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APPLICATION OF GAUSS ALGORITHM AND MONTE CARLO SIMULATION 

TO THE IDENTIFICATION OF AQUIFER PARAMETERS

By Timothy J. Durbin

ABSTRACT

The Gauss optimization technique can be used to identify the parameters 
of a model of a ground-water system for which the parameter-identification 
problem is formulated as a least-squares comparison between the response of 
the prototype and the response of the model. Unavoidable uncertainty in the 
true stress on the prototype and in the true response of the prototype to that 
stress will introduce errors into the parameter-identification problem. These 
errors are subsequently transferred to the prediction problem. The fit of the 
model to the data that are used to identify parameters is not a good indicator 
of these errors. A Monte Carlo simulation of the parameter-identification 
problem and of the prediction problem can be used, however, to evaluate the 
effects on water-level predictions of errors in the recharge (and pumpage) 
data used in the parameter-identification problem.



INTRODUCTION

Some important problems encountered in simulating the behavior of 
ground-water systems can be classified as either prediction problems or 
parameter-identification problems. The prediction problem is to estimate the 
response of the prototype to specific inputs by using a mathematical model of 
the system. The parameter-identification problem is to find an optimum set of 
parameters for the model from concurrent prototypical input and output obser­ 
vations. In the parameter-identification problem, the mathematical structure 
of the equation characterizing the prototype is given, but the specific values 
of the coefficients of the equation, the initial conditions, or the boundary 
conditions are unknown. These unknowns are the parameters in the parameter- 
identification problem.

Current methods of parameter identification can be divided into direct or 
indirect methods (Neuman, 1973). The direct methods treat the model param­ 
eters as dependent variables in a formal boundary value problem (Stallman, 
1956; Nelson, 1968; Nelson and McCollum, 1969; Kleinecke, 1971; Emsellem and 
de Marsily, 1971; Sagar, 1973; and Frind and Finder, 1973). With indirect 
methods, existing estimates of the parameters are improved iteratively 
(Kruger, 1961; Jacquard and Jain, 1965; Jahns, 1966; Vemuri and Karplus, 1969; 
Coats and others, 1970; Slater and Durrer, 1971; Yeh and Tauxe, 1971; Lovell, 
1971; Bruch and others, 197A; and McLaughlin, 1974). The indirect methods are 
generally computationally less efficient than the direct methods. However, 
the indirect methods are probably more flexible with respect to the different 
types of models that can be used.

The Gauss optimization technique (Gauss, cited in Wilde and Beightler, 
1967, p. 299) is an indirect method of parameter identification. The applica­ 
tion of this technique to the identification of the parameters of a ground- 
water model is demonstrated in this paper. In addition, the effects on the 
modeling process of errors in the input observations are analyzed. The 
modeling process includes both the identification of the model parameters and 
the use of the model to predict the response of the prototype to specific 
inputs. Unavoidable uncertainty in the true stress on the prototype and in 
the true response of the prototype to that stress will introduce errors into 
the parameter-identification problem. These errors are subsequently 
transferred to the prediction problem.

The Gauss technique has been used by others to identify the parameters 
for models of oil reservoirs (Jahns, 1966) and ground-water systems 
(McLaughlin, 1974). The originality of the work in this paper is chiefly in 
the method of parameter discretization, the application of the Gauss technique 
to a field case, and the analyses of the effects of data errors.

In particular applications, the mathematical equations of ground-water 
flow only approximately characterize the properties of the prototype. This 
lack of exact equivalency between the model and the prototype often leads to 
bias in the parameter estimates. This problem, however, is not addressed in 
this paper.



IDENTIFICATION PROBLEM 

Ground-Water Model

The first step in the identification of parameters is to specify the 
model to be used and to isolate the unknown parameters. A partial differen­ 
tial equation that describes the steady flow of ground water in a two- 
dimensional isotropic aquifer is

Iz <?& + ry <Ti> + o = ° <»
where Q is the strength of a source or sink,

Q = I Qw (xi ,yi ) 6 (x-x ) 6 (y-y^ (2) 
i

and h is the hydraulic head, Q is the rate of recharge or withdrawl at 
point (x.,y.)> T is the transmissivity, and 6 is the Dirac delta function.

Equation 1 is to be solved in a domain Q, which is enclosed by the 
boundary f = r 1UF2 . The boundary conditions are the specified head boundary 
condition

h = £1 on T! (3) 

and the specified flux boundary condition

3h - t ™ r - £2 on T2

where 3h/8n is the outward-pointing, normal derivative on f2> and £j_ and £2 are 
prescribed functions of location on r\ and r2 .

The Galerkin-finite element method is used to solve equation 1. The 
solution scheme follows Finder and Frind (1972), except that linear shape 
functions are defined on triangular elements .



Objective Function

The second step in the identification of parameters is to select an ob­ 
jective function that compares the model response and the prototype response.

Let 0 E (81, 82,..., 8.) be a vector of the parameters to be identified. 

A least-squares objective function is given by

M 
•P = I [h. - h.(8)] 2

where h. is the measured hydraulic head at the data point (x.,y.)r h. is the 

computed hydraulic head at the data point, and M is the number of data points.
-Jf «• rT «• f

Let the vector 6 H (6j, 62,..., 6^) be a particular point in an unbounded

feasible region such that the value of the objective function is smaller than 
at any other point in the feasible region (McLaughlin, 1974, describes the 
application of the Gauss algorithm for the case of a closed feasible region).

Jw

The members of 8 are called the unconstrained optimum parameters.

A necessary condition at 8 
resulting normal equations are

is that the gradient of P vanish there. The

3P
aei = 0 i = 1, 2,..., K (6)

or
JT[h - h(8)] = 0 (7)

where

J ZL

3n\ 3^^

38 1

3h2

38!

3hM

36 !

^ Q <\ f\oo2 O®Y

3h2 3h2
^i£i <^ A
CU2 O\J^r

3hM 3hMM. . . M
o f\ <\ f\
002 Ouv

is the Jacobian matrix, h H (hi, h2,..., hM ) is a vector is measured hydrau-* A ~ " T n 
lie heads and h H (hi, h2,..., h-,) is a vector of computed hydraulic heads.



Gauss Optimization Technique

The third step in the identification of parameters is to select an 
algorithm for adjusting the parameters so that the objective function is 
minimized. Equation 7 represents a system of simultaneous equations that are 
nonlinear in the parameters. This system can be solved by the Gauss technique 
(Gauss, cited in Wilde and Beightler, 1967, p. 299; Hartley, 1961; Marquardt,

* 
1963; Jahns, 1966; and McLaughlin, 1974), which starts at a point close to 6
and proceeds stepwise toward a minimum by successive improvements.

<s

In the Gauss technique, equation 7 is linearized by expanding h(6) in a 
Taylor series about the current trial values of 6 and by retaining only the

linear terms. The substitution of the Taylor series representation of h(6) 
into equation 7 yields

(J^VjJ^Ae = (J^Vth - hCe^ 1 )] (8)

where the superscript j-1 designates quantities evaluated at the last trial
- T 

values and A8 =. (A8i, A62 ,..., A8V ) is the vector of parameter corrections.
lv

The updated values of the parameters at the jth iteration are given by

eJ = e-^" 1 + A0 (9)
«ju

Successive improvements are made until 6 converges to 8 , where convergence is 
defined as follows: If the value of the objective function has decreased at 
each of the last N iterations, and if the maximum change in the value of the 
objective function at successive iterates is less than some specified value,

JU

convergence to 8 is declared. This definition is subjective, and most likely 
the definition will have to be modified in particular applications.

The objective function is typically polymodal (Jahns, 1966), and in 
practice, only a local minimum of the objective function can be found. 
Experience with the Gauss algorithm, however, seems to indicate that, for the 
steady-state form of the parameter-identification problem, the objective 
function tends to be unimodal as fewer measured water-level points are used 
and as fewer parameters are considered.



Levenberg Parameter

If the Taylor series approximation is poor, the Gauss optimization 
technique will behave erratically because of unwarranted extrapolation. 
Levenberg (1944) and Marquardt (1963) both proposed a modification of the 
Gauss technique to prevent parameter corrections that are far out of the 
region where the Taylor series approximation is still reasonable.

The modification proposed by Levenberg is to constrain the minimization 
of equation 5. The constraint is

j A6 \ = r (10)

where r is the radius of a hypersphere small enough that the Taylor series 
approximation is valid. The matrix form of the normal equations for this 
problem is (Marquardt, 1963)

[(J^Vj-3"" 1 + V^IjAe = (Jj " 1 ) T [h - h(6j " 1 )] (11)

where A. is the Levenberg parameter and I is the identity matrix. The substi­ 
tution of equation 10 into equation 11 yields the relation between A. and r 
(Wilde and Beightler, 1967, p. 302)

1 )] (12)

Jacoby and others (1972) showed that when A. approaches » or r approaches 
zero, the direction of the parameter-correction vector that is obtained from 
equation 11 is identical to the direction that is obtained from the gradient 
technique for finding the minimum of a function (Wilde and Beightler, 1967, 
p. 303). When A approaches zero or r approaches », the parameter corrections 
computed from equation 11 are identical to the parameter corrections computed 
from equation 8. Levenberg (1944) and Marquardt (1963) proposed methods for 
performing an optimum interpolation at each iteration between the Gauss 
technique and the gradient technique by choosing an appropriate value of the 
Levenberg parameter. Satisfactory results can also be obtained, with 
experience, by making an a priori guess of the proper radius and by computing 
a new value for the Levenberg parameter at each iteration from equation 12, 
while holding r constant. The proper radius usually becomes apparent after a 
few trials.



PARAMETER DISCRETIZATION

In discussing ground-water models the question of the scale of parameter 
discretization invariably arises. But before the question can be considered, 
the scale of a model needs to be defined. The definition used here is that 
the scale of a two-dimensional ground-water model is the size of the area over 
which the system parameters are considered to homogeneous.

Two aspects of model scale are to be considered. The first deals with 
the predictions that are made with a model. Consider the effect on computed 
hydraulic heads of random perturbations in spatially discretized system 
parameters. At some very small scale of discretizaton, these random 
perturbations will not significantly affect the computed hydraulic heads 
(Freeze, 1975). However, as the scale of parameter discretization is 
increased, at some point the random perturbations in the system parameters 
will significantly affect the computed hydraulic heads. The scale at which 
this occurs depends on the definition of a significant effect for a particular 
situation.

The second aspect of the scale of a ground-water model deals with the 
parameter-identification problem. Consider the effect on the parameter- 
identification problem of random errors in the measured water levels or in the 
estimates of the prototype pumpage and recharge. For example, the actual 
transmissivity of an aquifer might be uniform, but geographic variations of 
the hydraulic-head gradient occur because of variations in pumpage and 
recharge. Because of errors in the estimation of pumpage and recharge, 
however, the variation of the hydraulic-head gradient is interpreted as being 
caused in part by geographic variations of transmissivity. Similarly, errors 
in the estimation of hydraulic-head gradient from water-level data might also 
lead to the interpretation that transmissivity varies geographically. If, 
when considering the ground-water basin as a whole, errors in measured water 
levels, pumpage, and recharge are distributed with zero mean, at some very 
large scale of parameter discretization, these variations have very little 
effect on the parameter-identification problem. As the scale of parameter 
discretization is reduced, however, these errors may significantly affect the 
estimates of the system parameters.

Herein lies the dichotomy. We would like a small scale of parameter 
discretization for making predictions with the model. We would also like a 
large scale of parameter discretization for identifying the system parameters.

This disparity can be ameliorated somewhat by aggregating small-scale 
heterogeneity into surrogate parameters that are heterogeneous on a larger 
scale. In a practical sense, the small-scale heterogeneity would be at the 
level of the area of an element used in the finite-element solution of 
equation 1. The surrogate parameters would represent the aggregation of a 
group of elements.



The surrogate parameters are introduced into the parameter-identification 
problem by dividing the domain Q into K subdomains UK (j = 1, 2,..., K). A 
subdomain is made up of one or more elements. The ̂ geographic variation of
transmissivity in u). is given by

*J

T. = T..°6. (13) i ij J

where T..° is a prescribed base transmissivity for the element i in the

subdomain j, and 8. is a surrogate parameter. The surrogate parameter is a 
dimensionless factor that multiplies the base transmissivity for each element 
in a subdomain. The parameter identification problem is then to identify the
surrogate parameters that minimize the objective function, and the optimum

* 
transmissivity T. is given by the relation

T.* = T..°8.* (14) 
i ij J

The relative distribution of transmissivity within a subdomain is fixed 
by the prescription T..°. The actual distribution of transmissivity within a

IJ JL

subdomain is fixed by the identification of 6. . The number and size of
%J

subdomains to be used and the distribution of T..° within each subdomain is 
prescribed ad hoc. ^

In the prototype, there is usually little reason to expect that the 
distribution of transmissivity will not be continuous, except at faults or 
other geologic discontinuities. The terms "continuous" and "continuity," 
which have precise meaning in mathematics, are used loosely in the context of 
the model to mean that the transmissivity of adjacent elements do not differ 
much. With this definition in mind, the continuity of transmissivity within a 
subdomain can be assured by assigning proper values to T..°. But the

continuity of transmissivity across the boundaries of adjacent subdomains is 
not assured.

A strategy for obtaining a continuous distribution over the entire model 
domain is to use objective optimization for the large-scale variations of 
transmissivity and to use subjective optimization for the small-scale
variations. For each subdomain, an initial distribution of T..° is prescribedij
that is continuous within and between adjacent subdomains. Optimum values for 
the surrogate parameters are computed. The new distribution of transmissivity 
is likely to be discontinuous across the subdomain boundaries. This 
distribution is then subjectively smoothed to eliminate these discontinuities, 
and optimum values for the surrogate parameters are again computed. This 
procedure is repeated until a continuous distribution is obtained.

An important difficulty in the parameter identification problem is that 
it is virtually impossible to express subjective information in a generalized 
mathematical form. But the subjective information that is usually available 
to a hydrologist is important to the parameter-identification problem. An 
advantage of the above procedure for obtaining a continuous distribution of 
transmissivity is that it uses the digital computer for those parts of the 
problem that can be translated into an algorithm, while allowing the 
introduction of judgments and insights into the problem as they are required.



NUMERICAL EXAMPLE

The Gauss optimization technique was used to identify the distribution of 
transmissivity for a model of the Whitewater River and Garnet Hill subbasins 
of the upper Coachella Valley ground-water basin (fig. 1). This study area 
covers about 400 km2 . Ground water occurs in unconsolidated and moderately 
indurated alluvial deposits (Dutcher and Bader, 1963; Farrell, 1964; Proctor, 
1968; and Tyley, 1974), which have a saturated thickness of as much as 900 m 
(Biehler, 1964). A fault in the study area acts as a barrier to ground-water 
movement; hydraulic-head differentials of as much as 100 m occur across the 
fault. The effect of the fault on ground-water movement was represented in 
the model (fig, 2) by low transmissivity in the elements along the fault.

Prior to 1946, the hydraulic heads in the upper Coachella Valley ground- 
water basin were in quasi-equilibrium with natural recharge. The principal 
source of natural recharge was the percolation from the channels of ephemeral 
and intermittent streams that cross the ground-water basin (fig. 3). Optimum 
transmissivity was computed for this condiiton. Hydraulic head measurements 
and estimates of natural recharge were obtained from Tyley (1974).

The model domain was divided into 16 subdomains (fig. 4). Initially 

T..° = 4.2 x io~ 2 m2 /s for all elements in subdomains 1, 2, 3, 4, 5, and 6; 

T..° = 9.3 x io" 5 m2 /s for all elements in subdomains 7, 8, 9, 10, and 11; and 

T. .° = 7.0 x io" 3 m2 /s for all elements in subdomains 12, 13, 14, 15, and 16.
1J JU

The optimum surrogate parameters 6 were computed (table 1), and the optimum
* 

transmissivities T. were plotted on a map of the study area. This plot
revealed discontinuities in the geographic distribution of transmissivity in 
areas where a continuous distribution reasonably would have been expected. 
Subjective adjustments were made to the transmissivities to remove these

*
discontinuities. New values of 6 were computed (table 1). The corresponding 

ju
values of T. were plotted, and the geographic distribution was examined for 
physical plausibility. These values (fig. 5) were accepted, and the parameter 
identification problem was completed.

Figure 6 shows the root-mean-square deviation of the computed hydraulic 
head from the measured hydraulic head, at each iteration in the initial opti­ 
mization, for values of r equal to 0.1 (approaching a gradient step), 0.5, 
1.0, and oo (the Gauss step). For r = °°, the initial rate of convergence is 
rapid, but at some points the search diverges at successive iterates. For 
r = 0.1, convergence is slow, but stable. For r = 1.0, the most rapid rate 
to final convergence is exhibited; convergence is obtained after about 15 
iterations.

An appropriate question to ask at this point is: How good are the 
estimates of transmissivity for this ground-water basin? If we had a perfect 
model and perfect knowledge of the prototype recharge and water levels, then 
the calibration procedure should yield a very close approximation of the true 
prototype transmissivity. However, our model is only an approximation of the 
prototype, and we have imperfect knowledge of the prototype recharge and of 
the corresponding prototype response. As a consequence, the transmissivity 
estimates probably deviate from the true transmissivity, which leads u? back 
to the original question.



The approach that is often used is to examine the objective function 
value corresponding to the optimum parameters and also to examine the 
departure of the optimum parameters from subjective estimates of the optimum 
parameters. If the objective function and the parameter departures are within 
acceptable limits, the hydrologist accepts the parameter estimates. The 
inadequacy of this approach is chiefly in that it does not consider the effect 
of data errors on the parameter estimates.

A second approach that has been suggested, but seldom used in practice, 
is split-sample testing. Split-sample testing consists of organizing the 
available field data into two parts, each representing a different historical 
period. Optimum parameter estimates are computed using one part of the data. 
Then, the model is used to simulate conditions during the historical period 
represented by the second part of the data. The deviations of the computed 
hydraulic heads from the measured water levels for the second historical 
period are assumed to be a measure of the predictive reliablility of 
the model.

In many applications split-sample testing is a powerful statistical tool 
for evaluating models. When used to evaluate ground-water models, however, 
this technique often fails to provide useful information. This failure occurs 
because the available field data seldom can be divided into two independent 
samples.

The point of the above discussion is that a methodology for evaluating 
the predictive reliability of ground-water models is still in the developing 
stages. Attention will focus here on what the author considers to be a first 
step in developing approaches for evaluating ground-water models--conditional 
evaluations based on an assumed probability model of the occurence of errors 
in the independent variables. An unconditional evaluation would probably 
require the generation of additional information. Just how this information 
would be generated depends largely on the specifics of a particular situation. 
It might involve additional primary data collection, the use of independent 
parameter estimates from secondary data sources, or the application of 
subjective information through constrained regression, or through Bayesian 
estimation procedures.

10



EFFECTS OF DATA ERRORS

Measurements and sampling errors in the independent variables that are 
used to compute the optimum parameters are reflected in the deviation of the 
optimum parameters from the true parameters. If the optimum parameters are 
used in the model to make predictions of the response of the prototype to 
assumed future stresses, the predicted response will be in error. In the 
following paragraphs, a technique for analyzing these errors in the predicted 
response is demonstrated using the model of the upper Coachella Valley ground- 
water basin.

The upper Coachella Valley ground-water basin is being artificially 
recharged with imported water. Recharge operations began in 1973 when 9.2 hm3 
of water was recharged from percolation ponds in the northern part of the 
ground-water basin (fig. 1). Annual recharge will most likely be increased 
until a maximum annual recharge of 75 hm3 is reached in about 1990. One 
effect of the recharge operation will be raised ground-water levels in wells. 
The maximum rise will occur when the hydraulic head in the ground-water basin 
reaches the steady-state values. Model predictions indicate that the maximum 
water-level rise, due only to the artificial recharge, will be about 350 m at 
the recharge site and about 180 m at Palm Springs, a major population center 
in the upper Coachella Valley (fig. 1). (Superimposed on the effect of 
artificial recharge is the effect of pumpage, which was not considered in 
the example.)

These water-level rises were computed from the model using the transmis- 
sivity estimates shown in figure 5. If different estimates of natural 
recharge had been used in the parameter-identification problem, different 
transmissivity estimates would have been obtained, and different predictions 
of the water-level response to artificial recharge would have been made. The 
independent variables of the parameter-identification problem are random 
variables, and transmissivity estimates and water-level predictions, which are 
functions of the independent variables, are also random variables. Conclu­ 
sions about the effects on the modeling process of errors in the independent 
variables should be based on the statistical nature of the transmissivity 
estimates and of water-level predictions. A Monte Carlo simulation (Benjamin 
and Cornell, 1970, p. 124) of the modeling process provides a method for 
examining the statistical nature of these quantities, in spite of data 
limitations in the real world, which preclude a direct examination. The 
method is described stepwise as follows:

Step 1: Random estimates of the local recharge rate were generated. 
These estimates were considered to come from log-normal distributions with 
means equal to the estimates used in the original numerical example (fig. 3) 
and coefficient of variation equal to 25 percent. The assumed distribution of 
the local recharge estimates was derived heuristically and is undoubtedly 
situationally specific.

11



Step 2: Transmissivity estimates were computed using the new recharge 
estimates obtained in step 1. Except for the new recharge estimates, the 
configuration of the parameter identification problem was as in the original 
numerical example. Identical subdomains and measured water levels were used. 
The relative geographic distribution of the transmissivity within subdomains 
was the same as shown in figure 5.

Step 3: The model was used to compute steady-state hydraulic head for 
artificial recharge. The transmissivity estimates from step 2 were used in 
the model for this step.

Steps 1 through 3 were repeated 20 times, and the results are given in 
tables 2, 3, and 4. The range, mean, and coefficient of variation of the 
generated natural-recharge estimates are given in table 2 for each recharge 
site. With reference to the parameter-identification problem, the surrogate 
parameter estimates and the root-mean-square deviation of computed hydraulic 
heads from measured water levels are given in table 3 for each execution of 
step 2. The mean coefficient of variation of the surrogate parameter 
estimates are also given in table 3 for each surrogate parameter. With 
reference to the prediction problem, the water levels at the recharge site and 
at Palm Springs are given in table 4, for each execution of step 3. Addition­ 
ally, the means and coefficients of variation of these water levels are given 
in table 4.

Initial values of surrogate parameters for the parameter-identification 
problem were, for each recharge data set, the values given in table 1, which 
gives the optimum surrogate parameters for the original numerical example. 
Although individual optimum-parameter values obtained from the Monte Carlo 
simulation deviate as much as 60 percent from initial values, the means of the 
various estimates of individual parameters are nearly identical to the values 
given in table 1. The coefficients of variation of these estimates range from 
6 to 17 percent. The upper limit of this range is less than the coefficient 
of variation used in the generation of recharge estimates.

The magnitude of the deviation of the surrogate parameters tends to be 
related to the magnitude of the deviation of the discharge through the ground- 
water basin. The local discharge through the ground-water basin increases in 
the downstream direction, owing to the local contributions of geographically 
distributed recharge. By introducing random deviations in the local recharge 
estimates, random deviations are produced in the local discharge through the 
ground-water basin. Because of the effects of adding a series of independent 
random variables, however, the relative deviation of the discharge through the 
ground-water basin tends to decrease where the discharge results from about 
equal contributions from many recharge sites. Concomitantly, the surrogate 
parameters with the largest coefficient of variation tend to represent or be 
near areas with high local recharge. In these areas the local discharge 
through the ground-water basin includes mostly the discharge contribution from 
the local recharge, and the deviation of the local surrogate parameters 
results mostly from the deviation of a single recharge estimate.

12



On the basis of data in table 4, the standard deviation of computed 
hydraulic head resulting from variations in artificial recharge is about 27 m 
near the recharge site and is about 14 m near Palm Springs. The coefficient 
of variation of the computed hydraulic head is about 8 percent at each loca­ 
tion. Furthermore, the coefficient of variation of computed hydraulic head 
is about the same as the average coefficient of variation of the surrogate 
parameters. But, as in the case of the surrogate parameters, the coefficient 
of variation of computed hydraulic head is smaller than the coefficient of 
variation of the recharge estimates. A point to be made here is that the 
root-mean-square deviations of measured water level from computed hydraulic 
head obtained from the parameter-identification step of the Monte Carlo 
simulation are all nearly zero, relative to the range of water levels that 
occur in the upper Coachella Valley ground-water basin (table 3). But the 
predicted hydraulic heads are distributed with a coefficient of variation of 
8 percent. Therefore, the fit of the model to the water levels used in the 
parameter-identification problem is not in this case an indicator of the 
predictive reliability of the model.

A conditional answer can now be given to the earlier question: How good 
are the estimates of transmissivity for the upper Coachella Valley ground- 
water basin? The answer is given by the description of the distribution of 
surrogate parameter estimates. Given that the recharge estimates are indepen­ 
dently distributed log-normal random variables with means equal to the 
recharge estimates used in the original numerical example and coefficients of 
variation equal to 25 percent, the transmissivity estimates are distributed 
with means and coefficents of variation as given in table 3. A conditional 
answer in terms of probability distributions can be given also to the more 
important question: How good are the predictions of hydraulic-head changes 
due to artificial recharge? Assuming that error in estimated ground-water 
recharge is the principal source of error in predicted hydraulic head, the 
estimated hydraulic-head changes near the recharge site and near Palm Springs 
are distributed with coefficients of variation of 8 percent. The 90-percent 
confidence interval for the hydraulic-head estimates is from 316 to 384 m near 
the recharge site and from 171 to 207 m near Palm Springs.
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SUMMARY AND CONCLUSIONS

The Gauss optimization technique can be used to identify the parameters 
of a ground-water model. The success in identifying parameters, however, as 
measured by the fit of the model to the data used to identify parameters, is 
not a measure of the predictive reliability of the model. For 20 different 
random sets of recharge estimates, the Gauss optimization algorithm reduced 
the root-mean-square water-level residual to virtually zero. A zero root- 
mean-square water-level residual might incorrectly be interpreted as indica­ 
ting nearly perfect parameter estimates. However, corresponding to each 
random set of recharge estimates was a different set of parameter estimates. 
Clearly all the sets of parameter estimates cannot be correct, and in this 
case, the root-mean-square water-level residual gives little insight into 
possible errors in predictions that might be made with the model.

A method for evaluating errors in the predictions of future water levels 
due to errors in recharge estimates was demonstrated. The method involves a 
Monte Carlo simulation of the parameter-identification problem and of the 
prediction problem. The steps in the method are: (1) To prescribe the 
distribution of the recharge estimates, (2) to use this distribution to 
generate random sets of recharge estimates, (3) to use the Gauss optimization 
technique to identify the corresponding set of parameter estimates for each 
set of recharge estimates, (4) to make the corresponding set of hydraulic-head 
predictions for each set of parameter estimates, and (5) to examine the 
distribution of hydraulic-head predictions and to draw appropriate conclu­ 
sions. Similarly, the method can be used independently or simultaneously to 
estimate the effect on hydraulic-head predictions of errors in the measured 
water levels that are used in the parameter-identification problem.

Errors in hydraulic-head predictions result not only from errors in the 
recharge estimates but also from errors in the conceptual model of the ground- 
water basin. Errors resulting from the conceptual model are not treated by 
the Monte Carlo simulation. An assumption of the method is that errors in the 
conceptual model do not significantly affect the parameter-identification 
problem or the prediction problem.
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FIGURE 6. - Convergence of the Gauss optimization technique 
for different search radii, r.
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Table 1. Optimum surrogate parameters computed from field data

Sub domain 
No. l

. 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Optimum

First 
optimization 2

0.288

.679

.953

1.76

1.01

.755

.344

.639

.961

1.20

1.86

.227

.380

.381

.221

.0553

parameters (dimensionless)

Second 
optimization 3

0.288

.678

1.16

1.34

1.01

.755

.347

.648

.992

1.25

1.85

.276

.377

.371

.222

.0560

locations shown in figure 4.

2Initial value equaled 1.0.

3 Initial value equaled optimum value from first optimization.
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Table 2. Summary statistics on random recharge estimates

Natural 
recharge 
site No. 1

1
2
3
4
5

6
7
8
9

10

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

26
27
29
30

31
32
33
34
35

Maximum

0.16
.29
.10
.12
.10

.012

.26

.016

.078

.015

.058

.019

.086

.018

.058

.0061

.0048

.015

.11

.010

.18

.015

.15

.012

.14

.0092

.0071

.0055

.0078

.015

.13

.016

.014

.012

Natural recharge

Minimum

0.059
.11
.046
.035
.050

.0047

.12

.0051

.020

.0064

.026

.0054

.026

.0072

.028

.0024

.0018

.0069

.049

.0051

.058

.0048

.068

.0057

.047

.0037

.0031

.0035

.0039

.0055

.056

.0051

.0063

.0066

(cubic meters

Mean

0.086
.20
.077
.074 '
.078

.0090

.17

.0096

.043

.010

.041

.011

.046

.011

.040

.0034

.0033

.010

.075

.0086

.11

.010

.099

.0091

.093

.0058

.0049

.0047

.0052

.010

.088

.010

.010

.0095

per second)

Coefficient of 
variation

0.27
.24
.19
.27
.19

.22

.26

.27

.30

.26

.23

.30

.29

.30

.20

.26

.21

.23

.23

.18

.30

.26

.24

.18

.24

.27

.24

.11

.20

.23

.20

.28

.20

.18

locations shown in figure 2.
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Table 4. Hydraulic-head responses predicted with model using optimum
surrogate parameters computed using random recharge estimates 
(table 3)

Water level (meters)

Recharge data 
set no.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Mean

Artificial recharge site

317

344

374

406

363

338

331

328

320

342

291

350

•385

379

344

372

343

383

357

332

350

Palm Springs

176

189

208

217

200

188

177

176

180

183

152

192

201

204

187

197

183

202

193

180

189

Coefficient of 
variation 0.077 0.075
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