United States Department of the Interior
Geological Survey

Seismic Engineering Data Report

PROCESSED ACCELEROMS FROM MONTICELLO DAM
JENKINSVILLE, SOUTH CAROLINA
27 AUGUST 1978, AND TWO LATER SHOCKS

by
A. G. Brady, P. N. Mork, and J. P. Fletcher

OPEN-FILE REPORT 81-0448

Prepared on behalf of the National Science Foundation
Grant CA-114

This report is preliminary and has not been reviewed
for conformity with U.S. Geological Survey editorial standards.
Any use of trade names is for descriptive purposes only
and does not imply endorsement by the USGS.

Menlo Park, California
March, 1981
CONTENTS

Monticello Dam Record Processing.. 1

Appendix... 6

Tables from USGS Circular 985B
Accelerograms
Response Spectra
Summary

This report serves two purposes: The documentation of a digital magnetic tape containing the results of processing the strong-motion data from Monticello Dam, South Carolina, during a series of three events in 1978, and the reproduction of the more important graphical results.

Only one event is identified: 27 August 1978; 1023 UTC; coordinates 34.31N, 81.33W; depth 1.5 km; magnitude 2.7 (Porcella, 1978). The second and third events occurred during the period from 31 August 1978 to 6 November 1978 (figure 1). On this section of the original film record a total of eight events were recorded. The two selected for this processing package had peak horizontal accelerations, scaled from the records, of 0.22 and 0.24 g. The identified event had a peak of 0.25 g, the largest known recorded acceleration from an earthquake in central or eastern North America.

Monticello Dam is made up of four sections of embankment as shown in the map of figure 2; the instrument is installed in a small plywood shelter on the south abutment of the largest of these four. The intake to a powerhouse shares this central abutment area.

The coordinates of the station are 34.30N, 81.33W, and the epicentral distance from the identified shock is about 1 km. The sources for the two aftershocks are also very near the recording station, for there is no evidence of S-trigger intervals.

Digitizing of the three recordings was carried out by IOM-TOWILL of Santa Clara, California, and USGS processing of the data has resulted in plots of the accelerations at three stages of correction, corrected velocity and displacement, and response spectra. The results of corrected data only are
available on magnetic tape from the Environmental Data and Information Service, NOAA, in Boulder, Colorado, 80302; phone (303) 499-1000, extension 6473. This report contains computer plots of the data on the tape, and the response spectra tripartite plots.

Digitization and processing

These records provided us with the first opportunity to make special arrangements for handling very high frequency content. The first digitization of the 27 August 1978 record had been processed with the standard high frequency treatment, namely interpolation at 200 points per second, filtering at 25 Hz, and outputting data at 100 points per second. Because these records have frequencies as high as 25 and 30 Hz, it was not surprising that the results were unsatisfactory, including the reduction of peak values by as much as 50 percent. The results of the revised processing are shown in the plots in the appendix. "Raw data" signifies the input to the correction scheme, and corresponds to uncorrected data of Caltech and USGS processing. These data are then interpolated at 0.002 sec, or 500 points/second, and the plot is labelled Interpolated/decimated. Butterworth filters whose corner frequencies are 3 db down are used to band-pass the interpolated data between the low frequency limit of 2 Hz (n = 1, first order) and 50 Hz (with n = 2, second order). These plots are labelled Filtered/windowed. The second page of plots for each component contains the acceleration, velocity and displacement with the instrument correction applied. All plots are scaled so that the peak value fills the vertical axis.

The tripartite response spectra contain plots from 2 to 25 Hz, that is 0.04 to 0.5 sec. The displacements that are asymptotically approached at the longer periods of this range correspond well with the maximum displacements indicated in the plots of the displacement time series. On the other hand,
the asymptotic approach to the peak acceleration at short periods occurs outside the plotted range.

Tape format

The tape delivered to EDIS, Boulder, Colorado for dissemination purposes contains three files:

1. Corrected acceleration, velocity, and displacement, as described above, for the earthquake of 27 August 1978, 1023 UTC; Monticello Dam, center crest; filtered from 2 to 50 Hz; three components.

2. Same data for the record indicated by "Aftershock No. 1".

3. Same data for the recording indicated by "Aftershock No. 2".

The tape characteristics are: Blocked, fixed length, 80 byte card image, 2000 byte block size (that is 25 cards), unlabelled, 9-track, 800 bpi, ASCII.

References

<table>
<thead>
<tr>
<th>Station No. Temp.</th>
<th>34.30N, 81.33W</th>
<th>Direction*</th>
<th>Constants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jenkinsville, S.C. Monticello Dam</td>
<td>190°</td>
<td>Sens. = 1.90 cm/g</td>
<td>Per. = 0.040 sec</td>
</tr>
<tr>
<td>SMA-1 No. 603 Shared Abut. (Center Crest) Up</td>
<td></td>
<td>Damp. = 0.60 crit</td>
<td></td>
</tr>
<tr>
<td>EARTHQUAKE OF (Main Event) 27 August 1978, 0523 EST</td>
<td>27 August 1978, 1023 UTC</td>
<td>090°</td>
<td>Sens. = 1.75 cm/g</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per. = 0.040 sec</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Damp. = 0.60 crit</td>
</tr>
</tbody>
</table>

*Azimuthal direction of case acceleration for upward trace deflection

Figure 1. Original records.
Figure 2.- Monticello Dam, USGS instrument location, and identified event epicenter.
Appendix

The appendix contains three items:

1. A copy of pages 17 and 18 from U.S.G.S. Circular 985-B, detailing the description of the three events, as indicated.

2. Three stages of processing the accelerogram, and the corrected acceleration velocity, and displacement for each of the nine components:
 - Raw data: This is the raw input to the correction processing, and is equivalent to the volume I uncorrected data from Caltech and USGS.
 - Interpolated/decimated: Interpolation at 0.002 seconds, with no subsequent decimation, nor prior removal of points lying close to straight line segments.
 - Filtered/windowed: Band-passed from 2 Hz, with Butterworth $n = 1$, to 50 Hz ($n = 2$) using only just greater than 3 seconds of the record.
 - Acceleration: Instrument correction applied.
 - Velocity: Direct integration of acceleration, together with straight line removal.
 - Displacement: Direct integration of velocity.

3. Response spectra for the nine components.
Table I.- Summary of accelerograms recovered during May - August, 1978 - Continued

<table>
<thead>
<tr>
<th>Event</th>
<th>Station name</th>
<th>Station coord.</th>
<th>S-t(s)</th>
<th>Accl direction (°)</th>
<th>Max accl (g)</th>
<th>Duration (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 August 1978</td>
<td>Jenkinsville, S.C.</td>
<td>34.30 N</td>
<td>-</td>
<td>180°</td>
<td>0.06</td>
<td>-</td>
</tr>
<tr>
<td>1023 UTC</td>
<td>Monticello Dam</td>
<td>81.33 W</td>
<td>-</td>
<td>Up</td>
<td>0.06</td>
<td>-</td>
</tr>
<tr>
<td>Jenkinsville, S.C.</td>
<td>(USGS)</td>
<td>34.31N, 81.33W</td>
<td>-</td>
<td>180°</td>
<td>0.06</td>
<td>-</td>
</tr>
<tr>
<td>Magnitude 2.7</td>
<td>Shared abutment</td>
<td>-</td>
<td>Up</td>
<td>0.03</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Center crest)</td>
<td>-</td>
<td>090°</td>
<td>0.06</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>090°</td>
<td>0.10</td>
<td>1-peak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>180°</td>
<td>0.04</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>Up</td>
<td>0.03</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>090°</td>
<td>0.06</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>090°</td>
<td>0.12</td>
<td>1-peak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>180°</td>
<td>0.05</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>Up</td>
<td>0.05</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>090°</td>
<td>0.09</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Note: A small aftershock was recorded at U.C. Santa Barbara Physical Plant and Santa Barbara Courthouse. Maximum acceleration less than 0.05 g. Two seismoscope records were recovered at UCSB and Santa Barbara Courthouse; maximum relative displacements are 4.06 and 3.42 cm, respectively.

See footnotes at end of table.
Table 1.- Summary of accelerograms recovered during May - August, 1978 - Continued

<table>
<thead>
<tr>
<th>Event</th>
<th>Station, name (owner)</th>
<th>Station coord.</th>
<th>S-t(^s) (s)</th>
<th>Accl direction(^s)</th>
<th>Max accl(^d) (g)</th>
<th>Duration(^s) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>180(^\circ)</td>
<td>0.22</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Up</td>
<td>0.11</td>
<td>1-peak</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>090(^\circ)</td>
<td>0.16</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>180(^\circ)</td>
<td>0.13</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Up</td>
<td>0.17</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>090(^\circ)</td>
<td>0.24</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

1 ACOE - U.S. Army Corps of Engineers
CDMG - California Division of Mines and Geology
MWD - Metropolitan Water District
SCE - Southern California Edison
USBR - U.S. Bureau of Reclamation
USGS - U.S. Geological Survey
\(^+\) - WWVB time code is incomplete or nonexistent; correlation of accelerogram with event is questionable.
\(^2\) S-wave minus trigger time.
\(^*\) Denotes S-D interval, that is, the earthquake occurred within the instrumental run-time of a previous event.
\(^\circ\) Azimuthal direction of case acceleration for upward trace deflection on accelerogram (opposite direction to pendulum motion). Case acceleration for vertical component indicated as up or down.
\(^4\) Unless otherwise noted, maximum acceleration recorded at ground or basement level.
\(^**\) denotes maximum acceleration is less than 0.05 g at ground stations or less than 0.10 g at upper floors of buildings.
\(^6\) Duration for which peaks of acceleration exceed 0.10 g.
EARTHQUAKE OF 27AUG78 - 1023 UTC
MONTICELLO CEN CREST, 8/27/78, 1023 UTC, 180 DEG

PEAK VALUES: RAW = 2.685 (G/10), INTERP = 256.3, FILTERED = 253.1 (CM/SEC/SEC)
EARTHQUAKE OF 27AUG78 - 1023 UTC
MONTICELLO CEN CREST, 8/27/78, 1023 UTC, 180 DEG

† PEAK VALUES: ACCEL = 261.4 CM/SEC/SEC, VELOCITY = -2.27 CM/SEC, DISPL = -0.04 CM
FILTERED FROM 2.000 TO 50.000HZ
EARTHQUAKE OF 27AUG78 - 1023 UTC
MONTICELLO CEN CREST, 8/27/78, 1023 UTC, UP
PEAK VALUES: RAW = -0.82 \text{ (g/10)}, \text{INTERP} = -79.1, \text{FILTERED} = -70.7 \text{ (CM/SEC/SEC)}
EARTHQUAKE OF 27AUG78 - 1023 UTC
MONTICELLO CEN CAEST, 8/27/78, 1023 UTC, UP
† PEAK VALUES: ACCEL = -82.2 CM/SEC/SEC, VELOCITY = 0.780 CM/SEC, DISPL = 0.020 CM
FILTERED FROM 2.000 TO 50.00HZ
EARTHQUAKE OF 27AUG78 - 1023 UTC
MONTICELLO CREST, 8/27/78, 1023 UTC, 90 DEG
PEAK VALUES: RAW = -2.10 (G/10), INTERP = -206., FILTERED = -196. (CM/SEC/SEC)
EARTHQUAKE OF 27AUG78 - 1023 UTC
MONTICELLO CEN CREST, 8/27/78, 1023 UTC, 90 DEG

PEAK VALUES: ACCEL = -220. CM/SEC/SEC, VELOCITY = -1.69 CM/SEC, DISPL = 0.040 CM
FILTERED FROM 2.000 TO 50.000 Hz

ACCELERATION
CM/SEC/SEC

VELOCITY
CM/SEC

DISPLACEMENT
CM

TIME - SECONDS
0 1 2 3
1ST AFTERSHOCK OF 27AUG78 - 1023 UTC EVENT

MONTICELLO CEN CREST, 8/01/78 AFTershock N01.180 DEG

PEAK VALUES: RAW = -2.27 (G/10), INTERP = -218, FILTERED = -218. (CM/SEC/SEC)
1ST AFTERSHOCK OF 27AUG78 - 1023 UTC EVENT
MONTICELLO CEN CREST, 8/01/78 AFTershck NO1, 180 DEG

Peak Values: ACCEL = -256. CM/SEC/SEC, VELOCITY = 1.926 CM/SEC, DISPL = 0.018 CM
FILTERED FROM 2.000 TO 50.000HZ
1ST AFTERSHOCK OF 27AUG78 - 1023 UTC EVENT
MONTICELLO CEN CREST, 8/01/78 AFTershock NO1, UP
PEAK VALUES: RAW = -1.04 (G/10), INTERP = -102., FILTERED = -103. (CM/SEC/SEC)
1ST AFTERSHOCK OF 27AUG78 - 1023 UTC EVENT
MONTICELLO CEN CREST, 8/01/78 AFTershock No1, UP

† PEAK VALUES: ACCEL = -99.9 CM/SEC/SEC, VELOCITY = 1.087 CM/SEC, DISPL = 0.027 CM
FILTERED FROM 2.000 TO 50.00HZ
1ST AFTERSHOCK OF 27AUG78 - 1023 UTC EVENT

MONTECIAO CREST, 3/01/78 AFTERSHCK NO1, 90 DEG

PEAK VALUES: RAW = 1.640 (G/10), INTERP = 160.8, FILTERED = 151.7 (CM/SEC/SEC)
1ST AFTERSHOCK OF 27AUG78 - 1023 UTC EVENT
MONTICELLO CEN CREST, 8/01/78 AFTSHCK N01.90 DEG
† PEAK VALUES: ACCEL = 178.8 CM/SEC/SEC, VELOCITY = -1.51 CM/SEC, DISPL = 0.019 CM
FILTERED FROM 2.000 TO 50.00HZ
20nd Aftershock of 27Aug78 - 1023 UTC Event
Monticello Cen CREST, 8/27/78 Aftershock N92, 100 Deg.
Peak Values: Raw = -1.42 (G/10), Interp = -140, Filtered = -138 (CM/SEC/SEC)
20ND AFTERSHOCK OF 27AUG78 - 1023 UTC EVENT
MONTICELLO CEN CREST, 8/27/78 AFTershock No2, 180 deg

Peak values: Acceleration = 139.3 cm/sec/sec, Velocity = 2.347 cm/sec, Displacement = -0.05 cm
Filtered from 2.000 to 50.00Hz

Accelration

Velocity

Displacement

Time - Seconds
20ND AFTERSHOCK OF 27AUG78 - 1023 UTC EVENT
MONTICELLO CEN CREST, 8/27/78 AFTASHCK NO2, UP

PEAK VALUES: RAW = 1.871 (G/10), INTERP = 178.8, FILTERED = 173.0 (CM/SEC/SEC)
20ND AFTERSHOCK OF 27AUG78 - 1023 UTC EVENT
MONTICELLO CEN CREST, 8/27/78 AFTSHCK NO2. UP
† PEAK VALUES: ACCEL= 174.6 CM/SEC/SEC, VELOCITY= -3.29 CM/SEC, DISPL= -0.12 CM
FILTERED FROM 2.000 TO 50.00HZ
20ND AFTERSHOCK OF 27AUG78 - 1023 UTC EVENT
MONTICELLO CEN CREST, 8/27/78 AFTershock N02, 90 DEG
PEAK VALUES: RAW = -2.36 (G/10), INTERP = -24.4, FILTERED = -200. (CM/SEC/SEC)

RAW DATA

INTERPOLATED/DECIMATED

FILTERED/WINDOWED

TIME - SECONDS
20ND AFTERSHOCK OF 27AUG78 - 1023 UTC EVENT
MONTICELLO CEN CREST, 8/27/78 AFTSHCK NO2, 90 DEG
PEAK VALUES: ACCEL = -269. CM/SEC/SEC, VELOCITY = 3.271 CM/SEC, DISPL = 0.086 CM
FILTERED FROM 2.000 TO 50.00HZ

ACCELERATION
CM/SEC/SEC

VELOCITY
CM/SEC

DISPLACEMENT
CM

TIME - SECONDS
RESPONSE SPECTRA
MONTICELLO CEN CREST, 8/27/78, 1023 UTC, 180 DEG
0.2, 0.5, 1.0, 2.0 PERCENT CRITICAL DAMPING
BAND PASSED FROM N=1. 2,000 HZ TO N=2. 50.00 HZ
SEISMIC ENGINEERING BRANCH/USGS

UNDAMPED NATURAL Period-seconds

Velocity Response - cm/sec

Graph showing response spectra with velocity response on the y-axis and undamped natural period on the x-axis.
RESPONSE SPECTRA
MONTICELLO CEN CREST, 8/27/78, 1023 UTC. UP
0.2, 5, 10, 20 PERCENT CRITICAL DAMPING
BAND PASSED FROM $N = 1$, 2.000 Hz TO $N = 2$, 50.00 Hz
SEISMIC ENGINEERING BRANCH/USGS
RESPONSE SPECTRA
MONTICELLO CEN CREST, 8/27/78, 1023 UTC, 90 DEG
0.2, 5, 10, 20 PERCENT CRITICAL DAMPING
BAND PASSED FROM N=1, 2.000 HZ TO N=2, 50.00 HZ
SEISMIC ENGINEERING BRANCH/USGS
RESPONSE SPECTRA.
MONTICELLO CEN CREST, 8/01/78 AFTershock NO. 180 DEC
0.2, 5, 10, 20 Percent Critical Damping
Band passed from N=1, 2,000 Hz to N=2, 50.00 Hz
SEISMIC ENGINEERING BRANCH/USGS
RESPONSE SPECTRA

MONTICELLO CEN CREST, 8/01/78 AFTRSHCK NO1. UP
0.2, 5, 10, 20 PERCENT CRITICAL DAMPING
BAND PASSED FROM N=1, 2.000 HZ TO N=2, 50.00 HZ

SEISMIC ENGINEERING BRANCH/USGS

VELOCITY RESPONSE-CM/SEC

UNDAMPED NATURAL PERIOD-SECONDS
RESPONSE SPECTRA
MONTICELLO CEN CREST, 8/01/78 AFTershock No. 90 Dec
0.2, 5, 10, 20 PERCENT CRITICAL DAMPING
BAND PASSED FROM N=1. 2,000 Hz TO N=2. 50,00 Hz
SEISMIC ENGINEERING BRANCH/USGS

VELOCITY RESPONSE-CM/SEC

UNDAMPED NATURAL PERIOD-SECONDS
RESPONSE SPECTRA
MONTICELLO CEN CREST 8/27/78 AFTRSHCK NO2.180 DEG
0.2, 5, 10, 20 PERCENT CRITICAL DAMPING
BAND PASSED FROM N=1, 2.000 HZ TO N=2, 50.00 HZ
SEISMIC ENGINEERING BRANCH/USGS

VELOCITY RESPONSE-CM/SEC

UNDAMPED NATURAL PERIOD-SECONDS

33
RESPONSE SPECTRA
MONTICELLO CEN CREST. 8/27/78 AFTershock No2. UP
0.2, 5, 10, 20 PERCENT CRITICAL DAMPING
BAND PASSED FROM N=1. 2000 HZ TO N=2. 5000 HZ
SEISMIC ENGINEERING BRANCH/USGS

VELOCITY RESPONSE-CM/SEC

UNdAMPED NATURAL PERIOD-SECONDS

34
RESPONSE SPECTRA

MONTICELLO CEN CREST, 8/27/79 AFTershock No2. 90 Deg
0, 2, 5, 10, 20 PERCENT CRITICAL DAMPING
BAND PASSED FROM N=1, 2.000 Hz TO N=2, 50.00 Hz

SEISMIC ENGINEERING BRANCH/USGS

RESPONSE CM/SEC

SEISMIC ENGINEERING BRANCH/USGS

VELOCITY RESPONSE CM/SEC

UNDAMPED NATURAL PERIOD-SECONDS

35