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ABSTRACT

An efficient procedure is described for computing the maximum likelihood 

estimates of parameters associated with a transfer-function model defining a 

linear relationship between two discrete time series. Two equivalent 

expressions are developed for the likelihood of the transfer function 

parameters, given observations of the input and output series that are each 

normally distributed about their true values. Several algebraic theorems 

are developed which provide shortcuts for the numerical evaluation of cne 

of these expressions.
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Maximum Likelihood Estimation of
Transfer Function Parameters When Input as Well as Output 

Observations are Subject to Error

by 

David D. Goodman

ABSTRACT

An efficient procedure is described for computing the maximum likelihood 

estimates of parameters associated with a transfer-function model defining a 

linear relationship between two discrete time series. Two equivalent 

expressions are developed for the likelihood of the transfer function 

parameters, given observations of the input and output series that are each 

normally distributed about their true values. Several algebraic theorems 

are developed which provide shortcuts for the numerical evaluation of one 

of these expressions.

INTRODUCTION

Consider the problem of estimating the behavior of a discrete time series, 

a., as a linear function of a related time series $.. When the two signals are 

random and jointly weakly stationary (see Bloomfield, 1976 for a precise defini­ 

tion of this property) , the linear least squares estimate can be computed from 

the first and second moments of the joint probability distribution. Specifically,

where p is a vector of the 3. variables used to form the estimate, y0 is a
3 p

vector whose elements are all identical and are equal in value to the mean of

the 3. series and in number to the number of variables in p, y is the mean i Ha



of the a. series, Z n is the covariance vector between a. and 3, and £po ^ s 
i a8 i PP

the covariance matrix of the 3. (Whittle, 1963); the superscript T and -1, 

respectively, indicate the transform and inverse of a matrix. Estimates 

of the above moments can be used at some cost in prediction accuracy whenever 

the precise values are not known.

When randomness and (or) stationarity is in doubt, a logical strategy is to 

fit a functional relationship to concurrent observations of the two series that 

can be used, subsequently, for estimation purposes when observations of only 

one series are available. The most general linear relationship between the

a. and 3. is given by:

n m 
a, + £ a. a. . = Z b. 3. . + y (2)

where the a. and b. and y are parameters that are adjusted to achieve the 

fit. In most time series applications that employ eq. (2), observations 

of a. are assumed to be normally distributed about a. :

yi = ai + £i

where the e. derive from a zero mean, unit variance, time dependent Gaussian 

random process. Observations of 3. are usually assumed to be exact:

x± = 3r (4)

Theory dictates that both the maximum likelihood and the least squares estimates 

of the a., b., a., 3.» an<3 P are those parameter values that minimize the suns
*J J

"of squares of every e. that is associated with an observed a.. If the e. are
i 11

not normal these values will still be the least squares estimates. If the e. 

are not independent in time, computation of the maximum likelihood and (or) least 

squares estimates is more complicated.



The popularity of the observation model defined above probably steins from 

the ease with which approximate maximum likelihood estimates (MLEs) can be 

computed from observations. (See Box and Jenkins, 1970, for an exhaustive 

treatment of this procedure.) However, the inherent assumptions in ecs. (2) 

and (4) are often not physically justified by measurement errors or other

physical phenomena. When these assumptions are not justified, the observation

2 
model and the minimum Ze. objective really do no more than define criteria

for fitting eq. (2) to observations. It is the contention of the auth-r that 

in applications where there is no basis for discriminating between the nature 

of the observations of the two series, it is more reasonable to assume that 

both x. and y. are normally distributed about their means;

x. = 3. + 6. (5) 111

yi = ai + £i (6) 

where e and 6 are normally distributed with mean, 0, and standard deviation, a.

In addition the e and 6 are uncorrelated, so that 

E(6±6.j) - 0 

E(ei ,ej ) - 0 

E(e± ,5j) = 0 (all i,j).

The major purpose of this paper is to develop an efficient procedure fcr 

computing the maximum likelihood estimates of the a., b. and y for the nodel
J *J

defined by eqs. (2), (5), and (6).

FORMULATION OF THE LIKELIHOOD FUNCTION AND PRELIMINARY MINIMIZATION STEPS

Assume one has N consecutive observations of a. beginning at time k and 

M observations of &^ beginning at time p. The likelihood of the parameters



given these data is the joint probability density of the observations x.^ and

Li (a., b.., a,±9 &±9 y)

M+p-1 N+k-1
(2II<J ) Z exp - -±=- ( Z (x - 3 r + 2 (y, - ct,) ) (7)

2az i-p X X i=k X

The likelihood function Li(a . ,b. ,a. ,$. ,y) , that will be 'subsequently used
J J

is the portion of the negative log of eq. (7) that varies with the parameters:

M+p-1 ? N+k-1
Li(a ,b ,o ,0 ,y) = I .(xt - 3i > + S (y - a±) . (8)

J J i=p i=k

Clearly, minimizing eq. (8) maximizes eq. (7).

The first step in minimizing Li is to express the function in terms of 

an independent set of parameters. Using eq. (2), some of the a. can be 

expressed in terms of the 3.» b., a., y and- other a.. Before reexpression, part
«J J

of the likelihood function will be put in matrix notation. This separation 

will facilitate the further analysis.



Let j, and j^ delimit the segment of a. that can be expressed strictly 

in terms of other parameters. It should be clear that j. is the larger of 

k + n and p + m and that J 2 is the smaller of N + k - 1 and M + p -1. 

The a. in this range can be expressed through eq. (2) in terms of each other, 

y, the a. and b., the (3. between j- - m and J 7 inclusive and the a. between
J J J

J x - n and ^ - 1.

Now let P=j«-j, +1, p be a vector comprised of the P + m $. between 

j, - m and J 2 inclusive, x be a vector of corresponding x., a be a vector 

composed of the P + n a. between j - n and j_ inclusive, and y be a vector of 

corresponding y.. Using these constructs the likelihood function becomes:

Li(aj ,bj> a1 ,01 ,y) - (x - &T (x -£) + (£- S) T (y - 3)

jj-m-a M

+ Z (x - 3 ) 2 + Z (x - B.) 2 
i=P - i=3 2+l

jrn~1 N
+ £ (y, - a ) 2 + Z (y - a.) 2 . (9)

i f -J- J"     . « -*  J. 
=k 1=3 2+l

Note that at least two and possibly more of the four summations at the end of 

eq. (9) will not exist, depending on the overlap between the two observation 

segments.

The parameters involved in the vector portion of the equation are inter­ 

dependent while the remaining parameters are not. Specifically, a total of P 

linear relationships can be established between the elements of a and p through 

eq. (2). In the following developments, the first P elements of a will be 

eliminated by this equation.

Define a vector 9 as the augmentation of p with the last n elements of a 

and let IP be a (P + m) x (P + m + n) matrix such that if ip defines the eleaer.:s 

of IP,



iP1;J =0 i * 3

=1 I - j. (10) 

Consequently

S = IP? . ' (ID

Next define the matrices A and B in the following manner. If a., defines 

the jth element in the ith row of the (P + n) x (P + n) matrix A, then:

a.. - 0 J < 1 

= 1 j = i

-a. .

J > i, i > P . (12)

If b. . defines the jth element in the ith row of the (P + n) x (P 4- n -r m) 

matrix B, then

bu =0 j<i
= b i + m^j^i, i £ p

= 1 j = i + m4-l, i>p

=0 j > i, i < P . (13)

According to eq. (2) and the above definitions,

Aa = B$ + u (14)

where u is a vector of length P + n, the first P elements of which are u and 

the least n elements of which are zero. As A is an upper-triangular square 

matrix with non-zero elements on its diagonal, its determinant is non-zero and 

its inverse exists. Consequently,



a - A~1 (B? + 3) (15)

and the likelihood function becomes:

= [J - IP?] T [J - IP$] + [y - A

j rm~1 M
+ Z (x, - 3.) 2 + Z (x - 3,) 2 

i-P i-J+l

N 

. , Z , .+ Z (y. -a) 2 + Z (y, - a.) 2 . (16)
i-k

Note that eq. (16) is quadratic in 8, 3. and a.. This means that the first 

derivative of L5 with respect to 0, 3., or a. will be linear in these parameters. 

It makes sense, then, to eliminate these parameters from eq. (16) as a first 

step in minimizing the likelihood function.

in 6

Setting the derivative of eq. (16) with respect to the a. and 3. £3t included 

zero generates

and

y± = a± . (17)

This result demonstrates that "outlying" observations do not contribute to the 

likelihood function at its maximum.

Setting the derivative of eq. (16) with respect to 6. to zero gives:

-IPTx + IPTIP? - BT (A"1 ) Ty + BT (ATA)"1B? + BT (A~1 ) Tu = 0

or

T T   1 T  *  T-* T   1 T ->  ! * 
TC^A) -"fi + IP1 !?]? » IP x + BX (A ±) 1 (y - A~\) . (18)

Now let



Ihen

T T -1 T -,F = (BT (ATA) *B + IP-IP]-

t- -1 T* T,.-1XT,+ 
| = r [IP x + B (A ) (y -

(20 >

Replacing eq. (20) in eq. (16) generates

[f -

'x + BT(A-W - A-^)] H- »] ]T

" + BT (A-V(y - A'1 u)] + u]] (21)

.here the suction ter.s at the end of eq. (16) have been dropped off due to 

eq. (17). After considerable algebra and cancellation, Li can be expressed es

u. (22)

Note that the above expression is highly non-linear in the parameters a. 

and b.. As such, it is probably best rainimiZed through iterative procedures 

which' require repetitive evaluation of eq. (22). In the following paragraphs, 

an equivalent expression is developed which is computationally ea,>,r to evaluate, 

J

Consider the following vector of random variables:

where 2 is a P x (P + «) matrix forced from the first P rows of U, matrix A. 

B is a P x (P + m) matrix formed from the first P rows and p + m -.Muims oC



matrix B, e is a vector containing the e. that are associated with the y. in y, 

and 0 is a vector containing the 6. that are associated with the x. in x. From

eq. (2) it should be clear that
/v_ ^

if = Ae - B& .. (24)

Now let

? - Ef^J] . (25)

Due to the independence of the e . and 6 .

/s /N/NT ^"^T

T = [AA + BB ] . (26)

Finally, construct a vector of P uncorrelated, unit variance random variables 

6 by decomposing F according to

GTG = F . (27) 

and defining 9 by

J = (G"1 ) 1^ . (28) 

The existence of a matrix G that satisfies eq. (27) is guaranteed because F 

is positive definite, as can be seen from eq. (26). The desired alternative 

expression of the likelihood function is the portion of the log of the 

density function of 9 that varies with the parameters a., b., and y:
J *J

Li'(ajf bjf y) -

'V ^ -»  T^-l "->  ^ -*  
= [Ay - Bx - u] F [Ay - Bx - u]

x'tB'F AB]x -f y [AA F AA] y

-*T ^^ 1 ->  -^T^  !-* 
/% A r . J. TI J-i . J> « A x A >» «- 2y [A F ]u -f u F u . (29)
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Although the general equivalence of Li and Li"* has not yet been proven 

analytically, the two expressions produced identical values in each of twenty 

separate numerical experiments. An analytical proof of the equivalence is 

given in Appendix A (p. 17-18) for the special case of a pure moving average 

model, i.e., a. = 0, for all i^l.

THE COMPUTATIONAL COST OF EVALUATING THE LIKELIHOOD FUNCTION

Inspection of eq. (21) reveals that among all the operations required to 

compute Li, those involving the construction and inversion of F require the largest 

number of multiplications to complete. A procedure for completing each of these 

operations is described in the following three paragraphs. Although these 

procedures are chosen to offer an efficient approach to the computation of their 

associated operations, no claim to optimality is made. The number of nultiplications 

required to complete each procedure is listed in Table 1.

Table 1

Operation Number of Multiplications 

1) [ATA]~1E 3/2P2n

 ?
P m 

0

^
1/6PJ

3 2 
Total Multiplications Required: 1/6P + P (3/2 n + m)

The product in the first step is computed by solving the following two 

systems of linear equations:

A c. = b.. (30)

T-> -»
A V. = Cj (31)

2)

3)

4)

B [A^A

r - [B
I1"1 !!?

] B

T T 
[ATA]

x + B

-1**
^(A- 1)

IPTIP]

T / +(y - ->,
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where b. is the jth column of B and c. and d. are the vectors to be computed. 
J J J J y

It should be clear that d. will correspond to the jth column of the desired
J

product. To understand the figure given in table 1 recall that A is by 

oerxnition an upper triangular, P 4- n degree, square-matr-ix of bandwidth n. 

Also, the jth column of B contains only zero entries below the jth element. 

It follows that the last P + n - j entries in c. will be zero and that eq. (30) 

can be solved using back substitution in approximately nj multiplications. 

Solution of eq. (31) through back substitution without shortcuts requires about 

(P + n)n multiplications. As B contains P + n + m columns the total number of 

multiple operations required is approximately

P4n-hn 
; £ (P + n)n 4- jn ~ 3/2P n

whenever P»n,m.

\ The product formed above will be a (P 4- n) x (P 4 n 4 m) matrix that is

i
\ in general not banded or triangular. As B has exactly m entries in nearly

| every row, the second step will require approximately

1 - - (P + n + m)(P 4- n)m ~ P2m

I
\ multiplications.

|
| The product in the fourth step is computed by solving the following
I
I system of linear equations:

1

I FC = d (32)

t

i -> T~*" T  IT"*" "* 
{ wh'-i 2 d = IP x 4 B (A ) (y - u) and is assumed to have been computed
i

previously. It should be clear that c is the desired product. That F is 

positive definite can be seen by viewing the matrix as the sum of two positive 

definite matrices [A~1B] T [A~"1B] and IPTIP. This property insures that eq. (32)
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can be solved analytically through symmetric Gaussian elimination (explained 

in Appendix B), or iteratively through the Causs-Seidel method (Forsythe and

Moler, 1967). As T is a (P + n + m) x (P + n + m) matrix, the former process

3 requires on the order ot 1/b F~ multiplications when F»n,m. The latter

2 process requires exactly (P + n + m) k operations where k is the nunber of

iterations required to achieve satisfactory convergence.

Table II summarizes the computational cost of evaluating the likelihood 

function using eq. (29). The particular sequence of matrix operations is 

chosen to minimize the total number of multiplications.

TABLE II

Operation Multiplications Required

Pn 

Pm 

0

1)
2)

3)

4)

5)

6)

7)

8)

Ay

Bx

[Ay - Bx - u]

MT

XVXV.J,

BB
xv xvxs_n xvxs-,

r « AA + BB
XV , XV XV

r""1 [Ay - Bx - u;

^ /v-* ->  T ' 
[Ay - Bx - u] ]

1 2 2* 

1 2

0
1 9

+ 2P )

1 2Approximate Total Number of Multiplications P(n+m+2p +2p+l)

The figures given for the multiplications required by the first two steps
XV

are based on the fact that A is a P x (P + n) matrix with exactly n non-zero
XV

elements in each row while B is P x (P + m) with exactly m non-zero elements

per row. To understand the tlgures tor steps tour and tive let c'.. define
/vx\_ /\

the jth element in the ith row of AA . From the definition of A it can be seen

that:
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n-|k|
I a - a '+!k| (33 ^

where an = 1. It follows that there are only n + 1 different non-zero 

values among all the entries or AA . The numbers of multiplications 

necessary to compute them is given by

n~1 1 2
Z

, ~ -L i- 
n - k ~ y n

k=0 

The figure given for BB is similarly explained.

The figure given for step seven is based on the assumption that the 

product is computed through the following procedure. First F is decomposed 

according to

F = GTG ' (34)

where G is upper triangular with positive diagonal elements. The process 

is completed by solving the following two systems of equations:

Gc = [Ay - Bx - u] (35)

GTd = c (36)

It should be clear that d is the desired product.

It can be seen from eq. (26) that F is a positive definite square matrix 

of degree P and bandwidth p = max(m,n). The positive definiteness guarantee^ 

the existence and uniqueness of G (Forsythe and Moler, 1967). The bandedness 

implies that G will also have a bandwidth of p. An algorithm is described in

Appendix B that can perform the decomposition indicated oy eq. ^*/ ou matrices

1 2 with these properties using approximately -rPp multiplications. The systems

eqs. (35) and (36) c«n b*1 snlvpH t-hrouah hark substitution using approximately 

Pp multiplications, due to the triangularity and bandedness of G.
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1 2 
Table II shows Chat the -rPp multiplications required by the decomposition

xv

of r makes that step the most critical link in the evaluation of the likelihood 

function through eq. (29). The last section of this paper demonstrates how 

this decomposition procedure can often be cut short due to the convergence of 

the rox^s of G.

THE CONVERGENCE OF J^E_J^\GONALLY_ POSITIVE , UPPER-TRIANGULAR SQUARE ROOT 
DECOMPOSITION OF CO VARIANCE :' fATRICES OF FINITE CONTIGUOUS SEGMENTS OF 
STATIONARY TIME SERIES. "

Consider the vector of random variables ;]/ defined by eq. (23). Let ~j,

->- 
denote the ith element in ip. It should be clear that the covariance structure

of the ij;. is defined by:

n-|k| m-|k|
= \ = [ S n aj aj+ k + \ bj bj+ k ] ° 0<|k]<ffiax(a) n) 

j=0 ~* J 3=0

= 0 |k|>max(n,m) (37) 

It can be seen from eq. (26) that the YJ. correspond to the elements of the
s*. /\

covariance matrix F. Specifically, if F i i defines the n-f|kjth entry in the
n ̂ ri i l HI i 

y\ y\
nth row of F, then F   , i, i = Y. . -n,n+Jkj 'k

Now define

CO

q(z) = E q z 1 (38)
i=^c»

as the z transform of any series q.. It can be seen from eq. (37) that 

Y(z) = a(z) 2 (z""1 ) + b(2)b(2~1 ) (39)

Next express fy . as a moving average of an independent series of zero 

mean unit variance Gaussian random variables A. :

-J-C
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where the c. are such that c(z) is a polynomial in z of degree p = max(r.,m) 

with roots that all lie outside the unit circle. Computing the covariar.ce 

structure of the ijj. using eq. (40) gives:

p-
c i c i
J J

=0 |k|>p (-1)

or

Y(z) = c(z)c(z"1) (^2) 

The existence and uniqueness of the c. is proven in Appendices C and D.
x\

Finally consider the following decomposition of F:

T = GTG (-3)

where G is upper triangular with positive diagonal elements. As mentioned in

the previous section, the existence and uniqueness of G follows from the fact
/\ 

that F is positive definite. Also, in Appendix B it is shown that G has a

bandwidth of p. Now let g. . correspond to the jth element in the ith row
 ^ > J

of G. The critical result,

is proven in Appendix E. In words, eq. (44) indicates that the entries in G on and 

to the right of the diagonal in the nth row converge to the c. series as n 

gets large. Fortunately, the decomposition algorithm described in Appendix

T computes G one row at a time, starting at the top. Also, the number of

1 > 
multiplications required to compute the next row remains constant at -rp~

after the first p rows have been computed. More importantly, examination 

of the decomposition algorithm reveals that corresponding entries of all 

matrices, G, with the same "seed polynomial", Y(Z)» are identical and



independent of the magnitude of P! This means that the number of rows 

required to achieve satisfactory convergence is also independent of P. It

follows that for problems with large enough concurrent observation segments,

1 2 the matrix decomposition requires -^Qp multiplications where Q«P, and the

limiting operations in computing F c are the solutions of eqs. (35) and (36).
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APPENDIX A

PROOF OF THE EQUIVALENCE OF Li AND Li* FOR THE CASE OF A PURE MOVING AVERAGE 
PROCESS

From previous definitions it can be seen that when eq. (2) defines a pure 

moving average model, i.e., a~ = 1 and a = 0 for all n>0,

1) A is a PxP identity matrix;

2) B is a Px(P-hn) matrix whose elements are defined by

b = b - 
13 j-i

3) IP is (P-hn) x (P-Hn) identity matrix; 
/\

4) A is identical to A; and 
/s.

5) B is identical to B.

When used in eq. (22), these simplifications generate

-*T  1 ->  ->T   1 T -> 
Li(b.,y) = x[I-T i]x + y^I-BF V]y

2yT [(Br~ 1BT-I]S + u

where T = [I+BTB].

The alternate expression, eq. (29), becomes

Li"(b ,
 J

->T "   1 T  *  T   1 T  * 
+ 2y [BF B -I]u -«  u [I-BF * ]u

T
where i1 = [H-B B].
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The equivalence of eqs. ^(1) and A(2) can be established by demonstrating 

the following:

a) [I - F"1 ] - [B1?"^]

b) [I - BF'V] = F"1 and

-1 T T^-l
c) T V = B 1 ? .

To show (c) , start with the following identity:

T T T T
B [I + BB ] = [I + B B]B

/s

and substitute definitions of F and F;

T"* T B x r = FB 1

_1 T T^-l > r -"-B « B 1 ? .

To show (a) , post multiply (c) by B and reexpress the right side of the 

equation:

T^-l -1 TB x r T - r VB

Finally, demonstrate (b) by premul tip lying (c) by B, postmul tip lying by
/s

F, and using some algebra:

T -1 T^ 
BB = BF B F

~ -1 T^ 
 > [r-I] = BF B F

I -

-1 T
[I-BF V] .
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APPENDIX B

DECOMPOSITION OF POSITIVE DEFINITE BANDED MATRICES INTO SYMMETRIC LU FORM: 

Let F be an Nth-degree positive definite matrix with a bandwidth of p 

As shown in Forsythe and Moler (1967) , F can be decomposed according to

F = GTG

where G is unique, upper-triangular, and has positive diagonal elements.

This appendix consists of a theorem concerning the bandedness of G, and an

algorithm for computing its entries.

Theorem: G has a bandwidth of at most p.

Proof: Let g. . be the jth element in the ith row of G and define a set ({>

consisting of all g. . such that j>i+p-l. Also define subsets $ , m=l,...N-pi » J si

consisting of all the elements of <J> that fall in the mth row of G. Finally,

let y. . denote the jth element in the ith row of F. 
1 > J

a) If g £<K then Y =0« This follows from the bandedness of r &m,n r * 'm,n

and the definition of (J>.

b) If g e<J), g . £<{> for all k s.t. l<k<m. This follows from &m.n Y °m-k,n r  

the defintion of (J). In other words, all of the elements in 

the column above an element of cj) are also in <£.

c) If Y =0, and g . =0 for all k s.t. Kk<m, then g =0. *m,n °m-k,n   ' &m,n

This result follows directly from the general equation relating 

the elements of F and G: 

N

m



m-1

* 8*,n * ill lY«,n - !?, Vj ,, * *»-J ,n B < 3)
" »»»* J - -

Note that g cannot be zero as G by definition has strictly positive 

diagonal entries.

Now consider the set 4> . From (a) , corresponding elements in F will 

be zero. According to (b) , all elements in the columns above the elements 

of (j> will be elements of <f). It follows from (c) that if the elements of <£>., 

j=l,...,m-l are all zero, the elements of cf) will be zero as well. The elements 

of (j) 1 are zero because they meet the requirements of (c) . By induction, then 

the elements of every subset <f) are all zero, and the bandwidth of G is no 

greater than p.

The algorithm proposed here uses eq. B(3) to solve for each g . The
ill y ti

limits of this equation are changed slightly to take advantage of the bandedness

G: . . . ;,".'

Sm,n = -g~ 7 [ Vn ~ * Vj ,m X Vj ,n] B(4) 
m,m j x

and

Note that each e is expressed in terms of a diagonal entry plus entries of 

previous rows. It follows that g will be the only undetermined variable

in B(4) if computations start with g.. 1 and proceed from left to right across
 * » * 

each row.

Except for the first p rows where the k<tn remil rpment sometimes restr-fr*-*;

the summation limits, the computation of each element g requires n-n+p-1
ni 9 n

multiplications to complete. The total for each row m is

Z . , i ">  X f- 
m-j+p-1 ~ ? .
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APPENDIX C

ROOTS OF SYMMETRIC POLYNOMIALS OF EVEN DEGREE 

Let p(x) be a polynomial of degree 2n,

( \ = + + a 2 2n 

such that

a2n = V a2n-l = al  " an-l = an+l . C(2)

Theorem: The 2n roots of p(x) can be divided into n pairs, with each root in 

every pair being the reciprocal of its associate. 

Proof: If p(r) = 0, then

f\

aQ + a^r + a£r ... + a^r = 0 C(3) 

Dividing by r gives

V"2n + V"^""     +32n = ° C(4) 

or

  ?n   (?r> 1^^-J>i . V&.11 JLl . r\ f*tr-\a2 r + a_ r ,.. + a = 0. C(5)
_T

Consequently p(r ) = 0.

It follows that r and r form a reciprocal root pair except for when r=l or -1,

It will now be shown that if -1 or 1 are roots of p(x), they are roots of even

multiplicity.

First assume that 1 is a root of p(x). It follows that

2n n-1
I a = 0 = Z 2a. + a C(7)

1-0 i-0 X n
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Now consider the derivative of p(x) evaluated at x=l:

2n n-1
P'OOL--, = Z ia = Z (i + (2n-i)) a + na 

X L i=0 X i=0 i

= n [ Z 2a. + a ] = 0 C(8) 
i=0 1 n

Thus 1 is a root of p^Cx) if it is a root of p(x). It follows that 1 has a 

multiplicity of at least 2 if it is a root at all.

Next assume that -1 is a root. It follows that

2n . n-1-
Z (-1) 1 a - 0 = Z (-1) 1 2a + (-l) n a C(9)

i=0 i=0

Now consider the derivative of p(x) evaluated at x = -1.

p'(x)| _ = Z ia. (-1) 1"1 = Z (-1) 1" 1 (i + 2n-i)) a. + (-l) 11"^ 
x -* i-O i=0 in

n-1
= -n[ Z (-1) 1 2a + (-l) n a ] 

i-O X n

= 0 C(10)

Thus -1 has a multiplicity of at least 2 if it is a root of p(x). 

Now define q(x) = (x-r) (x -  )

- x2 - (r + -)x H- 1 C(ll) 

and let

p'(x) = p(x)/q(x) C(12) 

.;here r is a root o£ v(y} , It. should >»« cl^r fVi^t- pTx") is <1 4 ^isible by n 

and that p' will be a polynomial of degree 2n-2. If p^(x) is symmetric, then 

by induction the roots of p consist of n reciprocal pairs.
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To show that p" is symmetric, let 

of p' and consider the equation

a' ' , ^ denote the coefficients

afx) p 

Equating coefficients of x gives

1) a 0 = a% n 2n 2n-l

C(13)

2)

3) a2n-2 = a

an-2 - a n-2 ' C(14)



25

APPENDIX D

THE SYMMETRIC DECOMPOSITION OF SPECIALLY FORMED SYMMETRIC POLYNOMIALS C? 
EVEN DEGREE

Let g (x) define a series of real polynomials of degree n.. Let

f(x) - I gi (x) gi (x~1 ) D(l) 
i=l

Theorm: f(x) can be expressed in the form

f(x) = c(x) cCx"1) D(2)

where c(x) is a unique real polynomial of degree m = max (n.. ... n ) wr.ose roots

fall on or outside the unit circle.

Proof: Let h(x) = xmf(x) D(3)

From D(l) it follows that h(x) is a real, symmetric polynomial of degree 2m. 

From the previous theorem, h(x) has m reciprocal root pairs. Thus,

_ m m __
f(x) = x m h n (x-d,)(x-d. L ) = x~m f n (x-d.)(x-d. L ) D(4) m is=1 i i m i=1 i i

<">__

where the d. are the roots of h(x), h is the constant multiplying the x term 

in h(x), and f is the constant multiplying the x term in f(x).

Lemma:

All roots of f(x) that fall on the unit circle are of even cultiplicity,

Proof:

Let r be a point on the unit circle. Let r be the complex conjugate
_ _i 

of r. It follows that r = r and that

gi (r) gV"1) = gi (r) g1 ^) . D(5) 

Now express g as a product of its roots:
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i a b gx (x) = K n (x-R .) H (x-I )(x-I ) D(6)
j=l J k=l k * 

where a is the number of real roots of g ,

b is the number of complex- con jugate root pairs of g , 

a + 2b = n. ,
w

R. is the jth real root of g (x) ,

I, is one member of the kth complex root pair of g (x) , and
K.

K is a constant. 

Thus,

a b
II

k=l

-t_9 
gx (r) g (r) - IT II (r-R.)(r-R ) II (r-I ) (r-I ) (r-I ) (r-I )

= K2 n |r-R. | 2 n I r-I. | 2 |r~-I, | 2
I T I I If I I If I

=l 3 k=l ^ *

> 0. D(7)

Now suppose that f(x) has a root, r, which lies on the unit circle, i.e., 

f(r) = I g^r) g1 ^)"1 D(8)

g (r)

0.

As all the terms in the above summation are non-negative by D(7), it follows

^ * _ i i 1 
that g (r) g (r) = 0 for all i. Thus, r is a root of either g (x) or g (z )

Suppose r is not complex, i.e., r=l or -1. It follows that r is a root of 

multiplicity k of both g (x) and g (x"" ) , and is a root of g (x) g (x~ ) 

of multiplicity 2k. If r is complex and is a root or g (x) of multiplicity
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_ _ 
k, then r or r is a root of g(x) of multiplicity k because g (x) is real.

It follows that r will be a root of g (x ) of multiplicity k and of

g (x) g (x ) of multiplicity 2k. A similar argument produces the identical
_T

conclusion when one begins with r being complex and a root ot g(.x ; of 

multiplicity k. It follows that if r is a root of f(x), it is also a root 

of even multiplicity of each of the products g (x) g (x ). By th~ 

distributive property then, r is a root of f(x) of even multiplicity.

Now separate the 2m roots of f(x) into two groups. In one group include 

those roots that fall outside the unit circle, plus one half of each se~ of 

roots that fall on the unit circle. By the reciprocal property of even 

symmetric polynomials, both groups will have m members, each with a reciprocal 

counterpart in the second group. It should be clear that the division is unique. 

Now, let the d. in D(4) correspond to the m d. in the "outer" group, and carry 

out the following algebraic manipulations:

m
f(x) = x~m £ n (x-d.)(x-d, )m , , i i

= fm n

m 1
f II d ~A (-lAx-d.Mx"1-*.) D(9)m i i i

Let

m i m 
c(x) = /(-l)m fm n dj~ n (x-d ) . D(10)

Thus,

f(x) = c(x) cCx"1). D(ir



To see that the coefficients of c(x) are real, reason as follows. All 

complex roots of f(x) outside the unit circle have complex conjugates that 

are also outside the unit circle. Also, these complex roots will pair off 

because f(x) is real. All complex roots that lie on the unit circle will 

pair off with conjugates that also lie on the unit circle. Because exactly 

half of these roots and half of their conjugates are included among the 

m d. group, all the complex roots in the group will pair off with their conjugate

m 
It follows that the coefficients of II (x-d.) are real.

m -
It remains to be shown that (-1) f II d. is positive. Let fn denote

m i=l

the constant coefficient in f(x) and let e. denote the coefficients of
 J

m
n (x-d.). From D(l):

J-l X

p ni .2 
f = Z Z g* > 0. D(12)

Thus,

m m
i d. n 
1-1 x j-o

f = (-i)m f i d. n e > o

m 
= (-l) m f n d."" 1 > 0. D(13)
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APPENDIX E

THE SQUARE ROOT DECOMPOSITION OF COVARIANCE MATRICES OF N CONSECUTIVE 
RANDOM VARIABLES GENERATED FROM A MOVING AVERAGE PROCESS

Let h(x) be a real polynomial of order m with no roots on the unit

circle:
m

h(x) = ,Z h. x1 
i~o i

and let
m

TOO - ±l_m Y± x1

= h(x) hCx"). E(2)

Let F be a matrix of order N>m where the jth element in the ith row of F 

is Y-    Defined as such, F represents the covariance matrix of N consective

samples of a random series y. generated from
m 

y. = Z h.<J>. . E(3)
1 11   11 j=Q J 1 J 

where (}>. represents a unit variance white noise process.

Now define an Nx(N-hn) matrix H such that if h.. defines the elements of
13

H,

E(4)

From the above definitions

r = HTH E(5) 

Equation E(5) demonstrates that F is positive definite. According to 

Torsythe and Moler (1967) , this property insures that F can be uniquely 

decomposed into the product of an upper triangular matrix with positive 

diagonal elements, G, and its transpose:

F = GTG E(6)



Let gj . denote the jth element in the ith row of G.

Now from the previous theorem, there exists a unique polynomial g(x) 

of order m, with all roots on or outside the unit circle, such that

g(x) gCx"1) = y(x). E(7)

Note that as h(x) has no roots on the unit circle, neither do > (x) 

or g(x). Let g. denote the jth coefficient of g(x). 

Theorem:

^ ISn,n+3 ]   gd E(8) 

In other words, the entries on and. above the diagonal in the nth column 

(or on and to the right of the diagonal in the nth row) of G approach 

the coefficients of g(x) as n grows large.

Proof: As G is upper triangular with non-zero diagonal elements, G has an 

inverse, G

From E(6)

= GT E(9)

Now consider the following series of linear equations:

N
. i=l,.....,N E(10) i

where (j>, ~ 0 for j<0, j>N, U_ , . . . . .U correspond to the elements in the j  in
T nth column of G , and all the U. outside these bounds remain unrestricted.

From E(9) it should be clear that the $. will correspond to the entries
J

in the nth column of G . As G is upper triangular, <J>.=0 for j>n. Also, 

II, , . . . . .U _ 1 will be zero due to the triangularity of G. 

Taking the z transform of E(10) gives:

Y(z) <J>(z) = U(z) E(ll) 

or

(j)(z) = U(z)/y(z). E(12)



31

T 
The zero structure the y. ^n^ $  and t^c triangularity of G implies that

U.=0 for 0<i<n, i<-nH-l, or i>n+m. Furthermore, as a polynomial in Z, tK z ) ca" have 

no poles. It follows that the numerator in E(12) must have the same 

roots as the denominator. This provides 2m equations for the 2m-KL

unknown U.. Specifically, the U. must satisfy

-m-fl . n-fm
Z uVaJ + I U aj = 0 E(13)

j=0 3 j=n J

where a is a particular root of y(x) . It should be clear that
-mrfl , n+m -m+1

lira [ E U. a3 4- I U. aj ] = I U. aj = 0 E(14)
nco j=0 J j=n J J«-0 J

for |a|<l. If any root with a norm less than 1 has a multiplicity k>l the 

following equations must also be satisfied

I, [jx(j-l)x...(j-p+2)J U a" = 0 P=2,....k E(15) 
j=-0 J

The m roots of y(x) within the unit circle will provide m linearly independent, 

homogenous equations for UQ ....U ,, through E(14) and E(15), Obviously,

Thus

n-fm 
. E 
j-n

. 
U a3 » 0 E(17)

for all a such that |a|>l, i.e., the remaining U. form a polynomial with the 

same roots as g(x) .

o
Consequently,

)] - kzn g( 2 ) E(18)
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and

= kZng(z)/Y(z)

= kzng(z)/g(z)g(z~~ )

= kzVz"1)"1 E(19)

^ [g X J = kg. E(20) n+j n-*» I6n,n+j j 6j

Equating coefficients of z gives:

1±m 

and

lim r ,  , _ lim r -1 i _ , -1 
~ [8n-j,n] ' kgj

where g. is the jth coefficient of g(x) and g.. is the jth entry in the 

ith row of G

It remains to be shown that k=l. By definition, U ....U . willJ n n4m

correspond to the elements on and to the right of the diagonal in the nth 

row of G. Also, <£-... <J> will correspond to the first n elements in the 

nth column of G~~ . Thus 011*1 because GG~ =1. From E(20), U =kgfl and 

from E(21) 4> = k g .Consequently,

Finally,

2 . . -1 
= l/g0g0 .

g(x) g(x)"1 = 1. E(22)

Equating the constant coefficients on either side of E(22) gives the 

desired result:

g080 = 1 '


