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ABSTRACT

An efficient procedure is described for computing the maximum likeiihood
estimates of parameters associated with a transfer-function model defizing a
linear relationship between two discrete time series. Two equivalent
expressions are developed for the likelihood of the transfer function
parameters, given observations of the input and'output series that are zach
normally distributed about their true values. Several algebraic theorcas
are developed which provide shortcuts for the numerical evaluation of cae

of these expressions.
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Maximum Likelihood Estimation of
Transfer Function Parameters When Input as Well as Qutput
Observations are Subject to Error

by

’ David D. Goodman

ABSTRACT

An efficient procedure is described for computing the maximum likelihoc:
estimates of parameters associated with a transfer-function model defining a
linear relationship between two discrete time series. Two equivalent
expressions are developed for the likelihood of the transfer function
parameters, given observations of the input and output series that are each
normally distributed about their true values. Several algebraic theorems
are developed which provide shortcuts for the numerical evaluation of one

of these expressions.

INTRODUCTION

Consider the problem of estimating the behavior of a discrete time series,

%5

random and jointly weakly stationary (see Bloomfield, 1976 for a precise defini-

» as a linear function of a related time series Bi. When the two signals are

tion of this property), the linear least squares estimate can be computed from

the first and second moments of the joint probability distribution. Specifically,

o, = Toores BT+, &)

o

where § is a vector of the Bj variables used to form the estimate, aé is a
vector whose elements are all identical and are equal in value to the mean of

the Bi series and in number to the number of variables in §, ua is the mean



of the o, series, faB is the covariance vector between o and ﬁ, and 283 is
the covariance matrix of the Bj (Whittle, 1963); the superscript T and -1,
respectively, indicate the transform and inverse of a matrix. Estimates

of the above moments can be used at some cost in prediction accuracy whenever
the precise values are not known.

When randomness and(or) stationafity is in doubt, a logical strategy is to
fit a functional relationship to concurrent observations of the two series trat
can be used, subsequently, for estimation purposes when observations of only
one series are availéble. The most general linear relationship between the

oy and Bi is given by:
n m
+ Za,a, .= I b, B
j=13 I 3=

oy + U (2)

where the aj and bj and U are parameters that are adjusted to achieve the

fit. In most time series applications that employ eq. (2), observations

of ai are assumed to be normally distributed about oyt

y.

Yi T %4 +'§i _ (3

where the ei derive from a zero mean, unit variance, time dependent Gaussian

random process. Observations of Bi are usually assumed to be exact:

x, = 8., (4

i i
Theory dictates that both the maximum likelihood and the least squares estinates

of the aj, bj’ ai, Bi’ and Y are those parameter values that minimize the suzs

o

. «=0f squares of every € that is associated with an observed Q. If the g, are
not normal these values will still be the least squares estimates. If the €
are not independent in time, computation of the maximum likelihood and(or) least

squares estimates is more complicated.



The popularity of the observation model defined above probably stzms from
the ease with which approximate maximum likelihood estimates (MLEs) cza be
computed from observations. (See Box and Jenkins, 1970, for an exhaucs:ive
treatment of this procedure.) However, the inherent assumptions in ecs. (2)
and (4) are often not physically justified by measurement errors or ot-er
physical phenomena. When these assumptions are not justified, the obszrvation
model and the minimum Zsiz objective really do no more than define cri:eria
for fitting eq. (2) to observations. It is the contention of the autkcr that
in applications where there is no basis for discriminating between the nature
of the observations of the two series, it is more reasonable to assume that

both x, and vy are normally distributed about their means;

X

1 si + Gi (5)

Y Ty + € (6)
where € and § are normally distributed with mean, 0, and standard devi:tion, ©.
In addition the € and § are uncorrelated, so that

0 (i#d),

E(ei,ej)

E(Ei,éj) 0 (all 4i,3).

The major purpose of this paper is to develop an efficient procedure fcr
computing the maximum likelihood estimates of the aj, bj and U for the aodel

defined by eqs. (2), (5), and (6).

FORMULATION OF THE LIKELTIHOOD FUNCTION AND PRELIMINARY MINIMIZATION STE®S

‘Assume one has N consecutive observations of oy beginning at time k and

M observations of Bi beginning at time p. The likelihood of the parame:ers



given these data is the joint probability density of the observations Xy and
¥yt

Li (aj, bj, o By y) =

) .
5 ‘NJZ’M | Mpl ,  WHel )
(2Iic™) exp -—5 ( I (x;,-8)"+ I (y;-0)7) (7N
2 . i i . i i
20 i=p i=k

The likelihood function Li(aj,bj,ai,Bi,u), that will be ‘subsequently used
is the portion of the negative log of eq. (7) that varies with the parameters:

M+p-1 2 N+k-1 2
Ll(aj,bj,ai,Bi,u) = I (¥ - Bi) + (yi - o). (8)

i=p i=k
Clearly, minimizing eq. (8) maximizes eq. (7).
The first step in minimizing Li is to express the function in terms of
an independent set of parameters. Using eq. kZ), some of the a, can be
expressed in terms of the Bi, bj, aj, M and- other ai. Before reexpression, part
of the likelihood function will be put in matrix notation. This separation

will facilitate the further analysis.

o vy



Let jl and j2 delimit the segment of a, that can be expressed strictly

i

in terms of other parameters. It should be clear that jl is the larger of

k + n and p + m and that is the smaller of N+ k - 1 and M + p -1.

I2
The oy in this range can be expressed through eq. (2) in terms of each other,

H, the aj and bj’ the Bj between jl - m and j2 inclusive and the ai between

jy-n and ip - 1.

Now let P = + 1, § be a vector comprised of the P + m Bi between

Jp 701
3 3 ] .). I -*
jl - m and g inclusive, x be a vector of corresponding Xgs o be a vector

->
composed of the P + n oy between jl - n and j2 inclusive, and y be a vector oI

corresponding Yy+ Using these constructs the likelihood function becomes:

> T,>

G-DIE-DH+GT-DTF -

Ll(aj ’bj ’ai,Bi’u)

j,-m-1 M
1 2 2
+ L & -BO° I (g - B
i=p . i=j2+1
j;-n-1 , N )
+ I (yi - ai) + I (yi - ai) . (9)
i=k 1=] 41

Note that at least two and possibly more of the four summations at the end of
eq. (9) will not exist, depending on the overlap between the two observation
segments,

The parameters involved in the vector portion of the equation are inter-
dependent while the remaining parameters are not. Specifically, a total of P
linear relationships can be established between the elements of 3 and g through
eq. (2). In the following developments, the first P elements of o will be
eiiminated by this equation.

Define a vector 8 as the augmentation of ngith the last n elements of a

and let IP be a (P + m) x (P + m + n) matrix such that if ipij defines the eleme::s

of 1P,



ipij =0 i#]
= 1 i=7j. (10)
Consequently
B = 198 . - (11)
Next define the matrices A and B in the following manner. If a,, Zefines

ij

the jth element in the ith row of the (P + n) x (P + n) matrix A, then:

aij =0 j<i
=1 j=1i
= 3 i >3 > i <
aj_.i i+n2>j i, i1 <p
=0 j>i, i >P. (12)

If bij defines the jth element in the ith row of the (P + n) x (P + n + m)

matrix B, then

= < 1

bij 0 3 i
= bj-i i+m>j>1i,1<p
=1 j=i+m+1,1i>p

=0 j>di, i<pP. (13)
According to eq. (2) and the above definitions,
Ax = B§ +u (14)

-5

where u is a vector of length P + n, the first P elements of which are u and
the least n elements of which are zero. As A is an upper-triangular sguare
matrix with non-zero elements on its diagonal, its determinant is non-:ero and

its inverse exists. Consequently,



3 =At@E + D) (15)
and the likelihood function becomes:

Lia;,b,,B;,0,,1) = [x - 12817 [% - 1881 + [3 - A~ BB+ YT - A/ EE+D) ]

j,~m-1
1 2 M 2
+ X (xi - Bi) + z (xi - Bi)
i=p i=j2+l
jl-n—l N
2 2
+ X (yi -ai) + X (yi - ai) . (16)
i=k i=j,+1

Note that eq. (16) is quadratic in 3, Bi and a . This means that the firs:

will be linear in these fzrameters.

derivative of Li with respect to 3, Bi, or o,

It makes sense, then, to eliminate these parameters from eq. (16) as a first
step in minimizing the likelihood function.
Setting the derivative of eq. (16) with respect to the o, and Bi rot inclcdeé

in g zero generates

x; = By
and

y. =0, . a7

This result demonstrates that "outlying' observations do not contribute to the
likelihood function at its maximum.

Setting the derivative of eq. (16) with respect to 3.to zero gives:

-1p%x + 197198 - BT (a™H)Ty + BT aTa) 188 + BT(aH)TR = o
or
- - - _
(BTaTa)™B + 1pT1P18 = 17X + BT (A LTS - a0y, (18)

Now let



T = [BT(ATA)’lB + IPTIP]. (%)

Then .
3ot 4 BTHG - A 1. - (20)

Replacing eq. (20) in eq. (16) generates:

ertreeTx 4 T HG - At

, e
Li(ay,by W =[x
-]

x - eIt Iex + T HTG - A1

+ [y - A tertpoetx + T hT@ - AT+ a1t

- — -_ -> — ->
7 - a et e BT LT oAt D148 @
where the summation terms at the end of eq. (16) have been dropped off Zue to

eq. (17). After considerable algebra and cancellation, Li can be rcexpressed &s:

il

ST - - -1 - —1.T.>T
Li(ay,by,0) STip - pertretI 4 YL - A LT Ty

= e BT h T+ 2T el (T TR
Ml T, Tl o ey 1 1T 1 s
+ 2y [A "BI'7B (A™A) - IJu+ uf(A ) [T - A BT "B & "1lu. (22)
Note that the above expressioﬂ is highly non-linear in the parasmeters aj
and bj' As such, it is probably best minimized through iterative procedures
which require repetitive evaluation of eq. (22). 1In the following paragraphs,
an equivalent expression is developed which is computationally eatler to evaluate.

A COMPUTATIONALLY EFFICIENT EXPRESSLONIOF THE LIKELIHCOD FUNCTION

Consider the following vector of random variables:

o e

?5=A’y’—3x-u=A(3+’€)—B(§+?§)-I§ (23)

”~
.where A is a P x (P + m) matrix formed from the first P rows of tre matrix A,

~
B is a P x (P + m) matrix formed from the first P rows and p + m <~lumns of the




£

-

+ . I3
matrix B, € is a vector containing the ei that are associated with the Y5 in v,
and 3 is a vector containing the Gi that are associated with the x; in x. From
eq. (2) it should be clear that

¢

~

AZ - BS . (24)

Now let

E[D0] . (25)

1>
I

Due to the independence of the €4 and Gi
T = [AgT + BgT] . (26)
Finally, construct a vector of P uncorrelated, unit variance random variables

A

3 by decomposing I' according to
¢fc =T . . (27)
and defining ] by
8§=-@hT . (28)
The existence of a matrix G that satisfies eq. (27) is guaranteed because T
is positive definite, as can be seen from eq. (26). The desired alternative

expression of the likelihood function is the portion of the log of the

density function of g that varies with the parameters aj, bj’ and y:

Li(a;,by,0) = F R

[Ay - Bx - o] T 1[AY - BX - o]

e 1e1n + 3TaTr1A] 5

2T Ay + 22T BT

A-1+

STATrE + 3 | (29)
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Although the general equivalence of Li and Li” has not yet been proven
analytically, the two expressions produced identical values in each of twenty
separate numerical experiments. An analytical proof of the equivalence is
given in Appendix A (p. 17-18) for the special case of a pure moving avarage

model, i.e., a; = 0, for all i>l.

THE COMPUTATIONAL COST OF EVALUATING THE LIKELTHOOD FUNCTION

Inspection of eq. (21) reveals that among all the operations required to
compute Li, those involving the construction and inversion of I require the largest
number of multiplications to complete. A procedure for completing eack of these
operations is described in the following three paragraphs. Although thLzse
procedures are chosen to offer an efficient approach to the computatior of their
associated operations, no claim to optimality is made. The number of c:ltiplication:

required to complete each procedure is listed in Table 1.

Table 1
Operation Number of Multiplications
1) [aTa) ' 3/2p%n
2) B [aTA] 1B P2n
3) r = [8¥[aTa171B + 1PT1P] 0
4) e’ + BT HTE - D) 1/6p°

Total Multiplications Required: 1/6P3 + P2 (3/2 n +m)

The producl in the first step is computed by solving the following two

systems of linear equations:

Ac, =D
c, = .
J J (30)
T -
A'd. = ¢ (31)

3 J
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where gﬁ is the jth column of B and 23 and 3. are the vectors to be computed.
It should be clear that 33 will correspond to the jth column of the desdired
product.‘ To understand the figure given in table 1 recall that A is by
gerinition an upper triangular, P + n degree, square matrix of bandwidtﬁ n.
Also, the jth column of B contains only zero entries below the jth element.
It follows that the last P + n - j entries in 25 will be zero and that eq. (30)
can be solved using back substitution in approximately nj multiplicatiomns.
Solution of eq. (31) through back substitution without shortcuts requires zabout
(P + n)n multiplications. As B contains P + n + m columns the total nucmber of
multiple operations required is approximately

P+ntm 2

Z (P+n)n+ in =< 3/2P™n

i=1

whenever P>>n,m.
The product formed above will be a (P + n) x (P + n + m) matrix that is

In general not banded or triangular. As B has exactly m entries in nearly

every row, the second step will require approximately
L2
- P+n+m®P +n)mn”~ Pm

multiplications.

The product in the fourth step is computed by solving the following

system of linear equations:
>
Te =d (32)

-> T-> - - ->
wh-y2d = IP'x + BT(A 1)T(y - u) and is assumed to have been computed
>
previously. It should be clear that c¢ is the desired product. That T is
Positive definite can be seen by viewing the matrix as the sum of two positive

definite matrices [A~1B]T[A—1B] and IPTIP. This property insures that eq. (32)

JRRSEUR S £
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can be solved analytically through symmetric Gaussian elimination (explained
in Appendix B), cr iteratively through the Causs-Seidel method (Forsyvthe and
Moler,.1967). As Tisa (P+n+m) x (P+ n + m) matrix, the former process
requires on the order orvllb P3 multiplications when P>>n,m. 7The latter
process requires exactly (P + n + m)2 k operations where k is the nurcber of
iterations required to achieve satisfactory convergence.

Table II summarizes the computational cost of evaluating the likelihood
function using eq. (29). The particular sequence of matrix operations is
chosen to minimize the total number of multiplications.

TABLE II

Operation Multiplications Required

1) Ay . Pn

2) Bx Pm

3) [Ay - B% - U] 0

4) AT 1.2

5) 38T 2n?

6) T = AAT + BB 0

7 rlay - BX - o] 4 P(p’ + 2p)

8) [Ay - Bx - o1T I"1[ay - 3% - 0] p

Approximate Total Number of Multiplications P(n+ﬂH%p2+2p+1)

The figures given for the multiplications required by the first twc steps
are based on the fact that A is a P x (P + n) matrix with exactly n non-zero
elements in each row while B is P x (P + m) with exactly m non-zero elements

per row. To understand the tigures tor ‘steps four and tive let ;ij define
AN ~

the jth element in the ith row of AAT. From the definition of A it can be seen

that:



[
)

n—|k| -
2 ik = L2 3354 k| (33)
j=0
where a, = 1. It follows that there are only n + 1 different non-zero

0

values among all the entries of AA . ‘'he numbers of multipliicatious
necessary to compute them is given by

n-1

~1 2

Zn-k~-—2—n.

k=0

A
The figure given for BB" is similarly explained.
The figure given for step seven is based on the assumption that the
A

product is computed through the following procedure. First ' is decomposed

according to
r =clc ' (34)

where G is upper triangular with positive diagonal elements. The process

is completed by solving the following two systems of equations:

Ge = [Ay - BX - u] - (35)
5> >
GTd =c (36)

It should be clear that 3 is the desired product.

It can be seen from eq. (26) that f is a positive definite square matrix
of degree P and bandwidth p = max(m,n). The positive definiteness guvaranrees
the existence and uniqueness of G (Forsythe and Moler, 1967). The bandedness
implies that G will also have a bandwidth of p. An algorithm is described in
Appendix B that can pertorm the decomposition inulcaceu Dy €q. (. #; Ci. matrices
with these properties using approximately %?pz multiplications. The systems

eqs. (35) and (36) can he anlved through hack substitution using approximatelw

Pp multiplications, due to the'triangularity and bandedness of G.
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Table II shows that the EPp multiplications required by the decompo

el

of T makes that step the most critical link in the evaluation of the likelihcod

function through eq. (29). The last section of this paper demonstrates how

this decomposition procedure can often be cut short due to the convergence of

the rows of G,

THE CONVERGENCE OF THE DIAGONALLY POSITIVE, UPPER-TRTANGULAR SQUARE ROOT
DECOMPOSITION OF COVARIANCE MATRICES OF FINITE CONTIGUOUS SEGMENTS OF
STATIONARY TIME SERIES,

Consider the vector of random variables $ defined by eq. (23). Let U

[
1

-
denote the ith element in ¥, It should be clear that the covariance structure

of the wi is defined by:

n—-|k| m—[k‘

- 2
IR = = [T . .
L[piyi ) Y [ ;so a3,y + jEO bjbj . 10 0<|k|<max(a,n)

|k | >max (n,m) (37)

It can be seen from eq. (26) that the Yk

A

correspond to the elements of the
~

covariance matrix I'. Specifically, if Fn ot k| defines the n+|k[th entry in the
3

A

nth row of T, thef Tﬂ,h*l%l f Y+ -

Now define
(=) = I qz° (38)

as the z transform of any series gy - It can be seen from eq. (37) that

Y(z) = a(z)z(z %) + b(z)b(z 1) (39)

Next express wi as a moving average of an independent series of zero
mean unit variance Gaussian random variables ¢i:

oo}

b= T oeby (40)
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where the cj are such that c(z) is a polynomial in z of degree p = max(n,m)
with roots that all lie outside the unit circle. Computing the covariarc

structure of the wi using eq. (40) gives:

p-|k|
e T Iy Citael] 0x|k|<p
=0 [k |>p (1)
or
Y(2) = c(@)eEh (£2)

The existence and uniqueness of the cj is proven in Appendices C and D.

Finally consider the following decomposition of I':
r =cc (-3)

where G is upper triangular with positive diagonal elements. As mentiozad in

the previous section, the existence and uniqueness of G follows from the fact
A

that I is positive definite. Also, in Appendix B it is shown that G has a
bandwidth of p. Now let 8 i correspond to the jth element in the ith row
2

of G. The critical result,

] =c, (-4)

Hm g, g j

n-»oo
is proven in Appendix E. In words, eq. (44) indicates that the entries in G on ani

to the right of the diagonal in the nth row converge to the ¢, series asn

3

gets large. Fortunately, the decomposition algorithm described in Appsndix

.. computes G one row at & time, starting at the top. Also, the number of

>
multiplications required to compute the next row remains constant at lp'

2
after the first p rows have been computed. More importantly, examination

of the decomposition algorithm reveals that corresponding entries of all

matrices, G, with the same "seed polynomial", Y(z), are identical and



independent of the magnitude of P! This means that the number of rows
required to achieve satisfactory convergence is also independent of P. It
follows that for problems with large enough concurrent observation segments,
the matrix decomposition -requires %sz multiplications where Q<<P, and the

1>
limiting operations in computing T lc are the solutions of eqs. (35) and (36).
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APPENDIX A

PROOF OF THE EQUIVALENCE OF Li AND Li”~ FOR THE CASE OF A PURE MOVING AVERAGE
PROCESS

From previous definitions it can be seen that when eq. (2) defines a pure
moving average model, i.e., ay = 1 and a = 0 for all n>0,
1) A is a PxP identity matrix;
2) B is a Px(P+m) matrix whose elements are defined by
bij =0, j<i
- T
bij bj_i’ '1_33
3) IP is (P+m) x (P+m) identity matrix;
4) A is identical to A; and

5) B is identical to B.

When used in eq. (22), these simplificationg generate:
Litb,,W) = Ar-r 1% + 3-sr ety
2% ietyy + 2t r et
+ 2y [ (8T 1BT-11% + o' [z-BT BT ]a AQL)

where T = [I+BTB].

The alternate expression, eq. (29), becomes

~1 = > >

" -> > -
Li (bj,u) = [y-Bx-KJTF [y-Bx-u]
= ¥t eix + Ty
8Ty + 2T r T

Ju')—)T

~r
Voey

~1,T = T -1.T,>

[BI7 "B -I1a + w [T-RI" "R 1u

where 1’ = [I+BTB].
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The equivalence of eqs. A(1l) and A(2) can be established by demonstrating
the following:

2 [1-r1 = BT

o)

p) [T - BI18T) = 7™ ang

¢) I''B =BT ™.

To show (c), start with the following identity:
BT[1 + BBY] = [1 + BTB]BT

and substitute definitions of T and T;

T

BT = BT

5> 11T = Tl

To show (a), post multiply (c) by B and reexpress the right side of the

equation:
sir1p = 1 1pTp
= rr-13
= [I-P‘ll .

Finally, demonstrate (b) by premultiplying (c) by B, postmultiplying by

I', and using some algebra:

BB. = B 1BIT
+ [T-1] = I 18TT
> 1= [1-8r 187r
-1

-7 1877 .

v
=
]
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APPENDIX B

DECOMPOSITION OF POSITIVE DEFINITE BANDED MATRICES INTO SYMMETRIC LU FORM:

Let T be an Nth-degree positive definite matrix with a bandwidth of p.

As shown in Forsythe and Moler (1967), I can be decomposed according to

T =clg B(1)

where G is unique, upper-~triangular, and has positive diagonal elements.

This appendix consists of a theorem concerning the bandedness of G, and an
algorithm for computing its entries.

Theorem: G has a bandwidth of at most p.

Proof: Let 8 5 be the jth element in the ith row of G and define a set ¢
consisting of all 85 such that j>i+p-1. Also define subsets ¢m’ m=1l,...N-p
consisting of all the elements of ¢ that fall in the mth row of G. Finally,
let Yi,j denote the jth element in the ith row of T.

a) if gm,n €¢, then Ym,n=0' This follows from the bandedness of =
and the definition of ¢.

b) 1f 8n.n €, gm—k,n £ for’all k s.t. 1<k<m. This follcws from
the defintion of ¢. In other words, all of the elements in
the column above an element of ¢ are also in ¢.

c) If Ym,n =0, and gm—k,n=0 for all k s.t. 1<k<m, then gm’n=0.

This result follows directly from the general equation relating

the elements of T and G:

N
A L S -
wyn =1 j,m j,n
m
= I
j=1 &5.m * &5 n
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-~

= T Buyn X84 B(2) >
=0
1 m—-1
> = - I . X . B(3
gm,n 2. _ [Ym,n 3-1 gm—J,m gm—;,n 3
m,ML .

Note that 8n.m cannot be zero as G by definition has strictly positive
diagonal entries.

Now consider the set ¢m' From (a), corresponding elements in [ will
be zero. According to (b), all elements in the columns above the elements
of ¢m will be elements of ¢. It follows from (c) that if the elements of ¢j,
j=1,...,m-1 are all zero, the elements of ¢m will be zero as well. The elements
of ¢l are zero because they meet the requirements of (c¢). By induction, thez
the elements of every subset ¢m are all zero, and the bandwidth of G is no
greater than p.

The algorithm proposed here uses eq. B{3) to solve for each gm, . The

n

limits of this equation are changed slightly to take advantage of the bandednesss >f

G:
1 m-ntp~-1
g = [y - Z g .. _xg . ] B(4)
m,n gm,m m,n =1 m J,m m-j,n
and
j<m

Note that each gm,n is expressed in terms of a diagonal entry plus entries of
previous rows. It follows that gm,n will be the only undetermined variable
in B(4) if computations start with 81,1 and proceed from left to right across
each row.

Except for the first p rows where the k<m reauirement sometires restriecta
the summation limits, the computation of each element gm,n requires n-ntp-~1

multiplications to complete. The total for each row m is

mt+p
I m-j+p-1-~ %pz,
j=m
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APPENDIX C

ROOTS OF SYMMETRIC POLYNOMIALS OF EVEN DEGREE

Let p(x) be a polynomial of degree 2n,

- 2 2n
p(x) = a, + a,x + ax” ... + a, X Cc(1)
such that

qn - 8 %n-1 731 °cf %1 T el . c(2)

Theorem: The 2n roots of p(x) can be divided into n pairs, with each root in
every pair being the reciprocal of its associate.

Proof: 1If p(r) = 0, then

2n _
a,y + ar + ayr ... + a, r = 0 C(3)
e 2n .
Dividing by r gives
-2n -(2n-1) -

agr +ar - ta, =0 C(4)
or

a r-Zn + a r—(Zn—l) «se +a. =0. Cc(5)

Consequently p(r—l) = 0.

It follows that r and 1:_1 form a reciprocal root pair except for when r=1 or -1l.
It will now be shown that if -1 or 1 are roots of p(x), they are roots of even
multiplicity.

First assume that 1 is a root of p(x). It follows that

2n n-1

La,=0= L 2, +a c(?)
1=0 1 =0 T ®
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Now consider the derivative of p(x) evaluated at x=1:

2n n-1
4 - = s- ( - .
P (x)lx=l 150 iai i;o (i + (2n-1)) ag + na,
n~-1 ’ R
= q ['Z 2ai + an] =0 c(8)
i=0

Thus 1 is a root of p“(x) if it is a root of p(x). It follows that 1 has a
multiplicity of at least 2 if it is a root at all.

Next assume that -1 is a root. It follows that

2n i n-1- i a
Z (-1) a; = 0= I (-1) 2ai + (~1) a . c(9)
i=0 i=0
Now consider the derivative of p(x) evaluated at x = -1.
2n R A n-1
p’(x)l _ .= I ia, (-1) = I (<1 (i + 2n~1)) a. + (-1) "na
x=-~1 _ i . i
i=0 i=0
n-1 i n
= —n[iio (-1) Zai + (-1) an]
=0 ’ Cc(10)

Thus -1 has a multiplicity of at least 2 if it is a root of p(x).

Now define q(x) = (x~r) (x - %)

X2 - (r + %)x +1 c(11)

and let

P (x) = p(x)/q(x) c(12)
+shere r is a root of p(x). It should he clear that n(x) is di-isible by a
and that p” will be a polynomial of degree 2n-2. If p”“(x) is symmetric, then

by induction the roots of p consist of n reciprocal pairs.
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To show that p~ is symmetric, let a'] .o a’z(n_1\ denote the coefficients

of p” and consider the equation

al(x) o (x) = n(x). coan

Equating coefficients of x gives

LY 8n = 2 2n-1
3 T 29 T q2m-1) T %0
2) = -+ a” + a”
2n-1" T TEY 2 2(-1) T 2 2(-1)-1
a, = -(r + l) a’ + a” - a” = a”
1 T 0 1 2(n-1)-1 1
3) a = a” - (r+ l) a’ + a”
2n-2 2(n-1) b 2(n-1)-1 2(n-1)-2
a, =a’_ - (r +~l) a’. + a’ + a“ = a”
2 0 r 1 2 2(n-1)~2 2
n-2) a =a” - (r + 10 a” + a”
n+2 n+2 r n+l n
a = a” - (r + l) a” + a” a~ = a” C(14)
n-2 n-4 T u-3 n-2 n n-2 °



APPENDIX D

THE SYMMETRIC DECOMPOSITION OF SPECIALLY FORMED SYMMETRIC POLYNOMIALS CZ
EVEN DEGREE

Let gl(x) define a series of real polynomials of degree n,. Let
p X X
i i, -1
f(x) = X g (x) g(x") D(1)
i=]1 '

Theorm: f(x) can be expressed in the form
-1
£f(x) = c(x) c(x ) D(2)

where c(x) is a unique real polynomial of degree m = max (nl e np) w-ise roots
fall on or outside the unit circle.

Proof: Let h(x) = xmf(x) D(3)

From D(1) it follows that h(x) is a real, symmetric polynomial of degrzz 2m.
From the previous theorem, h(x) has m reciprocal root pairs. Thus,
m m

-1 _ -m -—
hm El (x—-di)(x—di ) = x fm iEl (x—di)(x—di

m 1

f(x) = x ) D(4)

i
where the di are the roots of h(x), hm is the consfant multiplying the sz term
in h(x), and fm is the constant multiplying the  term in f£(x).

Lemma:

All roots of f(x) that fall on the unit circle are of even rc:ltiplicity.

Proof:

Let r be a point on the unit circle. Let T be the complex ccnjugate

of r. It follows that r = r-l and that
i i, -1 i —
g (r) g (™) = gl gD . D(5)

i
Now express g as a product of its roots:
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a b
gG) =K I (x-R) T (x-I)GT) D(6)
j=1 I k=1
where a is the number of real roots of gi,
b is the number of complex-conjugate root pairs of gl,
a+2b =n,,
J s

Rj is the jth real root of-gl(x),

I, is one membetr of the kth complex root pair of gl(x), and

k

K is a constant.

Thus,
i i— 2 2 — b — —— ., =
g () g(r) =K I (r-R.)(r-R,) TT (x-I,)(r-I, )(r-I, )(x-1,)
s J J _ k k k k
j=1 k=1
a b
=& 1 |e-r |® 0 |e-1 |? [Tor |?
=1 1 k=1
> 0. _ D(7)

Now suppose that f(x) has a root, r, which lies on the unit circle, i.e.,

1

£(r) glry glr)” D(8)

[]
N ™o

i=1

gty ¢t@
1

I
N ™Mo

i
'= O'

As all the terms in the above summation are non-negative by D(7), it follows
that gi(r) gi(;) = 0 for all i. Thus, r is a root of either gi(x) or gi(x-lj.
Suppose r is not complex, i.e., r=1 or -1. It follows that r is a root of
multiplicity k of both gi(x) and gi(x-l), and is a root of gi(x) gi(x—l)

of multiplicity 2k. If r is complex and 1s a root or gi(x) of multiplicity
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k, then T or r—l is a root of g(x) of multiplicity k because gi(x) is real.
It follows that r will be a root of gi(x-l) of multiplicity k and of

gi(x) gi(x-l) of multiplicity 2k. A similar argument produces the identiczl
concliusion when one begins with r being complex and a rdot ot g(x-l) ot
multiplicity k. It follows that if r is a root of f(x), it is als> a root

of even multiplicity of each of the products gi(x) gi(x_l). By thz

distributive property then, r is a root of f(x) of even multiplici:y.

Now separate the 2m roots of f(x) into two groups. In one group iaclude
those roots that fall outside the unit circle, plus one half of each se: of
roots that fall on the unit circle. By the reciprocal property of ever
symmetric polynomiais, both groups will have m members, each with a reciprocal
counterpart in the second group. It should be clear that the division Is unique.
Néw, let the di in D(4) correspond to the m di in the "outer" group, azi carry

out the following algebraic manipulations:

-m o -1
f(x) = x fm 121 (x-di)(x--di )
o | -1
= fm ‘H (x—di)(l-(xdi) )
i=1
SE T ot (D) 6l D(9
m . i x= i x - i (9
i=1
Let
n m 1 @
c(x) = V(-1) £, d; il (x-dj) . D(10}
i=1 j=1
Thus,
-1
f£(x) = c(x) c(x 7). D11’
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To see that the coefficients of c(x) are real, reason as follows. All
complex roots of f(x) outside the unit circle have complex conjugates that
are also outside the unit circle. Also, these complex roots will pair off
because f(x) is real. All complex roots that lie on the unit circle will
pair off with conjugates that also lie on the unit circle. Because exactly
half of these roots and half of their conjugates are included among the

m di group, all the complex roots in the group will pair off with their conjusates.

m
It follows that the coefficients of i (x—di) are real.

m
It remains to be shown that (—l)m f I d 1 is positive. Let fo denote

the constant coefficient in f£(x) and let ej denote the coefficients of

m
II (x-d,). From D(1):
. 1
j=1
p M ;2
fo= 2 I g >0, D(12)
i=1 j=1 '
Thus,
m m
£, = (DT £ W dl‘l T e.250
i=1 j=0 3

m
= (™
= (-1) fm 12 di > 0. D(13)
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APPENDIX E

THE SQUARE ROOT DECOMPOSITION OF COVARIANCE MATRICES OF N CONSECUTIVE
RANDOM VARTABLES GENERATED FROM A MOVING AVERAGE PROCESS

Let h(x) be a real polynomial of order m with no roots on the unit

circle:
m i ,
h(x) = iéo h1 X ‘ E(1)
and let
o i
Yx) = jE Y ¥
-1 i
= h(x) h(x 7). E(2)

Let T be a matrix of order N>m where the jth element in the ith row of T

is Y, .. Defined as such, I represents the covariance matrix of N consective

1-]
samples of a random series vy generated from
" m
y. = L h.¢ E(3)

1 J=0 J 1=]
where ¢i represents a unit variance white noise process.
Now define an Nx(N+m) matrix H such that if hij defines the elements of
H,

h, . =20 i>j

=hy_; 3. E(4)

From the above definitions

' =HH E(5)
Equation E(5) demonstrates that I' is positive definite. According to
Torsythe and Moler (1967), this property insures that I' can be uniquely
decomposed into the product of an upper triangular matrix with positive
diagonal elements, G, and its transpose:

r=clc E(6)



‘Let gij denote the jth element in the ith row of G.
Now from the previous theorem, there exists a unique polynomial g(x)
of order m, with all roots on or outside the unit circle, such that
g s = Y. E(7)
Note that as h(x) has no roots on the unit circle, neither do Yy (x)
or g(x). Let gj denote the jth coefficient of g(x).
Theorem:

1lim [g

n->o

n,nti! T 8 E(8)
In other words, the entries on and. above the diagonal in the nth column
(or on and to the right of the diagonal in the nth row) of G approach
the coefficients of g(x) as n grows large.
Proof: As G is upper triangular'with non-zero diagonal elements, G has an
inverse, G_l.
From E(6)
rct = ¢! E(9)
Now consider the following series of linear equations:
N
z
i=1

- where ¢j = 0 for j<O0, j>N, U

Yig 05 = U : i=l,.....,N  E(10)

1,.....Un correspond to the elements in the
nth column of GT, and all the Uj outside these bounds remain unrestricted.
From E(9) it should be clear that the ¢j will correspond to the entries
in the nth column of G-l. As G-1 is upper triangular, ¢j=0 for j>n. Also,
U”""'Un-l will be zgro due to the triangularity of G.
Taking the z transform of E(10) gives:
Y(2) $(2) = U(2) ‘ E(11)

or

$(z) = U(2)/v(2). E(12)

3¢



3 The zero structure the Yi and ¢i and the triangularity of GTimplies that
Ui=0 for 0<i<n, i<-m+l, or i>n+m. TFurthermore, as a polynomial ia Z, ¢(z) can have

no poles. It follows that the numerator in E(12) must have the same

roots as the dencminator. This provides 2m equations for the 2m+l

unknown Uj' Specifically, the Uj must satisfy

-+l . n+m

£ u,al+ £ ou,al =0 E(13)
j:o 3 j:n j
where a is a particular root of y(x). It should be clear that
~artl n+m =-artl .
im[L U a +:f U all= 3% U, a =0 E(14)
ne j:o J j=n J j=“0 J

for la]<l. If any root with a norm less than 1 has a multiplicity k>1 the

AR A 5 AL R O 0

following equations must also be satisfied

~mrt+l

I [3xG-Dx...(-pt2)] U, JdPH Lo ook EQLS)
3=-0

TR

S

T Ny e

The m roots of y(x) within the unit circle will provide m linearly-imdepehdent,

homogenous equations for U

; o+ -U_pyp through E(14) and E(15). Obviously,
; lim (u WU ) = (0 0) E(16)

i n‘_m 0 .0 s -ml "0‘.,

; Thus

= n+m j

3 j=n

for all a such that la|>l, il.e., thg remaining Uj form a polynomial with the
same roots as g{x).
Consequently,

lim
qo LU(2)]

B

e
*

k2" g(z) E(18)

B s i
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and
L 601 = kz"g(2) /(2)
= kz"g(2) /g(2)g (2™ )
= ke"g(z )71 E(19)
Equating coefficients of z gives:
lim _ lim _ ,
n-ow [Un+j] T oo [gn,n+j] B kgj E(20)
and
lim _ 1lim [ -1 _ -1 .

where gj—l is the jth coefficient of g(x)—l and g;; is the jth entry in the

ith row of G—l.

It remains to be shown that k=1. By definition, Un""Un+m will
correspond to the elements on and to the right of the diagonal in the nth
row of G. Also, ¢1...¢n will correspond to the first n elements in the

nth column of G_l. Thus ¢nUn=1 because GG-1=I. From E(20), Un=kgo and

from E(21) ¢_ = k-lgU.Consequently,

2 -1
k® = l/gog0 .

Finally,
-1
g(x) g(x) = = 1. E(22)
Equating the constant coefficients on either side of E(22) gives the

desired result:

-1
8080 1.



