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PREFACE
This report was prepared by John J. Dwyer, Robert B. Herrmann and Otto W.
Nuttli, Department of Earth and Atmospheric Sciences, Saint Louis University,
Saint Louis, Missouri, under a grant contract No. 52480 U.S. Geological
Survey. This effort is part of a continuing program at the U.S. Geological
Survey in the study of short-period seismic wave attenuation in the United
States, sponsored by the project of "Seismic Wave Attenuation in Conterminous

United States” of the Office of Earthquake Studies ir Denver, Colorado.
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INTRODUCTION

Any study of seismic risk in regions of seismic activity must
take into account, along with other important factors, the rate of
attenuation of seismic energy with distance in the region. It is
known that the coefficient of anelastic attenuation for 1 Hz and 10
Hz Lg waves is lower in the central United States than in the
western United States (Nuttli, 1973; Street, 1976; Nuttli, 1978;
Bollinger, 1979). Since the frequencies of damaging ground motion
usually lie between 1 and 10 Hz, a study of the attenuation of waves
in this frequency range is important. Some work has already been
done in this area, using narrow-bandpass filtered time-domain data
(Nuttli and Dwyer, 1978; Dwyer and Nuttli, 1978).

This study presents an attempt to use a numerical least-squares
method to determine a value for the coefficient of anelastic
attenuation at various frequencies, using both broadband and narrow-
bandpass filtered time-domain data. The filtered data were obtained
from events occurring in the New Madrid seismic zone. A network
of microearthquake seismographs located in the active seismic region,
funded by the U.S. Geological Survey, and operated by Saint Louis

University, was used to provide a data base.



DATA

The data base for this study consists of 35 events occurring
in the New Madrid seismic zone. The events were recorded by the
Southeast Missouri Regional Seismic Network, operated by Saint Louis
University. The network consists presently of twenty-four stations,
Figure 1 shows the network, as well as the seismicity of the area,
as recorded since the installation of the network. Figure 2 shows
the events used in this study. Each station consists of one vertical
short-period seismometer, preamplifier/VCO, and a telemetry package.
Signals are transmitted from the station to a collection point, and
then transmitted via phone line to the Seismic Data Center in the
Department of Earth and Atmospheric Sciences of Saint Louis University.
Here they are recorded on 16 mm film using develocorders, on paper
using pen and ink drum monitors, and on magnetic tape using two slow-
speed sixteen-channel magnetic FM tape recorders. The data for this
study were obtained from the analog tape records.

The calibration of the magnetic-tape playback system was made
using a shake table calibration of one of the seismometers. The
output of the tape playback goes to the galvanometers of a Brush
oscillograph, which puts the record on dry photographic paper, from
which amplitudes are read. The seismometer-tape playback-Brush
oscillograph system response curve is shown in Figure 3. We can
see that the system peaks at about 8 hz, and provides a good window
for looking at the frequency range of interest.

In order to study Lg phase amplitudes at a variety of frequencies,

the analog tape daia are passed to the Brush oscillograph through
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several Kronhite filters. The magnification curve of the filtered
system is found by passing the calibrated seismograph data on analog
tape through the Kronhites. Seven filter settings on the Kronhite
filters have been used in the present study, with peak frequencies of
1, 1.5, 2, 3, 5, 8, and 10.5 hz. (The 12.5 hz filter setting peaked
at 10.5 hz,) The magnification curves for these narrow-bandpass
filter settings are seen in Figure 4. With these curves, all one
needs to know to determine the actual ground amplitude at a given
frequency are the gain of the field station with respect to the
calibrated seismometer, and the gain setting on the Brush oscillograph.

The stations avallable for use as analog tape data are listed in
Table 1. Also listed are the station gains relative to the calibrated
seismometer, and the date on which the station data first were recorded
on analog tape.

The epicenters used in this study are listed in Table 2. The
magnitudes have been calculated using the recently revised magnitude
scale for the central U.S. (Stauder et al., 1979). An attempt was
made to examine data from larger magnitude events at larger epicentral
distances in order to improve the range of epicentral distances in-
volved. This meant, however, that for a given event, the spread of
distances was no longer large enough to show any significant data
trend. As with the other earthquakes examined, if a general decrease
in Lg amplitude with increase in epicentral distance was not evident,
the data were rejected, The term Lg amplitude refers to the sustained
maximum amplitude, defined as that equalled or excelled by the three

largest cycles of motion (Nuttli, 1973).
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TABLE 1

LIST OF SEISMOGRAPH STATIONS

LATITUDE LATITUDE STATION START OF ANALOG
CODE LOCATION ON oW GAIN* TAPE RECORDING
TYS Tyson Valley, MO 38.515 90.568 32 2-19-74
DWM  Dogwood, MO 36.805 89.490 8 9-06~-74
ELC Elco, IL 37.285 89.227 128 9-06~74
WCK Wilson Creek, KY 36.934 88.874 32 9-06-74
CRU Crutchfield, KY 36.595 89.020 32 9-06-74
GRT Gratio, TN 36.264 89.425 32 9-06~-74
LST Lone Star, MO 36.523 89.731 16 9-06-74
RMB  Rombauer, MO 36.886 90.278 64 9-06-74
DON Dongola, MO 37.176 89.933 128 9-06-74
OKG Oak Grove, TN 35.626 89.835 32 6-09-75
PGA  Paragould, AR 36.060 90.620 16 4-15-77
ECD Elk Chute Ditch, MO 36.060 89.940 16 4-15-77
NKT Nankipoo, TN 35.850 89.544 16 4~15-77

* relative to calibrated seismometers



TABLE 2

EVENTS ANALYSED

2
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01
28
05
09
09
05
17
03
07
05
10
23
28
26
10
23
24
04
15
02
02
29
08
17
04
10
12
26
28
25
04
22
24
14
20

ORIGIN TIME LATITUDE LONGITUDE
DATE U.T. oN oy ™
JUN 75 03:40:11.9 36.28 89.60 2.0
JUN 75 13:11:01.3 36.57 89.66 1.8
JUL 75 18:38:16.7 36.13 89.78 1.7
AUG 75 06:40:24.9 36.59 89.59 2.0
AUG 75 19:08:39.4 36.88 89.43 2.2
SEP 75 21:46:14.5 36.13 89.43 2.0
SEP 75 00:00:34.2 36.59 89.63 2.1
DEC 75 10:54:42.2 36.56 89.80 1.7
DEC 75 12:18:28.7 35.71 90.06 2.0
JAN 76 03:46:30.0 35.94 89.52 2.0
JAN 76 10:28:35.9 36.13 89.72 1.5
JAN 76 00:56:39.6 36.55 89.60 2.1
FEB 76 00:14:35.2 36.51 89. 54 2.1
MAR 76 08:50:37.4 36.61 89.59 1.9
APR 76 02:47:55.9 36.55 89.66 1.7
MAY 76 08:37:09.5 36.13 89.74 1.9
MAY 76 07:30:17.5 36.07 89.45 1.8
JUL 76 03:02:50.5 36.77 89.15 2.0
DEC 76 11:57:07.1 36.07 89.80 2.0
JAN 77 20:29:36.2 36.45 89.57 1.7
JAN 77 20:33:23.2 36.47 89.55 1.7
JAN 77 22:08:37.8 36.53 89.58 2.2
FEB 77 10:20:42.5 36.50 89.57 1.8
FEB 77 08:34:00.8 36.15 89.51 2.0
AUG 77 01:05:19.3 36.55 89.60 2.0
SEP 77 21:36:04.5 36.55 89.64 1.7
SEP 77 23:48:38.9 36.53 89.53 1.7
SEP 77 17:19:17.4 36.46 89.62 2.1
SEP 77 21:45:20.1 36.71 89.53 2.0
OCT 77 19:22:29.7 36.45 89.47 2.2
NOV 77 11:21:06.8 34.01 89.22 3.5
NOV 77 06:42:50.9 36.48 89.58 2.0
DEC 77 00:00:28.8 36.17 89.66 2.2
Jan 78 12:46:50.0 36.19 89.65 1.9
JAN 78 10:25:44.3 36.54 89.61 1.9




The Lg ground displacement amplitude data for four of the events
are listed in Tables 3-6, and plotted versus epicentral distance in
Figures 5-32. The error bars shown represent the level of background
noise., The procedure of data analysis was as follows: the analog
tape record of an event recorded at a particular station was passed
through the filter at a given filter setting, yielding a filtered
trace on the Brush oscillograph. The largest sustained maximum
amplitude was read off (as was the background noise level), then
corrected for galvanometer gain, station gain, and filtered playback
response to yield a ground displacement amplitude. In this study,
these ground displacement amplitude and corresponding epicentral
distance data were used to numerically determine a value for the
coefficient of anelastic attenuation at the peak frequency of each

filter setting.
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Figure 6. 1.5~Hz amplitudes of Lg~Z for Event No. 1.
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Figure 12. 1-Hz amplitudes of Lg-Z waves for Event No.. 18.
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Figure 13. 1.5-Hz amplitudes ef Lg-Z waves for Event No. 18.
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Figure 1l4. 2-Hz amplitudes of Lg-Z waves for Event No. 18.

34



EVENT 18 S HZ

0
10° -
4
J cr‘u§ %wck §pga
~ dwm
2 -1 Dist
o 10 =
0 :
,_(__D_. 1 Ormb Btys
= ]
i elc® Qdon
Ll pow
a 4
)
'——_
— -2
2 10 =
o N
2 ]
< i
-3
10 1‘ LA R B B | 27 T T T 3
10 10 10

DISTANCE (KM)

Figure 15. 3-Hz amplitudes of Lg-Z waves for Event No. 18.
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Figure 16. 5-Hz amplitudes of Lg-Z waves for Event No. 18.
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Figure 17. 8-Hz amplitudes of Lg-Z waves for Event No. 18.
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Figure 18. 10,5-Hz amplitudes of Lg~Z waves for Event No. 18,
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Figure 19. 1-Hz amplitudes of Lg-Z waves for Event No. 25.
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Figure 20. 1.5~Hz amplitudes of Lg-Z waves for Event No. 25.
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Figure 21. 2-Hz amplitudes of Lg-Z waves for Event No. 25.
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Figure 22. 3-Hz amplitudes of Lg-Z waves for Event No. 25,
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Figure 23. 5~Hz amplitudes of Lg~Z waves for Event No. 25.
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Figure 24. 8-Hz amplitudes of Lg-Z waves for Event No. 25.
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Figure 25. 10.5-Hz amplitudes of Lg-Z waves for Event No, 25,
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Figure 26. l~Hz amplitudes of Lg~Z waves for Event No. 31.
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Figure 27. 1.5-Hz amplitudes of Lg-Z waves for Event No. 31.
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Figure 28. 2-Hz amplitudes of Lg~Z waves for Event No. 31.
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Figure 29. 3-Hz amplitudes of Lg-Z waves for Ewvent No. 31.

63



EVENT 31 5 H/Z

0
107
i Bpga
i °“9°mec|dst
1 nkt @ %dwm
%
= -1
g:) 10 -Ej powmmdon
O ]
z ]
g 4 %’tys
oD
}.——.
. -2
2 10 =
Q- ]
> ]
< .
-3
]O ] T TV T T > T T T T 3
10 10 10

DISTANCE (KM)

Figure 30. 5-Hz amplitudes of Lg-Z waves for Event No. 31l.
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Figure 31. 8-Hz amplitudes of Lg-Z waves for Event No. 31.
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Figure 32. 10.5~-Hz amplitudes of Lg-Z waves for Event No. 31,
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ANALYSIS

In the time domain, the Lg phase amplitude data are assumed to

satisfy the relation (Ewing et al., 1957)

/3 0.~1/2

A=A A (R_ sin A% exp (=yA) (1)

where A is the observed amplitude at epicentral distance A, A0 is a
constant for a given frequency and is related to the source spectrum,
and Yy is the coefficient of anelastic attenuation. The term
. ,0.-1/2 . ,
(Ro sin A7) represents the amplitude decrease due to a geometrical
0 . .
spreading, where A~ is the epicentral distance in degrees and R0 is

/3

the radius of the ~arth, and the term A—l represents the decrease in
amplitude due to dispersion, where Lg is assumed to be an Airy phase
(Nuttli, 1973). The term exp (=YA) accounts for frequency-dependent

absorption. The parameter Y is frequency dependent, and is related

to the specific quality factor, Q, by
y = m£/QU (2)

where U is the group velocity of the wave, which for the Lg phase is
3.5 km/sec, and f is the frequency of the wave. The parameter Q is
usually considered to be frequency independent, although there is some
evidence that at periods of 0.1 to 10 sec it may vary with frequency.
Consider the constant term AO in equation (1). We know that for a

given frequency,
A pt3 (R  sin 2%y 2 axp (=yh) (3)

Therefore, given an amplitude A at an arbitrary distance A, and an
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amplitude Ao at a distance of 1 km, then from (3)

p1/3 R sin 2% M2 i (=yh)

A—
Ao (1)_1/3 (R0 sin (1/111.1))_1/2 exp (-y+1.)

or

-1/2

A= Ao A—1/3 (R0 sin A%) exp (=YA) exp (Y)

with the multiplicand of A0 now unitless. If we also assume that the

value of y is small (<< 1) then exp (Y) ~1 and we have
A=a a~1/3 (R, sin 2% M2 xp (=yA) (%)

which is of the same form as (1), except that Ao is now the amplitude
of the Lg wave at a distance of one kilometer from the source. It is
important to note that this is only a value extrapolated from a far-
field equation, and that Lg, being a superposition of higher-mode
surface waves, does not actually exist at an epicentral distance of
1 km. This value A0 will be referred to as the source amplitude.

To study the attenuation of Lg amplitudes with distance, we
can use equation (4) to form a family of curves, log-log plots of A
vs A, where each curve represents a different value of Yy (Figure 33).
If we then plot Lg amplitude vs epicentral distance data for an event
on the same log-log scale, we can determine the value of y by hand-
fitting the curves to the data (e.g., fitting the curves in Figure 33 to
the data in Figures 5-32). This is a widely used method of determining
the coefficient of anelastic attenuation (Nuttli, 1973; Street, 1976;
Nuttli and Dwyer, 1978; Bollinger, 1979), and has been previously used
with a portion of the data used in this study (Dwyer and Nuttli, 1978).

The method does, however, present certain problems: we use only certain
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discrete values for y in our curve fitting, and we have only a rough
feel for the goodness of fit of the chosen curve. We would overcome
these problems if we were able to determine the value of Y numerically
from the amplitude data.

In an attempt to find another method of determining Yy, we look
again at equation (4). If we multiply both sides of the equation by
A1/3 /2

1
(RO sin Ao) , and then take the natural logarithm of each side,

we obtain

/ 1/2

1In (A Al 3 (RO sin Ao) ) = 1n AO - YA (5)

Making the substitutions

y = 1n (A a3 (R sin 2%t/
and
B=1n A0
we have
y =B - vyA (6)

We note in passing that if for all measurements -A° < 150, then we may

approximate

-1/3 -1/2 ~-5/6

A (RO sin AO) = A
and therefore

y = 1n (a 079
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In equation (6), at a given frequency and for a given event, B and
Y are constants, and we have a linear equation. If we have a number N

of stations recording an event, we then have, for a given station i,
yy =B - YAi €D

We can now perform a least-squares fit to the data. We form the sum
of the squares of the differences between the observed and calculated

y values for our N stations

(5 = (B = yA)? (8)

>
]
[ e I~

i=1
We then take the derivative with respect to B and set it equal to

zero, in order to minimize X with respect to B

3 2 N
—-X-aB =-2 I (yi - (B - YAi)) =0
i=1
or
N N
i=1 i=1
We do the same with respect to Yy:
3 2 N
Fo=2 I b5 (g - (B - yby)) =0
i=1
or
N N N 2
A, y, =B L A, -y I A (10)
=1 7Ly by

Since we know the values of Ai and can calculate the yi's from amplitude

data, we have two equations in two unknowns and can solve for Yy and B.
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Although this is a straight forward method, it needs data that
are fairly well constrained, Unfortunately, the number of data points
and the scatter involved for a single event, as seen is Figures 5-32,
severely limit the worth of our resulting Y values, which are likely
to vary greatly from one event to the next, and have large standard
deviations, What we should like to do is combat this problem by
combining many events in order to increase our number of data points.
This may be done by scaling the source constant A, for each event to
match a reference A0 by assuming a relation between seismic moment,
corner frequency, and magnitude, and then adjusting the record amplitudes
accordingly (Bollinger, 1979). There is, however, a numerical method
which allows us to combine separate events, and which needs no
assumptions about AO (Chouet et al., 1978).

Let us look again at equation (7). If we assume that Yy is a
constant for a region at a given frequency, then for the data from

station i and event j,

.. =B, = YA, 11
Vi1 i Y. i1 (11)

We can obtain for one event the sum of the squares of the differences

between observed and calculated y values for our N stations used for

this event (N(j))

, NG )
= I ..o = (B, = YA,
X L (le ( 37y Jl))
but we can also sum M events
, M NG )
X*= Iz I (v, - (B~ YA ) (12)
j=1 i=1 J J ]
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We can also recognize that some of the data might be more reliable
than others, and can seek a method of weighting each of the data points
using some weighting function Wiie This gives us

2 = ?:1 Néj) w.. (y.. = (B, - YA,.))? (13)
j=1 i=1 Jji 7Ji J Ji

We now seek to minimize X2 with respect to each of the Bj's

12 N(K) )
ap. -~ "2 D Wy Oy — (B = YBe))T = 0
K i=1
or
N N (K) N(K)
Loy gy T B B T Y I By (14)
i=1 =] =1
and also with respect to Yy
2 M N(j)
L) G R R -
= - LA (y., - (B, -vA.)) =0
Y j=1 4=1 4t 31 T 3 ji
or
MN() M N(H) MN(3) )
L wA.y.=B I I w. A -y I I w.A. (15)
j=1i=1 L IETIE S gy g IR g g 3T

We now have M + 1 equations in M + 1 unknowns. If we let

N(1) N(1)
0 e e s 0@ Z w I3 A .
RN 0 IR TRt
N N
0 ¢ e e o0 Z w ) A .
| 0 iil WZi 1=1 21 "2i
| N@3) e
X = 0 0 oW, veeee IOWo Do
i 1=1 3i i=1 31 3i
. N(D) N(2) N(3) hzd g(j%]” W2
LOW.A, L T W, A, I oW, AL eeees 31 AT3i
R I el j=1i =1
-
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N(1)
B LW
. 1=1

2

B .
C = 3 and Y = = 21
3)

y
1 31 734

11 Y14

N
™M =2
~

0

—
=L =
«
N
e

=]
=]
Mz...l‘ﬁ.bﬂz

N (D)
LW,y

A ., A
L j=1 1=1 31 731 31

—

then from Equations (14) and (15) we have

XC +Y

If we take the inverse of X and multiply, we have

xIxc = x7ly

or

Looking back at our definition of C, we find that we have solved for
a single regional Y and for the natural logarithms of the source
amplitudes of each of the events using just the amplitude and epi-~

central distance data.

To determine confidence limits on the B and y values, we use,

following Herrmann and Mitchell (1975)

est. err. BK = t(m,p) /V(BK)

and
est, err. Yy = t(m,p) VG(YK)

where t(m,p) is the p percentage confidence point of the student's

t~distribution with m degrees of freedom (we will use 95% confidence
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limits), and

V(B,) = s? x71 (K,K)

and

V(y) = s? x71 (M+1, M+1)

-1
where X (K,K) is the Kth diagonal element of the covariance matrix
in equation (19). For our weighted data set, the sample variance,

Sz, is given by (Bevington, 1969)
M N(j)

2
1 L {w,, ly,. - (B, -YA, D17}
g2 - (CMD) =1 i=1 ] J +J 1)
, ¥ NQ)
T z z w,,
j=1 i=1

where L is the total number of data points, i.e.

M

L= I N

j=1
and (I.-M-1) is the number of degrees of freedom. Note that if all
data are given equal weight, wij = 1, then the denominator in equation
(20) becomes equal to unity, and equation (20) reduces to the usual
definition of sample variance.

This, then, is the method used in the present study to determine

a value for the coefficient of anelastic attenuation over a range of

frequencies. It seems ideally suited to our time domain study of

narrow bandpass filtered data.
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RESULTS: UNFILTERED DATA

Before analyzing our filtered data, we sought to test the least-
squares method, using events which had a wide epicentral distance
range and fairly large magnitudes. To do this, we used two sets of
l-sec period Lg amplitude data: one given by Bollinger (1979) for
the southeastern United States, and one using events studied by
Nuttli for the central United States. (In both cases, the actual
data given is the amplitude divided by period (A/T), so the Ao obtained
by our method in this case has units of u/sec.)

Utilizing the data from 14 events given by Bollinger, we determined
a value of y at 1 Hz of 0.0011 km_1 + 0.0002 km-'1 for the southeastern
United States, which corresponds to a Q of 816 (within the limits
690 < Q < 997). This agrees very well with other estimates given for
the eastern United States Y values (Street, 1976).

In plotting out the data, we use equation (11)

ji R ji
Recalling that
B. = 1n A ,
] 0]
and
5/6
.. =1n (A, A,.
Yi1 (J 31 )
we have
5/6 _
1n (Aj Aji /AbJ ) = YAji’
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or, for plotting on a semi-log scale,

5/6 _
log (Aj Aji /Aoj) = -YAji log(e) (22)

Thus, if we divide the data for each event by the source amplitude

for that event, we arrive at a value referred
to as the reduced amplitude (Y), which allows us to plot the data from
all events together, as seen in Figure 34. The solid line shown is a

plot of
Y = (-.0011 km 1) A log (e)

We can see that this line is a good fit to the data, showing a well
measured value for Y. There seems to be no evidence of a change in
attenuation rates at a distance of approximately 1000 km, as suggested
by Bollinger.

As a further test of the method, we used the source amplitudes
obtained for each event to obtain an m magnitude for each event,
We used our calculated values of Ao and Yy, and equation (4), to
determine the value of A/T at a distance of one degree (assuming

T = 1 sec). This value was then used to calculate the magnitude,

using (Nuttli, 1973)

m = 3.75 + 0.90 (log A°) + log A/T 0.5° < A < 4.0° (23)

The errors in Ao were used to determine the error in mb.

We also determined an average m, magnitude for each event, For

b
this we took the A/T and A values at each station, and solved for my

using equation (23) and
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Figure 34. 1-Hz Lg attenuation data of Bollinger (1979)
for the southeastern United States.
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(o] (o]

= 3.30 + 1.66 (log A°) + log A/T 4% < A < 30 (24)

Ty
We then averaged over all the stations for each event, obtaining an
average m and a standard deviation.

Finally we plotted the source—amplitude magnitude versus the
average magnitude for each event. The result is given in Figure 35.
The straight line shown is for the case of the source-amplitude
magnitude equalling the average magnitude. We can see that we do have
a very good straight line fit with the source-amplitude magnitude
measuring consistentaly approximately one-tenth of a magnitide unit
higher than the average magnitude. This is due to the fact that the
magnitude formulas given in equations (23) and (24) were formulated
using a Q of 1500. However, for Bollinger's data we obtained a Q of
816. This means that when we calculated the average magnitudes, we
were not correcting the magnitudes properly for the effects of
attenuation with distance (the second term on the right hand side
of both equations (22) and (23)). Hence the average magnitudes were
undercorrected by about one-tenth of a magnitude unit,

The second set of l-sec period amplitude data analyzed consisted
of six events that occurred in the central United States. These
events are listed in Table 7. Amplitude data were taken from stations
of the World Wide Standard Seismic Network (WWSSN) and the Seismological
Service of Canada. Only stations east of the Rocky Mountains were
used. From these data, we determined a value for y at 1 Hz of

1

0.0007 km + .0002 km-1 for the central United States, which corresponds

to a Q of 1282 (within the limits 997 < Q < 1795), which is a higher

value than that obtained for the southeastern United States, as is expected,
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Figure 35. Source amplitude magnitude versus average magnitude
for 1-Hz data for southeastern United States.
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Date

14 AUG
21 OCT
04 JUN
21 JuL
01 JAN
17 NoV

65
65
67
67
69
70

Origin Time

13:
02:
16:
09:
23:
Ot:

U.T.

13:54
02:38
14:14
14:49
35:36
13:55

TABLE 7

Latitude

N

81

37.1
37.5
33.6
37.5
34.8
35.9

Longitude
ON

89.2
91.0
90.9
90.4
92.6
90.1

3.8
4.9
4.5
4.3
4.5
bo4



and which also agrees very nicely with Nuttli's value of 1500 for
1 Hz Q in the central United States (Nuttli, 1973). The data are
plotted in Figure 36, with the solid line corresponding to the

equation
-1y
Y =(-.0007 km 7} A log (e)

where, as before, Y is the reduced amplitude. Once again you can see
that we have a good fit to the data, showing a well measured value
for Y. In Figure 37, we have the plot of source-amplitude magnitude
versus the average magnitude. Note that since our measured Q of
1282 is close to the Q of 1500, which Nuttli used for his magnitude
formulas, we can see that in this case the source-amplitude magnitude
is equal to the average magnitude, i.e. the effects of attenuation
with distance are properly accounted for.

Along with the two sets of 1-Hz amplitude data, we also analyzed
a set of unfiltered 10-Hz data from the New Madrid area. This data,
obtained from stations of the Saint Louis University microearthquake
seismic array, had already been analyzed using the calibration curve
fitting method (Nuttli, 1978). From this analysis, Nuttli determined
ay of 0.006 km'-1 for the New Madrid seismic zone. This corresponds
to a Q of 1500, which is equal to the Q found for 1 Hz Lg waves. Our
least-squares analysis of these same data yields a Y of 0.0029 +
0.0010 km—l, corresponding to a Q of 3095 (within the limits
2301 < Q < 4724). The data are plotted in Figure 38, where the solid

line corresponds to the equation

Y =(-0.0029 km"l)A log (e)
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Figure 37. Source amplitude magnitude versus average magnitude
for 1-Hz data for central United States.
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It can be seen that although there is some scatter, the line is a
good fit to the data, indicating that the value of Q for Lg waves

at 10 Hz is greater than at 1 Hz by about a factor of two. The
question of Q dependence on frequency has recently been examined by
Mitchell (1980). Using Lg waves at 1 sec and fundamental- and
higher-mode Rayleigh waves, and assuming that Q varies with depth and

frequency as
Q (w,2) = C(2)u",

he indicates that a constant value of 7 between 0.3 and 0.5 can
satisfy the available data over the entire period range between 1
and 40 sec (Mitchell, 1980). If we assume a similar form for Q of Lg

waves, namely

Qw) = C w”

and use our computed values of Q for Nuttli's data at 1 and 10 Hz,
we obtain a value of 0.4 for [, which is consistent with Mitchell's
work thus far.

In Figure 39, we see a plot of source-amplitude magnitude versus
average magnitude for the 10-Hz data. The magnitude formulas used
to calculate these values were those used for the St. Louis micro-

earthquake seismic array (Stauder et al., 1979):

0.95 log A (km) + log A (mp) 1.05 10 km < A < 40 km

™,10hz

™, 1 Ohz 1.25 1log A (km) + log A (mu)

M ohz =~ 1.55 log A (km) + log A (my)

M. 1 Ohz 2.50 log (km) + log A (m~)
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1.50 40 km < A < 100 km

(25)

2.10 100 km < A < 200 ka

4.30 200 km < A < 300 km
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Figure 39. Source amplitude magnitude versus average magnitude
for 10-Hz data for New Madrid seismie region.
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(The source-amplitude magnitudes were determined by using values of

Y and Ao’ and equation (4), to determine the value of A at a distance
of 10 km, and then using the first of the four formulas listed above.)
Once again, we can see that the plot is fairly linear, and that this
time the average magnitudes are approximately one-tenth magnitude
unit greater than the source-amplitude magnitudes. This is due to

the fact that equations (25) assume a Q of 1500, but for this data

we found a Q of 3095. This means that the average magnitudes were
overcorrected for the effects of attenuation with distance. If

this were the case, then for larger magnitude earthquakes, where the
closer stations saturate and more distant ones are used for amplitude
measurement, we would expect to see a larger discrepancy in magnitudes
than for smaller magnitude events., This effect is visible in Figure
39. To show that this overcorrection with distance was indeed the
source of the discrepancy in magnitudes, a set of magnitude formulas
similar to equations (25) were drawn up, using a y of 0.0029 km-l.
When the average magnitude for an event was calculated using these
formulas, it was found to equal the source-amplitude magnitude.

The results of the least-squares analysis of the 1-Hz and 10-Hz
unfiltered data showed the merits of our numerical method, giving
reasonable values for Q and for source amplitudes at both 1 and 10 Hz.
We can now use it on filtered data to cover a range of frequencies

between 1 and 10 Hz.
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RESULTS: FILTERED DATA

As we have seen, in order to determine the coefficient of anelastic
attenuation from Lg amplitude and epicentral distance data, we simply
required that all amplitude data be measured at the same frequency. Thus,
if we applied our numerical method to data gathered using a particular
narrow~bandpass filter setting, we could determine a value for y at the
peak frequency of that filter setting. As mentioned in the data section,
we had seven such sets of data from the New Madrid seismic region,
spanning a frequency range of 1 to 10.5 Hz. 1In applying our numerical
method, each set of data was analyzed three times, each analysis using a

different weighting function ( vy in Equations(13) through (21) ).

3
The first time, all data were given equal weight ( wij =1 ). The second
time, the data were weighted according to the square of the signal-to-
noise ratio (S;) of the data (Bevington, 1969). The third time, a ramp

function was used to weight the data:

0, 5 <2

Wij - -S-gx—__—z- s 2<Sn<4

= > 3 =
1, S, < 4

The resulting values of Y and their associated 957 confidence limits
for the filtered data can be seen in Table 8, along with the corresponding
values for Q. Also listed are the correlation coefficients for the fit
of y-observed to y-calculated. In order to provide a visual check on our
data, we made plots, for each of the frequencies, of the reduced amplitudes
versus epicentral distance, as was done with the unfiltered data in the

preceding. section. The results are seen in Figures 41~47, Figure 40
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TABLE 8

VALUES OF y AND Q CALCULATED FROM THE NARROW
BANDPASS FILTERED DATA, USING DIFFERENT WEIGHTING FUNCTIONS, W

Table 8a
W=1
Q <Q<Q CORRELATION # OF # OF DATA
FREQ X - + COEFFICIENT EVENTS POINTS
1 .0028 + .0029 157 < 320 < --- .963 8 54
1.5 .0038 + .0026 210 < 354 < 1122 .938 11 73
2 .0032 + .0023 326 < 560 < 1990 972 20 142
3 .0043 + .0019 434 < 625 < 1122 .955 35 238
5 .0029 £+ .0015 1020 <1544 < 2992 .970 35 264
8 .0021 + .0014 2052 <3412 <11968 .984 34 261
10.5 .0017 + .0015 2945 <5532 <47124 .990 34 260



TABLE 8

VALUES OF y AND Q CALCULATED FROM THE NARROW
BANDPASS FILTERED DATA, USING DIFFERENT WEIGHTING FUNCTIONS, W

Table 8b
W = (Signal/Noise)?

@ <Q<Q CORRELATION # OF i OF DATA

FREQ X COEFFICIENT EVENTS POINTS

1 .0029 + .0003 280 < 310 < 345 .973 8 54

1.5 .0029 + .0003 421 < 464 < 518 975 11 73

2 .0047 + .0002 366 < 382 < 399 <943 20 142

3 .0066 + .0002 396 < 408 < 421 .888 35 238

5 .0046 + .0001 955 < 976 < 997 .906 35 264

8 .0024 + .0001 2872 <2991 <3116 977 34 261
10.5 .0017 + .0001 5225 <5532 <5878 .985 34 260
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Table 8c

VALUES OF y AND Q CALCULATED FROM THE NARROW

TABLE 8

BANDPASS FILTERED DATA, USING DIFFERENT WEIGHTING FUNCTIONS, W

W = Ramp Function

X

.0028 +
.0037 +
.0032
.0047
.0033

I+ 14+ 1+ 1+

[
(=4
[ %
o
H

.0026
.0023
.0019
.0016
.0012
.0012
.0012

CORRELATION- # OF # OF DATA
Q. < Q< Q4  COEFFICIENT EVENTS __ POINTS
166 < 320 < 4488  .963 8 54
224 < 363 < 962  .942 11 73
375 < 560 < 1378  .972 20 142
427 < 572 < 869  .942 35 238
997 <1358 < 2137  .960 35 264
2176 <3412 < 7979  .984 34 261
2945 <4703 < 11781  .984 34 260
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Figure 40. Station symbols used in Figures 41-54.
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Figure 43. 2-Hz Lg attenuation using a ramp weighting function.
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gives the symbols used for each of the fourteen network stations. The
results plotted are those obtained with the:ramp weighting function,
which seemed the most reasonable to use. (Poor signal-to-noise ratio
seemed a likely source of error, so it did not appear reasonable to give
equal weight to all the data. On the other hand, a weighting function
proportional to the square of the signal-to-noise ratio risked giving
too much weight to data from normally quiet sites and from close-in
stations, increasing possible azimuthal or station bias errors.)

Perhaps the most obvious observation to make from Table 8, regard-
less of the weighting function used, is the dependence of the quality
factor, Q , on the frequency. The values of Q previously obtained by
Nuttli (1973,1978) seemed to indicate a constant Q of 1500 between
1 and 10 Hz for the New Madrid seismic region. As we have shown, our
unfiltered data seemed to indicate an increase in Q between 1 and 10 Hz,
with a value for Q at 1 Hz of 1292, and at 10 Hz of 3090. The filtered
results also show an increase in Q with frequency, but the Q values at
the lower frequencies are much less than would have been expected from
the results using unfiltered data. This effect, hewever, can be
understood as we consider sources of possible error in our Q values.,
First of all, it must be pointed out that there is a sparsity of data
for the lower frequencies, especially for 1 and 1.5 Hz, as compared with
the higher frequencies. Second, as we can see from Figures 41-47,
we have a predominance of data, for all frequencies, in the epicentral
range of 10-150 km. A wider range of distances would be an obvious
asset to the determination of y, particularly at the larger distances
where the effect of absorption dominates over that of geometric spreading.

Third, it has been noticed that stations located in the Mississippi
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embayment seem to have a background noise level with a predominant

frequency range of 1-3 Hz, while this effect has not been noticed for

highland stations. As can be seen in Figure 2, for most of the events

used, the stations closest to the epicenters are located in the

embayment. This means that for the lower frequencies, the closest

stations will have their measured amplitudes enhanced by the background

noise level, while the more distant highland stations will be unaffected.

The result of this will be an apparently larger attenuation of the

Lg amplitude with distance than would normally be observed, hence

a lower Q value than expected. If this is indeed a reason for the

low Q values, it means that a spectral study of the background noise

level in different parts of the region under study could be important

in determining the proper rate of attenuation of Lg waves in that region.
Other possible errors in our measured values of Yy are those

introduced by possible azimuthal or station bias effects. To see if

such effects are present here, we plotted the normalized amplitude

versus azimuth, where the normalized amplitude is corrected for source

function and attenuation. From Equation (4):

-1/3

A=Ay A7 (R, sin 8°) M2 exp (<yd)

80

/

[a &P R stn A9)1/2) / 8] exp (#yd) = 1

This normalized amplitude should be equal to unity, and systematie
azimuthal or station effects should be obvious as gross trends in the
data. In figures 48-54, the normalized amplitude versus azimuth is

plotted for each of the filter frequencies, using the statien symbols
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from Figure 40. Looking at these data, we can see a definite trend
toward high values at approximately 170°-200°, consisting largely of
data from OKG, and an obvious trend toward low values in the range of
350°~40°. These consist mainly of data from two stations, DON and WCK.
The normalized amplitudes at DON seem to be frequency dependent, while
those of WCK are low at all frequencies. These observations could be
interpreted in two ways. The first and most obvious is that the bias
is inherent in the stations themselves, as perhaps in the case of

DON. However, if we look at our map of the network (Figure 1), we

can see that WCK, which has consistently low normalized amplitudes,
lies on a line along the embayment upriver from the chosen events,
while OKG, which has rather consistently high normalized amplitudes,
lies on a line along the embayment downriver from the chosen events.
Perhaps this also has a bearing on the problem.

Along with the values of Yy obtained by the numerical fit, we also
obtained source amplitudes for each of the events at each of the
frequencies. These values are given in Table 9. If, for each event,
we were to plot source amplitude versus frequency, the result would
be a time-domain source "spectrum". This would give the ground
displacement at 1 km for Lg waves of a specific frequency (or,more
accurately, the displacement measured using a Kronhite filter centered
at that specific frequency.) Empirically, from a study of the
Kronhite filters, if we divide the source amplitude at each frequency
by the square root of the bandwidth (half-width) of the filter, we
obtain the spectral level of the frequency-domain spectrum at that
frequency. Hence, if we plot these corrected amplitudes versus

frequency, we arrive at the frequency-domain source spectrum. This
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TABLE 9

SOURCE AMPLITUDES (MICRONS) FOR THE
EVENTS USED FOR EACH BANDPASS FILTER FREQUENCY

EVENT 1 1.5 2 3 5 8 10.5
1 1.46 1.53 1.27 1.31 1.26 1.30 1.28
2 _— -_— -— 1.39 1.62 1.30 1.87
3 -— -— -_— .49 47 .35 1.91
4 -— -_— -— 2.50 2.92 -— 3.02
5 -_— -— _—- .76 .82 .62 —
6 — 1.66 1.15 2.60 2.39 1.87 1.96
7 3.29 — 2.56 3.03 2.83 2.31 2.08
8 — — -— 1.19 .66 .20 1.58
9 -— — —- 2.09 1.92 1.51 1.49

10 — -— _— 1.25 .84 .83 1.98
11 -— -_— — .62 A .41 1.12
12 2.73 2.10 1.68 2.31 2.43 2.30 2.68
13 3.90 — 2.54 3.87 3.59 2.96 3.67
14 —_— .82 1.40 1.54 1.38 1.32 1.88
15 -— -_— -— .24 .27 .34 .85
16 -_— .78 .70 1.22 1.51 1.10 1.48
17 - — .85 2.08 1.62 1.17 1.29
18 5.03 3.19 2.81 4.76 3.68 2.06 2.30
19 2.74 2.37 1.47 2,30 2.48 1.66 2.29
20 — -— 1.98 2.33 2.35 2.18 2.01
21 -— -— 1.52 1.73 1.83 1.66 1.77
22 —— —— 3.31 3.00 2.38 2.05 2.47
23 — -— — 1.56 2.18 1.46 1.66
24 — — 3.75 5.21 4.29 3.20 3.85
25 1.20 1.33 1.46 1.79 1.96 1.88 2.23
26 — —- —- 1.25 1.46 1.37 1.53
27 — —— -— 1.09 1.04 1.02 1.23
28 — — —_— 1.90 2.62 2.47 2.14
29 - — — 1.38 1.36 1.18 1.53
30 -— -— .31 .78 .99 1.77 1,72
31 28.75 43.29 36.17  69.60 52.59 23.80 17.49
32 — — 1.37 1.46 1.97 2.14 1.91
33 -_— 1.58 1.48 1.88 2.16 1.86 1.88
34 -— — _— 1.12 .94 .91 .94
35 — 1.41 1.72 2.29 2.20 1.84 2.21
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procedure was followed for all events which had a frequency range of
10 Hz. The spectra of thirteen such events are plotted in Figures 55-67.

The bandwidths of the various filter settings are as follows:

freq (Hz bandwidth (Hz)

1 .95

1.5 1.5

2 1.9

3 2.7

5 3.8

8 5.1
10.5 5.8

Looking at the time-domain "spectra”, we notice that they are fairly
level in the frequency range 1 to 10 Hz. They do not resemble the
typical frequency-domain source spectra, which have an w2 fall off
for higher frequencies, in spite of the fact that for the magnitudes
of the events used in this study,the corner frequencies of the source
spectra should have a value between 1 and 10 Hz. (For my = 2.5, the

corner frequency is 3.1 Hz; for my = 1.5, the corner frequency is 6.8 Hz.)

(Street et al.,1975). This discrepency was thought to be due to the

fact that the bandwidth of the filter increased as the center frequency
of the filter increased; thus although the source spectrum at high
frequencies might have had an w? fal1 off, the observing window for
energy was wider at higher frequencies, which would have compensated

for the drop in spectral amplitudes. However, it is still quite
difficult to pick a corner frequency from most of the frequency-domain
spectra, which have been corrected for bandwidth. The major exception

to this is Event 31 (Figure 65), where a drop in amplitude with frequency

of approximately w2 is readily observable on the frequency-domain
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Figure 56. Source spectra for Event 6.
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Figure 59. Source spectra for Event 13,
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Figure 60. Source spectra for Event 14.
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Figure 61. Source spectra for Event 16.
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Figure 62. Source spectra for Event 18.
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Figure 63. Source spectra for Event 19.
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Figure 64. Source spectra for Event 25.
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Figure 66. Source spectra for Event 33.
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SOURCE AMPLITUDE
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Figure 67. Source spectra for Event 35.
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spectrum. We find a corner frequency of approximately 3 Hz, and can
estimate a seismic moment of approximately 4.3 X 1020 dyne-cm, which
agrees with moment values for events of similar magnitude (Street et al.,
1975). This moment should correspond to a corner frequency of
approximately 2 Hz. This event has a magnitude my = 3.5, whereas all
the other events are in the magnitude range 1.5.§§mb_§ 2.2 . The lack
of observable corner frequencies for the smaller events is probably

due to a lack of resolution in the range of frequencies beyond the
corner frequencies. The corner frequencies should be-in the range 3.1 to
6.8 Hz, but we only sample three frequencies (5,8 and 10.5 Hz) beyond

this range.
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DISCUSSION AND CONCLUSIONS

The principal contribution of the research presented in this
report is the developement of a methodology to determine Y and Q
values for high frequency seismic phases by statistical methods, which
allow one to place confidence limits on the values of Y and Q so
determined.

The statistical method used was shown to give excellent results
for 1-Hz Lg attenuation data of Bollinger (1979) for the southeastern
United States, as well as for 1-Bz Lg data for the central United
States. Our findings agree with those of Street (1976) in indicating
that the rate of attenuation with distance of 1-Hz Lg waves in the
central U.S. (Q=1300) is slightly less than that observed in the
southeastern U.S. (Q = 820). Both regions, however, show a much lower
attenuation rate than California (Q = 200). This agrees with studies
by Sutton et al. (1967), who found that Q for 0.5-2 Hz waves in
California was approximately 200, and in New Madrid approximately
1000. In other parts of the United States they found 200 < Q < 1000,
with values generally less than 500 west of the Rocky Mountains and
greater than 500 east of the Rocky Mountains. Recently Herrmann (1980)
used coda shape and coda dispersion of events recorded by WWSSN
instruments to determine Q values for several regions of the United
States, and found a Q of 135 for California using data from Berkeley
(BKS), a Q of 325 for the Basin and Range Province using data from
Dugway, Utah (DUG), and a Q of 1040 for the southeastern United States
using data from Blacksburg, Virginia (BLA).

The importance of high Q values for strong ground motion studies
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lies in the fact that it results in relatively large amplitude high-
frequency wave motion at large epicentral distances. In other words,
in high Q regions one can expect large areas of damaging ground shaking,
as is typically observed in the central and eastern United States.

A second important result of this study is the indication of the
dependence of the quality factor, Q , on frequency. Although Q is
usually considered frequency independent, there is some evidence that
at frequencies of 0.1 to 10 Hz it may vary with frequency. Our present
results, from both the filtered and unfiltered data, indicate an increase
in Q with frequency in the range of 1 to 10 Hz. This finding coincides
with the results of Mitchell (1980), which indicated an increase in Q
with frequency in the range of 0.1 to 1 Hz.

There are only a very limited set of data for the attenuation of
high frequency ground motion as a function of wave frequency. One
such study was done by Espinosa (1977), using spectra of strong-motion
records of the 1971 San Fernando, California earthquake. Espinosa's
data were principally in the range of 0-150 km, where geometric
spreadin accounts for most of the attenuation, with absorption having
only a minor effect. On log A-log A plots Espinosa fitted the data by

straight lines, which corresponds to a relation
_ -n
A=A, A

Converting Espinosa's frequency-domain measurements to time-domain
values, we have n = 1.17 for southern California and 1.11 for New
Madrid for 1-Hz waves. For 3-Hz waves the southern California value
is 1.60 and the New Madrid value is 1.19. For 10-Hz waves the values

are 1.48 and 1.04, respectively. Test values of n show that for
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distances out to 150 km attenuation is almost the same in the two
regions for l-hz waves, i.e. it is controlled by geometric spreading
which is similar for the two regions. The higher-frequency waves

are more affected by absorption in California, and thus have relatively
high n values. (For no absorption the value of n would be 0.83.)

Peak accelerations in strong-ground motion usually occur at
frequencies of 3 hz and greater. Thus it can be expected that peak
accelerations will fall off more rapidly with distance in California
than in New Madrid. Peak velocities for large earthquakes, on the
other hand, often occur at frequencies near 1 hz. Thus out to distances
of 150 km the fall-off of peak velocity with distance will be similar in
California and New Madrid. We need more strong-motion data to confirm
these conclusions which are based on microearthquake data for New

Madrid.
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