DRY TILT AND NEARFIELD GEODETIC
INVESTIGATIONS OF CRUSTAL MOVEMENTS,
SOUTHERN CALIFORNIA

Arthur G. Sylvester
Marine Science Institute
University of California
Santa Barbara, California 93106

USGS CONTRACT NO. 14-08-0001-17685
Supported by the EARTHQUAKE HAZARDS REDUCTION PROGRAM

OPEN-FILE NO. 81-293

U.S. Geological Survey
OPEN FILE REPORT
This report was prepared under contract to the U.S. Geological Survey
and has not been reviewed for conformity with USGS editorial standards
and stratigraphic nomenclature. Opinions and conclusions expressed
herein do not necessarily represent those of the USGS. Any use of trade
names is for descriptive purposes only and does not imply endorsement by
the USGS.
TECHNICAL REPORT, ANNUAL

Grant Number: USDI U.S. Geological Survey No. 14-08-001-07685

Grantee: Regents of the University of California, c/o Contracts and Grants Administration, University of California, Santa Barbara, California 93106

Principal Investigator: Arthur G. Sylvester
Marine Science Institute
University of California
Santa Barbara, California 93106

Government Technical Officer: Dr Gordon Greene

Title: Dry Tilt and Nearfield Geodetic Investigations of Crustal Movements, Southern California

Effective Date of Grant: 1 October 1979
Grant Expiration Date: 30 September 1980

Amount of Grant: $60,001

Date of this Report: 31 October 1980

Sponsored by the U.S. Geological Survey
No. 14-08-0001-17685

The views and conclusions contained in this document are those of the author and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Government.
REPORT SUMMARY

Dry Tilt and Nearfield Geodetic Investigations
of Crustal Movements, Southern California

14-08-0001-17685

Arthur G. Sylvester
Department of Geological Sciences and
Marine Science Institute
University of California
Santa Barbara, California 93106
(805) 961-3471

Investigations

By means of telescopic spirit leveling (dry tilt) of small aperture triangular arrays, precision leveling of short lines across faults, and precision surveying of alignment arrays and trilateration networks, we have been monitoring the following physical phenomena within the southern California uplift and in other areas of potentially active crustal movement:

1. The regional pattern and timing of tilt, if any, and
2. The nature of strain accumulation and release, if any, across well-defined active and potentially active faults.

During 1979-80 we resurveyed 49 dry tilt arrays from 2 to 10 times each. Most of the arrays are located along the San Andreas fault zone from Frazier Park to Cajon Pass. Others are located along the frontal fault system of the San Gabriel Mountains. Twenty-four of the arrays have been in place nearly 4 years, and others have been added more recently.

We have established 19 short level lines across active faults in such diverse places as San Fernando, Death Valley, Palmdale, San Juan Bautista and Santa Barbara. Some of these lines were established 10 years ago and have accumulated as many as 14 resurveys. Two lines, one across the San Andreas fault near Valyermo, and one across the Llano fault 30 km east of Palmdale, were established in the present contract period.

Two leveled alignment arrays established four years ago across the San Andreas fault were resurveyed twice each in the past year.

Thirteen trilateration arrays have been established across several faults in southern California in the last three years. Only those across the Santa Cruz Island fault zone were surveyed in the past year.

Results

We have observed no local or regional tilt activity which we would regard as anomalous, and indeed there has been no earthquake activity in the study area which would be expected to have produced such activity. Thus, the anomalous tilts we observed in the Juniper Hills-Lake Hughes area in Winter and Spring of 1978 ceased in the late 1978 and 1979, just as the earthquake swarm activity there has also ceased along that segment of the San Andreas fault zone.
With one exception, resurveys of the short level lines have documented only non-tectonic effects related to thermoclasticity and subsidence related to withdrawal of groundwater for agricultural irrigation. Where the irrigation is fairly continuous and involved large withdrawal volumes that exceed recharge rates (San Juan Bautista, Duravan Ranch), the subsidence is episodic in detail but continuous in annual rate and direction. Where the withdrawal is of small volume and less than presumed recharge rates (Pallett Creek) the subsidence is small, 1 mm over a line length of 200 m, and recovers completely when the well is not pumped.

The exception is the Mesa Valley Farm leveled alignment array located across the most recently active trace of the San Andreas fault between Gorman and Frazier Park. Precise leveling shows that 3 mm differential vertical separation has taken place between July 1978 and August 1980. This is a stretch of the fault which is not known to have moved since at least 1911 if not 1857. The separation corresponds temporally with the stress changes observed by others across the San Andreas fault in southern California and may be the surficial strain manifestation of the stress changes.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>The Problem</td>
<td>2</td>
</tr>
<tr>
<td>The Methods</td>
<td>3</td>
</tr>
<tr>
<td>DRY TILT</td>
<td>4</td>
</tr>
<tr>
<td>Array Locations</td>
<td>4</td>
</tr>
<tr>
<td>Dry Tilt Results</td>
<td>5</td>
</tr>
<tr>
<td>SHORT LEVEL LINES</td>
<td>6</td>
</tr>
<tr>
<td>Pallet Creek</td>
<td>7</td>
</tr>
<tr>
<td>San Juan Bautista</td>
<td>8</td>
</tr>
<tr>
<td>Duravan Ranch</td>
<td>9</td>
</tr>
<tr>
<td>Timber Canyon</td>
<td>9</td>
</tr>
<tr>
<td>Grapevine</td>
<td>10</td>
</tr>
<tr>
<td>New Leveling Arrays</td>
<td>10</td>
</tr>
<tr>
<td>Leveled Alignment Arrays</td>
<td>11</td>
</tr>
<tr>
<td>TRILATERATION SURVEYS</td>
<td>12</td>
</tr>
<tr>
<td>REFERENCES CITED</td>
<td>14</td>
</tr>
</tbody>
</table>

APPENDIX

I. Component North/Component East vs Time dry tilt records, including rainfall (1978-1980 only) and local earthquake records.

Names and numbers of UCSB dry tilt arrays are coded to map and tabulated location data, Fig. 1 and Table I, respectively.
INTRODUCTION

The Problem

The inevitability of major damaging earthquakes in California and the possibility that the southern California uplift (Castle and others, 1976; 1977) may represent a precursor of such an earthquake spawned an intensive and comprehensive investigation of geophysical phenomena related to earthquakes with the ultimate objective of being able to predict earthquakes. However, even as those studies have progressed, the very existence of the southern California uplift has been a subject of controversy and considerable debate (e.g. Jackson and Lee, 1979).

In the meantime, this study of tilt and nearfield strain is one of the many studies being conducted by numerous agencies and institutions to determine whether or not southern California is undergoing the preparatory stages for a major earthquake.

Thus, by means of telescopic spirit leveling (dry tilt), precision leveling of short lines across faults, and precision surveying of alignment arrays and trilateration networks, we are attempting to document the following physical phenomena near potentially active faults in southern California.

1) The regional pattern and timing of tilt, if any, and

2) The nature of strain accumulation and release, if any, across well-defined fault traces.
The Methods

Dry Tilt - The techniques and equipment used in dry tilt are described by Kinoshita and others (1974) and Sylvester (1978b). In general, the dry tilt method of measuring crustal tilt utilizes a precision optical level in the center of an array of three precision leveling rods set on each of three or more permanent benchmarks geometrically arranged at the apices of a triangle having side lengths of from 30 to 40 m. Tilt vectors are calculated from elevation changes of the benchmarks.

Details on site selection, monument installation and survey procedures and errors are given in previous technical reports (Sylvester, 1977a; 1978a) and by Sylvester (1978b). The accuracy of the dry tilt method is from 3 to 4 μrad in Hawaii (Kinoshita and others, 1974) and from 3 to 5 μrad in southern California (Sylvester, 1978b).

Four years of accumulated surveys have yielded a variety of data ranging from a nearly unambiguous precursory tilt prior to a major earthquake (M 5.7), to equally clear tilt signals which we believe are related to an earthquake swarm on the San Andreas fault (Sylvester, Mowles and Frischer, 1979), to data that can best be categorized as random noise. We have established redundant arrays at about half of the sites and have been getting good correspondence with the primary arrays in the last year. These observations are discussed below and are illustrated by data plotted variously in terms of N and E components (Appendix I).

Short Level Lines - Short level lines (200 to 1600 m), comprised almost entirely of permanent benchmarks no more than 40 m apart throughout the line, are surveyed according to First Order, First Class procedures using either a shaded Wild N3 precision tilting level or a Wild NAK2 Automatic level and Wild GPL-3 invar precision leveling rods. The acceptable closure error in these surveys may not exceed 1 mm x distance$^{1/2}$ in kilometers in our procedure.
and specifications.

Leveled Alignment Arrays - Leveled alignment arrays consist of from 12 to 20 permanent benchmarks set in a line from 65 to 100 m long. The line is centered on, and is oriented approximately perpendicular to, a well-defined fault trace. A theodolite is erected at one end of the line, and brightly marked precision calipers are used to measure the horizontal deflection of each monument with respect to a reference line given by the theodolite. This technique has been used to document creep on the San Andreas fault in central California (Nason and Tocher, 1970; Nason, 1971; Rogers and Nason, 1971; Harsh, 1977; Burford and Harsh, 1980). Terrain permitting, we also level the benchmarks or our alignment arrays so that slip is uniquely determined.

Trilateration Arrays - Repeated surveys of small aperture quadrilaterals are done routinely by many investigators to document horizontal movement on faults. Quadrilaterals are nearly square or rectangular arrays of generally four to six permanent benchmarks with side lengths of from 50 to 2000 m. The geometry of the array is measured by repeated trilateration using an electronic distance meter (EDM).

DRY TILT

Array Locations

We have established 49 dry tilt arrays in and around the southern California uplift as defined originally by Castle and others (1976). Location data and survey histories of each individual dry tilt array are given in Table I. Most of the arrays straddle the San Andreas fault zone (Fig. 1); some are located along the frontal faults of the San Gabriel Mountains to test Thatcher's (1976) hypothesis that the southern California
uplift may presage an earthquake along that fault system; other arrays, such as those in Santa Barbara and the Mojave Desert, are purposely located at the periphery of the uplift to test surveying procedures, background noise, and to document the aerial extent of tilting, if any, related to the central part of the uplifted area.

Dry Tilt Results

General Statement - All of the results over four years can be summarized by the statement that no consistent patterns or anomalies emerge throughout the network as a whole that indicate regional or local tilt which can be sensibly attributed to the kind of regional tectonics that are believed to produce the southern California uplift. This conclusion is reached from qualitative analysis of synoptic tilt vector maps compiled for the network on monthly, seasonal and annual bases (not presented in this report). On the other hand, a noteworthy exception to this generalization took place on 11 of 24 dry tilt arrays extant in 1978. In the winter and spring of that year each of the 11 arrays shows a significant tilt excursion ranging from 25 to 315 µrad.

We postulated that the tilts near the San Andreas fault may be related to the earthquake swarm activity along the San Andreas fault which occurred in 1976-1977 (Sylvester, 1979; Sylvester, Mowles and Frischer, 1979). According to McNally and Kanamori (1977) and McNally and others (1978) a swarm of small earthquakes occurred on or near the Palmdale segment of the San Andreas fault between November 1976 and March 1977, and in fact, continued throughout most of 1978 into 1979 (K. McNally, personal communication, 1979). The earthquake epicenters are clustered in two geographic areas, Juniper Hills and Lake Hughes, with little or no earthquake activity
between the two clusters. The timing of the tilt anomalies progressed from NW to SE along the San Andreas fault.

Clearly the earthquake swarms were manifestations of strain release along two patches of the fault. We postulated that the tilt anomalies were a manifestation of strain release along the San Andreas between the two clusters of swarms. The release of strain was slow, perhaps a slow earthquake in the terminology of Sacks (1978), occurring over a period of as much as 20 weeks, judging by the commencement of tilt on our arrays. Sacks (1978) reported that propagation velocities for vertical strain events are about 2 km/month. Our data are permissive to infer that the release (or accumulation) of strain proceeded from NW to SE in the gap along the San Andreas fault between the two earthquake clusters. Lisowski and Savage (1979) report no horizontal strain event of magnitude greater than a few parts per million was observed in the Juniper Hills area in the time interval 1971-1977. Our tilt data however, suggest that a significant release of strain did occur in 1978, and may be related to the strain events Savage (1979) and Niell (1979) have observed in 1979 and 1980. But in the present contract period, 1979-80, we have not observed any unusual excursions on any of the dry tilt arrays, and indeed there has been no seismic activity anywhere near our arrays that should be expected to have produced tilts at any of our sites.

SHORT LEVEL LINES

Short level lines yield reliable information about relative vertical crustal movements across faults and if the arrays of benchmarks are non-linear, they can be used to determine tilt direction.
The locations of our short level lines are shown in Figure 2, and location and survey data are given in Table II. The lines in Santa Barbara and Death Valley were not surveyed during this contract period.

Pallett Creek

The Pallett Creek line was established to determine if vertical strain is occurring across the Punchbowl fault, which is a northwest-striking high angle reverse (and oblique slip?) fault that dips about 70° SW (Fig. 3). Dissected Quaternary fanglomerate overlies the fault and the associated crush zone, and they are not noticeably offset (Noble, 1954). Nevertheless, McNally and Kanamori (1977) found that some of the focal mechanisms in the Juniper Hills earthquake swarm are consistent with a SW-dipping thrust fault (McNally and others, 1978). This interpretation is not compatible with observed geologic displacements on the San Andreas fault in the area or with the surface dip of the Punchbowl fault which is the only major dip slip fault in the area.

The Pallett Creek level line comprises 70 permanent benchmarks in an irregular, generally N-S line 1600 m long (Fig. 4). So many permanent benchmarks yield a great degree of redundancy.

Relative to a leveling in August 1978, the line tilted relatively southward on the south of the Punchbowl fault about 1 microradian through March 1979. Between March and August 1979, it tilted relatively northward about 2 microradians and has remained there to July 1980. The simplest and most reasonable interpretation is that the flexing of the line is a thermoelastic effect. There are no other level lines or tiltmeters against which to check this interpretation, and the line is not optimally oriented to be sensitive to EW tilt.
An interesting manifestation of subsidence related to groundwater withdrawal shows up where the line crosses the Punchbowl fault (Fig. 4). The fault acts as a barrier and reservoir for groundwater that migrates from south to north. A water well is located in the fault zone and is pumped for irrigation, generally in late summer. Eight benchmarks across the fault zone subsided nearly one millimeter each in September 1978, then recovered fully by March 1979 relative to all other benchmarks in the line. In August 1979, the subsidence zone is even broader (200 m), but just as deep (1 mm) as in the previous year, and it recovered as shown by bulge in the July 1980 elevation across the fault zone.

San Juan Bautista

A level line one kilometer long was established in 1975 across the San Andreas fault where it has created a 15 m high scarp along the NE edge of the town of San Juan Bautista (Fig. 5). The purpose of the line is to determine whether or not vertical creep is occurring simultaneously with the well-documented horizontal creep (Nason and others, 1974). Southwest of the fault the level line overlies crushed granite and a thin veneer of alluvium, whereas NE of the fault the benchmarks are driven deep into clay soil of San Juan Bautista Valley where groundwater is heavily pumped for irrigation.

The level line has been resurveyed 14 times (Fig. 6) with the only noteworthy results being the demonstrable instability of some of the benchmarks at the SW end of the line, and subsidence of the four benchmarks NE of the fault relative to a benchmark 200 m SW of the fault (Sylvester, Brown and Riggs, 1979). The four benchmarks subsided evenly in time and progressively with distance from the fault a maximum of 67 mm in 5 years. Sylvester, Brown and Riggs (1979) have argued that the progressive spatial and temporal subsidence over a broad zone is a manifestation of subsidence
of San Juan Bautista Valley due to groundwater withdrawal.

Duravan Ranch

A precision level line consisting of 14 permanent benchmarks was established across a new fault at Duravan Ranch near Cantil in the Mojave Desert (Clark, 1974) in September, 1974 (Fig. 7) to determine the nature and rate of vertical displacement.

The line was lengthened to 850 m by the addition of seven additional benchmarks in 1977. Studies to date indicate that the cause of the faulting is differential subsidence by groundwater withdrawal for agricultural purposes 8 km west of the ranch (Clark and others, 1978).

We have releveled the line 11 times and have found that the offset occurs right at the fault scarp (Fig. 8) rather than being spread over a zone, and it occurs almost regularly at an average rate of 35 mm per year (Sylvester, 1977a, 1977b).

Both fault blocks tilt basinward (NWW) at a rate of about 100 microradians per year as determined from two dry tilt arrays and from the elevation changes of any three nonlinear benchmarks in the level line on each side of the fault.

Timber Canyon

An L-shaped array of 10 permanent benchmarks in a line 322 m long was established on the surface of a broad alluvial fan in the Santa Clara River Valley (Fig. 2). The purpose of the array was to document crustal tilt related to the San Cayetano fault. Unfortunately several of the points were run over or plowed up by a bulldozer before a resurvey could be done, and we decided not to reestablish the line.
Grapevine

The SW corner of San Joaquin Valley in the vicinity of Wheeler Ridge is one of the most tectonically active parts of California. The Pleito thrust is one of the main faults between the San Joaquin Valley and the Transverse Ranges to the SW.

In 1979 we established a level line across a fault scarp marking the most recently active trace of the Pleito thrust (Fig. 9). The line contains 25 permanent benchmarks in a nearly linear distance of 800 m, including three preexisting benchmarks of the national Geodetic Survey's primary vertical control line from Tidal 8 (Long Beach Harbor) to Bakersfield. Two resurveys have been done since our initial survey of the line in August 1979 (Fig. 10). They show elevation changes of less than one millimeter which may represent the benchmarks equilibrating after installation, because the two repeated surveys are virtually identical with each other.

New Leveling Arrays

We established two non-linear leveling arrays during the contract period: Big Rock Springs (Fig. 11) and Llano (Fig. 12).

The array at Big Rock Springs comprises 24 permanent benchmarks in a Z-shaped line 394 m long. The line straddles the most recently active trace of the San Andreas fault which is marked by a scarp raised in the great earthquake of 1857. The initial leveling of the array was done in the late fall, 1980.

The Llano array is an irregularly Z-shaped array comprised of 26 permanent benchmarks in a line 619 m long across the Llano fault scarp in southeastern Antelope Valley. The fault forms a prominent, 10 m high, north-facing scarp in Late Pleistocene and Holocene alluvium (Guptill and others, 1979).
Reverse movement along the fault at depth has caused folding of the surficial sedimentary rocks. Except for development of a small scarp across an eroded part of the main scarp, reverse faulting has not propagated to the surface.

Leveled Alignment Arrays

We established leveled alignment arrays in 1976 at the only two sites within the Palmdale uplift where recent surficial cracks have been found along faults (Fig. 2 and Table III).

The array on Mesa Valley Farm (Fig. 13) straddles the most recently active trace of the San Andreas fault in Tejon Pass, about halfway between Frazier Park and Gorman. The fresh cracks in Tejon Pass are found on Peace Valley Road and highway I-5. The cracks on Peace Valley Road are vaguely en echelon, but are old enough to have had vegetation growing in them when we found them in 1976. Leveling, which is more than an order of magnitude more sensitive than aligning, revealed no displacement at the fault trace in 1976 and 1977, nor have several nail triangles across the cracks themselves.

But in the period June 1978-August 1980, 3mm differential vertical separation took place across the 1857 earthquake trace of the San Andreas fault without accompaniment of horizontal separation (Fig. 14). The 3mm elevation change is well within the precision limits of detection, and we regard it as real. The timing of the movement is constrained by only 3 levelings, but corresponds, in general, to timing of changes in regional horizontal components of stress (Savage, 1979). One can conclude permissively that the elevation changes we observe across this part of the fault are surficial manifestation of those regional stress changes. But
much more compelling data would be desirable, so we upgraded the leveling line to an S-shaped array comprised of 20 permanent benchmarks in a line 410 m long (Fig. 13). The increased number of benchmarks in a non-linear arrangement will give us better control of the direction and amount of vertical separation over a broader part of the fault zone, and we intend to survey the array more frequently than once a year.

In December, 1976, Dave Beeby (CDMG) showed us fresh en echelon cracks in the road pavement in a major roadcut across the north branch of the Nadeau fault at 47th St. E in Palmdale (Fig. 15), and he told us the cracks were first noticed in 1972. We established a leveled alignment array across the fault about 100 m northwest of the roadcut, as well as nail triangles across the cracks. We have observed no elevation or length changes whatsoever in four years of monitoring. The general consensus about the origin of the cracks is that they formed as a result of hydration and dehydration of the relatively recently daylighted gouge in the roadcut. It is of interest to note here that the cracked section of road was patched in winter, 1977, obliterating the cracks, and that in spring, 1978, the cracks had reappeared through the patching, but with no observed changes in our geodetic figures.

TRILATERATION SURVEYS

We have established small aperture trilateration arrays across several faults in southern California to determine horizontal strain. Repeated surveys of small aperture arrays are done routinely elsewhere in California to document horizontal movement on the San Andreas and related faults (Harsh, 1977; Lisowski and Prescott, 1977). Several agencies, including the U.S. Geological Survey, the National Geodetic Survey and the California
Department of Water Resources regularly monitor trilateration arrays across the San Andreas fault in the Palmdale area. Most are large aperture arrays having line lengths greater than 10 km (Prescott and Savage, 1976) and they are resurveyed relatively infrequently (Lisowski and Savage, 1979).

We have established most of our arrays across active and potentially active faults that are not monitored by other agencies, such as the Santa Ynez, Santa Cruz Island and Death Valley faults. We reoccupy arrays previously established by other agencies on the San Andreas fault.

All surveys are done with a Hewlett-Packard Model 3808 electronic distance meter (EDM). The sensitivity of the instrument over line lengths of from 100 to 1000 m is 0.0024 m.

During the past year we resurveyed only the array across the Santa Cruz Island fault (Fig. 16). One of the monuments had been bulldozed since our last survey in 1978. We took the opportunity to establish and survey a larger, stronger, doubly-braced quadrilateral across the Santa Cruz Island fault at the same location as our other one.
REFERENCES CITED

Clark, M. M., 1974. Map showing recently active breaks along the Garlock and associated faults, California. USGS Map I-741, scale 1:24,000.

Sylvester, A. G., 1977b. Dry tilt and leveled alignment arrays, Palmdale uplift, California (abs). EOS, 58(6), 496.

TABLES

I. Location and Survey Data for UCSB Dry Tilt Sites.

II. Location and Survey Data for UCSB Short Level Lines.

III. Location and Survey Data for UCSB Leveled Alignment Arrays.
<table>
<thead>
<tr>
<th>NAME</th>
<th>MAP#</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
<th>QUADRANGLE</th>
<th>ESTABLISH DATE</th>
<th>INITIAL SURVEY</th>
<th>MOST RECENT SURVEY</th>
<th>TOTAL SURVEYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCSB</td>
<td>1</td>
<td>34°24'54"</td>
<td>119°50'10"</td>
<td>Goleta</td>
<td>12/76</td>
<td>4/77</td>
<td>9/80</td>
<td>30</td>
</tr>
<tr>
<td>Jeffrey Pine Flat</td>
<td>2</td>
<td>34°48'26"</td>
<td>119°06'08"</td>
<td>Cuddy Valley</td>
<td>10/76</td>
<td>4/77</td>
<td>9/80</td>
<td>17</td>
</tr>
<tr>
<td>Cuddy Flat</td>
<td>3</td>
<td>34°50'25"</td>
<td>118°59'51"</td>
<td>Frazier Mtn.</td>
<td>11/76</td>
<td>4/77</td>
<td>9/80</td>
<td>19</td>
</tr>
<tr>
<td>Hungry Valley</td>
<td>4</td>
<td>34°44'15"</td>
<td>118°52'05"</td>
<td>Black Mtn.</td>
<td>10/76</td>
<td>2/77</td>
<td>9/80</td>
<td>21</td>
</tr>
<tr>
<td>Oso Pumping Station</td>
<td>5</td>
<td>34°48'44"</td>
<td>118°42'50"</td>
<td>La Liebre Ranch</td>
<td>12/76</td>
<td>4/77</td>
<td>9/80</td>
<td>15</td>
</tr>
<tr>
<td>Sawmill</td>
<td>6</td>
<td>34°41'52"</td>
<td>118°34'08"</td>
<td>Burnt Peak</td>
<td>11/76</td>
<td>3/77</td>
<td>9/80</td>
<td>20</td>
</tr>
<tr>
<td>Rye Canyon Road</td>
<td>7</td>
<td>34°25'30"</td>
<td>118°35'08"</td>
<td>Newhall</td>
<td>11/76</td>
<td>1/77</td>
<td>8/80</td>
<td>25</td>
</tr>
<tr>
<td>Drinkwater Flat</td>
<td>8</td>
<td>34°34'06"</td>
<td>118°27'49"</td>
<td>Green Valley</td>
<td>4/77</td>
<td>5/77</td>
<td>9/80</td>
<td>18</td>
</tr>
<tr>
<td>Indian Springs</td>
<td>9</td>
<td>34°42'12"</td>
<td>118°42'12"</td>
<td>Lake Hughes</td>
<td>11/76</td>
<td>4/77</td>
<td>9/80</td>
<td>20</td>
</tr>
<tr>
<td>Elizabeth Lake</td>
<td>10</td>
<td>34°40'03"</td>
<td>118°22'54"</td>
<td>Lake Hughes</td>
<td>11/76</td>
<td>4/77</td>
<td>9/80</td>
<td>27</td>
</tr>
<tr>
<td>Live Oak</td>
<td>11</td>
<td>34°22'45"</td>
<td>118°24'06"</td>
<td>Mint Canyon</td>
<td>12/76</td>
<td>1/77</td>
<td>8/80</td>
<td>29</td>
</tr>
<tr>
<td>Wentworth</td>
<td>12</td>
<td>34°15'29"</td>
<td>118°22'22"</td>
<td>Sunland</td>
<td>12/76</td>
<td>3/77</td>
<td>8/80</td>
<td>28</td>
</tr>
<tr>
<td>Escondido</td>
<td>13</td>
<td>34°30'00"</td>
<td>118°15'20"</td>
<td>Agua Dulce</td>
<td>8/77</td>
<td>8/77</td>
<td>9/80</td>
<td>18</td>
</tr>
<tr>
<td>Rose Bowl</td>
<td>14</td>
<td>34°09'25"</td>
<td>118°10'05"</td>
<td>Pasadena</td>
<td>12/76</td>
<td>3/77</td>
<td>9/80</td>
<td>29</td>
</tr>
<tr>
<td>Ave 25 E.</td>
<td>15</td>
<td>34°33'21"</td>
<td>118°05'04"</td>
<td>Palmdale</td>
<td>11/76</td>
<td>1/77</td>
<td>9/80</td>
<td>28</td>
</tr>
<tr>
<td>Pearblossom Cutoff</td>
<td>16</td>
<td>34°31'21"</td>
<td>118°05'45"</td>
<td>Palmdale</td>
<td>11/76</td>
<td>1/77</td>
<td>9/80</td>
<td>27</td>
</tr>
<tr>
<td>Soledad Pass</td>
<td>17</td>
<td>34°29'59"</td>
<td>118°07'08"</td>
<td>Pacifico Mtn.</td>
<td>11/76</td>
<td>1/77</td>
<td>9/80</td>
<td>28</td>
</tr>
<tr>
<td>90th St. E.</td>
<td>18</td>
<td>34°39'58"</td>
<td>117°58'05"</td>
<td>Littlerock</td>
<td>3/77</td>
<td>4/77</td>
<td>9/80</td>
<td>26</td>
</tr>
<tr>
<td>Longview</td>
<td>19</td>
<td>34°27'23"</td>
<td>117°54'02"</td>
<td>Juniper Hills</td>
<td>7/77</td>
<td>7/77</td>
<td>9/80</td>
<td>24</td>
</tr>
<tr>
<td>Azusa</td>
<td>20</td>
<td>34°09'41"</td>
<td>117°54'04"</td>
<td>Azusa</td>
<td>7/77</td>
<td>8/77</td>
<td>9/80</td>
<td>19</td>
</tr>
<tr>
<td>Aerojet</td>
<td>21</td>
<td>34°07'38"</td>
<td>117°55'38"</td>
<td>Azusa</td>
<td>7/77</td>
<td>8/77</td>
<td>9/80</td>
<td>20</td>
</tr>
<tr>
<td>Saddleback Butte</td>
<td>22</td>
<td>34°48'00"</td>
<td>117°41'30"</td>
<td>Hi Vista</td>
<td>12/76</td>
<td>3/77</td>
<td>9/80</td>
<td>27</td>
</tr>
<tr>
<td>Largo Vista</td>
<td>23</td>
<td>34°27'13"</td>
<td>117°45'55"</td>
<td>Valyermo</td>
<td>11/76</td>
<td>1/77</td>
<td>9/80</td>
<td>27</td>
</tr>
<tr>
<td>Blue Ridge</td>
<td>24</td>
<td>34°22'27"</td>
<td>117°41'20"</td>
<td>Mt. San Antonio</td>
<td>7/77</td>
<td>7/77</td>
<td>9/80</td>
<td>14</td>
</tr>
<tr>
<td>Upper Cajon Creek</td>
<td>25</td>
<td>34°22'36"</td>
<td>117°34'06"</td>
<td>Phelan</td>
<td>11/76</td>
<td>1/77</td>
<td>9/80</td>
<td>21</td>
</tr>
<tr>
<td>Cucamonga South</td>
<td>26</td>
<td>34°09'44"</td>
<td>117°31'05"</td>
<td>Cucamonga Peak</td>
<td>6/77</td>
<td>8/77</td>
<td>9/80</td>
<td>17</td>
</tr>
<tr>
<td>Cucamonga North</td>
<td>27</td>
<td>34°10'28"</td>
<td>117°32'11"</td>
<td>Cucamonga Peak</td>
<td>6/77</td>
<td>7/78</td>
<td>9/80</td>
<td>11</td>
</tr>
<tr>
<td>NAME</td>
<td>MAP#</td>
<td>LATITUDE</td>
<td>LONGITUDE</td>
<td>QUADRANGLE</td>
<td>ESTABLISH DATE</td>
<td>INITIAL SURVEY</td>
<td>MOST RECENT SURVEY</td>
<td>TOTAL SURVEYS</td>
</tr>
<tr>
<td>-----------------</td>
<td>------</td>
<td>---------------</td>
<td>---------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Cima Mesa</td>
<td>34</td>
<td>34°27'.50"</td>
<td>117°57'.30"</td>
<td>Juniper Hills</td>
<td>1/78</td>
<td>1/78</td>
<td>9/80</td>
<td>25</td>
</tr>
<tr>
<td>Murphy Lane</td>
<td>36</td>
<td>34°26'.02"</td>
<td>117°54'.00"</td>
<td>Juniper Hills</td>
<td>1/78</td>
<td>3/78</td>
<td>9/80</td>
<td>23</td>
</tr>
<tr>
<td>Punchbowl Park</td>
<td>37</td>
<td>34°25'.07"</td>
<td>117°51'.50"</td>
<td>Valyermo</td>
<td>1/78</td>
<td>3/78</td>
<td>9/80</td>
<td>24</td>
</tr>
<tr>
<td>VABM Ward</td>
<td>38</td>
<td>34°27'.50"</td>
<td>117°57'.30"</td>
<td>Juniper Hills</td>
<td>1/78</td>
<td>4/78</td>
<td>9/80</td>
<td>24</td>
</tr>
<tr>
<td>Buck Canyon</td>
<td>39</td>
<td>34°20'.26"</td>
<td>118°19'.48"</td>
<td>Sunland</td>
<td>2/78</td>
<td>4/78</td>
<td>9/80</td>
<td>20</td>
</tr>
<tr>
<td>Wilson Canyon</td>
<td>40</td>
<td>34°27'.11"</td>
<td>118°20'.38"</td>
<td>San Fernando</td>
<td>2/78</td>
<td>3/78</td>
<td>8/80</td>
<td>21</td>
</tr>
<tr>
<td>Barrel Springs</td>
<td>41</td>
<td>34°32'.16"</td>
<td>118°04'.58"</td>
<td>Palmdale</td>
<td>5/78</td>
<td>6/78</td>
<td>8/80</td>
<td>16</td>
</tr>
<tr>
<td>Llano</td>
<td>42</td>
<td>34°29'.50"</td>
<td>117°50'.00"</td>
<td>Valyermo</td>
<td>5/78</td>
<td>6/78</td>
<td>9/80</td>
<td>21</td>
</tr>
<tr>
<td>Lone Tree</td>
<td>43</td>
<td>34°18'.19"</td>
<td>117°30'.29"</td>
<td>Telegraph Peak</td>
<td>5/78</td>
<td>6/78</td>
<td>9/80</td>
<td>10</td>
</tr>
<tr>
<td>Lovejoy</td>
<td>44</td>
<td>34°35'.11"</td>
<td>117°48'.24"</td>
<td>Lovejoy Buttes</td>
<td>5/78</td>
<td>6/78</td>
<td>9/80</td>
<td>14</td>
</tr>
<tr>
<td>Sheep Creek</td>
<td>45</td>
<td>34°21'.36"</td>
<td>117°36'.13"</td>
<td>Telegraph Peak</td>
<td>5/78</td>
<td>6/78</td>
<td>9/80</td>
<td>10</td>
</tr>
<tr>
<td>Old Lady</td>
<td>49</td>
<td>35°17'.13"</td>
<td>117°53'.24"</td>
<td>Cantil</td>
<td>4/78</td>
<td>8/78</td>
<td>8/80</td>
<td>4</td>
</tr>
<tr>
<td>Honeycup</td>
<td>50</td>
<td>35°17'.06"</td>
<td>117°53'.17"</td>
<td>Cantil</td>
<td>4/78</td>
<td>8/78</td>
<td>8/80</td>
<td>4</td>
</tr>
<tr>
<td>Landing Strip</td>
<td>33</td>
<td>34°27'.13"</td>
<td>117°55'.15"</td>
<td>Juniper Hills</td>
<td>1/78</td>
<td>1/78</td>
<td>11/78</td>
<td>13</td>
</tr>
<tr>
<td>Kentucky Springs</td>
<td>52</td>
<td>34°26'.24"</td>
<td>118°06'.07"</td>
<td>Pacifico Mtn.</td>
<td>12/78</td>
<td>1/79</td>
<td>9/80</td>
<td>8</td>
</tr>
<tr>
<td>Mill Potrero</td>
<td>54</td>
<td>34°51'.00"</td>
<td>119°11'.07"</td>
<td>Sawmill Mtn.</td>
<td>12/78</td>
<td>4/79</td>
<td>9/80</td>
<td>9</td>
</tr>
<tr>
<td>Penny Pines</td>
<td>55</td>
<td>34°50'.04"</td>
<td>119°05'.14"</td>
<td>Cuddy Valley</td>
<td>12/78</td>
<td>4/79</td>
<td>9/80</td>
<td>9</td>
</tr>
<tr>
<td>Quail</td>
<td>56</td>
<td>34°45'.29"</td>
<td>118°47'.36"</td>
<td>Lebec</td>
<td>12/78</td>
<td>4/79</td>
<td>9/80</td>
<td>6</td>
</tr>
<tr>
<td>Baughman Spring</td>
<td>57&18</td>
<td>34°22'.00"</td>
<td>118°06'.19"</td>
<td>Chilao Flat</td>
<td>12/76</td>
<td>3/77</td>
<td>9/80</td>
<td>18</td>
</tr>
<tr>
<td>Pinon Flat East</td>
<td>58</td>
<td>33°35'.00"</td>
<td>116°26'.00"</td>
<td>Palm Desert 15'</td>
<td>9/79</td>
<td>9/79</td>
<td>8/80</td>
<td>5</td>
</tr>
<tr>
<td>Pinon Flat West</td>
<td>59</td>
<td>33°35'.00"</td>
<td>116°26'.00"</td>
<td>Palm Desert 15'</td>
<td>9/79</td>
<td>9/79</td>
<td>8/80</td>
<td>3</td>
</tr>
<tr>
<td>LOCATION</td>
<td>LATITUDE</td>
<td>LONGITUDE</td>
<td>QUADRANGLE</td>
<td>INITIAL SURVEY</td>
<td>MOST RECENT SURVEY</td>
<td>TOTAL # SURVEYS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SANTA BARBARA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cook</td>
<td>34°25'10"</td>
<td>119°43'00"</td>
<td>Santa Barbara</td>
<td>5/71</td>
<td>6/80</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabrillo</td>
<td>34°22'20"</td>
<td>119°41'25"</td>
<td>Santa Barbara</td>
<td>9/70</td>
<td>7/79</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lorinda</td>
<td>34°25'20"</td>
<td>119°43'25"</td>
<td>Santa Barbara</td>
<td>8/70</td>
<td>7/77</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castillo Connect</td>
<td>34°25'00"</td>
<td>119°43'25"</td>
<td>Santa Barbara</td>
<td>10/73</td>
<td>9/78</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portesuello</td>
<td>34°25'20"</td>
<td>119°43'35"</td>
<td>Santa Barbara</td>
<td>8/70</td>
<td>8/78</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bath</td>
<td>34°24'10"</td>
<td>119°41'40"</td>
<td>Santa Barbara</td>
<td>4/71</td>
<td>8/78</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapala</td>
<td>34°24'50"</td>
<td>119°41'30"</td>
<td>Santa Barbara</td>
<td>4/71</td>
<td>8/78</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natoma</td>
<td>34°24'50"</td>
<td>119°41'25"</td>
<td>Santa Barbara</td>
<td>8/70</td>
<td>8/78</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castillo</td>
<td>34°24'50"</td>
<td>119°41'35"</td>
<td>Santa Barbara</td>
<td>2/72</td>
<td>7/77</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yanonali</td>
<td>34°25'00"</td>
<td>119°41'10"</td>
<td>Santa Barbara</td>
<td>7/70</td>
<td>8/77</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>34°24'55"</td>
<td>119°41'55"</td>
<td>Santa Barbara</td>
<td>10/70</td>
<td>8/78</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yanonali-Castillo</td>
<td></td>
<td></td>
<td></td>
<td>1/71</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DURAVAN</td>
<td>35°17'05"</td>
<td>117°53'25"</td>
<td>Cantil</td>
<td>9/74</td>
<td>8/80</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAN JUAN BAUTISTA</td>
<td>36°50'48"</td>
<td>121°32'00"</td>
<td>San Juan Bautista</td>
<td>9/75</td>
<td>8/80</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAN FERNANDO</td>
<td>34°18'03"</td>
<td>118°25'35"</td>
<td>San Fernando</td>
<td>2/71</td>
<td>12/76</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUNCAL</td>
<td>34°29'00"</td>
<td>119°30'15"</td>
<td>Carpinteria</td>
<td>2/70</td>
<td>8/80</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEATH VALLEY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triangle Spring</td>
<td>36°42'40"</td>
<td>117°07'20"</td>
<td>Stovepipe Wells</td>
<td>10/71</td>
<td>4/78</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sewage Treatment</td>
<td>36°30'20"</td>
<td>116°52'25"</td>
<td>Chloride Cliff</td>
<td>3/73</td>
<td>9/74</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artist's Drive</td>
<td>36°25'50"</td>
<td>116°51'00"</td>
<td>Furnace Creek</td>
<td>3/72</td>
<td>4/78</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hanaupah</td>
<td>36°14'05"</td>
<td>116°53'00"</td>
<td>Bennett's Well</td>
<td>10/71</td>
<td>4/78</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PALLET CREEK</td>
<td>34°25'10"</td>
<td>117°54'00"</td>
<td>Juniper Hills</td>
<td>6/78</td>
<td>7/80</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PINON FLAT</td>
<td>33°35'00"</td>
<td>116°26'00"</td>
<td>Palm Desert</td>
<td>9/79</td>
<td>10/80</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRAPEVINE</td>
<td>34°55'30"</td>
<td>118°55'30"</td>
<td>Grapevine</td>
<td>7/79</td>
<td>7/80</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNA LAKE</td>
<td>34°33'00"</td>
<td>118°06'15"</td>
<td>Palmdale</td>
<td>3/79</td>
<td>8/79</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIG ROCK SPRINGS</td>
<td>34°26'04"</td>
<td>117°50'00"</td>
<td>Valyermo</td>
<td>10/80</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLANO</td>
<td>34°31'06"</td>
<td>117°47'53"</td>
<td>Lovejoy Buttes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RAINFALL

TN

1/1/77

-100

1/1/80

SAWMILL

6

Magnitude,

Richter scale

EARTHQUAKES

μ-rads

1/1/77

3/15

3/15

1/1/78

1/1/77

1/1/79

1/1/80

0

inches

μ-rads

1/1/77

1/1/79

1/1/80

1/1/78
RAINFALL

TN

µ-rads

1/1/77 4/15 1/1/78 1/1/79 1/1/80

CUDDY FLAT 3

μ-rads

1/1/77 4/15 1/1/78 1/1/79 1/1/80

EARTHQUAKES

Magnitude, Richter scale

0 5 10
Fig. 7
Fig. 8
Grapevine Level Line

Change in elevation relative to survey of July 27, 1979

- 16 July, 1980
- 25 September, 1980

Map view of monument array

Topographic profile of monument array

Fig. 10
BIG ROCK SPRINGS LEVELING ARRAY

Fig. II
Fig. 12

LLANO LEVELING ARRAY
MESA VALLEY ALIGNMENT/LEVELING ARRAY

Fig. 13
MESA VALLEY FARM LEVEL LINE

Fig. 14
47TH ST. EAST ALIGNMENT ARRAY

Fig. 15
APPENDIX I

Component North/Component East vs Time dry tilt records, including rainfall (1978-1980 only) and local earthquake records. Each dry tilt site is identified by its name and site number which is coded to the location map (Fig. 1) and to the survey data (Table I). Scale in microradians varies among the graphs.
Duravan Ranch
 ALIGNMENT ARRAYS
 SHORT LEVEL LINES

Mesa Valley Farm

SANTA YNEZ Juncal

Santa Barbara

Timber Canyon

San Gabriel

47th St. East

Llano

LLANO FAULT

Big Rock Springs

Pallett Creek

ANDREAS

San Bernardino

0 MILES 50

0 KILOMETERS 100

Fig. 2
UCSB Level Lines and Leveled Alignment Arrays, Vicinity of Palmdale
PALLETT CREEK LEVEL LINE

Change in elevation relative to survey of August 3-4, 1978
- Survey of July 1-2, 1980
X X Survey of August 6-7, 1979
O O Survey of March 24-25, 1979
+ + Survey of September 13-14, 1978

Change in elevation relative to survey of September 13-14, 1978
- Survey of July 1-2, 1980
X X Survey of August 6-7, 1979
O O Survey of March 24-25, 1979

Change in elevation relative to survey of March 24-25, 1979
- Survey of July 1-2, 1980
X X Survey of August 6-7, 1979

Change in elevation relative to survey of August 6-7, 1979
- Survey of July 1-2, 1980

Map view of monument array

Fig. 4
CAPTIONS FOR FIGURES

1. Index map of UCSB dry tilt arrays.
2. Index map of UCSB short level lines and leveled alignment arrays.
3. Location of Pallett Creek level line across the Punchbowl fault.
4. Elevation change data (August 1978–July 1980), plan geometry and topographic profile for Pallett Creek level line. Benchmark PC7 is arbitrarily held fixed.
5. Location of San Juan Bautista level line across the San Andreas fault.
6. Elevation change data (1975-1980) and topographic profile for San Juan Bautista level line. Only surveys done in 1979 and 1980 are shown for clarity. Benchmark 7334 is arbitrarily held fixed.
7. Site map of Duravan Ranch level line across unnamed fault scarp.
9. Site map of Grapevine level line across the Pleito thrust.
10. Elevation change data (1979-80) for Grapevine level line. Benchmark G1 is arbitrarily held fixed.
11. Site map of Big Rock Springs level line across the 1857 scarp of the San Andreas fault.
12. Site map of the Llano level line across the Llano fault.
13. Site map of the Mesa Valley Farm leveled alignment array across the San Andreas fault.
15. Site map of 47th St. E leveled alignment array across the Nadeau fault.
16. Site map of UCSB trilateration/triangulation arrays across the Santa Cruz Island fault zone.
<table>
<thead>
<tr>
<th>LOCATION</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
<th>QUANDRANGLE</th>
<th>INITIAL SURVEY</th>
<th>MOST RECENT SURVEY</th>
<th>TOTAL # SURVEYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesa Valley</td>
<td>34°48'46"</td>
<td>118°54'20"</td>
<td>Frazier Mtn.</td>
<td>2/77</td>
<td>9/80</td>
<td>6</td>
</tr>
<tr>
<td>47th St. East</td>
<td>34°31'03"</td>
<td>118°02'47"</td>
<td>Palmdale</td>
<td>12/76</td>
<td>8/80</td>
<td>7</td>
</tr>
</tbody>
</table>
RAINFALL

Rainfall measurements are shown in inches. The graph includes data from Indian Springs with specific dates and values for rainfall.

Earthquakes

The graph also tracks earthquake activity with magnitude values on the Richter scale. Dates such as 1/1/78 and 8/1 are marked, indicating significant events in the earthquake data.

The graph provides a visual comparison between rainfall and earthquake activity over the period from 1/1/77 to 1/1/80.
RAINFALL

TN

CO

EARTHQUAKES

Magnitude,
Richter scale

ELIZABETH LAKE

inches

1/1/77

1/1/79

1/1/80

1/1/77

1/1/79

1/1/80

20

20

-20

-20
RAINFALL

\(T_N \)

\(T_E \)

Magnitude, Richter scale

EARTHQUAKES

inches

\(\mu \)-rods

\(1/1/77 \)

\(2/1 \)

\(1/1/78 \)

\(10/3 \)

\(1/1/79 \)

\(1/1/80 \)

\(\text{redundancy array} \)
RAINFALL

WENTWORTH

RAINFALL

EARTHQUAKES

Magnitude,
Richter scale
SOUTHERN CALIFORNIA EARTHQUAKES

RAINFALL

\[\tau_N \]

\[\tau_E \]

Magnitude, Richter scale

AVG 25 E

SOUTHERN CALIFORNIA EARTHQUAKES

\(\tau_N \) e-rods

\(\tau_E \) e-rods

\(1/1/77 \)

\(2/1 \)

\(1/1/77 \)

\(1/1/78 \)

\(1/1/79 \)

\(1/1/80 \)
RAINFALL in inches

SOLEDAD PASS 17 Magnitude, Richter scale

EARTHQUAKES
RAINFALL in inches

LONGVIEW

EARTHQUAKES

RAINFALL

\[\tau_N \]

\[\tau_E \]

Magnitude, Richter scale

0

5

10
RAINFALL

\(\Omega_N \)

\(\mu - \text{rads} \)

1/1/77

8/1

1/1/78

7/1/78

1/1/79

1/1/80

0

inches

EARTHQUAKES

Magnitude,

Richter scale

AZUSA

21
RAINFALL

SADDLEBACK BUTTE 23

Magnitude, Richter scale

EARTHQUAKES

τN

τE
LARGO VISTA

24

Magnitude, Richter scale

EARTHQUAKES
UPPER CAJON CREEK

TN

1000

μ-rads

1/1/78

1/1/79

1/1/80

-1000

TE

1000

μ-rads

1/1/78

1/1/79

1/1/80

-1000

UPPER CAJON CREEK

26
RAINFALL

CUCAMONGA SOUTH

27

EARTHQUAKES

TN

TE

μ-rads

0

1

2

3

4

5

6

7

8

9

10

Magnitude, Richter scale

1/1/77

1/1/78

1/1/79

1/1/80

1/1/81

8/1

1/1/78

1/1/79

1/1/80
CUCAMONGA NORTH
32

γ_N

γ_E

$\mu - \text{rods}$

1/1/78

1/1/79

1/1/80
RAINFALL

EARTHQUAKES

PUNCHBOWL PARK

Magnitude

Richter scale

RAINFALL

PUNCHBOWL PARK

RAINFALL

PUNCHBOWL PARK
RAINFALL

WILSON CANYON

EARTHQUAKES
RAINFALL

BARREL SPRINGS

EARTHQUAKES

inches

Magnitude, Richter scale

1/1/76

1/1/77

1/1/78

1/1/79

1/1/80

1/1/81

6.4

6.4
RAINFALL

LLANO

42

Magnitude, Richter scale
HONEYCUP
(DURAVAN SOUTH)
50
\[\gamma_N \]
\[\mu - \text{rads} \]

\[1/1/79 \]

\[1/1/80 \]

\[\gamma_E \]

\[\mu - \text{rads} \]

\[1/1/79 \]

\[1/1/80 \]

--- redundancy

KENTUCKY SPRING
52
PINYON FLAT WEST
60

--- redundancy

TN

20

9/1/79

1/1/80

9/1/80

-20

TE

20

9/1/80

1/1/80

9/1/80

-20