U.S. DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY

Network-Day Tape Software Users Guide

by
Madeleine Zirbes
Ray Buland

Open-File Report 81-666

Denver, Colorado
1981

D

[
]

=

-

Network-Day Tape Software Users Guide

Madeleine Zirbes
Ray Buland

ABSTRACT

The Global Digital Seismograph Network (GDSN) data is now
being collected into a new network-day tape format. This users
guide describes the programs developed for reading network-day
tapes and manipulating the data. Please keep in mind that the
software described is not intended to be a general purpose analysis
package. It is intended to provide adequate access to GDSN data in
as machine-independent a manner as possible. Some modifications
will probably have to be made to the software to use it at your site.
Notes on installation are provided.

INTRODUCTION

Software has been developed to read, extract, and manipulate
data from network-day tapest. Two programs and several user call-
able subroutines have been developed for this purpose. The pro-
gram mndisum writes a summary of the data collected on a
network-day tape. The program reirv locates selected station-
component-time intervals from a network-day tape and writes this
information to disk files. The user callable subroutines provide a
mechanism for reading and interpreting the data converted by
reirv in application programs.

1. Programs

1.1. Ndtsum

Ndtsum produces a literal dump of all data logs on a network-
day tape, and a list of the start and end times of each interval of
data recorded for each instrument at a station. The data logs con-
tain calibration information, station parameters, timing correc-
tions and comments on data quality for every station included on
the tape. Short-period and intermediate-period data records are
written only when signals are detected, whereas long-period data
are recorded continuously. Thus the list of start and end times
provides a consistency check on the binary data.

1.1.1. Ndtsum Input

Ndtsum reads from the standard input device (FORTRAN logical
unit 5) to obtain the tape drive unit number on which the network-
day tape is mounted. (No prompt is given to the user.) The format
for the tape drive number is I1.

1.1.2. Ndtsum OQutput

All output from ndtsum is directed to the standard output dev-
ice (FORTRAN logical unit 8). If an error occurs, a message is
printed informing the user where the problem was, before exiting
the program.

Listed below is an example of the output produced by ndtsum.
Although this is not a complete listing, it does include an example
of all the different types of logs written on a network-day tape.

t Hoffman, John P., 1980, The Global Digital Seismograph Network-Day
Tape, U.S. Geological Survey Open-File Report 80-289, 37 p.

GLOBAL DIGITAL SEISMOGRAPH NETWORK-DAY TAPE 1L.OG

DAY: 342 YEAR:
VOLUME:

LIST OF THE 13 STATIONS ON THIS TAPE:
CODE INST TYPE FORMAT FILE NO
ANMO SRO

i)
30
a1
32
35
37
a8
39
41
42
50
51
83

54 KONO ASRO

STATION LOG:ALBUQUERQUE, NEW MEXICO
DAY: 342 YEAR: 1980 DATE: 7DEC80 NUMBER OF STATIONS ON THIS LOG: 1

STATION LIST: ID CODE INSTTYPE LATITUDE LONGITUDE ELEVATION(M)
30 ANMO SRO

ANTO

BOCO SRO
GUMO SRO
BCAO SRO
NWAO SRO
GRFO SRO

TATO

SNZO SRO

CTAO

Z0BO ASRO

MAJO

SRO

[y
,_‘g.a,_‘n-""‘ L S B WY

DATA FILES: 2
FILENO ID DESCRIPTION

30 LONG PERIOD ZN.E

4 30 SHORTPERIODZ

TIME CORRECTIONS: 1
YEAR DAY TIME CORRECTION(SEC)

3

-2 -

1980 DATE: 7DEC80

10F 1 EDITION: 1

2

BB sRon

34.9482N 108.4588W

1980 342 0000 -00.001/-

DATA OUTAGES OF MORE THAN ONE HOUR: 0O
FROM: DAY TIME TO: DAY TIME

COMMENTS:
NONE.

DATA LOG:FOR 3 CHANNELS LONG PERIOD ZN,E

RECORDING MODE: CONTINUQUS, MULTIPLEXED
SAMPLE RATE:

CALIHRATION DATA

CHANNEL YEAR DAY TIME AMPLITUDE
(COUNTS/MICROMETER) (COUNTS/MICROMETER) (HZ)

DO ==

1980 342 000
1980 343 000
1980 342 000
1980 343 000
1980 342 000
1980 343 000

4.5408E+03
4.4492E4+03
4.9278E+03
4.9582E+03
5.6281E+03
5.4907E+03

TAPE FILE:

PACKING DENSITY: 1800

TAPE FILE: 2

1740.0M

TAPE FILE: 3
FORMAT TYPE:
1.0/SEC SAMPLE INTERVAL: 1.000 SEC
CHANNEL SEQUENCE: 1=VERTICAL, 2=NORTH, 3=EAST

1

1

AVE CAL VALUE FREQUENCY

4.4745E+03
4.4745E+03
4.9452F+-03
4.9452E+03
5.5055E+03
5.5055E+03

4.0085E-02
3.9986E-02
4.0039E-02
4.0008E-02
4.0092E-02
4.0013E-02

O

e

THE COMPLEX TRANSFER FUNCTIONS T ARE CALCULATED BY:
T(S) = AODS%(S-Z01)%(S-Z02)*...(S-ZM)/((S-P01)*(S-P0R)*.. (S-PM))

WHERE: S=J*W, W=ANGULAR FREQUENCY, AO IS SCALAR, M IS THE NUMBER OF
COMPLEX ZFROS, N IS THE NUMBER OF COMPLES POLES, THE Z'S AND THE P'S
ARE THE COMPLEX ZEROES AND POLES OF THE SYSTEM, AND DS IS THE APPROPRIATE

DIGITAL SENSITIVITY (COUNTS/MICROMETER) IN THE TABLE ABOVE

CHANNEL 1 CHANNEL 2 CHANNEL 3
A0 +.932E+05 +.194E+06 +.132E+08
P01 -.454E+01,+.330E+01 -422E+01,+.420E+01 -.493E+01,+.381E+01
POR -454E+01,-.330E+01 -.4R2E+01,-.420E+01 -.493E+01,-.381E+01
P03 -.117E+00 -.125E+00 -.125E+00
P04 - 409E+02 -.415E+02 -401E+02
P05 -.100E+03 -.999E 402 - 999E+02
P08 -.160E+00 -.129E 400 -.133E+00
PO7 -.284E+03 -.264E403 -.284E+03
P08 -.393E+01 -.393E4-01 -.393E+01
P09 -.282E+00 -.282E400 -.282E400
P10 -.201E+00,+.241E400 -.201E+00,+.241E4+00 -.201E+00,+.241E+00
P11 -.R01E+00,-.241E400 -.201E+00,-.241E4+00 -.201E+00,-.241E+00
P12 -.134E+00,+.100E4+00 -.134E+00,+.100E+00 -.134E+00,+.100E+00
P13 -.134E+00,-.100E4+00 -.134E+00,-.100E4+00 -.134E+00,-.100E+00
P14 -.251E-01 -.251E-01 -.251E-01
P15 -.924E-02 -.924E-02 -.824E-02
P18 -.B55E+00,+.255E400 -.101E+01,+.307E+00 -.B97E+00,+.274E+00
P17 -.856E+00,-.255E+00 -.101E+01,-.307E+00 -.897E+00,-.274E400
P18 -.541E+00,+.883E400 -.839E+00,+.80BE+00 -.589E+00,+.718E+00
P19 -.541E+00,-.883E+00 -.839E+00,-.808E+00 -.589E+00,-.718E+00
Z01 -.126E+00 -.126E+00 -.128E+400
702 -501E+02 -.501E+02 - BO1E+02
Z03 ", +.105E401 ,+.106E+01 ,+.105E+01
Z04 ~.105E+01 -~ 105E+01 ~105E+01
Z05 S5 S5 See5
RELATIVE RESPONSE TO EARTH DISPLACEMENT
CHANNEL 1 CHANNEL 2 CHANNEL 3
MEASURED-JUL, 1979 MEASURED-JUL, 1979 MEASURED-JUL,1979
PERIOD AMPLITUDE PHASE PERIOD AMPLITUDE PHASE PERIOD AMPLITUDE PHASE
(SEC) (DEG) (SEC) (DEG) (SEC) (DEG)

1022 +.185E-04 392
+.342E-03 351
+.509E-08 208 258 +.564E-02 297 251 +.599E-02 293

518
258
89.0
78.4
59.6
50.1
39.7
30.1
25.0
20.0
14.5

+.11GE+00
+.208E+00
+.405E+00
+.8573E+00
+.823E+00
+.102E+01
+.100E+01

199
167
122
90
42
-4
-7

+.801E+00 -192
+.392E+00 -218
9.8 +.883E-01 -319
7.9 +.263E-01 -378
8.9 +.703E-02 -413

START TIME

YEAR MONTH DAY TIME

1011 +.195E-04 392
514 +.383E-02 362

99.2 +.118E+00 198
79.8 +.214E+00 187
59.6 +.423E+00 122
50.0 +.598E+00 90
30.9 +.832E+00 45
30.1 +.102E+401 -20
24.9 +.100E+01 -68
20.0 +.808E+00 -124
14.4 +.395E+00 -207
9.9 +.102E+00 -208

7.8 +.286E-01 -354

END TIME

1008 +.199E-04 391
6502 +.412E-03 349

100.4 +.112E4+00 188
79.9 +.208E+00 187
590.8 +.415E+00 122
48.2 +6835E4+00 85
40.0 +.834E+00 42
30.1 +.103E+01 -25
25.0 +.100E+01 -73
20.0 +.807E+00 -131
15.0 +.436E+00 -208
10.0 +.100E+00 -312
8.0 +.284E-01 -384

YEAR MONTH DAY TIME
1880 12 7 0:0:0.580. 1980 12 8 2

0:59.580.

tbc

(8]

-4 .

DATA IOG:FOR 1 CHANNEL SHORT PERIOD Z TAPE FILE: 4
RECORDING MODE: TRIGGERED FORMAT TYPE: 1
SAMPLE RATE: 20.0/SEC SAMPLE INTERVAL: 0.050 SEC
CHANNEL SEQUENCE: 1=VERTICAL

CALIBRATION DATA
CHANNEL YEAR DAY TIME AMPLITUDE AVE CAL VALUE FREQUENCY
(COUNTS/MICROMETER) (COUNTS/MICROMETER) (HZ)
1 1980942 1.9815E+06 1.0004E+00
1 1880343 1.9815E408 1.0004E+00

THE COMPLEX TRANSFER FUNCTIONS T ARE CALCULATED BY:
T(S) = AQ®DS*(S-Z01)*(S-Z02)*...*(S-ZM) /((S-P01)*(S-P02)*...(S-PM))
WHERE: S=J*W, W=ANGULAR FREQUENCY, AO IS SCALAR, M IS THE NUMBER OF
COMPLEX ZEROS, N IS THE NUMBER OF COMPLES POLES, THE Z'S AND THE P'S
ARE THE COMPLEX ZEROES AND POLES OF THE SYSTEM, AND DS IS THE APPROPRIATE
DIGITAL SENSITIVITY (COUNTS/MICROMETER) IN THE TABLE ABOVE

CHANNEL 1
ANMO SP TRANSFER FUNCTION
A0 +.8B9E+10

P01 -454E+01,+.330E+01
P02 -.454E+01,-.330E+01
P03 -.117E+00
P04 - 409E+02
P05 -.100E+03
P08 -.180E+00
P07 -.284E+03
P08 -.187E+02,+.340E+01
P08 -.187E+02,-.340E+01
P10 -.633E+02

P11 -.833E+02
Z01 -.126E+00
Z02 -.501E+02
203 S*M

RELATIVE RESPONSE TO EARTH DISPLACEMENT
CHANNEL 1

MEASURED-JUL1979
PERIOD AMPLITUDE PHASE
(SEC) (DEG)
10.000 +.207E-02 285
5.000 +.164E-01 244
2.500 +.120E4+00 207
2.000 +.221E3+00 191
1.670 +351E400 174
1.250 +672E4+00 143
1.000 +.100E401 118
833 +.129E+01 91

887 +.181E+01 83

500 +.189E+01 25

Sbt

-5.

333 +.194E4+01 -30

.250 +.188E+4-01 -68

.200 +.132E+01 -99

.143 +.843E+00 -145

START TIME END TIME

YEAR MONTH DAY TIME YEAR MONTH DAY TIME
1980 12 7 0:27:55580. 1880 12 7 0:28:44.530.
1980 12 7 1:56:14580. 1980 12 7 1:59:30.530.
1980 12 7 2:48:30580. 1980 12 7 2:48:8.530.
1880 12 7 2:59:38580. 1980 12 7 3: 0:27.530.
1980 12 7 4:7:57580. 1980 12 7 4:8:48.530.
1980 12 7 8:15:16580. 1980 12 7 6:18: 5.530.
1980 12 7 8:24:5580. 1980 12 7 6:24:54.530.
1980 12 7 8:48:54.580. 1980 12 7 B8:49:43.530.
1980 12 7 9:3:13580. 1980 12 7 9: 5:40.530.
1980 12 7 9:9:10580. 1980 12 7 9:11:37.530.
1980 18 7 9:45:37580. 1980 12 7 947:15.530.
1980 12 7 10:42:45580. 1980 12 7 10:43:34.530.
1880 12 7 11:18:4580. 1980 12 7 11:18:53.530.
1980 12 7 13:32:53580. 1980 12 7 13:33:42.530.
1880 12 7 14:47:12580. 1880 12 7 14:48: 1.530.
1980 12 7 15:8:1580. 1980 12 7 15:10:28.530.
1980 12 7 15:30:58.580. 1980 12 7 15:31:47.530.
1980 12 7 18:10:47.580. 1980 12 7 18B:11:38.530.
1980 12 7 17:49:6580. 1980 12 7 17:54:49.530.
1980 12 7 19:3:19580. 1980 12 7 19: 4:57.530.
1980 12 7 19:27:27.580. 1980 12 7 19:28:16.530.
1980 12 7 19:30:18.580. 1980 12 7 19:91:5.530.
1980 12 7 20:35:35.580. 1980 12 7 20:38:24.530.
1880 12 7 20:48:54580. 1980 12 7 20:47:43.530.
1980 12 7 21:3:43580. 1980 12 7 21: 4:32.530.
1960 12 7 22:10:2580. 1980 12 7 22:11:40.530.
1980 12 7 22:57:40.580. 1980 12 7 22:59:18.530.
1980 12 8 0:8:18580. 1980 12 8 0:9:58.530.
1980 12 8 0:80:56.580. 1980 12 8 0:31:45.530.
1980 12 8 1:34:45580. 1980 12 8 1:35:34.530.
1980 12 8 4:35:4580. 1980 12 8 4:35:53.530.

Note the list of start and end times in the above listing. This
information is not contained on a log, but is produced by ndisum
to provide a consistency check on the binary data.

1.2. Retxrv

Retrv locates selected information from a network-day tape
and writes this information into binary output files.

1.2.1. RetrvInput

Retrv reads from the standard input device (FORTRAN logical
unit 5) to obtain the tape drive unit number on which the network-
day tape is mounted. The format for the tape drive number is I1.
Retrv then continues to read requests from the standard input to
determine what information is to be extracted from the network-

-6 -

day tape. (No prompt is given to the user to obtain either the tape
drive number or the requests.) The requests define station, instru-
ment, and time interval information that the user wants extracted.
Each request line specifies the following information:

station code up to 4 alphabetic characters
instrument code up to 4 alphabetic characters
start time 6 integers

year, month,

day, hour,

minute, second
length of time real
(in seconds)

The station code is the four-letter character string (upper
case) of the station desired. It can optionally be the character
string "ALL", to retrieve the specified instrument and time interval
information for all the stations recorded on the tape.

The instrument code is a four-letter character string (upper
case) indicating the instrument and orientation of data desired.
The first character of the instrument code can be:

S for short-period instrument,
I. for long-period instrument, or
I forintermediate-period instrument.

The second, third, and fourth characters of the instrument code
specify the orientation of the data wanted and can be:

P for vertical, north-south, and east-west,
Z for vertical,

N for north-south,

E for east-west,

or any combination of the characters Z, N, E if more than one
orientation of data is desired. The instrument code can also be the
character string "ALL", retrieving each orientation of data for each
instrument recorded.

The input is free format with the fields delimited by blanks or
commas. Fach request cannot be longer than 80 characters. To
indicate that there are no more requests, the last request line
must be the character string "STOP".

For example, a sample request line might be

ANMO,LP,1980,5,25,16,33,44,3600 (A)

L

-7-

This request line is asking that data from Albuquerque, New Mexico,
be extracted from the long-period instrument, vertical, north-
south, and east-west orientations, starting at 16:33:44 on 25 May,
1980, and ending 3600 seconds later.

The request line
ALlL,ALL,1980,5,25,19,44,51,1800 (B)

would retrieve all short-period, long-period, and intermediate-
period data from all the stations recorded on the tape starting at
19:44:51 on 25 May, 1980, for a length of 1800 seconds.

1.2.2. Retrv Output

Retrv opens seven output files, one for each type of data that
could be retrieved. The output file names and their corresponding
data types are:

RETRV.SPZ short-period vertical data

RETRV.LPZ long-period vertical data

RETRV.LPN long-period north-south data
RETRV.LPE long-period east-west data

RETRV.IPZ intermediate-period vertical data
RETRV.IPN intermediate-period north-south data
RETRV.IPE intermediate-period east-west data

These binary output files contain two types of records: header
records and data records. Header records contain station informa-
tion. Data records contain the actual data extracted, preceded by
the number of data values contained in the data record.

Header and data records are written to the appropriate output
files as each request is satisfied. Header records are written to the
output files first, followed by one or more data records. This means
that an output file may contain several header records, each fol-
lowed by data records. To indicate that a data record is the last
data record for a particular request, a null data record is written
having one data value that is equal to 10,000,000,000.0. To indicate
that there are no more records in the output file, a final null
header record is written just before the file is closed. A null header
record has the station code and instrument code set to "END", the
number of poles and zeroes set to one, and all other values set to
Zero.

A schematic representation of the format of these binary files
is:

header record

N

[ep

INTEGER SMN
C SECONDS
INTEGER SSEC
C MILLISECONDS
REAL SMS
c
C END TIME OF CONTINUOUS DATA
c
€ YEAR
INTEGER LYR
C DAY OF YEAR
INTEGER 1LDY
C HOUR
INTEGER LHR
C MINUTE
INTEGER IMN
C SECONDS
INTEGER LSEC
C MILLISECONDS
REAL LMS
C BINARY DATA
INTEGER IDATA(1000)
C NUMBER OF SAMPLES OF LAST DATA READ
INTEGER LNSAM
C NUMBER OF CHANNELS OF LAST DATA READ
INTEGER LNCHAN
C NEXT EXPECTED TIME FOR DATA
INTEGER NYR, NDY, NHR, NMN, NSEC
C CURRENT TIME OF DATA
INTEGER TYR, TDY, THR, TMN, TSEC
REAL TMS
C LOOP INDEX
INTEGER I
INTEGER IBUFF(80)
C FUNCTION
INTEGER MAGRD
C NUMBER OF FRAMES READ
INTEGER NR
INTEGER KUS, KUT
C MILLISECONDS
REAL FMS
REAL NMS
C SAMPLING RATE OF LAST DATA READ
REAL LRATE
C NUMBER OF FRAMES OF DATA TO READ
INTEGER NWORDS
C

COMMON /HEADER/ ID, INSTR, YEAR, DOFY, HOUR, MIN, SEC, MSS, NFORM,

1 NCHAN, NSAMP, RATE

- 105 -

COMMON /START/ SYR, SDY, SHR, SMN, SSEC, SMS

COMMON /END/ LYR, LDY, LHR, LMN, LSEC, LMS

Q

DATA NWORDS /1000,
DATA KUS, KUT /'S', "'/

EQF

aaoaoaoaaoaaon o

NETWORK DAY TAPE FORMAT

EQOF

§9¢

gt

data record
data record

null dat;a record
header record
data record

.

null data record

null headér record

When retrv has satisfied a request, a statement summarizing
the data that was extracted is written to the standard output dev-
ice. This summary consists of the station code, instrument code,
year, month, day, start time of the data, and length of the data
extracted, in seconds.

For example, if data was found to satisfy request line (A), the
output lines describing what in fact was extracted might be:

ANMO 1PZ 1980 & 25 18:33:44.53 3800.000
ANMOIPN 1980 § 25 16:33:44.53 3800.000
ANMO IPE 19880 5 25 16:33:44.53 3800.000

If data was found satisfying request line (B), the output lines
describing what was retrieved might be:

19:44:51.53 1800.000
19:44:51.53 1800.000
19:44:51.53 1800.000
19:44:51.53 1800.000
19:44:51.91 1800.000
19:44:51.91 1800.000
19:44:51.91 1800.000
20:11: 3.91 98.000
19:44:51.981 1800.000
19:44:51.91 1800.000
19:44:51.91 1800.000
19:53:43.91 1800.000
19:44:51.93 1800.000
19:44:51.93 1800.000
19:44:51.93 1800.000
20: 4: 3.93 147.000
20: 8 .93 49.000
19:44:51.78 1800.000
19:44:51.79 1800.000
19:44:51.79 1B00.000
19:44:51.39 1800.000

ANMO 1PZ 1980
ANMO IPN 1980
ANMO IPE 1980
ANMO SPZ 1980
ANTO LPZ 1980
ANTO IPN 1980
ANTQ LPE 1980
ANTO SPZ 1880
BOCO LPZ 1980
BOCO LPN 1980
BOCO LPE 1980
BOCO SPZ 1980
CHTO 1LPZ 1980
CHTO LPN 1980
CHTO LPE 1980
CHTO SPZ 1980
CHTO SPZ 1980
GUMO LPZ 1980
GUMOLPN 1980
GUMOLPE 1980
BCAO LPZ 1980

OO ADAANNAANNBNTTDN NG
CEERREREREEREEEEE R R R R

BCAO LPN
BCAO LPE
BCAO SPZ
NWAO LPZ
NWAO LPN
NWAO LPE
GRFO LPZ
GRFO LPN
GRFO LPE
GRFO SPZ
TATO LPZ
TATQ LPN
TATQ LPE
SNZO LPZ
SNZO LPN
SNZO LPE
CTAO LPZ

MAJO LPE
MAJO 3PZ
KONO LPZ
KONO LPN
KONO LPE
KONO SPZ

The user can specify the list of stations from which he desires
information in any order. But if he has requested more than one
time interval for a particular station and component, these
requests must be in increasing time sequence. Because retrv does
not backspace the tape, requests for overlapping data are not han-

dled.

1980
1980
1980
1980
1980
1980
1980
1980

QOO UAQUIDANNNORNURNNNTRNTTNONNORIT RGO

-9.

19:44:51.39
19:44:51.39
20: 8:11.39
19:44:51.92
19:44:51.92
19:44:51.92
19:44:51.93
19:44:51.93
19:44:51.93
19:56:50.93
19:44:51.91
19:44:51.91
19:44:51.91
19:44:51.93
19:44:51.93
19:44:51.93
19:44:51.93
19:44:51.93
19:44:51.93
19:44:51.94
19:44:51.94
19:44:51.94
19:55:32.94
19:44:51.61
19:44:51.81
19:44:51.61
19:44:51.20
19:44:51.20
19:44:51.20
19:58:30.20
19:44:51.37
19:44:51.37
19:44:51.37
19:58: 3.37

For example, the request lines

ANTO, 1P, 1980, 5, 25, 17, 0, 0, 180
ANTO, SP, 1980, 5, 25, 18, 18, 0, 450
ANTQ, 1P, 1980, 5, 25, 19, §, 0, 780
ANTO, 1P, 1980, 5, 25, 19, 13, 0, 1020

STOP

would produce the output:

1980
1980

oo

25
25
25
25
25
25
25
25
25
25

1800.000
1800.000

294.000
1800.000
1800.000
1800.000
1800.000
1800.000
1800.000

392.000
1800.000
1800.000
1800.000
1800.000
1800.000
1800.000
1800.000
1800.000
1800.000
1800.000
1800.000
1800.000

588.000
1800.000
1800.000
1800.000
1800.000
1800.000
1800.000

284.000
1800.000
1800.000
1800.000

245.000

17: 0: .91 180.000
17: 0: .81 180.000
17:0: .91 180.000

19: 5: 91 780.000
19: 6: 91 780.000
19: 5: .91 780.000

19:15: 91 1020.000
19:15: .81 1020.000
19:15: .91 1020.000
18:18: .91 123.000

-10 -

Note that although the user's fourth request is for data begin-
ning at 19:13:00, his previous request asks for data to be extracted
at 19:05:00 for a length of 13 minutes, leaving the tape positioned
after the record containing the start time of 19:13:00. Retrv
extracts data as close to the time requested as possible extending
for the requested number of seconds. One would think that the
result of the fourth request would begin at 19:18:00. However,
reirv will overlap lhe ihird and fourth requests by part of one
buffer {the last physical tape record used by the third request is
still in memory when the fourth request is initiated). The fourth
request actually overlaps the third by three minutes in this case.

Fach time a request is satisfied retrv checks the list of stations
recorded on the tape against the list of stations the user has
requested. If there are requests for station data recorded later on
the tape, reirv continues reading the tape searching for data to
salisfy lhose requesls. If nol, retrv stops. ‘This means that only as

- much of the tape will be read as is necessary.

Mosl compulers do one of Lwo Lhings when a pre-exisling file is
opened for output: the data in the file is overwritten, or new data is
appended to the end of the file. In either case, the output files pro-
duced as a result of executing retrv should be moved elsewhere
before running retrv again, to insure against loss. Because retrv
has its own convention for end-of-file (the null header record), even
if data is appended, the input routines provided will not read past
Lhe end of Lhe pre-exisling dala.

1.2.3. Retry Files

Tile Logical Unit Number Input/Output
RETRV.SPZ 1 Output
RETRV.LPZ 2 Output
RETRV.LPN 3 QOutput
RETRV.I.PFE 4 Output
RETRV.IPZ 7 Output

- RETRV.IPN 8 Output
RETRV.IPE 9 Oulpul
‘standard-input”’ 5 Input
‘standard-—output’ 6 Qutput

Lbl

-11-

2. Routines

2.1. Iasnlu, Initfl, Irdhd, Irddat

Tasnlu, inilfl, irdhd, and irddal operale on Lhe binary files pro-
duced by retrv. [rdhd reads header records. Irddal reads data
records. [nitfl initializes flags used by irdhd and irddat. lasnlu
associates a logical unit number with a data array index.

The syntax of these routines is:

~ CALL INITFL

INTEGER IERR, JASNLU, LUN, INDX
TRRR = TASNT.U(I.UN, TNDX)

INTEGER IERR, IRDHD, INDX
IERR = IRDHD(INDX)

INTEGER IERR, IRDDAT, INDX
REAL VALU
TERR = TRDDAT(INDX, VATLU)

Irdhd reads the next header record from the logical unit asso
ciated with indz. The header record information is stored in com-
mon block /head/. This function returns 1 upon a successful read,
0 on end of file, and -1 for an error. Irdhd will always try to read
the next header record, even though intermediate data records
may have to be skipped.

On eaclh call, irddat sequentially accesses the next data point
of a dala record, returning il in valu, This [unclion relurns 1 upon
a successful read, 0 on end of data or end of file, and -1 if the next
record is not a data record.

Initialization of flags used by irdhd and irddat is done by call-
ing the subroutine initfl. The flags are stored in common block
/flags/. Initfl must be called before any reference to irdhd or ird-
dat, to insure reading the header and data records successfully.

The function iasnlu associates a logical unit number with an
index to the head and data arrays. lasnlu returns 1 if an index was
assigned, -1 if no more buffer space is available. 'The variable indz
is an input to the functions irdhd and irddat.

These routines are designed to read up to three files simultane-
ously. Nole Lhal all elemenls in common /head/ have an ouler
dimension of three. Information associated with a given logical
unit number is buffered in space pointed to by indx. See program
sample below for an example.

(S

-12 -

2.2. Resp

The function resp returns the complex forward transfer func-
tion of the instrument system, at angular frequency omega.

The syntax is:

COMPLEX RESP, T

INTEGER IFL, INDX

REAL OMEGA

T = RESP(INDX, OMEGA, IFL)

The transfer function is the Fourier transform of the system
impulse response using the Fourier convention f f(t) e"9tdt. The
transfer function describes how the instrument modifies ground
motion as follows:

U(w)=H(w)D{w)
where

D is the Fourier transform of the ground displacement,
H is the Fourier transform of the transfer function,

U is the Fourier transform of the recorded signal, and
w is the angular frequency in radians per sec.

The wuser specifies the desired output units by setting ifl
appropriately. If ifl equals 1, resp returns H(w) at ®» in units of
counts/micron, assuming the input is ground displacement. If ifi
equals 2, the units are in counts/micron/sec (assuming the input
is ground velocity); and if ifi equals 3, the units are in
counts/micron/sec © (assuming the input is ground acceleration).

The variable indz is set in a reference to the function iasnlu, to
indicate which array index is to be referenced.

2.3. Common Blocks
COMMON BLOCK HEAD

C STATION CODE
INTEGER CODE(4,3)

C INSTRUMENT CODE
INTEGER CHN(4,3)

C STATION LATITUDE
REAL LAT(3)

C STATION LONGITUDE
REAL LON(3)

C STATION ELEVATION
REAL ELEV(3)

C START TIME OF DATA
INTEGER SYEAR(3)

-

-13-

INTEGER SDOFY(3)
INTEGER SHOUR(3)
INTEGER SMIN(3)
REAL SSECS(3)

C SAMPLE RATE
REAL RATE(3)

C NORMALIZATION CONSTANT
REAL A0(3)

C NUMBER OF POLES
INTEGER NP(3)

C POLES
COMPLEX POLES(20,3)

C NUMBER OF ZEROES
INTEGER NZ(3)

C ZEROES
COMPLEX ZEROES(10,3)

COMMON /HEAD/ CODE, CHN, LAT, LON, ELEV,
1 SYEAR, SDOFY, SHOUR, SMIN, SSECS,
1 RATE, A0, NP, POLES, NZ, ZEROES

COMMON BLOCK DATA

C NUMBER OF DATA POINTS IN BUFF
REAL PTS(3)

C DATA BUFFER
REAL BUFF(500,3)

COMMON /DATA/ PTS, BUFF

COMMON BLOCK FLAGS

C HEADER RECORD FLAG
INTEGER HFLG(3)

C DATA RECORD FLAG
INTEGER DFLG(3)

C NUMBER OF LOGICAL UNIT NUMBERS ASSIGNED
INTEGER NLUN

C LOGICAL UNIT NUMBERS ASSOCIATED WITH DATA INDEXES
INTEGER LLUN(20)

C ASSOCIATES AN INDEX WITH A LOGICAL UNIT NUMBER
INTEGER ILUN(3)

C INDEX OF NEXT DATA VALUE TO BE RETURNED
INTEGER NPTS(3)

COMMON /FLAGS/ HFLG, DFLG, NLUN, LLUN, ILUN, NPTS

e U7

vu

-14 -

3. Installation

3.1. Ndtsum

The program ndtsum produces a literal dump of a network-day
tape, with a list of start and end times of the continuous data. The
main program, ndtsum.fortran, reads the tape drive unit number
from the standard input, and opens the tape drive for reading. It
then calls a subroutine that does the work of producing the sum-
mary, and finally closes the tape drive. Ndisum assumes that logi-
cal unit number 5 is already open for formatted input, and that
logical unit number 6 is open for formatted output.

3.2. Retrv

The program relrv locates selected information from a
network-day tape and writes this information into binary output
files. The main program, retrv.fortran, reads the tape drive unit
number and requests input from the standard input device. A sub-
routine is called to initialize the program variables. Reirv assumes
that logical unit 5 is already open for formatted input.

All output files are then opened for unformatted, sequential
~writing. The tape drive is opened for reading. Retrv assumes that
logical unit 6 is already open for formatted output. Control then
passes to the subroutine that reads the tape, searching for data to
satisfy the requests. When a request is satisfied, this information is
written to the appropriate output files, and a statement summariz-
ing the data retrieved is written to the standard output device. On
returning to the main program, all output files and the tape drive
are closed.

3.3. Software Additions

Several routines have not been provided with this package
because they are machine dependent. The routines are gbytes,
magrd, matt, and mretrn.

3.3.1. Gbytes

Gbytes is a general purpose bit-manipulation routine. The syn-
tax of the subroutine gbyties is:

INTEGER IA(1), IB(1)
INTEGER IS, 1L, NS, N
CALL GBYTES (IA, IB, IS, IL, NS, N)

Gbyles treats ia as a bit string. In other words, the highest
order bit of ia{l) is the first bit in the string and the lowest order

v

-15 -

bit of ia(i) is considered to be contiguous with the highest order bit
of ia(i+1). Gbytes ignores word boundaries in ia.

N bytes, each il bits long, are extracted from ia, and placed in
the low order end of successive words of ib (zero padded to the
left). Is bits are skipped before the first byte. Ns bits are skipped
between successive bytes. Notice that byte is used here in its most
general sense: a contiguous string of one or more bits.

For example, let the contents of the input array ia be
ia = 72’123456789ABCDEF”

where the notation 7’..." means a string of hexadecimal digits, and
let the call to gbyiles be

call gbytes(ia, ib, 10, 5, 2, 7)

then the values of the output array ib are:

ib(1) = Z'001A’
ib(2) = Z'0015'
ib(3) = Z'000F’
ib(4) = Z'0009'
ib(5) = Z'0015’
ib(6) = Z'0013’
ib(7) = Z'001D’

assuming that each element of ib is 16 bits in length.
Gbytes is referenced in the routines filreq, getlin, and head.

Examples of gbytes for CDC, IBM, Honeywell, and some DEC
machines are included later in this User's Guide. (See Appendix C).

3.3.2. Magrd

Magrd is an input routine for reading the day tape. Each call
returns the contents of one physical record from the tape or an
end-of-flle condition. The syntax of the function magrd is:

INTEGER IERR, MAGRD
INTEGER IA(1)

INTEGER LEN, N

IERR = MAGRD (LUN, N, IA, LEN)

[&e

_16 -

Magrd reads up to m frames (8 bit bytes) from logical unit
number lun and places them into ia. The number of frames actu-
ally read is returned in len. Magrd returns 1 on a successful read,
0 on end of file, and -1 if the read was otherwise unsuccessful. If a
data record is read, magrd positions the tape after the physical
record regardless of its length. If an end of file is detected, magrd
positions the tape after the file mark. '

Magrd is referenced in filreq, getrqt, and sum.

3.3.3. Matt

Maitt opens the tape drive (from which the day tape will be
read) for reading. The syntax for the subroutine matt is:

INTEGER NDEN, NDR, NRW
CALL MATT (NDR, NDEN, NRW)

Maltt opens the logical tape unit (or physical drive) designated
by ndr. Nden specifies the tape density. Nrw is the read/write
flag, 1 for reading, 2 for writing.

The subroutine matt may need to be changed to suit your sys-
tem. Malit presupposes that the user knows what logical tape unit
needs to be opened. A more general usage might be to have the
tape label name as an argument, and let matf return the logical
tape unit in the variable ndr. In that case, the syntax of matt
might be:

' CHARACTER*6 TAPENM
INTEGER NDR, NDEN, NRW
CALL MATT (TAPENM, NDR, NDEN, NRW)

Matt is referenced in ndtsum and retrv.

3.3.4. Mretm

Mretmn is used to close the tape drive. The syntax for the sub-
routine mretrn is:

INTEGER NDR
CALL MRETRN (NDR)

Mreirn closes the logical tape file previously opened by mait.
Mretrn is referenced in ndtsum and retrv.

v

17 -

3.4. Additional Changes

Additional changes may be needed to get the source code to
compile and load at your site. The following paragraphs give a few
suggestions of where to look for problems that may occur.

To help the user spot the machine dependencies easily in the
software, the following comment has been inserted before each
statement that may be machine dependent:

C“.i*‘*“..**tﬁt#‘**t*ttt**tttﬁt*t#**‘tt*t#*t*it*t**ttt****t‘tt**ttitiii*tttt“

C* MACHINE DEPENDENT *

Ctt*.t*‘******i**********t‘**iiti**tttt#**‘t*t‘*t***‘***l**‘Q***#*‘**#***t***“‘

3.4.1. Close Statements

The close statement is used to remove the association between
a unit number and the file or device it currently represents.

Close statements are referenced in clsout, getdat, and sample.

3.4.2. Rewind Statements

A rewind statement is used to set the current position of a file
or device to the beginning of the file or device. If your system posi-
tions the file at the beginning when the file is opened, this rewind
statement is not necessary.

The rewind statement is referenced in sample.

3.4.3. Save Statements

The purpose of a save statement is to retain the value of a vari-
able or a common block after the execution of a return statement,
and not initialize the variables each time the program is entered.
Most implementations of FORTRAN do this automatically.

Save statements are referenced in tasnlu, irddat and irdhd.

3.4.4. Nwords

In all the references to magrd, the argument nwords is set
equal to 1000 in a data statement. This constant depends on the
word length for your machine. If the word length for your machine
is nbils long, then

nwords = (2000*8 + (nbits - 1))/nbils

Nwords is referenced in filreq, gelrgt, and sum.

LUV

- 1B -

3.4.5. Idata

The integer array idata is used to store one physical record
from a network-day tape, 16000 bits of information. It is dimen-
sioned to 1000, the same as the value of nwords.

Storage for idata is provided by geirqt and sum. Idata is an
argument in the routines filreq, geical, geicpz, getlin, head, prbouf,
rdntlg, and stadat, where it is declared as INTEGER IDATA (1),
which is a dummy argument declaration.

3.4.6. Constants

Certain constants have been arbitrarily defined in the routines.
They can be changed, increased or decreased, to suit the system
and the users needs.

The size of the data record written on disk is set to 500. The
number 500 is referenced in filreq, and the common blocks
/buffer/ and /data/.

The maximum number of user requests allowed is set to 50. 50
is referenced in fisbuf, getdat, icpych, istreq, prhead, and common
block /regsts/.

3.4.7. Colon

The colon (:) character is used in several routines in a format
statement to print out the time of day. A colon may not be avail-
able on all machines.

The colon is referenced in getlin, geirqt, ndiprt, and sample.

3.5. Example

3.5.1. Sample

The following FORTRAN main program, sample.fortran, demon-
strates the usage of the routines, once data has been extracted
from a network-day tape.

SAMPLE FORTRAN

THIS IS A SAMPLE OF USING THE SUBROUTINES PROVIDED

TO READ DATA CONVERTED BY RETRV. NOTE THAT THE PROGRAM
SUCCESSIVELY READS A HEADER, SOME DATA, ANOTHER HEADER,
ETC.

SAMPLE USES A COLON IN A FORMAT STATEMENT.
THIS MAY NOT BE AVAILABLE ON ALL MACHINES.

CALLS CLOSE - MACHINE DEPENDENT
IASNLU
INITFL

aaaaaaaaoOnNaQaana

-19.-

IRDDAT

IRDHD

OPEN - MACHINE DEPENDENT
RESP

REWIND - MACHINE DEPENDENT

PROGRAMMED BY RAY BULAND
SEPTEMBER 15, 1980

[eXoRoRoReRoReoNe NoNe)

INTEGER CODE(4,3),CHAN(S,4)

DIMENSION T{15)

COMPLEX P,Z,ZZ,RESP

DIMENSION A(300)

COMMON /HEAD/CODE,CHAN XLAT(3), XLON(3),ELEV(3),

1 IY(3).ID(3).TH(3), IM(3),SS(3).SR(3).

1 AD(3).NP(3),P(20,3),NZ(3).Z(10,3)

DATA T/1022.,516.,258.,99.,78.4,59.8,50.1,39.7,30.1,

125.,20.,14.5,9.8,7.9,6.9/

DATA NO/300/

PI2=2.43.1415027

CN=360./PI2
C FOR THE SAKE OF ILLUSTRATION WE OPEN ONLY THE LONG
C PERIOD VERTICAL DATA FILE.

&
Ce MACHINE DEPENDENT .

&
OPEN(1,FILE="RETRV.LPZ’', STATUS="0LD’, FORM="UNFORMATTED",
1 ACCESS="SEQUENTIAL')

C
Ce MACHINE DEPENDENT .
c esneas
REWIND 1
C INITIALIZE THE READING ROUTINES.
CALL INITFL

C ASSIGN AN INDEX TO BE ASSOCIATED WITH LOGICAL UNIT 1.
TF(IASNLU(1,INDX)) 17,171
C READ A HEADER. IF NOT ALL OF THE DATA HAS BEEN READ
C FROM A PREVIOUS STATION, IT WILL BE SKIPPED.
1 IF(IRDHD(1))14,13,2
C DUMP OUT SOME OF THE STUFF IN COMMON/HEAD/.
2 WRITE(S, 101) (CODE(LINDX), I=1,4),(CHAN(LINDX), I=1,4),

1 IY (INDX).ID(INDX), [H(INDX),IM(INDX), SS(INDX)
((_5° MACHINE DEPENDENT .

C
101 FORMAT{/1X,4A1,1X,4A1,16,14,13,'" 12,'" F4.1)
WRITE(8, 102) XLAT{INDX),XLON(INDX), ELEV(INDX),SR(INDX)
102 FORMAT(1X,"LAT =' F7.2' LON ='¥8.2,' ELEV =',
1¥7.1,' RATE ='F5.1)
C MAKE A CALIBRATION TABLE FOR THE INSTRUMENT TO ILLUSTRATE
C THE USE OF RESP.
C PRINT PERIOD IN SECONDS, AMPLITUDE IN COUNTS,
C AND PHASE IN DEGREES.
WRITE(8, 103)
103 FORMAT{(/8X,’PERIOD’,3X,'COQUNTS’,4X,'PHASE")
CON=PI2
PHN=0.
DO S5 I=1156
C NOTE THAT RESP TAKES ANGULAR FREQUENCY. ALSO WE WANT
C THE RESPONSE TO GROUND DISPLACEMENT.
ZZ=RESP(INDX,PIR/T(D), 1)
AM=CABS(ZZ)
PH=ATAN2(AIMAG(ZZ),REAL{ZZ))
C MAKE THE PHASE CONTINUOUS.

-20 -

IF(ABS(PH-PHN).LE 4.) GO TO 8
CON=CON-PI2

8 PHN=PH
PH=(PH+CON)*CN

5 WRITE(S, 104) T(I),AM,PH

104 FORMAT(5X,3F9.1)

C READ UP TO THE FIRST 300 DATA POINTS AT THIS STATION.

DO 31=1,NO
TF(IRDDAT(INDX, A(1)))15.4,3
CONTINUE

=NO+1
4 I=1.1
C DUMP THEM OUT.
WRITE(S, 105) 1,(A(J),J=1,I)
105 FORMAT(/5X.15/(5X, 1P7E11.3))
GOTO1
C CATCH ERRORS IN THE HEADER.
14 WRITE(8, 200)
200 FORMAT('ERROR IN HEADER.")
GO TO 18
C CATCH ERRORS IN THE DATA.
15 WRITE(S, 201)
201 FORMAT{'ERROR IN DATA.")
GO TO 18
C DATA BUFFERS FULL.
17 WRITE(6,202)
202 FOR](AT('"DATA BUFFERS FULL.")
GO TO 18
C ALL DONE.
13 WRITE(S, 203)
203 FORMAT(’ALL DATA READ.')

3

C
C» MACHINE DEPENDENT

L&
16 CLOSE(1)
sTop
END

Using request line (A) as input to retrv, sample reads the file

RETRV.LPZ and produces the output:

ANMO LPZ 1980 148 16:33:44.5
LAT = 34.85 LON = -10648 ELEV = 1740.0 RATE = 1.0

PERIOD COUNTS PHASE

1022.0 A 2.7
516.0 1.7 351.8
258.0 24.8 297.3

99.0 639.6 198.2
7.4 1017.0 166.3
88.6 19684.2 122.4
50.1 2787.1 90.2
39.7 3986.0 41.8
20.1 4997.5 -23.5
250 48737 ~71.2
20.0 3938.0 -131.3
14.5 19329 -218.3

8.8 4313 -3208

7.8 1209 -377.2

8.9 8.7 4120

300
8.400E+01 1.010E+4+02
4.100E+01 1.300E+01
-4.300E4+01 -2.900E+401
8.700E+01 8.200E+-01
5.000E+00 -1.100E+01
-7.000E4+00 -9.000E+00
2.800E+01 2.600E+401
1.400E+01 2.000E+01
5.500E+01 4.100E+01
+4.000E+00 -1.700E+01
-8.200E+01 -5.700E+01
-8.900E+01 -6.900E+01
-5.500E+01 -4.900E+01
3.000E+00 2.200E+01
-3.500E+01 -4.200E+01
-4.500E+01 -4.500E+01
-5.700E+01 -5.500E+01
+3.300E+01 -2.100E+01
-8.900E+01 -7.700E+01
-6.900E+01 -4.300E+01
-1.000E+01 -2.500E+01
-1.600E+01 -2.500E+01
5.700E+01 7.700E+4-01
8.070E+02 1.006E+03
9.464E+03 1.096E+04
-1.403E+03 -8.344E+03
~1.939E4+04 -1.837E+404
-1.526E4+04 -1.508E+04
2.948E4+03 7.824E+03
1.908E+04 1.942K 404
S.478E+04 J.6/0E+04
2.438E+03 -1.001E+04
-7.388E+04 -7.8B48E+04
-8.413E4+04 -5.826E+04
-2.0688403 3.446E+403
1.918E+04 1.148E4+-04
1.554E4-03 1.084E 403
3.378E+03 3.510E+03
4.308E+03 5.552E+03
1.723E+04 1.850E+04
1.328E+04 1.074E+04
-2.784E403 -4.276E+4+08
-2.818E+03 -4.600E+01
ALL DATA READ.
4. Notes

There are no prompts in the commands ndisum and retrv to
tell the user what information he needs to enter next.

Retrv normally reads requests from the standard input device.
Another alternative is to insert these requests in a file, and have
reirv read from this file. To do this, the subroutine getdat.fortran
needs to be changed. Note the comments that have been inserted

1.090E+02
-1.100E+01
-7.000E+00
7.300E+01
-2.000E+01
-9.000E+00
2.300E+01
3.400E+01
2.700E+01
-3.100E+01
-5.600E+01
-8.900E+01
-3.800E+01
3.500E+01
-3.900E+01
-4.000E+01
-5.100E+01
-1.000E+01
-7.700E+01
-1.500E+01
-3.300E+01
-3.100E+01
9.400E+01
1.860E+03
1.172E+04
-1.099E+04
-1.714E+04
-1.430E+04
1.175E+04
2.040E+04
3.680E+04
-2.208EF+04
-8.080E+04
-4.748E+04
8.384E+03
9.484E+03
1.023E+03
3.454E+03
7.232E+4+03
1.9R3E+04
8.138E+03
-5.464E+403
2.844E+03

.21 .

1.130E4+02
-2.900E+01
2.300E+01
6.300E+01
-2.400E+01
-4.000E+00
2.000E+01
4.800E+01
1.900E +01
-4 400E+01
-5.700E+01
-8.900E+01
-3.600E+01
3.800E+01
-3.800E+01
-3.800E+01
-4.800E+01
-4.0008+00
-7.500E 401
1.200E+01
-3.000E+01
-2.500E+01
1.140E+02
2.896E+03
1.143E+04
-1.490E+04
-1.808E+04
-1.282E +04
1.502E+04
2.222E4+04
3.469E+04
-3.574E+04
-8.122E+04
-3.808E+04
1.187E4+04
7.432E+03
1.202E+03
3.270E+03
9.224E403
1.930E4-04
5.584E+03
-8.212E+03
5.688E+03

1.090E+4+02
~-4.000E+01
5.100E+01
5.200E+01
-1.900E+01
4.000E+00
1.600E+01
5.800E+01
1.500E+01
-5.300E+4+01
-8.300E+01
-7.000E+01
-3.500E+01
2.800E+01
-3.500E+01
-4.100E4+-01
-4.700E+01
-1.200E+01
-7.400E+01
2.800E+01
~1.700E+01
-1.000E+01
1.570E+4+02
4.048E+03
9.904E+403
-1.774E+04
-1.538E404
-9.938E+03
1.723E+04
2.493E+04
3.010E+04
-4.788E+04
-7.955E 404
-R.858E+04
1.393E+04
5.516E+03
1.800E+03
3.090E+03
1.138E+04
1.887E+04
3.184E+4-03
-6.380E+03
8.136E+03

in getdat.fortran to assist you in doing this.

If your machine swaps bytes (eg. PDP11’s and VAX's), you will
need to add a routine to magrd that exchanges even and odd bytes

of the data.

9.300E+01
-4 8600E+01
7.500E+01
4.000E+-01
-1.400E+01
1.500E+01
1.000E+01
6.300E+01
1.300E+01
-5.900E+01
-8.600E+01
-8.600E+01
-2.900E4-01
7.000E+00
-3.800E+01
-4.600E+01
4.600E +01
-2.900E+01
-7.300E+01
2.800E+01
-1.100E+01
1.100E+01
2.340E+02
5.732E+03
7.120E+03
-1.939E+04
-1.508E+04
-8.264E+03
1.642E+04
2.8627E+04
2.301E+04
-5.827E+04
-7.603E+-04
-1.981E+04
1.486E+04
3.854E+03
2.458E+03
3.114E+03
1.351E+04
1.739E+04
9.690E 402
-5.8676E+03
9.936E+03

7.000E+01
-4.900E+01
8.600E4+01
2.200E+01
-6.000E+00
2.300E+01
1.100E+01
8.300E+01
6.000E+00
-8.200E+01
-8.900E+01
-8.300E+01
-1.500E+01
-1.700E+01
-4.400E+01
-5.300E+01
-4 000E+01
-5.100E+01
-7.200E+01
1.100E+01
-9.000E+00
3.600E+01
3.720E+02
7.8618E+03
3.224E+03
-1.988E+04
-1.514E4+04
-1.813E+03
1.888E+04
3.174E+04
1.383E+04
-8.707E4+04
-7.078E+04
-1.088E+04
1.431E4+04
2.516E+03
3.018E+03
3.508E4+03
1.551E4+04
1.657E+04
-9.690E+02
4.812E+4+03

—

Routine

close

clsout

daymo

doy

dtpfmt

filreq

fisbuf

gbytes

getcal

getcpz

-22 -

Table 1. Summary of Routines

Description

statement
opens a file or device

subroutine
write a null header to each open
output file before closing it

integer function
converts day of year to month and
day

integer function
converts month and day to day of
year

real function
decodes binary data from Network
Day Tape

real function
scans character string for
numeric constant

subroutine
fills a request

subroutine
writes data buffers to output files

subroutine
general purpose bit manipulation
routine

integer function
scans data log for calibration
constants

subroutine
scans data log for station
constants, poles, and zeroes

Referenced
by

clsout
sample

retrv

getrqgt
ndtprt

req

filreq

getcal
getcpz
getdat
stadat

getrqt

filreq

filreq
getlin
head

getrqt

getrqt

(‘\J

=
i
A

L

Routine

getdat

getlin

getrqt

getstr

head

iasnlu

icpych

initbd

initfl

- 23 -

Table 1. Summary of Routines

Description

subroutine
scans input request file

subroutine

reads characters from input
buflfer, then converts them to
the internal character code of
the host machine

subroutine

reads Network Day Tape searching
for data that will satisfy a

request

subroutine
scans a character string for a
blank or comma-delimited substring

subroutine
decodes Network Day Tape header
information

integer function
associates a logical unit number
with an index in the data arrays

subroutine
capies one character string to
another

subroutine
initializes output files, logical
unit numbers, and instrument codes

subroutine
initializes header and data
record flags

e lv

Referenced
by

retrv

getcal
getcpz
getrqt
prbuf
rdntig
stadat
sum

retrv

getcal
getdat
rdntlg
stadat
filreq
getrqt
sum

sample

getdat

retrv

sample

Routine

irddat

irdhd

istreq

lpyr

magrd

matt

mod

mretrn

ndtprt

ndtsum

open

opnout

-24 -

Table 1. Summary of Routines

Description

integer function

reads next data point of a data record

integer function
reads next header record

integer function
compares two character strings

integer function
determines if year is a leap year

function
reads day tape returning one
physical record

subroutine
opens tape drive

intrinsic function
returns remainder

subroutine
closes tape drive

subroutine
write out values in common
blocks /start/ and /end/

command

dump contents of a Network Day Tape

statement
opens a file

subroutine
opens binary output files

Referenced
by

irdhd
sample
sample
getrqt
req
setfig
daymo
doy
stndrd
filreq
getrqt

sum

ndtsum
retrv

Ipyr
ndtsum

retrv

sum

opnout
sample

retrv

<

Routine

prbuf

prhead

rddata

rdhead

rdntlg

req

resp

retrv

rewind

sample

save

setfig

- 25 .

Table 1. Summary of Routines

Description

subroutine

writes out data logs

subroutine

writes out a header record to a

binary output file

subroutine
reads a data record

subroutine
reads a header record

subroutine
scans a data log

integer function

determines if current record will

fill a request

complex function

returns the complex forward
transfer function of the
instrument system

command
retrieves selected information
from a Network Day Tape

statement
positions file at the beginning

command
example program

statement
retlains values of variable after
execution of return statement

subroutine
sets request station flags

Referenced
by

sum

filreq

irddat

irdhd

getrqt

getrqt

sample

sample

iasnlu
irddat
irdhd

getrqt
rdntlg

Routine

stadat

stndrd

sum

tset

-26 -

Table 1. Summary of Routines

Description

subroutine
scans a data log

subroutine
checks time values for consistency

subroutine
produces summary of a Network
Day Tape

subroutine
sets time variables

Referenced
by

getrqt
filreq

sum

ndtsum

filreq
sum

- 27 -

Table 2. Summary of Common Blocks

Common Block Description

/buffer/ contains three arrays for each
orienation of data

/data/ stores binary data read from disk
/end/ end time of continuous data

/files/ output files and instrument codes
/fags/ flags that signal what type of record

is to be read next from disk

/head/ station and start time information
/header/ Network Day Tape header information
/reqgsts/ user request information

Referenced
by

filreq
fisbuf
getrqt
retrv

initfl
irddat
rddata

ndtprt
ndtsum
sum

clsout
getdat
initbd
opnout
retrv

iasniu
initfl
irddat
irdhd

irdhd
rdhead
resp

filreq
getrqt
head
ndtsum
prhead
req
retrv
sum
tset

filreq
getdat
getrat

-28 -

Table 2. Summary of Common Blocks

Common Block Description

/start/ start time of continuous data
/sstart/ start time of request
/stinfo/ station information

giv

Referenced
by

req
retrv

setflg

ndtprt
ndtsum
sum

filreq
getrqt
prhead
retrv

filreq
getrqt
prhead
retrv

_29 _

Table 3. Routines Used by Main Programs

Routine

Main

Retrv

Ndtsum Sample

close

clsout

daymo

doy

dtpfmt

ffin

filreq

fisbuf

_gbytes {

getcal

_getcpz

|__getdat

getlin

getrqt

__getstr

head

iasnlu

icpych

initbd

initfl

irddat

irdhd

istreq

—

-30 -

Ocv

Table 3. Routines Used by Main Programs

Main

Routine

Retrv

Ndtsum

Sample

lpyr

magrd {

matt 1

mod

mretrn }

ndtprt

open

opnout

prbuf

prhead

rddata

rdhead

rdntlg

req

resp

rewind

save

setflg

stadat

stndrd

sum

tset

t User-supplied routine.

.82
INCLUDE FILES

DEFINES.H

define(SP,1)
define(LP,2)
define(IP,3)
define(ZZ,1)
define(NS,2)
define(EW,3)
define(NREQS,50)
define(NPOLES,20)
define(NZEROES, 10)
define(BUFSIZE, 500)
define(DISKFILES,3)

BUFFER.DCL

#
800 - BUFFER SIZE OF DATA RECORD ON DISK

,
real z(BUFSIZE) # VERTICAL BUFFER

real n(BUFSIZE) # NORTH-SOUTH BUFFER

real e(BUFSIZE) # EAST-WEST BUFFER

real spts # NUMBER OF POINTS IN BUFFERS

real pta § TOTAL NUMBER OF POINTS READ TO FILL REQUEST

BUFFER.COM

common /buffer/ z, n, e, spts, pts

DATA.DCL

#
THE DATA READ FROM DISK IS SET TO ALLOW
ACCESS TO THREE FILES SIMULTANEQUSLY

#
real pts(DISKFILES) # NUMBER OF VALUES READ INTO DATA BUFFER buft
real buff(BUFSTZE, DISKFILES) # DATA BUFFER

DATA.COM

#
cammon /data/ pts, buff

FILES.DCL

#
integer*2 lun(3,3) # LOGICAL UNIT NUMBER FOR EACH OUTPUT FILE
integer*2 chn(3,3,4) ¢ INSTRUMENT CODE FOR EACH OUTPUT FILE

-31-

APPENDIX A

RATFOR CODE

The software written to read the Network Day Tapes was written
in Ratfor (Rational FORTRAN)t{. Ratfor translates easily into FOR-
TRAN. The FORTRAN code produced in Appendix B was generated
from this Ratfor code.

t Kernighen, Brian W. and P.J. Plauger, Sofiware Tools, Addison-Wesley, Reading, Mas-
sachusetts, (1978).

-33._

FILES.COM

#
common /files/ lun, chn
FLAGS.DCL

#
integer*2 hfig(DISKFILES) # HEADER RECORD FLAG

integer*2 dfig(DISKFILES) # DATA RECORD FLAG
integer*2 nlun # NUMBER OF LOGICAL UNIT NUMBERS ASSIGNED

integer*2 1lun{20) # LOGICAL UNIT NUMBERS ASSOCIATED WITH DATA INDEXES
integer*2 ilun{DISKFILES) # INDEX ASSOCIATED WITH A LOGICAL UNIT NUMBER
integer*2 npts(DISKFILES) # INDEX OF NEXT DATA VALUE TO BE RETURNED

FLAGS.COM

#
common /flags/ hflg, dfig, nlun, [lun, ilun, npts

HEAD.DCL

¥
THE DATA READ FROM DISK IS SET TO ALLOW
ACCESS TO THREE FILES SIMULTANEQUSLY

#

integer*2 code({4,DISKFILES) # STATION CODE - CHARACTER STRING
integer*2 chn{4,DISKFILES) # INSTRUMENT CODE - CHARACTER STRING
real Jat(DISKFILES) # STATION LATITUDE

real lon(DISKF]I.ES) # STATION LONGITUDE

real elev(DISKFILES) # STATION ELEVATION

START TIME OF DATA

integer*2 syear(DISKFILES) # YEAR

integer*2 edofy(DISKFILES) # DAY OF YEAR

integer*2 shour(DISKFILES) # HOUR

integer*? smin{DISKFILES) # MINUTE

real ssecs(DISKFILES) # SECONDS

real rate(DISKFILES) # SAMPLING RATE

real aO(DISKFILES) # NORMALIZATION CONSTANT

integer*2 np{DISKFILES) # NUMBER OF POLES

complex poles(NPOLES, DISKFILES) # POLES

integer*2 nz(DISKFILES) # NUMBER OF ZEROES

complex zeroes(NZEROES,DISKFILES) # ZEROES

HEAD.COM

common /head/ code, chn, lat, lon, elev,
syear, sdoly, shour, emin, ssecs,
rate, a0, np, poles, nz, zeroes

¢b U

-34 -

HEADER.DCL

#
TAPE HEADER INFORMATION

4

integer®2 id # STATION ID

integer*? instr # INSTRUMENT

integer*2 year # YEAR

integer®*2 dofy # DAY OF YEAR

integer®2 hour # HOUR

integer*2 min # MINUTE

integer*2 sec # SECOND

real mss §# MILLISECONDS

integer*2 nform # FORMAT ID

integer*2 nchan # NUMBER OF CHANNELS
integer*2 nsamp # NUMBER OF SAMPLES
real rate # SAMPLING RATE

HEADER.COM

common /header/ id, instr, year, dofy, hour, min, sec, mss,
nform, nchan, nsamp, rate

REQUESTS.DCL

#
REQUEST INFORMATION
60 - MAXIMUM NUMBER OF REQUESTS ALLOWED

¢#

REQUEST INFORMATION

integer*2 nreq # NUMBER OF REQUESTS

integer*2 reode(NREQS,4) # STATION CODE - CHARACTER STRING
integer*2 rinstr(NREQS) # INSTRUMENT ID

integer®2 ryear(NREQS) # YEAR

integer*2 rmonth(NREQS) # MONTH

integer*2 rday(NREQS) # DAY

integer*2 rhour(NREQS) # HOUR

integer*2 rmin{NREQS) # MINUTE

integer*2 rsec(NREQS) # SECONDS

real rlen(NREQS) # LENGTH IN SECONDS

integer*2 rlun(NREQS,3,3) # LOGICAL UNIT NUMBER

integer*2 rchn(NREQS,3,3,4) # INSTRUMENT CODE - CHARACTER STRING
integer*2 rfig(NREQS) # STATION FLAG

REQUESTS.COM
#
common /freqsts/ nreq,reade,rinstr,ryear,rmonth,rday,

rhour,rmin,raec,rlen rlun,rchn,rfig

STAINFO.DCL

#
STATION INFORMATION
#

-35-

integer*2 code(4) # STATION CODE - CHARACTER STRING

integer*2 np # NUMBER OF POLES, 20 LARGEST NUMBER OF SR0O POLES
integer*2 nz # NUMBER OF ZEROES, 10 LARGEST NUMBER OF SRO ZEROES

tnteger*2 ichan # NUMBER OF CHANNELS
real a0{3) # CONSTANT

real cal(3) # CALIBRATION CONSTANT
real elev # STATION ELEVATION

real lat # STATION LATITUDE

real lon # STATION LONGITUDE

complex poles{NPOLES,3) # POLES
complex zeroee{NZEROES,3) # ZEROES

#
START TIME OF DATA

#

integer*2 syear # YEAR
integer*2 sdofy # DAY OF YEAR
integer*2 shour ¢ HOUR
integer*2 smin # MINUTES
real ssecs §# SECONDS

STAINFQ.COM

common /stinfo/ code, ichan, np, nz, lat, lon, elev, a0, cal,
poles, zeroes

#
common /sstart/ syear, sdofy, shour, smin, ssecs

TIMES.DCL

#

START TIME OF CONTINOUS DATA
#

integer®*2 syr # YEAR

integer*2 sdy # DAY OF YEAR
integer®*2 shr # HOUR

integer*2 smn # MINUTE

integer*? esec # SECONDS

real sms § MILLISECONDS

#
END TIME OF CONTINUOUS DATA

#

integer*2 lyr # YEAR
integer*2 Idy ¢ DAY OF YEAR
integer+2 thr ¢ HOUR
integer*2 Imn # MINUTE
integer*2 isec # SECONDS
real ims # MILLISECONDS

TIMES.COM

cammon /start/ syr, edy, shr, smn, ssec, sms
#
cammon fend/ lyr, 1dy, lhr, Imn, Isec, Ims

760

- 36 -

NDTSUM MAIN

Command NDTSUM produces a summary
of the data written on a Network

Day Tape. This includes a literal

dump of all data logs, and a list

of start and end times of the

continuous data recaorded for each
station and each instrument.

#

NDTSUM reads from the standard
input (logical unit number 5)

for the tape drive unit number.

No prompt is given to the user.

#

Calls:

matt - user supplied
mretrn - user supplied
sum

Programmed by Madeleine Zirbes
September 15, 1880

e e e A e e

include{header.del)
include(times.del)

integer®2 dr # TAPE DRIVE NUMBER
integer*2 read # READ ONLY FLAG
integer*2 den # TAPE DRIVE DENSITY
include{header.com)
include(times.com)

data read /1/

data den /1800/

#
GET LOGICAL TAPE UNIT NUMBER
FROM THE USER - NO PROMPT GIVEN

read(5, 10) dr
10 format(i1)

ﬁ OPEN TAPE DRIVE FOR READING
call matt(dr,den,read)

z PRODUCE SUMMARY
call sum (dr)

$ CLOSE TAPE DRIVE
call mretrn (dr)

#
end

b U

-87._
NDSTUM SPECIFIC ROUTINES

SUM.RATFOR

subroutine sum(dr)

#
Sum produces a summary of the
data contained on a Network

Day Tape.
#

#

Calls:

getlin

head

magrd - user supplied
ndtprt

prbuf

stndrd

tget

Programmed by Madeleine Zirbes
September 15, 1980

teger?2 dr # TAPE DRIVE LOGICAL UNIT

S [e e e e e e e e e T W

include(header.dcl)

include(times.dcl)

integer*? idata(1000) # BINARY DATA

integer*? Insam # NUMBER OF SAMPLES OF LAST DATA READ
integer*2 Inchen # NUMBER OF CHANNELS OF LAST DATA READ
integer*2 nyr, ndy, nhr, nmn, nsec # NEXT EXPECTED TIME FOR DATA
integer*2 tyr, tdy, thr, tmn, tsec # CURRENT TIME OF DATA
real tms

integer*? i # LOOP INDEX

integer*? ibufl(80)

integer*2 magrd # FUNCTION

integer*2 nr # NUMBER OF FRAMES READ

integer*? kus, kut

real fms # MILLISECONDS

real nms

real lrate # SAMPLING RATE OF LAST DATA READ

integer*2 nwords ¥ NUMBER OF FRAMES OF DATA TQ READ
inelude(header.com)

include(times.com)

data nwords /1000/
data kus, kut /'S, 'T"/

#

NETWORK DAY TAPE FORMAT

#

#

#

EOF EOF

#

¢ ' | | |

NETWORK-DAY | STATION DAY | 1P DATA LOG
TAPE LOG | TAPE 10G |

g (ASCI) = (Ascm) { (Ascm)
I I :

#

Lb0

- 38 -
#
#
EOF EQOF
#
| |
| - |
| SP DATA L.OG |
LP DATA] SP DATA |
| (AScm) |
| |
| |
#
#
#
EOF EOF
#
| |
| |
IP DATA LOG | STATION DAY |
IP DATA | TAPE 1.0G |
(asci) | (Ascm) |
-— | |
| |
#
#
for (;;) §
#
READ NETWORK DAY TAPE LOG
#
i = magrd{dr, nwords, idata, nr)
if (i == 0) break
#
PRINT OUT NETWORK DAY TAPE LOG
#
else if (i == 1) call prbuf{idata)
else §
write(8,10)
10 format(ix, ‘Error reading - Network Day Tape log.’)
return
}
}
#
¢ READ STATION LOG
#
if (magrd(dr, nwords, idata, nr) != 1) §
write(8, 18)
12 format(lx, 'Error reading - Station log expected.’)
return
#
1.00P ONCE FOR EACH STATION
#
for (i)
it (magrd(dr, nwords, idata, nr) != 0) {
write(8, 13)
13 format(ix, ‘Error reading - EOF expected after Station log.")
return

]
START A NEW PAGE WITH EACH NEW STATION

write(8, 20)

W R

-

-390 -

PRINT NEW PAGE
go format{ ‘\f")
PRINT STATION LOG
call prbuf(idata)
for (;;) |
IF MAGRD == 0, END OF TAPE

WA A e e

if (megrd(dr, nwords, idata, nr) == 0) return
call getlin(idata, 1, ibuff)

IF THE FIRST TWO CHARACTERS OF THE FIRST LINE
OF THIS RECORD EQUALS 'ST’, THIS IS A STATION LOG

if (1buff(1) == kus & ibuff(2) == kut) break
THIS WAS NOT A STATION LOG, IT WAS A DATA LOG
call prbuf{idata)

READ AND PRINT REMAINING TWO DATA LOGS

W YNk Nk

doi= 1,2}
if(magrd(dr, nwords, idata, nr) {= 1) {
write(8, 14)
14 format(1x, 'Error reading datalog.’)
return

]
call prbuf(idata)

QUTPUT HEADER FOR THE START AND END
TIMES OF THE CONTINUOQUS DATA

W e e W

write(8, 30)
0 format(1x, ' START TIME END TIME')
write(6, 40)
40 formet(1x, 'YEAR MONTH DAY TIME YEAR MONTH DAY TIME’)

[+

: READ DATA RECORDS

IF MAGRD == 0, NO BINARY RECORDS FOR THIS INSTRUMENT
if (magrd(dr, nwords, idata, nr) == 0) next

INTERPRET BINARY HEADER DATA

call head(idata)

SET INITIAL VALUES FOR

START TIME, NEXT EXPECTED TIME
AND LAST TIME READ

W W WA W W W

call tset(syr, ady, shr, emn, ssec, sms)
call tset{nyr, ndy, nhr, nmn, nsec, nms)

NUMBER OF MILLISECONDS COVERED BY THIS RECORD

e e e

fms = float(nsamp)*1000. /(float{nchan)*rate)
nms = nms + fms
call stndrd{nyr, ndy, nhr, nmn, nsec, nms)

soU

MW A

e e T W T T

W W T

WM e

M e T T W W Y

-40 -

call tset(lyr, Idy, lhr, Imn, isec, Ims)

for(;:)
IF MAGRD == 0, END OF FILE

if (magrd{dr, nwords, idata, nr) == 0) break
call head(idata)

SET CURRENT TIME
call tset{tyr, tdy, thr, tmn, tsec, tms)
IS CURRENT TIME EQUAL TO NEXT EXPECTED TIME?

if {(tyr == nyr) & (tdy == ndy) &
{thr == nhr) & (tmn ==nmn) &
(taec == nsec) & (tms == nms)) |

YES

call tset(nyr, ndy, nhr, nmn, nsec, nms)
fms = float(nsamp)*1000. /(float{nchan)®rate) # reintialize values
nms = nms + fms
call stndrd{nyr, ndy, nhr, nmn, nsec, nms)
call teet(lyr, 1dy, lhr, Imn, 1sec, ims)
Insam = nsamp
Irate = rate
Inchan = nchan
}

else |
NO |

fms = (float(lnsam/inchan) - 1.0)*1000./Irate
Ims =Ims + fms
call stndrd(lyr, 1dy, lhr, lmn, lsec, lms)

PRINT QUT STARTING AND ENDING TIMES
OF THE CONTINUQUS DATA

call nditprt
REINITIALIZE VALUES

call teet(syr, sdy, shr, smn, ssec, sms)
call tset(nyr, ndy, nhr, nmn, nsec, nms)
fms = float(nsamp)*1000./(foat{nchan)*rate)
nme = nms + fms
call stndrd(nyr, ndy, nhr, nmn, nsec, nms)
call tset(lyr, ldy, lhr, Imn, Isec, ims)
Insam = nsamp
Irate =rate
; Inchan = nchan

}

fms = (float{lnsam /Inchan) - 1.0)*1000. /Irate
lms = Ims + fms

call stndrd(lyr, 1dy, lhr, lmn, Isec, Ims)

call ndtprt

write(8,50)

oo u

50
]

end

3 format(///)

-41 -

001

42 -

PRBUF.RATFOR

subroutine prbuf{idata)

#

Prbuf prints one ascii record(2000 characters) -
25 lines, 80 characters per line.

#

#
Calls:
getlin

¥
Programmed by Madeleine Zirbes
September 15, 1980

»*

integer*2 idata(1) # DATA RECORD - INPUT
SET TO HOLD 16000 BITS OF TAPE INPUT RECORD
#

integer®2i
integer®2 j
integer*2 ibuff(80)

#
doi=1,25}
call getlin{idata, i, ibuff)
write(8, 10) (ibuff(j), j=1.80)
10’ format(ix, B0al)

return

#
end

ol

-43 -

NDTPRT.RATFOR

subroutine ndtprt

#

Ndtprt writes out the start and
end times in common blocks

/stert/ end /end/.

#

Ndtprt uses a colon (¢} in

the formet statement. This may
not be available on all machines.

#

#

Calls:

daymo

Programmed by Madeleine Zirbes
September 15, 1980

e e e A

include(times.dcl)

integer*2 smonth, sday, imonth, lday
integer*2 daymo # FUNCTION
integer*2 ier # ERROR CODE
include(times.com)

ier = daymo(sdy, smonth, sday, syr)
ier = daymo(ldy, Imonth, lday, lyr)

write(8, 10) syr, emonth, sday, shr, smn, ssec, sms,
lyr, Imonth, lday, lhr, Imn, 1sec, Ims

g
#° MACHINE DEPENDENT

’ »!
10 format (1x,(2(i4,4x,12,2x,i3 ,4x,i2,':",i2,’ i2,' " £4,4x)))
#

return

end

L

-44 -

RETRV MAIN

#

Command RETRV fetches data from a
Network Day Tape mounted on
logical tape unit N and generates
output files.

RETRV reads from the standard
input {logical unit number 5)

the tape drive unit number,

and then continues to read the
user's requests.

No prompt is given to the user
for this information.

#

#

Calis:

clsout

getdat

getrqt

initbd

matt - user supplied

mretrn - user supplied
opnout

Programmed by Madeleine Zirbes
September 15, 1880

e A e W W W B A Y e W

include{defines.h)
include(requests.del)
include(header.dcl)
include(stainfo.dcl)
include(files.dcl)
include(buffer.del)

integer*2 dr # TAPE DRIVE NUMBER
integer*2 den # TAPE DENSITY
integer®2 read # READ ONLY FLAG
include(requests.com)
includetheader.com)
include(stainfo.com)
include(files.com)
include(buffer.com)

data den/1800,/

data read/1/

#
GET LOGICAL TAPE UNIT NUMBER
FROM THE USER - NO PROMPT GIVEN

¥
read(5, 10) dr
10 format(il)
#
INITIALIZE
eall initbd

#
READ USERS REQUESTS
#
call getdat
if (nreq == 0) |
write(8, 20)
20 format(1x, ‘No requests.*)
; stop

#
QPEN OUTPUT FILES

(e
L

-45 -

call opnout

#
OPEN TAPE FOR READING

#
call matt(dr, den, read)

A

RETRIEVE REQUESTS

=

call getrqt(dr)

W=

CLOSE QUTPUT FILES
call clsout

z CLOSE TAPE DRIVE

f call mretrn{dr)

end

(e

-

-46 -
RETRV SPECIFIC ROUTINES

INITBD.RATFOR

subroutine initbd

#

Initbd initializes the output files
logical unit numbers and the

instrument codes.

#
#
¢ Calls no other routine.

kY

Programmed by Madeleine Zirbes
September 15, 1980
#
#

include(defines.h)
include(files.dcl)

integer*2 kus, kul, kui
integer*2 kuz, kun, kue
integer*2 kup, kbl
include(files.com)

dﬂta m, kul, k.ui /IS" OLI, III/
deta kuz, kun, kue /'Z, 'N', 'E'/
data kup, kbl /'P", ' '/

lun(SP,ZZ) = 1
1un(SP,NS) = 0
lun(SP,EW) =0
un(lP,Z7) = 2
lun({LP,NS) =3
lun(LP,EW) = 4
hun(IP,ZZ) = 7

lun(IPNS) =8

lun(IP.EW) = 9

chn(1,1,1) = kus
chn(1,1,2) = kup
chn(1,1,3) = kuz
chn(1,1,4) = kbl

#
chn(1,2,1) = kus
chn(1,2,2) = kup
chn(1,2,3) = kun
chn(1,2.4) = kbl

#
chn(1,3,1) = kus
chn(1,3,2) = kup
<hn(1,3,3) = kue
chn(1,3,4) = kbl

#
chn(2,1,1) = kul
chn(2,1,2) = kup
chn{2,1,3) = kuz
chn(2,1,4) = kbl

#
chn(2,2,1) = kul
chn{2,2,2) = kup
<hn(2,2,3) = kun
chn(2,2,4) = kbl

#
chn(2,3,1) = kul

chn(2,3,2) = kup
chn(2,3,3) = kue
chn(2,3,4) = kbl

#
chn(3,1,1) = kui

#

chn{3,1,2) = kup
chn(3,1,3) = kuz
chn(3,1,4) = kbl

#
chn(3,2,1) = kui

chn(3,2,2) = kup
chn(3,2,3) = kun
chn(3,2,4) = kbl

¢hn(3,3,1) = kui
chn(3,3,2) =kup
chn{3,3,3) = kue
chn(3,3.4) = kbl

return

end

-47 -

——

-48 -

GETDAT.RATFOR

wubroutine getdat

#

Getdat scans the standard input,

(logical unit 5) reading requests.

Scanning stops upon reading a station
code of STOP.

eng
1%

icpych

Programmed by Madeleine Zirbes
September 16, 1980

ez W e e e W N A W N W

include(defines.h)

include{requests.del)

include{files.del)

integer*2 kus, kue, kui, kul, kun

integer*2 kuo, kup, kus, kut, kuz

integer*2 kema, kbl

integer®?i, j, k, I, m, mm

integer*2 ifl

integer*2 fid

integer*2 instr(4)

integer*e code(4)

integere®2 line(80)

real flin # FUNCTION

include(requests.com)

include(files.com)

data id /5/

data klla, kue, km, ku.l. k‘m /IA" IEI’ III. ILI' th/
data kuo, kup, kus, kut, kuz /'0', 'P','S', 'T", '2'/
data kema, kbl /., ' '/

If you want to read the user's requests
from a file, change the software as follows:

1.) Obtain the file name that contains the requests,

2.) Open the file for formatted input, positioning
the flle at the beginning,

8.) Before exiting the subroutine getdat, close the

4.) Change the date statement that initializes fid
to 5 to another unit number.

nreq =0

e e e e W W e Mk M e W T TR T MR R

ZERO OUT LOGICAL UNIT NUMBERS

doi = 1 NREQS §
doj=131%
dok =13}
riun(i,j k) =0

LUl

-49 -

i

#

THIS LOOP WILL READ REQUESTS UNTIL A SINGLE LINE

CONTAINING THE CHARACTER STRING STOP IS ENCOUNTERED,

OR UNITL 50 REQUESTS ARE READ INTO THE REQUEST BUFFERS.

doi=1, NREQS |

read(fid, 10) line

10 format(80a1)
dok=1,4}

ecode(k) = kbl

cell getstr(i, 80, line, m, ifl, k, 4, code)
if (code(1) == kus &
code(2) == kut &
code(3) == kuo &
code(4) == kup) break
it (ifl == kema) mm =m + 1
else mm =m
call getstr(mm, 80, line, m, ifl, k, 4, instr)
if (il == kema) mm =m + 1
else mm =m
ryear(l) = int{ffin{mm, 80, line, m, ifl))
if (il == kema)mm =m + 1
else mm =m
rmonth(i) = int(fMin{mm, B0, line, m, ifl))
if (iff == kema) mm =m + 1
else mm=m
rday(i) = int{ffin(mm, 80, line, m, ifl))
it (ifl == kema) mm =m + 1
elsemm =m
rhour(i) = int(ffin(mm, 80, line, m, ifl))
if (il == kema) mm =m + 1
elsemm =m
rminf(l) = int{flin{mm, 80, line, m, ifl))
if (il == kema) mm =m + 1
elsemm=m
rsec(l) = int{ffin(mm, 80, line, m, ifl))
if (il == kema) mm =m + 1
elseemm =m
rien(i) = fin(mm, 80, line, m, ifl)
if (code(1) == kua & code(2) == kul & code(3) == kul) §
rg(l) = 1
code(4) = kbl

i
else rfig(i) =0

reode(i, 1) = code(1)
reode(i,2) = code(2)
rcode(1,3) = code(3)
rcode(i4) = code(4)

it (instr(1) == kua &
{nstr(2) == kul &
inatr(3) == kul) §

USER WANTS ALL CHANNELS

e e

rinstr(i) = 0

rlun(i,SP,2Z) = lun(SP.ZZ)

rlun(i,SP,NS) = lun(SP,NS)
rlun(i,SP EW) = lun(SP EW)
riun(i,LP,ZZ) = lun(LP,ZZ)

rlun(i,IP,NS) = lun(LP,NS)

8 U

-

e W

W W M e W

MWW W

e W W

HeWe W W

-50 -

rlun(i, LP,EW) = lun{LP EW)
rlun(i,IP,ZZ) = lun(IP,ZZ)
rlun(i,IP,NS) = lun(IP NS)
rlun{i,IP,EW) = lun{IP EW)
dol1=13}
dom=13{
call icpych{rehn, chn, i, 1, m)

next
}

else if (instr(1) == kus) |
SHORT PERIOD
j =8P
rinstr(l) = SP
else if (instr(1) == kul) }
LONG PERIOD
j=1P
rinstr{i) = LP
else if (instr{1) == kui) |
INTERMEDIATE PERICD
i=P
rinstr(i) = IP
else §

ERROR IN INPUT
SKIP REQUEST THAT WAS JUST READ IN

i=f-1
next
H

dok=241}
if (instr(k) == kup) {

ALL CHANNELS

rlun(i,j,Z2) = lun(j,ZZ)
rlun(i.j.NS) = lun(j,NS)
riun{i,j,EW) = lun(j,EW)

dom =131}
call iepych(rchn, ehm, i, j, m)

j
else if (instr(k) == kuz) |
VERTICAL

bu L

riun(i,j,ZZ) = lun(j,Z%)
m=1
call icpych{rchn, chn, i, j, m)

#
else if (instr(k) == kun) |
#
rt NORTH/SOUTH
#
rlun(i,j,NS) = lun(j,NS)
m=2
call iepych(rchn, chn, i, j, m)
#
else if (instr(k) == kue) {
#
EAST/WEST
¢ rlun(i,j,EW) = lun(j,EW)
m=3
call icpyeh(rchn, chn, i, j, m)
}
#
#
}
/
NUMBER OF REQUESTS
#
nreq =i-1
return
#

end

-53 -

CLSOUT.RATFOR

subroutine clsout

Clsout writes out a null header
record to each open output file
(opened by opnout) before

closing that file.

#

#

Calls:

close - machine dependent

#

Programmed by Madeleine Zirbes
September 15, 1980
#
#

include{files.dcl)

integer*2 i, j, k # LOOP INDEX
integer*2 izero # INTEGER ZERO
integer*2 ione # INTEGER ONE
integer*2 code(4) # CHARACTER STRING
integer*2 1 # LOGICAL UNIT NUMBER
real fzero # FLOAT ZERO
include(files.com)

data izero, ione /0, 1/

data fzero /0.0/

data code /'E', N, ‘D', ' '/

doi=13}
doj=13}
if Qun(i,j) ~=0) {

WRITE OUT NULL HEADER

1 = lun(i.j)

write(l) (code(k), k=1,4), (code(k), k=1,4),
fzero, fzero, fzero,
igero, izero, izero, izero,
fzero, fzero, fzero,
ione, cmpix(fzero, fzero),
fons, emplx(fzero, fzero)

;' MACHINE DEPENDENT R
close(l)
; Jun{i,j) =0
}

!
#

return
#

end

[V

o

=

-5 -

OPNQUT.RATFOR

subroutine opnout

#
Opnout opens the output files
for retrv.

Calls:
open ~ machine dependent

Programmed by Madeleine Zirbes
September 15, 1980

T T e T W e e

include{defines.h)
include(files.dcl)
include(files.com)

* MACHINE DEPENDENT hd

ey ey

e Tz e W

if Qun(SP,ZZ) !=0) open{lun(SP,Z27), file="retrv.spz’, form = 'unformatted’)
if (lun{SP,NS) !=0) open{lun(SP,NS), file="retrv.spn’, form = ‘unformatted’)
if Qun(SP,EW) !=0) open(lun(SP,EW), file="retrv.spe’, form = 'unformatted’)
if (lun(1LP,ZZ) !=0) open({lun(LP, ZZ), file="retrv.lpz’, form = 'unformatted')
if (lun(LP NS) 1=0) open{lun(LP, NS), file="retrv.lpn’, form = 'unformatted’)
if (lun(LP EW) 1=0) open(lun(LP,EW), file="retrv.lpe’, form = 'unformatted’)
if (lun(IP,ZZ) 1=0) open{lun(IP,ZZ), file="retrv.ipz', form = 'unformatted’)
if (lun{IP?,NS) !=0) open{lun{IP,NS), file="retrv.ipn’, form = '‘unformatted’)
if (lun(IP,EW) 1=0) open(lun{IP,EW), file='retrv.ipe’, form = 'unformatted’)
#

return

4

end

il

-

-54 .

GETRQT.RATFOR

subroutine getrqt{dr)
#

#
#
#
#
¢
#

e T T e T T W M e T e T e e e A e W

Rt}

#

Getrqt reads a Network Day Tape
and trys to satisfy each request.

Getrgt uses a colon in a format
statement. This may not be
available on all machines.

&Q
1
‘E..

filreq
getcal
getepz
getlin
head
istreq
magrd - user supplied
rdntlg
req
setflg
stadat

Programmed by Madeleine Zirbes
September 15, 1980

teger*2 dr # TAPE DRIVE LOGICAL UNIT - INPUT

include(defines.h)

include(header.del)

include{requests.dcl)

include(stainfo.del)

include({buffer.dcl)

integer*2 magrd # FUNCTION

integer*2 ierr # ERROR CODE

integer*2 nwords

integer*2 nr

integer*2 idata{1000) # BINARY DATA
SET TO HOLD 16000 BITS OF TAPE RECORD INPUT

integer*2 indx # USER REQUEST BEING SATISFIED

integer®21i, j

integer*2 ibuff(80)

integer*? kus, kut

integer*2 rdfiag

integer*2 req # FUNCTION

integer*? getcal # FUNCTION

integer*2 daymo # FUNCTION

integer®2 istreq # FUNCTION

integer*2 flag

integer®2 kall(4)

integer*2 mon ¢ MONTH

integer*2idy # DAY

integer®2 linstr § INSTRUMENT

real ratart

include(header.com)

include(requests.com)

include(stainfo.com)

include(buffer.com)

data nwords/1000/

data kall /’A°, L', 'L, ' */

data kus, kut /'S, ‘T'/

55

datacode /' ', ', ', Y/
NETWORK DAY TAPE FORMAT
#
#
#
EOF EOF
#
: | | | |
NETWORK-DAY] STATION DAY |
TAPE LOG | TAPE LOG |
(ASCI) | (ASCI) |
I I
| I
#
#
#
EOF
#
]
|
| SP DATA 1OG
LP DATA | SP DATA
| (Ascm)
|
|
#
#
#
EOF
#
: |
IP DATA LOG | STATION DAY
IP DATA | TAPE LOG
(AscI) ! (ASCD)
|
#

for(::) §

#
READ NETWORK DAY TAPE LOG(S)
#

i = magrd(dr, nwords, idata, nr)
it (i == 0) break

¥
GET DATA FROM NETWORK LOG
else if (i == 1) call rdntig(idate)
else §
write(8, 10)
10 ; format(1x, ‘Error reading - Network Day Tape Log.')
}
#
READ STATION LOG
if (megrd(dr, nwords, idata, nr) = 1) §

write(8,11)
11 format(1x, 'Error reading - Station log expected.’)

#
LOOP ONCE FOR EACH STATION

vit

LP DATA LOG

(ascr)

EOF

EOF

—— s e e e e

- 56 -

#
for (i) §

12

W M THe M W A T W T T G S T T M N e YR

AWM I R TRAne

e T e W e

e e e

if (magrd(dr, nwords, idata, nr) != 0) §
write (8,12)
format {1x, 'Error reading - EOF expected after station log.’)
}

BEFORE READING NEW STATION LOG,
CHECK TO SEE IF THERE ARE ANY
MORE REQUESTS TO SATISFY.

IF NOT, RETURN TO MAIN PROGRAM.

SET REQUEST FLAG TO TRUE FOR ALL REQUESTS THAT
HAVE THE REQUESTED STATION EQUAL TO "ALL’

call setfig(kall, 1)

SET REQUEST FLAG TO FALSE FOR ALL REQUESTS THAT
MATCH THE PREVIOUS STATION CODE. EVEN IF THEY
WERE NOT SATISFIED, NO MORE DATA FOR THAT STATION
REMAINS ON THE TAPE.

call setflg(code, 0)
ARE THERE ANY OUTSTANDING REQUESTS?
flag =0

doi=1,nreq}

it (rig(i) == 1) §
flag = 1

break
3

:f {flag == 0) return
GET STATION DATA - LATITUDE, LONGITUDE, ELEVATION, INSTRUMENT TYPE
call stadat(idata, code, lat, lon, elev)
for (::) ¢
IF MAGRD == 0, END OF TAPE
if (magrd(dr, nwords, idata, nr) == 0) return

IF THE FIRST TWQ CHARACTERS OF THE FIRST LINE OF THE BUFFER
EQUALS ‘ST, THIS IS A STATION LOG

call getlin{idata, 1, ibuff)
if {(ibuff(1) == kus & ibuff(2) == kut) break

IF THIS WAS NOT A STATION LOG, IT IS A DATA 1.0G.
GET DATA FROM FIRST DATA LOG RECORD -
AVE CALIBRATION VALUES FOR EACH CHANNEL.

if (getcal(ideta,ichan,cal linstr) == 0) |
write(8,13)
format(1x, 'Error reading - calibration')
j

CHECK TO SEE OF THE USER HAS REQUESTED INFORMATION
TO BE EXTRACTED FROM THIS STATION AND INSTRUMENT

e T T T T e T W

e W WA e

W e

15

#
#
¥

M MWmA W W

57 -

flag =0
doi = 1,nreq {

RESET THE REQUEST FLAG TO TRUE
1.) IF THE REQUESTED STATION CODE IS 'ALL'’
AND THE REQUESTED INSTRUMENT MATCHES
THE CURRENT INSTRUMENT, OR
2.) IF THE REQUESTED STATION CODE MATCHES
THE CURRENT STATION, AND THE REQUESTED
INSTRUMENT MATCHES THE CURRENT INSTRUMENT.

it ((istreq(rcode, kall, i) == 1) | (istreq(rcode, code, i) == 1)
ﬂ&;g((:i!;str(i) == linstr) | (rinstr(i) == 0)))

; riigli) = 1
i
1f (flag == 0) {

IF THE USER HAS NOT REQUESTED THIS STATION,
READ RECQORDS UNTIL AN END-OF-FILE HAS BEEN FOUND

for(:;) ¢
if (magrd(dr, nwords, idata, nr) == 0) break

next
i

GET DATA FROM SECOND DATA LOG RECORD - CONSTANTS, POLES, ZEROES

if (megrd{(dr, nwords, idata, nr) 1= 1) {
write(6,14)
format(1x, 'Error reading - Data log 2.')

call getepg(idata,ichan,a0,np,poles,nz,zeroes)

READ THIRD DATA L.OG RECORD
NO INFORMATION IS NEEDED FROM THE THIRD DATA LOG

it (magrd{dr, nwords, idata, nr) != 1) §
write(8,15)
format({1x, 'Error reading - Data log 3.")

READ BINARY RECORDS
indx=0
rdflag = 1
for (i) §
if (rdflag == 1) §

IF MAGRD == 0, END OF BINARY RECORDS
if (magrd(dr, nwords, idata, nr) == 0) break
INTERPRET BINARY HEADER DATA
call head{idata)

rdflag = 1

WA AR R

16

e T

-58 -

WILL THIS RECORD SATISFY A REQUEST?

if (req{code, indx, retart) == 0) next

FILL REQUEST

pts=0.
ierr=1
call filreq(dr, indx, retart, rdflag, idata, ierr)

if (lerr ==-1){
write(8,16)
format(1x, 'Error reading - could not fill request.’)
next

}
PRINT INFORMATION STATING WHICH REQUEST WAS SATISFIED

dai=13}
if (rlun{indx,instr,i) ~= 0) |
flag = daymo(sdofy, mon, idy, syear)
write(8, 20)(code(j), j=1.4), {rehn(indx,instr.ij), j=1,4),
syear, mon, idy, shour, smin, ssecs, pta/rate

MACHINE DEPENDENT .

e B Y
B

o

a%%’k

format (1x,2(4al,1x),i4, 1x,2(i2,1x),2(i2,":’),15.2,1x,110.3)
i
END OF FILE

if (ierr == 0) break

-59._
RDNTLG.RATFOR

subroutine rdntlg {idata)

#

Rdntlg scans a Network Day Tape
Log for the stations recorded

on the tape. Rdntlg sets a flag for
the request information.

Calls:
getlin
getstr
setflg

Programmed by Madeleine Zirbes
September 15, 1980

S THe A e T e e e e S

integer*2 idata(1) # DATA RECORD
#

integer*2 kbl

integer*2 code(4) # STATION CODE - CHARACTER STRING
integer*2 ibuff(80)# CHARACTER BUFFER

integer*2 m, i, ifl

integer*2 line # LOOP INDEX

data kbl /* '/

do line = 8,25 {
call getlin(idata, line, ibuff)

CHECK COLUMN ONE FOR STATION CODE

SHe e S

doi=1,4
code(i) = kbl
call getstr(8, 9, ibuff, m, if], i, 4, code)
if (code(1) == kbl &
code(2) == kbl &
code(3) == kbl &
code(4) == kbl) break
call zetfig(code, 1)

CHECK COLUMN TWO FOR STATION CODE

e e e

doi=1,4
code(i) = kbl
call getstr(41, 44, ibuff, m, if, i, 4, code)
if (1(code(1) == kbl &
code(2) == kbl &
code(3) == kbl &
eode(4) == kbl)) call setfig(code, 1)
3
#

return

#

end

[QN

e
L0

-60 -
SETFLG.RATFOR

subroutine setfig {code, flag)

#

Setfig loops through the requests
and sets rfig(i) to flag if code and
rcode are equal.

Calls:
{streq

Programmed by Madeleine Zirbes
September 15, 1980

e W B W W e

integer*2 code(4) # STATION CODE - INPUT
integer*2 flag # STATION FLAG - INPUT

include{defines.h)
include(requests.del)
integer*2i
integer*2istreq
include(requests.com)

doi=1nreq}
if (istreq(rcode, code, i) == 1) rig(i) = flag

-

-

-61 -

STADAT.RATFOR

subroutine stadat(idata, code, lat, lon, elev)
#

Stadat scans a Station Log for the

station code, latitude, longitude, and
elevation.

#

#

Calls:

ffin

getlin

getstr

#

Programmed by Madeleine Zirbes
September 15, 1980

#
integer*2 idata(1) # DATA RECORD - INPUT
integer*2 code(4) # STATION CODE - QUPUT
real lat # STATION LATITUDE - OUTPUT
real lon # STATION LONGITUDE - OUTPUT
real elev # STATION ELEVATION - OUTPUT
#

integer*2 kus, kuw, kbl

integer*2i

integer*2 m

integer*? ifi

integer*2 ibuff(80)

integer*21

real fiin # FUNCTION

data kus, kuw, kbl /'S’, 'W’, ' */

doi=14}
codefi) = kbl

cell getlin(idata, 5, ibuff)

cell getstr(20, 80, ibuff, m, ifl, i, 4, code)
#
LATITUDE

1at = fin(38, 80, ibufl, m, ifl)
if (ift == kus) lat = -lat

#
LONGITUDE

=m+1
lon = Min(l, 80, ibuff, m, iff)
if (i1 == kuw) lon = -lon
#
ELEVATION
#
l=m+1
elev = ffin(l, 80, ibuff, m, {fl)
#
return
end

-62 -

GETCAL.RATFOR

integer*2 function getcal(idata, ichan, cal, linstr)
#

Function getcal scans Data Log 1 for
calibration constant(s).

The calibration constants are the

amplitude in counts of a sinusoid

at the primary reference period

(1 mec for short period and 25 for

long period).

Getcal also returns in linstr

the type of instrument,

1 for ehort period,

2 for long period, and

3 for intermediate period data.

2k

Programmed by Madeleine Zirbes
September 15, 1880

e e e W U e Wk e A

integer*2 idata(1) # DATA RECORD - INPUT

SET TO HOLD 16000 BITS OF TAPE INPUT RECORD
integer®2 ichan # NUMBER OF CHANNELS - OUTPUT
real cal(3) # CALIBRATION CONSTANT - QUTPUT
integer®2 linstr # INSTRUMENT

integer*2 kue, kui, kul, kus

integer*2 i

integer*2 line

integer*2 k

integer*2 ifl, m

integer*2 ibuff(80)

integer*2 code

real fin # FUNCTION

data kue, kui, kul, kus /°C’, 'T’, 'L’, 'S"/

4
GET NUMBER OF CHANNELS
#
call getlin (idata, 1, ibuff)
ichan = int{ffin(13, 80, ibuft, k, if))
tf ({((ichan > 0) .and. (ifl == kuc))) return (0)
#
DETERMINE TYPE OF INSTRUMENT
cell getstr (28, 28, ibuff, m, ifl, i, 1, code)
if (code == kus) linstr = 1
else if (code == kul) linstr = 2
else if (code == kui) linstr = 8
#
ERROR
4
else linstr = -1
#
GET CALIBRATION VALUES
line =7

doi = 1,ichan |
line = line + 2

call getlin (idata, line, ibuff)
cal(l) = fin (51, 80, ibuff, k, ifi)

return (1)

end

-863 -

-64 -

GETCPZ RATFOR

subroutine getcepzf{idata, ichan, 20, np, poles, nz, zeroes)
#

Getepz scans Data Log 2 for the
constant(s), poles and zeroes

of the instrument transfer

tunction(s).

#

#

Calls:

ffin

getlin

Programmed by Madeleine Zirbes
September 15, 1980

e s Wz W N W

incdlude{defines.h)

integer*2 idata(1) # CHARACTER BUFFER - INPUT
SET TO HOLD 18000 BITS OF TAPE RECORD INPUT
integer®2 ichan # NUMBER OF CHANNELS - INPUT
real a0(3) # CONSTANT - QUTPUT

integer*2 np # NUMBER OF POLES - OUTPUT
complex poles(NPOLES,3) # POLES - OUTPUT
integer*2 nz § NUMBER OF ZEROES - OUTPUT
complex zeroes(NZEROES,3) # ZEROES - OUTPUT
#

integer*2 kua, kup, kus, kuz

integer*21i, j, m, k, 1, m2

integer*2 ibuff(80) # CHARACTER BUFFER

integer*2 line

integer®? ifi

integer*2 itf

real fiin § FUNCTION

real a(8)

data kua, kup, kus, kuz /'A’, 'P’, 'S, 'Z'/
¢
INITIALIZE VALUES

DETERMINE WHAT LINE TO START READING THE CONSTANTS AND

WHERE ON THAT LINE TO BEGIN
#
line=1
for(:;) §
call getlin {idata, line, tbuff)
k = int(Mn (1, 80, ibufl, m, if1))
it (10 == kun) §
m=m+2
a0(1) = Mn(m, 80, ibuff, m2, ifl)
: if (a0(1) ~= 0.0) break

line = line + 1

]

¢
#THE LINE JUST READ IN LOOKS LIKE ONE OF THESE TWO LINES -

#
A0 +6B9E+10

Vol

-65 -

A0 +.932E+05 +.194E+4-08 +.132E408

doi = 1,jchan }
&0(i) = fiin (m, 80, ibuff, m2, ifl)
if (m2 >= B0) break
m=m2

}

#
IF ALL THE CONSTANTS ARE THE SAME, THEY ARE NOT

REPEATED. SET ALL VALUES TO A0(1)
if { (ichan == 8) && ((a0{2) == 0.0)]| (a0(3) ==0.0))) {
a0(2) = a0(1)
a0(3) = a0(1)
#
#POLES
4 do i = 1,NPOLES §

READ IN NEXT LINE

e e A

line = line + 1

call getlin {idata, line, ibuff)

k = int(ffin (1, 80, ibuff, m, ifi))

ifl SHOULD EQUAL 'P' OR'Z’

if (il ~= kup) break

np EQUALS THE NUMBER OF THE POLE TO BE READ

np = int(ffin {m+1, 80, ibuff, m, ifl))

B IR WA

a(1) =0.0

a(@) =0.0

doj=11}
a(j) = fiin(m, 80, ibuff, m2, ifl)
m=m2+1

IF m >= 80, READ TO END OF LINE

e A W

if (m >= 80) break

IF § == 1 THE LINE JUST READ LOOKS LIKE THIS -
P03 -.117E+00

IF J == 2 THE LINE JUST READ LOOKS LIKE THIS -
P01 -.454E+01,+.930E+01

#G==1]j==2)
dok = 1,ichan {

; poles(np.k) = cmplx(a(1), a(2))

. i
IF j = 3 ONLY THE REAL PARTS OF THE POLES WERE READ IN

IFJ ==3 THE LINE JUST READ LOOKS LIKE THIS -

e e W e e e e e e

¢#
P03 -.117E+00 -.125E400 -.125E+00
else if (j == 3) |

-

- 66 -
dok = 1,ichan {
poles(np k) = empix(a(k), 0.0)

]

ELSE 8 VALUES WERE READ IN
IF J == 8 THE LINE JUST READ LOOKS LIKE THIS -

P01 -454E+01,+.330E+01 -.422E+01,+.420E+01 -.493E+01,+.381E+01

e T e e e e

else §
i=1
dok = 1,ichan |
}wlgs*('n;.k) = cmplx(a(j), a(j+1))
=)

j
]

#

#ZEROES

#

REREAD LAST LINE

line = line - 1
doi = 1,NZEROES |

INITIALIZE

#

itt=0

line = line + 1

call getlin (idata, line, ibufl)

k = int(ffin (1, 80, ibuft, m, ifl))

ifl SHOULD EQUAL 'Z’' OR 'S’

if (it ~= kuz) break

nz EQUALS THE NUMBER OF THE ZERO TO BE READ
nz = int(ffin (m+1, 80, ibuff, m, ifl))

IF m>16, THE NEXT VALUE READ WILL

BE THE IMAGINARY PART OF THE ZERO.

THIS MEANS NO DELIMITER (,) WAS USED

TO SEPARATE THE REAL PART (WHICH WAS

BLANK) AND THE IMAGINARY PART.

i#f (m > 15)itr =1

B MM MWW AW

af(1) = 0.0
a(2) = 0.0
doj=11}
a(j) = ffin{m, 80, fbuft, m2, ifl)
m=m2+ 1
if (il == kus) break 2
if (m >= 80) break
}

IF
201 -.128E+01
1P

J == 1 THE LINE JUST READ LOOKS LIKE THIS -
== 2 THE LINE JUST READ LOOKS LIKE THIS -

2

~-106E-+01

e W e e e e N

-67 -

#(((G==1) || G==2)) && (ichan == 1)) |
if (itf == 0) zeroes{nz,1) = emplx{a(1), a(2))
else zeroes(nz,1) = cmplx(0.0, a(1))

elseif(j==1|j==2) {
do k = 1,ichan §
zeroes(nz k) = cmplx(a(1),a(2))

. }
IF J == 3 AND ITF == 0 THE LINE JUST READ LOOXS LIKE THIS -

t Z01 -.126E+00 -.126E+00 -.128E+00

: IF J == 3 AND ITF == 1 THE LINE JUST READ LOOKS LIKE THIS -

: Z03 +.105E+01 +.105E+01 +.105E+01
elue if (j == 3) §

do k = 1,ichan {

if (itf == 0) zeroes(nz k) = cmplx(a(k), 0.0)
} else zeroes(nz k) = empix(0.0, a(k))
i ,

¢
IFJ == 6 THE LINE JUST READ LOOKS LIKE THIS -

¥
204 ~-105E+01 ,~-105E+01 ,~.105E4+01
else §
i=1
do k = 1,ichan {
zeroes{nz k) = ecmplx{a(j). a(j+1))
i=j+2

]
}

#
IF IFL == 'S’ THE LINE JUST READ LOOKS LIKE THIS -
¢
Z05 S5 See5 Sees
#
if (i == kus) }

READ THE NUMBER OF ZEROES TO BE SET
T0 CMPLX(0.0, 0.0)

e e e e

m=m+2
k = int{ffin (m, 80, ibuff, m2, ifl))
doj=1k{
doi = 1,ichan §
zeroes(nz,i) = (0.0, 0.0)

nz=nz+1
}
#

nz =nz -1

]

return
#

end

- 68 -

REQ.RATFOR

integer*2 function req(code, indx, rstart)

#

Function req loops through the requests

and checks to see if a request can be

filled by data in this record. Req returns

1if a request can be satisfied, 0 otherwise.

Programmed by Madeleine Zirbes
September 15, 1880

e M 2 A A Wi T W
sk
3‘4

integer*2 code(4) # STATION CODE - INPUT
integer*2 indx #§ REQUEST INDEX - OUTPUT
real rstart # STARTING DATA POINT IN RECORD - OUTPUT

include(defines.h)

include(header.dcl)

include(requests.dcl)

integer®2 kall(4) # CHARATER STRING ALL
integer*2 doy # FUNCTION

integer*2 Ipyr # FUNCTION

integer*2 rdofy # DAY OF YEAR

integer*2 i # INDEX LOOP

integer®? istreq # FUNCTION

real time # CURRENT TIME IN HEADER
redl tup # END TIME OF CURRENT RECORD
real rtime # START TIME OF REQUEST
real rup # END TIME QF REQUEST
include(header.com)
include({requests.com)

data kall /'A", 'L, 'L, ' '/

indx =0
LOOP OVER NUMBER OF USER REQUESTS
doi = inreq §

if (rfig(i) == 0) next

IF rcode = ALL, USER WANTS ALL STATIONS
IF vinstr = 0, USER WANTS ALL CHANNELS

WM WM YT

if { (istreg(rcode, code, i) == 0) &
(istreq(rcode, kall, i) == 0)) next
if (instr = rinstr(i) & rinstr(i) != 0) next

A

if (year ~= ryear(j)) next

rdoty = doy(rmonth(i), rday(i), ryear(i})

time = float(dofy)*88400. + float(hour)*3800. +
float(min)*60. + float(sec)

rtime = float(rdofy)*86400. + float{rhour(i))*3600. +
float(rmin(i))*60. + foat(rsec(i))

tup = time + float(nsamp)/(rate*float{nchan))
rup = rtime + float(rlen(i))

_70 -

FILREQ.RATFOR

subroutine filreq{dr,indx, rstart, rdflag,idata, ierr)

#
A record satisfying a request has been found.
Filreq fills this request.

Calls:
dtpfmt
fisbuf
gbytes - user supplied
head
magrd - user supplied
prhead
stndrd
tset

Programmed by Madeleine Zirbes
September 15, 1980

e e e W W e e T W W W e W T e

integer*2 dr # TAPE DRIVE LOGICAL UNIT - INPUT
integer*2 indx # INDEX OF REQUEST - INPUT

real rstart # STARTING DATA POINT IN RECORD - INPUT
integer*2 rdflag # READING FLAG - OUTPUT

integer*2 idata(1) # DATA RECORD - INPUT

SET TO HOLD 18000 BITS OF TAPE INPUT RECORD
integer*?2 jerr # ERROR CODE

includetheader.dcl)
include(defines.h)
include(requests.dcl)
include(stainfo.del)
include{buffer.del)
integer*2 n1,n2 # LOOP LIMITS
EXPECTED TIME OF NEXT RECORD
integer®2 uyear # YEAR
integer®2 udofy # DAY OF YEAR
integer®2 uhour # HOUR
integer*2 umin §# MINUTE
integer® usec # SECONDS
real ums # MILLISECONDS
integer*2 magrd § FUNCTION
integer*2 ssec § SECONDS
integer*2 nwords # NUMBER OF FRAMES OF DATA TO READ
integer*2 nr # NUMBER OF FRAMES READ
SIZE OF 990 DETERMINED BY DATA RECORD ON TAPE
integer®2 mant(990) # MANTISSA
integer*2 nchar(990) # CHARACTERISTIC
integer*2 i # LOOP INDEX
integer*2 Ipts # INT OF SPTS
real dtpfmt # FUNCTION
real fms # MILLISECONDS
real sms § MILLISECONDS
real tpts # TOTAL NUMBER OF POINTS TO EXTRACT
inchlude(header.com)
include(requests.com)
include(stainfo.com)
include(buffer.com)
deta nwords/1000/

¢
SET START TIME OF DATA
#

call tset(syear,sdofy,shour,smin, ssec,sms)

[Q%

-71 -

fms = (rstart*1000.)/(rate*float(nchan))
sms = sms + fms

call stndrd(eyear,sdofy,shour,amin,ssec,sms)
msecs = float(ssec) + sms/1000.0

spts = 0.

PRINT FILE HEADER

call prhead(rlun,rchn, indx,instr)

TPTS - tatal number of points to retrieve
to satisfy request

WA AnRAR U

tpts = rate*float(nchan)*rlen(indx)
tpis = rstart + tpts
n1 = int(rstart) + 1

¢
SET EXPECTED TIME OF NEXT RECORD TO BE READ

call tset{uyear,udefy,uhour,umin,usec,ums)
fms = float(nsamp)*1000./(rate*float{(nchan))
ums = ums +

call etndrd(uyear,udofy,uhour, umin,usec,ums)

#

LOOP

KEEP READING AND DECODING BINARY DATA UNTIL
1.) REQUEST IS SATISFIED

2.) END OF FILE

3.) ERROR

4.) NEXT RECORD IS NOT CONTINUOUS

for(;;) §
if (nform==1) { # SRO format
call gbytes(idata,mant,184,12,4 nsamp)
call gbytes(idata nchar, 1680,4,12 nsamp)

W e e e N

elae it (nform==2) # DWSSN format
cell gbytes{idata,mant,180,18,0,nsamp)

if (tpts > float(nsamp)) n2 = nsamp
else n2 = int{tpts)

#
DECODE BINARY DATA AND FILL BUFFERS

do i = n1,n2nchan §
epts = spts + 1.
Ipts = int(spts)
z(lpts) = dtptmt(nform ment(i),nchar(i))
if (nchan == 3) §
n(ipts) = dtpfmt(nform, mant(i+1) nchar(i+1))
e(lpts) = dtpfmt(nform mant(i+2),nchar(i+2))

¢
BUFFERS FULL - FLUSH OUTPUT
if (spts ==500.) §
call flabuf{rlun,indx,instr,0)
spts = 0.
}

#
.]

USERS REQUEST IS SATISFIED - RETURN
¥

0

- 69 -

IS CURRENT TIME GREATER THAN LENGTH OF REQUEST
OR
IS END OF RECORD TIME LESS THAN REQUEST TIME

e A W e

it ((time>rup) | (tup<=rtime))
next

A

ratart = (rtime-time)®*rate*float(nchan)
if (rstart < 0.) rstart = 0.

if (rstart > float(nsamp)) next

indx=1i

RECORD HAS BEEN FOUND TO
SATISFY REQUEST

W W T W

| return (1)

NO REQUEST SATISFIED BY THIS RECORD

return (0)

#
end

e e e e e e T e

e W e T

W e W e e W W

W e

e e e e

T W W

e T

-72 -

if (tpts==foat(n2)) {
call flsbuf(rlun,indx,instr, 1)

SET READING FLAG TO FALSE -

LEAVE RECORD IN BUFFER,
IT MAY SATISFY ANOTHER REQUEST

rdflag = 0

SET REQUEST FLAG TO FALSE -
REQUEST SATISFIED

rAig(indx) =0
return
}
READ NEXT RECORD
ierr = magrd(dr,nwords,idata,nr)
END-OF-FILE

if (ierr == 0) |
ocall fisbuf(rlun,indx,instr,1)

SET REQUEST FLAG TO FALSE -
REQUEST SATISFIED -

rfig(indx) = 0
return

3

ERROR

else if (lerr ==-1) §
call ishuf(riun, indx,instr, 1)

SET REQUEST FLAG TO TRUE -
REQUEST NOT SATISFIED

rdflag = 1
rig(indx) = 1

return

]
DECODE HEADER INFORMATION

call head(idata)
CONTINUOUS DATA

if ((uyear==year) &&
{udofy==dofy) &&
?xhom::haur) &k
==min) &&
(usec==sec) &&
(ums==mss)) {

SET LOOP LIMITS FOR DECODING BINARY DATA

ni=1
tpte = tpts - floet(n?)

SET NEXT EXPECTED TIME

Lo

- 73 -

fms = float(nsamp)?*1000./(rate*float(nchany))

ums = mss + fms

call stndrd{uyear,udofy,uhour,umin,usec,ums)
}

DISCONTINUQUS DATA
else §
SET READING FLAG TO FAISE -

LEAVE RECORD IN BUFFER,
IT MAY SATISFY ANOTHER REQUEST

rdfiag =0
cell fisbuf(rlun,indx,instr,1)

e e e e T e e e

SET REQUEST FLAG TO TRUE -
REQUEST NOT SATISFIED

rfig(indx) = 1

return

i
]

end

e W W

-74 -

PRHEAD . RATFOR

subroutine prhead(fid,chan,]l,m)

Prhead writes a header record to
the appropriate output files.

#
#
Calls no other routine.

Programmed by Madeleine Zirbes
September 15, 1980

e 2 T

include(defines.h)

integer*2 Ad{NREQS,3,3) # LOGICAL UNIT NUMBER - INPUT
integer*2 chan(NREQS,3,3.4) # INSTRUMENT CODE - INPUT
{nteger*? 1 § REQUEST INDEX - INPUT

integer*2 m # INSTRUMENT INDEX - INPUT

#

include(stainfo.dcl)
include(header.del)

integer*2 i, j # LOOP INDEX
integer*2 Il # LOGICAL UNIT NUMBER
include(stainfo.com)
include(header.com)

doj=131
if (fid(lm,j) ¢= 0) {
Il = fid(l,m,j)
write(ll) (code(i), i=1,4),(chan(l,m,j), i=1,4),
lat.lon,elev,
ayear sdofy,shour,smin, ssecs,
rate,a0(j) *cal(j),

np' (POle.(i-l)l i= l-np).
nz, (zeroes(l,j). i = 1,nz)

return

end

5

FLSBUF.RATFOR

subroutine fisbuf(fid, 1, m, itf)

#

Flsbuf writes data buflers to the
appropriate output files.

Calls no other routine.

Programmed by Madeleine Zirbes
September 15, 1980

e Sz W T W T

include{defines.h)

integer*2 fid(NREQS,3,3) # LOGICAL UNIT NUMBER - INPUT
integer*2 1 # REQUEST INDEX - INPUT

integer*2 m # INSTRUMENT INDEX - INPUT

integer*2 itf # DATA FLAG

include(buffer.del)

integer*2i

integer*2 11 # LOGICAL UNIT NUMBER
real big

real one

include{buffer.com)

data big /10000000000./

data one /1./

#
TOTAL NUMBER OF DATA VALUES WRITTEN TO OUTPUT FILES

pts = pts + spts

#
IF itf = 1, THIS IS THE LAST DATA RECORD TO
BE WRITTEN FOR THIS REQUEST

#
VERTICAL BUFFER

#
if (6d(Lm,1) ~=0) {
I = fid(l,m,1)
write(ll) spts, (z(i), i=1,spts)
if (itf == 1) write(Il) one, big
3

#
NORTH/SOUTH BUFFER

if (8d(l,m,2) ~= 0) §
I = fid(},m,2)
write(ll) spts, (n{i), i=1,spts)
if (itf == 1) write(l) one, big

ﬁ EAST/WEST BUFFER

4
if (8d(1,m,3) ~= 0) §
Il = id(lm,3)
write(ll) spts, (e(i), i=1,spts)
if (itf == 1) write{ll) one, big
}

return

W W

nd

-'76 -
TIME HANDLING ROUTINES

TSET.RATFOR

subroutine tset(syear, sdofy, shour, smin, ssec, sms)

¥

Taet sets the time variables equal to those
in common block /head/

¥

#

Calis no other routine.

#

Programmed by Medeleine Zirbes
September 15, 1980

#

integer*2 syear # YEAR - OUTPUT
integer*2 sdofy # DAY OF YEAR - OUTPUT
integer*2 shour § HOUR - QUTPUT
integer*2 smin # MINUTE - QOUTPUT
integer*2 ssec # SECONDS - OUTPUT
real sms § MILLISECONDS - QUTPUT

include(header.dcl)
include(header.com)
#
gyear = year
adoty = dofy
shour = hour
smin = min
ssec = sec
sms = mss
#
return
#
end

=77 -

STNDRD.RATFOR

subroutine stndrd(year, dofy, hour, minute, sec, ms)

#
Stndrd checks to see that the
time values are within legal limits,

Calls:
lpyr

Programmed by Madeleine Zirbes
September 15, 1980

e 20 e M N e M e

integer*2 year # YEAR - INPUT/OUTPUT
integer*2 dofy # DAY OF YEAR - INPUT/OUTPUT
integer*2 hour # HOUR - INPUT/OUTPUT
integer®*2 minute # MINUTE - INPUT/OUTPUT
integer*2 sec # SECOND - INPUT/OUTPUT

real me # MILLISECONDS - INPUT/OUTPUT

#
integer*2 ipyr # FUNCTION

#
for(;;) {

if ((ms >= 1000.) |
(mec >=80) |
{minute >= 60) |
(hour >=24) |
((lpyr(year) == 1) && (doty > 366)) |
((ipyr(year) == 0) && (doty > 365))) {

if (ms .ge. 1000.) {
sec=gec + 1
ms = ms - 1000.

if (sec .ge. 80) §
minute = minute + 1
sec = pec - 80

if (minute .ge. 80) §
hour = hour + 1
minute = minute - 80

]

if (hour .ge. 24) |
dofy = dofy + 1
hour = hour - 24
!

if (ipyr(year) == 1 && (dofy .gt. 386)) {
year = year + 1
dofy = dofy - 388

it (lpyr(year) == 0 && (dofy .gt. 365)) {
year = year + 1
dofy = dofy - 385

}
else break

return

-78 -

-79 -

DAYMO.RATFOR

integer®2 function daymo {dofy, month, day, year)

#

Function daymo determines the month and day
of the month, given the year and day of year.

It returns 1 if it was successful, 0 otherwise.

If dofy is not within legal limits, month and

day will be returned as zero.

#

#

Calls:

lpyr

#
Programmed by Madeleine Zirbes

September 15, 1980

#

integer*2 dofy # DAY OF YEAR - INPUT
integer*2 month # MONTH - OUTPUT
integer*2 day # DAY OF MONTH - OUTPUT
integer*2 year # YEAR - INPUT

integer*2 iday # DAY OF YEAR

integer*2 Ipyr # FUNCTION

integer*2 mdays{12) # NUMBER OF DAYS IN MONTH
data mdays/31,28,31,30,31,30,31,31,30,31,30,31/

iday = dofy

if (iday<1) §
month = 0
day =0
return {(0)

4 it (lpyr(year) == 1) mdays(2) = 29
else mdays(2) = 28

do month = 1,12 §
day = iday
iday = iday - mdays{month)
if (iday<=0) return(1)

month = 0
day = 0
return (0)

end

-80 -

DOY.RATFOR

integer*2 tunction doy (month, day, year)

#

Function doy determines the day of the
year, given the month, da ad year.

If month or day are illegal, the return
value of the function is zero.

gE

Progremmed by Madeleine Zirbes
September 15, 1980

Az Wz e e W M Y e

integer*2 month § MONTH - INPUT
integer*2 day # DAY OF MONTH - INPUT
integer*2 year # YEAR - INPUT

integer*2 lpyr # FUNCTION

integer*2 inc

integer*2 ndays(12)

data ndays /0,31,59,90,120,151,181,212,243,273,304,334/

if (month <1 }} month > 12) return{0)

if (day < 1 || day > 31) return {0)

if (lpyr(year) == 1 && month > 2) inc = 1
else inc =0

return(ndays(month) + day + inc)
end

-

-81 -

LPYR.RATFOR

integer*2 function Ipyr{year)

#
Function lpyr determines if year
is a leap year.

#

This function uses the intrinsic
function mod. I your machine
does not supply this function,
make one -

mod(i,j) = iabs(i - (i/7)%)

*

Calls:
mod - intrinsic funtion

DN

Programmed by Madeleine Zirbes
September 15, 1980
#

integer®*2 year # YEAR - INPUT
if (mod(year, 400) == 0) return (1)
if (mod(year, 4) != 0) return (0)
if (mod(year, 100) == 0) return (0)
return (1)

end

-82 -
CHARACTER HANDLING ROUTINES

GETLIN.RATFOR

subroutine getlin (idata, line, ibuff)

#

Getlin reads a line(80 characters)

from idata, storing the result in

ibuff. Then getlin converts the

character set on the Network Day

Tape to the internal character code
of the host machine.

e e

Calla:
gbytes - user supplied

Programmed by Madeleine Zirbes
September 15, 1980

e e e W W

integer*2 idata{l) # DATA BUFFER - INPUT

SET TO HOLD 16000 BITS OF TAPE RECORD INPUT
integer*2 line # LINE OF BUFFER DESIRED - INPUT
integer*2 ibuff(80) # LINE OF BUFFER - OUTPUT

integer*2 i, n

integer*2 ntab(128)

dm ntab /&.l " 1!)' un. l#l' l‘I. lx-' 1&0. un’ |(o' I)l'
I.l' |+|. |.I' -_u‘ n.c. ’ l'
lo:' lll' lza. -31' -4:' |5|' ne;' |71' lel, csl'
l:l. v:c' |<|. -=), n>|' !?l' I.I'
'Al' 'B., :cu' 'D’u IEI' IFI. IGI‘ lHl’ 'I'. 'J"
.K'. lLl' IMI‘ 'N'. lol. IPI' nq-' IRI' 'S', lll'.
IUI. DV'I' O'I' IX'. CY!. UZI'
IAl' 'B'. 'C'. lDI' IEI. ’F', IGI‘ uHu. 'I‘, chl
lKl' ch' rul' 'N,. -o-. IPJ’ lql' !Rl. :Sn' 'T,
.UI' -w' lwa' |x|. lyc. lzl'
l‘n‘ |||' u;u' -~|. ' -/

#

' 4
call gbytes (idata, ibuft, (line-1)840, 8, 0, 80)
doi= 1,80}
n = fbufi(i) + 1
! {buff(i) = ntab(n)
return

end

-83.-

FFIN.RATFOR

real function fin{n1,n ia,m,ifl)
¥

#

Function ffin scans the n character string ia for a numeric constant.
It will correctly interpret a number in e or f format,

and return it as the function value. ifl = ia{m)

is the first non-blank character that can't be a part of the

canstant.

#

#

Calls no other routine.

#

Programmed by Ray Buland
August 21, 1980

#

integer*2 n1 # START INDEX - INPUT

integer*2 n # STOP INDEX - INPUT

integer*? ia(80) # CHARACTER STRING - INPUT

¢ The character string is stored in the users

internal character code, one character

(blank padded to the left) per integer word.

integer*2 m # INDEX IN ia OF FIRST ILLEGAL CHARACTER - OUPUT
integer*2 ifl # ILLEGAL CHARACTER - QUTPUT

integer*2 ib(10)

integer*2 kbl, kpl, kmn, kdp, kue
integer*2i, j, k

integer*2 min

integer*2 mex

integer*2 11

real sc1

real se2

real ex

d‘taib /lol. lll. 121‘ I36' '4!, 15I' '6’, |7I' '8,, '9'/
data kb, kpl, kmn, kdp /' °, '+, -, '."/
data kue /'E*/

#
SET UP SOME DEFAULTS.
4

fin =0.
ecl = 10.
se2=1.
min =1
ex=0.

mex =1

#
SKIP THE LEADING BLANKS,
¢

dok =nln
if (la(k)!=kbl)
goto 10
go to 80

#
CHECK FOR UNARY PLUS.

10 1=k

if (ia(k)==kpl)
k=k+1

else

4
CHECKFOR UNARY MINUS.
¥

-

-84 -

if (la(k)==kmn) {
min =2
k = k+1
}

doi=k,n
if (ia(i) =kbl) break
k=i

ACCUMULATE THE NUMERIC CONSTANT.
dei=kn

CHECK FOR A DECIMAL POINT.

it (ia(i)!=kdp) §
SEE IF THE NEXT CHARACTER IS A DIGIT.

AU WA AT

doj=1,10
if (ia(i)==ib(}))
goto 20
go to 30

CONSTRUCT THE CONSTANT.

e W

20 if (sc1<5.)
sc2 = gc22.1
fin = fiin%sc1+(j-1)%sc2

else §
if (sc1<5.)
go to 60
sci =1.
3
go to 80

#
CHECK FOR SCIENTIFIC NOTATION.
#
90 it (A!=ik&ia(i)==kue) {
k =1i+1
M=k
CHECK FOR UNARY PLUS IN THE EXPONENT.

if (ia(k)==kpl)
k =k+1
else

W e e

CHECK FOR UNARY MINUS IN THE EXPONENT.

W A W

#f (ia(k)==kmn) §
mex =2
k= k+i
i
ACCUMULATE THE EXPONENT.
doi=knt

SEE IF THE NEXT CHARACTER IS A DIGIT.

W e

doj= 110
it (la(i)==ib(}))
goto 40
go to 50

-85 -

CONSTRUCT THE EXPONENT.

e e e

40 ex = ex*10.4+(j-1)

!
go to BO

SEE IF THE 'E’' AFTER THE NUMBER WAS REALLY THE START OF
AN EXPONENT.

e e e Mz

50 if (1f==1)
‘ i=i1

SKIP TRAILING BLANKS

e W e

60 doj=in
it (ia(j)i=kbl)
goto 70

i=n

70 il = fa(j)
m=j

go to 90

80 ifl = kbl
m =i+l

#
CHECK FOR A NEGATIVE EXPONENT.

80 if (mex>1)
ex = -ex

APPLY THE EXPONENT TO THE CONSTANT.
ffin = ffin®(10.%%cx)

CHECK FOR A NEGATIVE CONSTANT.

AW W Aedn

if (min>1)
fiin = -fin
return

#
end

Vvl

- 86 -
GETSTR.RATFOR

subroutine getstr (i1, i2, ibuff, m, i}, k, 1, outstr)
#

#

Cetstr scans the character string ibuff for a
character string. ifl =ibuff{m) is the first

character that can not be part of the string.

#

¢

Calis no other routine.

#

Programmed by Madeleine Zirbes
September 15, 1980

¢

integer*2 i1 # START INDEX - INPUT

integer®2 i2 § STOP INDEX - INPUT

integer*2 ibuff(80) # CHARACTER STRING - INPUT

integer®2 m § INDEX IN ibuff OF FIRST ILLEGAL CHARACTER - OUTPUT
integer*2 ifl # ILLEGAL CHARACTER - OUTPUT

integer*2 k # LENGTH OF outstr - OUTPUT

integer*2 1 § LENTGH OF outstr - INPUT

integer*2 outatr(l) # CHARACTER STRING - OUTPUT

integer*2 i, ii
integer*2 kbl, kua, kuz
data kbl, kue, kuz /* ', ‘A', 'Z'/

4

SKIP LEADING BLANKS

k=0

doi=1112}
if (ibufi(i) ~= kbl) break

=i

doi=#H/12}
CHECK TF CHARACTER IS ALPHABETIC
if (ibufi(i) < kua || ibuff(i) > kuz) {

ms=i

14 = ibuft(i)
return
i=k+1
outstr(k) = ibuft{i)

m=i2+1
ifl=kbl
return

M W

#
end

_87-

ICPYCH.RATFOR

subroutine icpych {i1, 12, 1, j, k)

#
Icpych copies argument §2 to i1.

It copies exactly 4 characters.
#

#
Calls no other routine.

Programmed by Madeleine Zirbes
September 15, 1980

2 e e

include(defines.h)

integer*?2 i1{NREQS,3,3,4) # INSTRUMENT CODE - OUTPUT
integer*2 i2(3,3,4) # INSTRUMENT CODE - INPUT
integer* i # REQUEST INDEX - INPUT

integer®2 j # INSTRUMENT INDEX - INPUT

integer*2 k # CHANNEL INDEX - INPUT

#

integer*21
dol=1,4}

i1(i,j k) = ie(i k1)
return

#
end

-88 -

ISTREQ.RATFOR

integer®2 function istreq (i1, i2, 1)

#

Istreq compares arguments i1 and i2
and returns 1 if they are equal,

O otherwise.

¥

#
Calls no other routine.

¢
Programmed by Madeleine Zirbes

September 15, 1980
#
include(defines.h)
integer*2 i1(NREQS,4) # CHARACTER STRING - INPUT
integer*g i2(4) # CHARACTER STRING - INPUT
integer*21 # ARRAY INDEX -~ INPUT

integer®2 i

¢ doi=1,4}
] if (i1(1,1) ~= i2(i)) return (0)

return (1)

end

-89 -
BINARY DATA HANDLING ROUTINES

HEAD.RATFOR

subroutine head(idata)

#

Head decodes header information

and sets appropriate values in common
block /header/

#

Calis:
gbytes - user supplied

Programmed by Madeleine Zirbes
September 15, 1980

teger*2 idata(1) # DATA RECORD - INPUT

> 5‘***%‘%*

include(header.dcel)
integer®2 ib(40)
include(header.com)

#

AT THIS TIME, NOT ALL OF THE HEADER HAS INFQRMATION.

THE FIRST 20 FRAMES HAVE BEEN SET ASIDE FOR THE HEADER,
OF WHICH ONLY 14 FRAMES ARE CURRENTLY USED.

call gbytes(idata, ib, 0, 4, 0, 40)

id = (ib(1)*10 + ib(2))*10 + ib(3)

year = ib(4)*10 + ib(5) + 1900

doty = (ib(8)*10 + ib{7))*10 + ib(8)

hour = {b(8)*10 + ib(10)

min = 1b{11)*10 + ib(12)

sec = {b(13)*10 + ib(14)

mss = float({ib(15)*10 + ib(16))*10 + ib(17))
nform = ib{18)

nchan = b(21)*10 + ib(22)

rate = (10. ** (5 - ib(23))) * float(ib(24)*10 + ib(25))
nsamp = (1b(28)*10 + ib(27))*10 + ib{28)

; SHORT-PERIOD DATA

d if (rate == 20.) instr = 1

; LONG-PERIOD DATA
#eheﬂ(rate ==1.)instr =2

*

INTERMEDIATE-PERIOD DATA

A

elne if (rate == 10.) instr = 3

Y

ERROR
¢

-90 -

DTPFMT.RATFOR

real function dtpfmt(nform, mant, char)

#

Function dtpfmt decodes one data word from
a Network Day Tape, and returns it as

the function value.

If nform = 1, the date is in SRO format;

it nform = 2, the data is in DWWSSN format.

#

SRO and ASRO data samples are recorded as
18 bit (2 frames) words using a gain-range

formak. The four most significant bits of

trame 1 define the gain factor(GF) which is
an unsigned integer having a value from

0 to 10. The following bit defines the sign

of the mantissa, and the 3 remaining bits

plua the 8 bits of frame 2 contain seismic

data in twos camplement binary integer form.
Abaclute amplitude in digital counts is

derived as follows -

#

Amplitude = Mantissa * 2 ** (10 - GF)

#

This gives a dynam<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>