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A STOCHASTIC STREAMFLOW MODEL OF THE PLATTE RIVER AT 

OVERTON, ODESSA, AND GRAND ISLAND, NEBRASKA

By Aldo V. Vecchia, Jr.

ABSTRACT

A stochastic model is developed to simulate flows for three seasons 

(September through February, March and April, May through August) at Overton, 

Odessa, and Grand Island, Nebraska on the Platte River. The model preserves 

the first and second order moment properties of the historical flow series, 

including significant autocorrelations within each station and cross-correla­ 

tions between the stations. Higher order moments are preserved by a trans­ 

formation technique that allows the residuals from the model to be approxi­ 

mately normal.

An algorithm is given for easy simulation of combined-station flows, and 

some simulations are carried out to determine the likelihood of specified flow 

shortages that could be detrimental to the wildlife habitat in the reach of 

the Platte River between Overton and Grand Island, Nebraska.

INTRODUCTION

Two primary characteristics that make a riverine habitat suitable for use 

by migratory waterfowl, especially sandhill cranes and whooping cranes, are a 

wide, open river channel and a wet meadow environment. A wide river channel 

containing only sparse vegetation affords roosting birds some degree of 

protection from predators, while wet meadow environment enhances the capability 

of the birds to locate and feed on invertebrates that are critical to their 

dietary needs.
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To maintain desirable river channel characteristics, sufficient stream- 

flow must be available during the seed-falling period of May through August to 

prevent germination on the channel bars. Similarly, river stages must be high 

enough during the months of March and April to raise ground-water levels in 

the wet meadows sufficiently so that the birds can locate invertebrates within 

several inches of the land surface. Probabilities of flow events involving 

these two periods are of great interest to wildlife managers for planning 

habitat-management alternatives in the event of flow shortages. Therefore, 

in this report a calendar year is divided into three seasons as they affect 

these processes. They are: (1) March and April, when river stage influences 

ground-water levels; (2) May through August, when streamflow may inhibit 

seedling germination and establishment; and (3) September through February, 

which is generally the low-flow period.

PURPOSE AND SCOPE OF STUDY

This report: (1) Describes the development of a 3-season flow-series 

model for Overton, Odessa, and Grand Island, Nebraska (fig. 1); (2) demon­ 

strates how this model can be used for simulation and evaluation of certain 

probabilities of interest; and (3) gives results of some simulation studies. 

The 3-season flow series for a particular station is derived by aggregating 

monthly average-flow series over three predetermined seasons. A precise 

description of the series will be given in the next section. Seasonal sums 

instead of averages are used for computational convenience; however, both 

series (sums or averages) contain the same information.

The model is designed to maintain cross correlations between stations so 

that simulation of simultaneous three-station series can be made. However, to
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Figure 1.  Map of Nebraska showing location of streamflow gaging stations.



allow single-station simulations, individual models for each station remain 

autonomous. For example, the individual flow series for Odessa can be simu­ 

lated without the Grand Island or Overton series. The correlation structure 

between stations is maintained by allowing residuals from single-station 

models to be correlated.

The individual models in this report are periodic autoregression models 

(Pagano, 1978). A modified Box-Cox transformation technique (Box and Cox, 

1964) is used to determine a transformation that results in residuals from the 

fitted models approximately following a normal distribution. The primary 

means of checking model adequacy will be to compare the statistical properties 

of the historical series to the properties of model simulations, as well as to 

check that the model assumptions are satisfied within a reasonable degree of 

accuracy.
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Nordin, Jr.

STATISTICAL PROPERTIES OF HISTORICAL-FLOW SERIES

The 3-season flow series for each station are determined by aggregating

3 
the monthly flow series. This monthly series consists of average ft /s (cubic

feet per second) from October, 1942 to August, 1979 (water years 1943-1979) 

plus September, 1942, and can be obtained from Petsch and others, (1980). 

Season-one flows consist of the sum of the monthly series from September to 

February; season-two, the sum of March and April; and season-three the sum of 

May through August. Sums are used instead of means because the sums are more



convenient. The year of season one will be designated by the year in which 

it ends (that is, season one of 1943 consists of September, 1942 to February, 

1943).

The historical record in this report will include 111 seasonal flow 

totals in the 37-year period from water year 1943 to 1979 for each station. 

Graphs of these series are presented in figures 2 through 4 for the three 

stations. Seasonal statistics for Overton, Odessa, and Grand Island are 

summarized in table 1. The means and standard deviations appear to be sig­ 

nificantly different across seasons; (parameters will be included in the 

models which can account for these differences). Secondly, the positive 

skewness and kurtosis coefficients indicate that the flows for individual 

seasons are not normally distributed. One way to solve this distribution 

problem is to transform the original flows to achieve a model in which resid­ 

uals are nearly normal; this transformation will be discussed in a later 

section of this report.

Autocorrelations of the flow series will be important in determining the 

appropriate model to fit to the data. In ordinary autoregressive-moving 

average (ARMA) time-series modeling, the autocorrelation structure of the 

series is assumed to be the same for each season, an assumption which does not 

appear to be true in this case (fig. 5). An explanation of the term seasonal

autocorrelations follows. Let X , 1N , n = 0,1,2,...N-l, k = 1,2..., s, be a
t (.n, k;

seasonal time series, where t(n,k) = ns+k, n is the year index (these are s 

seasons per year), and k is the season index. The lag defined for members of

the series X , , N is a seasonal lag and not a yearly lag. For example, 
t(n,k)

X_ f , , 0 where k=3 is season number one of year n, and X ., , N . where k=3 is 
t(n,k)-2 J t(n,k)-4
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Table 1. Flow statistics for Overton, Odessa, and Grand Island, 

Nebraska, water years 1943 to 1979

Average

season
Season .. total

3 (ft /s-months)

Overton 1 8093.2

2 3641.9

3 4809.7

Odessa 1 7585.5

2 3662.9

3 4363.8

Grand Island 1 7219.4

2 4068.6

3 4653.6

Standard

deviation Skewness 
3 

(ft /s-months)

3922.6

2044.5

5108.1

3864.5

2062.8

4960.7

4184.1

1973.4

4643.8

2.918

3.043

2.904

2.676

2.618

2.669

2.860

2.065

2.448

Kurtosis

11.068

11.927

8.554

9.757

9.438

7.368

10.962

6.564

6.456
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Figure 5.  Seasonal autocorrelations.
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season number two of year (n-1). The autocorrelation for season k at lag j is

defined to be p . = Corr(X ( . v, X ( ,, .) and is assumed throughout to be 
K,j t^njic; t^njkj-j

independent of n. The values graphed in figure 5 are estimates

p, . of p. ., k = 1, 2, 3, j = 1, 2, ... 6 obtained by using the formula 
K* J K, J

N

N-1

n=0 t(n,k) t(n,k)-j

Y Y N-X
where Y , , N = X., , x - Z X

t(n,k) At(n,k)
n=Q t(n,k)

N

and Y ( ,. . = 0 for t(n,k)-j < 0. The graph seems to indicate the three 
t \ n » KJ-J -

stations are so similar that the same model could be used for all three. 

However, the station models differ somewhat, as will become evident later in 

this report. Cross-correlation between stations is an important statistical 

aspect of the historical series; this will be examined in a later section in 

which individual station models are combined.

PERIODIC AUTOREGRESSIGNS

The model used to describe the single-station series falls under the 

class of periodic autoregressions, for which a substantial base of theory has 

been developed (Pagano, 1978; Parzen and Pagano, 1979). The relatively small 

number of years of data available and the irregular nature of the flow series 

caused by man-induced interventions preclude the use of many asymptotic 

results. The objective is to adequately describe the 1st and 2nd order moment 

properties (means, variances, and autocorrelations) of the series with the 

simplest model, and to use this model for simulation.

Let JX ( ,, k = l,2,..,s, n = 0,1,... I be a seasonal time series, 
i t (,n, k,) f

where t(n,k) = ns + k. Assume that E (X f , ,) = 0, which can be achieved in
t (n, K.)

practice by standardizing via subtraction of the seasonal means. To simulate

11



from the model, it is necessary to assume that the information available to 

predict X , , consists of the past, X , X..,..., X , i^_i   A reasonable

model to postulate for the series would be X , , N = Y' a. + e , 1N
t(n,k) ^Hijk -k t(n,k)

(' denotes transpose) where y* is a 1 x p vector of values of the series

prior to X , . useful in predicting X f , , a,' = 
t\n,k,; .tvn,kj k. fkl '

is a 1 x p, vector of parameters, and e , , . is a random variable with 
k t(n,k)

, 1NJ. 00 > an iid (independent identically distributed) sequence, 
tU,IOf n=0

E(e , 
t(n,k)

) = 0, Var (e
t(n,k)

) = o 2 . . 
k

If Xt(n,k) -
R

the numbers £ , ..., £ will be called the lag values for season k. 
kl k

Since the random errors, (e l , are assumed to be independent from 

year to year but may be correlated among seasons within years, it is con-

venient to write the model in matrix form. Let X* =

e  n t(n,s)J

t(n,l)> "" 

, and let

^t(n,s)J

0 ,

o , o ...,

be an s x . Z n p. matrix of predictors. Write the model as X = v a + e , k=l k  n ^n    n

n = 0, 1, ..., where e is an iid sequence with E(e ) = _0» Var(j^ ) = _Z.

The parameter vector, _a, is unknown and must be estimated from the 

observed data (say there are N years observed). If _Z were known in advance, 

the weighted least squares (WLS) estimate of _a would be

N-l
a =

-1
-1 N-l

Z n XJ. 2 " n=0 -^n  X
 n (see Graybill, p. 207).

12



Compare this to the ordinary least squares (OLS) estimate obtained from

N-l -1 N-l

N-l 
o^ minimizes E (X - x a) ' (X - x a.)

N-l
while a minimizes £_ (X - x a) ' E (X - x a )     n=0  n ^n      n -%  

2 
The weighted least squares estimated should be used if possible when E_ ^ a _I.

Since _£_ is generally not known in advance, an iterative technique should be
s\

used to get o_, as follows:

1. Obtain a , the ordinary least squares estimate of ou

2. Obtain an estimate of _£_, say E , from (1) by using 
..N-l ,. ~°

E = - E n (X - x <* ) (X - x <* ) '    o N n=0  n *n  o  n ^n  o

/\

3. Plug E into the weighted least squares equation to get a new estimate, 

a, , of ex from which a new estimate, E- , of E_ is obtained.

4. Repeat until convergence takes place in the sense that a, - a, , is
K, JK.^ _L

/s ^

small. Denote the obtained estimates as j]_, o_.

Sampling properties of the ordinary least squares and weighted least squares 

estimates will not be discussed in the report.

The estimation procedure given above presupposes that p, and (£,,,...,£,
K.

are already known for each season; in fact, these must also be determined from 

available data. Their determination is called model identification, and 

techniques of identification have been set forth. In keeping with the general 

linear model approach in this report, stepwise regression is used (for each 

season separately) to choose the values that significantly contribute to the

prediction of X^, 1X . 
t(n,k)

13



TRANSFORMATION TO NORMALITY 

In the model developed in the previous section, no mention was made of

the distribution of the random component e other than E (e ) =0. However,  n   n  

if the model is to be used for simulation, the distribution of e must be^n

specified. A technique for determining a transformation of the original 

time series that causes residuals to be approximately normally distributed 

is described in this section; this technique is applied to the flow series 

in the next section.

Box and Cox (1964) consider power transformations of the form Z =

{ (x - 1)/A, A ± 0, and loge (X t > , A = 0 } where

X is a strictly positive random variable for which a transformation to near 

normality is desired. These authors give a maximum likelihood technique for 

estimating A based on a random sample X, , ... , X^, assuming that Z is 

normally distributed for some A. Their technique can be generalized to include 

random vectors. Suppose one has a random sample of strictly positive random 

vectors, X^ , ... ,3^, where X^ = [ Xni » Xn2 ' *" ' Xns] ' and let

(Z (A) ) f = fz / X l\ Z n ( V, ... , Z ^sM be normally distributed for 
 n |_ nl n2 ns J

some _A' = A , ... , A . This assumption will not be exact in practice

unless X , is log normally distributed for each k (that is, unless A = 0) ,nk   ~

but Z   can be approximately normal for other values of _A_.

Under this assumption and using transformation techniques, it can be 

shown that the maximized log likelihood in relation to the original 

observations x_ , ... , XNT» i- s proportional to

_  , s N 
J log 1 (A) + ± Z 1 (A. - 1) n Z ]_ log xni

14



N N
where E(A) = i I (z (-} - y (A)) (z (-} - y (A))' and y (A) = E 1 z (-} /N. 

    IN n  1   n       n         n=l   n

The value of _A_ for which z   is normally distributed is not known in advance,

so use X_ as an estimate of _A where max MOO = M(_A) . The reader should observe

(A) * * 
that if Z   is normally distributed and _A_ f _A_> then M(A ) is not the true

value of the maximized log likelihood, a fact that casts some doubt upon the
/s

validity of using _A_ as t-he maximum likelihood estimate of A.- Hernandez and 

Johnson (1980) explore transformations of the same form as above and give a 

method for determining the value _A_ that minimizes the Kullback-Liebler 

information between the density of Z   and a normal density function, 

assuming that the density function of X is known. In most practical problems,

one can consider a finite set of values, _A_i >     » Ao   ^-n tnis case, X_
J_ X/

converges to _A_ with probability one, so for large N, _A_ is seen to be approxi­ 

mately that value of _A_ that minimizes the Kullback-Liebler distance between 

the density of Z   and a normal density.

INDIVIDUAL-STATION-STREAMFLOW MODELS

A periodic autoregression model was fit to each station by the procedures 

outlined in the previous sections. An examination of table 1 indicates that 

the three seasons appear to be similar enough to use the same transformation 

for each, so _A_' was set equal to (A, A, A) to reduce the number of transfor­ 

mations to be considered. The raw series was transformed with values of A 

equal to -1.0, -0.9, ... , 0, 0.1, ... , 1.0, the transformed series mean 

standardized, and the model parameters estimated by weighted least squares. 

The identification of p and £ = (£, , ... , £ ); k = 1,2,3, was carried
R K K.X Rpi

out for A = 0 at each of the stations; this is at, or near, the final values

15



chosen. It became evident that the residuals of the fitted models were

essentially uncorrelated from season to season, so jl_ = cov (e ) was restricted

2 2to be a diagonal matrix: £ = diag (a. ), where a. = Var (e .). In this
  i i n, i

case, the weighted least squares estimates are the same as the ordinary least

squares estimates. Results for the three stations are summarized in table 2.

2 
The R value for season i is interpreted as the percentage of the variation of

the observed data for season i from 1945 to 1979 (allowing for lag consider­ 

ations) which is accounted for by the nonrandom component of the model. Note

2that the last season has a low R value. This does not indicate model in­ 

adequacy but rather shows that season three variation is nearly random with 

respect to previous values in the series. However, season 3 is important in 

predicting season 1 of the following year and hence should be included in the 

model.

It was assumed that e , n = 0,1... are independent, identically dis­ 

tributed normal random variables, with E (e ) = 0 and Cov (e ) = D
 n    n  

(a diagonal matrix), or that the errors are independent from season to season. 

To check these assumptions, residuals from the models for 1945 to 1979 were 

examined. Some residual statistics are in table 3, which reveals no highly 

significant deviations from normality or from the assumption that E(e ) = 0_. 

A graph of the residual series for Odessa from 1945 to 1979 is shown in figure 

6; it is observed that no obvious trends are taking place. To check the 

assumption of no correlation between seasons, lag autocorrelation matrices for 

the residuals were examined. The lag k autocorrelation matrix of the residual

vector e is defined as Cov (e , e . ) (note that lags are now in years).  n  n -n-k

Estimates of these matrices for k = 0,1,2,3 appear in table 4. Each estimate 

is based on about 35 observations, and a rough standard error of the estimate

16



Table 2. Individual-station streamflow models

Overton

Z t- -i = [(Xt- -i + 0.01)'* 1 -ll /(-O.I) -y. , i = 1,2,3
L , J_ [_ L , 1 J 1

Seasonal mean vector y/ = (y ,y ,y ) = (5.9000, 5.548, 5.569)

= 0.3632 * 

= 1-0756 *

+ 0.1449 *

Z , = 0.4646 * Z + 0.2631 * Z,. , , + E
L y J L, ) Z. L.~~ Z. ) 3 L ̂  J

Season: 1 . .- D __ 
Overall R = 33 percent

2
R :

6? _ 76 12 ' 4 Cov(e^) = diag (0.00706, 0.00825, 0.08944) 
percent percent percent   t °

Odessa

Z = log (X + 0.01) - y , i = 1, 2, 3
L. ^ -L " L. * -L. J_

j.i' = (8.8427, 8.0965, 7.9568)

Z = 0.3423 * Z^ + 0.1461 * Z. . - + e. 1 
t,l t-1,3 t-1,1 t,l

Z = 0.9168 * Z - 0.0982 * Z + e
L. ^ ^. L. ^ -L. L. ̂  -L » -L L.   ^.

Zt,3   °' 7850 * Zt,2 

Season: 1 2 ._ ni _. _
Overall R = 28 percent

R : 6? 66 12 Cov(e ) = diag (0.05082, 0.06616, 0.77623) 
percent percent percent     t

Grand Island 

Z = log (X + 0.01) - y , i = 1,2,3
L. ^ _L ti L.   J_ J_

y_' = (8.7668, 8.2185, 8.0729)

Z + 0.1284 * Z   + eZ = 0.4198 * Z
L ̂  -L

Z=0. 6715 *Z

- 0.0469
J

-0.0949 *

Season: 

R2 :
Overall R = 26 percent

68 50 8.2 
percent percent percent Cov ( £ t > = diaS (0.07431, 0.08806, 0.74906)
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Table 3. Residual statistics from individual-station models3

1945 to 1979 (water years)

Overton

Mean

Variance

Skewness

Kurtosis

Minimum values

Maximum values

Odessa

Mean

Variance

Skewness

Kurtosis

Minimum values

Maximum values

Grand Island

Mean

Variance

Skewness

Kurtosis

Minimum values

Maximum values

Sept. to Feb.

0.004

.007

.053

-.761

-.175

.174

Sept. to Feb.

0.003

.051

.098

-.499

-.493

.500

Sept. to Feb.

0.011

.074

.218

.362

-.658

.610

March to April

-0.002

.008

-.055

1.216

-.261

.222

March to April

0.000

.067

-.563

.287

-.675

.528

March to April

-0.002

.088

-.110

.124

-.632

.654

May to August

0.000

.089

.253

-.872

-.569

.625

May to August

0.004

.776

-.045

-.107

-2.206

1.732

May to August

-0.006

.749

-.110

.124

-2.259

1.713

18
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is 1//35 = 0.17. Therefore, any value below about 0.3 in absolute value can 

be considered insignificant. The only problem is the lag 1 correlation for 

season 2 (Corr(e e 9 )), which is around 0.4 for each station but drops 

off to near zero for the remaining lags. This correlation can be preserved

in the model by allowing e   to follow a moving average process of order 1n, z

(see Box and Jenkins, 1975). In other words, e o = ^ ~ + Q V , 0 with
n, z n, 2. n-i, 2.

(^ _ ... } a white-noise process. Moment estimates of 6 for each n, 2. , n=0 ,1. . .

station were determined to be 6 = 0.63 for Overton and 6 = 0.5 for Odessa and 

Grand Island. A precise statement of the models with moving-average compon­ 

ents included will be given in the next section.

As a final check, the models were used to simulate 10 realizations of 37 

years each, the same length as the historical series, and the properties of 

the simulations were compared to the historical series. Some statistics of 

the simulations are in tables 5, 6, and 7. Care must be taken in interpret­ 

ing the tables due to high variability of the skewness and kurtosis coef­ 

ficients for such short data sets. The standard deviations for most of the 

simulations are lower than the respective observed standard deviations. This 

could indicate two things: (1) The observed standard deviation is higher 

than the long term standard deviation; or (2) the standard deviations of 

model simulations are biased, possibly due to the inverse transformation of 

model output. However, for purposes of this report, these differences did 

not warrant further investigation. Seasons 2 and 3 are of primary interest; 

the only problem is that the second season skewness and kurtosis coefficients 

for Odessa and Grand Island are consistently low. A graph of a typical simu­ 

lation for Overton is in figure 7; for Odessa, in figure 8; and for Grand 

Island, in figure 9. It should be emphasized that these figures are results

21
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of the univariate models and hence generated values will not be correlated 

across stations. The next section will address the correlation between 

stations.

COMBINED-STATION MODEL

Thus far, cross correlations between the stations have not been con­ 

sidered. However, if simulations of more than one station are generated, 

these simulations should maintain continuity between the stations. This will 

allow simulation of average flow series for two or three of the stations by 

simulating from the combined-station model and averaging the appropriate 

values. One method of maintaining station continuity is to allow the residual

vectors, e , to be correlated from station to station. Let £ be the resid-  n -%!

uals for Overton; y > tne residuals for Odessa; and 6 the residuals for

Grand Island. The results are easier to interpret if the residuals are

grouped together by season rather than by station, so define e (i) ' =

(£ ., y ., 6 .) for i = 1,2,3 and e ' = (e (1) ', e (2)', e (3)'). The auto- 
ni ni ni  n.  n  n  n

correlation matrices Corr (e , e , ) (note that lag values are now in years)
n n K

were estimated for k = 0,1,2,3; no significant values were found among the 

submatrices Corr (e (i), e , (j)) , k=0,..,3 and i ^ j. All correlations 

between the residuals occur within the same season. Among the matrices

Corr (e (i),e , (i)) the only significant values occur for k = 0, i = 1,2,3;  n -n-k

and k = 1, i = 2. These matrices are given in table 8.

Recall from the individual models that a moving average component was 

added to the residuals for the second season. In particular, we have

E 0 = E" + 0.63 £ -, , Y o = Y + 0.5 y * .. , 6 0 = 6~ + 0.56 where 
n2 n n-1 nZ n n-1 nZ n n-l

(r , y , 6 ) and (£', y", 6 ) are independent for n ^ t. 
n n n t t t

28



Table 8. Significant cross correlations between residuals 

from Individual-station models 

[Lag, in years]

Overton Odessa
Grand 
Island

Season 1

» 
(September to February) Lag 0 Overton 1.0 

Odessa .941 

Grand Island .871

0.941

1.0

.913

0.871

.913

1.0

Season 2

(March and April) Lag 0 Overton 1.0

Odessa .893 

Grand Island .864

Lag 1 Overton .446 

Odessa .387 

Grand Island .420

.893

1.0

.910

.436

.403

.410

.864

.910

1.0

.430

.395

.395

Season 3

(May to August) Lag 0 Overton 1.0

Odessa .945 

Grand Island .918

.945

1.0

.988

.918

.988

1.0
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Let
* * * 
n> v «

then Corr (e (2) , e (2)) = n

and Corr (e (2), e , (2)) =  n  n ±

that if

"1.0

.893

. .864

"0.450

.339

. .328

Cov(e ) = "0.00591 0.01586 0.01772"  n

.01586 .05293 .05558

. .01772 .05558 .07045.

0.893 0.864"

1.0 .910

.910 1.0 .

0.428 0.414"

.400 .364

.364 .400.

It is evident that the lag 1 matrix for season 2 in table 8 can be explained 

by the moving average components.

It should be noted that the same parameter estimates obtained for the 

single-station models were used for the combined model rather than estimating 

the parameters multivariately. These estimates can easily be shown to cor­ 

respond to the ordinary least squares estimates. This should not greatly 

affect the performance of the model for simulation. The main differences 

between the multivariate and ordinary least squares estimates lie in their 

standard errors.

The final statement of the model is: Let {Z . (Ov)} be the transformed
t > i

and mean standardized values for Overton; let (Z . (Od)} be the transformed
t»i

and mean standardized values for Odessa; and let {Z . (GI)} be the transformedt»i

and mean standardized values for Grand Island (see table 2). The final model 

becomes:
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Z t,l (°V) = °' 3632 * Zt-l 3 (0v) + °- 1449 * Zt-l,l (°

Overton Z 0 (0v) = 1.0756 * Z . (Ov) + £ + 0.63 £ .
t , 2 t , 1 t t-I

Z t 3 ( °V) = °' 4646 * Zt 2 (°V) + °- 2631 * Z t-2 3 (°V) 3

Z t,l (0d) = °' 3423 * Zt-l,3 (0d) t,l

Odessa Z (Od) = 0.9168 * Z (Od) - 0.0982 * Z (Od) + y* + .5 Y*
L, $ Z. L. y A. L *J_jJ. L L."

Z^ (Od) = 0.7850 * Z. 9 (0d) + Y. .
L,J L>^- C,J

Z (GI) = 0.4198 * Z. _(GI) - 0.0469 * (GI)

Grand

Island Z (GI) = 0.6715 * Z (GI) - 0.0949 * Z
L y Z~ L ̂ J_ t """

(GI) + 6* + .5 6*
J- L L-~" J_

Let (e (1))' = (£ Y, ,, & ,), (e (2))' = (£* Y*. «*) , (e (3))' =
L Lj-i- L,± L,J_ U U U L   L

(? , Y. v 5. J. Then: e (j), j = 1,2,3, t = 0,1,... are independent
U 9 O L 5 J) L 5 J) L

normal random vectors with

Cov (e (1)) =

Cov (e (2)) =

COV (r (3)) =

0.00706

.01782

.01993

0.00591

.01586

.01772

0.08944

.24913

.23767

0.01782

.05082

.05608

0.01586

.05293

.05558

0:24913

.77623

.75345

0.01993"

.05608

.07431

0.01772

.05558

.07045

0.23767

.75345

.74906

for J = 1.2,3.
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Graphs of 50-year simulations from the combined-station model are given

in figures 10, 11, and 12. The unusually high discharge values for the 72nd

3 simulated values at Odessa and Grand Island (73,396 ft /s-months for Odessa

3 
and 96,266 ft /s-months for Grand Island) may seem at first to point to a

model inadequacy. However, out of five hundred 50-year combined-station 

simulations from the next section, only eight contained values greater than 

90,000, which indicates that this particular simulation happened to be an 

extreme case.

SIMULATION AND EVALUATION OF PROBABILITIES

The model of the previous section can easily be used for simulation of 

3-station, 3-season flow series over the next 50 years. The complicated 

dependence structure between seasons and between stations causes direct 

evaluation of probabilities of most events of interest to be difficult. 

However, if one obtains N 50-year simulations from the model, n of which 

exhibit a certain event, then an estimate of the probability of that event 

occurring over the next 50 years would be n/N, assuming that all simulations 

are equally likely.

Suppose one has data for years 0, 1, ..., t (t corresponds to 1979 here) 

and wants to simulate from the model for years t+1, ..., t+50. Referring 

back to table 2 and to the equations of the last section, one would proceed 

as follows: (call the final model of the last section equation (M))

1. Obtain the values of the series from years t and t-1 that are 

needed in equation (M) for year t+1; these values are trans­ 

formed as in table 2.
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2. Generate random vectors JL  , £,. » £t+- » £,-+  » J = !» 2 >    > 50. 

The easiest way to do this is to generate a vector of three 

independent standard normal random variables for each season and 

each year and then transform them to obtain the desired covariance
v^

matrices. For instance, if Cov (_e_ (j)) = Z_. , then _Z_. can be written 

as F_! J_. , where J_. is 3x3 of rank 3. Hence, if e_ ' is a 3x1

standard normal random vector (Cov (j2 ~. ) = I) , then

Tie .^ = e ,T is a normal random vector, with covariance matrix  j t+i  t+l

J_! J_. = _Z_. . F_! for j = 1, 2, 3 is shown in table 9.
J J J J

Note that for season 2, £ (2) is not observable from the past 

series. The following is observable:

£* + 0.63 £* , , Y* + 0.5 Y*  , » 6* + 0.5 £* n . 
t t-1' t t-1 t t-1

There are ways to estimate e.(2) from the available data, but since 

the initial effect of £ (2) on the simulations will die off quickly 

and the simulations are so long, the effect of using £.(2) 

generated as above will be negligible.

3. Now all the quantities necessary for the generation of Z for 

each station are secured. Using equation (M) , generate Z , .. 

followed by Z 9 and Z   for each station. Once Z is
L. I _L   ^ L. "T" _L y ~J L. ~T J

generated, Z^ . can be generated by using Z_t+ . and

/i.\
, k = 1, 2, 3.

4. Untransform the simulated values to get the series in terms of the

original units.

Results of a simulation study involving some flow events for season 2 

(March through April) and season 3 (May through August) are presented in
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Table 9. Full-rank decompositions of seasonal-covariance

matrices

[(^=1- r.)]

Season 1: F' = 0.08402 
1 

.21208

.23719

Season 2: I" .07688 
2 

.20631

.23050

Season 3: I" .29906 
3 

.83303

.79471

0 0 

.07643 0

.07557 .11108

0 0 

.10182 0

.07883 .10538

0 0 

.28686 0

.31873 .12612
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table 10. The flow events represent a range of discharges that can be related 

to certain habitat characteristics.

Based on a study by R. T. Hurr (1981) it was found that ground-water

levels at Mormon Island would rise to within 8 inches of the land surface, if

3 
the discharge in the channels was 3,000 ft /s. For season two, this is equiva-

3 3 lent to a seasonal sura of 6,000 ft /s-months. A seasonal value of 8,000 ft /s-

months would raise the levels to within about 4 inches of land surface, while

3 
a value of 4,000 ft /s-months would drop the levels to about one foot below

land surface. These values are assumed to encompass the critical ground-water 

levels necessary for an acceptable wet-meadow habitat in this area. Probability 

values based on these flows are presented also for Overton and Odessa, although 

the groundwater-streamflow relationships regarding possible wet-meadow complexes 

in these areas have not been determined.

Season 3, May through August, is the seed-germination period within the 

critical habitat reach. If the process of channel maintenance occurs during 

this period, the flows should be sufficient to prevent seedling establishment, 

as well as to transport the sediment necessary for erosional processes of 

channel formation. Channel-geometry plots from Eschner (1981) show that a

width of 500 feet near Odessa is associated with an instantaneous discharge of

3 approximately 3,000 ft /s. This width is estimated as the minimum unobstructed

width necessary for suitable crane habitat. Therefore, as an approximation

3 
for each reach, seasonal streamflow means of 4,000, 12,000, and 20,000 ft /s-

months were chosen as channel-maintenance discharge reference points for cal­ 

culation of exceedence probabilities. These streamflow means are presented 

as seasonal values because of limited model resolution. They do not imply
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that these discharges are necessary throughout season 3 to maintain the 

channel; in fact, flows listed in table 10 are probably necessary for no more 

than 15 percent of season 3 to maintain the channel.

Critical discharge levels for maintenance of both wet meadows and 

channel cross sections can be compared to the probabilities of achieving 

these levels over the next 50 years using table 10. This comparison guide 

should assist habitat managers and water users in the area to plan effective 

utilization of available flows to satisfy projected water demands. Five 

hundred 50-year simulations from (M) were generated and the probabilities of 

the events of table 9 evaluated by counting the number, n, of the 500 simu­ 

lations that satisfied the event, and taking n/500 as an estimate of the 

probability. Estimates below about 0.02 are not very reliable.

CONCLUSIONS

The primary problems confronted in modeling seasonal streamflow were: 

(1) the trade-off between overfitting the historical data versus adequately 

describing the driving mechanism behind the series; (2) the heterogeneity of 

the autocorrelation structure among seasons for each station; (3) nonnormality 

of the marginal distributions; and (4) the need to maintain correlation among 

stations. The first problem is present in any time-series analysis but was 

intensified here by the short length of record. The main statistics used to 

determine the model were seasonal autocorrelations and between-station cor­ 

relations. Care was taken not to overfit by including nonsignificant values; 

but, all significant values up to a lag of three years (nine seasons) were 

included to insure adequate description of the correlation structure. 

Periodic autoregressions, with moving-average components in the residuals,

40



afforded the flexibility to model the heterogeneous seasonal autocorrelation 

structure. From a set of power transformations including the natural log, the 

transformation for which residuals most closely followed a normal distribution 

was determined. The reader should exercise caution in applying this technique, 

because it does not guarantee normality; the residuals should be examined to 

determine if the transformation is adequate. Correlation among stations was 

maintained by building a correlation structure into the residuals from 

individual-station models. The reasoning for this approach follows: (1) Any 

subset of the stations can be generated independently of the others; and (2) 

the procedures for model identification and parameter estimation are more 

straightforward than those with all stations included as possible predictors 

for any one station although both approaches accomplish the same objectives.

The final model is intended to be used as a tool for simulation and 

evaluation of probabilities of interest, assuming present conditions are 

maintained. It can be used in conjunction with discharge-versus-channel 

width models, and discharge-versus-depth to water-table models to determine 

the need for future wildlife-management alternatives.
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