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A LEAD-ISOTOPE STUDY OF MINERALIZATION IN THE ARABIAN SHIELD

by
John S. Stacey , Maryse H. Delevaux , John W. Gramlicﬁi,

Bruce R. Doe , and Ralph J. Roberts

ABSTRACT

New lead-isotope data are presented for some late Precambrian
and early Paleozoic vein and massive sulfide deposits in the
Arabian Shield. Using the Stacey-Kramers (1975) model for lead-
isotope evolution, the authors have obtained isochron model ages
that range between 720 m.y. and 420 m.y. Most of the massive
sulfide deposits in the region formed before 680 m.y. ago, during
evolution of the shield. Vein-type mineralization of higher lead
content occurred during the Pan African event about 550 m.y. ago
and continued through the Najd period of extensive faulting 1in
the shield that ended about 530 m.y. ago. Late post-tectonic
metamorphism may have been responsible for vein deposits that
have model ages less than 500 m.y. Alternatively, some of these
younger model ages may be too low because the mineralizing fluids
acquired radiogenic lead from appreciably older 1local crustal
rocks at the time of ore formation.

The low 207pb/204pp ratios found for the deposits in the
main part of the shield and for those in northeastern Egypt indi-
cate that the Arabian craton was formed in an oceanic crustal en-
vironment during the late Precambrian. Involvement of older,
upper-crustal material in the formation of the ore deposits in
this(Fart of the shield is precluded by their low 207pp/204pp
and 2 8Pb/204Pb characteristics.

In the eastern part of the shield, east of long 44°20'E. to-—
wards the Al Amar-Idsas fault region, lead data are quite differ-
ent. They exhibit a 1linear 2(57Pb/204Pb—206Pb/204Pb rela-
tionship together with distinctly higher 208pp/204pp charac-
teristics. These data imply the existence of lower crustal rocks
of early Proterozoic age that apparently have underthrust the
shield rocks from the east. 1If most of the samples we have ana-
lyzed from the easterly region were mineralized 530 m.y. ago,
then the age of the older continental rocks is 2100 + 300 m.y.
(20).

U.S. National Bureau of Standards, Analytical Chemistry Division,
Washington, D.C., 20234, U.S.A.



The presence of upper crustal rocks, possibly also of early
Proterozoic age, is indicated by galena data from Hailan in South
Yemen and also from near Muscat in Oman. These data are the
first to indicate such old continental rocks in these regions.

INTRODUCTION

The first general study of isotopic ratios of lead in mineral
deposits in Saudi Arabia, Yemen, and Egypt was published by
Delevaux and others (1967). That work distinguished four age
groups of significantly different isotopic ratios in this region:
a Precambrian (Mahd adh Dhahab, Nuqrah); a late Precambrian or
early Paleozoic (Jabal Hadb); a Jurassic (Hailan); and a
Tertiary-Quaternary (Rabigh, Um Gheig, and Red Sea deposits).

Since 1967, considerable progress has been made in analytical
techniques for the measurement of lead~isotope abundances. The
accuracy and precision of data have been improved by the use of
absolute standard samples prepared by theusNational Bureau of
Standards (Catanzaro and others, 1968). In addition, lead-iso-
tope model theory has been developed to enhance our understanding
of lead-isotope behavior (for example, Doe and Zartman, 1979;
Stacey and Kramers, 1975). Also since 1967, a much better under-
standing of the geologic framework and geochronology of Saudi
Arabia has emerged from the studies of Aldrich and others (1978);
Fleck, Greenwood, and others(yxprtx5) and Fleck, Coleman, and
others (1976); Cooper and others (1979); Greenwood and others
(1975,; Baubron and others (1976); Roberts and others (1975); and
Schmidt, Hadley, and others (1973) and Schmidt, Hadley, and
Stoeser (1979). Consequently it is now known that the Saudi
Arabian Shield developed during the period from late Proterozoic
through to early Paleozoic. Figure 1 shows a summary of the
Precambrian units and major tectonic, plutonic and orogenic
events as propsed by Fleck and others(in press), and modified by
ourselves and D. L. Schmidt.

This report will be concerned with lead-isotope analyses from
ore deposits and prospects in many parts of the Arabian Shield
and some from eastern Egypt. In order to utilize as much accu-
rate data as possible, 15 of the samples from Delevaux and others
(1967) have been reanalyzed and are included here with more than
25 new analyses. The map in figure 2 shows all the localities;
the data for Precambrian-egrly Paleozoic samples are listed in
tables 2 and 3, and for the Mesozoic-Cenozoic galenas in table 4.
Table 4 contains data from a reanalyzed galena from South Yemen
and from a new sample from Oman.

The objectives of the paper are twofold. 1In the first part,
the lead isotopic compositions ave used to determine model ages
for the Precambrian-early Paleozoic samples. We shall attempt to
relate these ages to significant tectonic events in the Arabian
Shield. In the second part, all the lead-isotope data are used
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Figure 1.--Diagram showing the sequence of the main geologic events in the formation of

the Arabian Shield, from Fleck and others @,_\/prg;.s)énodiﬁed by ourselves and from
suggestions made by Schmidt (oral communication, 1979).
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Figure 2.--Map of the Red Sea region showing locations of samples from this study and from
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to distinguish different tectonic zones in the region and to re-
late these to existing models of evolution of the Arabian Shield.

ANALYTICAL TECHNIQUES

Analyses were made at the Denver Laboratory of the U.S.
Geological Survey and also by the Analytical Chemistry Division
of théfﬁational Bureau of Standards, Washington, D. C.

Most galena lead was analyzed isotopically by means of the
triple filament thermal ionization technique, with the lead
purified by electro-deposition (Catanzaro, 1968). The standard
sample NBS-981 was used to determine corrections necesSsary to ob-
tain absolute ratios in both laboratories in which analyses were
made . Isotopic compositions and concentrations of the trace
leads in three massive sulfide samples and in several potassium
feldspars were analyzed by the silica-gel emitter technique with
lead purified by use of a combination of resin columns and
electro-deposition. All isotopic compositions were determined
twice from a single chemical purification because this procedure
helps to ensure that all ratios are within 0.1 percent of abso-
lute. Concentrations of uranium, thorium, and lead were made by
the isotope-dilution technique and should be within one percent
of absolute.

LEAD-ISOTOPE MODEL AGES

For galenas, the U/Pb and Th/Pb ratios are extremely low, and
thus their lead isotopic compositions remain effectively un-
changed after initial crystallization. The lead-isotope ratios
measured 1in galenas are therefore the initial values, and may be
used to estimate model ages, if the assumptions of the model are
valid. The system of isochrons in the model proposed by Stacey
and Kramers (1975) has yielded reasonable age estimates for lead
that has had a simple history since its introduction into the
crust. This model is particularly applicable for galenas from
Precambrian volcanogenic massive sulfide deposits that presumably
were formed at the same time as the enclosing rocks (see Stacey
and others, 1976). However, many of the samples in this study of
the Arabian Shield are from vein deposits. In vein galena, some
radiogenic lead possibly could have been leached from crustal
rocks to contaminate the initial lead in the mineralizing fluids.
Such a process would lower the model age, but for many cases in
the Arabian Shield this effect may have been small for the fol-
lowing reasons. The rocks of the shield evolved during the peri-
od between about 950 and 550 m.y. ago. Thus for many of the
Precambrian-early Paleozoic vein deposits, less than 200 m.y.
elapsed between formation of the crust and introduction of
mineralization. In such instances this might be too short a time
in which to generate sufficient radiogenic lead to contaminate
significantly the mineralizing fluids.



From the foregoing, it is clear that model ages for vein de-
posits in the shield will be most reliable for the oldest and
largest deposits of high lead content. Model ages will be least
reliable for small prospects where the difference between age of
host rocks and time of mineralization is significant.

Calibration of lead isochron model

We have attempted to calibrate the Stacey-Kramers model 1in
the Arabian Shield by examining initial lead from rocks from the
shield that have been accurately dated by other methods.

In one instance a small (1804) cubic crystal was noticed in
an electron microscope photograph of zircons separated from a
peralkaline granite sample from Jabal Ajah in the northern part
of the Arabian Shield. The crystal was identified as galena by
X~ray analysis and its lead-isotope composition measured by mass
spectrometry. (The crystal contained less than 5 micrograms of
lead.) Results of this experiment (table 1) show that the galena
lead has a model age of 540 m.y.; the zircons from the granite
indicated 570 m.y. This work was done by John Aleinikoff in the
course of another study, and we appreciate the use of his data.

Lead in potassium feldspars from two plutonic units 1in the
Wadi Tarib batholith, when corrected for decay of in situ ura-
nium, gave model ages that were 50 m.y. and 30 m.y. younger than
their zircon ages respectively (table 1). The initial lead in
feldspar crystals is very susceptible to absorption of radiogenic
lead, as may be seen in the feldspar data from the red granite at
Bishah. The zircon age for this granite is 676 m.y. (Cooper and
others, 1979) but the feldspar model age is only 385 m.y. Thus
model ages we have obtained from potassium feldspars should be
considered as minimum values.

We conclude from the calibration study that the Stacey-
Kramers model apparently gives reasonable age estimates in the
Arabian Shield and that the ages yielded for effectively single-
stage leads may be too young by no more than 30-50 m.y.

RESULTS AND DISCUSSION

Data from the Precambrian-early Paleozoic samples are listed
in tables 2 and 3 and plotted in figure 3. Isotopically they
fall into two groups that also correspond to two distinct geo-
graphic regions. All Group I samples are from the main part of
the Arabian Shield, all Group II are from the region east of
about long 44°20 E. These separate regions are evident in the
map of figure 2. The isotopic groupings can be seen in the
20 Pb/204Pb—206Pb/204Pb plot of figure 3. In this dia-
gram, all the Group I data plot below the average growth curve.
All the Group II data plot distinctly higher, on or above the
average curve.
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Figure 3.~Lead-isotope data from Precambrian-early Paleozoic galena and massive sulfide ores
from the Arabian Shield. Data are numbered as in tables 2 and 3. Model evolution curves
are from Stacey and Kramers (1975). Isochron model ages between 720 m.y. and 420
m.y. are assigned to the Group 1 galenas from the main part of the Shield. Group II
galenas from the eastern part of the Shield are distinctly different, and most lic on a
secondary isochron of slope 0.15 £ 0.03.
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For the 207pp/204pp-206p,L,/204pp  gata separate  plots
have been made in figure 3. Except for the sample from Jabal
Sitarah (#33), all the data in both groups plot below the average
curve, but for the Group II data, six of the nine points form a
very linear array that we regard as significant. The
208pp/204pp data for Group II data average about 0.8 percent
higher than those of Group I for the same 206pb/204pp values.
The 207pb/204pp values for Group II average 0.3 percent
higher than their Group II counterparts.

Group I model ages from the main part of the shield

The model ages of the Group I data range between 720 m.y. for
the massive sulfide deposit at Jabal Sayid to 420 m.y. for the
small vein prospect at Abu Bir. Figure 4 shows a histogram of
the data. There are four massive sulfide deposits among the
Group I samples: Jabal Sayid (720 m.y.), Wadi Shwas (695 m.y.),
Nugrah (680 m.y.), and Kutam (600 m.y.). All these deposits were
examined in the sulfur isotope study by Rye and others (unpub - datra)
and appear to be of volcanogenic origin. All are in
volcanoclastic rocks stratigraphically assigned to the Halaban
group that developed between about 800 to 650 m.y. ago (Greenwood
and others, 1975). The model age of 600 m.y. for Kutam seems
much lower than the expected age of the enclosing rocks (about
750 m.y.). However, this deposit has been severely sheared and
remobilized during metamorphism, so that the ore bodies now occur
at fault junctions (Rye and others, wnpubd. data). Under these
circumstances it may be that the 1lead in the deposit was
introduced during metamorphism about 600 m.y. ago.

The large gold-silver vein deposit at Mahd adh Dhahab has an
extremely uniform lead isotopic composition that supports the
validity of our using the model age, which in this case is 684
m.y. This figure also agrees with the Rb-Sr feldspar model age
of 675 + 20 m.y. obtained by Zell Peterman (oral communication)
from microcline, an early vein-forming mineral in the deposit.
Although the lead isotopic composition of the Mahd adh Dhahab
deposit is identical to that at Nuqrah, 230 km to the north, no
direct genetic association is implied. However, the data do
indicate that the original sources for the lead in a large area
of the shield had remarkably similar lead isotopic compositions.

The histogram of the data in figure 4 shows a large number of
model ages in the range 460-500 m.y. Presently there is little
geochronologic evidence to indicate such late igneous activity in
the shield. 1In addition, most of our young model ages come from
small vein prospects and are therefore most 1likely to have
acquired radiogenic lead from older crustal rocks. However, from
a number of K-Ar and Rb-Sr analyses in the Al Amar region,
Baubron and others (197¢) concluded that a major metamorphic
event occurred at about 560 m.y. ago and that volcanic rocks in
the region tend to be younger, at 500-460 m.y. Unpublished data
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by R. J. Fleck (oral communication, 1979) confirm this situation;
other unpublished data by Fleck indicate a late metamorphic event
in the Taif area in the western part of the shield. Although the
significance of our model ages less than 500 m.y. should remain
equivocal, it is apparent that the Pan African orogeny, approxi-
mately 550 m.y. ago, and the subsequent rifting of the shield by
the northwesterly-trending Najd fault system coincided with much
of the vein mineralization in the shield. Occurrence of galena
in the vein deposits is much more common than in the earlier
massive sulfides of the region.

Group II data from the eastern Arabian Shield

The Group II data are listed in table 3 and plotted in figure
3. In the 207pp/204pp-206pp/204py graph, six of the nine
points exhibit a short though very well defined line. The slope
is estimated to be 0.15 + 0.03 (20) by the York (1968) regres-
sion analysis that includes uncertainty due to analytical error.
Such linear relationships are very common in galena studies from
mining districts in many parts of the world (for example, Stacey
and others, 1968; Kanasewich and Farquhar, 1965). The interpreta-
tion requires a two-stage rather than the effectively single-
stage crustal history that we applied in Group I. The linear
relationship implies that for the six samples on the line, there
was a common time of mineralization. Moreover, the lead from
these samples was derived from older Precambrian source rocks all
of the same age.

If we can estimate the mineralization time, then the source
rock age can be computed. In an earlier section we stated that
Baubron and others (197&) found evidence for a major metamorphic
event 560 m.y. ago in the Al Amar region. Also, because the de-
posit at Ar Ridayniyah is the only massive sulfide among the
Group I1 samples, its isochron model age of 530 m.y. is the one
most likely to be valid. Moreover, this estimate is reasonable
for the end of the Najd faulting (Fleck and others, 1976), at
which time, as we have shown, much mineralization seems to have
occurred in the western shield. Thus if we choose a mineraliza-
tion age of 530 m.y., and utilize the linear slope of 0.15 %
0.03 (20 ), the source rock age is computed as 2100 X 300
m.y. Notice that, unlike most of the Group I data, those of Group
IT exhibit a large time difference between the age of associated
crustal rocks and time of mineralization.

It is notable that the sample from Ar Ridayniyah (#27) is the
most radiogenic in the linear array. This 1is probably a
manifestation of its sedimentary character. According to Rye and

others(umwb-da+a3; sulfur-isotope measurements indicate that it
was formed by biogenic action in a stagnant lake.

There remain three samples in Group II that do not lie on the
line. These are Bahfor (#29), Bosnun (#31), and Jabal Sitarah
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(#33). Analytical error might account for the discrepancy conly
in the case of the Bahfor data. One possible interpretation of
the deviations is that these three samples were mineralized at
different times from source rocks all 2100 m.y. old. Mineraliza-
tion ages then compute as approximately 570 m.y. for Bahfor, 680
m.y. for Bosnun, and 965 m.y. for Jabal Sitarah.

The most important conclusion from the Group II data is that
east of about long 44°20‘'E., and extending between lats 22°N. and
24.5°N., the region appears to be underlain by Precambrian base-
ment rocks about 2100 m.y. old. This is the first substantial
evidence of such old ages anywhere in the shield.

Plumbotectonics in Saudi Arabia

Even though the plumbotectonics model of Doe and Zartman
(1979) describing 1lead evolution in the Phanerozoic has been
published only recently, it has actually been used for inter-
pretation of lead-isotope data in our laboratory for several
years. The concepts of the model were first extended to the
Precambrian by Stacey and others (197¢). The Saudi Arabian lead
data are plotted in figure 5 together with the plumbotectonics
model curves for the average mantle, the average orogene, and the
average upper crust. (The average orogene curve of plumbo-
tectonics corresponds to the average growth curve of Stacey and
Kramers (1975), which is shown in figure 3.) All the Group I
data lie below the average orogene curve in each diagram, and in
fact, on the 208pp/204p,_206py/204p, plot, they 1lie along
the average mantle curve. It can be seen from both diagrams of
figure 5 that the Group I samples are similar in character to
data from other parts of the world that are interpreted to have
evolved in primitive island arc environments. The examples shown
of such data are the Devonian and Triassic mining districts in
Shasta, California, and the Eocene~Miocene Mariana Island Arc
system in the Pacific Ocean (Meijer, 1976).

The significance of the linear trend for the Group II data on
the 207pp/204p,-206p,,/204p, lot has already been discus-
sed. on the 208pp/204pp-2 6Pb/204Pb diagram most of the
Group II points lie along the average orogene curve-~distinctly
offset from the mantle character of the Group I samples. Notice
that the present-day average composition of continental-derived
sediments from the Pacific Ocean basin in the Mariana Arc also
lies close to the average orogene curve and thus emphasizes the
similarity of continental material and the Group II samples. The
fact that the 208Pb/204Pb data for the two samples from Al
Amar (#28) and Wadi Agqarah (#30) lie above the orogene curve
whereas the 207pp/204pp data lie below the orogene curve in
the other plot indicates that the Group II leads may be derived
from rocks of the lower continental crust. Actually, the Jabal
Sitarah sample (#33), the southernmost of our Group II samples,
appears to be quite different. Its-data plot above the average
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orogene curve in both the graphs of figure 5. These are charac-
teristics of continental rocks that may themselves have had a
complex history involving periods of residence in both the up-
per and lower parts of the crust. As such they may be analogous
to the Precambrian basement at Gold Hill, Utah (see Stacey and
Zartman, 1978). The Jabal Sitarah data therefore make that re-
gion of great interest for further study.

Geologically, the Group II eastern area is characterized by
two contrasting terranes, mostly sedimentary rocks on the west
(Abt schist and Ar Ridayniyah formation) and volcanic and sedi-
mentary rocks on the east (presently assigned to the Halaban
group). Both terranes have been cut by numerous granitic bodies,
and are separated by the Al Amar-Idsas fault zone (fig. 2), a
north-trending structural break along which small ultramafic
bodies have been emplaced. Al—-Shanti and Mitchell (1976) have
considered this break to be a zone of thrusting that dips east-
ward and represents a major suture that marks a continental-arc
collision. Schmidt and others (1979), on the other hand, agreed
with the major suture concept but considered the zone of thrust-
ing to dip westwards. Figure 6 shows a hypothetical section
through the Al Amar-Idsas fault zone that was suggested by D. L.
Schmidt (written communication, 1979) and that explains very well
the boundary between Group I and Group II lead data.

Certainly the Al Amar-Idsas fault is a major geologic feature
in the shield that has attracted the attention of many geolo-
gists. For instance Moore (1975) pointed out that the fault
separates two metallogenic provinces, a lead-silver-tungsten-
molybdenum province on the west, and an iron-copper-zinc-gold-
barium province on the east. The fault zone itself contains an-
omalous amounts of iron, chromium, copper, and nickel in bodies
of ultramafic rocks.

The tectonic evolution of the Arabian Shield and of the east-
ern desert of Egypt has been the subject of much recent study.
Two main theories emerge from such studies: an arc-collision
model, and a Precambrian proto-Red Sea hypothesis. The arc-
collision theory was originated by Greenwood and others (1975)
and developed by Fleck and others (in press) from strontium—isotope
data. They proposed that the Arabian craton evolved as an intra-
oceanic 1island arc accreted onto the northeast flank of the
African continent in late Precambrian time. Other workers who
have contributed to the island arc concept include Al-Shanti and
Mitchell (1976), Bakor and others (1976), Frisch and Al-Shanti
(1977), Nasseef and Gass .(1977), Gass (1977), and Schmidt and
others (1979).

On the other hand, Garson and Shalaby (1976), El-Shazly and
Engel (1978), and Stern (1979) have maintained that whereas the
Arabian-Nubian craton has clearly evolved'an oceanic crustal en-
vironment, the region lacks several characteristics that are
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normally found in island arc systems elsewhere in the world. In-
stead, they envisage an older Afro-Arabian continent that in the
late Precambrian rifted and spread apart to form a proto—-Red Sea
in a similar location to the present one. During the Pan-African
orogeny, this oceanic basin was closed by compression resulting
from an intercontinental collision in the east.

To choose between the various models is beyond the scope of
this work, but the controversy prompted ua 4o (eanalyze © the
data of Delevaux and others (1967) and to extend considerably the
areal coverage of our study. The Precambrian-Paleozoic samples
from that work have been included with the Groups I and 1II
samples. We should perhaps point out that the one Paleozoic sam-
ple from Egypt, from Fowakhir, is in the center of the oceanic
crustal terrane studied by Stern (1979). 1Its lead-isotope char-
acteristics clearly belong in Group I, confirming its oceanic
crustal derivation. Our new data for Cenozoic samples from
Delevaux and others (1967) appear in table 4 and are plotted in
figure 5. Data from Um Gheig (#35), Um Ans (#36), and Taleit Eid
(#37) in Egypt and Rabigh (#39) in Saudi Arabia are consistent
with their derivation from Group I shield rocks. Data for the
Egyptian deposit at Bir Ranga (#38) lie somewhat higher on both
plots in figure 5. Its Group I-type lead seems to have acquired
a small but distinctly older continental component that may have
originated from sediments in the area that perhaps derived from
as far away as the Sudan-Tanzanian craton to the southwest. The
presence of older continental material in sediments, in the re-
gion of Fowakhir, has been investigated by Dixon (in press), who
has dated zircons in cobbles from conglomerate beds and has ob-
tained a wide range of Precambrian ages, 1100-2300 m.y. These
cobbles have no obvious source in the Nubian Shield and the
author concludes that they were derived from adjacent continental
areas and were deposited in an evolving arc-ocean basin complex.

The sample from Hailan in Yemen (#41), to the south of Saudi
Arabia, and that from near Muscat in Oman, 1500 km to the east
(#42), exhibit data that are quite different from data from other
Cenozoic samples discussed. Unlike the Group I data, they plot
above the average orogene curve in each of the diagrams of figure
5. Because very little 207pp has been generated since the end
of Precambrian time, their high 207pb components relative to

4pb must be interpreted as indicating the existence of older
Precambrian rocks in the vicinity of these widely separated
localities in the Arabian Peninsula. Perhaps such upper crustal
rocks are similar in age to the Proterozoic lower crustal source
rocks in eastern Saudi Arabia, the existence of which is implied
by the Group II data.

Precambrian whole-ore samples

In the Arabian Shield, many Precambrian massive sulfide
deposits do not contain galena. The ores are generally
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variable mixtures of pyrite, chalcopyrite, and pyrrhotite. In
order to extend the scope of our study, a total of 21 such samples
were selected from nine massive sulfide deposits. The lead iso-
topic compositions for all samples were determined and are shown
in table 5. Lead, uranium, and thorium concentration data for 12
of the samples are also included. Much to our surprise, in many
cases the lead concentrations were found to be very low--less
than 6 ppm. In addition, these low lead contents were accom-
panied by comparatively significant amounts of wuranium and
thorium (0.1 to 2.1 ppm). In such samples, radiogenic lead
generated by the uranium and thorium since formation of the ores
has significantly changed the lead isotopic compositions. 1In al-
most all cases, however, the U/Pb and Th/Pb systems seem to have
been disturbed. Thus the data cannot be relied on to yield the
times of mineralization, nor to provide the means by which to es-
timate the initial lead compositions at the time of ore deposi-
tion. Because most of the whole-ore samples are from drill core,
it seems unlikely that disturbance of the uranium-thorium-lead
systems is due to recent weathering. More probably the distur-
bance is due to the Pan African orogeny or other events, such as
uplift, to which the deposits have been subjected. As far as we
know, this is the first study of massive sulfide ores to include
lead, uranium, and thorium concentration data. The data show
that for samples of this type, one can assume neither that lead
constants are high nor that U/Pb values are negligible. The
presence of low lead concentrations and significant U/Pb values
may explain the highly variable lead-isotope compositions found
for massive sulfide ores by other workers, such as Cumming and
Gudjurgis (1973) in their study of the Quemont deposit in Canada.

Our lead- isotope data for the ores from table 5 are plotted
in figure 7. In the 207pp/204pp-206py/204py plot, we note
that the ore data lie close to the trend for the Group I Precam-
brian and Mesozoic-Cenozoic galenas that we noted in figure 5.
In addition, the 1least radiogenic ore samples are similar in
composition to the Precambrian galenas. Similarly, on the
208pp/204pp-206pp/204py  plot in figure 7, the ore data,
especially the least radiogenic samples, plot close to the Group
I galena trend. The data from Wadi Yiba lie well below the
others, but they do lie on a trend that would correct them back
towards the least radiogenic Group I galena data. It seems un-
likely that any of the ore data would correct back into the Group
ITI field above the average orogene growth curve on this plot.

In summary, although the massive sulfide ore data are disap-
pointing from the geochronologic point of view, they are suffi-
ciently definitive to confirm that these deposits belong iso-
topically to the Group I type, as indeed they do geographically.
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CONCLUSIONS

Using lead=- isotope model ages that should be regarded as
minimum ages and accurate to within 50 m.y. for effectively
single-stage leads, we have shown that much late Precambrian to
early Paleozoic mineralization in the main part of the Arabian
Shield in Saudi Arabia occurred between 720 m.y. and perhaps as
late as 460 m.y. ago. Low~lead, massive-sulfide, volcanogenic
mineralization mostly occurred before 680 m.y. ago. Most higher
lead content vein deposits were formed during and immediately
after the Pan African event that culminated in the formation of
the Najd fault system about 530 m.y. ago.

The 1low, near-mantle values of 207Pb/204Pb exhibited by
the ore deposits in the main part of the Arabian Shield preclude
the possibility of the involvement of older crustal material in
their formation. The data from this region indicate that the
craton developed from an oceanic crustal environment.

Data from the region of the shield east of long 44°20'E. and
between lats 22°N. and 24.5°N., exhibit distinctly different lead-
isotope characteristics that we interpret as indicating the pres-
ence of lower crustal rocks of early Proterozoic age (2100 m.y.)
in this region.

The lead isotopic compositions of two Mesozoic galena sam-
ples, one from Oman and the other from Yemen, also indicate the
presence of continental basement of similar early Proterozoic age
in those parts of the Arabian Peninsula. In these cases however
the ancient lead component is of upper crustal origin.

Our new lead~isotope data do not seem to conflict in princi-
ple with any of the models for crustal evolution that we have
discussed. However, the nature of the changes near the Al Amar-
Idsas fault and the evidence we have found for continental mater-
ial underlying the surface to the west of the fault zone do lend
support to the concept of continental underthrust from the east,
and perhaps give credence to the idea of a westerly dipping sub-
duction zone as suggested by Schmidt and others (1979).

Our data, together with those from the strontium isotope
studies of Aldrich and others (1978) and Fleck and others (i19%0),
require rather drastic changes of scale in the proto-Red Sea wod-
el of Stern (1979). Certainly the proto-sea basin would have had
to cover at least the region from which the Group I samples were
taken, a very much greater area than Stern originally envisioned.
In addition, the ocean basin would have had to remain open for a
considerably longer period than from 650 to 625 m.y. ago. Pre-
sently available data show that the process of craton building in
the shield commenced at least as early as 950 m.y. ago and ended
about 550 m.y. ago. More encouraging support for the proto-Red
Sea proponents might be that the age of 2100 m.y. that we postu-
late for the continental block to the east of the shield is

24



similar to that of the continent to the west of the Egyptian
basin, at least as indicated by the older zircon ages of the
Egyptian pebbles as measured by Dixon (in press).
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