empirically. The amplification effect disappears in the 
calculation at 5 kilometers distance, perhaps reflecting the predom­ 
inance of high frequencies in the bedrock motion at this distance.

4.4.4 Comparison of Nonlinear and Equivalent Linear Solutions

In the last section we alluded to the inability of the 

equivalent linear approximation to model the sharp reduction of peak 
acceleration in the near field which was obtained for the nonlinear 

soil calculations. In this section we return to this issue and 
compare the nonlinear and equivalent linear results in more detail.
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Time Histories

Figures 4.16 and 4.17 compare time histories of free surface 
acceleration and velocity, respectively, computed by the two methods 
for Problems 1, 2, and 6. The main differences in acceleration time 

histories are (1) the occurrence of large acceleration peaks in the 

equivalent linear calculations which are truncated in the nonlinear 
calculations, and (2) the fact that the equivalent linear method 
results in a smoother overall waveform, without the sharp cusps and 
short-period irregularities present in the nonlinear calculations.

The former effect probably reflects the finite shear strength 

inherent in the endochronic soil model. As discussed in Appendix B, 

the shear strength H is a linear function of depth, and goes to 

zero at the surface. Therefore, the derivative of shear strength 
with respect to depth limits the shear stress gradient which can 

develop at the surface, and consequently limits the size of 

acceleration peaks. In our case, this upper limit would be about 

0.37 g; this upper limit was not actually realized in the 

calculations, however.

The second difference can be attributed to the fact that the 
equivalent linear method utilizes a time-independent damping which 
is determined by the peak strain, whereas the effective damping 

provided by the nonlinear endochronic model is governed by the 

instantaneous strain amplitudes in the soil   small amplitude 

disturbances incur little attenuation. Furthermore, nonlinear 
materials couple low- and high-frequency components of motion (see, 
for example, the analysis of Valera et. al. 1978), a phenomenon 
which is absent from the equivalent linear calculations.

The velocity time histories obtained by the two methods, 

Figure 4.17, are in better accord. Here the predominant 

discrepancies in the equivalent linear solutions are (1) the 
characteristic period of the largest peak is too short, and (2) the 
predominant period of the late-time reverberations is too long. The 

first discrepancy again reflects the inability of the equivalent 
linear method to model the large damping occasioned by the shear
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EQUIVALENT LINEAR
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0.0-  vrvJV
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o
u
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Figure 4.16. Comparison of acceleration time histories obtained by 
equivalent linear and nonlinear analyses, for Problems 
1, 2, and 6.
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EQUIVALENT LINEAR NONLINEAR

YMIN =-2.153-001 YMAX = 4.498-001
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OJi U> 2.0 3J3 4.0 5JD 6.0 7.0 803

Figure 4.17. Comparison of velocity time histories obtained by 
equivalent linear and nonlinear analyses, for Problems 
I, 2, and 6.
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strength gradient in the soil. The second discrepancy is 

attributable to the fact that the equivalent linear shear modulus is 
determined by peak strain. The late-time reverberations, which 

involve strain amplitudes considerably lower than the peak strain, 

are controlled by an inappropriately low shear modulus, and 

therefore too low a resonant frequency.

Peak Motion

We have already noted the failure of the equivalent linear 
method to model the strong attenuation of large acceleration peaks 

which occurred in the nonlinear calculations. Figure 4.18 
summarizes the comparison of peak accelerations and velocities 
predicted by each method. Peak acceleration and velocity are 
consistently overestimated by the equivalent linear method when the 
bedrock acceleration exceeds 0.1 to 0.2 g. The overestimate of peak 
acceleration is greater than the overestimate of peak velocity.

Figures 4.19 and 4.20 present peak acceleration and velocity, 

respectively, as functions of depth, for three calculations at three 

different distances from the source. At the 30 kilometer site 
(bedrock peak acceleration equal to 0.04 g), the two methods are in 
reasonable agreement throughout the soil column. Peak acceleration 

decreases with depth. At the two nearer sites there is generally 
very good agreement between the two methods at depths below about 5 

meters; at about this depth, however, the equivalent linear method 

predicts an abrupt increase in peak motion, whereas the nonlinear 
method does not. At the two nearer sites, the equivalent linear 

method predicts that peak acceleration at depth is less than its 
surface value, while the nonlinear method predicts that peak 

acceleration at depth generally exceeds its surface value.

Response Spectra

Figure 4.21 shows response spectra (pseudo relative velocity) 
for two cases, Problem 2 and Problem 6. For Problem 6 (30 meter 
deep soil, 5 kilometers distance from the source) the equivalent
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Figure 4.20. Peak velocity versus depth, for nonlinear and equivalent 
linear calculations (Problems 6, 7, and 8). Open circles 
indicate depths at which output was obtained from the 
equivalent linear calculations.
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linear method overestimates the response over most of the spectrum, 
most conspicuously for periods below about 0.2 seconds. The 
spectral maximum at about one second period is shifted somewhat 

toward longer periods in the equivalent linear solution. For 
Problem 2 (100 meter deep soil, 5 kilometers distance) the two 
methods are in better overall agreement; the equivalent linear 

response exceeds the nonlinear response for periods below about 0.1 
seconds.

Several previous investigations have compared nonlinear and 

equivalent linear response of soil columns to complex seismic 

input. Joyner and Chen (1975), Taylor and Larkin (1978), and Valera 
et a!. (1978) each observe that the nonlinear response exceeds the 

equivalent linear response in the neighborhood of 0.1 to 0.5 second 
periods; this effect is not present in the response spectra of 
Figure 4.21. There is, however, a tendency for the nonlinear 
response to increase relative to the equivalent linear response in 

the 0.1 to 0.5 second range as the soil column thickness increases. 
This may reconcile our results with those of Joyner and Chen, who 
studied a soil column of 200 meters thickness. There is also a 
tendency for the nonlinear response to increase in this period 
range, relative to the equivalent linear response, when the input 
peak acceleration is reduced. This tendency is evidenced in Table 

4.2, and perhaps reconciles our results with those of Taylor and 
Larkin, since their study employed an input time history with peak 

acceleration equal to only 0.14 g. The results of Valera et al. 

are somewhat more difficult to reconcile with ours, since they 

employed a 30.5 meter layer of dry sand and a maximum input 
acceleration of 0.5 g, which is similar to our Problem 6. They 

found that nonlinear response of one of their soil constitutive 
models exceeded the equivalent linear response in the 0.05 to 0.2 
second period range, while the nonlinear response of the other 

constitutive model studied exceeded the equivalent linear response 
only in the 0.1 to 0.2 second period range. Our sand constitutive
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TABLE 4.2

RATIO OF REPONSE SPECTRAL VALUES OBTAINED BY EQUIVALENT 

LINEAR METHOD TO THOSE OBTAINED BY NONLINEAR METHOD

Equivalent Linear 
PSRV Ratio Nonlinear

Problem Peak Input 0.1 0.2 0.5
Number Acceleration (g) sec sec sec

3 1.0 1.33 1.11 1.60

6 0.41 1.92 1.49 1.63

7 0.23 1.13 1.37 1.42

8 0.04 0.82 0.92 1.03
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model differs from the two used by Valera et. al., and we have used 

model parameters corresponding to an artificially loose sand (void 
ratio 0.8, compared to 0.5 for Valera et. aj_.), so it is not 

unreasonable that our nonlinear response is lower relative to the 
equivalent linear analysis in this restricted period range.

In summary, we find that the performance of the equivalent 

linear approximation for the response of cohesionless soil depends 
on both the nature of the soil deposit and the amplitude level of 
the base rock acceleration. Peak motion estimates by the equivalent 

linear method are adequate for peak input accelerations less than 
0.1 to 0.2 g, but are excessively conservative for stronger input 
accelerations. The overestimate of peak motion by the equivalent 
linear method is apparently due to an inability of the method to 

adequately model energy loss in the uppermost several meters of the 
soil column. Response spectra for the equivalent linear calcu­ 

lations are generally too conservative in the short period (0.1 to 

0.5 second) range when the input acceleration is large. This result 

contrasts with that of other recent investigations, but the discrep­ 
ancy is not great and appears to be associated with the combined 
effects of soil thickness, input acceleration level, and nature of 
the soil representation.
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5. SUMMARY OF RESULTS

In this investigation, our objective has been to develop and 
evaluate a new analytical approach to estimating site-dependent 

earthquake ground motion. The approach is based on (1) assuming a 
physical model for the earthquake source and wave propagation path 

to the site, then using theoretical seismogram methods to compute 
base-rock seismic motion at the site, (2) applying a new endochronic 

constitutive model to represent the hysteretic response of local 
soil deposits, and (3) computing surface motion at the site using a 

transient, dynamic finite element method. The predictive 
capabilities of the approach were examined by comparing ground 
motion calculations with (1) empirically derived ground motion 

trends and (2) ground motion simulated by the equivalent linear 

method. The analytical approach has been structured to potentially 
provide a three-dimensional ground motion capability, in that the 
theoretical seismic method, the endochronic constitutive theory, and 
the transient finite element method each have been developed within 

a fully three-dimensional framework.

In Section 2, we described the construction of base-rock 
ground motion for a simplified earthquake source model. The 
earthquake model consisted of an assemblage of discrete, circular 

cracks, each described by the Sato and Hirasawa approximate 
solution, representing an extended source. Propagation of the 
source disturbance through a stratified, anelastic earth model was 
accomplished by a direct wavenumber integration method, with 

calculations restricted to the SH component of motion. The 
Parkfield earthquake was used as a guide to selection of source 

parameters. Peak acceleration, peak velocity, and strong motion 
duration were required to correlate with near-field recordings of 
that event in the distance range 5 to 10 km, and once the source 
parameters were adjusted to give this agreement, it was found that 
reasonable agreement was automatically achieved with empirical 

ground motion trends at 30 km distance. The study led to the 
following conclusions:
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  Strong motion observations are, in general, 
inconsistent with a rupture mechanism in which 
crack growth stops instantaneously. More 
realistic rupture deceleration is required in 
the simulations to achieve acceptable high 

frequency ground motion estimates in the near 

field.

  The SH component of motion is apparently 

adequate for simulating ground motion 

consistent with observed values of peak 
acceleration and velocity. Provided some 

source complexity is introduced, as in our 

composite model, reasonable strong motion 
duration can also be simulated with the SH 
component alone. However, neglect of the P-SV 

component results in somewhat unrealistic time 

histories; in particular, rupture through an SH 
radiation-pattern node produces an artificial 
"quiet" period in the accelerograms. Addition 
of the P-SV contribution would substantially 
improve the qualitative agreement with observed 
ground motion time histories, but would 
probably have little effect on peak motion 

estimates.

  Similarity of the source wavelets from each 
individual source event, as well as the 

uniformity of the assumed rupture velocity, 
lead to artificial periodicities in the 
simulated ground motion. Introduction of 
variable rupture velocity and variable source 
dimensions would give more realistic waveforms.

Section 3 described a new constitutive model for soils, the 
Endochronic model. The model was fit to cyclic shear data for dry 
sand, and then an equivalent linear representation was derived for 

the same sand data. We note the following points:
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  In agreement with observed behavior of soils, 
the new endochronic model predicts a gradual 
accumulation of plastic strain from the onset 
of loading. Furthermore, it exhibits elastic 
behavior at the initiation of unloading and 

reloading processes, and closure of all 
hysteresic loops. The general three-dimen­ 
sional version of the model also has the 
capability to describe most of the features of 
soil behavior important for seismic loading, 
including densification, dilatancy, strain 

hardening/softening, and cyclic creep 

(ratcheting).

  Using the endochronic model, close agreement 

was achieved between calculated and observed 
response of dry sand over 300 cycles of 
deformation.

  Only five parameters were required to 

accomplish the fit to the sand data.

The constitutive models of Section 3 and the base-rock ground 

motion simulations of Section 2 were applied in Section 4 to compute 
soil site ground motion. A transient finite element method was used 
to compute the response of a column of dry sand whose constitutive 

behavior was represented by the endochronic model; the SHAKE code 
was used to compute the response of the same soil column represented 
by the equivalent linear model. The main conclusions from this part 
of the study are given below.

  The endochronic constitutive model performs 

very effectively in a wave propagation code 

under complex loading histories such as those 

provided by our synthetic seismograms. In 

particular, the calculations clearly illustrate 
the following features: (i) loading and 
unloading initiate along the elastic slope,
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(ii) all hysteresis loops close, (iii) the 
model does not display the unrealistic 
"corners" displayed by Iwan-type models when a 

loading or unloading curve interesects a pre­ 

vious loading, or unloading, curve, (iv) sig­ 

nificant strain hardening occurs through the 
deformation history, and (v) ratcheting 

develops under asymmetric loading.

The ground motion calculations with the Endo- 
chronic model are not strongly sensitive to 
details of the discretization of the soil, even 
though the distribution of maximum shear strain 
may be.

The nonlinear calculations are consistent with 
empirical trends governing peak motion where 
the trends are well-established by earthquake 

data. In the near-field, where bedrock 

acceleration peaks characteristically exceed 
0.1 to 0.2 g, nonlinear behavior is important 
in sharply reducing the value of peak soil 
acceleration, and the equivalent linear method 
did not reproduce this effect. Earthquake data 

are consistent with this sharp reduction in the 
near-field, but are sparse and inconclusive. 

Calculated peak velocities show amplification 

on soil sites comparable to that inferred 
empirically. The amplification effect dis­ 
appears in the calculation at 5 kilometers dis­ 
tance, perhaps reflecting the predominance of 

high frequencies in our modeling of bedrock 
motion at this distance.

The performance of the equivalent linear model 
for the response of cohesionless soil depends 
on both the nature of the soil deposit and the
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amplitude level of the baserock acceleration. 
Peak motion estimates by the equivalent linear 
method are adequate for peak input acceler­ 

ations less than 0.1 to 0.2 g, but are ex­ 
cessively conservative for stronger input 

accelerations. The overestimate of peak motion 
by the equivalent linear method is apparently 
due to an inability of the method to adequately 
model energy loss in the uppermost several 

meters of the soil column. Response spectra 
obtained from the equivalent linear calcu­ 

lations are generally too conservative in the 

short period (0.1 to 0.5 second) range when the 
input acceleration is large. This result con­ 
trasts with that of other recent investiga­ 
tions, but the discrepancy is not great and 
appears to be associated with the combined 
effects of soil thickness, input acceleration 

level, and nature of the soil representation.

105



REFERENCES

Aki, K., 1979, "Characterization of Barriers on an Earthquake 
Fault," J. Geophys. Res.,, Vol. 84, op. 6140-6148.

Aki, K., and M. Bouchon, 1977, "Discrete Wavenumber Representation
of Seismic Source Wave Fields," Bull. Seism. Soc. Amer., Vol. 
67_, pp. 259-278.

Aki, K. and P. G. Richards, 1980, Qualitative Seismology, Theory and 
Methods, W. H. Freeman and Company, San Francisco.

Anderson, J. G., 1974 "A Dislocation Model for the Parkfield
Earthquake," Bull. Seism. Soc. Amer., Vol. 64, pp 671-686.

Andrews, D. J., 1979, "A Stochastic Fault Model," Preprint.

Apsel, R. J., 1979, "Dynamic Green's Functions for Layered Media and 
Applications to Boundary-Value Problems," Ph.D. dissertation, 
University of California, San Diego.

Archuleta, R. J., and S. M. Day, 1980, "Dynamic Rupture in a Layered 
Medium: An Example, the 1966 Parkfield Earthquake," Bull. 
Seism. Soc. Amer., Vol. 70, (in press)

Bache, T. C., and T. G. Barker, 1978, "The San Fernando Earthquake - 
A Model Consistent with Near-Field and Far-Field Observations 
at Long and Short Periods," Systems, Science and Software 
Final Technical Report submitted to the (J. S. Geological 
Survey, SSS-R-79-3552.

Bache-, T. C., D. G. Lambert and T. G. Barker, 1980, "A Source Model
for the March 28, 1975 Pocatello Valley Earthquake from 
Time-Domain Modeling of Teleseismic P Waves," Bull. Seism. 
Soc. Amer., Vol. 70, pp 405-418.

Bazant, Z. P., 1974, "A New Approach to Inelasticity and Failure of 
Concrete, Sand and Rock: Endochronic Theory," Proc. llth 
Annual Mtg., Soc. Engr. Science, G. J. Dvorak, Editor, Duke 
University, Durham, North Carolina, p. 158.

Bazant, Z. P., and R. J. Krizek, 1976, "Endochronic Constitutive
Law for Liquefaction of Sand," J. Engr. Mechs. Div., ASCE, 
Vol. 102, EM2, April 1976, p. 225.

Bazant, Z. P., R. J. Krizek and C. -L. Shieh, 1979, "Hysteretic
Endochronic Theory for Sand," Northwestern University,
Evanston, Illinois, Report 79-4/654h, April.

107



Ben-Menahem, A., and S. J. Singh, 1968, "Multipolar Elastic Fields
in a Layered Halfspace," Bull. Seism. Soc. Amer., Vol. 58, pp. 
1519-1572.

Bieber, R. E., and H. J. Hovland, 1980, "Seismic Dynamic Response
by Approximate Methods," Earthquake Engineering and 
Structural Dynamics, Vol. 8_, 1980, p. 41.

Boatwright, J., 1980, "A Spectral Theory for Circular Seismic
Sources; Simple Estimates of Source Dimension, Dynamic Stress 
Drop, and Radiated Seismic Energy," Bull. Seism. Soc. Amer., 
Vol. 70, pp. 1-28.

Boore, D. M., 1972, "Finite Difference Methods for Seismic Wave
Propagation in Heterogeneous Materials," in Methods in 
Computational Physics, Vol. 11, (B. A. Bolt, EdTJAcademic 
Press, New York.

Boore, D. M., and W. B. Joyner, 1978, "The Influence of Rupture
Incoherence on Seismic Directivity," Bull. Seism. Soc. Amer., 
Vol. 68, pp. 283-300.

Boore, D. M., W. B. Joyner, A. A. Oliver, and R. A. Page, 1P80,
"Peak Acceleration, Velocity, and Displacement from 
Strong-Motion Records," Bull. Seism. Soc. Amer., Vol. 70, 
February, p. 305.

Bouchon, M., 1978, "A Dynamic Source Model for the San Fernando
Earthquake," Bull. Seism. Soc. Amer., Vol. 68, pp. 1555-1576.

Bouchon, M., 1979, "Predictability of Ground Displacement and
Velocity Near an Earthquake Fault: An Example: The Parkfield 
Earthquake of 1966," J. Geophys. Res., Vol. 84, pp. 6149-6156.

Chapman, C. H., 1978, "A New Method for Computing Seismograms," 
Geophys. J., Vol. 5£, pp. 481-518.

Cuellar, V., Z. P. Bazant, R. J. Krizek and M. I. Silver, 1977,
"Densification and Hysteresis of Sand under Cyclic Shear," J.
Geot. Engr. Div., ASCE, GT5, May 1977, p. 399.

Dahlen, F. A., 1974, "On the Ratio of P-Wave to S-Wave Corner
Frequencies for Shallow Earthquake Sources," Bull. Seism. Soc. 
Amer., Vol. 6£, pp. 1159-1180.

Dahlquist, G. and Bjorck, A., 1974, Numerical Methods, 
Prentice-Hall, Englewood Cliffs, New Jersey.

Day, S. M., 1979, "Three-Dimensional finite Difference Simulation of 
Fault Dynamics," Systems, Science and Software Final Report 
sponsored by the National Aeronautics and Space 
Administration. SSS-R-80-4295.

108



Del Mar Technical Associates (DELTA),1978, "Simulation of Earthquake 
Ground Motions for San Onofre Nuclear Generating Station Unit 
1," Final Report for Southern California Edison Company, 
submitted for review to the Nuclear Regulatory Commission.

Del Mar Technical Associates (DELTA),1979, "Simulation of Earthquake 
Ground Motions for San Onofre Nuclear Generating Station Unit 
1: Supplement 1," supplemental report submittd to Southern 
California Edison Company, July.

Donovan, N. C., 1973, "A Statistical Evaluation of Strong Motion
Data Including the February 9, 1971, San Fernando Earthquake," 
Proc. Fifth World Conf. Earthquake Eng., Rome, Vol. j._, pp. 
1252-1261.

Drnevich, V. P., J. R. Hall, Jr., and F. E. Richart, Jr., 1967,
"Effects of Amplitude of Vibration on the Shear Modulus of 
Sand," Prpc. Intl. Symp. on Wave Prop, and Dyn. Properties of 
Earth Matls.,Universityo?NewMexico,Albuquerque,New" 
Mexico.

Duffy, J., and R. D. Mind!in, 1957, "Stress-Strain Relations and
Vibrations of a Granular Medium," J. Appl. Mechs., Vol. 24, p. 585.            ~~

Duke, C. M., K. E. Johnsen, L. E. Larson, and D. C. Engman, 1972,
"Effects of Site Classification and Distance on Instrumental 
Indices in the San Fernando Earthquake," University of 
California, Los Angeles, School of Engineering and Applied 
Science, UCLA-ENG-7247, p. 29.

Faccioli, E. E., V. Santayo, and J. L. Leon, 1973, "Microzonation
Criteria and Seismic Response Studies for the City of 

  Managua," Proc. Earthquake Eng. Res. Dist. Conf. Managua, 
Nicaragua, Earthquake of December 23, 1972 I, pp. 271-291.

Finn, W. D. Liam, Kwok Wing Lee and G. R. Martin, 1975, "Stress
Strain Relations for Sand in Simple Shear," Presented at 
"Seismic Problems in Geotechnical Engineering," ASCE Meeting, 
Denver, Colorado, November.

Frazier, G. A., and Petersen, C. M., 1974, "3-D Stress Waves Code
for the ILLIAC IV," Systems, Science and Software Report 
SSS-R-74-2103.

Fung, Y. C., 1965, Foundation of Solid Mechanics, Prentice-Hall, 
Englewood Cliffs, New Jersey.

Hanks, T. C., 1974, "The Faulting Mechanisms at the San Fernando 
Earthquake," J. Geophys. Res.,, Vol. 79, pp 1215-1229.

109



Hanks, T. C., 1979, "Six Values and OJ~Y Seismic Source Models:
Implications for Tectonic Stress Variations Along Active 
Crustal Fault Zones and the Estimation of High Frequency 
Strong Ground Motion," J. Geophys. Res.,, vol. 84, pp 
2235-2242.

Hardin, B. 0., and F. E. Richart, Jr., 1963, "Elastic Wave
Velocities in Granular Soils," J. Soil Mechs. Founds, Div., 
ASCE, Vol. 8£, Proc. Paper 3407, February, p. 33.

Hardin, B. 0., and V. P. Drnevich, 1972, "Shear Modulus and Damping 
in Soils: Measurement and Parameter Effects," J. Soil Mechs. 
Founds. Div., ASCE, Vol. 98, p. 603.

Hartzell, S. H. and J. N. Brune, 1979, "The Horse Canyon Earthquake 
of August 2, 1975 - Two-Stage Stress-Release Process in a 
Strike Slip Earthquake," Bull. Seism. Soc. Amer., Vol. 69, pp. 1161-1174.                 ~~

Haskell, N. A. , 1953, "The Dispersion of Surface Waves in
Multilayered Media, Bull. Seism. Soc. Amer., Vol 43, p. 17.

Heaton, T. H., and D. V. Helmberger, 1979, "Generalized Ray Models
of the San Fernando Earthquake," Bull. Seism. Soc. Amer., Vol. 
69, pp. 1311-1135.

Herrmann, R. B. , 1978, "A Note on Causality Problems in the
Numerical Solution of Elastic Wave Propagation in Cylindrical 
Coordinate Systems," Bull. Seism. Soc. Amer., Vol. 68, pp. 
117-123.

Housner, G. W., and P. C. Jennings, 1964, "Generation of Artificial 
Earthquakes," J. Eng. Mech. Div. ASCE, Vol. 9(3, PP 113-150.

Idriss, I. M., and H. B. Seed, 1968, "Seismic Response of
Horizontal Soil Layers," J. Soil Mechs. Founds. Div., ASCE, 
Vol. 94, SM4, July, p. 1003.

Isenberg, J., D. K. Vaughn and I. S. Sandier, 1978, "Nonlinear
Soil-Structure Interation," Weidlinger Assocs., Menlo Park, 
California, Report EPRI NP-945, December.

Joyner, W. B., and A. T. F. Chen, 1975, "Calculation of Nonlinear
Ground Response in Earthquakes," Bull. Seism. Soc. Amer., 
Vol. 65_, No. 5, p. 1315.

Kanamori, H., 1979, "A Semi-Empirical Approach to Prediction of
Long-Period Ground Motions from Great Earthquakes," Bul1. 
Seism. Soc. Amer., Vol. 69., pp. 1645-1670.

Kjartansson, E., 1979, "Constant 0-Wave Propagation and
Attenuation," J. Geophys. Res.,, Vol. 84, pp. 4737-4748.

110



Konder, R. L., 1963, "Hyperbolic Stress-Strain Response: Cohesive 
Soils," J. Soil Mechs. Founds. Div., ASCE, Vol. 8£, SM1, 
Proc. Paper 3429, p. 115.

Kostrov, B. V., 1964, "Self-Similar Problems of Propagating Shear 
Cracks," J. Appl. Math Mech., Vol. 28, PP 1077-1087.

Lindh, A. G. and D. M. Boore, 1973, "Another Look at the Parkfield
Earthquake Using Strong-Motion Instruments as a Seismic 
Array," (abstract) presented at the 68th Annual National 
Meeting of the Seismological Society of America.

Lysmer, J., H. B. Seed, and P. Schnabel, 1971, "Influence of
Base-Rock Characteristics on Ground Response," Bull. Seism. 
Soc. Amer.,, Vol. 61, p. 1213.

Madariaga, R., 1976, "Dynamics of an Expanding Circular Fault," 
Bull. Seism. Soc. Amer., Vol. 66, pp. 639-666.

McGarr, A., S. M. Spottiswoode, N. C. Gay and W. D. Ortlepp, 1979,
"Observations Relevant to Seismic Driving Stress, Stress Drop, 
and Efficiency," J. Geophys. Res.,, vol. 8£, pp 2251-2261.

Mohraz, B. 1976, "A Study of Earthquake Response Spectra for
Different Geological Conditions," Bull. Seism. Soc. Amer., 
Vol. 66, p. 915.

Newmark, N. M., A. R. Robinson, A. H.-S. Ang, L. A. lopez and W. J.
Hall, 1972, "Methods for Determining Site Characteristics," 
Proc. Intl. Microzonation Conference, Seattle, Washington, p. 
113.

Page, R. A., D. M. Boore, W. B. Joyner and H. W. Coulter, 1972,
  "Ground Motion Values for Use in the Seismic Design of the 
Trans-Alaska Pipeline System," U.S. Geological Survey Circular 
672.

Pande, G. N., and 0. C. Zienkiewicz, 1980, Eds., Proc. Intl. Symp. 
on Soils Under Cyclic and Transient Loading^Swansea,Wales, 
January 1980. A. A. Balkema, publisher.

Pyke, R., 1979, "Nonlinear Soil Models for Irregular Cyclic
Loadings," J. Geot. Engr. Div., ASCE, Vol. 105, June, p. 715.

Read, H. E., and K. C. Valanis, 1979, "An Endochronic Constitutive 
Model for General Hysteretic Response of Soils," Final Report 
to EPRI, Systems, Science and Software, La Jolla, California, 
Report NP-957, January.

Richart, F. E. , 1975, "Some Effects of Dynamic Soil Properties on
Soil-Structure Interaction," Journal of the Geotechnical 
Engineering Division, ASCE, Vol. 101, p. 1197.

Ill



Sandier, I. S., 1978, "On the Uniqueness and Stability of
Endochronic Theories of Material Behavior," J. Appl. Mechs., 
Vol. £5, p. 263.

Sato, T., and T. Hirasawa, 1973, "Body Wave Spectra from Propagating 
Shear Cracks," J. Phys. Earth, Vol. 21, pp 415-431.

Schnabel, P. B., Lysmer, J., and Seed, H. B., 1972, "SHAKE   A
Computer Program for Earthquake Response Analysis of 
Horizontally Layered Sites," Earthquake Engineering Research 
Center, University of California, Berkeley, Report No. EERC 
72-12, December.

Schnabel, P., H. B. Seed and J. Lysmer, 1972, "Modification of
Seismograph Records for Effects of Local Soil Conditions,"
Bull. Seism. Soc. Amer., Vol. 62_, p. 16*9.

Seed, H. B., and P. B. Schnabel, 1972, "Soil and Geologic Effects on 
Site Response During Earthquakes," Proc. Intl. Microzonation 
Conference, Seattle, Washington, Vol. 61.

Seed, H. B., R. Murarka, J. Lysmer, and I. M. Idriss, 1976a,
"Relationships of Maximum Acceleration, Maximum Velocity, 
Distance from Source, and Local Site Conditions for Moderately 
Strong Earthquakes," Bull. Seism. Soc. Am., Vol. 66, pp. 
1323-1342.

Seed, H. B., C. Ugas, and J. Lysmer, 1976b, "Site-Dependent Spectra 
for Earthquake-Resistant Design," Bull. Seism. Soc. Amer., 
Vol. 66, p. 221-243.

Silver, M. L., and H. B. Seed, 1971, "Deformation Characteristics
of Sands Under Cyclic Loading," J. Soil Mechs. Founds. Div., 

  ASCE, Vol. £7, SM9, p. 1171.

Streeter, V. L., E. B. Wylie and F. E. Richart, Jr., 1974, "Soil
Motion Computations by Characteristics Method," J. Geot. Engr. 
Div., ASCE, Vol. 100, No. GT3, p. 247.

Swanger, H. J. and D. M. Boore, 1978, "Importance of Surface Waves
in Strong Ground Motion in the Period Range of 1 to 10 
Seconds," Proceedings of the Second International Conference 
on Microzonation, San Francisco, California, pp 1147-1457.

Taylor, P. W., and T. J. Larkin, 1978, "Seismic Site Response of
Nonlinear Soil Media," J. Geot. Engr. Div., ASCE, Vol. 104, 
GT3, March, p. 369.

Trifunac, M. D. and A. G. Brady, 1976, "Correlations of Peak
Acceleration, Velocity, and Displacement with Earthquake 
Magnitude, Distance, and Site Conditions," Earthquake Eng. 
Structural Dyn., Vol. 4, pp. 355-471.

112



Trifunac, M. D., 1976, "Preliminary Analysis of the Peaks of Strong
Earthquake Ground Motion - Dependence of Peaks on Earthquake 
Magnitude, Epicentral Distance, and Recording Site 
Conditions," Bull. Seism. Soc. Am., Vol. 60, pp. 137-160.

Valanis, K. C. , 1971a, "A Theory of Plasticity Without a Yield
Surface, Part I - General Theory," Arch. Mekan. Stos., Vol. 
23, p. 517.

Valanis, K.C., 19715, "A Theory of Plasticity Without a Yield
Surface, Part II - Application to the Mechanical Behavior of 
Metals," Arch. Mekan. Stos., Vol. _23, p. 535.

Valanis, K. C., 1974, "Effect of Prior Deformation on Cyclic 
Response of Metals," J. Appl. Mechs., Vol. 41, p. 441.

Valanis, K. C., 1975, "An Energy Probability Theory of Fracture (An 
Endochronic Theory)," J. de Mecanique, Vol. 14, p. 343.

Valanis, K. C., 1979, "Endochronic Theory with Proper Hysteresis
Loop Closure Properties," Systems, Science and Software, La 
Jolla, California, Report No. SSS-R-80-4182, August.

Valanis, K. E., 1980, "Endochronic Theory Numerical Scheme," 
private communication to H. E. Read, April.

Valanis, K. C., and H. -C. Wu, 1975, "Endochronic Representation of
Cyclic Creep and Relaxation of Metals," J. Appl. Mechs., Vol. 
42, p. 67.

Valanis, K. C., and H. E. Read, 1978, "A Theory of Plasticity for
Hysteretic Materials. Part I: Shear Response," J. Computers 

. Structures, Vol. _8, p. 503.

Valanis, K. C., and H. E. Read, 1979, "A New Endochronic Plasticity
Model for Soils," Interim Report to EPRI, Systems, Science and 
Software, La Jolla, California, Report No. SSS-R-80-429*, 
December.

Valanis, K. C., and H. E. Read, 1980, "Recent Development and
Applications of the Endochronic Theory to the Behavior of 
Soils," presented at the Intl. Symp. on Soils under Cyclic and 
Transient Loading, Swansea, Wales, January 6-12,.

Valera, J. E., E. Berger, J. S. Kirn, J. E. Reaugh, R. D. Golden, and
R. Hofmann, 1978, "Study of Nonlinear Effects on
One-Dimensional Earthquake Response," EPRI Report NP-865.

Wong, H. L. and P. C. Jennings, 1975, "Effect of Canyon Topography
on Strong Ground Motion," Bull. Seism. Soc. Amer., Vol. 65, 
pp. 1239-1258.

Wong, H. L. and M. D. Trifunac, 1979, "Generation of Artificial
Strong Motion Accelerograms," Earthq. Eng. Struc. Dyn., Vol. 
7, pp. 509-528.



APPENDIX A 

CALCULATION OF LAYERED MEDIUM SH-WAVE RESPONSE

There are several approaches available for obtaining complete 

or approximate responses of layered earth structures. For this 

problem we use a relatively simple approach to obtain the complete 

SH-wave response of a plane layered viscoelastic medium. It is well 

known that for point multipolar sources, the SH-wave part of the 
motion can be expressed as a cylindrical wave expansion, in which 
the displacement field in each layer can be written (modified from 

Ben-Menahem and Singh, 1968) for a cylindrical coordinate system 
r,0,z in the form:

kdk 
m

where

atr

2 1/2
"n  

/ \ / \

r , B^ = the coefficients of downgoing and up- 

going waves, respectively for the nth

layer. 
/ \ 

> ' = particular source contribution in the

nth layer.

p = density of nth layer
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e.
\J

Defining a traction t' by

= shear modular of nth layer

= Fourier frequency
= horizontal wavenumber
= unit vector in the j direction.

'"1 '

3u (m) 

n 3z '

the boundary conditions at the top and bottom of each layer can be 
written:

T ( m )( z = 0) = 0

n-l ( z -(z "

and = 0

where

h. 
j

B

= depth to the bottom of layer j

= upgoing wave in the underlying halfspace

For each azimuthal order m the boundary conditions are
sufficient to uniquely determine A^ ' and B^ . There are^ J n n
two basic numerical approaches for solving for the displacement 
field u^ ' as a function of depth. We can solve for u^m ^ 

and T km ^ explicitly (using Haskell matrices, for example), or, 
alternatively, we can solve explicitly for the coefficients of 

upgoing and downgoing waves. Haskell-type matrix methods are 

desirable for modal problems where all relevant computations can be
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performed with real arithmetic. Since we are interested in 
solutions for any 0 _> k _>°o, this benefit is not important; complex 

arithmetic is a necessity. Here we choose to solve for the 
coefficients of upgoing and downgoing waves, which can be generated 

by a very simple recursion relationship.

From here we will drop the superscripts m for brevity and 

concentrate on the solution for a particular azimuthal order. Let 

us rewrite the displacement field depth dependence in a slightly 

altered form

u (z) = Ane-V + Bne-nn (dn-Y) (A-4)

where z=z- h , denotes the local depth relative to the top of

Notethe layer, and d = h - h . is the layer thickness, 
that physically A is the amplitude of the downgoing wave nor­ 
malized to the top of layer n and B is the amplitude of the up- 

going wave normalized to the bottom of the layer. This representa­ 
tion contains no growing exponentials (R n > 0) which, as will be 

shown, is highly desirable numerically.

Let

Pn =

Then the boundary conditions given earlier can be recast in the 
following form:

1 1 rn+l 

yn+lVl Pn+l

An+1

or
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R n P n PnVl n +l
(A-5)

where R = 
n Vn

Vn " yn+l Vl 
"n+1

assuming no source in layer n or n+1

If we define

N-l

then

(A-6)
n v n

RnVl

(A-7)

B., = 0

Also note that if a layer becomes very thick, then at high wave- 
numbers [i.e., Real (d n ) » 1]» the factor P underflows and L n n __ n
will numerically be set to zero. This causes 8 > 0, which is the 
same as a halfspace radiation condition. This is equivalent to 

layer-reduction, and it occurs as a natural consequence of the 
numerical scheme.

Suppose we place a horizontal force at the free surface in the 

y-direction (0 = 90°) (m=l). The recursion above is valid all of 

the way to the free surface and the free surface condition becomes

-F(co)
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or

A - P IT A,
N-l

F(to)
, n, (A-7)

Therefore

A N - [A, - 
i , i I

(A-S)

where F(u>) is the spectral force applied to the free surface. Note

that all A-, B. were previously defined in terms of known 
j J

functions of A M . Therefore

"A
n 

. Bn_

FU)
~~o PA . n D "1 cir\ii T}-, ! A,   r-, K 1 J 

1 1 ' 1 1 1

n-1

n P.(I+R.) j v r
j=i  g

(A-9)

which uniquely determines the entire displacement field. With the 

complete response due to a surface point force, we can obtain, using 

reciprocity relationships, the surface response due to any ooint 

force or point dislocation source. Details can be found in Fung 

(1965), or Aki and Richards (1980). Note that the solution requires 

only one pass through the layer recursion and the solution contains 

only decaying exponentials.

The above gives a procedure for computing the displacement 

field for any w,k pair. We must, of course, solve for the two 

integral transforms to obtain a time series. Here we choose a 

direct integration of the Fourier-Bessel transform. The obvious 

solution of this integral involves integration through or near (in 

the viscoelastic case) poles due to zeroes of the function A", - 

P,B.., the modified Love denominator. We simplify this process 

by introducing a complex frequency

119



uj = uip + iui, u), < 0

This increases the stability of the integrand of the Fourier-Bessel 
transform to the point where equal k spacing with a simple 

trapezoidal rule may be used with a round-off corrector (Dahlquist 

and Bjorck, 1974). Using the complex frequency results in a

solution which, when transformed with respect to <D D , is the
t desired solution multiplied by ew l (<D T negative). A strong

word of caution is necessary at this point. To obtain the final 
time series, we must multiply by a growing exponential. We must be 
sure that we are not trying to retrieve the signal out of the noise 
in the <D D Fourier transform. Experience has shown that the choice

K
of the artificial imaginary frequency should be closely related to 

the time window of interest. Experience has also shown that a safe 

choice seems to be

I T
> 1CT2 ,

where T is the length of the time window.

In other words, using complex frequencies, one should not have to 
recover more than two orders of magnitude of signal out of the 
numerical noise. This is certainly dependent on how accurately one 
evaluates the Fourier-Bessel transform over wavenumber.

It has been noted by Herrmann (1978), that the rigorous 
expansion of the SH-wave motion in cylindrical harmonics contains 
some duplications with SV motion. These duplications are nonpro- 

pagating contributions which are canceled exactly when the entire 
motion is computed. When only SH-motion is desired, the derivatives 

of the Bessel functions, i.e.,

dJ(kr) J (kr)

should be replaced by
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dJ (kr)

The substitution above precisely eliminates the SH-wave contri­ 
butions canceled by the SV-waves in the total solution. Although 
the modification appears to be a far-field approximation, some near- 
field contributions are retained.



APPENDIX B 

DEPENDENCE OF MATERIAL PARAMETERS ON SOIL DEPTH

In the nonlinear soil column calculations performed in the 

present study with the endochronic soil model, the shear modulus and 

the shear strength were taken to vary with soil depth. In this 

appendix, the relationships adopted for such depth dependence are 
developed for dry sand using the data from a cyclic simple shear 

test to which the endochronic model was fit.

B-l SHEAR MODULUS

Generally speaking, the shear modulus of soil depends on both 
void ratio and confining pressure (Hardin and Drnevich, 1^72). An 
inspection of the cyclic simple shear data for sand, to which the 
endochronic model was applied in Section 3.2.2., reveals that the 

slope of the stress-strain curve at the initiation of loading in 

cycle 1 is essentially the same as the slope of the line through the 
extremities of the narrow hysterestic loop of cycle 300. This 

observation implies that the shear modulus of the sand remained 
essentially fixed at its initial value throughout the shearing 

process. Although some densification and hardening evidently 
occurred during the cyclic shear test, leading to an increase in 

lateral stress and in confining pressure, it must be concluded that 
the combined effect of void ratio decrease (densification) and 

increased confining pressure was not of sufficient magnitude to 
significantly affect the shear modulus. It therefore appears that 
the change in void ratio during such a cyclic simple shear test is 
sufficiently small that its affect on the shear modulus can be 
disregarded. A similar conclusion for sand in such a device has 
been noted also by others (Bazant, Krizek and Shieh, 1979). 
Therefore, if it is assumed that the void ratio does not 
significantly decrease with depth, the variation of the shear 
modulus with depth will result solely from its dependence on 

confining pressure.

123



Extensive experimental data covering a reasonably wide range 
of confining pressures have shown that the shear modulus of sand is 
essentially proportional to the square root of the confining 
pressure (Duffy and Mind!in, 1957; Harden and Richart, 1963; and 
Drnevich, Hall and Richart, 1967). This relationship is 

demonstrated, for example, in Figure B.I which shows the effect of 

confining presure on the shear modulus of Ottawa sand over a 
pressure range from 300 psf (2.1 psi) to 10,000 psf (69 psi). The 
dependence of the shear modulus G of sand on the confining pressure 

a can therefore be expressed in the form:

(B-l)

where GR denotes the shear modulus at some reference confining 
pressure an.

In a vertical column of cohesionless sand, the confining 

pressure results primarily from the gravitational effect, with some 
small contribution from the atmospheric pressure, which will be 
neglected here as in previous work by others (Idriss and Seed, 1968; 
Streeter, Wylie and Richart, 1974). Since the vertical stress, 
a , at depth d in a soil deposit of uniform density is given by 

the expression:

av = gpd (B-2)

where, g denotes the gravitational acceleration and p is the mass 
density of the soil, the confining pressure at d can be expressed as:

(1+2K x 
a = (gpd) , Oj (B-3)

where K is the coefficient of earth pressure. Typical values of 
K for normally consolidated sands are in the range 0.3 to 0.5. 

Adopting the median value of K = 0.4, Equation B-3 becomes
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a = 0.6 gpd (B-4) 

which then combined with Equation B-l gives the result:

G = a/T (B-5) 

where we have set:

We now evaluate a from the cyclic simple shear data to which 

the endochronic model was fit. Let us note first of all that the 
data were obtained from a Norwegian Geotechnical Institute type of 

simple shear device, which employs a cylindrical soil sample 
enclosed in a wire-reinforced membrane fitted with a base and a 

cap. The base is attached to a stiff plate which is subjected to 
cyclical motions perpendicular to the sample axis, while the cap is 

held stationary. Also, a constant uniform compressive vertical 
stress, a , is applied to the sample throughout the test in the 

direction of the sample axis. A sample undergoing shear in such a 

device can be considered to deform with essentially no lateral 
strain, since the wire reinforcement prevents such deformation. The 
lateral stress, a , developed by the interaction between the sand 

and the wire-reinforced membrane can therefore be related to the 
applied vertical stress, a , by the coefficient of earth pressure, 

KQ , i.e.,

°l = Vv ' (B' 7)

The confining pressure in the simple shear test, which we shall take 

here as the reference confining pressure, aR , can then be 
expressed as:

a (1+2K )
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which, for K = 0.4, gives the result:

aR = 0.6 a v . (B-9)

For the cyclic simple shear test of interest, we have 

a = 191.52 kPa p = 1462 kg/m 3

GR = 19.75 MPa . (B-10)

Upon substituting these values into Equation B-6, we find

a = 0.54 MPa cm~1/2 . (B-ll)

Therefore, Equation B-5, with a defined above, describes the 

dependence of the shear modulus on depth employed in the nonlinear 
soil column calculations discussed herein. This dependence is 

depicted graphically in Figure B-2. As pointed out in Section 4.2, 

the value of Gn used here is actually a factor of 2 too small to 
fit the cyclic shear test, reflecting an error in Valanis and Read 

(1980) which was not discovered until after the numerical 
calculations were completed.

B-2 SHEAR STRENGTH

Extensive experimental results show that the shear strength of 

normally consolidated sands, unless exceptionally loose, is 
essentially proportional to the normal stress acting on the plane 
(or planes) of failure. Such a relationship follows also from the 
Mohr-Coulomb failure theory* and for the case of simple shear it can 

be expressed in the form:

s f = an tan $ (B-12)
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where s f represents the shear stress at failure, a is the 

normal stress acting on the plane(s) of failure, and <# is the 
Mohr-Coulomb friction angle.

The dependence of shear strength on normal stress described 
above can be easily incorporated into the endochronic model of 
simple shear described in Section 3.2. Toward this end, let us 
note, first of all, that for monotonic loading, Equation B-6 reduces 
to the following form:

s = H Erf (/kz) (B-13)

where z is the intrinsic time scale, Erf ( ) denotes the error 

function, and the hardening function H is given by the expression:

H = HQ + (H^) (1-e"112 ) . (B-14)

Here, H , H^ and n are constants, whose values are listed in 

Section 3.2.2. To obtain the shear stress at failure for this 
model, one simply takes the limit of the right hand side of Equation 
B-13 as z goes to infinity. This leads to the result:

Therefore, in order to develop a general representation that 
encompasses all values of n, we take both H and H to be

0 oo
proportional to a , in order to satisfy Equations B-12 and 8-15. 

This leads to the following expression for H:

H = IT [ Ho + (W (1-e ~n
a n

where H and H are the hardening coefficients corresponding to o * Q
the reference normal stress, a n.
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In the simple shear test, from which the data depicted in 

Figure 3-1 were obtained, the normal stress acting on the failure 

planes was equal to the applied vertical stress, since the planes of 
failure in such a specimen are perpendicular to its axis. In the 

particular simple shear test of interest here, the applied vertical 

stress was 191.5 kPa (4,000 psf), so that the reference normal 
stress, to which the values of H and H^ given in Section 3.2.2. 
correspond, is:

a° = 191.5 kPa . (B-17)

In a soil column subjected to vertically traveling SH waves, 
the failure planes of the soil are perpendicular to the 
gravitational field. The normal stress on such planes, for a soil 
element at depth d from the free surface, is then given by the 

expression:

where both g and p have been previously defined. Using this result, 

Equation B-16 can be written in the form:

H + (H -H ) (1-e" 112 )
0 oo 0

where we have set:

(B-20)

For the soil data of interest, p = 1462 km/m and a° = 191.6 
kPa, which leads to the following value for 3:

B = 7.49 x 10~4 cm"1 . (3-21)

Therefore, the proportionality between shear strength and normal 

stress, specified in Equation B-12, is incorporated into the
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endochronic model of simple shear by taking the hardening function 

in the form of Equation B-19, with 0 defined by Equation B-21 and
H , H and r\ assigned the values listed earlier in Section 3.2.2. o °°
For the soil column calculations performed in this study, the above 
result leads to the linear dependence of shear strength on depth 

shown in Figure B.2. Parenthetically, it is noted that the above 

results are in agreement with previous studies of soil amplification 

based on truly non-linear soil models in which the shear strength 
was taken to increase with depth. (Joyner and Chen, 1975; Streeter, 
Wylie and Richart, 1974).

B-3 EQUIVALENT LINEAR SHEAR MODULUS

The SHAKE code used in part of the numerical simulations 
performed in the present study utilizes an equivalent linear shear 
model to describe nonlinear soil behavior. The model is completely 
defined in terms of an equivalent shear modulus, G , and a 

damping factor, 0; the shear strength does not enter the model
explicitly. G,, is defined as the secant modulus for monotonic eq
shear loading, while 0 is defined in terms of the area enclosed

within a complete, symmetric hysteresis cycle. Both 6 and B
will in general depend on the shear strain, y Furthermore, Geq 
and the elastic shear modulus G discussed in Section B-l are equal

only at y = 0-

The SHAKE code allows for the dependence of soil properties on 
depth by taking G to be proportional to the square root of the 

confining pressure, a. The specific form of this dependence adopted 

in SHAKE is:

Geq = Ks

where K (y) provides for the dependence of G on
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For shear behavior characteristic of soils, the equivalent
shear modulus, G , can be related, at least in principle, in a eq
nonlinear manner to the shear strength, s f , the elastic shear 
modulus, G, and the strain, y, i.e.,

Geq   Geq < sf G ' T)   (B-23)

In the preceding sections of this appendix, concepts from soil 
mechanics were used to develop expressions for the dependences of 
s~ and G on the confining pressure a, which were then incorporated 

into the nonlinear endochronic model. These expressions can be 
placed in the following forms:

G = a*/T

s f = B* a .(R-24)

where a* and B* are constants, not to be confused with a and B 
introduced earlier. On the basis of the above discussion, the following 

question may be raised: How compatible is the dependence of G on a, 

assumed in the SHAKE code and expressed by Equation B-22, with Equation 
B-23, when Equations B-24 are utilized.

To answer this question, it proves convenient to employ a 

constitutive model which is analytically simpler to deal with than 
the endochronic model but also provides equivalent modeling 

capability, at least for monotonic shear loading processes. A model 

which meets these requirements is the well-known "hyperbolic" soil 
model (Konder, 1963), defined by the equation:

Y/Y (B '25)

where YR> the reference strain, is defined as:

Y R = s f /G . (E-26)
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Since the equivalent shear modulus, G , is defined as the secant 

modulus, we can write:

Geq = S/Y . (B-27)

Upon introducing this result into Equation B-25, and rearranging, we 
obtain the expression:

If we now substitute Equations B-24 into Equations B-26 and B-28, 

the following expression results for the general dependence of G 
on a:

where we have set 6* = s*/a*.

Consider now the case of small strains. In this instance, the 

second term inside the bracket of Equation B-29 can be neglected, so 
long as a is sufficiently larger than zero, leading to the 
expression:

Geq = °*^ (B" 30)

which agrees with the form of the dependence of G on a adopted 

in SHAKE. For large strains, however, Equation B-29 reduces to the 

form:
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which exhibits a different dependence of 6 on a than employed in 

SHAKE. It therefore appears that the relatively simple expression 
adopted in the SHAKE code to describe the dependence of G on a 
is in agreement with the nonlinear model only at low strains and 
progressively deviates as the strain increases.
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APPENDIX C 

COMPUTER SUBROUTINE FOR SIMPLE SHEAR

A FORTRAN subroutine called ENDO was developed to solve the 

constitutive equations governing simple shear, described in Section 

3.2.1., using the numerical method outlined in Section 4.3.1. The 

program, which is listed on the following pages, runs on the S 

UNIVAC 1100/80, and was incorporated into the SWIS finite element 

code.
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SC:C »»*» STAPT THE ITERATION LOOP * »»
81: 2 ITERrlTEP + l
S2: If CITER.3T.23)GC TO 92
S3: FXSAV£=FXAPP

:
36: XAPP rxAPO-PXAPP/OE'Itf V
37: SNE.rxAPP-xASAVE
65: 02=XAPP»»2
39: IF (XAPP.GT.3. )GC TO SCC
92: OZ=CUTCFF».33i
91: XAPPrSCRT <OZ)
92: SNE«=xAPP-xASAV£,
93: 5CC ZTEST=«SS (CZ-X AS* vE »«2 >
*<*: ZNE«=Z»OZ
9S:C ***» SEE SUMl SUBROUTINE £ELG«
9fc: CALL SUMl
97:
93:
99: IF<2T£ST.LT.2»1.E-7)GC TO 5

ICC; IF (A5S«FXAOP).LT.l.£-6»AeS(SLAST» )GC TO 5
121: IF (A£S(FXAPP).LT.l.£-fc«AeS (SU>1) »GC TO 5
1C2: IFMA$S<SNE*>.LT.XCUTl.ANG.<AsStFXi? e ).LT.FCUT).ANO.

1C3: . ( {ASS(SNE«).LT.l.t-3»* = S()'A'P)).0 5 .(65SfSSt*).&E.AE

10*4: . SC TC 5
1C5: GO TO 2
1G6:C » «» EPBOP "ESSAQES »«»»
1C7: 93 Pi?I\T 993 , XL ,XAPP,X« ,FXL ,FXAPP ,FXR
1C5: 993 FQPMATC *» ERPQC *» AF7E" 2C ITERATIONS SOLUTION NOT Ce>T AlNED ' , / ,
1G9: »* *** THE LAST TI*£ THRU XL , X A PP ,X c , F XL , FX A PP , F X»r * , 6 » IX , 1 »£ 1 0 . <. ) )
112: PETUP.N 0
111 : 95 PRINT 995
112: 99= FOP-AT(* >»» ZL(L) STGPAGc EXCEEDED - TOO -ANY ««<*./,
113: *  >»» INTRINSIC TI-£ TURNING POINTS <«« >
in.; PETURN c
115:C *»*» EN'D ERPOR -ESSAGES »»*»
116.-C »»***«-» *»«*»«*»«» »* *«««»«»« »»«*««*»«»«»*»»*»« » «»*»*«»»»»»«
117:C »»»» ITERATION HAS SEEN SATISFIED   CONTINUE »»«»
II"- : 5 CONTINUE
119:C
120:C
12I:C SCuEEZE OUT REDUNDANT REVERSALS
122:C
123:C
12": IF (L.LT.u )GO TO &2»
125: IFLAG=Q
126: T£Pf USTOREtU
127; LM2=L-2
128: . 00 7CO 1=2, L-2
129: ZOIFFrZ-ZL(I)
13C: IF(ZOIFF.£C.C. >GO TO 70C
131: T£STrsCRT(AK/3.1!»l5926J»ExP{AK*tZL(U-Z))«
132: . A5S12LII l-TLd-l) )/SCRT(ZDIFFJ
133: TESTrTEST/STORCm
13": IF (TEST. GE.l. £-3)30 TO 7C2
13=: IFLAGsl-1
136: GO TO 65C
137: t4CZC FQBMAT (IX , 'ELI"INiTE 2 PEDU\C*NT P£vERS*LS--C^I TERIOM ' , IS ,
138: . 'STARTING  ITH',15)
139: 7cC TERK1 = STORE »U
1«»C: 65C IF (IFLAG.EQ.D JGO TC 62<*
1H1: L=L-2
1«»2: -'I:JI»2
1<*3: 00 625 I=IFL«G.L
!«*<*: 625 ZL«Il=2LtI»2>
It 5: IF (I FLAG. £5.1 J STORE (1 >rsT03£(3>
Itfc; 624 TEPiJ=STOfiE(l)
1<*7:C «*»» CHECis THE FlP.ST(Jl) TER" FC* SATURATION »«»»
148: IF (TES"J.LT.T3)GO TO 7
1«»9: IFIL.LE.OGO TO 7
ISO: JI=JI*1
151: L=L-1
152:C ***» SHIFT TH£ ZL STORAGE 00»% CN£ 5ECiuSE A\:TH£? TE** SATURATES  -»«
153: CO 6 N=1,L
1£«: 6 ZL (N )=ZL (\»1 >
155: 7 CONTINUE
156:C *»«» UPDATE STP££S(%) TO ST»ESStN»l) «*»*
157: SIGMAr£»c!J" (CE°S-*i*CZ) »SLA ST
153:C »*»» FI\AL U°O*TE CF ;«N) TO Z«N»D  **«
159: Z=Z»CZ
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APPENDIX D

THE NEW ENDOCHRONIC SOIL MODEL: 

AN ASSESSMENT OF ITS PRACTICAL UTILITY FOR 

USE IN TWO- AND THREE-DIMENSIONAL GROUND 

MOTION CODES

D-l. INTRODUCTION

A new endochronic theory of plasticity was recently developed 
(Valanis, 1979) which is free of several undesirable features 

inherent in earlier versions of the theory, and provides increasing 

modeling capability with substantially fewer material parameters. 

This new constitutive theory is fully three-dimensional, and has the 

capability to describe the important features of soil response to 
seismic loading, such as hysteresis, densification/dilatancy, strain 
hardening/softening, and cyclic creep (ratcheting). It predicts 

instantaneous elastic response at points where loading, unloading or 
reloading begin and, for one-dimensional unload-reload processes, 

produces hysteresis loops that close, no matter how small the 
magnitude of the unloading.

Initially, the new endochronic theory was applied to several 
relatively simple deformations of soils, such as hydrostatic 
compression and cyclic simple shear (Valanis and Read, 1979; 1980), 

and for this purpose appropriate numerical schemes were developed to 
treat the governing one-dimensional equations in a modern, high 
speed computer. In the present investigation, further work was done 

to make the numerical scheme for simple shear response suitable for 
use in conjunction with a nonlinear wave propagation code (SWIS), so 

that the endochronic model could deal with the complex strain 

histories produced in the soil by the earthquake signature without 

requiring unreasonably large computing time and computer storage.
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Recently, the feasibility of using the two- and three- 
dimensional versions of the new endochronic model in conjunction 
with large finite element codes to analyze multidimensional ground 
motion problems has been considered. The purpose of this appendix 
is to point out those features of the new endochronic theory which 
pose serious computational difficulties, and to briefly present a 
very recently proposed and promising computational approach which 
appears to circumvent these difficulties.

D-2. NOTATION AMD DEFINITIONS

For isotropic materials undergoing small deformations, the

stress a-, may be decomposed into a deviatoric component, s.., ' j ' j
and a hydrostatic component, a, in the following manner:

where a = 1/3 a-, and «.. is the Kronecker delta. Similarly,

the incremental small strain tensor, de.., may be decomposed into' j
a deviatoric component, de.., and a volumetric component, de:' j

d eij = de 1d + 1/3 d e s.. (D-2)

where de = de... Upon using an incremental form of Hooke's law,
Pthe increment of the plastic strain, de., may be defined as
j

follows:

ij   de ij - C 1jk

where C_-   , is given by the expression 
J

\

In the above equation, u« and K fi denote the elastic shear and 

bulk moduli, respectively.
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pThe plastic strain increment, de«, may also be decomposed
 J

into a deviatoric component, d&. ., and a volumetric component, do, 

i.e.,

p where do = de--. From Equations D-3 to D-5, it then follows that

da.j = [K0 (d e - d0) - 2/3 yQd e l $..

+ 2uO (de ij ~ d&ij> (D~6)

D-3. BASIC EQUATIONS OF NEW ENDOCHRONIC THEORY

The new endochronic theory is based on the hypothesis that the 

current state of stress is a linear functional of the entire history 

of plastic strain, with the history defined with respect to a time 

scale (intrinsic time) which is itself a property of the material at 

hand. The basic equations of this new theory, which describe the 

general, three-dimensional behavior of isotropic, rate-independent 

materials undergoing small, isothermal deformations, are summarized 

below, using the notation defined above:

z n 3&-ii '

dz ' (D-7)

and
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= [KQ (d e - d0) - 2/3 ...

(D-8)

where the intrinsic time scales, Z D and Z H , are positive, 

monotonically increasing quantities defined by the following 
expressions:

: D ~ k OO dC l k 01 (D-9)

dz H = k !0 dC D (D-10)

and Hn , H u are appropriate hardening/softening functions. In
U n

the above equations, the intrinsic time measures, dc n and d£ H , 

are defined as follows:

ij iJ 

2

(D-ll) 

(D-12)

and the k are elements of the material-dependent coupling matrix 

[k], -which may depend on C n and C   also, the vertical bars 

enclosing a symbol denote its absolute value. It is evident that 
since dz n and dz u are independent of the natural time scale

U n
given by a clock, the materials described by the above equations are 
plastic strain history dependent but strain rate independent.

Equations D-7 to D-12 form a system of coupled nonlinear 
equations which completely describe the new endochronic theory once 
the kernel functions, p(z) and $(z), and the hardening/softening 
functions, Hn and H.., have been specified for a given material. 

The kernel functions consist of infinite series of exponentials, 

i.e.,
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00

(2) =
r-1

-6 Zr (D-13)

4(2) = t
r=l

subject to the conditions p(0) =

It may prove beneficial for numerical purposes to have an incre­ 

mental form of Equation D-7, which can be obtained by differenti­ 

ation to give the following expression:

z z') '
3 Z

,2 dz,

(D-15)

H ,2 dz,

where we have assumed that hL and hL are relatively insensitive 
to small changes in z n and z u

U n
 

D-4. SOURCE OF COMPUTATIONAL DIFFICULTIES

For the purpose of delineating the computational difficulties 

posed by the above system of equations, it is sufficient, and more 
convenient, to restrict attention to the deviatoric part of the 
model, since this is the major source of difficulty in treating the 
model computationally. For the special case of deviatoric response, 

the general equations given above for the new endochronic model 

reduce to the following set of equations:

dz (D-16)
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d Sij = 2G(de... - do...) (D-17)

dz 2 = da., da. . (D-18) «j * j

subject to the constraints that tr(s..) = trfds..) = 0.
' \J ' J

Let us assume that the deviatoric strain histories, e..(t),* j
are given, and we wish to solve the above equations, in an 

incremental numerical manner, for the corresponding deviatoric

stress histories, s..(t). Considering, first of all the case of' j
one-dimensional deformation (simple shear), it can be shown that the 

quantity d&/dz will have either one of two values, namely, +1 when 

de>0 or -1 when de<0. Consequently, the evaluation of the integral 

in Equation (D-16) for this case can be performed analytical 1y for 

suitable (integrable) forms of the kernel function o(z - z 1 ), and we 

have demonstrated this in recent work (Valanis and Read, 1979; 1980).

Turning now to the case of two- and three-dimensional 

deformations, the situation suddenly becomes much more complicated,

since the quantities d&../dz now represent the direction cosines' j
between the vector dz and the vector d&. . in a multidimensional

' \J

plastic strain space. These direction cosines vary in some (a_ 

priori unknown) manner with z, which depends on the deformation

path. Consequently, since the dependence of da../dz on z is not* j
known in advance, the evaluation of the integrals given in Equation 

(D-16) cannot be performed analytically for two- and three-dimen­ 

sional response, as was possible for the one-dimensional case. 

Moreover, it now becomes necessary to store in computer storage the 

histories of the terms d&../dz with respect to z, in order to be 

able to numerically evaluate the integrals in Equation (D-16).

On the basis of the above observations, the followinq 

conclusions are drawn regarding the feasibility of using the system 

of endochronic equations given by (D-7) to (D-12) in conjunction 

with large finite element codes to analyze two- and three-dimen­ 

sional problems in ground motion:
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1. Computer Storage Requirements

Because of the hereditary nature of the integrals in the 
new endochronic theory, the histories, or some significant
portions thereof, of the terms dg. ./dz must be stored for"i J   
each computational zone in the computer memory as they evolve 
during the course of a calculation. If these integrals 

exhibit "fading memory," as they will if the kernel function 
p(z) approaches an asymptote as z becomes increasingly large, 

then it is necessary only to retain the histories of the 
dg../dz beyond some non-zero value of z. Nonetheless, even 

the requirement to retain significant portions of the
histories of the de../dz for each computational zone in a' j 
problem poses presently intractible computer storage

requirements for most problems of practical interest.

2. Computational Speed

Inasmuch as the terms dg../dz are not known as 

functions of z at the outset, but are determined as part of 

the solution, the hereditary integrals, which in the 

one-dimensional case could be evaluated analytically (Valanis 
and Read, 1979; 1980), must be evaluated numerically for two- 

and three-dimensional response; this proves to be very costly 

and computationally inefficient. The situation becomes even 
more serious if iteration techniques are employed to solve the 

system of equations, since in the process of iterating toward 

an acceptable solution, the algorithm may require that the 
integrals be evaluated several times for each incremental 

strain step imposed; this process is repeated, then, for every 

computation zone in a problem which results in a prohibitively 
slow computing speed when compared with other advanced 

inelastic soil models.
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D-5. RECENT DEVELOPMENTS

Very recently, a numerical approach which avoids the above 
computational difficulties was proposed by the senior author, and an 

equivalent approach was independently proposed by Valanis (1980). 
This approach uses approximate forms for the singular kernel func­ 
tions, at the cost of some accuracy, which appears to be minimal.

o
Inasmuch as this approach is presently under investigation at S , 

we shall provide only a brief outline of the method below, and for 

this purpose only the deviatoric part of the endochronic model will 

be considered.

In essence, the approach consists of approximating the kernel 

function p(z), defined in Equation D-13, by a finite series of 

exponentials and by satisfying the singular condition P (0) = 

approximately by taking p(0) to be some large finite number. 

Depending on the range of z and the accuracy required, the number of 

terms required in the series may indeed be very small, as recent 

preliminary studies have shown. Using this approximation for p(z), 

it can be shown (Valanis, 1980) that the governing endochronic 

equations for deviatoric response (see Equations (D-16) to (D-1S)) 

can be reduced to the following system of differential equations:

r=l

ds... = 2G(deij - da.,.) (D-21)

dz 2 = dg.dg... (D-22)

where R and 3 have been defined previously (see Equation D-13).
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Upon setting

(D-23)

1 J = 2! (D-24)

and combining Equations (D-19) to (D-21), one can show that

de ij . . (D-25)

By taking the norm of both sides, and rearranging, we obtain the re­ 
sult:

2- (1 + R) 2de Q..dz * j ' j = 0 (D-26)

where the double bars enclosing a symbol denote its norm. Equation 
(D-26) is a quadratic equation for dz, from which dz can be easily
determined if de.. is specified. The development of a numerical ' j
scheme from this approach is straightforward. Note that the 
hereditary integrals have been done away with and the computer 
storage requirements are very small.


