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1. Introduction and Summary

by J. A. Grow, J. S. Schlee, J. M. Robb and D. O'Leary

This report has been compiled in response to a request by the
Bureau of Land Management (Memorandum of 20 Feb 1981) to update and
summarize the geology of the U.S. Atlantic continental margin between
the Virginia/North Carolina border and the Georges Bank Basin proposed
for 0il and Gas Lease Sale No. 76 (fig. 1-1). This area extends beyond
the tracts leased in sales 40, 42, and 49 and those proposed for Lease
Sales 52, and 59. The seaward 1limit of the report area 1is the
"Fisheries Conservation Zone" which lies in water depths of more than
4,000 m.

Previous U.S. Geological Survey (USGS) summary reports for Lease
Sales 49, 52, and 59 have primarily emphasized data relevant to leasing
on the Continental Shelf and upper Slope (Mattick and Hennessy, 1980;
Schlee and others, 1979a and b). Two Continental Offshore Stratigraphic
Test (COST) wells B-2 and B-3 (fig. 1-2) have now been completed in the
Baltimore Canyon Trough and provide valuable stratigraphic, lithologic,
and geochemical information (Smith and others, 1976; Scholle, 1977;
Amato and Simonis, 1979; Scholle, 1980). Two more COST wells (G-1 and
G-2) drilled in the Georges Bank Basin (Amato and Bebout, 1980; Amato
and Simonis, 1980) encountered a thick sequence of Jurassic limestone,
dolomite, and anmhydrite at depth. Additional scientific publications
concerning the deep structure and evolution of the continental margin
have identified Jurassic and Lower Cretaceous paleoshelf-edge systems
beneath the present Continental Slope and thick sequences of sediments
beneath the Continental Rise (Mattick and others, 1975; Schlee and
others, 1976, 1977, 1979¢; Grow and Markl, 1977; Grow and others, 1979a
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and b; Klitgord and Behrendt, 1979; Grow, 1980; Schlee and Grow 1980;
Klitgord and Grow, 1980; Schlee, 1981; Mattick and others, 1981). This
report updates previous summary reports with new information pertinent
to leasing of tracts in deep water beneath the Continental Slope and
Rise.

Multichannel seismic-reflection profiles collected over the
Continental Shelf, Slope, and Rise by the USGS between 1973 and 1978
(fig. 1-2) have defined a sequence of sediments along the U.S. margin
which are as much as 16 km thick in the Baltimore Canyon Trough and
Georges Bank Basin and sediments up to 9 km thick beneath the
Continental Rise (fig. 1-3). The sediment thickness along the seaward
edge of the Lease Sale 76 report area averages 3 to 4 km. Given
adequate source rocks and a high enough geothermal gradient, sedimentary
basins with 3 to 5 km of sediment might be expected to generate oil or
gas. However, the absence of any deep penetration wells into this thick
rise sequence to evaluate source rock or maturation conditions make
quantitative resource estimates extremely difficult.

Lease Sale 59 includes lease tracts out to water depths of more
than 2,000 m (fig. 1-1). The present record for exploration drilling
in deep water is approximately 5,000 ft (approx. 1,500 m) and
production capability is down to about 400-m water depth. Existing
drilling vessels can operate out to depths of approximately 6,000 ft
(approx. 1,800 m), and these may be modified to operate at depths of up
to 8,000 ft (approx. 2,500 m) by 1985. The Ocean Margin Drilling
Program (OMDP) has been proposed by the U;S. National Science
Foundation and a consortium of U.S. o0il companies to develop deep-water
drilling capability for water depths between 8,000 ft (approx. 2,500 m)

and 13,000 feet (approx. 4,000 m) by the year 1990. For routine



exploration drilling, it would appear wunlikely that Jlease tracts in
water depths greater than 2,500 m will be attempted before 1985 or that
tracts deeper than 3,000 m could be drilled before 1990. Therefore, the
area under consideration for Lease Sale 76 deeper than 2,500 m
(fig. 1-1) probably cannot be drilled for five to ten years. Achieving
this development will certainly depend on how successful industry is in
its initial efforts to find and produce oil and gas in the 200- to
2,500-m depth range during the next ten years.

At Sale 59, Mid-Atlantic, Public Hearings, Dr. George Lock, Manager
of the Offshore Systems Division at Exxon Production Research stated
that subsea production concepts should be available to extend production
capabilities "to well beyond 2,000 feet in the early 1980'3.“

N.D. Birrell, Chief Marine Engineer, Production Engineering, CONOCO,
projects that industry's deepwater production capacity will extend

beyond the 6,000 feet mark by 1990.
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2. Regional geology and geophysics in the vicinity of
Baltimore Canyon Trough

by John A. Grow, Kim D. Klitgord, and John S. Schlee

Extensional rifting between North America and Africa during the
Triassic created numerous rift grabens within eastern North America and
was followed by initiation of sea—-floor spreading during the Early
Jurassic. Baltimore Canyon Trough is one of four major depocenters
along the U.S. Atlantic margin (figs. 1-3 and 1-4) which formed during
this rifting event and the subsequent phase of sedimentation and
subsidence. The boundary between rifted continental crust and oceanic
crust is marked by a very prominent magnetic anomaly known as the East
Coast Magnetic Anomaly (ECMA; see figs. l1-4 and 2-1). Multichannel
seismic profiles across the Baltimore Canyon Trough reveal that up to
13 km of generally undeformed sediments were deposited after sea—-floor
spreading began and overlie up to 5 km of sediments deposited during the
rifting stage (figs. 2-2 and 2-3). Thick prisms of Continental Rise
sediments were deposited on the new oceanic crust which formed seaward
of the ECMA. Salt deposition during the late stage of rifting and/or
the earliest phase of sea-floor spreading has resulted in subsequent
diapir structures (figs. 2-4 and 2-5). A composite geologic cross
section (fig. 2-5) through Baltimore Canyon Trough illustrates the major
features of the Continental Margin off New Jersey with its extremely
thick sequence of sedimentary rocks.

A buried carbonate platform and paleoshelf-edge systems of Jurassic
and Early Cretaceous age occur beneath the Continental Slope (figs. 2-2,
2-3, and 2-4) and have been an area of strong .exploration interest for

Lease Sales 49 and 59. Paleoshelf-edge systems similar to those shown



in figure 2-3 have also been found beneath the Continental Slope all the
way from Cape Hatteras to Georges Bank (Grow and Markl, 1977; Mattick
and others, 1978; Grow and others, 1979; Schlee and others, 1979c). The
COST B-3 well was drilled in 820 m of water on the landward side of this
paleoshelf-edge system and encountered a show of gas before the well was
plugged and abandoned (Amato and Simonis, 1979; Scholle, 1980). Present
water depths over this paleoshelf-edge generally vary from 1,000 to
2,500 m. This paleoshelf-edge system has numerous complex structures
and will probably continue to attract industry interest for Lease Sale
76. A broad slope “"anticline"” is located behind the paleoshelf-edge
which was formed by differential subsidence and back-tilling of Upper
Jurassic and Lower Cretaceous sedimentary wunits along growth faults
(fig. 2-3; also see Grow and others, 1979, and Grow, 1980). An eastward
lensing out of these sedimentary units occurs toward the buried shelf
edge (Amato and Simonis, 1979, p. 104) and the maximum structural relief
of this slope anticline feature is as much as 300 m (fig. 2-3). Paleo-
slope complexes on the seaward side of the paleoshelf-edge could include
stratigraphic traps with slope and fore-reef facies interfingering with
fan deposits on the lower slope and upper rise. Water depths over these
types of structures may range out to more than 2,500 m. Deeper water
(water depths between 2,500 and 4,000 m) exploration opportunities may
include differential compaction structures over buried seamounts and
ridges in the oceanic crust (figs. 2-5 and 2-6).

Exploration for traps beneath the Continental Rise in water depths

greater than 2,500 m will probably occur only if the exploration along



the paleoshelf-edge and paleoslope complex in shallower water (i.e.,
between 200-2,500 m) is encouraging. Better source rocks are needed
than have been found so far in the shallow water or in Deep Sea Drilling
holes much farther out in deep water (site 105, fig. 1-2). Therefore,
although thick sediments occur beneath the Continental Rise in water
depths greater than 2,500 m which may be capable of generating oil or
gas, the primary dinterest for Lease Sale 76 will probably remain in

water depths of less than 2,500 m.
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3. Regional geology and geophysics in the vicinity of Georges Bank Basin
by

John S. Schlee and Kim D. Klitgord

Georges Bank (67,500 kﬂ@) is the eastward continuation of the
Continental Shelf, flanked on the north by the Gulf of Maine, a roughly
rectangular body of water between New England and Nova Scotia (Uchupi,
1966), and flanked to the south by the Continental Slope and Rise.
Intersecting the Contiﬁental Slope is the New England Seamount Chain, a
linear zone of extinct submarine volcanoes 1,100 km long. The northern
one-third of Georges Bank is covered by shallow, north-trending sand
shoals and the remainder is a flat-floored shelf covered with rippled
sand. Along the bank's southern side, several submarine canyons and
numerous smaller gullies and ravines indent the slope and lead to a
broad, gently inclined Continental Rise. Two shallow channels separate
the bank from other parts of the shelf. To the west, Great South
Channel (80 m deep) divides Georges Bank from Nantucket Shoals; and to
the east, Northeast Channel (220 m deep) provides a deepwater entrance
to the Gulf of Maine.

Information on the shape, thickness, lithology, and age of the
sedimentary wedge that fills the Georges Bank Basin comes from a grid of
geophysical profiles and three drill holes (fig. 1-2). Multichannel
seismic-reflection profiles collected over the past eight years by the
USGS and the Bundesanstalt fur Geowissenschaften und Rohstoffe (BGR) are
most helpful in outlining the complex of subbasins that underlie Georges
Bank. Examination of the well logs, coupled with interpretation of the
seismic character of the multichannel reflection profiles allows us to

infer the kinds of sedimentary rocks that underlie the area and to spot
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structures with hydrocarbon potential (Anderson and Taylor, 198l1).

Within the broad tectonic framework of the continental margin off
the northeastern United States (fig. 1-4), the Georges Bank Basin lies
on the fragmented part of the North American continent. The East Coast
Magnetic Anomaly (figs. 1-4 and 3-4) marks the boundary =zone between
oceanic crust and the main Georges Bank Basin. As can be seen from
figures 1-4 and 3-6, the discontinuous ECMA trends approximately
east-south of Georges Bank, as does a zone of basement structures west
of the main basin (fig. 3-6). The modest angle these structures make to
the oceanic fracture zones suggests that the North American continent
was involved in oblique movement away from West Africa to form a shear
zone. This slippage past a similar-trending bend in the African
continent may have facilitated the complex pattern of rifting.

An isopach map of the area (fig. 1-3) shows that the
Mesozoic—-Cenozoic section is thickest under Georges Bank and thins in an
irregular manner toward the Gulf of Maine and toward the Continental
Rise, south of the Bank. The core of the bank is a wedge of Triassic
and younger sedimentary rock that overlies a rifted basement (fig. 3-1).
Tectonically, Georges Bank is a collection of smaller subbasins, some of
which are linear grabens that trend northeast (Ballard and Uchupi, 1975;
Austin and others, 1980; Mattick and others, in press; Klitgord and
Schlee, unpub. data, 1981 ). Collectively they are termed the Georges
Bank Basin, and structurally, they are situated between the La Have
Platform to the northeast, the Gulf of Maine Platform to the north, and
the Long Island Platform to the west (fig. 1-4). Seaward of the main
group of subbasins, a post-Paleozoic sedimentary sequence 4 to 5 km

thick covers an irregular oceanic basement beneath the Continental Rise.
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Under Georges Bank, the basement deepens from the adjacent
platforms in a series of rifted blocks (figs. 3-1, 3-6). The most
landward of these grabens is a shallow structure that lies along the
northern edge of Georges Bank (Ballard and Uchupi, 1972; 0Oldale and
others, 1974). An unconformity (fig. 3-1) crossing the top of these
grabens appears to correspond to the breakup unconformity of Falvey
(1974). It increases in depth from 1less than 0.5 km below sea level
adjacent to the Gulf of Maine to more than 8 km beneath the center of
the bank.

In the deep water part of the call area, the New England Seamount
chain intersects the Georges Bank region near lat. 40 N., long 69 W.
where there is a major gap in the ECMA. Bear Seamount is located at
this intersection and its large magnetic dipole signature in part may
mask the continuity of the ECMA across this gap. Within the Georges
Bank Basin, three buried seamounts or intrusive bodies are inferred to
be present from distinctive magnetic anomaly patterns. All three are
just landward of the ECMA and have oval magnetic anomaly highs

associated with them.

Stratigraphy
The COST G-1 and G-2 wells (fig. 1-2) provide the main body of deep
stratigraphic information for the Georges Bank area. No deep test wells
have been drilled seaward of the bank. 'The G-1 well (LaChance and
others, 1980; Scholle and others, 1980a) encountered a sequence, mainly

of sandstone, shale, and siltstone of Late Jurassic to Early Tertiary
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age, that overlies sandstone, anhydrite, and dolomite of Early(?) to
Middie(?) Jurassic(?) age. The G-1 well penetrated into metamorphosed
dolomite, quartzite, and phyllite of Paleozoic age at 15,600 ft
(4,755 m) and reached a total depth of 16,071 ft below K.B. (Kelly
Bushing). At the COST G-2 well site, 67 km to the east, the section is
both thicker and richer in carbonate and evaporite rocks. Again, the
Upper Jurassic-Tertiary section contains abundant sandstone and
mudstone, but thick beds of limestone are present, particularly toward
the base of the Cretaceous. These limestones are probably equivalent to
strata sampled in Heezen Canyon by Ryan and others (1978) in 1,250- to
1,300-m water depth. They are Neocomian in age and were deposited in a
reef-tract milieu. Oxfordian (Late Jurassic) and older rocks are
dominantly limestone, dolomite, and anhydrite. 1In the COST G-2 hole,
the well bottomed in salt at 21,374 ft (7,612 m) total depth below K.B.
(Simonis, 1980; Scholle and others, 1980b). The only other deep (524 m)
hole (6001) was drilled on Nantucket (Folger and others, 1978b). It
sampled poorly consolidated silts and clay of Late Cretaceous and
Tertiary age of nonmarine to marine shelf origin and bottomed in
weathered basalt approximately 183 m.y. old (Early Jurassic).

Several trends are shown by these three holes. The Cretaceous
strata thicken and become finer grained and more calcareous toward the
COST G-2 hole. The Jurassic rocks are present only in the Georges Bank
hole, where they thicken and become more carbonate~-rich to the southeast
over the main part of the basin. The trend toward a section richer in
carbonate and evaporitic rocks with depth and to the southeast has been
inferred from multichannel seismic-reflection profiles (Schlee and
others, 1976; Schlee and others, 1979c; Mattick and others, in press)

not only here but off the Mid-Atlantic states as well. The carbonate
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rocks are inferred to extend beneath the Continental Slope where they
form a platform front and interfinger with deep-sea deposits of
equivalent age in the North Atlantic oceanic basin (Grow and others,
1979a; Schlee and others, 1979¢c; Jansa and others, 1979; Klitgord and
Grow, 1980). Our multichannel seismic profiles reveal that the seaward
edge of the carbonate platform has two modes of expression: first as a
distinct break in the slope (Schlee and others, 1979c, fig. 6) and
second, as a shingled offlap of reflectors, presumably part of a
seaward-prograding platform (Schlee and others, 1979c, fig. 7). Most of
the profiles show the first type of carbonate shelf edge; however, in
the western part of the basin, a distinctly prograded arrangement of
reflectors appears to indicate that the shelf built 20 km seaward over
older slope and rise deposits.

The Georges Bank seismic stratigraphy has been tied to adjacent
areas (fig. 3-3) using multichannel seismic-reflection profiles (Wade,
1977; Austin and others, 1980). Judkins and others (1980) and Poag
(unpub. data, 1981) tentatively have correlated the Georges Bank forma-
tions and key markers with the stratigraphic section set up for the
Scotian margin by McIver (1972), Jansa and Wade (1975a), Gradstein
and others (1975), Ascoli (1976), and Given (1977). The correlations
have been facilitated by the fact that the same major vertical and
lateral stratigraphic trends seen on the Scotian margin are also present
here beneath Georges Bank. The trends represent a change from a section
rich 1in clastic sedimentary rocks for the inshore wells to a section
increasingly dominated by a carbonate—evaporite sequence at depth and
towards the outer shelf holes. This 1is particularly true for the

Jurassic System.
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The oldest rock sequences encountered by the COST G-1 and G-2 wells
are probably equivalent to the Iroquois Formation (dolomite and
anhydrite), Argo Formation (salt at very bottom of the COST G-2 well),
and the Mohican Formation (sequence of sandstone and shale of early
Middle Jurassic to Early Jurassic age present in the COST G-1 well).
The 1limestone of Middle Jurassic to earliest Cretaceous age beneath
Georges Bank probably correlates with the Abenaki Formation, a sequence
of platform limestone and shale on the Scotian shelf: both there and
under Georges Bank, the Abenaki Formation or its equivalent changes
inshore to the Mic Mac and Mohawk Formations, which comprise shelf
sandstone, shale, and thin-bedded limestone.

The trend in thickness with time for Georges Bank Basin seen in
both COST holes is one of rapid sediment accumulation during the
Jurassic and diminished rates thereafter. At least 4,875 m of the
sedimentary rock accumulated during the first 50 m.y. of Dbasin
development in the COST G-2 well, whereas only 1,750 m of sediment
accumulated in the last 141 m.y. and most (79Z) of that was deposited
during the Cretaceous (141-65 m.y. B.P.). The overall trend is similar
to that shown by Poag (1980, fig. 28) for the COST B-2 and B-3 wells
(Baltimore Canyon Trough), although sediment accumulation rates vary
widely over intervals of only a few million years.

The nature of formations beneath the slope and rise seaward of
Georges Bank is poorly known. The nearest Deep Sea Drilling Project
(DSDP) holes are 600 km to the south (DSDP holes 105, 106, 388;
fig. 1-2) and they reveal a sequence of Late Jurassic argillaceous
limestone (Cat Gap Formation of Jansa and others, 1979) overlain by
limestone, chalk, marl, and chert of Early Cretaceous age (Blake-Bahama
Formation). Above this wunit 1is a carbonaceous shale and claystone
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(Hatteras Formation) of Middle Cretaceous age. This is in turn overlain
by wvariegated clay of Late Cretaceous-Paleocene age (Plantagenet
Formation). An Eocene sequence of olive-gray siliceous claystone and
chert (Bermuda Rise Formation) is overlain by hemipelagic silty clay and
mass—flow deposits of the Blake Ridge Formation (Eocene-Pliocene age).
The formations are mainly fine grained, and defined well away from the
margin, in the central North Atlantic basin.

An examination of seismic-reflection profiles (Klitgord and Grow,
1980) in the rise area shows that the key reflectors associated with the
deep—-sea formations defined by Jansa and others (1979) continue to the
upper Continental Rise. Most of the older reflections terminate against
the buried Late Jurassic shelf-edge. A few reflections, inferred to be
a part of the Cretaceous section, carry across the upper rise and slope,
although their seismic character changes markedly, thereby indicating a
change in the lithology of sediments associated with them. The
reflections within the Tertiary section change the most laterally and do
not carry through to the section beneath the shelf, mainly because the
Continental Slope was cut back periodically during the Cenozoic. The
result was the construction of a large rise prism of complexly
interlayered fan, slump, and hemipelagic sedimentary facies; the wedge
thickens away from the base of the slope to over a kilometer and

contains within it one or two conspicuous unconformities.

Magnetic studies
The magnetic anomaly data in the Georges Bank region (Taylor and
others, 1968; Kane and others, 1972; Klitgord and Behrendt, 1977 and
1979) provide a means for estimating the general shape of the Georges
Bank Basin. Since the sediments which overlie the volcanic/metamorphic
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basement have very low susceptibilities, the shallowest major source of
the magnetic anomalies is within this basement. The character of the
magnetic field (fig. 3-4) can be used to divide the Georges Bank region
into three provinces: 1) the shallow Long Island and Gulf of Maine
platforms and the block-faulted zone along their seaward edge, typified
by high amplitude, short-wavelength, magnetic anomalies; 2) the Georges
Bank Basin with broader wavelength, less two-dimensional, anomalies; and
3) the region seaward of the ECMA with lower amplitude but fairly
lineated magnetic anomalies. The integration of seismic-reflection data
(Ballard and Uchupi, 1972; Schlee and others, 1976, 1979c; Schlee, 1981)
with estimates of the depth-to-magnetic basement (fig. 2-5) (Kane and
others, 1972; Klitgord and Behrendt, 1979) provides a basis for mapping
basement structures (fig. 2-6) over the entire region (Klitgord and
Schlee, unpub. data, 1981 ). Crystalline basement for the Long Island
Platform and Gulf of Maine Platform is generally at less than 4-km
depth. A set of 1lineated, short-wavelength, high-amplitude anomalies
oriented en echelon along 040° NE., between 40.5° N., 70.5° W., and
42.5° N., 66° W. marks the seaward limit of this region. A set of
narrow grabens or basins is located along this boundary and forms a
steplike pattern (fig. 3-6) as basement deepens into the Georges Bank
Basin. Seaward of the ECMA, the magnetic anomaly data, seismic-
reflection, and seismic-refraction data indicate that the basement 1is
typical oceanic crust (Schlee and others, 1976; Grow and Schlee, 1976;
Klitgord and Behrendt, 1979; Grow and others, 1979; Sheridan and others,
1979). This change in basement character across the Georges Bank region

can be seen in a cross section based on CDP line 19 (fig. 3-7).
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The Georges Bank Basin, as defined by the magnetic data, lies
landward of the ECMA and seaward of the previously mentioned set of
lineated magnetic anomalies associated with the series of grabens
oriented en echelon along a trend of 040° NE. The map of the
depth-to-magnetic basement (fig. 3-5) indicates a rapid increase in
basement depth on the landward side of the basin, as does the isopach
map of total sediment thickness (fig. 3-3). A basement high beneath the
ECMA marks the seaward edge of the basin. The buried carbonate and
paleoshelf-edge complex reported near the shelf break of Georges Bank
(Schlee and others, 1976, 1979c; Uchupi and others, 1977; Schlee, 1981)
is located just above this outer high in the magnetic basement (Klitgord
and Behrendt, 1979). The seismic and magnetic data indicate that the
deepest basement lies within the main basin and the Yarmouth Sag
(fig. 3-5) between the block-faulted zone and the ECMA. There are
isolated magnetic basement highs near lat 40.75° N., long 67.25°W; lat
40° N., 1long 69.5° W.; and lat 40° N., long 70.25° W., as well as a
broad basement high near lat 40.5° N., long 68 ° W. which cuts the
basin in half. These isolated magnetic basement highs may be intrusive
bodies similar to the major intrusive body in the Baltimore Canyon
Trough near lat 39.5° N., long 73° W., but they are about 2 km deeper
and reach an estimated minimum depth of about 6 km.

The northeastern end of the basin is subdivided by the Yarmouth
Arch (figs. 3-5 and 3-6). The Yarmouth Sag flanks the north side of the
arch and the main basin continues along the southeastern side of the
arch, eventually to connect with the Scotian basin. On the northwest
side of the arch, the Yarmouth Sag merges into the La Have Platform

beneath the Scotian Shelf.
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Schematic cross section through the Georges Bank area approximately

along line 1 (fig. 1-2).

Figure 3-1.

The wavey line just above crystalline

Note the broad

buildup of carbonate rocks (brick pattern) beneath the middle and

basement blocks represents the breakup unconformity.
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4. Potential geologic hazards in the Baltimore Canyon Trough
by

James M. Robb and David C. Twichell

Environmental Geologic Data

Since 1975 the U.S. Geological Survey (USGS), in cooperation with
the U.S. Bureau of Land Management (BLM), has been investigating
potential geologic hazards to development of the Mid-Atlantic Outer
Continental Shelf area (Robb and Kirby, 1980). Amounts of data gathered
by that effort are shown in the following figures. Figure 4-1 shows
regional track-line coverage of high-resolution seismic-reflection
profiles. Figure 4-2 shows the area of high-density seismic-reflection
profiling and sidescan—sonar surveys performed prior to Lease Sales 40
and 49 (Carpenter and Roberts, 1979; Hall and Ensminger, 1979).
Figure 4-3 shows the coverage of a long-range sidescan—sonar survey
(GLORIA: Geologic LOng Range Inclined Asdic) of the Continental Slope
area performed in October 1979 by the USGS in cooperation with the
Institute of Oceanographic Sciences, United Kingdom. A high—-density
seismic-reflection survey of the area q?ﬂposed for Lease Sale 59
(fig. 4-4) has also been completed recently. Findings from these
surveys, and of other investigations reported in the literature are

discussed below.

Continental Shelf
The shallow stratigraphy of the Middle Atlantic shelf is
characterized by a thin surficial sand layer underlain by a nearly
ubiquitous clay layer of unknown thickness. Vibracores reveal that the

sand layer is composed of a shelly, poorly sorted, medium to coarse sand
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of Holocene age. Seismic-reflection profiles indicate that the sand
layer is 1 m to 20 m thick and forms a series of northeast-trending
low-relief ridges and swales (Knebel and Spiker, 1977). The Pleistocene
clay layer 1locally includes silt and sand (Knebel and Spiker, 1977;
Folger and others, 1978). Sangrey and Knebel (1978) found this clayey
material generally to be heavily overconsolidated, with high shearing
resistance and low compressibility. Except locally, where the clay is
weak and more compressible, this layer does not present a hazard to
facility siting.

The influence of known hydrographic conditions on the Mid-Atlantic
shelf surface appears to be slight. Ripples (Butman and others, 1979)
and small-scale scours (McKinney and others, 1974; Knebel and others,
1976) are the result of modern storm—generated waves and currents. A
large area of rough topography around Hudson Canyon has been mapped and
is interpreted to be a relict erosional surface formed about 13,000 to
15,000 years ago (Knebel, 1979). Sand waves have been identified near
the shelf edge around the heads of Wilmington Canyon (Knebel and Folger,
1976; Twichell, 1979) and Lindenkohl Canyon (Hall and Ensminger, 1979).
However, based on their structure and the known hydrographic conditions,
these sand waves are interpreted to be relict (Twichell, 1979) and,
hence not a restriction to development. The ridge—and-swale topography,
which covers most of the shelf, has been attributed both to modern
storm—generated waves and currents (Uchupi, 1960; Moody, 1964; Swift and
others, 1972), and to a relict barrier-beach origin (Veatch and Smith,
1939; Sanders, 1962; McClennen, 1973). The latter interpretation of
these features is more plausible because on the southern New England

shelf, the same bed forms are buried by as much as 14 m of Holocene silt
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and clay (Twichell and others, 1981).

Shallow faulting has been identified in a small area near the shelf
edge where strata of Pleistocene age are displaced about 1.5 m (Sheridan
and Knebel, 1976), A regional seismic-reflection survey of the Middle
Atlantic shelf has revealed no other faults (Cousins and others, 1977).
Geologic hazards and constraints within the lease blocks offered by OCS
Sale 49 were addressed by Hall and Ensminger (1979) based on
high-resolution seismic profiles and sidescan sonar over a
800-m x 3,200-m grid. Hazards found wfﬁ}iu the sale area included
shallow faulting and shallow gas deposits. Few occurrences of such
hazards were located. Constraints included erosion and scour, filled
channels, relict lagoon deposits, and gas charged sediments, which could
affect the stability of bottom-sited facilities and should be

investigated on a site-specific basis.

Continental Slope

Topographically, the surface of the Continental Slope (100 to
2,200 m) is complex. Not only is it cut by a number of major canyons,
but intercanyon areas are also generally characterized by a rugged
terrain of valleys and gullies. A 1long-range sidescan-sonar (GLORIA)
survey of the Continental Slope between Hudson and Baltimore canyons
shows many more submarine canyons than are shown on  published
bathymetric maps. A 1large number of canyons incise the upper slope
(only a small number indent the shelf edge), and the canyon walls are
densely incised by small tributary gullies that are absent farther
downslope (fig. 4-5). A few canyons continue as channels which cross

the upper rise.
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Bathymetric maps which include the Continental Slope from 37b31'N.
to Georges Bank are published at a scale of 1:250,000 by the National
Ocean Survey. Several small areas of the Mid-Atlantic Continental Slope
have been mapped at a finer scale and discussed by Bennett and others
(1978), McGregor and others (1979), Bunn and McGregor (1980), Malahoff
and others (1980), and Robb and others (198la) (fig. 4-6). All these
studies show that the slope surface 1is not only complex, but is also
poorly described on the available smaller-scale maps.

The Continental Slope is underlain in the Mid-Atlantic region by a
paleoshelf-edge system with rocks of Jurassic through Early Tertiary age
(Grow and others, 1979; Poag, 1979; Schlee and others, 1979), overlain
by a wedge of Neogene sediment having slightly seaward dips (fig. 4-7).
The paleoshelf-edge is 20-25 km seaward of the present and Neogene shelf
edge. The Pleistocene deposits are between 300 m and 500 m thick at the
top of the slope, and thin downslope. They overlie Tertiary rocks on an
unconformity that may be of Pliocene age. A surficial geologic map of
the area between Lindenkohl and South Toms Canyons (Robb and others,
1981b) (fig. 4-8) shows the distribution of Pleistocene sediments in
lobate ridges extending downslope. Eocene to Miocene rocks crop out on
the lower slope and midslope of this area. 1In most other places along
the Mid-Atlantic 0CS, (Quaternary deposits probably cover the entire
Continental Slope surface, although older rocks are exposed in canyons.

The major potential geologic hazard of the Continental Slope in the
Mid-Atlantic area is considered to be slope failure. Twenty—-seven lease
blocks along the upper Continental Slope were withdrawn from Lease
Sale 49 because there were thought to be hazards of slumping or sliding
from failure of slope sediments in those areas (Hall and Ensminger,

1979). Subsequent analysis of additional data now indicates that most
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of the features formerly thought to be slumps or slides are cut—and-fill
structures, or topographic features associated with underlying
stratigraphic unconformities. However, the potential for slope failure
has not been ruled out. Geotechnical analysis of samples from piston
cores distributed along the Continental  Slope shows that
underconsolidated sediments are not uncommon (Booth and others, 1981).

A large subaqueous landslide deposit on the Continental Slope
northeast of Wilmington Canyon was identified by McGregor and Bennett
(1977). This deposit, some 11 kd;fin volume, is thought to represent an
event of Pleistocene age, and may be related to large blocks on the
upper Continental Rise that were identified in GLORIA images. GLORIA
data over the upper Continental Rise show that although most canyons
trend directly downslope, Baltimore and Wilmington Canyons are both
directed eastward, diagonally across the lower slope and upper rise, by
two large, linear sedimentary blocks. It is possible that these blocks
may form part of a single slump deposit which was subsequently cut by
canyons; the absence of an exposed scarp upslope from these blocks
suggests that if they are in fact allochthonous material they must be
old, having the wupslope scarp buried by subsequent sedimentation.
Except for these two large blocks on the wupper rise, large-scale
slumping was not identified on the GLORIA records on this segment of the
slope. Small-scale mass wasting may exist, however, and may contribute
to the formation of the gullies prevalent on the steep canyon walls of
the upper slope.

A detailed geologic study of a 40-km x 35~km segment of the
Continental Slope and wupper rise between Lindenkohl and South Toms

Canyons off New Jersey (fig. 4-8) (Robb and others, 198lc) identified
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three slump or slide features in the heads and on the walls of canyons
and valleys, and two slides in an intercanyon area. The identified
slumps or slides are found in Quaternary sediments and total about
1.3 percent of the Continental Slope area mapped. No slides or slumps
were identified in Tertiary rocks. Other subaqueous slumps or slides on
the Mid-Atlantic Continental Slope have been described by Rona (1967),
Embley and Jacobi (1977), Knebel and Carson (1979), Bunn and McGregor
(1980), and Malahoff and others (1980).

A large volume of Pleistocene sediments lies on the upper
Continental Rise at the foot of the Continental Slope. These sediments
may have accumulated as a result of mass wasting of the slope surface,
or they may comprise sediments which bypassed the slope, transported by
density flow from the shelf edge. Samples from Deep Sea Drilling
Project site 107 on the upper Continental Rise contained Pleistocene
foraminifera from a sublittoral (shelf) environment. Midrange
sidescan-sonar data (USGS unpublished data, 1980) show that the
uppermost Continental Rise surface is rougher than previously realized,
having "crisp"” features of low relief. Some of these features may
represent masses of sediment that slid from the slope, or they may be
erosional features caused by bottom currents or turbidity currents. A
debris field of blocky topography was observed on the Continental Rise
at the mouth of South Toms Canyon, which suggests downcanyon transport
of material (Robb and others, 198lc). This debris has not been sampled
or observed by submersible, however, and its age, or recency, is not
determined.

A zone of faulting is located along the lower Continental Slope.
Where well surveyed, in the areas between Lindenkohl and South Toms
Canyons (fig. 4-8), these faults do not appear to have disturbed
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Pleistocene sediments, and therefore probably do not constitute a
seismic risk. They may represent a constraint for drilling operatiomns,
however.

In summary, the Continental Slope has a rough topographic surface
which is relatively poorly mapped. The major geologic hazard is thought
to be slumping and sliding of its fine-grained sediments, but
controversy exists regarding the significance of the process in the
present day. Identified slump features of significant size are thought
to be Pleistocene or Late Tertiary in age. The greatest risk of slope
failure appears to be associated with Quaternary sediments, which have a
variable, but not well mapped outcrop area. Canyon axes may be an
avenue for episodic turbidity currents. The strength and frequency of
present—day turbidity currents and rapid erosion have been described in
canyons off the coast of California by Shepard and others (1974). R.
Slater (personal communication, 1978) described being caught in a small
turbidity current in Lydonia Canyon while in a research submersible.
These observations should be considered if facilities placed on the
Continental Slope are proposed to be sited in canyons or valley

channelways.

Rise

The Continental Rise is characterized by subdued topography, but
has been only generally mapped. Though few data are available, hazards
and constraints there may include filled channels, currents and scour,
and shallow gas or clathrates. Filled channels, currents, and scour are
more likely to be significant at shallower depths, from the top of the
rise at about 2,000 m to depths of 2,500 m. Clathrate reflectors have
been observed on seismic profiles in water depths greater than about
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3,000 m on the Continental Rise off the Mid-Atlantic OCS (G. Mountain,

personal communication, 198l1).
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5. Potential Geologic Hazards in the Vicinity of Georges Bank Basin

D. W. O'Leary and D. C. Twichell

Shelf

Georges Bank is a compound feature that resulted from erosion of
Tertiary Coastal Plain strata followed by deposition of an extensive
wedge of Pleistocene sediment on the eroded surface (Lewis and others,
1980). The overlying Pleistocene sediments in turn have been eroded
both subareally, as evidenced by the presence of buried channels within
this unit, and by subsequent marine planation which produced an erosion
surface roughly parallel to the present sea floor. The truncated
surface is unevenly covered by late Pleistocene drift which has been
reworked first by waves when sea level was lower and presently by storms
and strong tidal currents (Lewis and others, 1980).

Regional seismic-reflection surveys of Georges Bank do not show
evidence of shallow faulting or gas seeps (Lewis and others, 1980). The
regional seismic coverage did not permit mapping buried drainage
patterns on Georges Bank; however, the profiles do cross some buried
channels (fig. 5-1) which are believed to present a possible hazard
because the variable nature of sediments within and outside the channels
could lead to differential settliné upon loading.

Two other potential hazards are the 'current and wave regimes and
the resulting mobile bed forms on the sea floor. Strong clockwise
rotary tidal currents on Georges Bank and Nantucket Shoals augmented by
wave and storm induced currents result in substantial resuspension and
transportation of surficial sediments over much of the bank.
Near-surface tidal currents (15 m depth) near the crest of the bank at

times exceed 75 cm/s, and on the north and south flanks of the bank
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attain about 35 cm/s (Moody and Butman, 1980). West of Nantucket Shoals
tidal currents drop sharply to between 8 to 10 cm/s (fig. 5-2). During
storms surface waves increase bottom stress and cause increased sediment
resuspension. Some scour and resuspension by internal waves were
observed in summer on the southern flank of the bank in a water depth of
85 m (Aaron and others, 1980).

The clockwise mean drift around Georges Bank and the westward drift
onto the southern New England shelf, first proposed by Bigelow (1927),
has been confirmed by long-term current measurements (B. Butman 1980,
unpublished data) The mean flow is strongest along the northern edge of
the bank where it reaches speeds as much as 20 cm/s while along the
southern side of the bank the mean current is only 8 to 10 cm/s
(fig. 5-2). Flow appears to diverge at Great South Channel; some water
flows north and some continues westward across the southern New England
shelf. Although the mean drift is not strong enough to erode sediment,
it can transport material put into suspension by the tidal or
storm-related currents.

Two potential hazards result from the strong currents on Georges
Bank and Nantucket Shoals. First, sediment removed by scour from the
base of support structures (platform legs, footings, and pipelines) may
weaken or cause differential settlement of the structures. The
structure itself is an obstruction that tends to increase local current
velocities at the bottom, resulting in increased erosion.

The second hazard is presented by mobile sand waves and megaripples
which are wavelike maé?s of sand formed and moved by fluid flow over an
erodible granular bed (fig. 5-1). Sand waves are migratory features;
their size, geometry, and speed and direction of movement are related to
the grain size of sediments in the bottom and to flow conditions such as
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water depth and current velocity. On the eastern United States
Continental Shelf, the largest area of large, potentially mobile sand
waves is located on Georges Bank and Nantucket Shoals, mainly in water
depths of 60 m or less (fig. 5-2). Sand waves on Georges Bank range in
height from 1 m to 15 m and in wavelength from 150 m to 750 m (Jordan,
1962; Twichell, 1981, unpub. data). Sand waves do not cover the entire
bank surface; they are concentrated on a series of northwest-trending
ridges and are absent in the troughs between the ridges. This sand-wave
distribution pattern reflects the availability of sand on the ridges; in
trough areas sand has been swept away. The asymmetry of the sand waves
and the presence of smaller ripples on top of them indicate that they
are active, but their migration rate is unknown. Two groups of
echo-sounding surveys 25 to 28 years apart (Stewart and Jordan, 1964)
showed that sand waves on Georges Shoal migrated 300 m for an annual
migration rate of 12 m/y. Preliminary results from a study being
conducted by the U.S. Geological Survey in a 1.5—km3‘area on Little
Georges Bank suggest that parts of some sand waves may have moved as
much as 30 m in a three-month period.

Sand waves are potential threats to the stability of support
structures because they can weaken the structure by changing the
resonant frequency for which they are designed (Garrison and Bea, 1977)
or by placing an excessive lateral stress on them (e.g., the Texas Tower
radar installation erected on Georges Bank during the late 1950's; Emery
and Uchupi, 1972).

Bed form distribution and asymmetry and surface sediment texture
can be wused to infer net sediment transport paths on the New England
shelf. On Georges Bank sand-wave asymmetry suggests transport away from
the crest of the bank, and surface sediment texture becomes increasingly
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fine with distance from the bank crest. Silt and clay cover large areas
of the Gulf of Maine and the southern New England shelf (Schlee, 1973)
(fig. 5-2). The fine sediment on the southern New England shelf
previously was thought to be relict (Garrison and McMaster, 1966;
Schlee, 1973), however, recent seismic-reflection profiles show that the
fine sediment has accumulated since the last rise in sea level as it
rests on Holocene terraces (Twichell and others, 1981). Carbon-14 ages
and lead-210 profiles further suggest that this sediment has accumulated
in recent time and may be actively accumulating at present (Bothner and
others, in press).

The location of the fine sediment on the southern New England shelf
is controlled by the current regime. The strong tidal currents erode
material from the crests of Georges Bank and Nantucket Shoals, which is
then transported by the weaker tidal currents and the mean drift
westward to the southern New England shelf where the sharp drop in
tidal-current strength (fig. 5-2) permits the fine suspended sediment to
be deposited. If the deposit still is actively accumulating, this area
may be a sink for any fine material and sediment-related pollutants that
may be  introduced to the Georges Bank area during exploration,
development, production, or transportation of hydrocarbon resources.

Slump features have not been observed on the Continental Shelf.
Although silt and clay layers may be susceptible to undrained cyclic
loading there is no evidence that direct loading by waves has caused
collapse to occur in the Georges Bank region. The possibility of
failure due to transient IQQding by earthquakes is remote. Oldale and
others (1974) cited "large submarine slumps or landslides” along the
north flank of Georges Bank. Slumps along this boundary are undoubtedly
of Pleistocene age, originating from collapse of melting stagnant ice
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buried under sediment. Very large slumps are 1likely to be found below
the mouth of Northeast Channel where depositional oversteepening must
have been at a maximum during periods of maximum glacial advance and
early retreat.

Slope and Rise

A systematic study of the North Atlantic Continental Slope, from
longitude 71°W. to Northeast Channel, was begun in 1978; 8,340 km of
seismic profiles were obtained along the slope and outer shelf edge by
the ISELIN 2 cruise (1978) and the GILLISS 3 cruise (1979) (fig. 5-3).
Dip 1lines were spaced at about 10 km, strikelines at about 5 km. In
1979, over the same survey area, overlapping sidescan-sonar image data
were acquired by the GLORIA (Geologic LOng Range Inclined Asdic) system
(fig. 5-3). 1In 1980 GYRE cruise 80-7 completed a seismic survey of a
2,800-km area on the slope adjacent to lease sale area 52, between and
including Oceanographer and Lydonia Canyons (fig. 5-3). Profiles were
spaced 1 km along the slope and 5 km down the slope. GYRE cruise 80-8
acquired mid-range sidescan—-sonar images of the same area with a spatial
resolution of about 3 m. These data were wused to guide coring
operations for geotechnical studies of Continental Slope sediments.
Results of the data analyses have not yet been published; the following
text is an outline of the major envirommental findings and implications
of the study.

Despite its low angle of declivity (3° to 8°) the Continental Slope
is extensively and relatively deeply eroded with local slopes that
commonly exceed 20°. Approximately seventy percent of the Continental
Slope surface in the Lydonia and Oceanographer Canyons area is eroded.

Most slope erosion is associated with the numerous submarine canyons.
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Sidescan—sonar images show that the type of erosion varies with depth on
the Continental Slope. Near the top, between about 250 m and 1,000 m,
submarine canyons are fringed with wide areas of ridge and gully terrain
in which networks of gullies are tributary to the central channels of
the canyons. The canyons themselves are relatively wide, flat—-floored
features; their smooth generally featureless bottoms indicate that they
are sites of deposition as well as erosion. Below about 1,500 m, eroded
forms of the Continental Slope are complex and not all of them are
related to canyons that extend farther up the slope. Sparse
observations from submersibles, and bottom core samples indicate that
much erosion has occurred within the last 200,000 years. Most of this
erosion is believed to have been caused by bottom curents during Late
Tertiary glacial lowstands of sea level (John Grow, personal
communication, 1981). Erosion of the canyons has generally been
ascribed to the action of turbidity currents, but the diversity of
erosional forms on the slope indicates complex mechanisms, including
various kinds of slumping.

At about 2,000 m water depth, the slope of the bottom flattens out
to an inclination of about one degree. This flatter surface, the upper
Continental Rise, is built up of sediment brought down from the slope
and shelf and is essentially a constructional surface. The canyons of
the slope continue across the wupper rise, and the deep, extended
erosional features of the lower slope are also present.

Three potential hazards are associated with the Continental Slope
and rise: mass wasting on unstable slopes, structurally unstable

sediments, and potentially mobile surfaces.
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Unstable slopes and mass wasting

In the North Atlantic region potentially wunstable slopes (greater
than 20°) are found in the eroded terrain related to the numerous
submarine canyons incised in the Continental Slope. Submersible
observations give evidence that slopes greater than 45° in the vicinity
of the canyons are mechanically unstable. Away from such steep slopes
erosion 1is appparently progressive. Along Veatch Canyon, at depths
between 150 and 160 m, Slater (unpub. data, 1981) noted slopes of 45°
that are actually series of rubble covered terraces, 2 to 5 m wide,
separated by steep (75°) cliffs 1 to 3 m high. These terraces are
interpreted to be slumps or wall segments that have slid out of place
(fig. 5-4). Near Veatch Canyon, Slater (unpub. data) observed that
rills mnear the 180-m contour are shallow, straight features, 1 m across
and 25 cm deep; at 200 m depth they are as wide as 3°m with hummocky,
burrowed sides sloping 20°, but there is no evidence that these slopes
are unstable; they are apparently graded to a gully network in which
shelly debris, lag gravels, and winnowed sand and silt are presently
being concentrated. Between canyons the eroded slopes flatten smoothly
onto the wunincised, broadly featureless surface of the Continental
Slope.

Between depths of 1,000 and 2,000 m on the Continental Slope
sidescan-sonar images show that steep slopes bound the eroded terrain
related to the canyons; in general, a relatively steep headwall locally
marked by slump features forms a  boundary with the wunincised,
featureless Continental Slope surface. Discontinuous headwall scarps

and intermediate terraces (figs. 5-5, A; 5-6, A), reentrants and
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promontories (fig. 5-5,B), ravinelike incisions (figs. 5-7, A; 5-8, A),
and rubble strewn lower slope surfaces (figs. 5-7, B; 5-8, B) indicate
that the steep, etched slopes facing the canyon systems were formed, at
least in part, by mass collapse and disintegration. Various
morphological features indicate that in many places this process is
incomplete or has been arrested. Elsewhere in this zone steep back
slopes outline arcuate, cirquelike depressions that open into canyon
terrain (figs. 5-6, B; 5-7, C; 5-8, C). Locally the lower slopes and
bottoms of the depressions show slight scarps that suggest that even
relatively flattened slopes may be unstable within the etched terrain
(figs. 5-6, C; 5-7, Q). Strongly defined slopes with discontinuous
terraces at different levels suggest Toreva blocks controlled by caprock
(figs. 5-6, A; 5-8, D), whereas rilled slopes irregularly etched into an
upper flat surface suggest incision into shaley or silty beds (fig. 5-6,
D). Seismic profiles show that steep slopes in this region truncate
underlying beds, but they do not give evidence of large blankets of
semicoherent rubble at the bases of the slopes. The notable lack of
slump rubble suggests that submarine mass wasting results in nearly
totally disaggregated debris that 1is probably removed by turbidity
currents aﬁd distributed downslope on the upper rise where it is, in
turn, subject to local surficial sliding. The features also suggest
that wall collapse is local and piecemeal and that slope erosion may
involve grain-by-grain disaggregation or surface spalling following
massive failure.

Slumping is apparently widespread in lower slope sediments that are
known to be mechanically more stable than the Pleistocene sediments high
on the slope, where slope collapse 1is local and minor. Because
depositional oversteepening and tﬁrbidity currents are not apparent
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factors, we surmise that gravitational processes unrelated to
sedimentation are the dominant erosional agents on the Continental Slope
in the areas of study. The causes of gravitational instabililty have
not been explored.

On the wupper slope local slumping 1in steep canyon terrain is
probably caused by oversteepening due to deposition and possibly even by
local erosion along canyon and larger gully thalwegs. But it may also
be caused by headward propagation of canyon gradients due to deeper
collapse on the lower slope. In any case, significant examples of
fresh, recent collapse have not been found and it may be that slope
collapse occurs locally or regionally at widely spaced intervals of
time. If slumping events occur at intervals of centuries their hazard
potential is low. Some morphological features suggest that scarped
slopes may be metastable, awaiting only an appropriate stress to trigger
the collapse. Until stress thresholds and trigger mechanisms can be
analyzed for such suspect features it would be prudent to site large
structures well away from the collapsed slope breaks.

Sidescan-sonar images of the upper Continental Rise, between 2,000
and 2,500 m depth depict a texturally uniform surface of low relief
etched by polygonal scarps. The forms imply shallow, sheetlike slumping
and disaggregation of relatively small areas along the slope-rise
boundary. Such features are also implied in some seismic profiles which
transect the upper rise. Smeared tonal variations in terrain adjacent
to canyon axes on the rise imply that near-surface compositional
variations are important in the development of erosional forms. A core
obtained below 2,000 m near the mouth of Powell Canyon (Booth, 1981,
personal communication) showed thinly layered sedments of varied texture,

color, and mechanical properties. The textural variations and the

57



shallow scarps on the upper Continental Rise suggest that the region
between 2,000 and 2,500 m 1is potentially unstable and should be

thoroughly tested for mechanical strength.

Unstable sediments

The incised terrain of the upper Continental Slope is underlain by
a cohesive gray clay which is widely veneered by fine sand or silt as
much as 10 em thick. The clay seems to have been deposited from
suspension on steeply gullied slopes formed during an earlier episode of
erosion. Seismic profiles show that many of the -earlier gullies are
completely filled and some are reincised. The gully and rill mnetwork
has been reestablished following deposition of the clay (within the last
200,000 years). The thickness of the clay unit is not known.

Valentine and others (1980) estimate the total thickness of
Quaternary sediments along the outer shelf and slope on either side of
Oceanographer Canyon to be about 300 m.

The sand and silty sand layer capping the outer shelf and upper
slope is glacial outwash sediment deposited during the main phase of
glacial retreat from the top and northern margin of Georges Bank. The
underlying clay layer seems to be a widespread stratum that thickens
with and follows the dip of the underlying slope. This c¢lay layer
apparently crops out below about the 250-m isobath and dips downslope,
as observed by Slater (unpub. data, 1981). The overlying outwash sedi-
ments pinch out at this depth. The assocliation of scattered boulders
and cobbles with the exposed clay suggests that the clay was deposited
from melting pack ice and shelf ice in quiet water during the period
of maximum ice stability on the shelf, just prior to the rapid retreat

of the ice and consequent outwash deposition. Clay deposition abruptly
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ceased and the clay was rapidly buried by a blanket of relatively
coarse, sandy sediment. This geological condition points to a potential
hazard; the wuppermost clay 1layer, dipping down the slope, may be
overpressurized because of rapid burial. Structural footings that fail
to penetrate the clay layer may induce local loading phenomena that
could result in plastic or even thixotropic failure of the silty clay.
There is some evidence in seismic profiles that creep has occurred in
subsurface layers along the edge of the Continental Shelf off Georges
Bank.

The Pleistocene clay exposed near Alvin Canyon was cored (Booth and
others, in press) to determine its geotechnical properties. The cored
sediment has a relatively high shear strength for surface sediment
(average 9.5 Kpa) and is very sensitive. Bulk density is higher (1.71
g/cc, average) and water content is lower (53%, average) than normal.
Sediments failed by “plastic” shear at about 8 percent to 10 percent
strain. Tests for shear strength and index properties suggest that the
core sites near Alvin Canyon were once buried under 10 to 35 m of
overburden. However, slope stability analysis indicates that the cored
sediment is stable (normal to slightly overconsolidated). The sediments
have angles of internal friction between 21 and 289L—typica1 values for
fine-grained marine sediments.

Pleistocene sediments draped on previously eroded but stable slopes
may have been locally oversteepened due to rapid sedimentation rates,
and subsequently sloughed off. If this condition were widespread, many
slopes may be metastable on the upper part of the Continental Slope
today. Detailed site-specific coring studies are strongly suggested in

this region.
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The mnorth slope of Georges Bank and the adjacent Gulf of Maine are
subject to the same geologic conditions as the seaward edge of the
Continental Shelf. In fact, collapse phenomena, channel filling, and
local clay lenses are likely to be more important there because the area
between the bank and the retreating ice front would have been an area of
ponded ice meltwater and sediment deposited on and around detached
blocks of melting stagnant ice. The wide variability of ad jacent rocks
and sediments precludes any general statements about the potential
hazards of the sea floor in this region; site-specific assessments for

hazards are required throughout this region.

Mobile surfaces

Fine sediment winnowed from the glacial outwash of the shelf
surface is distributed as a rippled surficial layer on the upper
Continental Slope. Observers agree that this winnowed sediment is being
transported to the floors of the canyons where it apparently
concentrates (Valentine and others, 1980; Slater, wunpub. data).
Stanley and Freeland (1978) concluded that the transport ceases to be
effective below about 175 m water depth. Valentine and others (1980)
noted that the "mud line” (the approximate boundary between erosion, or
transport, and deposition, or stability) has not been recognized along
the east slopes of the submarine canyons, where coarser, rippled
surfaces extend to greater depths. The different surface textures on
the east and west walls suggest that currents are much more effective at
transporting sand along and down the east walls than over the west
walls. Valentine and others (1980) also noted that sediment on the
canyon walls appears to move along the walls rather than directly

downslope into the axes.
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Below the "mud 1line" in the Alvin Canyon area the fine-grained
sediment surface shows surprising resistance to erosion. Experiments
conducted by MacIlvaine and Ross (1979) on surface samples obtained at
1,800 m depth showed that current velocities of 150 cm/s were required
to slightly modify the surfaces. The MacIlvaine and Ross experiments
suggest that mass erosion focused at surface irregularities may be the
dominant mode of bottom current erosion on the lower Continental Slope.
However, they noted that the surface may be smoothed of perturbing
irregularities by epibenthic fauna and infauna. Further, small annelids
appear to establish an intricate network or mat of fibrous binding
material associated with their burrows near the surface. MacIlvaine and
Ross suggest that this organic binder, along with the surface smoothing,
serves to stabilize an otherwise mobile surface. Clearly, any
activities which destroy the biogeological relationships of apparently
stabilized surfaces should be monitored for increased erosion effects
and consequent bottom weakening, especially in areas where metastable

slopes are indicated.
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6. Petroleum geology

by

Robert E. Mattick and Mahlon M. Ball

Much of the information included in this report is based on studies
of COST well data (figs. 6-1 and 6-2) together with Deep Sea Drilling
Project results (fig. 1-2) and data from a grid of common-depth-point
(CDP) seismic-reflection profiles (fig. 1-2). These data  have
established the existence of structures, reservoirs, and seals adequate
to provide trapping configurations for commercial quantities of
hydrocarbons. What remains to be determined is whether there are mature
source rocks of sufficient quality and quantity to provide commercial
accumulations of hydrocarbons in the traps. The following discussion of
the petroleum geology of the call area briefly sets forth types of
structures, reservoirs, and seals noted from seismic-stratigraphic
studies integrated with drilling results. The status of wildcat
drilling in the Baltimore Canyon Trough 1is reviewed. Finally, an

assessment of potential for source rocks is presented.

Structures, Reservoirs, and Seals

As explained by Grow and others (this report) and Schlee and
Klitgord (this report), the geologic history of the sale 76 call area
includes early Mesozoic rifting when horsts and grabens developed in
pre-Mesozoic basement rocks. Salt accumulated in structural lows,
followed by Jurassic and Early Cretaceous carbonates that built upward
in step with subsidence of the early Atlantic Basin. Behind the
carbonate platform edge, accumulations of terrigenous sandstones,
siltstones and shales thicken in the seaward direction and change in
character from dominantly nonmarine to marine. Seaward of the platform
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edge, deep—-water argillaceous carbonates and hemipelagic mudstones are
inferred to interfinger with fore-reef facies. The deep-water deposits
overlie rough oceanic basement and attain thicknesses in excess of 4 km
in structural lows.

These conditions have given rise to development of compactional
closures over basement highs, salt swells and diapirs, and growth faults
with attendant fault anticlines. The faults are formed by salt flowage
or compaction of sediments. 1In addition, magnetic data reveal a number
of igneous intrusions that may have bowed up overlying sediments or
created topography upon which younger sediments are draped. This family
of structures provides ample opportunity for development of structural
and stratigraphic traps adequate to hold commercial quantities of
hydrocarbons.

A variety of lithologic units is present, grading from subaerially
deposited sandstones and siltstones beneath the inner shelf to marine
sandstones, shales, and limestones beneath the outer shelf. Reeflike
carbonates with presumed evaporites occur at the paleoshelf edge,
beneath the slope. These deposits appear to grade basinward into marls
and mudstones. These units constitute a full gamut of potential
reservoirs and seals. Possible reservoirs include quartz sands and
porous carbonates, while potential seals are represented by shales,
tight carbonates, and evaporites.

The COST B-2 well (fig. 6—1) penetrated many thick sandstone units
throughout the section in the Baltimore Canyon Trough. However, the
reservoir quality of these rocks deteriorates as depth increases because
of a progressive breakdown of feldspar accompanied by the growth of
authigenic clay and silica cement (Scholle, 1977b, p. 8). As a result,
only a few of the sandstone units penetrated below 3,500 m in the
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COST B-2 well have permeabilities of more than one millidarcy. Farther
seaward, at the COST B-3 site, time—equivalent sandstone beds have
higher permeabilities (tens of millidarcies). The difference in
permeabilities at the two well sites, probably results from a lower
content of clay minerals at the latter site due to deposition in a
higher energy environment.

In a seaward direction from the COST B-2 well, some sandstone beds
apparently pinch out or grade laterally into shale and carbonate rich
facies. In the Jurassic section penetrated by the B-3 well, thin
sandstone beds, about 3 to 10 m thick, total about 47 m. Porosity
values measured on sidewall cores ranged from 17 to 25 percent. Logs
indicated that porosities were more than 8 percent and permeabilities
mostly less than 10 millidarcies (Siﬁonis, 1979, p. 102). These data
suggest that conditions are favorable for the entrapment of natural gas
in Jurassic sandstone reservoirs.

Prior to drilling of the COST G-1 and G-2 wells, the deep
stratigraphy of the Georges Bank basin, based on seismic-reflection
data, was assumed to be similar to that of the Nova Scotia margin which
has been extensively drilled (McIver, 1972; Jansa and Wade, 1975a, b;
Given, 1977; Eliuk, 1978). Results from the COST G-1 and G-2 wells
(Amato and Bebout, 1980; Amato and Simonis, 1980) have confirmed the
stratigraphic similarity between the Scotian Shelf and the Georges Bank
areas.

A cross section from the COST G-1 well to the COST G-2 well is
shown in figure 6-2. The COST G-1 well penetrated 4,898.4 m of
Cambrian(?) through Tertiary rocks and the COST G-2 well penetrated
6,667.2 m of Triassic(?) through Tertiary rocks. 1In general, the rocks
penetrated in the G-2 well are more indicative of marine conditions in
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comparison to those penetrated in COST G-1 well. In the COST G-2,
Bielak and Simonis (1980) described a section composed chiefly of
sandstone and mudstone with interbeds of chalky limestone to a 700 m
depth. Coal and lignitic shale were penetrated to a depth of about
1,750 m below the drill platform. Enviromments of deposition for this
interval ranged from nonmarine to shelf edge or upper slope. Between
depths of 1,750 and 2,100 m the section 1is predominantly micritic to
chalky limestone deposited in a middle to outer shelf environment. The
interval from 2,100 to 2,926 m, deposited in a nonmarine to shallow
marine enviromment, consists of interbedded sandstones, grey and red
shales, and oolitic limestone with streaks of coal. The section from
2,926 to 4,072 m consists chiefly of limestone, in part oolitic,
deposited in a shallow marine environment. The thin interval between
depths of 4,072 and 4,160.5 m consists of brown-red sandstone, mudstone,
and shale and reflects a nommarine environment. The section from
4,160.5 to 6,654.7 m consists of dolomite, limestone, anhydrite, and
anhydritic carbonate rocks. The carbonate rocks range from mudstone to
oolitic limestone and grainstone. Depositional environments for this
section range from shallow restricted marine for the mudstone facies, to
high energy shallow marine for the oolitic limestone, and to sabkha for
anhydrite and anhydritic carbonate rocks. From 6,654.7 m to the bottom,
the section consists of salt which probably reflects deposition in a
restricted rift valley setting.

Structures, reservoirs, and seals are confirmed beneath the shelf
and strongly indicated beneath the slope. Lack of sufficient reservoir
quality in the presumed muddy deep basin facies beneath the lower slope
and rise may 1limit hydrocarbon potential in the deeper water regions of
the Sale 76 call area.
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Wildcat Wells

Wildcat drilling in the Baltimore Canyon Trough began in March 1978
and was concentrated in the vicinity of the Great Stone Dome and along
the shelf edge (fig. 6-3). The Great Stone Dome is inferred to be an
Early Cretaceous mafic intrusion (Mattick and others, 1975; Schlee and
others, 1976) and appears to be the 1largest and most promising single
structure on the shelf. The six wells were drilled on the structure but
no reports of o0il or gas were made. k

As of March 1981, nineteen additional wells have been put down,
along the edge of the Continental Shelf, this includes Mobil NJ18-3
17-1, which went to 1,200 ft. only, due to mechanical problems. Signif-
icant hydrocarbon shows were reported from five of these, all probably
drilled on the same structure. The first show was reported by Texaco
on block 598 (fig. 6-3). The Texaco 598-1 well flowed natural gas
at the rate of 210,000 o3 (7.7 mmecf) per day from 12-m interval below
4,270 m. A second 12-m interval, below 3,960 m, flowed gas at 270,000
m3 (9.4 mmcf) per day. Three confirmation wells, Texaco's 598-2, about
1.5 km to the west, 598-3, about 1 km to the north, and 598-4, about 1
km to the south were reported dry.

In May 1979, Tenneco, in their 642-2 well Jlocated just south of
block 598, announced that natural gas flowed from a interval of Jurassic
sandstone at a depth of 4,020 m. The initial flow rate was 340,000 m3
(12 mmcf) of natural gas and 16 m3 (100 bbl) of condensate per day.
Another test at 2,535 m flowed oil at a rate of 100 m3 (630 bbl) per day
from a thin Lower Cretaceous sandstone bed.

Texaco announced that their 642-1 well flowed natural gas at a rate
of 160,000 m3 (5.5 mmcf) and condensate at a rate of 3 m3 (20 bbl) per
day from an interval below 4,720 m. Two additional zones, at 3,879 m
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and 3,962 m were tested in November 1979. The respective daily flow
rates were 535,000 m3 (19 mmcf) and 402,000 m3 (14 mcf) of natural gas.
During testing, the Texaco 642~-3 well flowed natural gas from two 6 m
thick intervals at the rate of 103,000 m3 (3.6 mmcf) and 170,000 w3
(6.0 mmcf) per day at depths of 4,305 m and 4,357 m, respectively.

Exxon reported that its 599-1 well just west of block 598 flowed
natural gas at a rate of 227,000 m3 (8 mmcf) per day from a 15-m interval
at a depth of 3,779 m. A deeper interval flowed natural gas at a daily
rate of 28,000 m3 (1 mmcf).

Although the combined daily flow rates of these five wells total
about 2.5 million m3 (90 mmcf), a commercial field has yet to be
established. It has been estimated that it would require a daily flow
of about 5.7 million m3 (200 mmcf) and reserves of about 34 billion m3
(1.2 tcf) of natural gas to warrant establishment of an offshore
production platform and a pipeline to transport gas to shore (Crawford,
1978). Gulf reported a noncommercial gas discovery below 5,378 m on
block 857 and Murphy 0il reported that logs from their well on block 106
detected noncommercial shows of gas from thin zones between 4,573 m and
5,611 m. Only one hydrocarbon show was reported from the COST wells
which were purposely drilled off-structure. The COST B-3  well
penetrated a natural gas deposit in the interval from 4,798.8 m to
4,801.2 m. The dry methane gas probably was trapped stratigraphically

in a thin Jurassic sandstone bed (Simonis, 1979).

Source Rock Analyses
In the COST B-2 and B-3 wells, data from color alteration of
visible organic matter, pyrolytic-decomposition temperatures, carbon

preference index (CPl), and vitrinite-reflectance indicate that the
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Tertiary section and the Cretaceous section, is thermally immature to a
depth of about 2,500 m and is unlikely to have yielded hydrocarbons
other than biogenic methane (Scholle, 1977, p. 8; 1979, p. 100).

There is a disagreement as to the maturity of the sedimentary rocks
below 2,500 m in the COST B-2 well with respect to liquid-hydrocarbon
generation (Scholle, 1977b p. 8). Observations of visible organic
matter indicate moderate to full maturity in the 2,500- to 4,900-m depth
range, but geochemical analyses of disseminated organic matter indicate
that none of the penetrated rocks are mature with respect to
liquid-hydrocarbon generation. 1In the B-3 well, maturity is reached at
a depth of about 3,500 m; below 4,600m, the maturation of kerogen is
certainly within the main phase of o0il and gas generation (Simonis,
1979, p. 103). However, below about 3,000 m, the dominance of
terrestrial over marine-derived organic matter in samples from both
wells reduces the probability that economic amounts of oil were
generated. This does not preclude the generation of gas. At the
COST G-1 site, values of the Thermal Alteration Index (TAI) of 2+ to 3
suggest that liquid generation from adequate source rock is possible
below depths of 4,200 m. On the basis of primary vitrinite reflectance
(Ro) values, Smith and Shaw (1980) placed the oil generation window
between depths of 2,000 and 4,000 m. At the COST G-2 site, TAI values
measured by GeoChem Laboratories, Inc., reach 2-, and were interpreted
as indicative of possible immature oil generation, at a depth of
2,400 m. TAI values which reflect peak oil generation were not measured
on any of the well samples (Smith, 1980). On the basis of vitrinite
reflectance values, Smith (1980) placed the depth of peak oil generation

at a depth of about 2,500 m.
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Miller and others (in press) conclude that the onset of thermal
maturation occurs at a depth of about 4,700 m in the COST G-1 well and
at about 5,500 m in the COST G-2 well. Their conclusions were based on
CPI values, temperatures of maximum pyrolysis, and molecular
distributions and concentrations of the Cl5+ hydrocarbons. Miller and
others (in press) believe that the slope of the reflectance (Ro) profile
below about 2,000 m may have been influenced by oxidized vitrinite or
recycled organic  matter, thereby resulting in an inference of
anomalously high time-temperature history for the sedimentary rocks down
to about 4,600 m.

Regardless of the varying interpretations of the thermal maturity
of the rocks in the Georges Bank Basin, studies of the organic carbon
content of these rocks are discouraging. These studies are usually of
two types: measurement of the total organic carbon content and analysis
of the composition of the kerogen. To be considered a potential source
rock, shales must have a minimum organic content of 0.5 percent by
weight; the minimum for carbonate rocks is 0.3 percent by weight. The
type of kerogen determines whether the source rock will tend to produce
oil or gas at thermal maturity.

The only 2zonme at the COST G-1 site with an organic content
sufficiently high to be considered potential source rock was penetrated
between depths of 1,400 and 1,900 m. According to Smith and Shaw
(1980), this zone contains both oil- and gas-prone kerogen types, but is
thermally immature and would have to be more deeply buried or be
subjected to higher temperatures to generate large quantities of oil or
gas.

In the G-2 well, a dominantly clastic section at about 3,000 m has
an average organic content of about 0.6 percent by weight; the
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predominantly carbonate rock section below 3,000 m has an average
organic carbon content of about 0.25 percent by weight (Smith 1980).
Smith (1980) concludes that, with few exceptions, the entire sedimentary
section penetrated by the COST G-2 well contains sufficient organic
carbon to be considered potential source rock. Smith's conclusion,
however, is based on the supposition that carbonate rocks need contain
only 0.2 percent by weight of organic carbon to be considered potential
source rocks. If the minimum organic carbon content for carbonate rocks
is 0.3 percent, as stated by Tissot and Welte (1978), then the source
potential of the section below 3,000 m must be considered marginal. The
possibility for gas generation exists in the Jurassic section below
5,500 m (Miller and others, wunpub. data, 1981). If we consider the
source rock potential of the carbonate section together with the
permeability data which show only a few tenths of millidarcies below
3,000 m, the chances of finding significant hydrocarbon deposits on the

Continental Shelf are low.

Deepwater Potential

The increase in amount of carbonate rocks from the COST B-2 site to
the B-3 site and the thick carbonate section penetrated in the COST G-2
well appear to confirm the interpretation made from seismic data that
the Jurassic shelf margin consists of a carbonate platform edge, or
reef, that will include forereef, reef, and backreef facies. If basinal
shales beneath the lower slope prove to have had the capacity for
generating large amounts of petroleum and if migration paths exist to
the reef facies, the key to finding hydrocarbons will be locating strata
in the reef facies with high porosity and permeability.

Seaward of the platform-edge complex, DSDP results and seismic data
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are the main basis for assessment of hydrocarbon potential. The seismic
lines confirm presence of compactional structures in the sediments over
basement highs (fig. 2-6). Jansa and others (1979) reported that most
of the section known from DSDP drilling sampling to be Late Jurassic and
Cretaceous sediments consists of hemipelagic mud, deep water limestones,
chalks, clays, and oozes. Chalks and other deep water limestones are
the most 1likely reservoir facies. With the exception of the middle
Cretaceous Hatteras Formation, all the basinal sediments appear to have
been deposited in well oxygenated waters and to have low organic
content. The Hatteras Formation could constitute a source rock if
buried deeply enough with a high enough geothermal gradient to achieve
maturation. As emphasized by Dow (1978), migration and accumulation are
most efficient where reservoir sequences prograde over mature source
beds. It follows that areas where the Jurassic-Cretaceous platform edge

builds out over the ad jacent slope shale facies should be prospective.

Conclusions

Compactional structures over buried basement blocks and carbonate
buildups, salt swells and diapirs, growth faults with attendant fault
anticlines, and reefs and anticlines over igneous intrusions provide a
wide range of possible trapping configurations adequate to contain
commercial quantities of hydrocarbons within the Sale 76 well area. The
flanks of these structures are potential settings for stratigraphic
traps. Drilling confirms existence of reservoir and seal facies on the
shelf. Breakdown of feldspar in arkosic sands may inhibit reservoir
quality below 3.5 km. Porous Jurassic carbonates at the platform edge,
which prograded over adjacent basinal shale facies, may prove to be

attractive exploration targets. Reservoir quality in basin facies
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seaward of the platform margin may be impaired by the muddy nature of
these deposits. Lack of identification of rich, mature source materials
remains a problem in U.S. Atlantic margin exploration. Significant

shows on Texaco's 598 structure are major encouragements.
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7. Petroleum Potential and Resource Assessment

by Richard B. Powers

Proposed OCS Sale Area 76 includes parts of three physiographic
provinces: the Continental Shelf (0-200 m), the Continental Slope
(200-2500 m), and the Continental Rise (2500-4500 m). The total sale
area comprises 87,900 mi2 (227,660 sz). Geologic provinces included in
the sale area are the Baltimore Canyon Trough Shelf and Slope
(Mid-Atlantic Shelf and Slope) and the Georges Bank Basin Slope (North
Atlantic Slope) (fig. 7-1).

Earlier estimates of undiscovered recoverable oil and gas resources
in the Mid-Atlantic and North Atlantic provinces were made by Miller and
others (1975), U.S. Geological Survey (1975), Mattick and others
(1976), Powers (1979) and, most recently, by Dolton and others (1981).
These most recent estimates are applied, in part, to the overall sale
area of this report. Separate estimates of undiscovered recoverable
total o0il and total gas resources in the sale area are made for the
shelf and slope, and are based on the assumption that resources may be
found under conditions represented by a continuation of present
price-cost relationships and technological trends. No estimates are
made for the area beyond the 2,500-m bathymetric contour (base of
Continental Slope) due to the absence of exploration well data and
technological reasons as stated by Grow and others in this report.

Undiscovered recoverable resources are those resources, yet to be
discovered, which are estimated to exist as a result of favorable
geologic settings. Because of the uncertainty involved in estimating
undiscovered resources, estimates of their quantities include a range of

values corresponding to different probability levels. Subjective
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probability procedures were used in their derivation (Dolton and others,
1981).

Initial estimates, conditional upon recoverable resources being
present, were made as follows:

1. a low estimate corresponding to a 95 percent probability of
more than that amount: this estimate is the 95th fractile (F 95);

2) a high estimate corresponding to a 5 percent probability of more
than that amount; this estimate is the 5th fractile (F5);

3) a modal ("most likely") estimate of the quantity of resource
associated with the greatest likelihood of occurrence.

These estimates determined a conditional probability distribution
of the quantity of undiscovered recoverable resource. However, in
frontier areas, such as the offshore Atlantic where there has been
minimal or no drilling, there is a risk that no commercially recoverable
petroleum exists. Therefore, the 1likelihood of any commercially
recoverable resource being present was estimated and called the marginal
probability (M.P.) (figs. 7-2, 7-3). The marginal probability was
applied to its corresponding conditional probability distribution to
produce the unconditional probability distribution of the quantity of
undiscovered recoverable resource. From this distribution the final low
(F95), high (F5), and mean estimates were obtained.

To arrive at total resource estimates, the probability
distributions of the geologic provinces included in the sale area were
aggregated by a Monte Carlo technique. Total resources are aggregated
for the shelf and for the slope and represent the probability
distribution of total quantities of undiscovered recoverable oil and gas
resources in these two areas. From this distribution the low (¥95),
high (F5), and mean estimates were obtained (figs. 7-2, 7-3).
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Shelf

Twenty-four exploratory wells and one COST well (B-2) have been
drilled on the shelf and one COST well (B-3) has been drilled on the
slope during the past three years. Nineteen of the exploratory wells
have been plugged and abandoned and five have recovered appreciable
amounts of gas and condensate, indicating a possibility of commercial
production. However, the five apparent discovery wells appear to be
confined to a single, segmented structure which covers approximately 10
square miles within Blocks 598, 599, and 642 (fig. 6-3). Details of
production tests in these wells are described more fully by Mattick and
Ball (this report). Some observers feel that the hydrocarbon reservoirs
in the wvicinity of Block 598 are highly variable in thickness, areal
extent, porosity and permeability and make reservoir analysis difficult
(Ocean 0il Weekly Report, 198l). The commerciality of the Block 598-642
structure is still undetermined.

Results of exploratory drilling on the Great Stone Dome centering
around Block 588 (not drilled), the largest individual structure on the
Mid-Atlantic Shelf, proved to be disappointing (Powers, 1979) and leases
on Blocks 718 and 719 on the southern flank of this feature have been
relinquished by the Gulf-Conoco partnership. In addition, Shell 0il
Company relinquished leases on Blocks 184, 228, 229, 272, 273 and
232 on a structure further south of the Great Stone Dome. On the basis
of the rather negative results of exploration activity on the central
part of the shelf, it would appear that the area with significant
petroleum potential is confined to a narrow trend near the margin of the
shelf, close to the 200 meter bathymetric line.

Upper Jurassic and Cretaceous sedimentary rocks of the Mid-Atlantic
Shelf are in the form of a wedge of deltaic sediments bordered on the
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seaward flank by marine sediments and underlain by older Jurassic rocks
including clastic, carbonate and evaporite deposits. This simplified
characterization suggests that the Mid-Atlantic Shelf could be
geologically analogous to the following areas:

1. Gulf Coast, United States, onshore and offshore.

2. North African Atlantic margin basins.

3. Scotian Shelf of eastern Canada.

4. Mackenzie Delta of northwest Canada.

5. (Cretaceous sequences of several Rocky Mountain basins.

Historical producing records of these areas range from zero
(Scotian Shelf) to the highest in the United States (Gulf Coast).
Although all of these areas have some significant geologic difference as
compared to the Mid- Atlantic Shelf, application of their volumetric
yields of oil and gas to the Mid-Atlantic were made for the purpose of
establishing scaling factors to help determine the quantitative
hydrocarbon potential of the assessed province. Estimates of total
resources for the shelf part of Sale Area 76 are summarized in the
following table.

Lease Sale 76 Shelf (0-200m) (Fig. 7-1, 7-2)

. Fos Fg Mean M.P.

0il (Billions of barrels) 0 2.63 0.78 .69

Gas (Trilliomns of cubic feet) 0.69 13.13 5.61 .97
Slope

The first well drilled on the Continental Slope was the COST B-3
which was completed at a total depth of 15,820 ft. (4,822 m) in January
1979, in 2,686 ft. (819 m) of water. A second well, the COST B-4 was
permitted to a depth of 20,000 ft. (6,096 m) in Block 868 in water
4,300 ft. (1,311 m) deep. Drilling was to have started in the latter
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part of 1980, but the well was cancelled due to the unavailability of a
drilling rig. The B-4 location is 33 mi.(53 Km) northeast of the B-3
and 21 mi. (34 Km) southeast of the Block 598-642 gas and oil
discoveries on the shelf. It is believed that the well would have
penetrated the crest and fore-reef zones of an inferred Late
Jurassic—Early Cretaceous reef complex which lies 9 mi. (15 Km) seaward
of the COST B-3 well (Grow, 1980).

Regional geophysical studies, in addition to data from the B-3
well, indicate the presence of this inferred southeastward prograding
carbonate bank or reef complex. This feature forms the Late
Jurassic-Early Cretaceous shelf edge beneath the present Continental
Slope, from Cape Hatteras to Georges Bank (Groﬁ and others, this
report). These studies also show the presence of trapping structures
associated with this shelf margin carbonate buildup, and block-faulting
in the area of the B-3 well (Scholle, 1980), as well as seaward dipping
growth faults that may tie into bedding plane faults along the Jurassic
slope (Grow, 1980). Stratigraphic traps should have significant
potential in the area between the B-3 well and the carbonate bank
buildup at the Jurassic-Cretaceous shelf edge, as indicated by the rapid
facies changes of sandstones, shales, and limestones in the lower
sections of the B-2 and B-3 wells. The wire-line tests that were run in
the B-3 well at 15,750 ft. (4,800 m) recovered rich methane gas from a
coarse—grained, well sorted sandstone. Since the test was confined to a
very small interval of the sandstone, it is probable that zones of more
permeable gas-bearing sandstone would be present in similar settings in
this area. The potential for undiscovered recoverable hydrocarbon
resources in this part of the sale area is considered to be favorable.

Analogs considered particularly applicable to the Continental Slope
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in Sale Area 76 are the Cretaceous Edwards reef trend on the Texas Gulf
Coast and the El1 Abra-Tamaulipas reef complex of the Reforma-Chiapas
area in Mexico. These analogous producing areas represent a minimum and
maximum volumetric hydrocarbon yield that were applied to the slope as
scaling factors in making estimates.

Estimates of 0oil and gas were made separately for the Continental
Slope in the North Atlantic (Georges Bank) and Mid-Atlantic (Baltimore
Canyon) and have been aggregated to obtain total resource estimates in
the sale area. Individual estimates for the two slope areas, and the
aggregation for the total lease sale 76 slope area are summarized on the

following tables:

Lease Sale 76 Slope Total (200-2500 m) (Fig. 7-4, 7-5)

F 95 F g Mean MP
0il (Billions of barrels) 0 9.42 3.21 .79
Gas (Trilliomns of cubic feet) 1.51 26.48 11.86 .97

North Atlantic Slope (200-2500 m) (Fig. 7-6)

F 95 F 5 Mean MP
0il (Billions of barrels) 0 3.81 .95 .49
Gas (Trillions of cubic feet) 0 10.16 3.25 .76

Mid-Atlantic Slope (200-2500 m) (Fig. 7-7)

F 95 F 5 Mean MP
0il (Billions of barrels) 0 7.55 2.26 .58
Gas (Trillions of cubic feet) 0 21.11 8.61 .87
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