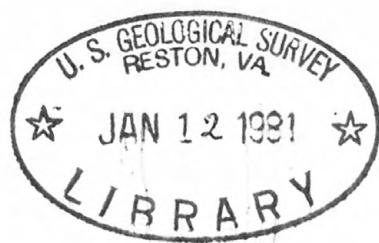


(200)
R290
no. 81-71


DEPARTMENT OF THE INTERIOR
UNITED STATES GEOLOGICAL SURVEY

USGS LIBRARY-RESTON

PRELIMINARY DELINEATION OF SALTY GROUND WATER
IN THE NORTHERN ATLANTIC COASTAL PLAIN

By Harold Meisler

316014

OPEN-FILE REPORT 81-71

Published by the U.S. Geological Survey, 1980
Reston, VA 22092

UNITED STATES
DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY

PRELIMINARY DELINEATION OF SALTY GROUND WATER
IN THE NORTHERN ATLANTIC COASTAL PLAIN

Open-File Report 81-71

UNITED STATES
DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY

PRELIMINARY DELINEATION OF SALTY GROUND WATER
IN THE NORTHERN ATLANTIC COASTAL PLAIN

By Harold Meisler

Open-File Report 81-71

Trenton, New Jersey

December 1980

CONTENTS

	Page
Abstract.....	1
Introduction.....	2
Purpose and scope.....	2
Previous investigations.....	2
Acknowledgments.....	3
Methods of study.....	3
Occurrence of salty ground water.....	5
Description.....	5
Origin of the saltwater.....	6
Conclusions.....	8
References.....	10

ILLUSTRATIONS

Figure 1. Graphs showing relation of chloride concentration to depth in selected wells.....	
.....	back of text
2. Depth to the 250 mg/L chloride concentration.....	
.....	back of text
3. Depth to the 1,000 mg/L chloride concentration ..	
.....	back of text
4. Depth to the 10,000 mg/L chloride concentration..	
.....	back of text
5. Depth to the 18,000 mg/L chloride concentration..	
.....	back of text

TABLES

Table 1. Data used for construction of chloride-depth maps.....	back of text
---	--------------

ABSTRACT

Salty ground water underlies freshwater in the eastern part of the northern Atlantic Coastal Plain. The transition zone between freshwater and saltwater is represented in this report by a series of maps showing the depths to chloride concentrations of 250, 1,000, 10,000, and 18,000 milligrams per liter. The maps are based on chloride concentrations obtained from self-potential (SP) logs as well as from water-quality analyses.

Depths to the designated chloride concentrations generally increase inland from the coast except in New Jersey where they are greatest along the coast and in North Carolina where depths to the 10,000 and 18,000 milligrams per liter concentrations are greatest beneath Pamlico Sound. The transition zone between 250 and 18,000 milligrams per liter of chloride is generally 1,500 to 2,300 feet thick except in part of North Carolina, where it is less than 1,000 feet.

Depths to 250 and 1,000 milligrams per liter of chloride are probably controlled by the natural flow pattern of fresh ground water. Areas where these concentrations are relatively shallow generally coincide with areas of natural ground-water discharge. Depths to 10,000 and 18,000 milligrams per liter of chloride, and the occurrence offshore of ground water that is fresher than seawater, is attributed to long-term hydrologic conditions during which sea level fluctuations of a few hundred feet recurred several times. The origin of ground water that is saltier than seawater is attributed to the leaching of evaporitic strata beneath the Continental Shelf and Slope followed by westward movement of the brines during periods of sea-level rise.

INTRODUCTION

Purpose and Scope

Salty ground water underlies freshwater in the eastern part of the Atlantic Coastal Plain. At some locations shallow salty ground water, in hydraulic connection with salty surface water, may overlie the freshwater. This report defines, using a series of maps, the transition zone between the deepest known fresh ground water and the underlying saltwater, from North Carolina to New Jersey. Within this transition zone, salinity generally increases with increasing depth. Contour maps were constructed showing the depth below National Geodetic Vertical Datum of 1929 (NGVD of 1929)¹ to water containing chloride concentrations of 250, 1,000, 10,000, and 18,000 mg/L. Chloride rather than dissolved solids was used to delineate the transition zone because sodium bicarbonate water that contains dissolved solids in excess of 1,000 mg/L occurs in the freshwater zone and does not indicate the transition zone. The 250-mg/L chloride concentration was selected because it is used as a potable water standard. The 18,000-mg/L concentration was selected because it is the approximate chloride concentration of seawater, a possible source of the salty ground water.

This report is part of a U.S. Geological Survey 5-year study entitled, "Regional aquifer system analysis of the Northern Atlantic Coastal Plain."

Previous Investigations

Saltwater in the Atlantic Coastal Plain has been studied for many years. Sanford (1910, p. 77-86) summarized data collected by the U.S. Geological Survey on saltwater and the distribution of strata yielding saltwater. He found that areas of saltwater are numerous, that they occur in low ground and are generally near the ocean or some large body of saltwater. He concluded that "finding freshwater is better to the west rather than the east of any particular saltwater well."

Barksdale (1958, p. 110-111) delineated the boundary between saltwater and freshwater in the Raritan and Magothy Formations of New Jersey and Delaware. The delineation was largely theoretical, based on freshwater heads and the specific gravity of saltwater rather than chemical analyses. Perlmutter and others (1959) and Luszczynski and Swarzenski (1966) defined a body of salty ground water in southwestern Long Island by detailed subsurface exploration that included chemical analyses.

Back (1966) delineated two saltwater-freshwater interfaces (one in Cretaceous sediments and one in Tertiary sediments) from New Jersey to Virginia. He showed also a three-dimensional

¹ In this report the datum will be referred to as "sea level."

distribution of the major ions on a series of fence diagrams. Upson (1966) studied the relation of freshwater to salty ground water from Long Island to Maryland. Manheim and Horn (1968) showed the distribution of salinity in a series of wells along the Atlantic Coast from Long Island, N.Y. to Key West, Fla.

Contour maps showing the depths to water of specified chemical quality appear in several reports. Cushing and others (1973) delineated the base of freshwater, defined as less than or equal to 1,000 mg/L dissolved solids, on the Delmarva Peninsula. Heath, Thomas, and Dubach (1975, fig. 8.20) contoured the depth to water containing 250 mg/L of chloride in the coastal plain of North Carolina. The Commonwealth of Virginia, State Water Control Board (1978, p. 44 and 1979, p. 57) contoured the depth to "the 250 mg/L salt concentration" in southeastern Virginia.

Water fresher than seawater was discovered beneath the submerged Continental Shelf from Maryland to Massachusetts as a result of test drilling on Nantucket Island, Mass. (Kohout and others, 1976; 1977) and the Atlantic Margin Coring Project (Hathaway and others, 1976; 1979).

Acknowledgments

The author is grateful to the many individuals who helped furnish data for this report. These include Rick Bower of the Virginia State Water Control Board, Kenneth Woodruff of the Delaware Geological Survey and the following personnel of the U.S. Geological Survey: Leroy Knobel, Maryland; Herbert Hopkins and Jerry Larson, Virginia; Ronald Coble and Mike Winner, North Carolina; and Allen Zack and Ivan Roberts, South Carolina. Special thanks go to Kenneth Schwarz of the Maryland Geological Survey for his guidance in the interpretation of geophysical logs and to Harry Farsett, U.S. Geological Survey, for the computer storage and plotting of the data.

METHODS OF STUDY

Figures 2 - 5 show depths below sea level to selected chloride concentrations. They are based on chloride data from; (1) chemical analyses of water from wells, (2) analyses of pore fluids from cores of the Atlantic Margin Coring Project (Manheim, written commun., 1980; Hathaway and others, 1976), and (3) chloride concentrations interpreted from calibrated self-potential (SP) logs.

Graphs showing the relation of chloride concentration to depth were constructed for more than 70 wells. Each well has chloride data for several depths. Selected graphs are shown in figure 1.

Depths to chloride concentrations for the maps were obtained from the graphs either directly or by extrapolation of

the known chloride-depth relation. Chloride analyses from several hundred wells, each having analytical data from one depth, were also used to construct the maps. Some of these data were extrapolated to the selected chloride concentrations using the chloride-depth graphs of nearby wells. The chloride and depth data for all wells used in this report are given in table 1.

Depths to chloride concentrations of 10,000 (fig. 4) and 18,000 mg/L (fig. 5) are based on chemical analyses of water from wells, SP logs, and chemical data from the Atlantic Margin Coring Project. In some wells chemical data were extrapolated from a few thousand to 10,000 and 18,000 mg/L using chloride-depth graphs of nearby wells.

Depths to chloride concentrations of 250 (fig. 2) and 1,000 mg/L (fig. 3) are based on chemical analyses of water from wells or the extrapolations from them. In a few areas, where saltwater is deep and analyses are not available, the depths to 250 and 1,000 mg/L were estimated from much greater chloride concentrations determined from SP logs.

The computation of chloride concentrations from SP curves is based largely on the theory and procedures outlined in Schlumberger (1972 and 1978). The relation of the SP curve to resistivity of the ground water is given by the equation (Schlumberger, 1972, p. 78):

$$SP = -K \log \frac{Rmfe}{Rwe}$$

where

SP is the deflection, in millivolts, of the SP curve from the shale baseline,

K is a constant approximated by $60 + 0.133T$, where T is the formation water temperature in degrees fahrenheit,

Rmfe is the equivalent resistivity of the drilling mud filtrate in ohm-meters,

Rwe is the equivalent resistivity of the ground water in ohm-meters.

Rmfe was obtained by using the equation (Schlumberger, 1978, p. 6): $Rmfe = 0.85 Rmf$ where Rmf is the resistivity of the drilling mud filtrate in ohm-meters. Rwe was obtained from the first equation above and converted to Rw , formation water resistivity, using graph SP-2 in Schlumberger (1978, p. 7) or figure 13.3 in Schlumberger (1972, p. 79). Graph SP-2 was used for water which has an Rwe of less than 0.8 ohm-meters and is considered to be a predominantly sodium chloride type. Figure 13.3 was used for water which has an Rwe of 0.8 ohm-meters or greater and is believed to contain significant concentrations of sodium bicarbonate. Rw was converted to specific conductance. Chloride

concentrations were estimated from a graph of chloride versus specific conductance developed using chemical analyses of ground water in the study area.

OCCURRENCE OF SALTY GROUND WATER

Description

The transition zone between freshwater and salty ground water is depicted by a series of maps (figs. 2-5) showing the depth to chloride concentrations of 250, 1,000, 10,000, and 18,000 mg/L.

Brackish water (250 and 1,000 mg/L of chloride) generally deepens away from the coast from Delaware to North Carolina (figs. 2 and 3). In New Jersey brackish water is deep near the coast and shallow westward. The contours in figures 2 and 3 delineate large mounds or ridges of brackish water in five locations: (1) Delaware Bay and adjacent southwestern New Jersey and eastern Delaware; (2) Lower Chesapeake Bay and adjacent parts of the York-James peninsula and the Middle Peninsula of Virginia; (3) Albemarle Sound to the Pamlico River of North Carolina; (4) Cape Fear River, North Carolina; and (5) along the eastern coast of the Delmarva Peninsula and extending northeastward off the coast of New Jersey. In addition a small, well defined, mound of brackish water occurs adjacent to the northeastern shore of Chesapeake Bay.

Saltwater (10,000 and 18,000 mg/L of chloride) generally deepens westward in Virginia, Maryland, and Delaware (figures 4 and 5). In New Jersey, it is deep near the coast and shallow westward and forms a large mound under Delaware Bay and adjacent parts of Delaware and New Jersey. Similarly, in North Carolina, saltwater is deep near the coast, particularly in the vicinity of Pamlico Sound. It is shallower westward, forming a prominent ridge, then deepens westward from the ridge. A small mound of saltwater adjacent to Cape Fear River in North Carolina has chloride concentrations greater than 10,000 mg/L (fig. 4) but less than 18,000 mg/L (fig. 5).

Ground water containing less than 10,000 mg/L chloride (fig. 4) extends as much as 70 miles off the New Jersey Coast in the form of an eastward thinning wedge the base of which becomes shallower eastward. The wedge narrows southward towards southern Virginia as the depth to saltwater (fig. 4) decreases along the coast. Its extent east of the North Carolina Coast is not known, but a borehole located 45 miles off of Cape Hatteras contains no water that is fresher than seawater.

No saltwater is shown in figures 2-5 north of southeastern New Jersey as the deep aquifers in east-central New Jersey and western and central Long Island contain freshwater. The saltwater in the Magothy aquifer in southwestern Long Island is underlain by freshwater in the Lloyd aquifer (Perlmutter and others, 1959).

Luszynski and Swarzenski (1966, p. 1) considered this saltwater to represent an extension "from a main body of salty water that lies seaward of the barrier beaches." The present author believes that the saltwater in southwestern Long Island is in hydraulic connection with Jamaica Bay and is unrelated to the regional saltwater delineated in the present study.

Saltwater occurs also in parts of the glacial aquifer and the Magothy aquifer in the Forks of eastern Long Island. Investigators have inferred that the underlying Lloyd aquifer also contains saltwater (Nemickas and Koszalka, 1980). No reliable analyses are available to substantiate this, however. The configuration of the base of freshwater (250 mg/L of chloride) on the South Fork delineated by Nemickas and Koszalka (1980) suggests hydraulic connection with surrounding seawater. The present author believes that the salty ground water is probably unrelated to the regional saltwater body delineated in the present study.

The thickness of the transition zone between 250 and 18,000 mg/L of chloride can be determined from the maps in figures 2-5. In most of the study area the zone ranges in thickness from about 1,500 to 2,300 feet. It is thicker along the coast than near the western boundary of the 18,000 mg/L concentration. The thinnest zone of transition in the study area, less than 1,000 feet, coincides with the prominent saltwater ridge in North Carolina.

The thickness of the transition zone from freshwater to saltwater in the study area contrasts with that of two documented areas. In the Biscayne aquifer in Miami, Fla., the transition zone from 250 to 18,000 mg/L of chloride is about 50 feet thick (Kohout, 1960, fig. 4). In the Magothy aquifer in southwestern Long Island, New York the transition zone from 40 to 15,000 mg/L (concentrations as high 18,000 mg/L are not reported) is generally 100 to 200 feet thick (Luszynski and Swarzenski, 1966, plates 2 and 3). Transition-zone thickness greater than that in the study area is found in the Southeast Georgia Embayment. Manheim and Paull (unpublished data, 1980; fig. 3) show a vertical distance of about 3,000 feet between dissolved-solids concentrations that correspond roughly to chloride concentrations of 500 and 18,000 mg/L.

Origin of the Saltwater

Additional data collection and analysis are needed for a thorough explanation of the origin and occurrence of salty ground water in the northern Atlantic Coastal Plain. A complete analysis should attempt to explain: (1) the relation of brackish water and saltwater mounds and troughs to the natural ground-water flow system and sea-level fluctuations; (2) the offshore occurrence of ground water that is fresher than seawater; (3) the origin of brines; and (4) the relatively thick transition zone from freshwater to saltwater. The maps in this report suggest generalized explanations for these characteristics.

The brackish water mounds shown on the 250 and 1,000 mg/L maps (figs. 2 and 3) and cited earlier in this report probably coincide with areas of major ground-water discharge and are probably in equilibrium with the natural freshwater flow system. Earlier investigators reached similar conclusions. Back (1966, p. 40) stated that the position of the deep saltwater (350 mg/L of chloride) "is determined by the relative head distribution in the freshwater and in the saltwater." Upson (1966, p. C242) concluded that the circulation pattern of the fresh ground water, particularly the location of the discharge zones, controls the locations of saltwater (250 mg/L of chloride) boundaries.

The location of saltwater shown on the 10,000 and 18,000 mg/L maps (figs. 4 and 5) is probably influenced by long-term hydrologic conditions rather than by predevelopment conditions. Predevelopment water levels do not appear to be high enough to account for the great depths to saltwater, especially along the coasts of New Jersey and North Carolina and farther inland in Maryland. The offshore wedge of ground water containing chloride concentrations of much less than 10,000 mg/L is probably relict water from periods of lower sea level. That this water is not in equilibrium with the predevelopment freshwater flow system is indicated by the low predevelopment water levels in the aquifers along the coast and by the lack of freshwater offshore. A minimum chloride concentration of 230 mg/L was found about 9 miles from the Delaware coast, and 820 mg/L was found about 7 miles from the New Jersey coast. Typical chloride concentrations are greater than 3,000 mg/L.

The occurrence of the offshore wedge of ground water is probably related to a longer period than the Pleistocene glacial maximum and associated low sea-level stand of about 15,000 years ago as proposed by Hathaway and others (1979, p. 523). This is suggested by the location of shorelines 9,000 and 13,000 years ago (Dillon and Oldale 1978, fig. 1). The shoreline 13,000 years ago was almost as far offshore from the present southern Virginia coast as from the present New Jersey coast. The shoreline 9,000 years ago was even closer to New Jersey. Yet, as seen on figures 4 and 5, the wedge extends much farther offshore from New Jersey than from Virginia. The size of the wedge is dependent, however, on factors in addition to shoreline position. Higher heads and aquifer permeabilities in New Jersey and Long Island could account for its greater extent in that area. Nevertheless, the presence of both the offshore wedge and the deep saltwater along the coast and the occurrence of shallow saltwater in the vicinity of Delaware Bay suggests that the shoreline from New Jersey to Maryland has generally been farther east than at present and that Delaware Bay has been an area of ground-water discharge for a long time.

The origin of brines in the coastal plain is discussed by Manheim and Horn (1968, p. 229-233). They describe two possible sources: leaching of evaporitic strata and concentration of dissolved solids through membrane filtration. They conclude that

leaching of evaporitic strata along with updip movement of the brines account for the present distribution of highly saline water and "that membrane - filtration phenomena do not play an important role in the formation of concentrated brines in the Atlantic Continental Margin." Drilling and geophysical data (Hathaway and others, 1979, p. 529) have indicated the presence of evaporitic strata beneath the Continental Shelf and Slope. On the other hand, there is no evidence that membrane filtration has taken place in the Atlantic Coastal Plain. *

After formation, the brines could migrate westward as sea level rises and the Continental Shelf becomes inundated by seawater. Seawater intrusion into the aquifers would also take place. Conversely, flushing of the brines and the intruded seawater would take place as the sea level declines and the Continental Shelf becomes exposed to the atmosphere. This back and forth movement of freshwater and salty ground water probably caused the thick transition zone between freshwater and saltwater. Cooper (1964, p. C6-C10) states that freshwater-saltwater mixing and dispersion can be caused by "the reciprocative motion of the saltwater front resulting from ocean tides and from the rise and fall of the water table..." He states also that dispersion rates are much larger in aquifers of alternating beds of high and low permeability than in homogeneous aquifers. Upson (1966, p. C242) also concluded that the thick transition zones result partly from tidal fluctuations and partly from sea-level changes.

CONCLUSIONS

Salty ground water underlies freshwater in the eastern part of the Atlantic Coastal Plain from New Jersey to North Carolina. Salinity generally increases with depth within a transition zone between the deepest freshwater and the underlying saltwater. The zone from 250 to 18,000 mg/L of chloride is generally 1,500 to 2,300 feet thick and is caused by the back and forth movement of freshwater and salty ground water as sea level fluctuates.

Depth to brackish water (250 mg/L and 1,000 mg/L of chloride) generally increases westward from the coast, except in New Jersey where the greatest depths are along the coast. Areas of shallow brackish water coincide with areas of fresh ground-water discharge. The brackish water is probably in equilibrium with the natural freshwater flow system.

Depth to saltwater (10,000 mg/L and 18,000 mg/L of chloride) generally increases westward in Delaware, Maryland, and Virginia. It is greatest near the coast in New Jersey and North Carolina. A large area of shallow saltwater underlies Delaware Bay and adjacent parts of Delaware and New Jersey. Ground water containing less than 10,000 mg/L of chloride extends as much as 70 miles from the New Jersey coast and is believed to be relict water emplaced when sea level was low. The position of the saltwater,

both onshore and offshore, is probably influenced by long-term average hydrologic conditions rather than by predevelopment conditions or the last low sea level during the Pleistocene. Depths to saltwater, therefore, suggest that the shoreline from New Jersey to Maryland has generally been east of its present location and that Delaware Bay has functioned as an area of fresh ground-water discharge.

Leaching of evaporitic strata is believed to form brines having dissolved-solids concentrations greater than that of seawater. The brines move westward when sea level rises and tend to be flushed when sea level declines.

REFERENCES

Back, William, 1966, Hydrochemical facies and ground-water flow pattern in the northern part of the Atlantic Coastal Plain: U.S. Geological Survey Professional Paper 498-A, 42 p.

Barksdale, H. C., and others, 1958, Ground-Water Resources in the tri-state-region adjacent to the lower Delaware River: New Jersey Department of Conservation, Division of Water Policy and Supply Special Report 13, 190 p.

Brown, D. L., 1971, Techniques for quality-of-water interpretations from calibrated geophysical logs, Atlantic Coastal Areas: *Ground Water*, v. 9, no. 4, p. 25-38.

Brown, P. M., Miller, J. A., and Swain, F. M., 1972, Structural and stratigraphic framework and spacial distribution of permeability of the Atlantic Coastal Plain, North Carolina to New York: U.S. Geological Survey Professional Paper 796, 79 p., 59 pls.

Commonwealth of Virginia, State Water Control Board, 1978, *Ground Water 1978*: Richmond, Virginia, 64 p.

Commonwealth of Virginia, State Water Control Board, 1979, *Ground Water 1978*: Richmond, Virginia, 90 p.

Cooper, H. H., 1964, A hypothesis concerning the dynamic balance of fresh water and saltwater in a coastal aquifer, in Cooper, H. H. and others, seawater in coastal aquifers: U.S. Geological Survey Water-Supply Paper 1613-C, p. C1-C12.

Cushing, E. M., Kantrowitz, I. H., and Taylor, K. R., 1973, Water Resources of the Delmarva Peninsula: U.S. Geological Survey Professional Paper 822, 58 p.

Dillon, W. P., and Oldale, R. N., 1978, Late Quaternary sea level curve: Reinterpretation based on glaciotectonic influence: *Geology*, v. 6, no. 1, p. 56-60.

Hathaway, J. C., and others, 1976, Preliminary summary of the 1976 Atlantic Margin Coring Project of the U.S. Geological Survey: U.S. Geological Survey Open-File Report 76-844, 217 p.

1979, U.S. Geological Survey core drilling on the Atlantic shelf: *Science*, v. 206, no. 4418, p. 515-527.

Heath, R. C., Thomas, N. O., Dubach, Harold, 1975, Chapter 8 Water Resources, in *North Carolina Atlas*: Chapel Hill, University of North Carolina Press, p. 150-177.

REFERENCE--Continued

Kohout, F. A., 1960, Cyclic flow of saltwater in the Biscayne aquifer of southeastern Florida: *Journal Geophysical Research*, v. 65, no. 7, p. 2133-2141.

Kohout, F. A., and Delaney, D. F., 1979, Reply to discussion by Michael A. Collins "Fresh ground water stored in aquifers under the continental shelf: Implications from deep test, Nantucket Island, Massachusetts": *American Water Resources Association, Water Resources Bulletin*, v. 15, no. 1, p. 252-254.

Kohout, F. A., and others, 1976, Fresh ground water found deep beneath Nantucket Island, Massachusetts: *U.S. Geological Survey Journal of Research*, v. 4, no. 5, p. 511-515.

Kohout, F. A., and others, 1977, Fresh ground water stored in aquifers under the continental shelf: implications from a deep test, Nantucket Island, Massachusetts: *American Water Resources Association, Water Resources Bulletin*, v. 13, no. 2, p. 373-386.

Luszczynski, N.J., and Swarzenski, W. V., 1966, Saltwater encroachment in southern Nassau and southeastern Queens Counties, Long Island, New York: *U.S. Geological Survey Water-Supply Paper 1613-F*, 76 p.

Manheim, F. T., and Horn, M. K., 1968, Composition of deeper subsurface waters along the Atlantic Continental Margin: *Southeastern Geology* v. 9, no. 4, p. 215-236.

Manheim, F. T., and Paull, C. K., 1980, Hydrochemistry of formation fluids in onshore and offshore strata in the Southeast Georgia Embayment: *Unpublished data*.

Nemickas, Bronius, and Koszalka, E. J., (1980), Geohydrologic appraisal of the water resources of the South Fork, Long Island, New York: *U.S. Geological Survey Water-Supply Paper 2073* [in press].

Perlmutter, N. M., Geraghty, J. J., and Upson, J. E., 1959, The relation between fresh and salty ground water in southern Nassau and southeastern queens Counties, Long Island, New York: *Economic Geology*, v. 54, p. 416-435.

Sanford, Samuel, 1911, Saline artesian waters of the Atlantic Coastal Plain, in Fuller, M. L., and others, *Underground water papers*, 1910: *U.S. Geological Survey Water Supply Paper 258*, p. 75-86.

Schlumberger Well Surveying Corporation, 1972, *Log interpretation, Volume 1 - Principles*: New York, 113 p.

REFERENCE--Continued

1978, Log interpretation charts: 83 p.

Upson, J. E., 1966, Relations of fresh and salty ground water in the northern Atlantic Coastal Plain of the United States: U.S. Geological Survey Professional Paper 550-C, p. C235-C243.

TABLE 1.-- DATA USED FOR CONSTRUCTION OF CHLORIDE - DEPTH MAPS

THE FIRST NUMBER IS THE IDENTIFICATION NUMBER APPEARING ON THE MAPS. THE NUMBER BEFORE THE SLASH (/) IS THE CHLORIDE CONCENTRATION IN MG/L. THE NUMBER AFTER THE SLASH (/) IS THE DEPTH BELOW SEA LEVEL AT WHICH THE CHLORIDE CONCENTRATION OCCURS. MOST DEPTHS ARE ESTIMATED FROM REPORTED BOREHOLE SETTINGS OR AQUIFER DEPTHS. SOME DEPTHS ARE ESTIMATED FROM REPORTED BORING AND WELL DEPTHS. THE LETTER (Q, SP, E, R) REFERS TO THE SOURCE OF THE CHLORIDE VALUE AS FOLLOWS: Q, CHEMICAL ANALYSIS; SP, SELF-POTENTIAL; E, ESTIMATED FROM DISSOLVED SOLIDS CONTENT OR SPECIFIC CONDUCTANCE; R, RESISTIVITY LOG.

CONTINENTAL SHELF

Q 16200/103	16200/241	E 8000/306	Q 820/305	1800/337
Q 1600/460	1000/523	1160/585	1350/648	2090/710
Q 8100/802	2720/895	E 1800/926		
Q 14950/154	12800/211	10900/240	4020/272	
Q 17000/213	18200/243	11260/273	6340/304	5140/335
Q 3700/335	3790/429	3520/460	3170/460	3390/491
Q 3530/522	3770/554	4830/616	4960/647	5640/709
Q 7330/771	6190/832	9070/926	7210/1018	10970/1081
Q 14270/1112				
Q 17600/276	15800/335	14000/397	15500/522	14600/585
Q 13900/772	13400/832	13200/957	13500/1019	13400/1081
Q 14100/1144	18000/1237			
E 17600/1001	18000/1013	18400/1028	18100/1072	18000/1196
E 18000/1258	18200/1414	18000/1502	18000/1634	18000/1728
E 18200/1821				
Q 14800/98	13500/128	8600/158	4500/188	230/259
Q 1500/304	E 200/335	Q 880/366		
Q 19000/892	19500/928	18500/990	19200/1051	19500/1236
Q 20100/1298	19900/1352	18600/1391	19300/1453	19200/1579
Q 19200/1640				
E 20000/308	15800/364	13300/426	13200/457	13900/488
E 14800/519	15100/582	15400/645	16400/707	17000/766
E 17800/829	18000/891	17500/986	18400/1018	17000/1049
E 20600/262	19000/290	20500/321	20000/352	18200/415
E 19700/477				

DELAWARE

Q 212/80	2. Q 38/88	3. Q 6/550	4. Q 19/170	
Q 300/640	SP 1100/725	2100/910	3000/1000	2200/1080
SP 3600/1180	7900/1340	8800/1560	10000/1750	13200/1860
SP 9000/2040	14200/2160	12400/2200		
Q 20/113	7. Q 1070/1100	8. Q 7/450		
Q 64/480	535/640	541/780	10. Q 168/560	266/700
SP 1400/800	1000/1090	1200/1540	1800/1610	2800/1750
SP 3500/1820	6000/1860	6800/1960	7400/2250	11200/2340
SP 15400/2480				
2. Q 37/248	13. Q 29/350	14. Q 33/300	15. Q 21/290	

MARYLAND

SP 1000/1190	1200/1240	1500/1330	2800/1450	1500/1620	
SP 1800/1710	4300/1940	9000/2100	8000/2220	14000/2510	
SP 17500/2720	17500/2920	19000/3050	17500/3190	16000/3350	
SP 38000/3460	37000/3750				
Q 18/590	3. Q 5/600	4. Q 13/665			
Q 1000/550	R 500-1500/970	6. Q 16/440	R 1-20/1360		
Q 2/215	R 1500-4000/1500	8. Q 47/635	R 50-500/1230		
Q 32/1450	10. Q 3/480	473/1140	2580/1340	11. Q 1/684	
Q 2/830	13. Q 2/1040	14. Q 1/780	15. Q 5/1730		
Q 10/1013	R 1-20/1760	17. Q 13/2550	18. Q 2/1350		
Q 2/850	20. Q 2/1120	21. Q 6/530	22. Q 31/1150	23. Q 61/750	
Q 2/1000	25. Q 1/860	26. Q 1/1032	27. Q 1/830	28. Q 2/580	
Q 2/590	30. Q 2/680	31. Q 2/530	32. Q 2/1260	1/1300	
Q 59/390	34. Q 2080/400	35. Q 65/480	36. Q 170/300	580/540	
Q 195/500	38. Q 1200/1000	39. Q 250/670	40. Q 242/730		
Q 5/910					
Q 33/1040	42/1130	110/1280	41000/3800	42000/4000	42000/4200
SP 800/1520	1500/1880	2100/1930	6100/2020	4500/2250	5100/2390
SP 5500/2490	10000/2770	16000/3820	31400/3920	29000/4200	
Q 439/400	44. Q 326/500	45. Q 52/300			
SP 3200/1270	2500/1430	3000/1700	3700/1830	4000/2160	
SP 4200/2240	14200/2370	14800/2460	21000/2750	36000/2960	
SP 43000/3280	45700/3580	48700/3840	57400/4210	52000/4540	
SP 55800/4640	47. Q 60/140	48. Q 47/160			
SP 1100/1700	3200/1910	7000/2140	9000/2230	10000/2350	
SP 12000/2630	22000/2840	24500/2990	24500/3100	26000/3320	
Q 170/420	296/460	2710/700			

NEW JERSEY

Q 118/80	307/100	2. Q 275/225	3. Q 165/320	4. Q 122/220	
Q 216/240	6. Q 155/210	7. Q 150/200	8. Q 223/330	9. Q 139/200	
Q 138/500	176/610	11. Q 188/590	12. Q 210/640		
Q 32/90	700/330	1900/700	14. Q 142/610	15. Q 4/720	283/1330
Q 6/390	780/2730	SP 1100/2740	2700/2860	5400/3030	7000/3090
SP 7000/3170	11300/3370	11300/3480	17. Q 39/800	325/1250	
Q 11000/1980	12000/2490	18000/3010	22000/3180	27000/3310	
SP 600/860	3300/1230	8000/1480	8700/1840	11600/2410	
SP 12400/2660	16700/2940	25900/3030	27400/3110	27400/3240	
Q 200/880					
SP 1300/1840	1500/2100	6400/2210	10300/2420		
SP 10300/2580	11600/2690	21000/3010	28800/3110	28800/3680	
SP 32200/3910	38100/4360	22100/5200	22100/5380		

NEW YORK AND MASSACHUSETTS

Q 5/1240	2. Q 14/1910	3. Q 13/1670	4. Q 1200/1400
----------	--------------	--------------	----------------

NORTH CAROLINA AND SOUTH CAROLINA (CONTINUED)

8. Q 758/370	109. Q 113/100				
0. Q 123/190	3200/570	13000/860	16000/1280		
1. Q 490/90	112. Q 244/260	1410/330			
3. Q 9950/860	11400/1180	15500/1400			
4. SP 2000/700	2700/870				
	SP 2700/970	4800/1070	5000/1150	3500/1370	6000/1450
	SP 3000/1780	3300/1880	3000/2030		
15. SP 7800/1270	6800/1350	16000/1850	19000/1860	23500/1920	
	SP 21000/2130	21000/2180	23500/2570	28000/2590	23500/2660
	SP 34000/2730	38000/2830	38000/2900	42000/3010	42000/3080
	SP 42000/3170	42000/3270	42000/3610	116. Q 101-250/125	
17. Q 111/400	118. Q 85/420	119. Q 10/200	120. Q 28/430		
21. Q 30/300	122. Q 1-10/300	123. Q 101-250/350	124. Q 11-25/240		
25. Q 26-100/360	126. Q 8/320	320/570	127. Q 1-10/360		
28. Q 1-10/250	129. Q 34/450	130. Q 11-25/370	131. Q 15/450		
32. Q 11/270	133. Q 101-250/310	134. Q 101-250/360	135. Q 101-250/380		
36. Q 101-250/380	1-10/430	137. Q 110/250	138. Q 57/300		
39. Q 26-100/370	140. Q 12/510	67/640	141. Q 222/660	470/820	
42. Q 10/240	840/360	4100/550	143. Q 8/190	144. Q 15/380	
45. Q 386/370	765/400	6720/540	146. Q 19/210	147. Q 28/250	
48. Q 168/300	820/360	2460/400	3540/460	149. Q 65/220	
50. Q 98/200	186/260	151. Q 226/280	1500/470	152. Q 270/270	
53. Q 382/260	154. Q 155/400	748/600	155. Q 780/420		
56. Q 200/310	2960/460	9700/900	157. Q 120/300	158. Q 212/130	
59. Q 308/100	160. Q 240/150	1625/680	7150/850	17000/1240	
61. Q 44/80	SP 12800/1520	10600/1760	26000/2310	26000/2360	
	SP 34000/2450	26000/2550	31500/2620	38000/2720	31500/3330
	SP 34000/3400				
62. SP 2500/510	7800/790	10300/840	12800/1140		
	SP 14800/1220	12800/1280	13200/1550	13600/1680	21000/1790
	SP 13600/1960	14800/2060	19000/2150	19000/2560	
63. SP 3300/950	5000/990	9500/1090	6800/1500	14200/2280	
	SP 12000/2320	15400/2410	38000/2490	34000/2560	34000/2590
64. SP 6200/970	6100/1000	8800/1790	12000/2330	17500/2390	
	SP 23500/2540	19000/2580	16800/2630		
65. SP 11000/2390	11600/2540	13600/2620	13600/2730	16000/2830	
	SP 14200/3370	26000/3440	28000/3510	31000/3600	28000/3750
	SP 26000/3880	28000/4040	31000/4260	31000/4410	34500/4640
66. SP 3800/420	3900/560	5000/730	4700/970	5100/1010	6900/1280
	SP 7000/1320	8200/1960	12000/2820	15400/2910	14200/3050
	SP 23500/3240	31500/3890			
67. Q 14/135	88/320	1240/460	1360/490	1540/540	3325/620
	Q 3360/680	3593/750	168. Q 36/550	169. Q 3/400	170. Q 10/470
71. Q 15/240	260/290	1260/420	1340/520	4160/650	
72. Q 9/400	173. Q 3/140				
74. Q 42/770	175. Q 20/230	319/350	176. Q 25/280	302/420	
77. Q 7/170	1100/320	1020/460	178. Q 202/620	1600/790	
79. Q 380/310	510/360	180. Q 79/320	618/860		
81. Q 350/130	300/190	680/280			
82. Q 6/120	183. Q 170/440	1700/600	184. Q 6/200	185. Q 12/200	
86. Q 6/180	120/340	1200/450	10400/730		
87. Q 125/550	1370/720	15400/960			
88. Q 19/360	189. Q 150/400	190. Q 16/210	191. Q 1070/360		

NORTH CAROLINA AND SOUTH CAROLINA (CONTINUED)

92.	SP 9000/1520	10000/1570	9500/1650	9800/1780		
	SP 9500/1950	9300/2240	9800/2300	23500/2390	13600/2470	
	SP 13600/2580	13200/2690				
93.	SP 10000/1600	12800/1620				
	SP 17500/1640	16800/1680	21000/1860	23500/1910	21000/2040	
	SP 16800/2080	14800/2380	12400/2490	34000/2550	38000/2580	
	SP 31500/2690	28000/2820	28000/3230	34000/3300		
94.	SP 3800/1510	3000/1600	17500/1720	19000/1810	16800/1930	
	SP 19000/2020	21000/2070	21000/2180	23500/2420	42000/2640	
	SP 34000/2690	34000/2820	21000/3070	21000/3270	31500/3360	
	SP 48000/3410	42000/3450				
95.	SP 2200/1800	5000/1880	9200/1930			
	SP 9000/2050	9500/2280	11300/2630	13600/2810	9800/3120	
	SP 8800/3340	12000/3590	14200/3630			
96.	SP 9000/1780	9200/1910				
	SP 9200/2010	12000/2090	12000/2130	12000/2280	12400/2630	
	SP 16000/2810	28000/2900	28000/3270			
97.	SP 2000/1080	3000/1150	8200/1820	10000/1960	10000/2010	
	SP 14200/2110	16800/2180	16800/2270	15400/2320	21000/2660	
	SP 26000/2740	23500/2980				
98.	SP 1500/1030	3100/1180	8400/1870	8400/2010	16800/2230	
	SP 13200/2360	21000/2710	34000/2090	38000/3210	38000/3380	
99.	SP 8800/1930	13200/2080	14800/2200	16800/2330	19000/2420	
	SP 16800/2750	21000/2790	38000/2850	28000/2950	19000/3060	
	SP 34000/3290	34000/3410	42000/3460			
00.	SP 5300/1740	2800/1850	9000/2400	28000/2510	14200/2590	
	SP 28000/2850	34000/2880	34000/2920			
01.	SP 1400/890	1300/1030	4300/1250	9300/1350	9000/1410	
	SP 8500/1550	17500/1680	13600/1800	12400/1980	13200/2040	
	SP 14200/2210	23500/2350				
02.	SP 4000/1560	6700/1770	13000/2040	12000/2100	13600/2210	
	SP 16700/2520	11600/2760	15000/3060	16000/3140	15000/3250	
03.	SP 6200/1440	8500/1490	8500/1560	7000/1610	14800/2250	
	SP 21000/2460	16800/2600	16800/2740	38000/3280	34000/3500	
04.	Q 3/400	205. Q 3/150	206. Q 7/180	207. Q 12/140	208. Q 12/200	
09.	Q 44/350	210. Q 8/410	211. Q 15/350	212. Q 180/420		
13.	Q 10/250	214. Q 8/330	215. Q 43/220	216. Q 17/180		
17.	Q 165/300	218. Q 5/400	219. Q 370/300	220. Q 4/160	221. Q 26/500	
22.	Q 30/150	223. Q 2450/550	224. Q 74/350	225. Q 47/120		
26.	Q 35/280	227. Q 19/140				
28.	SP 600/670	600/770	700/790	1800/970	2700/1110	3000/1200
29.	SP 1100/840	600/900	1500/1050	2000/1150	4000/1210	2600/1260
	SP 4000/1310	3800/1430	3200/1460			
30.	SP 700/750	2700/1030	3000/1060	3300/1130	2700/1220	
	SP 5700/1350	6800/1400	10600/1430	9000/1500	10600/1530	
	SP 10000/1730					
31.	SP 1000/650	1100/770	1600/840	2500/1000	3900/1110	4700/1170
	SP 6700/1180	232. SP 500/920	600/1100			
33.	SP 800/980	1000/1030	1100/1160	4200/1330	5000/1640	
34.	SP 800/780	800/840	1500/940	1200/1010	2500/1140	6400/1190
35.	Q 7/220	236. Q 12/200	237. Q 650/320			
38.	SP 2400/510	4200/630	4000/800	5900/1020	6500/1150	
39.	Q 6/130	240. Q 4/80	241. Q 145/75	242. Q 63/350		
43.	Q 6/30	2600/290	6950/490	9300/660	10000/680	12000/950
44.	Q 47/190	3350/290	8780/560	245. Q 31/90	246. Q 107/160	
47.	Q 136/150	248. Q 109/160	249. Q 38/120	2860/310	8310/600	

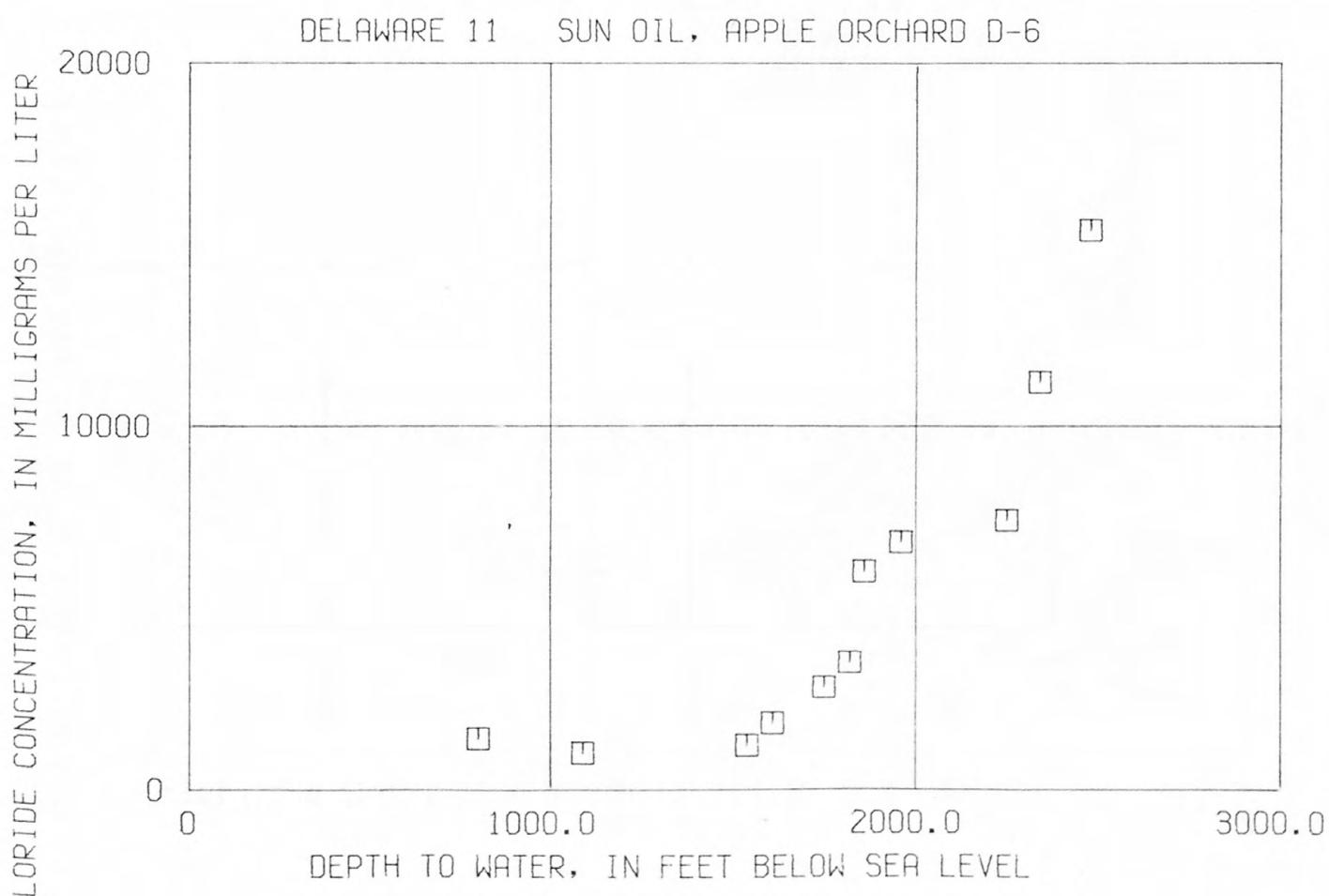
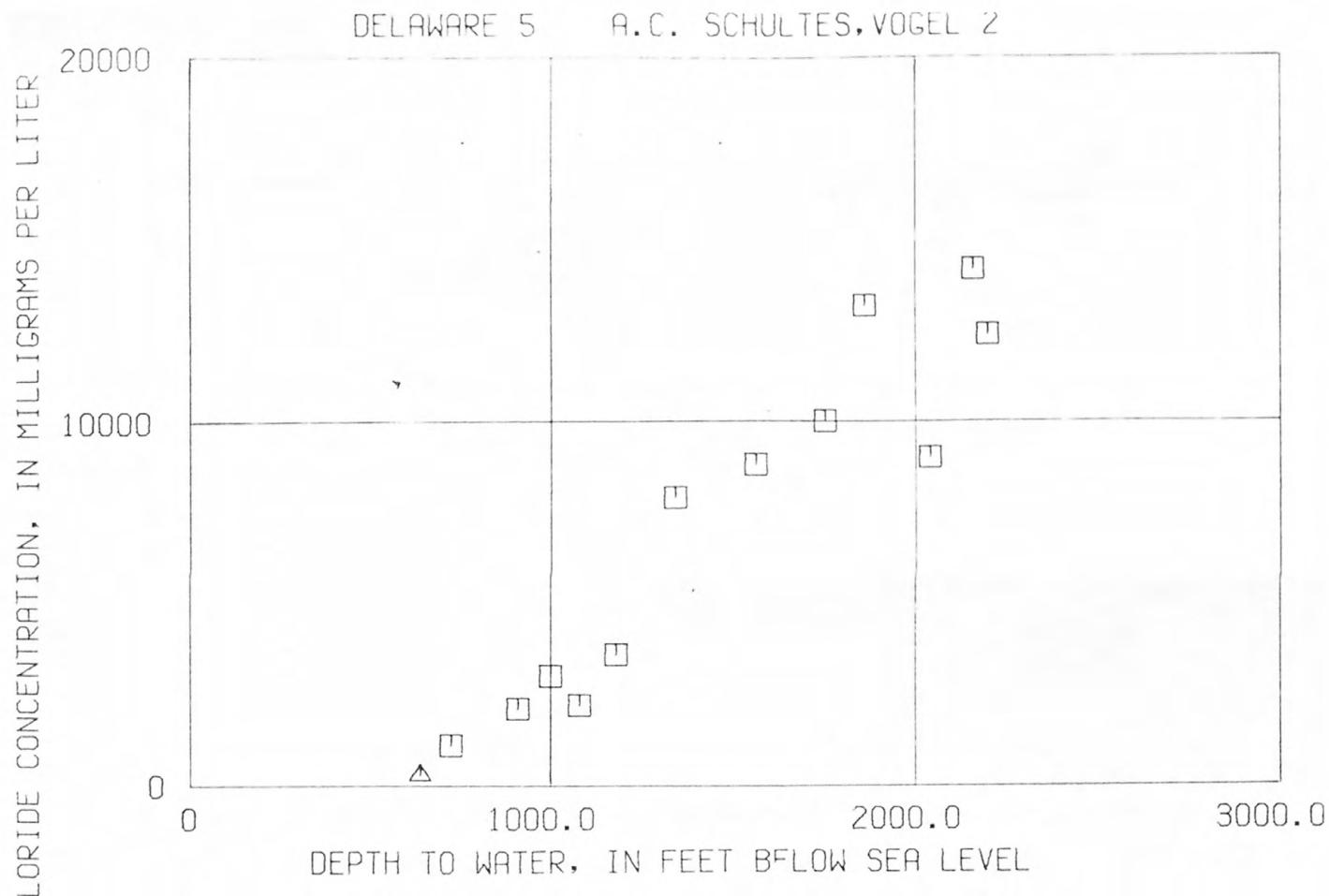
NORTH CAROLINA AND SOUTH CAROLINA (CONTINUED)

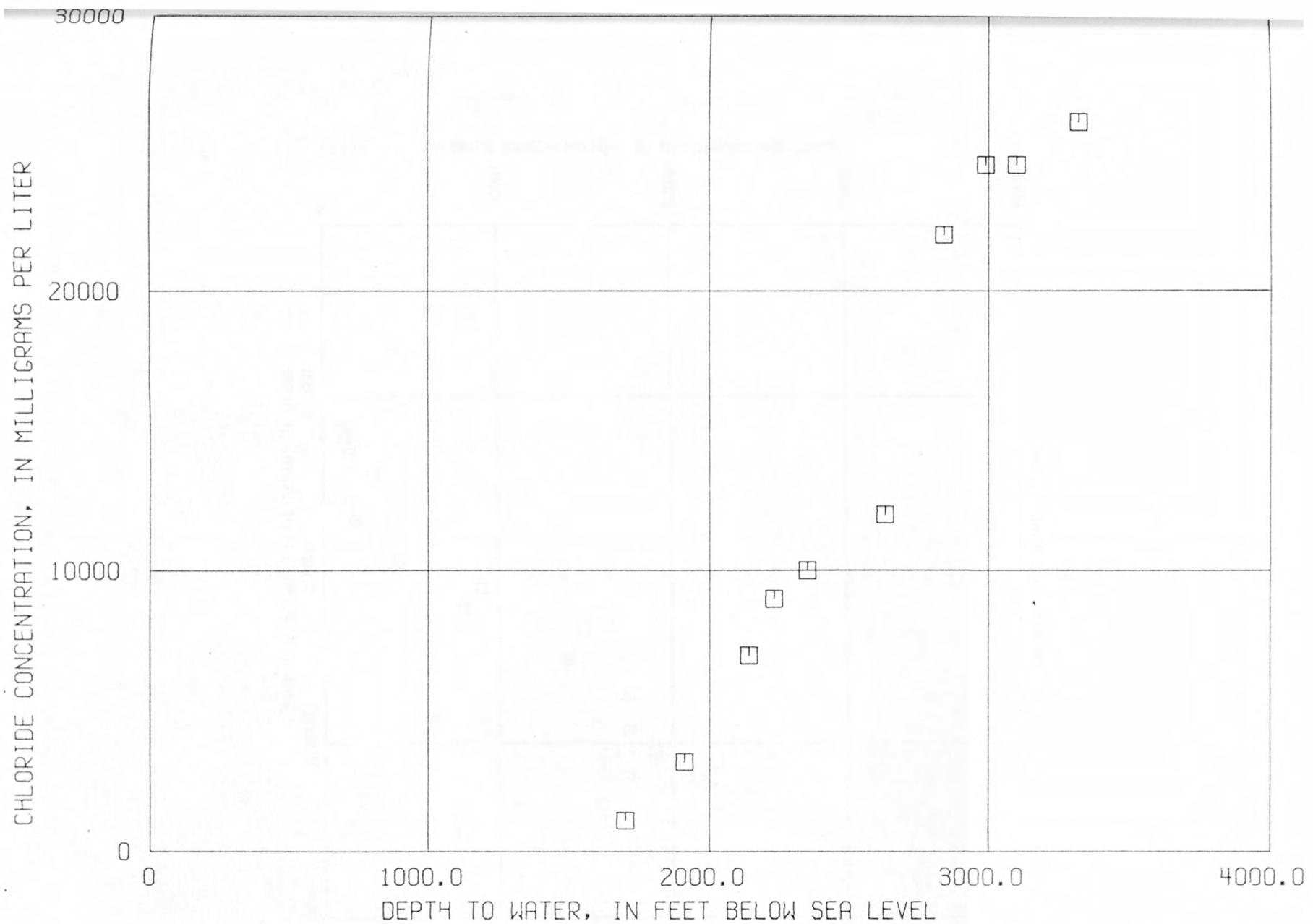
0. Q 37/190	251. Q 26/150	252. Q 110/150	253. Q 4/160	254. Q 4/420
5. Q 26/370	70/450	3100/620	256. Q 7/220	257. Q 9/250
8. Q 210/100	259. Q 1020/220			
0. Q 1300/270	1900/480	6350/690	6650/990	
1. Q 235/230	262. Q 486/170	263. Q 760/280		
4. Q 19/70	1710/290	2082/680	6300/1010	5780/1140
5. Q 1550/210	8100/1530	266. SP 2200/950	1800/1060	1900/1120
7. Q 60/10	760/300	650/600	2400/770	3700/1000
8. SP 1300/760	1100/980	1200/1020	2200/1050	4500/1210
				1500/1130

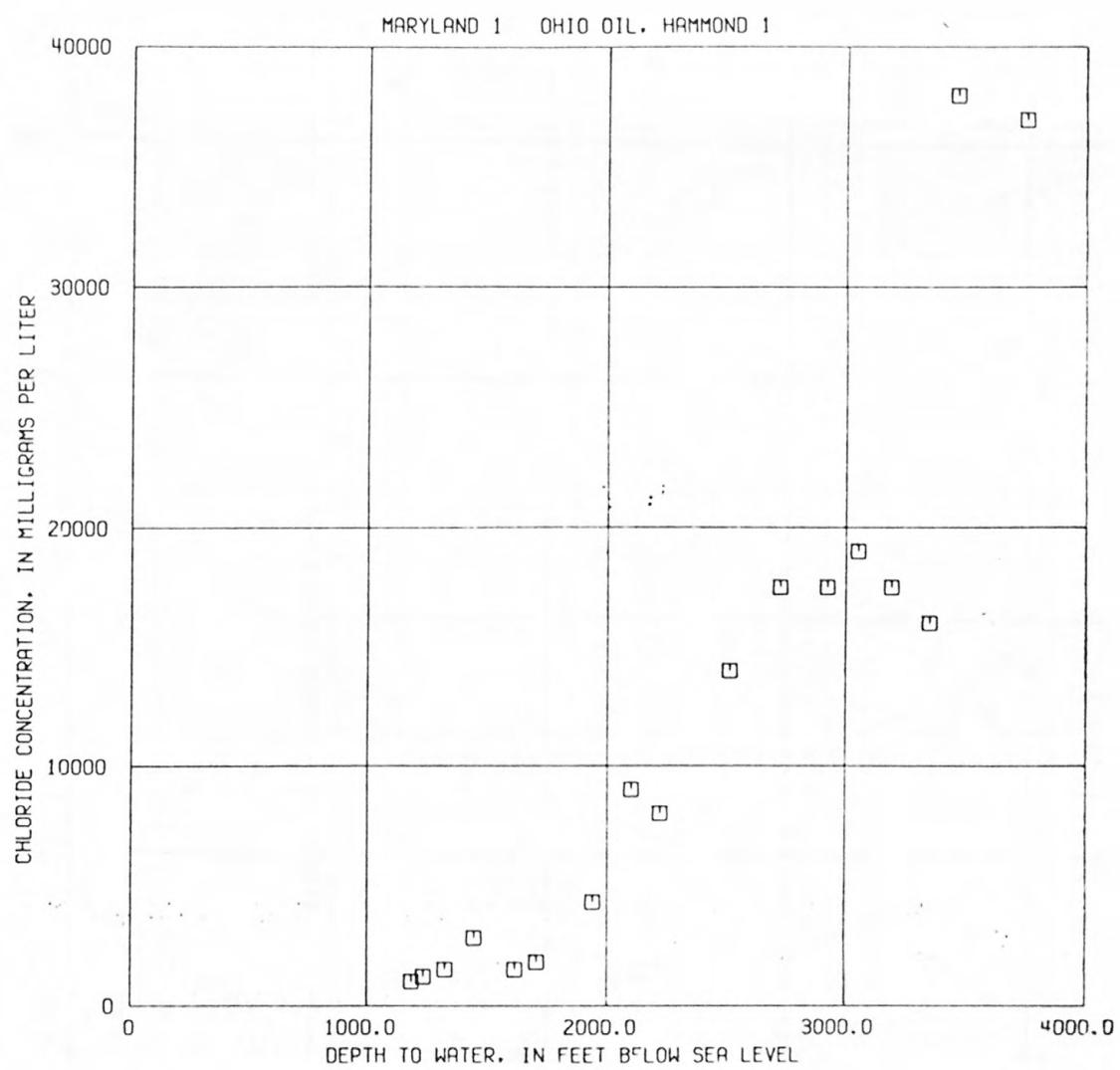
VIRGINIA

Q 2/680	2. Q 2/450	3. Q 3/530	4. Q 10/690	5. Q 3/610
Q 3/500	7. Q 5/700	8. Q 16/600	9. Q 399/660	10. Q 150/1010
1. Q 66/120	12. Q 64/200	13. Q 17/210	14. Q 12/180	15. Q 55/240
2. Q 12/200	17. Q 9/230	18. Q 1600/370	19. Q 690/170	20. Q 29/200
3. Q 20/125	22. Q 21/430	23. Q 14/200	24. Q 2/500	25. Q 160/900
5. Q 3/1200	27. Q 6/550	28. Q 187/600	29. Q 10/500	30. Q 9/450
1. Q 39/650	32. Q 1848/620	33. Q 1820/800	34. Q 355/700	
5. Q 1800/700	36. Q 1500/400	37. Q 1110/390	38. Q 120/260	
9. Q 210/250	40. Q 12/400	41. Q 99/480	42. Q 55/460	43. Q 27/350
4. Q 200/380	45. Q 240/430	46. Q 2150/1170	47. Q 408/500	
3. Q 600/700	49. Q 3/900	50. Q 4/310	51. Q 16/580	52. Q 194/510
3. Q 180/380	54. Q 185/655	400/790	1270/1030	55. Q 227/650
5. Q 189/800	57. Q 964/850	1380/950	1680/1040	4200/1260
Q 9560/1620	26000/2370	26900/2500	58. Q 2580/650	59. Q 21/500
0. Q 132/800	61. Q 18/660	62. Q 15/615	63. Q 15/600	64. Q 96/500
5. Q 392/800	66. Q 3/500	67. Q 34/370	68. Q 52/700	69. Q 65/800
0. Q 57/750	71. Q 580/1100	72. Q 29/440	73. Q 32/530	2250/1000
4. Q 30/590	71/760	456/900		
5. Q 24/420	360/670	SP 800/1160		
SP 1800/1250	2100/1370	3300/1410	3000/1440	5000/1750
6. SP 22000/620	2400/1020	3000/1170	3400/1810	2600/1880
SP 6000/1950	8000/2230	13200/2290	9000/2510	15400/2620
SP 13200/2800				
7. Q 240/280	2038/600	1929/740	1485/1030	1762/1270
SP 700/610	1000/860	1400/960	1900/1030	2400/1270
				2200/1430

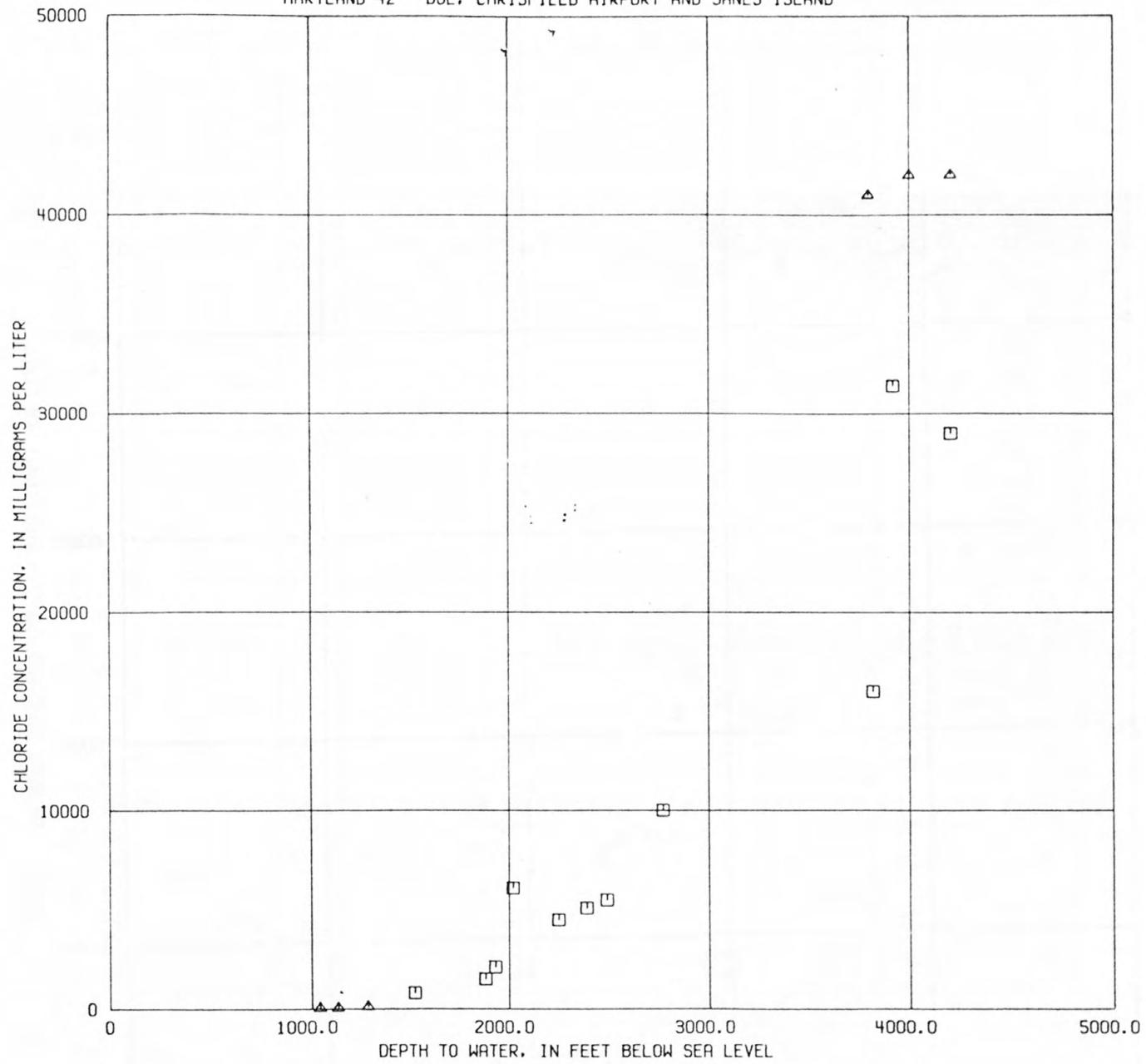
Figure 1.--Graphs showing relation of chloride concentration to depth in selected wells.

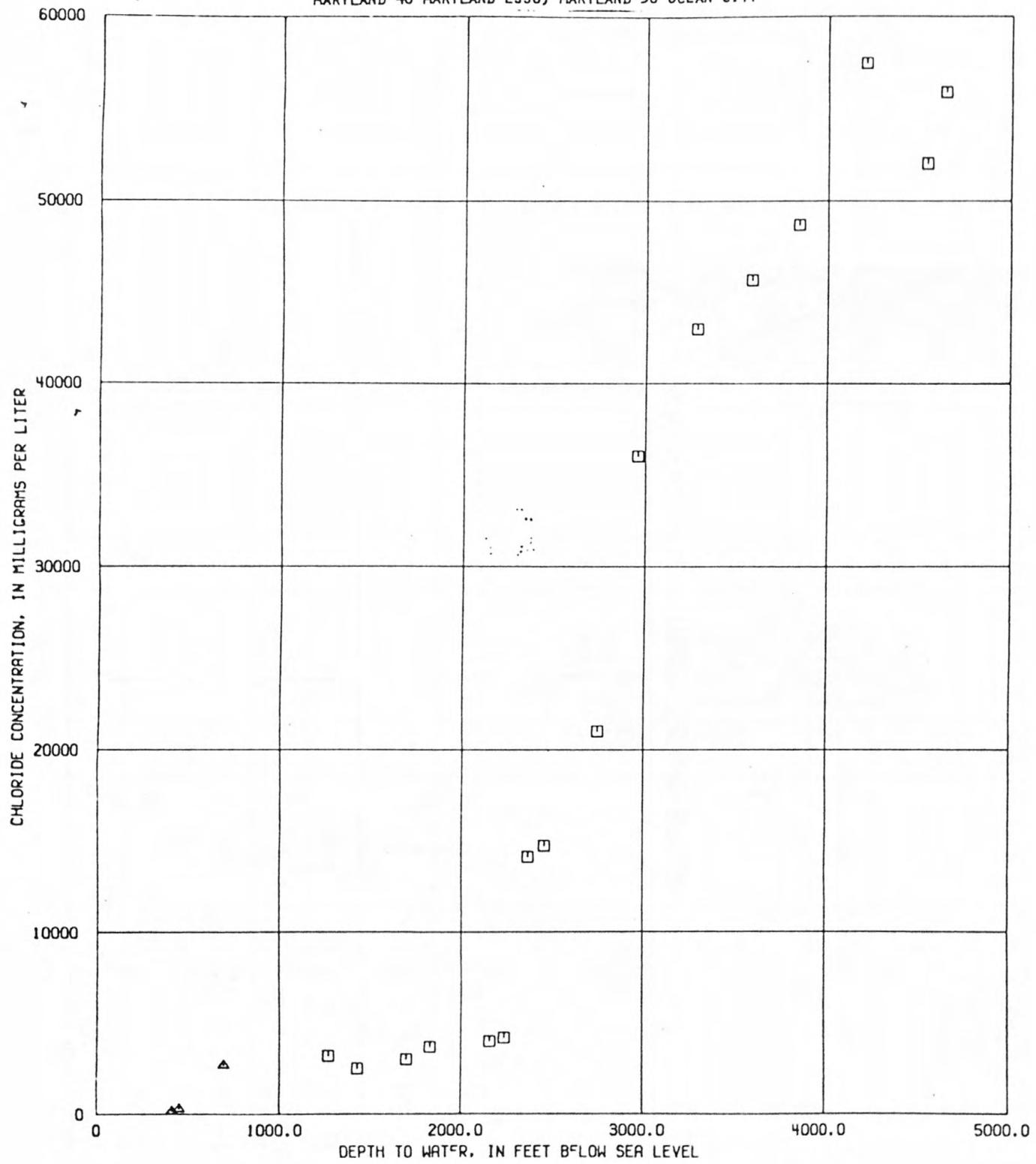


EXPLANATION


Each well is identified by a State identification number (for example, Delaware 5) followed by a local name (for example, A.C. Schultes, Vogel 2). The State identification number also appears in table 1 and figures 2-5.


The source of the chloride concentration is identified as follows:

Δ Chemical analysis


\square SP log



MARYLAND 42 DOE, CHRISFIELD AIRPORT AND JANES ISLAND

MARYLAND 46 MARYLAND ESSO; MARYLAND 50 OCEAN CITY

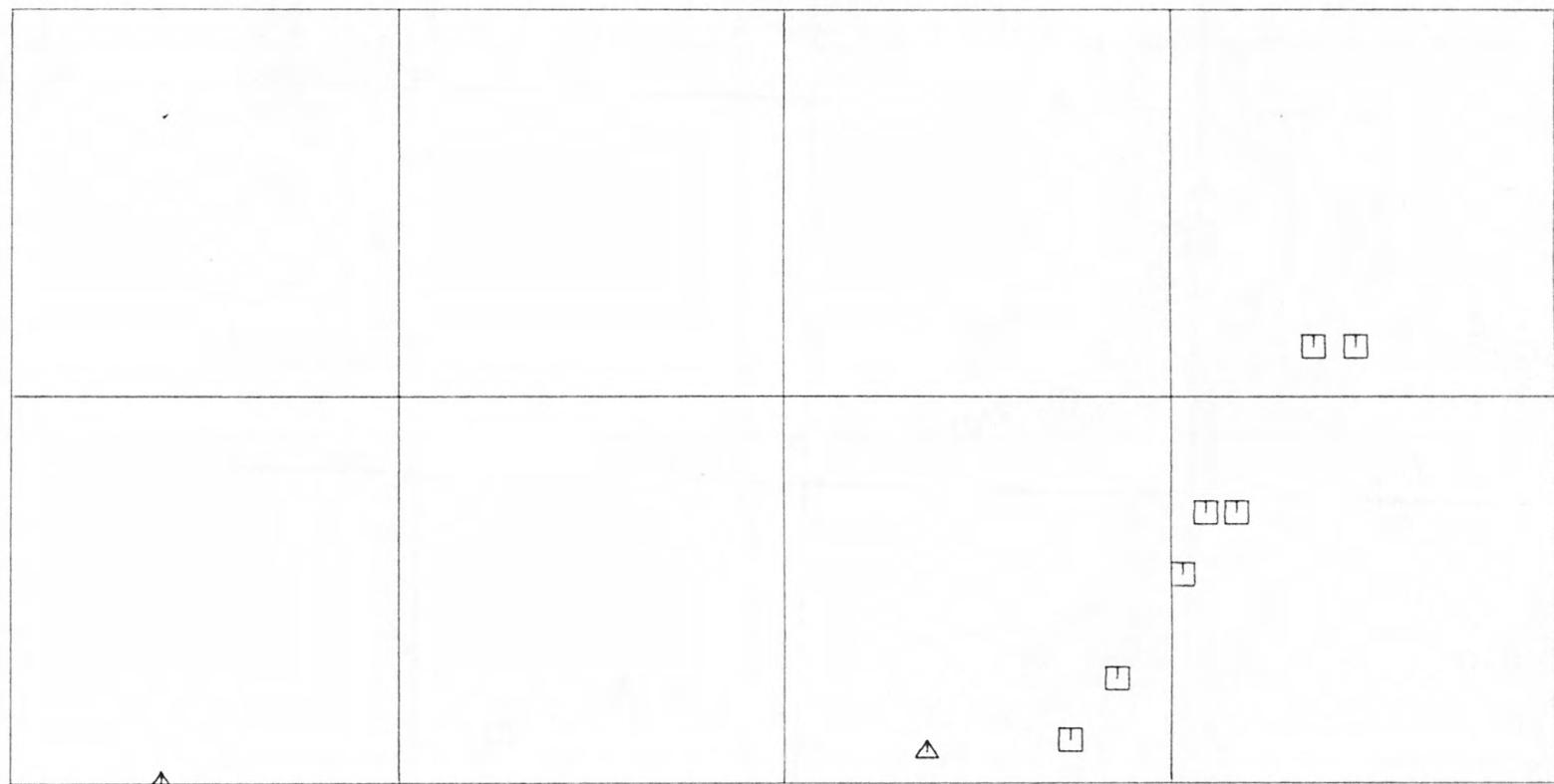
CHLORIDE CONCENTRATION, IN MILLIGRAMS PER LITER

NEW JERSEY 16 USGS, ISLAND BEACH

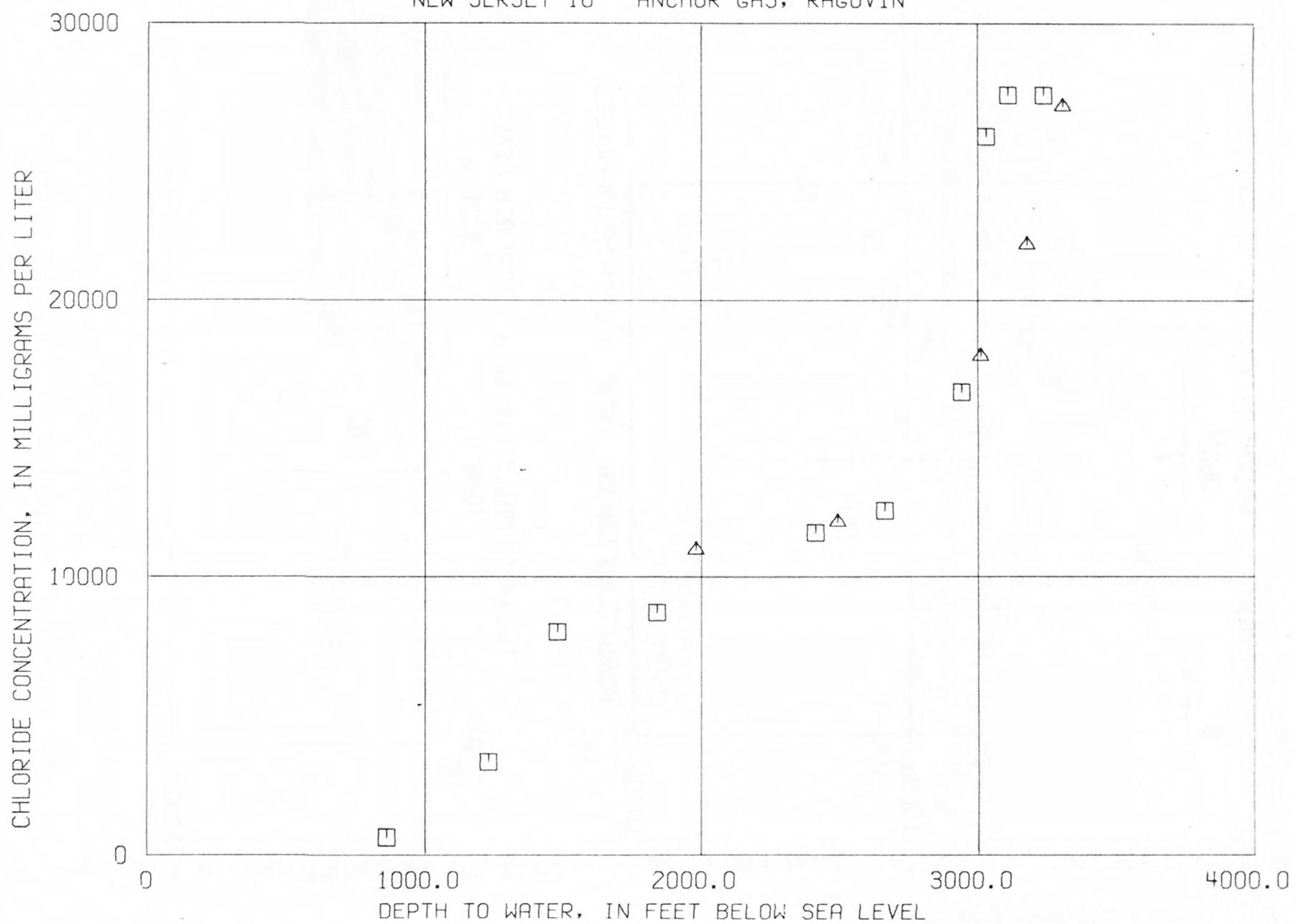
20000

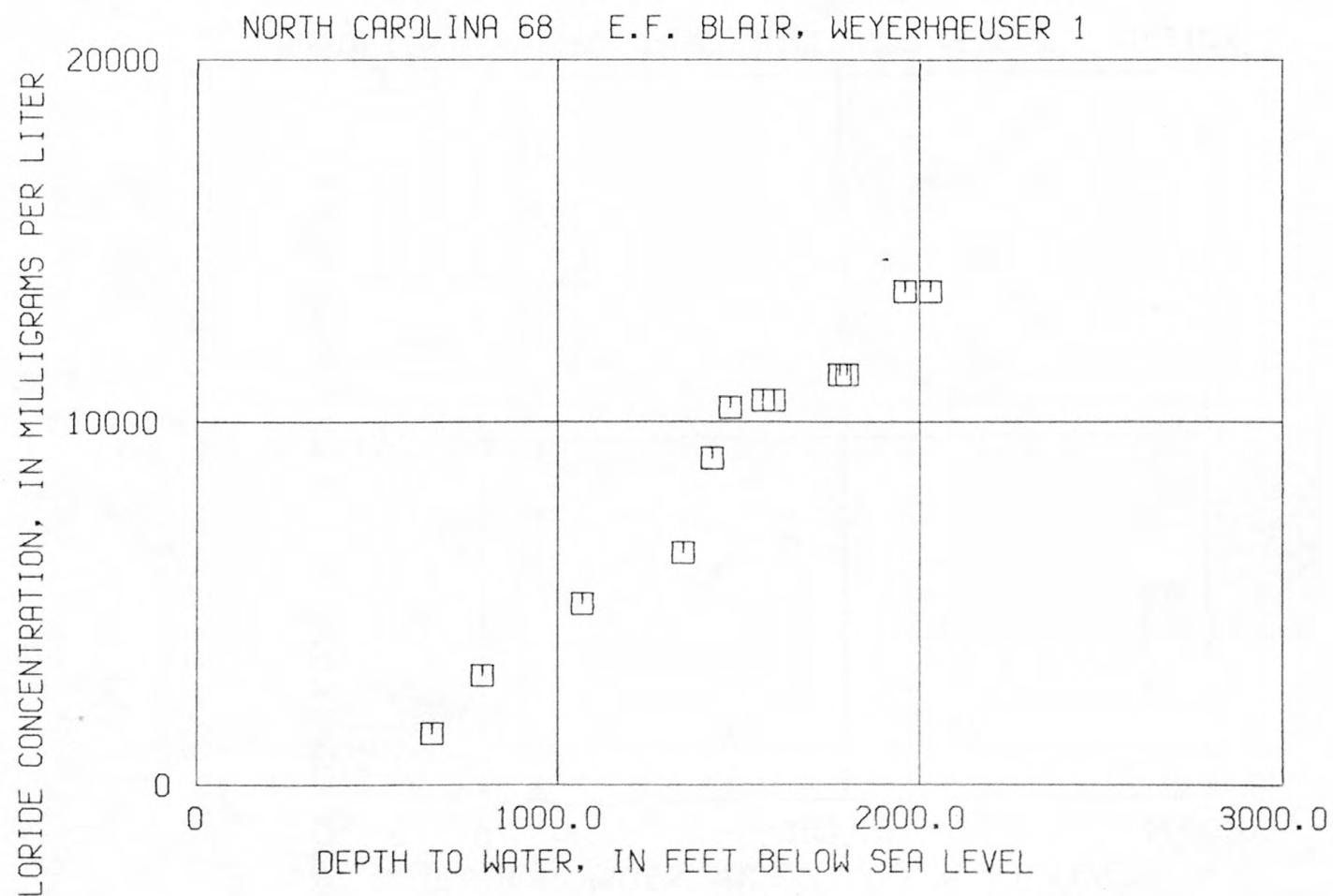
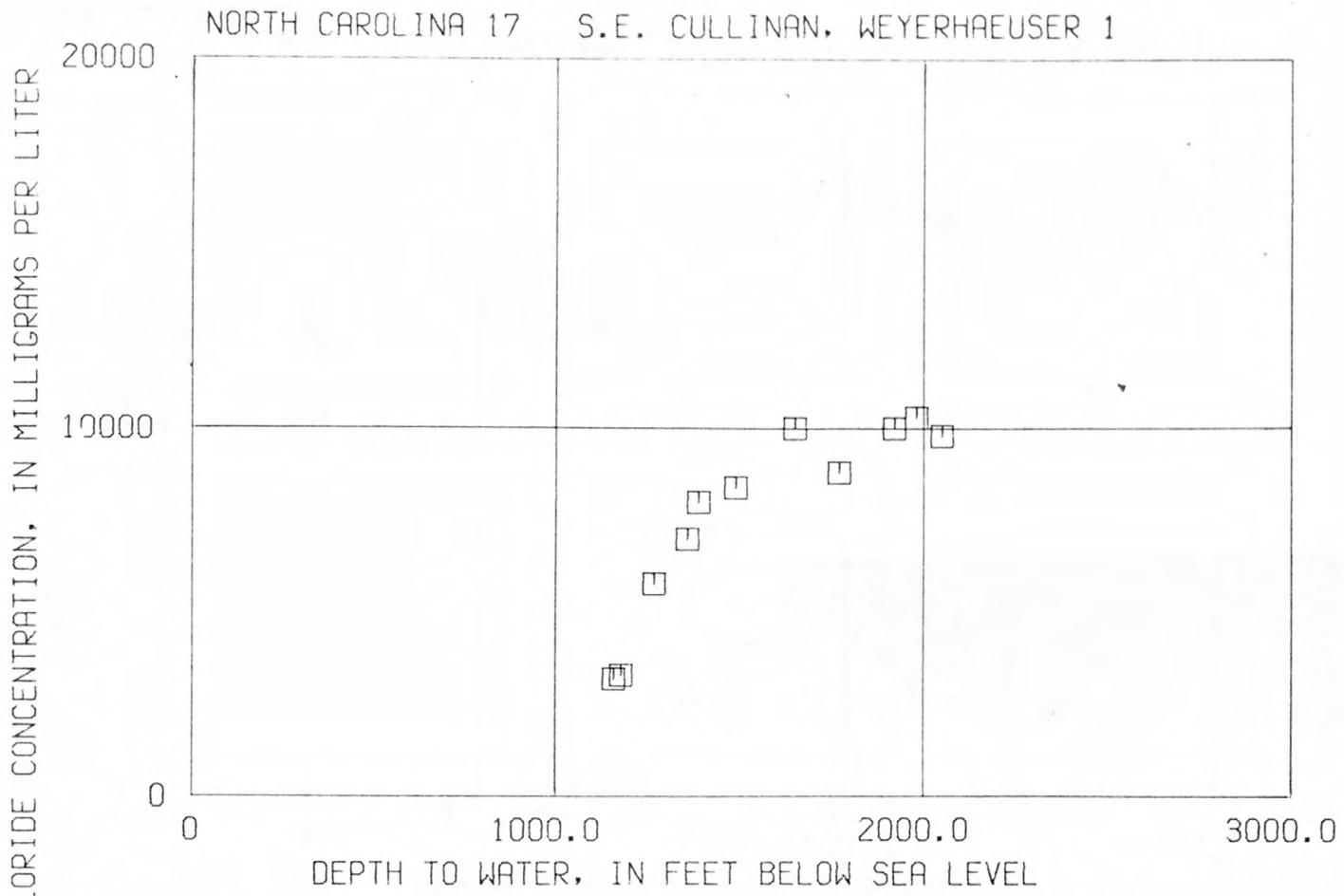
10000

0

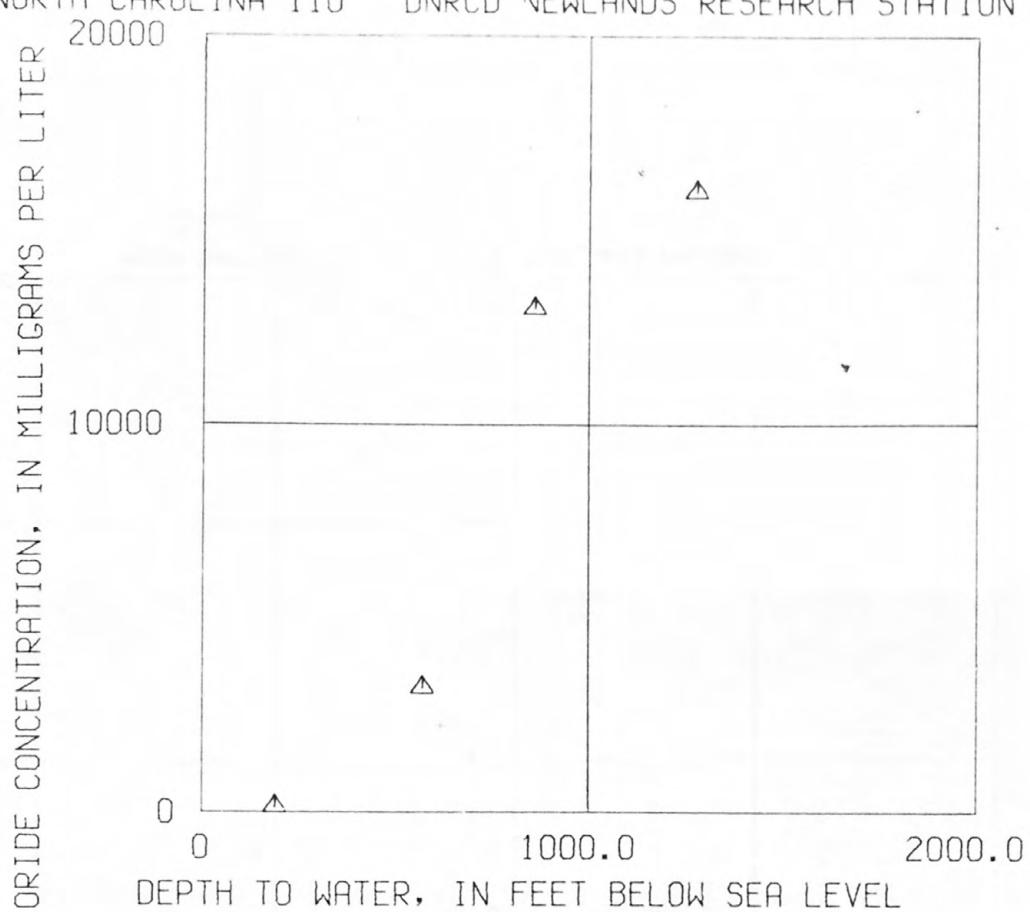

1000.0

2000.0

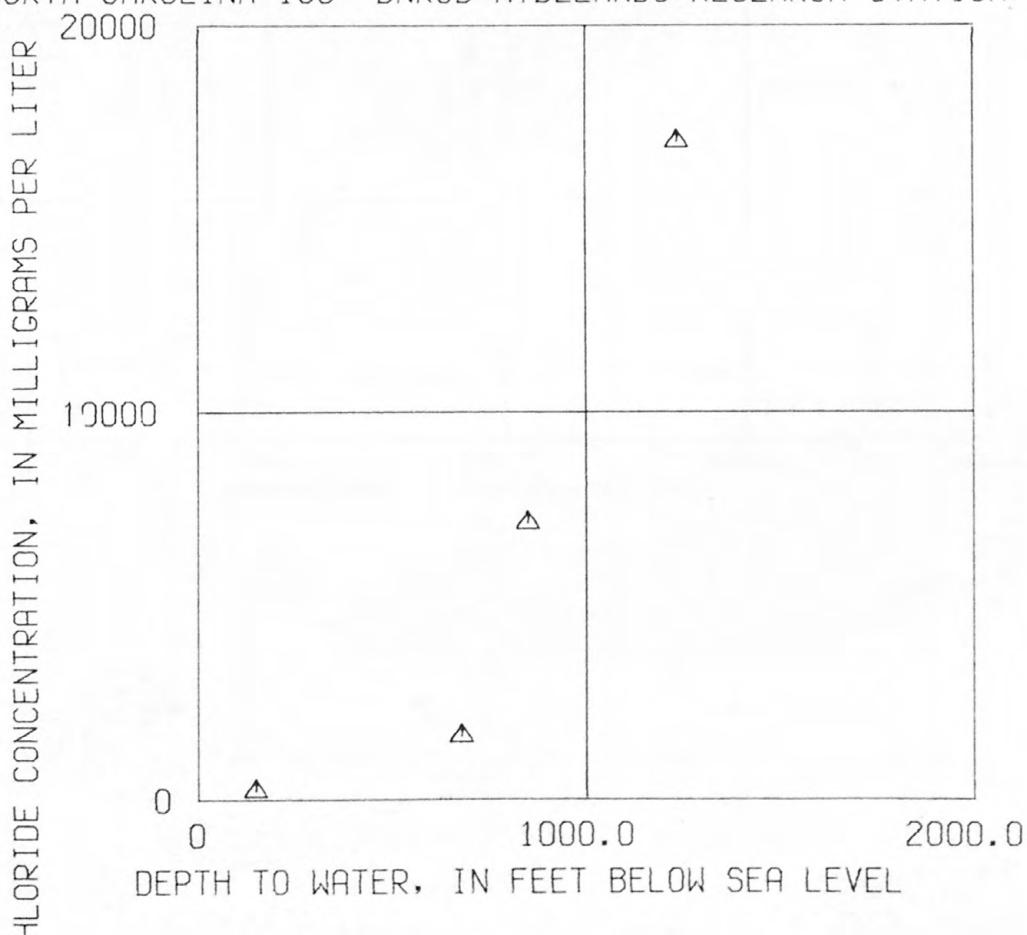

3000.0

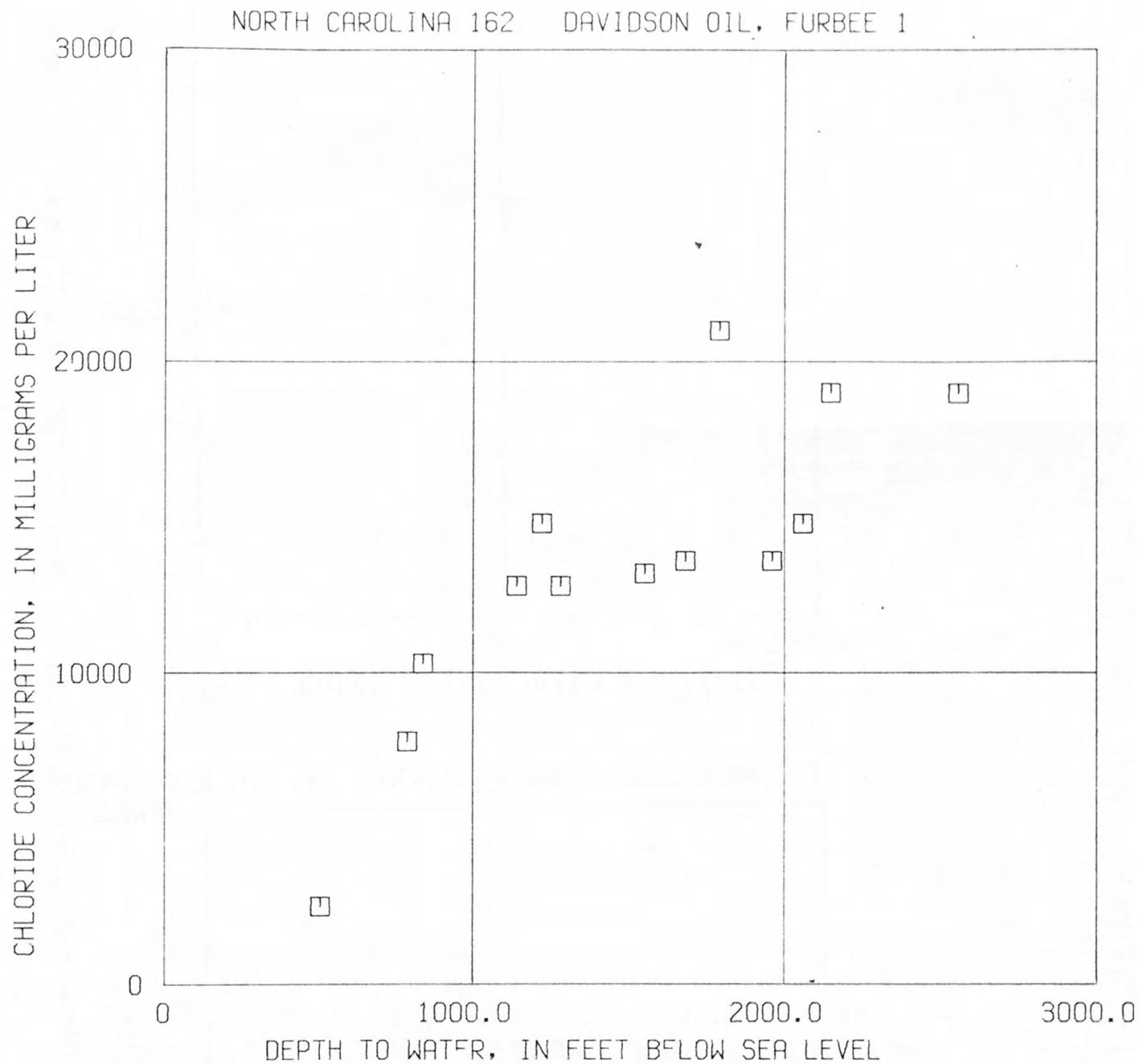


4000.0

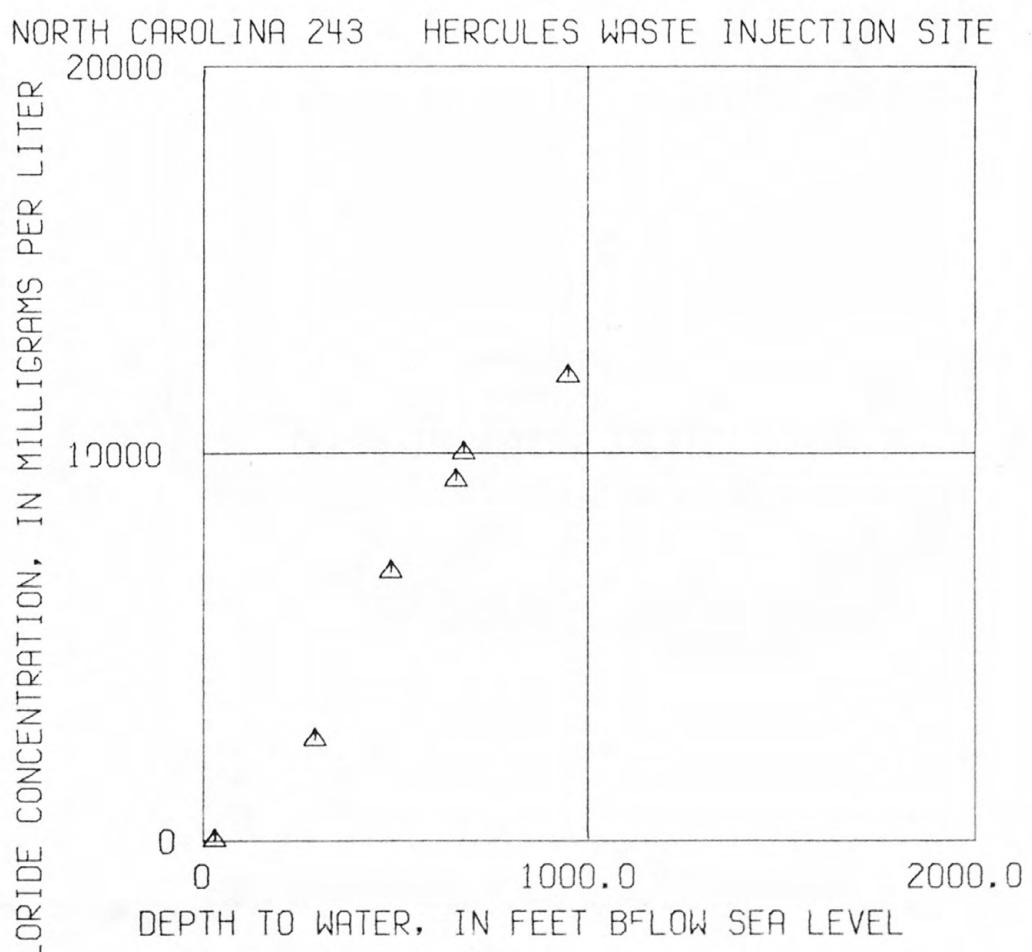
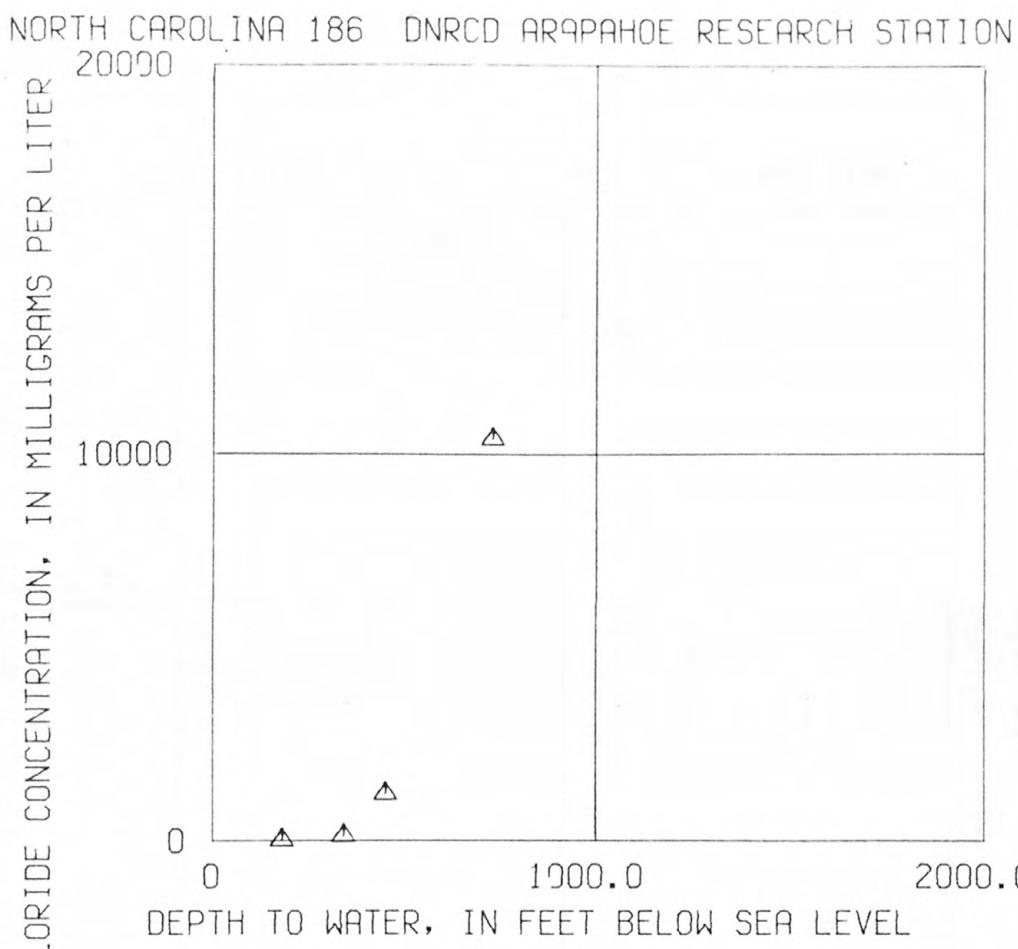
DEPTH TO WATER, IN FEET BELOW SEA LEVEL

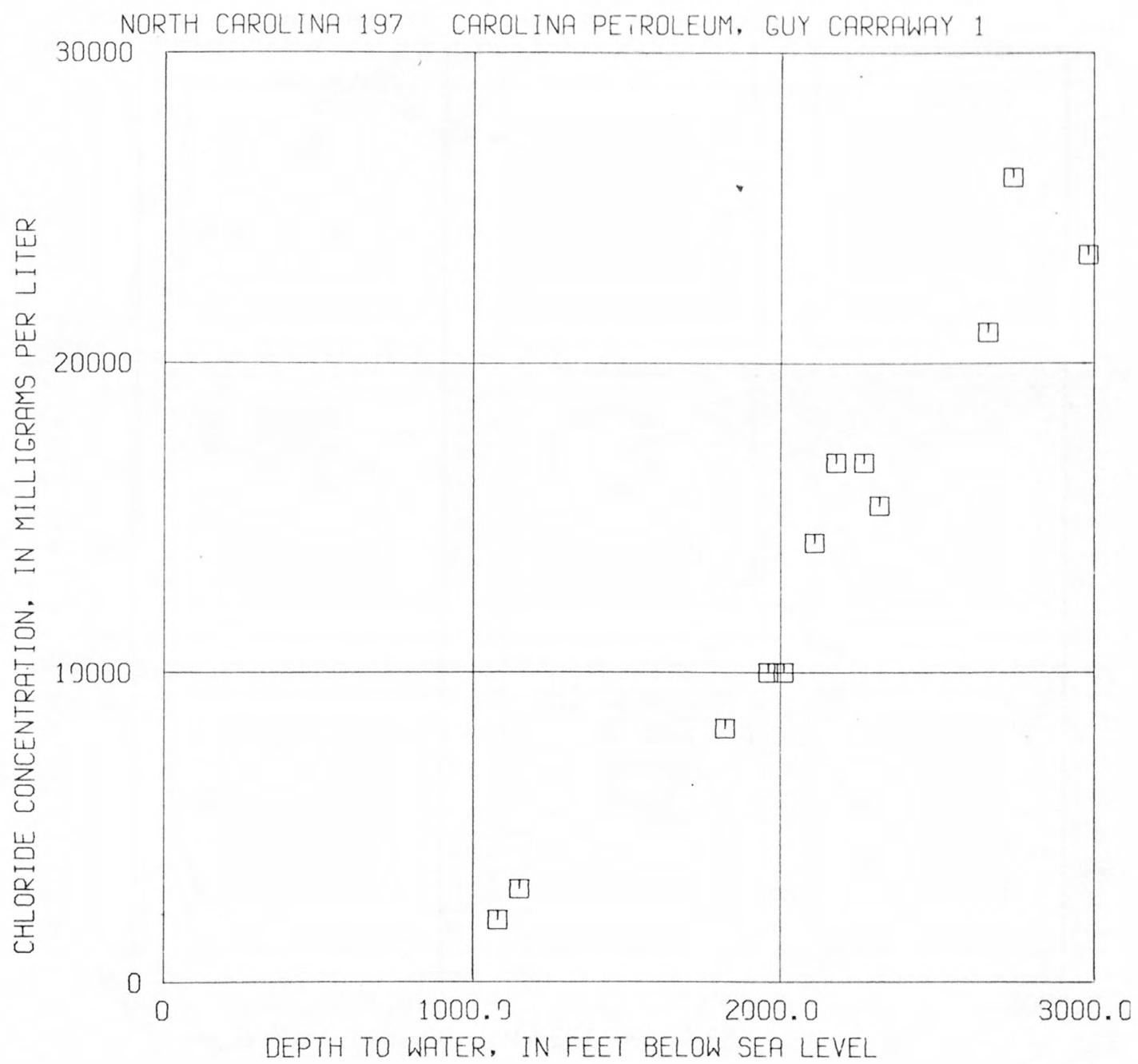


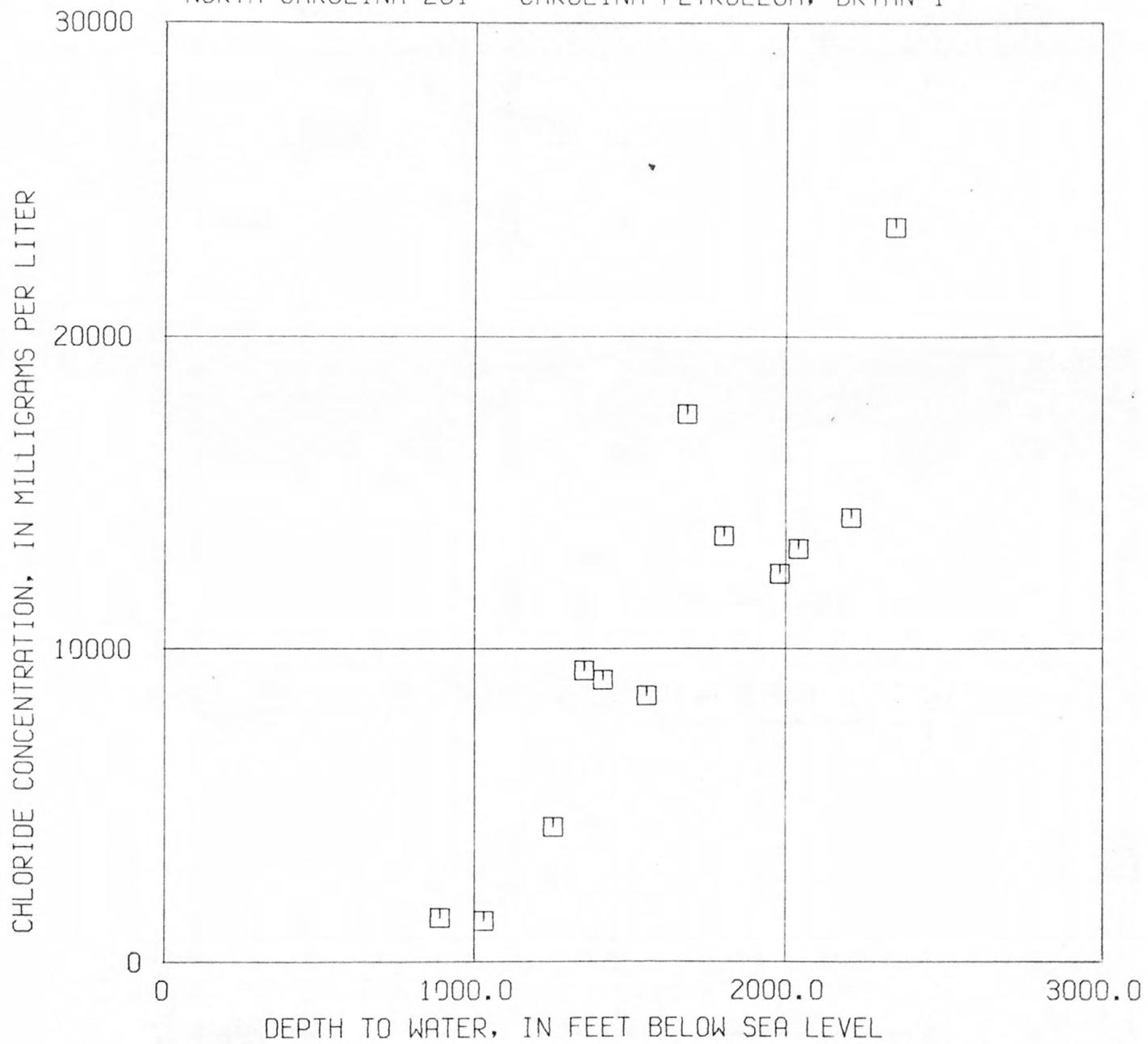
NEW JERSEY 18 ANCHOR GAS, RAGOVIN

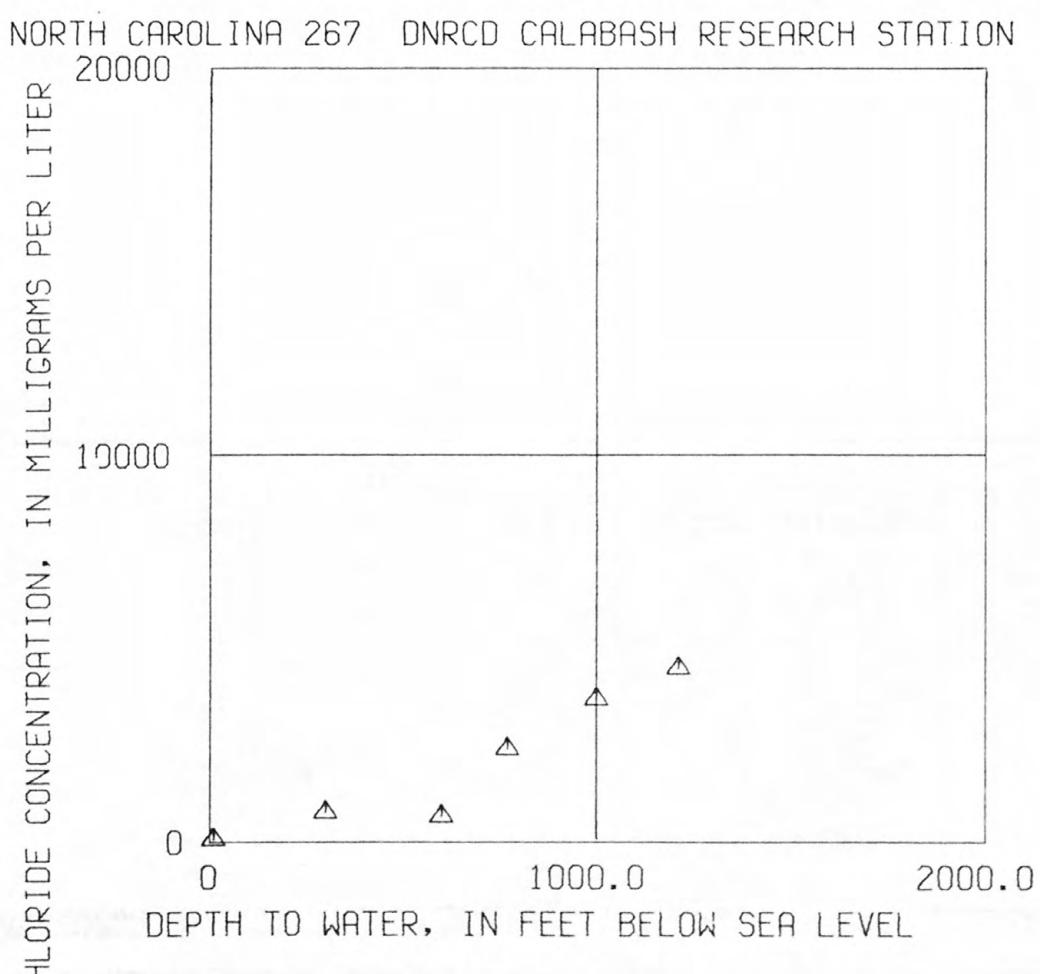
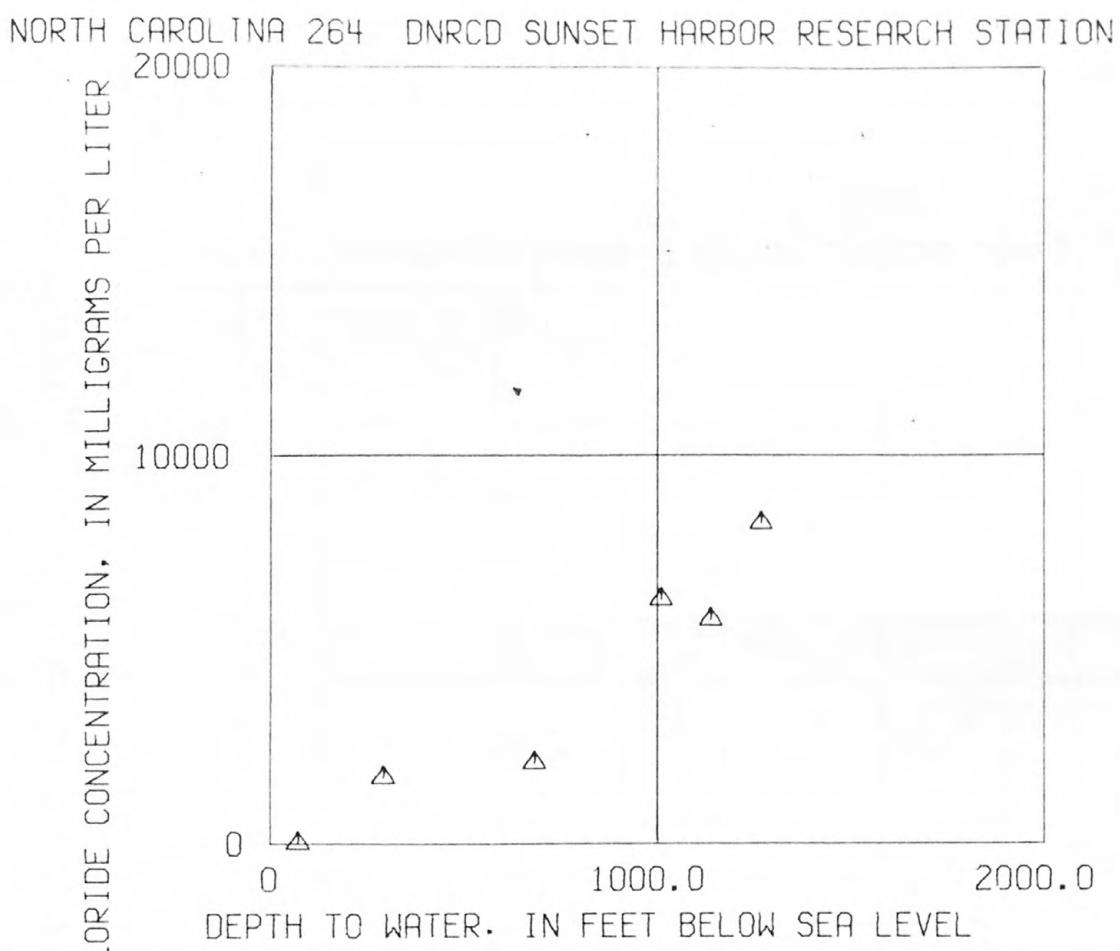


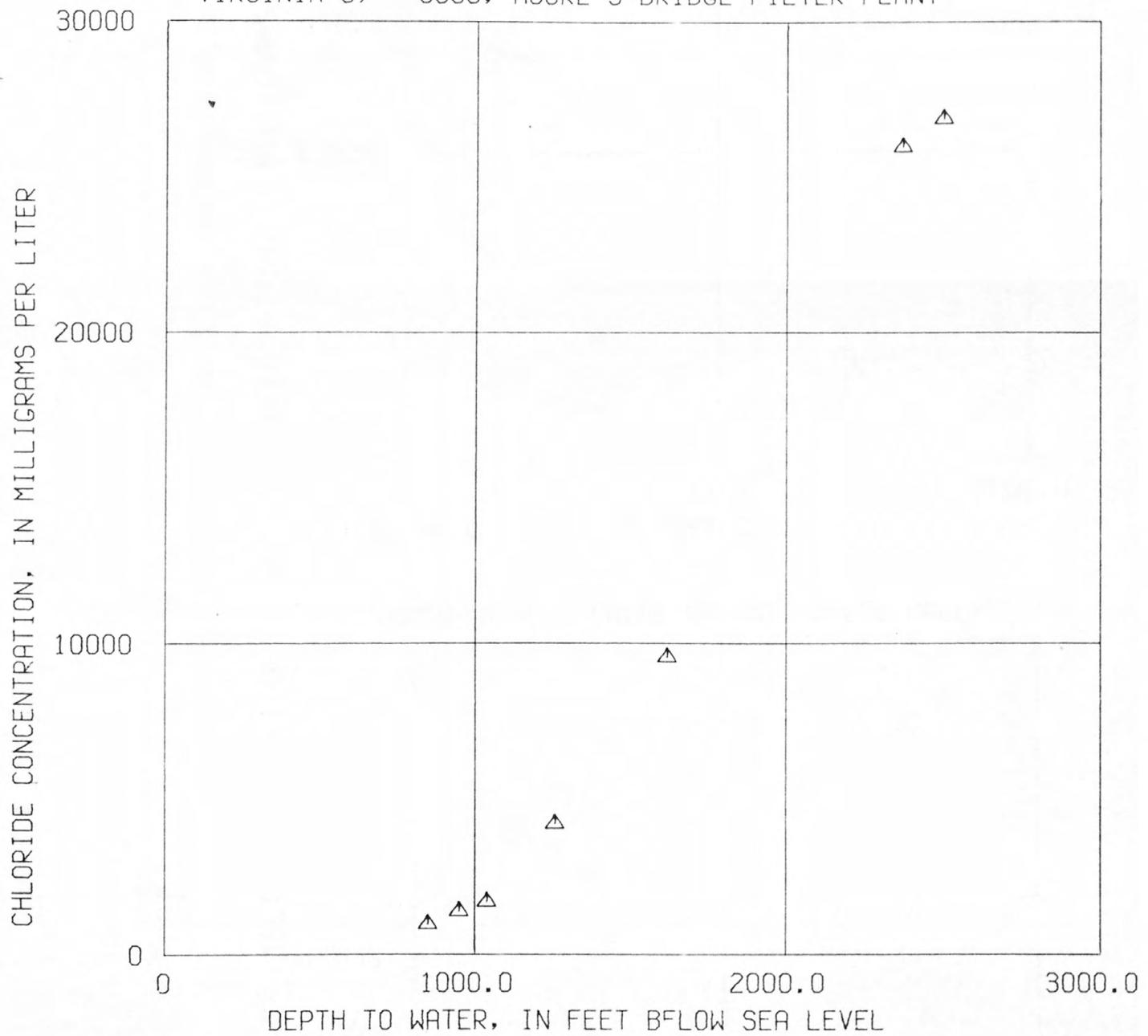

NORTH CAROLINA 110 DNRCD NEWLANDS RESEARCH STATION

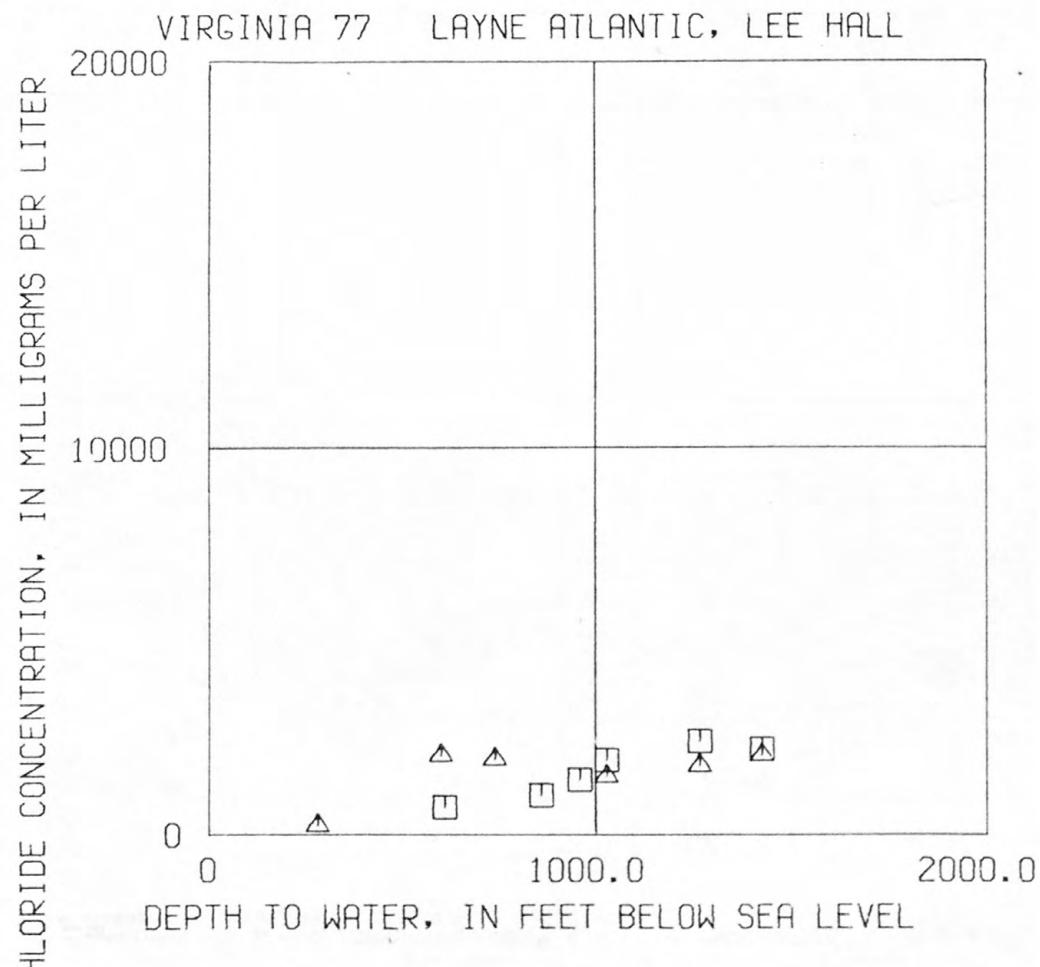
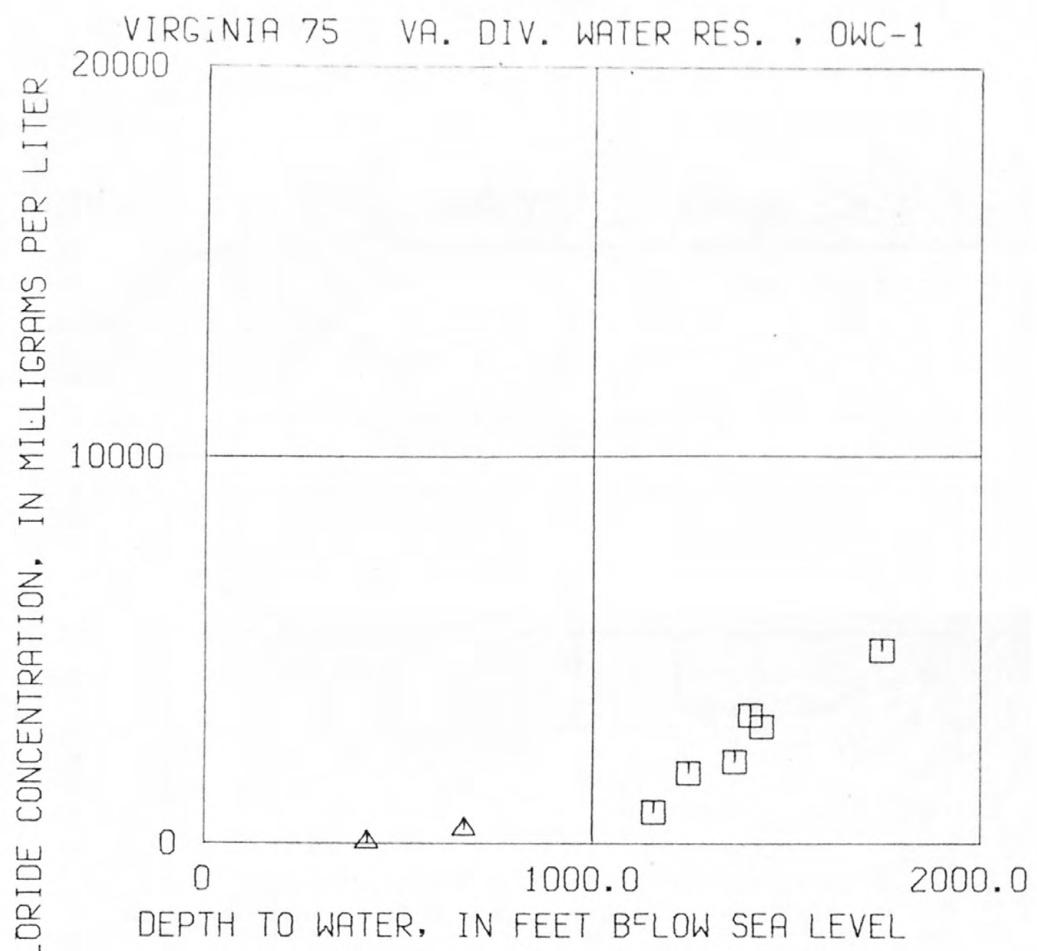



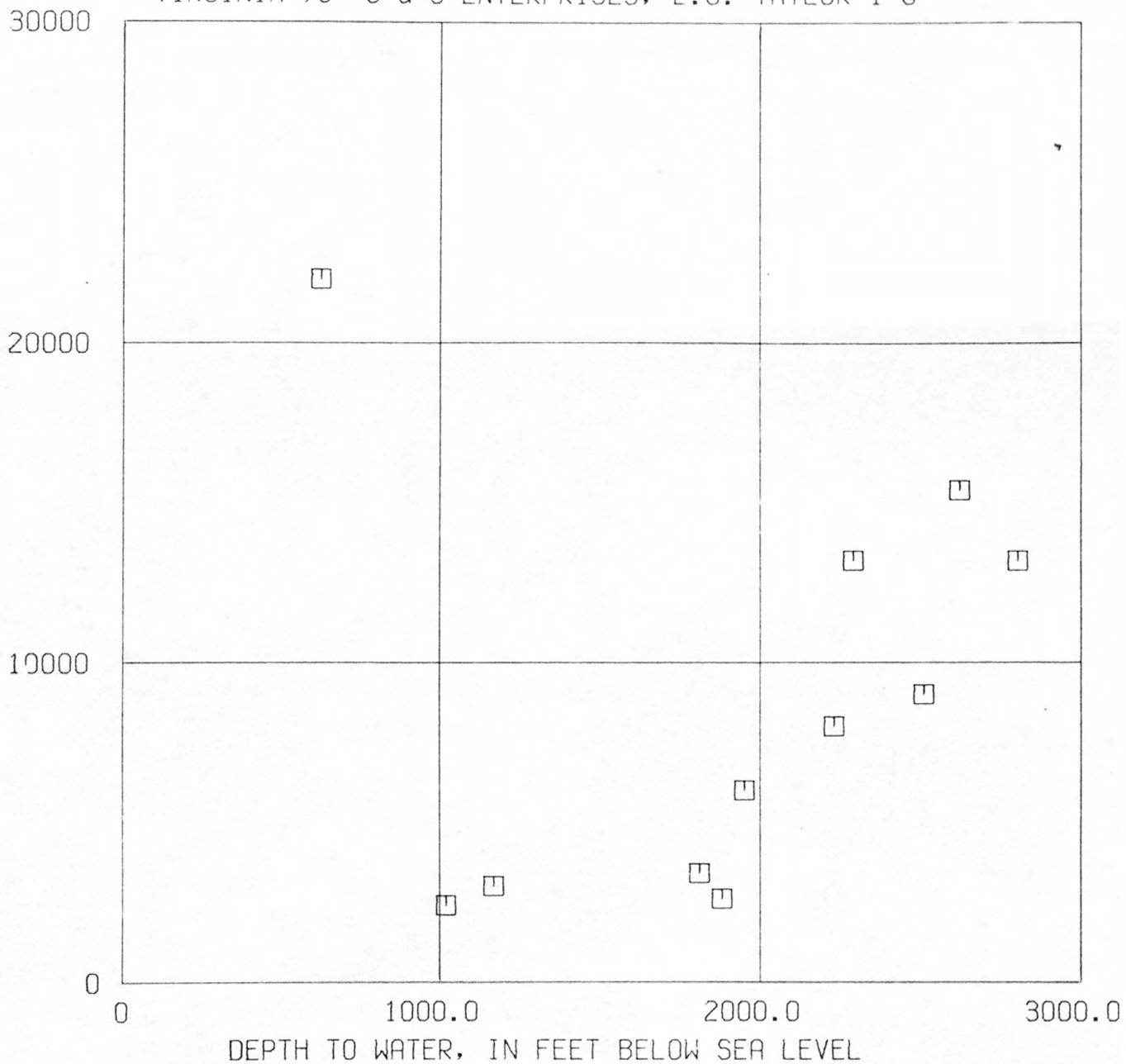

NORTH CAROLINA 160 DNRCD HYDELANDS RESEARCH STATION




NORTH CAROLINA 201



CAROLINA PETROLEUM, BRYAN 1


VIRGINIA 57 USGS, MOORE'S BRIDGE FILTER PLANT

VIRGINIA 76 J & J ENTERPRISES, E.G. TAYLOR 1-G

CHLORIDE CONCENTRATION, IN MILLIGRAMS PER LITER

USGS LIBRARY-RESTON

3 1818 00018484 4