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Reflection and Refraction of P and Type-I S Waves at Plane Interfaces

in Elastic and Anelastic Media

by

Roger D. Borcherdt 

SUMMARY

The classic problems concerning the reflection and refraction of 

plane P and SV body waves at plane boundaries are considered using the 

general theory of linear viscoelasticity, which accounts for the behavior 

of both elastic and linear anelastic media. Laws of reflection and re­ 

fraction are derived for general (homogeneous or inhomogeneous) P and 

type-I S waves (SV waves) incident on a free surface and a plane welded 

boundary.

For anelastic media, the general theory predicts that plane P and 

SV waves reflected and refracted at plane boundaries, in general,

a) are inhomogeneous,

b) have elliptical particle motions,

c) have velocities and maximum attenuations that depend on the 

angle of Incidence and frequency,

d) transport energy in a different direction and at a different

velocity than that of phase propagation, 

d) propagate parallel to the boundary for at most one angle of

Incidence.

The general theory predicts each of these characteristics for the waves 

whenever a plane P or SV wave interacts with a plane boundary between 

materials with different Intrinsic attenuations; such as a bedrock- 

soil, mantle-crust, or core-mantle interface. None of the above physical 

characteristics of the waves are predicted by elasticity theory.



INTRODUCTION

The theory of general linear vlscoelastlcity accounts for elastic as 

well as linear anelastic behavior of materials. The phenomenological theory, 

based on Boltzmann's superposition principle, accounts for energy absorption 

by the material due to anelasticity and includes as special cases any model 

with a linear constitutive relation, such as the one proposed by Lomnitz 

(1957), or the infinite number of models derivable from various configurations 

of springs and dashpots, such as elastic, Voigt, Maxwell, standard linear, 

and generalized Voigt.

As recently as 1960 Hunter concluded that application of the general 

theory to other than one-dimensional wave propagation problems was incomplete. 

Lockett (1962) applied the general theory to the two-dimensional problem 

of a homogeneous plane wave incident on a welded boundary. He concluded 

that a new type of wave was required to satisfy the boundary conditions and 

that the results exhibited several features not obtained in the elastic 

solution. The type of wave that Lockett found necessary to consider is an 

inhomogeneous plane wave (that is, a plane wave whose planes of constant 

amplitude are not parallel to planes of constant phase; Brekhovskikh (I960)). 

Cooper and Reiss (1966), Cooper (1967), Shaw and Bugl (1969), and Schoenberg 

(1971) also have considered the problem treated by Lockett. Their results 

confirm those of Lockett's and show that in general, a homogeneous plane P 

or SV wave upon interacting with a plane boundary produces inhomogeneous 

plane waves. Their results show that to consider wave propagation in an­ 

elastic media with more than one boundary one must consider the more general 

problem of an inhomogeneous wave incident on a plane boundary. This problem 

1s treated in detail 1n this paper. Characteristics are derived for the 

reflected and refracted waves resulting from a general SV wave (either 

homogeneous or inhomogeneous) Incident on a welded boundary and on a free .



surface. Solutions for the problem of a P wave Incident on a welded

boundary are also presented. Results of the previous Investigators are derived

as a special case.

Detailed treatments of the physical characteristics and energy associated 

with general plane waves in linear-viscoelastic media have been developed by 

Borcherdt (1971, 1973) and Buchen (1971). The treatment presented by 

Borcherdt (1973) provides the mathematical framework for this study and 

equations given in this earlier paper, for example, 21, are referred to here 

as 1-21. These equations show that the physical characteristics of plane 

body waves in anelastic media are distinctly different from those of plane 

body waves in elastic media.

Previously, anelasticity has been incorporated into studies of the internal
 ax 

structure of the Earth by introducing an attenuation factor of the form e

where x is distance measured in the direction of propagation and a is the 

absorption coefficient. Introduction of such a factor assumes that the 

waves are homogeneous and that except for attenuation the physical character­ 

istics of the wave are analogous to those predicted by elasticity. Theore­ 

tical work (Lockett 1962; Borcherdt 1971, 1972) shows that the boundary 

conditions at an Interface between anelastic materials, such as those in the 

Earth, cannot be satisfied by considering only homogeneous waves. Theoretical 

implications of this result are presented 1n this paper; numerical impli­ 

cations for the anelastic interal structure of the Earth remain to be evaluated.

GENERAL PLANE-WAVE SOLUTIONS

Let V and V 1 represent two infinite homogeneous isotropic linear visco- 

elastic (HILV) media with a common plane boundary in welded contact. For 

reference let (x , x » x ) denote a set of orthogonal coordinate axes
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chosen such that the space occupied by medium V 1s described by x > 03 "

(see Figure 1). Parameters used to characterize medium V are p = mass 

density, p = complex shear modulus (1-10), and K = complex bulk modulus 

(1-11). Primes are used to denote the parameters of medium V. Alge­ 

braically, parameters more convenient for characterizing the material are 

the complex wave numbers corresponding to homogeneous P and S waves (1-25), 

given by

k p * W/OL = a>/p.y. [(< 4- |p)/p] 1/2 (la) 

and

ks 5 w/8 = o)/p.y.(p/p) 1/2 , (Ib)

where p.v. (z) denotes the principal value of the square root of the 

complex number z (Kreysig 1967, p. 535 and 550). Additional relations 

useful for later reference between the complex wave number and the 

corresponding velocity and Q" 1 for homogeneous P and S waves are

,2
kp 2   7-r 2(1 - 1Qp' a )(l +/ 1 + Op" 2 )" 1 (2a) 

HP

and

-r 2(1 - IQ"^ 1 + T* Qc" 2 )" 1 (2b)

where VHP , v,,r and ZirQ-" 1 , 2TrQs" 1 are the phase velocities (I-30a, 

I-32a) and fractional losses in energy density (1-72), respectively, for 

homogeneous P and S waves.

Harmonic motions of the media are governed by the equation of motion 

(1-14). Solutions of the Helmholtz equations (1-24), which satisfy the 

divergenceless gage (I-23b), provide solutions for the equation of motion 

(1-14).



To consider only two-dimensional reflect ion- refraction problems, we 

shall restrict the plane-wave solutions for the displacement potentials to 

those that have propagation and attenuation vectors in a plane perpendicular 

to the plane of contact. In addition, only those solutions representing 

plane waves propagating in the positive x direction are considered with 

the incident waves assumed to originate in V.

For medium V, a set of such plane-wave solutions for the displacement 

potentials is given by the following:

4> « 4>j + 4> 2 « ,Z B.. exp I-^-r] exp[i(u>t - ^j-r)] (3a) 
j *

and

$ * ^ + J2 * i t. exp[-X^-r] exp[i(wt - P^-r)], (3b)
u ~ J

where the propagation vectors are defined by

^ skR'<, + <- 1 >Jd«R ;', (3C)

?»J skR«. + {- 1 'Jd6R*. (jSl>2) (3d) 

with definitions

da E p.v.(kp 2 - k2 ) 1/2 (3e)

de Ep. v.(ks2 - k 2 ) 1/2 (3f)

and the attenuation vectors are defined by

1,2), (3h)



where f and ?2 are arbitrary complex vectors chosen such that 

V   if « 0 and k 1s an arbitrary complex number chosen such that 

k D > 0 to ensure propagation 1n the plus x direction. (The subscripts
K ~ 1

R and I denote the real and imaginary parts of the corresponding complex 

quantities; the signs of d and dg are determined by requiring that the 

mean energy fluxes associated with the incident and transmitted waves are 

in the negative x direction.)

A set of solutions in medium V, corresponding to plane waves propagating 

away from the boundary with circular frequency to , is specified by attaching 

primes to each of the wave parameters in 3a through 3h and setting 

B ' = C ' = 0.
2 2

The most general solutions of the Helmholtz equations, I-24a and 

I-24b, are ones for which separate complex wave numbers k are taken for

each of the scalar components of to(J =1.2) . However, the condition
j

V«t^= 0 immediately implies that those for each of the components of $.\j
must be equal. In addition, the boundary conditions for the problems

under consideration will imply that the resulting k for il/. and that
j

for * i iwst be equal (Borcherdt 1971, p. 52). Hence, they are assumed 

equal in 3a and 3b without loss of generality. This important assumption 

leads directly to an extended version of Snell's law for the reflected and 

refracted waves to be discussed later.

The type of inhomogeneous S wave described by the general solution for

4 in equation 3b depends on the nature of the complex vector ?. . If t.
* J J * *>

1s of the form Zn where 2 is a complex number and n is a real vector, then
+. <N

V«ty * 0 Implies n is perpendicular to a plane containing the propagation 

and attenuation vectors, and that the particle motion is elliptically 

polarized 1n this plane. The characteristics of this type of S wave are 

derived in detail (Borcherdt, 1973a). This type will be referred to as type I



8
and upon introduction of a boundary perpendicular to the plane contain­ 

ing the propagation and attenuation vectors it can be called an SV

wave, as an extension of the definition given for elastic media.

If £. 1s a general complex vector of the form c. xi + c. x 2 + c. x 3 . 
0 Oi 02 . Os

where c. , c. , and c. are arbitrary complex numbers chosen such that
J 1 J2 J3

V»ijN 0 , then the particle motion is not necessarily in the plane defined by 

the propagation and attenuation vectors. A special case of interest is that 

of c. =0 with the propagation and attenuation vectors in the Xix 3 plane.
J2

The displacement field corresponding to such a wave is given by

u^ = |Dj| exp [- X j-r] cos (ut - ? ,-r + arg[DJ)x 2 (4a)

where

^ s\

and V»J s 0 implies

. *: *>

c.; (A . + iP .) -Xj = -c. (A . + iP .)   x 3 . (5)
J l iLij ]bj 0 3 \1)J \i>3

Hence, the particle motion for this type of inhomogeneous plane S wave is not 

elliptical as in the case of type I, but linear and perpendicular to the plane 

containing the propagation and attenuation vectors. This type of inhomo­ 

geneous S wave will be referred to as type II and upon introduction of an 

appropriate boundary 1t can be called an SH wave. The physical properties 

and the reflection and refraction of SH waves are considered in a concurrent 

paper (Borcherdt, in press).

The solutions 3a and 3b represent general (that is, either homogeneous 

or inhomogeneous) P and S waves, respectively. The physical characteristics 

of these waves specified by 3 for anelastic media are in strong contrast to



those considered 1n the classical problems with only elastic media (Borcherdt 

1973a). Each of the waves has a velocity and maximum attenuation dependent 

on the angle between the propagation and attenuation vectors which, for angles 

near 90°, approach zero and Infinity, respectively (1-30, 1-31). The 

velocity and maximum attenuation of an Inhomogeneous wave are less than and 

greater than those, respectively, for homogeneous waves (1-33, 1-34), and 

upon introduction of a particular viscoelastic model they assume a corre­ 

sponding dependence on frequency. For inhomogeneous waves in anelastic media, 

the particle motions for P and type-I S waves are elliptical (1-37, 1-42), 

the directions and velocities of maximum energy flow are not the same as 

those for phase propagation (1-51, 1-53), the mean kinetic density is not 

equal to the mean potential energy density (1-58, 1-59), and the mean rate 

of energy dissipation depends on the component of the mean intensity in the 

direction of the attenuation vector.

BOUNDARY CONDITIONS

A welded contact between media V and V is ensured by requiring that the 

stress and displacement across the boundary are continuous. These restrictions 

Imply that the following relations between the parameters of the solutions for 

V and V must be satisfied at x 3 = 0 ;

u s u' . k(B + B ) + d ft (c - c ) = kB' + die 1 , (6a)
11 1 2 P 12 22 1 P 12

u = u 1 , d fi (c - c ) + k(c - c ) * di c' + kc 1 , (6b)
2 2 P 1 1 21 13 23 P 1 1 13

u = u 1 , d (B - B ) - k( c + c ) = d'B 1 - kc 1 , (6c)
33 CX 1 2 12 22 O i 12

P,, ' As "I 2 «B<B , - V + <de' "2)(C 12 + CJ ] '

'B' + (di 2 - k2 )c' ] , (7a)
Ot 1 P 12



IU

P   P 1 . u[d ft ( d ftc + te ) + cL(d ftc - kc )] «
12 32 P P 11 IS P P 21 23

y'd' [d'c 1 + kc' ] , (7b)
P P 1 1 13

P «P ! . Pl-(d 2 - k 2 )(B +B)+2dftk(c -c ) «
33 33 P 12 P 12 22

p'[.(d' 2 - k 2 )B'  »  2dlkc' ] . (7c)
P 1 P 12

where c.. denotes the i component of the complex vector t. . j' j
Consideration of a single incident wave (P, SV, or SH) allows one to solve 

these equations for the complex amplitudes of the transmitted and reflected 

waves in terms of those for the assumed incident wave.

GENERAL SV WAVE INCIDENT ON A WELDED BOUNDARY

The physical problem to be considered in this section is that of a 

general type-I S wave incident on the welded boundary at an arbitrary angle 

and polarized in a plane perpendicular to the boundary. The problem is 

specified by setting

B = B 1 = t 1 = c.. = c!. = 0 for- 1-1,2 and j - 1,3 (8)
12 2 ij IJ

in the general solutions 3a and 3b and in the boundary conditions 6 and 7. 

The resulting incident plane wave is given by

U> » c x exp [-1  ?] exp[i(u)t - P -r)] . (9)
1 12 2 fl Vl

The particle motion of the incident wave is in general elliptical with no X2 

component (1-43). As an extension of the definition given for elastic media, 

the Incident wave is referred to as an SV wave.

For ease of physical interpretation, the incident general SV wave also 

is described in terms of its angle of Incidence 6^ and the angle between its
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attenuation and propagation vectors YC (see Figure 2). In terms of these 

angles k may be written as

I » 1nes,- 1 lV *1n(es, ' V (10a)

which for the special case of an incident homogeneous SV wave simplifies to

l) *1n es, * ks Sln es,   (10b)

Expression 9, together with 3c-3h and lOa, provides a complete specifi­ 

cation of the incident general SV wave in terms of a given angle of incidence,

6C , a given angle between its attenuation and propagation vectors, yc , 01 oi
and a given complex amplitude c . The range of values for yc is

12 ^1

0 < | YSi l < Tr/2 .

For later reference the propagation and attenuation vectors for the incident

wave are written here in terms of the given angle yQ and the parameters^ i
of the material (1-31),

i   Im[k c 2 ] 2 1/2
j (-Re[k , 2 ]+(Re[k 2 ] 2 +  4  )- ) (lib)
£.3 O CUa Yp

 >!

For the case of a general SV wave incident on a welded boundary, substitution 

of 8 into the boundary conditions 6 and 7 gives four equations involving the 

four unknown complex amplitudes of the reflected and transmitted waves. The 

solutions for these complex amplitudes in terms of those specified for the 

Incident wave are easily derived using the correspondence principle (Bland 

1960, p. 67). Using these solutions and relations 10 and 11, the parameters 

of the reflected and transmitted waves may be expressed 1n terms of those
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for the assumed Incident wave. Hence, the boundary conditions can be 

satisfied with the general solutions 3a and 3b for the problem specified by 

8. Therefore, from a mathematical point of view, the general solution of 

the problem is determined and the physical characteristics of the reflected 

and transmitted waves can be expressed in terms of those for the Incident 

waves using the expressions derived by Borcherdt (1973a).

Notation useful for deriving the laws of reflection and refraction in 

anelastic media is given in Figure 3. For example, with this notation the 

propagation and attenuation vectors for the transmitted P wave are given by

1 = ko* - d' D x = I! | (sine; x + cos6' x ) (12a) <h R i aR 3 ' <h ' PI i PI 3

and

- (12b)
The form of the general solutions given by 3a-3h yields an extension of Snell's 

law, namely

IV SineSi = 'V $1neS 2 ' 'VSineP*   'V ""'S, = l^.l 8111^ (13a)

and

$in(eSi - YSl )

*.' sin(es,- Ys,) = l^.l'^p,- ^   (13b)

Introducing the phase velocities of the various waves given by I-30a,

13a may be rewritten as
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I Iv I I 1 I |v', , y . s? 1 . ' p 2 ' r ' s, . '
sin 9$ ]P^ |sin 6$ sin 6^ sin 6p sin 6£ sin 6

Relations 14 and 13b show, respectively, that the apparent velocities and 

apparent attenuations along the boundary of the reflected and transmitted 

waves are equal to that of the incident wave. Expression 14 for the velocities 

1s similar in appearance to expressions that have been derived for elastic 

media (equation 3-9, Ewing, et al. 1957 ). However, in the case of anelastic 

media, the physical meaning of 14 is different. It will be shown that the 

phase velocities of the transmitted waves and the reflected P wave expressed 

in 14 are in general phase velocities of inhomogeneous waves and they depend 

on the angle of incidence. In addition to phase velocity other physical 

characteristics of inhomogeneous waves are also significantly different from 

those of homogeneous waves; hence, it is of considerable interest to examine 

under what conditions the reflected and transmitted waves are inhomogeneous. 

For the reflected SV wave equations 3d and 3h show that \\, \ = |fr, |
Y 1 V 2

and |A I = lA I , hence 13a shows that the angle 6C at which the
ij; 1 ij; 2 ^2

general SV is reflected, equals the angle of incidence 6Q and 13b shows^ i
YS s YS ' Hence » *ne reflected SV wave is homogeneous if and only if the 

incident SV wave is homogeneous. The phase velocity of the reflected SV 

wave is independent of the angle of incidence. It equals that of the 

Incident SV wave and varies between 0 and ^AcR depending on the given 

angle y^

For anelastic media it is clear that if the incident SV wave 1s inhomo­ 

geneous then in general the reflected and transmitted waves are also in- 

homogeneous. A basic result for the case in which the incident SV wave is

homogeneous Is

Theorem 1. If the incident SV wave is homogeneous and not normally incident, then
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1) the reflected P wave 1s homogeneous 1f and only 1f

Q-« -U' 1 and sfn>e < A*   V/(K + P) « V*/V> . (15a)

2) the transmitted SV wave is homogeneous 1f and only 1f

V 1 * V 1 and 5ln2eS, - kS 2/kS 2 = P 'VPPR e VHS 2/VHS 2 '  (15b)

3) The transmitted P wave is homogeneous if and only if

V 1 = Qp"' and sin2eSi - Hp 2/kS 2 = *V Ip(lc R * 3*R )] * VHS 2/VHP 2 ' (15c)

Theorem 1 is proved in appendix 1. (The restriction involving the angle of

incidence 6~ in 15b is automatically satisfied if media V and V are such ij  
that CL" 1 s (k" 1 and v/,s < VHS . Similarly, the restriction on 6$ , 

in 15c is satisfied if Q." 1 = Op' 1 and vAp < v,.s .) If the incident 

SV wave is both normally incident and homogeneous, then 13 shows that the 

reflected and transmitted waves are also homogeneous with propagation and 

attenuation vectors perpendicular to the boundary.

For materials in the Earth QS~ 1 J* Qp" 1 and for most seismic boundaries
i i 

Qs-1 ^ Qs" 1 and Q^" 1 f Qp" 1 . Hence, the contrapositive of theorem 1

shows that in general the reflected P wave and both transmitted waves generated 

at boundaries within the Earth are inhomogeneous for all non-normal angles 

of incidence. This Important result, first derived in part by Lockett (1962) 

shows that the physical characteristics of reflected and refracted waves in 

anelastic media are significantly different from those of corresponding waves 

1n elastic media. For example, the reflected P wave and both transmitted 

waves each have in general a velocity less than and maximum attenuation 

greater than that of a corresponding homogeneous wave, an elliptical particle
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motion, and a direction of maximum energy flow different from that of

phase propagation (see the second section and Borcherdt (1973a) for other 

distinctive properties). In addition, the theorem shows that to consider 

plane wave propagation problems in multilayered anelastic media, one must 

consider the problem of inhomogeneous waves incident on a plane boundary. 

Therefore, the theorem justifies the generality assumed in 3 for the 

incident waves.

The velocities of the reflected P wave and the transmitted waves are 

given by

 ">/«< R 2 + daR2) ' /2   (16a) 

l .«/Oc' + d»)>'' , (16b)

- {16c)

Substituting lOa into these expressions shows that for anelastic media the 

velocities of the reflected P and the transmitted waves depend on the angle

of incidence, in contrast to the situation for elastic media. As a result,
i 

14 shows that the ratios sin ;6 D /sin e c » sin 61 /sin 6C and sin e<. /sin
"2 bj "\ Jl -31

which are often referred to as reflection and refraction indices, in general, 

are not constant as in the elastic case but also depend on the angle of 

incidence.

The refraction angle for the transmitted SV wave is given by

tan e « fc/d « (/2k)//|kTk2 | + Re[k - k*] , (17)
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from which it is easily inferred that an SV wave composed of 

several different frequencies Incident at a fixed angle will be refracted 

as a fan of SV waves if either medium V or V is anelastic. If both media 

are elastic, then all of the transmitted SV waves will be refracted at the 

same angle. Similarly, an incident SV wave composed of several different 

frequencies will generate fans of reflected and transmitted P waves if either 

medium is anelastic.

Critical angles have played an important role in seismology based on 

elasticity theory. However, the conditions under which they exist for 

anelastic media have been somewhat obscure. Different results have been 

obtained by Lockett (1962), Cooper (1967), and Schoeberq (1971) for the case 

of incident homogeneous waves. The remainder of this section is devoted to 

establishing conditions in some detail under which critical angles exist 

for both homogeneous and inhomogeneous waves incident on the interface.

For explicitness, a critical angle for the reflected P wave is defined 

here as an angle of incidence for which the reflected P wave propagates 

parallel to the interface. Analogous definitions are used for the trans­ 

mitted waves. To investigate the existence of critical angles it is useful 

to recall that d0 , d , d! and d 1 were defined as the principal
pup Ot

values of the square roots of complex numbers (Kreysig, 1967, p. 550), for 

example, d may be written as

N/(|dJ 2 + Re[do2 ])/? + 1 sign [ln(dQ *)]J( |dj 2 - Re[dQ 2 ])/2 (18a)

where



n

for an Incident homogeneous SV wave.

The classic results of elasticity theory are given by theorem 1 with

QS" J c Qp" 1 c QS~ J « Qp" 1 « 0 and the definitions of d , d , 

and d' . Namely, for elastic media;

1) each angle of incidence satisfying

sin eSi > vHS/vHp (19a)

is a critical angle for the reflected P wave,

2) if vAp < VHS then no critical angles exist for the 

transmitted waves,

^ ^ VHS < VHS < VHP then the an 9les satisfying

SlP 6Sl i WVHP (19b)

are critical angles for the transmitted P wave, 

4) if VHS < v' - then the angles satisfying

sin eSi > vHS/v^p ' (19c) 

are critical angles for the transmitted P wave and those 

satisfying

sin 6Si > VHS/V' S (19d) 

are critical angles for the transmitted SV wave. 

Theorem 1 shows that for elastic media those waves corresponding to 

equality in 19a-d are homogeneous and those corresponding to strict in­ 

equality are inhomogeneous with propagation and attenuation vectors parallel 

and perpendicular, respectively, to the interface. The inhomogeneous waves



propagate with a phase velocity equal to the apparent phase velocity along 

the interface of the incident wave. (Note, this situation shows that 

the phase velocity of an Inhomogeneous wave in elastic media is not unique 

for a given value of YS as it is for anelastic media (see 1-30 and 1-31).)

The preceding results show that if elasticity is used as a model for 

the earth, then critical angles exist in a wide variety of situations. How­ 

ever, we shall see that for an anelastic earth critical angles, as defined 

above, in general do not exist.

If the incident medium is elastic and the refraction-medium is anelastic, 

then the situation is summarized by 

Theorem 2. V elastic and V 1 anelastic implies

1) each angle of incidence satisfying

sineS] >VHS/VHP

is a critical angle for the reflected P wave,

2) no critical angles exist for either transmitted wave. 

The first part of this theorem follows immediately from the definition of 

d and theorem 1. The second part follows from 13a and the fact that the 

propagation and attenuation vectors for the transmitted waves in an 

anelastic medium cannot be perpendicular (Boreherdt 1973a, p. 2445).

If the incident medium is anelastic, then the situation is described by 

theorem 3 and its corollaries.

Theorem 3. If V is anelastic and if 6C (ec f ir/2) is a critical angle forbi bi
1) the reflected P wave, then

tan Yc s (siVe. - V )/(sin Q cos 6 Q ) , (20a)5l Sl
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2) the transmitted SV wave, then
L ' |^'

tan YC - (sin 2 6 c - . SR . SI )/(s1n ec cos 6C ), (20b) 
*a * J *SRKSI Sl Sl

3) the transmitted P wave, then
t   L'
PR PI

tan YC   (sin 2 6<. - r r )/{sin 6. cos 6C ) , (20c) 
5i 5i *SRkSI Si Si

The proof of theorem 3 is given in appendix 2.

If we do not restrict the nature of the incident wave (that is, it may 

be either homogeneous or inhomogeneous), then we may deduce immediately the 

following results from theorem 3.

Corollary 3-1. If V is elastic and V is anelastic, then for a given value 

of YC there exists at most one angle of incidence, namely 6^ s YC such
o 1 ^1^1

that the transmitted waves are interface waves (that is, if ec ^ YC »

then 6~ is not a critical angle for either transmitted wave). ^ i
Corollary 3-2. If both media are anelastic then:

1) for a given value of YC there exists at most two critical«i
angles for the reflected P wave and each of the transmitted waves,

2) if 6S - YC < 0 , then no critical angles exist,

3) no critical angles 6. (e^ / -rr/2) exist

a) for the reflected P wave if

COS YS, k PRk PI /(k SRk SI ) > 1  

b) for the transmitted SV wave if

cos YSi k SRk SI /(k SRk SI } > 1  

c) for the transmitted P wave if

cos YS 1 k PRk PI /(k SRk SI ) " 1 '
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4) at most, one critical angle given by

tan 6C * -I/tan YC 5i 5i

a) exists for the transmitted SV wave 1f the parameters of V and 

V satisfy 

Im[k£ 2 ] « Im[k $ 2 ] t 0 ,

b) exists for the transmitted P wave if the parameters of V and 

V satisfy Im[k£2 ] * Im[k $ 2 ] t 0 .

If we consider only incident SV waves that are homogeneous (that is, 

Ys s 0), then we have the following additional results from theorem 3.

Corollary 3-3. If V is elastic, V is anelastic, and the incident wave is 

homogeneous, then no nonzero critical angles exist for either transmitted 

wave. A result of special interest for materials in the Earth is 

Corollary 3-4. If both media are anelastic, the incident SV wave is homo­

geneous, and 6- (e« y Tt/2) is a critical angle for; ^ i ^ i

1) the reflected P wave, then Q^ 1 < Qp" 1  

2) the transmitted SV wave, then Q-" 1 < CL" 1 , vu$ - VHS ' and the 

critical angle is given by 

sin 26Sj * Im[k£ 2 ]/Im[k s 2 ] * v^FfQ^M/tv^FtQ^ 1 )] , (21a)

where F is defined by

F(Qs- J )HQs-'/n + (1 + Qs" 2 ) 1/2 ] , (21b)

3) the transmitted P wave, then Q$' J < Qp" 1 , VH$ < v^p ^ flnd the 

critical angle is given by

s1n 2 e $j  = Imlk^]/Im|( s 2 ] « v^FtQ^M/tv^FCQ^ 1 )] , (21c)
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where the function F is defined by 21 b.

Corollary 3-4 is proved in appendix 3. A portion of this result was first 

derived by Lockett (1962).

For a SV wave incident at oblique angles on a boundary such as a soil- 

bedrock, crust-mantle, or mantle-core interface, theorem 1 shows the 

reflected P wave and both transmitted waves will be inhomogeneous and the 

contrapositives of corollary 3-4 show that these inhomogeneous waves don't 

propagate parallel to the boundary. These results are in contrast to those 

derived assuming the Earth is elastic.

In the special case, that the intrinsic attenuations on the two sides 

of the boundary are equal, we have the following result. 

Corollary 3-5. If both media are anelastic and the incident SV wave is 

homogeneous, then:

1) 1f Qp" 1 = Qc" 1 there is one and only one critical angle for 

the reflected P wave given by

_ _

2) if Q." 1 « Q-" 1 and VHS < vAs , there is one and only one 

critical angle for the transmitted SV wave given by

(22b)

3) if Qp" 1 s QS" J and v,,r < vAp , there is one and only one 

critical angle for the transmitted P wave given by

sin'6Si = k^/ks* - (PV/IP(^ + ^)] - vHS 2 /v' p 2 . (22c)

The proof of corollary 3-5 is given in appendix 4. Corollary 3-5 and 10 

show that elastic solids are the only viscoelastic solids for which
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eouality of the Intrinsic attenuation factors implies that the reflected 

P wave and the transmitted waves will propagate parallel to the boundary for 

more than one angle of Incidence.

For purposes of mathematical completeness a partial converse of theorem 

3 for the reflected P wave is 

Theorem 4. If medium V is anelastic and (20a) is satisfied, then either

6~ is a critical angle or the direction of maximum attenuation for the ^i
reflected P wave is parallel to the boundary. The proof of theorem 4 is 

given by reversing the steps in the proof of the first part of theorem 3. 

An immediate corollary is

Corollary 4-1. For every angle of incidence 6<- (6<. ^ -rr/2) and for everyo i oj
anelastic solid there exists one and only one Y~ associated with an incident^i
SV wave such that either 6C is a critical angle for the reflected P wave^i
or the direction of maximum attenuation for the reflected P wave is parallel 

to the boundary.

Similar results may be easily derived for the transmitted waves.

GENERAL SV WAVE INCIDENT ON A FREE SURFACE

If V is taken to be a vacuum, the boundary of V becomes a free surface 

on which the stress vanishes. The problem of a general SV wave incident 

on the free surface is specified by 8 and by setting the amplitudes 

corresponding to waves in V equal to zero. As before, the form of the 

general solutions 3a-3h implies a modified form of Snell's law, namely;

|v c / sin 6. « |vc |/ sin 6C « |VD |/ sin 6 D (23a)
Oj Oj 02 32  2 '2

and

Sn -   s1n (es2 - V   iV sin (ep2 - V (23b)
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from which it follows that the velocity of the reflected P wave depends on 

the angle of Incidence. Each of the properties of the waves reflected from 

a welded boundary derived in the preceding section for the reflected waves 

is also valid as stated for the waves reflected in this case from a free 

surface. These properties are not restated here (see Borcherdt (1971) for 

details).

The boundary conditions specified by 6 and 7 simplify significantly for 

the free surface problem and permit some additional conclusions. Equations 

6 and 7 simplify to

p[-2kd B + (d 2 - k 2 )(c + c )] = 0 (24a)
a 2 P 12 22

and

P[-(d 2 - k 2 )B + 2d ft*(c - c )] =0 (24b)
P 2 P 12 22

and they readily admit solutions

B /c * 4d ft k(d 2 - k2 )/g(k) (25a)
212 P P

and

CZ2 /C IZ   (4W2 - (V -

where

g(k) i4dad a k2 + (d 8 2 - k2 ) 2 . (25c) 

For a non-trivial incident wave c / 0 and equations (24a) and (24b)
1 2

show that g(k) j* 0 . Since the root of the equation g(k) « 0 is the 

complex wave number for a Rayleigh-type surface wave on a viscoelastic



half-space (Borcherdt 19735), this result shows that a general plane SV wave 

upon Interacting with a free surface does not generate a Rayleigh-type 

surface wave.

The amplitude and phase of each reflected wave may be written down 

Immediately in terms of those for the incident wave from expressions 25a and 

25b.

In the case of an elastic medium, a normally incident SV wave does not 

generate a dilatational disturbance upon interacting with the free surface. 

However, in the case of a vertically incident inhomogeneous wave in anelastic 

media, a dilatational disturbance is reflected from the free surface. To see 

this result suppose no dilatational disturbance is generated, then equation

25a implies either k = 0, d * 0 or d* - k 2 = 0 . The firstP P
alternative is not possible since the assumed form of the incident wave

implies k = i | |sin y ^ 0 » and the latter two alternatives are .not
1 o i

possible since the medium is anelastic. Hence, the amplitude of the reflected 

P wave is not zero and a dilatational disturbance is reflected from the 

free surface. If the normally incident SV wave is homogeneous, then 

k = Icsin es t and equation 31a shows that there is no dilatational dis­ 

turbance reflected from the free surface.

For an elastic half-sapce angles of incidence exist such that the 

incident SV wave is entirely reflected as a dilatational wave. The following 

theorem shows that such angles exist for only a restricted class of visco- 

elastic solids of which elastic is a special case.

Theorem 5. If the incident SV wave is homogeneous and there is a nonzero 

angle of incidence for which the amplitude of the reflected SV wave is 

zero, then the solid 1s such that (L~ J « Qp" 1 

Theorem 5 is proved 

in appendix 5. The contrapositive of theorem 5 shows that for anelastic
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materials In the earth for which Qc'V Qp" 1 » the amplitude of the 

reflected SY wave 1s nonzero for every nonzero angle of Incidence of 

the incident homogeneous SV wave.

GENERAL P WAVE INCIDENT ON A WELDED BOUNDARY

The problem of a general P wave incident on a welded boundary is 

specified by setting

t = t * B 1 = c 1 . = c , = 0 (j = 1,3) (26a)
1 2 2 ij 2J

in 3, 6, and 7, which results in the incident general P wave being given 

by

> * B exp[. «r] exp[i(u>t - . «r)] . (26b) 
i i <PI $1

Notation for the problem is summarized in Figure 4. kis given by

sin v ''*,! sin(epr YPi' {27)

where the given parameters of the incident wave are B ,
i

  and 0

Proofs of the following results are similar to those given for the incident 

SV problem.

The extension of Snell's law is

|v p |/sin e p = u)/k p = w/(|P. |sin 6 D ) = |V D |/ sin 6 D = |vr |/ sin 6 C   
rl rj K g)j .KI T2 T2 $2 «>2

sin 6 = v/ sin (28a)
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and

sin (6 - Y)   sin (e - Y) - sin

Sln (6 ' m I sin < 6 -   (28b)

The reflected P wave is homogeneous if and only if the incident P wave 

is homogeneous -and its phase velocity is the same as that of the incident P 

wave. If the incident P wave is inhomogeneous, then it is clear that the 

reflected SV wave and both transmitted waves in general will be inhomogeneous. 

Theorem 6. If the incident P wave is homogeneous and not normally incident, 

then:

1) the reflected SV wave is homogeneous if and only if

Qp" 1   Qs" 1 , (29a)

2) the transmitted P wave is homogeneous if and only if 

Q" 1 = Q~> and sin 2 6 < k 2 /k 2 = P '(K + -- y)/[p(< 4 -i- p )]
p p R

* v 2 /v' 2 (29b) VHP /VHP

3) and the transmitted SV wave is homogeneous if and only if 

Qp" 1 - Q^' 1 and sin 2 epj < k^ 2/kp 2 = (P'/P)(<R + -y- yR )/yR * vHp2/VH$ 2 ' (29c)

If the incident P wave is homogeneous and normally incident, then the reflected 

and transmitted waves are also homogeneous with propagation and attenuation 

vectors perpendicular to the boundary.

Theorem 6 shows that both transmitted waves and the reflected SV wave 

generated by a P wave incident on a boundary between anelastic materials in 

the Earth are in general inhomogeneous for each oblique angle of incidence. 

Thus, the physical characteristics of reflected and refracted waves in
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anelastic media are different from those 1n elastic media (see the second 

section and Borcherdt 1973a ).

Equations 1-30, 3c-h, and 27 show that for anelastic media the velocities 

of the reflected and transmitted SV waves and the transmitted P wave depend 

on the angle of incidence. As before, 1f the Incident wave 1s composed of 

several different frequencies, then fans of reflected SV and transmitted P 

and SV waves will be generated in anelastic media.

If both media are elastic, then the classic results for critical angles 

are easily derived from theorem 6 and the definitions of d , d 0 , d and
CX P CX

d0 . If medium V is elastic and medium V anelastic, then no critical angles P
exist for the transmitted waves.

Theorem 7. If V is anelastic and if 6p (6p / ir/2) is a critical angle for:

1) the reflected SV wave, then
k kO ft C* T

tan YP = (sin 2 6 p - . . M )/(sin 6P cos 6P ) , ri PI KpR KpI KJ KJ

2) the transmitted P wave, then

k 1 k 1

3)

ton

the

tan

TPJ - i>«" *Pi

transmitted SV

YRi « (sin 2 6 pj

" k k //v KPRKPI

wave, then

k i k   
SR SI x,/_

" If \f // \SKPRKPI

bin Op uud Op

in 6p cos 6pj )

(30b)

. (30c)

Corollaries analogous to corollaries 3-1, 3-2, and 3-3 are implied immediately 

by theorem 7. A corollary of special interest for anelastic materials in the 

Earth is

Corollary 7-1. If the incident P wave is homogeneous and if both media are 

anelastic, then:

1) If medium V 1s such that VHS < VHP , the angle of reflection 

6C for the reflected SV wave 1s less than the angle of reflection
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6D for the reflected P wave and there are no critical angles for
 2

the reflected SV wave,

2) 1f ep (6p r1 */2) is a critical angle for the transmitted
  «

P wave, it follows that Qp 5 Qp » vup * VHP and tne

critical angle is given by

pj = Im[kp 2 ]/Im[kp 2 ] = v^F" 1)/^^" 1 }) , (31a)

3) if e p (e p f ir/2) is a critical angle for the transmitted SV
_ i _ i 

wave, it follows that Qp" 1 < Q^" 1 , vHp < VH - and the critical

angle is given by

sin 2 6 pi = Im[^ 2 ]/Im[kp 2 ] = vHp 2 F(Q^ 1 )/(vHS 2 F(Qp' 1 )) , (31b)

where the function F in 31 a and 31 b is defined by 21 b. 

An additional corollary analogous to 3-5 is

Corollary 7-2. If both media are anelastic, and the incident P wave is 

homogeneous, then:

1) if Qp" 1 = Q-" 1 no critical angles exist for the reflected waves,
1 i

2) if Qp" 1 = Qp" 1 and vHp 2 < vHp 2 there is one

and only one critical angle for the transmitted P wave given by

sin'e pj = kj'/kp* - (P'/P)(.CR + -f- WR)/(<; + -f V ' V2/VHP 2   (32a)

1^ ^ I
3) if Qs" 1= Qp" 1 and v..p < VHS there is one and only 

one critical angle for the transmitted SV wave given by

sin'ep] = kj'/kp* = ( P '/P)(KR + -j- yR )/yR B VHP2/VHS2 ' (32b)

Results analogous to theorem 4 and corollary 4-1 may also be derived for the 

problem of an incident P wave,
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DISCUSSION

The general theory of linear viscoelasticity, based on Boltzman's 

principal of superposition, accounts for the behavior of both elastic and 

linear anelastic materials and is independent of any particular viscoelastic 

model. As a result the general theory provides a general mathematical 

framework for considering wave propagation in the earth (Savage and Hasegawa, 

1967), and in particular the classic P-SV problems solved herein.

The physical characteristics predicted for body waves in layered 

anelastic media are significantly different from those for corresponding body 

waves in elastic media. For anelastic media, the reflectd and refracted P and 

SV waves are, in general, predicted to be inhomogeneous for all non-normal 

angles of incidence and as a result exhibit: elliptical particle motions, 

velocities and maximum attenuations which depend on frequency and the angle of 

incidence, and velocities and directions of maximum energy flow different from 

those of phase propagation. These physical characteristics predicted for P 

and SV waves refracted at boundaries between materials with different 

intrinsic attenuations such as a bedrock-soil, mantle-crust, or core-mantle 

interface provide insight into the nature of anelastic waves and may be useful 

for inferring anelastic properties of earth materials.
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APPENDIX 1

The purpose of this section 1s to prove theorem 1. A useful lemma is 

Lemma 1. kp 2 /ks 2 1s a real number 1f and only if Qp~* « Qs~ l , in which

rasp k 2 /k 2 = n t(x +  5  u ) * v 2 /v 2case Kp /KS V UR 3 V VHS /VHP .

Lemma 1 follows immediately from the following relations which are 

easily derived from 1 and 2;

fcpVkc 2= IPD /(KD * "T" ^)3 K 1 * Qc" 1 )/(! + Qn" 1 )!
r J i\ i\ «3 r\ O r

2v V
kp 2 /ks 2 = jr [(1 1 4 Qs" 2 )/(l + v! + Qp' 2 )][(l - iQp'M/0 - iQs

To prove the "only if" part of theorem 1 for the reflected P wave assume 

the reflected P wave is homogeneous (Y D = 0) , then 13 and 1-29 imply
r 2

k 2 = k p 2 Sin 2 6p 2 (1-1)

and

dQ2 « k p 2 - k 2 = kp 2 cos 2 e p2 . (1-2)

These relations, together with lOb, imply kp 2 /ks 2 is a real number for

6S f 0 and 
i

A 2 1/2
d a = kP - 1 > 0 . (1-3)

Hence, lemma 1 and 1-3 give the desired conclusion that

Qs-» - Op' 1 and sin 2 es < tftlf - yR/(<R + -f- VR ) - vHS 2/vHp 2 . (1-4)

Converse!ey, if 1-4 is valid, then kp 2 /ks 2 is a real number from which 

1t follows that d 2 /k 2 is a non-negat' 

is a real number, say c , which Implies

1t follows that d 2 /k 2 is a non-negative real number. Therefore d /k
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daR * CkR and dal ' ck l ' °'5 

Substitution of 1-5 Into 3c and 3g with j * 2 shows that the propagation 

and attenuation vectors for the reflected P wave are parallel, that 1s to 

say the reflected P wave 1s homogeneous. The results stated 1n theorem 1 for 

the transmitted waves may be proved in a similar fashion.
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APPENDIX 2

The purpose of this section 1s to prove theorem 2 for the reflected 

P wave. The proofs for the transmitted P and SV waves are similar,

If 6C is a critical angle for the reflected P wave, then ?fi is
Ol $2

*.

parallel to x and 3c implies d R e 0 which implies

2 daRdaI ' 2 kPRkPI

Equations lOa and 1-29 show that for V anelastic kRk.

sin 6^ sin (6^ - Yr ) » may be written as i i i i i i

kR k I = kSR kSI Sln 8Si Sln(eS! * ^S^ COS YSl   (2-2)

Substitution of 2-2 into 2-1 yields

sin eSi sin(6Si -YSj) = (cosYSi )(k pRk pI /k$R kSI ) , (2-3)

which simplifies with trigonometric identities for 6- f ir/2 to the desired 

relation 20a.
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APPENDIX 3

Part (2) or corollary 3-4 for the transmitted SV wave 1s proved in this 

section. Analogous proofs are deduced easily for the reflected and transmitted 

P waves.

Suppose 6S 1s a critical angle for the transmitted SV wave and that 

the Incident wave is homogeneous, that is YS e 0 . Theorem 3 Implies for

6- ^ TT/2 that the critical angle is given by ^i

sin 2 e$ « Im[k^ 2 ]/Im[ks 2 ] , (3-1) 

and simplification with 2b gives part of the desired result:

sin 2 eSj = Im[k5 2 ]/Im[ks 2 ] = vHS 2 F(Q^ l )/(v^s 2 F(Qs' 1 ) ) (3-2) 

where

F(QS'') = QS'VO + y 1 + (Qs'') z ) . (3-3)

I I

In addition, 3c implies dOD = 0 , hence the definition of d 0 (3f) implies
t$K P

] - Re[k 2 ] (3-4)

which shows

] - Re[k 2 ] < 0 . (3-5)

By assumption, the incident wave is homogeneous, hence lOb implies that 3-5 

simplifies to

Re[k^ 2 ] - sin 2 e$ Re[k$ 2 ] < 0 . (3-6)

Substituting (3-1) into (3-6) yields

] < Im[k^ 2 ]Re[ks 2 ]/Im[ks 2 ] . (3-7)
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Since Relk^2 ] > 0 (Borcherdt 1971, p. 25), 1-72 shows that 3-7 implies 

an additional part of the desired result

Qs" 1 < QS~'   (3-8)

Equation 3-2 shows that

(v^Vv^JtFtQ^M/FCQs' 1 )) < 1 (3-9)

and (3-8) implies

F(QS" ! ) < F(Qs" ! )   (3-10) 

Equations 3-9 and 3-10 yield the desired final conclusion
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APPENDIX 4

The purpose of this section 1s to prove corollary 3-5 for the reflected P 

wave. Proofs for the transmitted waves are similar.

From 3c, the component of the propagation vector for the reflected P 

wave is d R given by (see 18)

dM? s * Ukp 2 - k 2 | + Refkp 2 - k 2 ])/2 . (4-1)
QK r r

  2 _. t, 2Since the incident SV wave is homogeneous, lOb shows k z B k$z sin2 6s 

hence,

k 2 - k 2 = k 2 ( - sin 2 e ) . (4-2)p - s - Sj

By lemma 1 (appendix 1), QP" IS Qc" 1 implies kp2/ks2 is a non-negative 

real number and

kP2/ks 2 = V<"R + -r V ' VHS 2/V2   t

Q/ 1 = Qp" 1 implies vws 2 ^ vHp 2 - ^   and substitution of 4-2 into 4-1 

together with 4-3 shows there is one and only one angle of incidence, namely 

sin 2 6$ « PR/[KR + (4yR/3)] - vH$ 2/vHp2 , such that daR = 0 , that is, 

such that the reflected P wave is an interface wave.
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APPENDIX 5

The purpose of this section is to prove theorem 5. 

Suppose 6- is a non-zero angle of incidence such that the amplitude*

c , of the reflected SV wave is zero, then 25b implies 22

16(da2 /k 2 )(d62 /k 2 ) « (d62 /k 2 - 1)* . (5-1)

By assumption the incident SV wave is homogeneous, hence,

k * kc sin 6C (5-2)
5 bi

and the definition of d 0 (3f) impliesP

d 2 /k 2 = sin" 2 6 c -1 = tan" 2 6c . (5-3) 
P 01 Si

Equation 5-3 shows d 2 /k 2 is a real number, hence 5-1 shows d 2 /k 2P ot

is a real number, which, using 3e and 5-2, imply

Im[da 2 /k 2 ] = Im[(kp 2 /(ks 2 sin 2 6^)) -1] = Im[kp 2 /k$ 2 ]/sin 2 6$i = 0 . (5-4)

Equation 5-4 shows kp 2/ks 2 is a real number, hence lemma 1 (appendix 1) 

implies the desired result

Q" 1 - Q" 1 . (5-5)
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