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Abstract

A model of landscape evolution based on a random-walk probability 
experiment provides a method by which the effects of uplift and-or denudation 
can be studied, in order to determine the rates of tectonic uplift that leave 
characteristic topographic imprints. The model, derived from a generalization 
of the Leopold and Langbein (1962) random-walk experiments, is a discharge- 
related, rather than elevation-dependent, model.

Implementation of the model on the U. S. Geological Survey Honeywell 
computer through computer program UDL (Uplift and Etenudation of Landscapes) 
allows visual inspection of the simulated landforms either by three 
dimensional mesh perspective plots on a cathode ray tube (CRT), contour maps, 
or contour perspective diagrams. Statistics describing the elevation 
distribution, slope distribution, and hypsometric integral are printed, with 
the option of producing frequency-distribution bar graphs at any stage of the 
simulation. Program testing in a Basin-and-Range type mountain block, plateau 
escarpment, and mesa setting show results consistent with qualitative 
understanding of landform evolution. Processes such as pedimentation, scarp 
retreat, and dissection are interpreted as the real world equivalents of the 
simulated landscape changes, which operate at realistic rates for the 
denudation rates used.

Introduction

Landforms evolve within the context of tectonic movements and erosion, 
which can maintain or modify morphometric characteristics such as relief, 
channel slope, and convexity of valley side-slopes. Davis (1899) described 
the topography of recently uplifted areas as youthful. The morphologic 
attributes of such areas distinguish them from areas that have had no uplift 
for a longer period of time. Davisian concepts of the geographic cycle are 
still applied to landforms that experience rapid uplift followed by tectonic 
quiescence. The Davisian scheme becomes cumbersome in areas of slow, 
continual uplift, where basin morphometry appears to have adjusted to 
processes operating today (Hack, 1960), rather than to the decay of an 
initially youthful landscape. Continuous adjustment of process and form in 
dynamic equilibrium has led some to conclude that landforms can be independent 
of time (Chorley, 1962, p. 7).

The present work examines the response of landforms to uplift along 
nearby faults. Ultimately, landforms may be used in inferring uplift history 
and uplift rates. We will provide some preliminary theoretical and empirical 
justification for a probabilistic approach to landform evolution and present a 
computer program, based on a probabilistic approach, which models landform 
change through time under various rates of uplift and denudation. Eventually 
our methodology may show how computer simulation can lead to quantitative 
procedures for using landforms in discerning the complex interaction between 
uplift and erosion.

Some mathematical approaches to landform evolution

Several workers have tried to explain landforms purely on theoretical or 
deductive grounds (Culling, 1960; Schiedegger, 1961; Leopold and Langbein, 
1962; Hack, 1965; Ahnert, 1970a; Kirkby, 1971). Culling (1960), for example,



uses Fourier theory of heat flow in solids to develop differential equations 
describing stream profiles and valley side slopes. In a similar study, 
Devdariani (1967), examined the interaction of uplift and denudation on a two- 
dimensional anticlinal uplift. Devdariani tried to explain the Davisian cycle 
of erosion in mathematical terms. In many other similar studies the most 
common models use equations of continuity or diffusion. Sprunt (1972) 
developed a computer program to simulate the development of drainage basins, 
their networks and topography. Sprunt*s work has a distinct advantage over 
prior attempts at network simulation (Leopold and Langbein, 1962; Scheidegger, 
1967) in that the new topography associated with drainage development was 
graphically displayed. The graphic display permitted more meaningful 
comparison between real and simulated drainage networks.

A random-walk approach to probability modelling

Particularly relevent to the present study is the probability model of 
Leopold and Langbein (1962), who modelled longitudinal stream profiles by 
using a random-walk method. In their procedure, a pack containing 5 white 
cards and 1 black card is prepared. Each white card represents a unit of 
elevation above base level. A card is selected at random. If a white card is 
selected, the profile is decreased one unit of elevation, but if a black card 
is selected, the next point in the profile remains at the same elevation. 
Regardless of which card is selected, it is replaced by a black card. Results 
of their experiment are shown in Figure 1 and Table 1. An important property 
of this experiment is that the outcome of any one card selection depends on 
the previous outcome. Experiments or processes that have this property are 
termed simple Markov-chain (Hoel, Port, and Stone, 1972) or first order 
autoregressive processes (Nelson, 1973).

Leopold and Langbein (1962) assert that Markov-chain generated profiles 
are comparable to actual stream profiles in overall shape. We can consider 
this experimental method a model of the process of transporting water and 
sediment through a system. Because gravity is the driving force, the possible 
extremes are for material to move down vertically or not to move at all; the 
most probable material paths lie between these extremes. In actual drainage 
basins, material is eroded from hillslopes and channels and is eventually 
transported out of the system. The transport path of a packet of sediment is 
the topography over which it travels. If the transport paths can be modelled, 
then topographic form is implicitly modelled as well. Random-walk simulation 
of stream profiles is useful because in modelling the process the topographic 
form is predicted.

Leopold and Langbein (1962) interpreted the number of possible downward 
steps as elevation above base level, which leads to the conclusion that the 
longitudinal profile of a stream is dependent on elevation above base level. 
Langbein (1964), perhaps aware of problems in the original random-walk inter­ 
pretation, tried to show that profiles actually depend on discharge rather 
than elevation. He also maintained, however, that the number of downward 
steps is equivalent to elevation above base level, an assumption which 
precludes a dependence on discharge.

Clearly the number of cards used in the experiment completely determines 
the probability of a downward step at each point in the sequence of card 
selection. To illustrate this we can construct an experimental sample



space. Figure 2 illustrates the possible choices at each card selection and 
all possible outcomes. For example, when the first card is selected, choice 
1, there are 3 D's (downward steps) and 1 S (same elevation). Thus, the 
probability of a downward step is the number of D's divided by the total 
number of possibilities, or 3/4 (0.75). The "elevation" at choice one is 
therefore 3.0-0.75, or 2.25. When the second card is selected, the 
probability of a downward step is 9/16 (0.5625), because at choice 2 there are 
16 possible outcomes, 9 of which are a downward step (see figure 2). These 
probabilities can also be found by using binomial distributions. Table 2 is a 
modified binomial table where n is the choice number. For example, 
when n = 1, the first card is selected and when n = 8, the eighth card is 
selected.

The probability parameter, 9 is related to the number of cards in the 
deck (similar to the transition probability in the Markov sense), because 
initially there is only one black card. If the initial card deck consists of 
10 cards, 6 = 0.10, whereas if only two cards are used, 6 = 0.50. The entries 
for 9 in table 2 include non-integer deck sizes as well. The fewer the cards 
the greater the 9, or the smaller the probability of a downward step. For the 
example shown in figure 2, there are 4 cards, of which one is black, and 9 = 
1/4 = 0.25. Under 9 s .25 and n = 1 (see table 2), we find the probability of 
a downward step is 0.75 and for n = 2 the probability of a downward step is 
0.5625, as was calculated.

Any geometric meaning of the method relies on assigning a distance 
quantity to the choice number. If we consider each card selection to 
represent a fixed length of channel, then larger 9 (fewer cards) results in 
shorter streams and smaller 9 (more cards) results in longer streams. The 
shapes of the resulting profiles are directly related to the number of 
downward steps, which is a measure of elevation above base level. A great 
deal of empirical data relating stream length and discharge exist (Horton, 
1945; Leopold and Haddock, 1953; Leopold, Wolman and Miller, 1964) indicating 
that discharge increases exponentially with stream length. Thus long streams 
have larger discharge and lower slopes than shorter streams. Since large 
discharge streams have lower slopes than small streams, the probability of a 
downward step must be smaller for larger streams. When each card selection 
represents a fixed distance, however, large 9 results in shorter streams. 
This contradiction suggests that each card selection should not represent the 
same length for all streams.

Instead, the stream length represented by a card selection should be 
proportional to the total length. Consider any length stream to be divided 
into n reaches. A stream of 100 km length can be divided in 10 reaches so 
that each card selection represents 10 km, or a 10-km long stream can be 
divided in 10 reaches so that each card selection represents 1 km. When a 
card selection is defined in this way, 9 can vary between 0 and 1 and is 
proportional to discharge. The larger the discharge the greater the 9 and the 
smaller the probability of a downward step, so that profile shape depends on 
discharge and elevation above base level. This interpretation of the random- 
walk experiment allows a more general application of the method. For example, 
the original interpretation results in a single longitudinal profile for a 
given relief. The present interpretation leads to a family of longitudinal 
profiles, in which each profile can drop a given elevation, but each has a 
different length. Such flexibility is needed for modelling because, in real 
situations, discharge and relief both vary.



Statistical comparison between theoretical and actual profile

Theoretical stream profiles must be compared with actual profiles in 
order to evaluate the adequacy of the random-walk (Markov chain) model. This 
can be done by testing the null hypothesis that the actual and the theoretical 
profile elevations have the same distribution. The two profiles can be 
statistically compared using a Chi-square, goodness-of-fit test (Gibbons, 
1976). The Chi-square test examines how much the theoretical profile deviates 
from the actual profile. The result of such a test, that is, the equality 
between the two profiles, can be determined for a desired confidence 
coefficient, <*.. The test statistic, Q, measures the sum of the squares of the 
differences between profiles: when Q is very large, the profiles do not match 
well. If the null hypothesis is accepted, that is if that Q is not too large, 
then the actual profile is reasonably approximated by the probability model. 
Acceptance of the null hypothesis does not exclude other probability 
distributions which may also be adequate. How large Q becomes before the null 
hypothesis is rejected depends on how sure one wants to be that the two 
profiles match. To be conservative, the test is performed at a small<* , such 
as 0.05 or 0.10.

To illustrate this procedure, a theoretical profile of Chalmers Creek, 
Virginia is compared with a plot of the actual profile of the stream 
(Figure 3; Table 3). Elevations (H) for the theoretical profile are 
calculated from

H = R-P + «min » (1 >

where R is the total drop in channel elevation or relief, p is the probability 
of a downward step (from Table 2, using 6 = 0.25) for each unit distance or 
card selection, and H^n is the lowest elevation of the channel. The Chi- 
square test was applied to these profiles (Table 4). The test statistic, Q, 
is the distributed Chi-square with n-1 degrees of freedom. The null 
hypothesis, that the two profiles are equal, would be accepted where c< = 0.10. 
This evaluation shows that theoretical profiles can be reasonable approxi­ 
mations of actual stream profiles.

The probability-model profiles of graded streams can be used to 
statistically test for anomalous or non-graded segments of actual stream 
profiles. Anomalous stream profiles are those which are steeper or shallower, 
as a whole or in segments, than one would expect for a given climate, 
discharge and channel material. Such profiles may result from a variety of 
independent variables, including tectonism.

An empirical method of profile analysis

A method of stream-profile analysis was developed from a different 
perspective by Hack (1973)j who demonstrated that in erosional environments, 
the relative magnitudes of stream power can be approximated by a stream 
gradient index. When a longitudinal stream profile (or a reach along the 
profile) plots as a straight line on a graph in which the horizontal axis is



the natural log of distance from the headwaters and the vertical axis is 
elevation, the equation of the line is (Hack, 1973)

H r C - k In L (2)

Here H is elevation, L is stream length measured from the headwaters, and C 
and k are constants. The slope of the actual stream, S, may be expressed as 
the derivative with respect to L of equation 2 where

k 
S s - (3)

L

The constant, k, is the slope of equation 2 and may be expressed as

H 1 ~ H2
k = SL = ____________ , (4)

In L£ - In L.J

where SL is the stream-gradient index, H-|, H2 are map elevations at the end of 
each reach, and L^, L2 are the respective distances from the headwaters 
measured along the longest channel.

Real streams may be concave up, straight, or convex up in profile, 
depending on downstream variations in load, discharge, bed material, hydraulic 
geometry and tectonism. However, the profiles of most natural streams 
approximate a series of connected segments of various lengths, each 
logarithmic in form (Hack, 1973). For each segment the stream gradient index 
(SL) is constant, and each segment is also straightforwardly described by 
probability modelling. Thus, the profile of Chalmers Creek (figure 3) can be 
modelled with an SL value of 40.

Applications of the probability model and the stream-gradient index
model to landform change

Assuming a constant rate of increase in discharge downstream and 
homogeneous lithologies along stream length, a theoretical analog to a natural 
stream profile can be constructed. The theoretical profile is constructed 
using the probability parameter 6, which is related to discharge, and to 
channel relief (the total drop in stream channel elevation), which is given. 
Tectonic uplift increases channel relief whereas erosion can decrease channel 
relief. A probability profile that models a stream before uplift is modelling 
a stream adjusted to hydraulic variables. Similarly, following uplift, a 
probability profile models the stream that now has greater channel relief as 
it theoretically will appear when it too is adjusted to hydraulic variables. 
The time needed for the stream to adjust to hydraulic conditions following 
uplift depends on how fast the channel can erode its floor.

When the rate of increase in discharge does not constantly increase 
downstream, however, or when resistant and non-resistant rocks crop out 
alternately along the stream channel, several probabilities are needed to 
construct a theoretical profile. If discharge actually decreases downstream, 
the probability of a downward step becomes higher downstream, resulting in 
less concavity in the profile or even convexity. Coarse load introduced by 
resistant lithologies along a channel may affect discharge by increasing the



channel roughness, which would also result in a steepening of the channel. 
Under these complicated situations, shorter reaches must be modelled 
separately along the length of the stream. Meyer and Kramer (1969) have shown 
that hillslopes also tend towards concavity, a feature analogous to streams. 
Material can either move down slope or not move. We assume therefore, that 
hillslopes may be modelled in a similar manner (Meyer and Kramer, 1969), 
keeping in mind that variations in features such as vegetation or aspect may 
necessitate a complex probability assignment. For present purposes, a 
constant rate of increase in discharge is assumed.

Base-level fall

Random-walk stream profiles derived from probability considerations can 
be used to predict changes in stream profiles caused by uplift and erosion. 
Figure 4 shows a hypothetical, initial stream channel whose relief is 
increased 100 meters by block faulting located at base level. Since the 
stream has not changed in map length, 6 remains the same. Change of the 
faulted profile over time may be modelled by comparing the initial profile 
with a profile that has adjusted to the new base-level. The major 
modifications in the initial stream profile (figure 4; table 5) that followed 
faulting and subsequent stream downcutting occurred where stream power 
increased the most, that is, in the area of the greatest modification in 
channel slope. If the initial channel were preserved as a strath terrace, the 
familiar divergence of strath terrace from the present channel towards the 
fault would be apparent. Such terrace divergence is a clue that a tectonic 
perturbation has taken place.

The stream gradient index (SL) can also be used to determine where change 
is likely to occur. Ideally the SL value is constant if the stream slope is 
adjusted to discharge. Tectonism (as well as outcrop of resistant rocks and 
coarse material) can cause a steepening of the slope that is reflected as an 
increase in the SL value for that reach of the profile. For example, a fault 
offset across a channel may produce a steeper slope and thus a higher SL value 
for that reach of the stream. Because work expended on a channel is 
proportional to the SL value, it will be concentrated at this tectonic 
nickpoint. With time, the nickpoint will be flattened until SL values for 
each reach become uniform and work is distributed more evenly along the 
channel. The even distribution of work has been described as the tendency for 
least work (Langbein and Leopold, 1966). Thus the trend towards a uniform 
stream gradient index, a crude indicator of stream power, indicates that the 
tendency for least work is analogous to a minimization of stream power.

Base-level stability

Probability profiles can also be used to model change under the 
restriction that base level is fixed but relief is reduced. Figure 5 
illustrates a situation where the initial relief of 1100 meters was reduced to 
1000 m. The profiles, constructed using 8 = 0.5, show that the maximum change 
in channel elevation occurs at the headwaters and progressively decreases 
towards base level. This result is consistent with the observations of Bull 
(1979), who deduced that the tendency for downcutting under conditions of 
base-level stability is a maximum in the headwater reaches and progressively 
decreases downstream.



Three-dimensional simulation

Three dimensional simulation of landform change is preferable to two 
dimensional simulation, because many landform parameters can be measured only 
when three dimensional data are available. Also, three dimensional displays 
allow more critical evaluation of the simulation results.

A computer program called UDL, written to simulate the evolution of 
topography, produces perspective diagrams of three-dimensional surfaces for 
plotting on pen-plotters or interactive display on CRT- terminals. In 
addition, the program calculates parameters such as the hypsometric integral, 
slope and relief, and plots histograms displaying the frequency distributions 
of slope and elevation.

Input for the program is a two-dimensional array of elevations, or an 
elevation matrix. Elevation arrays for parts of the U.S. at a scale of 
1:250,000 are available on computer tape from the National Cartographic 
Information Center of the U.S. Geological Survey, or the user can construct 
his own array by cell digitizing or by line digitizing followed by 
interpolation to cell format. H^j refers to any specific elevation in the 
array where i is the row coordinate and j is the column coordinate.

The algorithm used in program UDL

The basis for the three-dimensional simulation is an array of elevations 
that is modified through time. Alternatively, three-dimensional modelling 
could be accomplished by modelling a network of profiles and then contouring 
the predicted elevations. Hillslope profiles would have to be included as 
well. This requires modelling a large number of separately digitized but 
spatially coordinated profiles, using a modified stream-gradient index to 
predict where change would take place. Digitized stream profile information 
is not available, however, and would have to be generated specifically for use 
in the model.

Digitized topographic data are available, so the program is structured to 
use it. The algorithm makes several crude approximations which are needed in 
order to use elevation arrays. Maximum elevation in the array is considered 
analogous to the elevation of the headwaters (that is, the drainage divide). 
The distance between each point in the array and the drainage divide (the 
denomination is 4) is crudely approximated by dividing the difference in 
elevation between the highest point and each point in the array by the mean 
slope .

A logarithmic model can then be applied to the data by

In

where K^j is a function analogous to the stream gradient index. Hmax is the 
maximum elevation in the data set used to approximate the divide, and S is the 
mean slope of the area above base level. The denudation rate at each point is



assumed to be proportional to K^J. K.y is used as an indication of the 
relative contribution of a specific cell to the overall denudation rate.

Given an average denudation rate, the total volume of material removed 
per increment of time is

Vd = AT D(t)A t (5)

where V^ is the total volume removed, A^. is the total area denuded, D(t) is 
the average denudation rate, during time t, and At is the increment of 
time over which the region is denuded subject to erosion. V^ is assumed to be 
proportional to the sum total of K j_ .. , so

KIJ (6) 
i = 1 j = 1

where C is a constant of proportionality. For any location in the elevation 
array, the denudation rate may be expressed as

where D^ *(t) is a cell denudation rate, and AJ • is the area of the cell.

The program is iterative; the total time of deformation and erosion is 
divided into segments of equal length (At). During an iteration the mean 
slope (S) of an eroding landscape decreases and the total area above base 
level (A,j,) also decreases. These decreases affect the denudation rate. After 
each iteration, the denudation rate is recalculated to reflect the magnitude 
of these changes. Because the denudation rate is modified after each 
iteration, it can be considered a function of time.

Uplift

Uplift is incorporated into the algorithm by adding an increment of 
elevation to each cell in the elevation array, every iteration. In the case 
of no erosion this is simply

AHij = UAt (8)

where AH^ is the increment of elevation, U is the average rate of uplift 
and At is the length of the iteration. Either the entire area or a part of 
the area can be uplifted as a simple fault-bounded block with no tilting or 
warping. The faults across which uplift occurs are located by specifying an 
elevation; uplift occurs at all cells with elevations greater than that 
specified. If the entire terrain is raised, these faults lie outside and 
below the area.

Uplift and Erosion

When both uplift and erosion are applied to a landscape, the elevation 
increment added to each cell is calculated by



j = UAt - D1J (t)At . (9) 
As noted above, when the net effect is lowering a landscape, the mean 
denudation rate is decreased after each iteration. Similarly, if the net 
effect is uplift, the mean denudation rate increases. The increase in 
denudation rate is considered to be proportional to mean slope; as uplift 
increases the mean slope, the denudation rate will increase in direct 
proportion. When very high relief develops, this proportionality to slope 
becomes less responsive, so that as some threshold in relief is reached, the 
mean denudation rate is considered to be proportional to relief (Ahnert, 
1970b). The proportion used is

D»(t) = 7.35 x 10~5 (relief). 

When D*(t) becomes greater than D(t), D*(t) is the denudation rate used.

For landscapes with a hypsometric integral below 0.5, the distribution of 
denudation is weighted towards the higher elevations, so that the denudation 
function for each cell, K.JJ, is proportional to relief. The hypsometric 
integral is calculated by the method of Pike and Wilson (1971).

The material eroded from the uplifted block is not treated by the 
algorithm. Thus transport and accumulation of sediments is ignored, and basin 
elevations remain unchanged. Because parameters such as relief and slope are 
calculated at each iteration, it would be possible to use published 
statistical relationships between sediment characteristics and source-terrain 
characteristics to model aggradation in the sedimentary basin as well.

The algorithm is an approximation of the probability model discussed 
above. At present it is uncertain how well the algorithm follows the 
probability model. The simulation of landscape evolution is an initial 
test. Further work may be aimed at directly incorporating the probability 
model into the algorithm by transforming the elevation data array into a form 
more convenient for analysis.

Results of Simulation 

Uplifted Mountain Block

We applied program UDL to three specific landscapes — a Basin-and-Range 
mountain block, a plateau escarpment, and a basalt-capped mesa. The White 
Mountains, California, were selected as an example of a fault-bounded mountain 
range. The topographic data were digitized from a standard 1:250,000-scale 
topographic map with a contour interval of 200 feet (Mariposa, California). 
The present topography is shown in figure 6. The 5900-foot contour was 
arbitrarily chosen to represent both the fault and base level. Figure 7 shows 
how UDL applies uplift along a fault.

To examine the possible outcome of continual denudation of the White 
Mountains without any uplift, program UDL was used to simulate 30 million 
years of erosion with base level at 5900 feet. The initial denudation rate 
was 0.1 ft per thousand years, a rate suggested by Marchand (1971) for that 
area. After 30 million years of erosion and tectonic quiescence, landforms 
associated with tectonic stability were formed (figure 8). The simulation 
shows well-developed pediments on both fronts of the mountain block, but



better developed on the less steep, eastern front than on the steeper western 
front.

Figure 9 shows the differences in elevation between the initial 
condition (figure 6) and after 30 million years of erosion over the entire 
area. The most denudation occurred at the higher elevations. This is what 
the probability model predicts for a stream profile under conditions of base- 
level stability (figure 5).

The results of simulation are consistent with Bull and McFadden's (1977) 
field observations and quantitative characterizations of inactive mountain 
fronts. For example, the simulation shows pediments, inselberg, pediment pass 
and a slightly increased mountain-front sinuosity.

Plateau Edge

A small area along the Mogollon Rim in central Arizona was selected to 
test the UDL algorithm in a plateau-edge setting. The topographic data were 
digitized from a 1:62,500-scale topographic map with a contour interval of 50 
feet (Pine Mountain, Arizona). Figure 10 shows the present Mogollon Rim. 
Program UDL was used to simulate 10 million years of erosion of the 
escarpment. Base level was fixed at 5800 feet, approximately the elevation of 
an erosional surface adjacent to the Rim determined by geologic and altimetric 
analysis (Mayer, 1979). Estimates of the denudation rate along this section 
of the Mogollon Rim by Mayer (1979) are a minimum of 0.17 feet (5 cm) per 
thousand years and a maximum of 0.38 ft (11.5 cm) per thousand years.

To achieve conservative results a denudation rate of 0.13 feet (3 cm) per 
thousand years was used. Figure 11 illustrates the results of the simulated 
erosion. The average rate of pedimentation and scarp retreat, determined from 
the simulation, is consistent with the minimum estimate of scarp retreat 
proposed by Mayer (1979), 350 m per million years.

Mesa and Canyon

Buckhead Mesa in central Arizona was selected to test UDL on a complex 
mesa and canyon topography. The topographic data were digitized from the 
1:24,000-scale Buckhead Mesa quadrangle, with a contour interval of 40 feet. 
This sample has the finest grid resolution of all the simulation trials 
(figure 12). In order to see where material is eroded, the elevations along 
the perimeter were fixed. Erosion at an initial rate of 0.10 feet (3 cm) per 
thousand years was used to simulate 10 million years of denudation with no 
constraint on base level. Figure 13 shows the results. Note that the highest 
erosion rate occurs at the highest elevation and adjacent to the canyon. The 
mesa appears to be dissected by downcutting of streams but still has some 
planar surface.

Discussion

Simulation of prolonged erosion of a Basin-and-Range block uplift shows 
that pedimentation indicates tectonic stability and only occurs during periods 
of stability. The occurrence of pediments and uplifted pediments would 
require episodic rather than continuous uplift. The period of time 
represented by the pediments can be estimated by simulation of erosion. For

10



the Wfcite Mountain example, pediments formed at a maximum rate of 0.25
km/10 1
rate.
km/10 yrs, although this rate is very sensitive to the average denudation

The program could be modified to generate information on morphometric 
characteristics of drainage basins under specified conditions. For example, 
drainage basins with a known denudation rate may have a morphometry including 
stream channel slope, average valley side slope, and a shape that depends on 
uplift rate. The program may be useful in determining the rate of uplift that 
best matches the observed morphometry. The estimated rates of uplift could 
then be plotted on a map for many drainage basins. If a spatial consistency 
in these rates emerged, the sources of the uplift might be determined.

Simulated erosion of the White Mountains implies that asymmetry in a 
mountain block caused by tilting persists for millions of years. Asymmetry of 
ranges that have long been tectonically inactive thus can be used to infer 
tilting where asymmetry presently exists. This is especially useful in 
granitic ranges where there are no sedimentary units to document tilting. 
Simulated erosion of the Mogollon Rim suggests that the program can be used to 
bracket the age of fault-generated escarpments, a useful tool where 
stratigraphic control is lacking.

Desirable improvements in the program are the direct incorporation of the 
probability model and treatment of the aggradational system. Modelling 
sediment, for example, will yield idealized trends of particle size decrease 
in the downstream direction under various climatic (denudation rate) and 
tectonic (uplift rate) regimes. In the southwestern U.S. this would allow 
more comprehensive interpretation of alluvial fan sedimentology. In the humid 
and subhumid areas of the U.S., the sedimentology of terrace deposits may 
provide information on past uplift rates.

Summary

Through Markov-chain random-walk modelling it has been shown that 
theoretical profiles can be constructed to approximate actual stream 
profiles. Such theoretical profiles can be described probabilistically. To 
determine how well the probability profiles approximate the actual profiles, 
the two can be compared statistically. Such tests have shown that the models 
work well for streams constantly increasing in discharge downstream. The 
degree of accuracy can be improved by dividing the stream into segments, each 
modelled separately.

The stream-gradient index can be used in much the same way. The index 
allows two stream reaches to be compared, on the same stream or on different 
streams, without the construction of entire profiles. Both methods of 
modelling can be used to identify anomalous reaches of stream channels. They 
can also be used to predict how erosion will be distributed if the channel 
downcuts in response to a drop in base-level.

The techniques for modelling in two dimensions, modified for simulating 
erosion and uplift in three dimensions, were incorporated into a computer 
program called UDL. This program proved useful in evaluating the significance 
of various landform features. It also shows promise as a tool that could lead 
to the development of quantitative procedures for using landforms in 
discerning the complex interaction between uplift and erosion.
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Computer Program UDL

Computer program UDL was written in MULTICS Fortran, on the Honeywell 
Multics system at the U.S. Geological Survey in Menlo Park, California. The 
program is not portable, but can currently be used by other MULTICS users who 
can link to or copy the program (table 6). The program is interactive and 
prompts the user for information it needs (Table 7).

The program can produce tabular and-or graphic output. Frequency 
distributions of slopes and elevations can be listed or plotted on histograms 
(Figure 14). The elevation array can be plotted on the screen as a view of a 
three-dimensional mesh-covered surface, or the data can be stored in fileOS 
and then plotted as a contour map or as a view of a three-dimensional, 
contoured surface. Two different graphics packages, Surface Display Library 
(SDL) (Dynamic Graphics Group, 1975) and Display Integrated Software System 
and Plotting Language (DISSPLA) (ISSCO, 1975) were used to produce the graphs, 
maps and views of the landform.

DISSPLA can produce graphs and mesh views on a CRT, wheras SDL produces 
the contour maps and views of the landforms on the Versatec plotter. The user 
need not restrict himself to uplift along a fault and erosion only above that 
fault elevation; the entire area can be uplifted and eroded. Alternatively, 
one can construct a data set that contains a fault and then erode the entire 
area. This can be done by specifing a rate of uplift, a fault elevation, and 
no erosion for one iteration and saving the data. These data can then be re- 
entered into the program and uplifted and eroded with a new set of parameters.

The number of iterations has an effect on the final elevation array even 
though all other input parameters are identical. The White Mountains 
elevation array was used to illustrate this. In each of two cases the initial 
denudation rate was 0.1 feet/1000 years, with no uplift, for a total time of 
30 million years. In the first case, there were 30 iterations, each 1 million 
years long; in the second case there were 3 iterations, each 10 million years 
long. The statistics generated by the program (table 8, figure 14) show that 
although the final denudation rates are about equal, the elevation arrays are 
different. In the second case (3 iterations), the maximum elevation is almost 
900 feet higher than in the first case (30 iterations), and the relief is also 
greater, resulting in steeper slopes. More iterations may produce a landscape 
closer to reality, however increasing the number of iterations also increases 
the cost.

Data and Data Format

The maximum size of the elevation array is now 30 rows by 64 columns. 
This is easily expanded by changing the dimension statements at the beginning 
of the program and by changing the call to the subroutine "surmat" in the 
final plotting section of the program. The data must be in file07. The first 
record contains the number of columns and the number of rows, with the format 
(3x, i2, 1x, i2). The second record is the grid cell size, the map length of 
a side of the cell used in digitizing the elevation data, or the map distance 
between points in the array expressed in feet. All subsequent records contain 
the values of the elevation array. The format is 8(f8.1, 1x); thus, the 
number of columns of data must be an integral multiple of eight. The program 
was written by Larry Mayer in the summer of 1979 and is listed in Table 9.
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Table 1.—Frequencies of random walks having given elevation at various distances from 
origin in percent, subject to condition that probability of a downward step equals 
H/6.

Elevation Distance 

(H)

012 3 4 56 789 10

5 100
4 —

3
2

1

0

Average elevation 5.0 4.17 3.48 2.90 2.42 2.02 1.68 1.40 1.17 0.98 0.81

Table 2.—Modified table of binomial distributions, where n is the card
selection number, 6 is the probability parameter. Entries are (1.0 
8) n .

n \ 6 -05 .25 .50 .75 .95

17 3
83 42

55
—

—

_- —_

—

17

56

27
—

__

—

6

39
46

9
__

—

2

24

50

23

1

—

—

14

45

36

5

—

—

7

37
45

11

—

—

3
29

50

18

—

—

2

20

52

26

—

—

1

14

50

35

1
2

3

4

5

6

7
8

9
10

11

12

13

14

.9500

.9025

.8574

.8145

.7738

.7351

.6983

.6634

.6302

.5987

.5688

.5404

.5133

.4847

.7500

.5625

.4219

.3164

.2373

.1780

.1335

.1001

.0751

.0563

.0422

.0317

.0238

.0178

.5000

.2500

.1250

.0625

.0312

.0156

.0078

.0039

.0020

.0010

.0005

.0002

.0001

.0000

.2500

.0625

.0156

.0039

.0010

.0002

.0001

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0500

.0025

.0001

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

15



Table 3.—Elevations along the probability profile for Chalmers Creek,
	Virginia calculated with 8 = 0.25. H is calculated from equation 1 
	where R = 200 and 1^^ = 300.

H distance(km)

1 .7

2 1.4

3 2.1

4 2.8

5 3.5

6 4.2

7 4.9

8 5.6

9 6.3

10 7.0

Table 4—Data for the Chi-square goodness of fit test for real and simulated 
longitudinal stream profiles at Chalmer Creek, Virginia. Measurement 
in feet.

nf F (elevation fall) e(expected fall) (F-e) 2
	e

1 50 50 0
2 40 37 .24
3 30 29 .03
4 20 21 .05
5 10 15 1.67
6 20 12 5.33
75 9 1.78
83 7 2.29
98 5 1.80
10 4 40

£
.7500

.5625

.4219

.3164

.2373

.1780

.1335

.1021

.0751

.0563

H (ft)

450

413

384

363

348

336

327

320

315

311

Q =13.19

Table 5—Differences in elevation between the two theoretical profiles in 
Figure 4.

Jl distance(km) initial profile(m) faulted profile(m) difference(m)

0 divide 1100 1100 0

1 1 600 550 50

2 2 350 275 75

3 3 225 138 87

44 163 69 94

55 131 34 97

6 6 116 17 99

77 108 9 99
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Table 6 — Information required to run program UDL

Search rules are needed to use the graphics packages and can be added with the 
following commands:

asr 

asr 

asr 

asr

iml >tcs -after workin^jdir 

iml ̂ >disspla -after working_dir 

iml ̂ >v_j>lot -after working^jdir 

-after working__dir

Table 7 — Explanation of prompts for control arguments for progam UDL

Prompt

Type the initial denudation 
rate (ft/1000 yrs)

Type the rate of uplift 
(ft/1000 yrs)

Uplift is to occur above what 
elevation

What is the iteration factor 
NOTE: factor 1 = 1000 yrs

After how many iterations do you 
want output

Explanation

The rate of denudation in feet per 
1000 years for the initial landscape. 
This number is recalculated after each 
iteration.

The rate of differential uplift in feet 
per 1000 years for that part of the area 
above the faults. This rate remains 
fixed for the entire calculation.

For erosion with no uplift, this 
number is equal to the base level. If a 
rate of uplift has been specified a fault 
will occur, the trace of which follows a 
contour at the given elevation. Erosion 
will then take place only above the 
fault.

This number determines how often the 
denudation rate and the elevation array 
are recalculated. For example, for a 
factor of 10, each iteration will be 
10,000 years long.

This number, the output frequency, 
determines how often the elevation array 
is plotted on the screen. To calculate 
the number of years between plots 
multiply the iteration factor by 1000 by 
the output frequency.
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How many outputs do you wish to 
see

STATISTICS

Do you wish the statistics plotted 
Type 1 for plot; type 2 for list

How many intervals for the data 
grouping

3-D PLOTTING INFORMATION

To suppress 3-D plots 
type: 1

What is the desired view angle

Vertical factor for plotting, 
point 4 works well

To engage isostatic adjustments 
Type: 1

To save the data from the final 
result in file 08, type a 1

In addition to specifying the number 
of times that the elevation array is 
plotted on the screen this number 
determines the total length of time 
simulated. For example total time = 
iteration factor 10 x 1000 x output 
frequency, 5 x the number of outputs, 
50,000 years.

1 =

For plotting you must have a Tektronix 
terminal. The statistics can be listed 
and the elevation array plotted, (see 
below).

This specifies the number of bars in 
the histogram. Any integer between 1 and 
50 is allowed but 10 to 20 gives the best 
looking results.

If you do not have a Tektronics 
terminal you must type "1", if you do 
want a plot type another integer. If a 
plot is not generated on the screen, the 
elevation array may still be saved and 
plotted at some future time on a contour 
map or view of a 3-dimensional, contoured 
surface can be made with the contour.pit 
program on the Versatec plotter.

The view distance from the center of the 
plot and the height above the plot are 
fixed, but the user can rotate the plot 
by specifying the view angle in 
degrees.

This is a scaling factor 0.1 to 1.0 which 
determines the vertical exaggeration of 
the mesh-view plot on the screen.

This reduces the effective denudation 
by 1/5 (Schumm, 1963). To ignore this 
type another integer.

The last elevation array calculated can 
be saved in a file called fileOS. The 
file should be renamed immediately after 
the run and has the same format as the 
input data.
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Table 8.—The effect of the number of iterations on final elevations, slopes, 
and other statistics after 30 my of simulated erosion of the White 
Mountains.

Original 10 iter 3 iter

Maximum elevation 13185 7923 8806
Minimum Elevation 3945 2716 2974
Range 9240 5207 5832
Mean elevation 7020 4713 5191
Hysometic Integral 0.3828 0.3836 0.3802

Maximum slope 1.1851 1.0869 1.1930
Minimum slope 0.0040 0.0027 0.0030
Range 1.8110 1.0842 1.1900
Mean slope 0.1813 0.1112 0.1248

Original denudation rate 0.1 0.1
Final denudation rate 0.061 0.068

Uplift rate 0 0
Base level 1 1
Number of iterations 30 3

Iteration factor 1000 10000

Total time 30 my 30 my
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"I

300

Figure 3- Longitudinal stream profile of Chalmers Creek, Virginia and a 
probability profile constructed with 6 = 0.25.
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1100

Figure 4. Initial probability stream profile faulted 100 meters at base 
level and the theoretical profile which is adjusted to the new 
base level.

Figure 5. Probability model of a stream profile which is eroded under the 
condition of base-level stability. See text for analysis.
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Figure 7. Computer-generated view of a three-dimensional mesh-covered surface 
of the White Mountains, California showing how uplift is applied 
along a fault in program UDL. This plot was produced by the 
DISSPLA graphics package.
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Figure 10. Computer-generated mesh view 
Mogollon Rim.

of the present topography of the
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Figure 12. Computer-generated view of the present topography of Buckhead Mesa, 
Arizona.

Figure 13. Computer-generated view of the predicted topography of Buckhead 
Mesa after 10 my of erosion. See text for explanation.
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Figure 14. Histograms showing the frequency-distributions of elevatons (A and 
B) and slopes (C and D) for 30 my divided among 30 iterations (A 
and C) and 3 iterations (B and D) for the White Mountains. The 
number of iterations chiefly affects the values of the elevations 
and slopes rather than their distribution.
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