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A STOCHASTIC STREAMFLOW MODEL OF THE PLATTE RIVER AT

OVERTON, ODESSA, AND GRAND ISLAND, NEBRASKA

By Aldo V. Vecchia, Jr.

ABSTRACT

A stochastic model is developed to simulate flows for three seasons
(September through February, March and April, May through August) at Overton,
Odessa, and Grand Island, Nebraska on the Platte River. The model preserves
the first and second order moment properties of the historical flow series,
including significant autocorrelations within each station and cross-correla-
tions between the stations. Higher order moments are preserved by a trans-
formation technique that allows the residuals from the model to be approxi-
mately normal.

An algorithm is given for easy simulation of combined-station flows, and
some simulations are carried out to determine the likelihood of specified flow
shortages that could be detrimental to the wildlife habitat in the reach of

the Platte River between Overton and Grand Island, Nebraska.

INTRODUCTION
Two primary characteristics that make a riverine habitat suitable for use
by migratory waterfowl, especially sandhill cranes and whooping cranes, are a
wide, open river channel and a wet meadow environment. A wide river channel
containing only sparse vegetation affords roosting birds some degree of
protection from predators, while wet meadow environment enhances the capability
of the birds to locate and feed on invertebrates that are critical to their

dietary needs.



To maintain desirable river channel characteristics, sufficient stream-
flow must be available during the seed-falling period of May through August to
prevent germination on the channel bars. Similarly, river stages must be high
enough during the months of March and April to raise ground-water levels in
the wet meadows sufficiently so that the birds can locate invertebrates within
several inches of the land surface. Probabilities of flow events involving
these two periods are of great interest to wildlife managers for planning
habitat-management alternatives in the event of flow shortages. Therefore,
in this report a calendar year is divided into three seasons as they affect
these processes. They are: (1) March and April, when river stage influences
ground-water levels; (2) May through August, when streamflow may inhibit
seedling germination and establishment; and (3) September through February,

which is generally the low-flow period.

PURPOSE AND SCOPE OF STUDY

This report: (1) Describes the development of a 3-season flow-series
model for Overton, Odessa, and Grand Island, Nebraska (fig. 1); (2) demon-
strates how this model can be used for simulation and evaluation of certain
probabilities of interest; and (3) gives results of some simulation studies.
The 3-season flow series for a particular station is derived by aggregating
monthly average-flow series over three predetermined seasons. A precise
description of the series will be given in the next section. Seasonal sums
instead of averages are used for computational convenience; however, both
series (sums or averages) contain the same information.

The model is designed to maintain cross correlations between stations so

that simulation of simultaneous three-station series can be made. However, to
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allow single-~-station simulations, individual models for each station remain
autonomous. For example, the individual flow series for Odessa can be simu-
lated without the Grand Island or Overton series. The correlation structure
between stations is maintained by allowing residuals from single-station
models to be correlated.

The individual models in this report are periodic autoregression models
(Pagano, 1978). A modified Box-Cox transformation technique (Box and Cox,
1964) is used to determine a transformation that results in residuals from the
fitted models approximately following a normal distribution. The primary
means of checking model adequacy will be to compare the statistical properties
of the historical series to the properties of model simulations, as well as to
check that the model assumptions are satisfied within a reasonable degree of

accuracy.
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Nordin, Jr.

STATISTICAL PROPERTIES OF HISTORICAL-FLOW SERIES
The 3-season flow series for each station are determined by aggregating
the monthly flow series. This monthly series consists of average ft3/s (cubic
feet per second) from October, 1942 to August, 1979 (water years 1943-1979)
plus September, 1942, and can be obtained from Petsch and others, (1980).
Season-one flows consist of the sum of the monthly series from September to
February; season-two, the sum of March and April; and season-three the sum of

May through August. Sums are used instead of means because the sums are more



convenient, The year of season one will be designated by the year in which
it ends (that is, season one of 1943 consists of September, 1942 to February,
1943).

The historical record in this report will include 111 seasonal flow
totals in the 37-year period from water year 1943 to 1979 for each station.
Graphs of these series are presented in figures 2 through 4 for the three
stations. Seasonal statistics for Overton, Odessa, and Grand Island are
summarized in table 1. The means and standard deviations appear to be sig-
nificantly different across seasons; (parameters will be included in the
models which can account for these differences). Secondly, the positive
skewness and kurtosis coefficients indicate that the flows for individual
seasons are not normally distributed. One way to solve this distribution
problem is to transform the original flows to achieve a model in which resid-
uals are nearly normal; this transformation will be discussed in a later
section of this report.

Autocorrelations of the flow series will be important in determining the
appropriate model to fit to the data. In ordinary autoregressive-moving
average (ARMA) time-series modeling, the autocorrelation structure of the
series is assumed to be the same for each season, an assumption which does not
appear to be true in this case (fig. 5). An explanation of the term seasonal

autocorrelations follows. Let X =0,1,2,...N-1, k = 1,2..., s, be a

t(n,k)’ n

seasonal time series, where t(n,k) = ns+k, n is the year index (these are s
seasons per year), and k is the season index. The lag defined for members of

the series Xt(n K) is a seasonal lag and not a yearly lag. For example,

where k=3 is season number one of year n, and X where k=3 is

X (n,k)-2 t(n,k)-4



ocL

*6/6T-EH6T SsaesL 193eM

‘uotlels 3uilded e¥seiqaN ‘uolada( IB S23IBYISIP [BUOSEBIS JO 8dUsanbss TBOTI0ISTH --*7 2an3T4

801

96

v8

SNOSV3S 40 43gWNN IAILYINWND

<L

0s

514

gt

ve

(4%

I

—

8¢

9L

143"

[4:1%

061

8¢¢

992

z—0L » SHINOW—ANOJ3S H3d 1334 J19ND NI-‘NOSVY3S 404 IDYVYHISIA 40 WNS



‘6/6T-EY6T Saeak 1ajem
‘uorjels 3urled exseiddoN ‘BSSIPQ IB S98IBYODSTP TRUOSEIS JO dduanbas [eOTI0ISTH --'¢ 2an314

SNOSY3S 40 Y3GWNN JAILYINWND
ozZL 801 96 8 CL 09 8Y 9€ ve cl 0
T T T T T T T T T 0

L — ¢St

= — 061

— — 82¢

_ _ ] _ _ L _ ! | 95z

z—0L « SHINOW—ANOD3S 43d 1334 J19ND NI ‘NOSV3S 404 ID4VYHISIA 40 WNS



oci

‘6/6T-CH6T sieak i23em ‘uoTiels
8ur8e8 eYseiqaN ‘PuBTST puein Je SaBIBYDISTIP TBUOSEIS JO 20uanbas JEITI0ISTH —-‘'4 2andT4g

SNOSV3S 40 H3gWNN JALLYINAND
801 96 v8 (44 08 514 9t vz cl

| 1 | I } | | | |

8¢

9L

vii

[4:1%

061

:744

992

z-0L+ SHINOW—ANOJ3S ¥3d 1333 218NJ NI ‘NOSVY3S Y04 394VYHISIA 40 WNS



Table 1.~-Flow statistics for Overton, Odessa, and Grand Island,

Nebraska, water years 1943 to 1979

Average
Standard
season
Season deviation Skewness Kurtosis
total

3
(ft3/s-months) (ft”/s-months)

Overton 1 8093.2 3922.6 2.918 11.068
2 3641.9 2044.5 3.043 11.927
3 4809.7 5108.1 2.904 8.554
Odessa 1 7585.5 3864.5 2.676 9.757
2 3662.9 2062.8 2.618 9.438
3 4363.8 4960.7 2.669 7.368
Grand Island 1 7219.4 4184.1 2.860 10.962
2 4068.6 1973.4 2.065 6.564
3 4653.6 4643.8 2.448 6.456
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season number two of year (n-1). The autocorrelation for season k at lag j is

defined to be Py ; = Corr(X ) and is assumed throughout to be

t(n,k)° Xt(n,k)-j

independent of n. The values graphed in figure 5 are estimates

pk j of pk e k=1, 2, 3, =1, 2, ... 6 obtained by using the formula
bl ’
N-1 N-1

- 1 Y Y

p, . =% | ( )| where Y =X - X

k,j N n=0 t(n,k) t(n,k)-j t(n,k) t(n,k) =0 £(n,k)
N

and Y , = 0 for t(n,k)-j < 0. The graph seems to indicate the three

t(nak)—J -

stations are so similar that the same model could be used for all three.

However, the station models differ somewhat, as will become evident later in
this report. Cross-correlation between stations is an important statistical
aspect of the historical series; this will be examined in a later section in

which individual station models are combined.

PERIODIC AUTOREGRESSTIONS
The model used to describe the single-station series falls under the

class of periodic autoregressions, for which a substantial base of theory has
been developed (Pagano, 1978; Parzen and Pagano, 1979). The relatively small
number of years of data available and the irregular nature of the flow series
caused by man-induced interventions preclude the use of many asymptotic
results. The objective is to adequately describe the lst and 2nd order moment
properties (means, variances, and autocorrelations) of the series with the
simplest model, and to use this model for simulation.

Let {X =1,2,..,8, n = 0,1,...} be a seasconal time series,

t(n,k)’ k

where t(n,k) = ns + k. Assume that E (X = 0, which can be achieved in

t(n,k))

practice by standardizing via subtraction of the seasonal means. To simulate

11



from the model, it is necessary to assume that the information available to

predict Xt consists of the past, Xo’ A reasonable

Xpreros Xen,i0-10
model to postulate for the series would be X (k) - X;,k oy

(n,k)

* S (n,k)
]

(' denotes transpose) where Xn .k isalx p, Vector of values of the series
’

) . .
(0,10 useful in predicting Xt(n,k)’ o [ukl 120 ,...,akpk]

is al x pk vector of parameters, and Et

rior to X
P t

is a random variable with
(n,k)

{e }w , an iid (independent identically distributed) sequence,
t(n,lf _,

E(e 0, Var (e

— — 2 1} _
t(a,K) T t,K? T %k X T Xt(n,k)—ﬂkl, e R,k = ] >
Py

the numbers le, cees Qkp will be called the lag values for season k.
k
Since the random errors, {e } , are assumed to be independent from
t(n,k)

year to year but may be correlated among seasons within years, it is con-

venient to write the model in matrix form. Let g% =

e eme]
€

= L— 1
o [et(n,l)’ s ey Et(fl,s)] > O [9_1 s oy 9’5] . and let

(X0 s Oueens O]

Se
I
I=
i
N
lo

I=
=]
iy
-
[0}
L

S

be an s x kél pk

matrix of predictors. Write the model as X = X, & + e,
- = -
n=20,1, ..., where £, is an iid sequence with E(En) =0, Var(gn) = I.

The parameter vector, o, is unknown and must be estimated from the

observed data (say there are N years observed). If I were known in advance,

the weighted least squares (WLS) estimate of o would be

N1 -1 N-1
=1z o 7L oy 3l x
&= lnko X5 &2 Xy n=0 £n = Sn (see Graybill, p. 207).

12



Compare this to the ordinary least squares (OLS) estimate obtained from

N-1 -1 N-1
- ' '
a0 Xn Xq 2o Xo X,

4

|

- N-1
PR _ [] _
o minimizes n§0 (gﬂ x. o) (X X, a)
N N-1 1
. P _ [] - _
while o minimizes I, (X X, W' X X o).

The weighted least squares estimated should be used if possible when I # G%L.

Since I is generally not known in advance, an iterative technique should be

~

used to get o, as follows:

1. Obtain e the ordinary least squares estimate of a.

2. Obtain an estimate of £, say & , from (1) by using
N-1 - -

Sl N :
L, 58 nfo & TXpgy) & -x, e’

3. Plug §0 into the weighted least squares equation to get a new estimate,
o5 of a from which a new estimate, El’ of ¥ is obtained.

4, Repeat until convergence takes place in the sense that % = 1s

~

small. Denote the obtained estimates as I, a.
Sampling properties of the ordinary least squares and weighted least squares
estimates will not be discussed in the report.

)

The estimation procedure given above presupposes that Py and (zkl""’zkpk
are already known for each season; in fact, these must also be determined from
available data. Their determination is called model identification, and
techniques of identification have been set forth. In keeping with the general
linear model approach in this report, stepwise regression is used (for each
season separately) to choose the values that significantly contribute to the
prediction of X

t(n,k)’

13



TRANSFORMATION TO NORMALITY
In the model developed in the previous section, no mention was made of
the distribution of the random component £ other tﬂan E (En) = 0. However,
if the model is to be used for simulation, the distribution of £, must be
specified. A technique for determining a transformation of the original
time series that causes residuals to be approximately normally distributed
is described in this section; this technique is applied to the flow series

in the next section.

) _

Box and Cox (1964) consider power transformations of the form Zt

A
{ (Xt - 1)/x, X # 0, and loge (Xt), A =0 } where
Xt is a strictly positive random variable for which a transformation to near
normality is desired. These authors give a maximum likelihood technique for

) is

estimating A based on a random sample X "

1’ s XN’ assuming that Z
normally distributed for some A. Their technique can be generalized to include

random vectors. Suppose one has a random sample of strictly positive random

EEREREE XN’ wherelgg = [ an, an, cee an] , and let

(Z (A))' = [ Z (Al), Z (AZ), e 5 Z (Xs)] be normally distributed for
-n nl ns

vectors, X

n2

some A' = [Al’ e As] . This assumption will not be exact in practice

unless Xnk is log normally distributed for each k (that is, unless A = 0),

M)

but Zn —’ can be approximately normal for other values of ).
Under this assumption and using transformation techniques, it can be
shown that the maximized log likelihood in relation to the original

X is proportional to

observations x ..
_15 * _N)

S

~ N
log | 2 ) |+ L, Oy = 1) 2 log x , =MQ)

-N
2

14



N N
. -1 ) _ 0 ) _ ' ) - 0y
where L(}) = L, (z w) (z = -p ()" andp (M) = x5 z /N
The value of XA for which En(é) is normally distributed is not known in advance,

A

so use A as an estimate of A where max M(}) = M(}). The reader should observe

that if Z Q)

% %
Z is normally distributed and A # X, then M(X ) is not the true

value of the maximized log likelihood, a fact that casts some doubt upon the
validity of using_i as the maximum likelihood estimate of ). Hernandez and
Johnson (1980) explore transformations of the same form as above and give a
method for determining the value i_that minimizes the Kullback-Liebler
information between the density of En(l) and a normal density function,
assuming that the density function of zn is known. In most practical problems,

~

one can consider a finite set of values, Al’ e 1&. In this case, X

~

converges to A with probability one, so for large N, A is seen to be approxi-
mately that value of A that minimizes the Kullback-Liebler distance between

(M)

the density of Zﬂ and a normal density.

INDIVIDUAL-STATION-STREAMFLOW MODELS
A periodic autoregression model was fit to each station by the procedures

outlined in the previous sections. An examination of table 1 indicates that
the three seasons appear to be similar enough to use the same transformation
for each, so X' was set equal to (A, X, A) to reduce the number of transfor-
mations to be considered. The raw series was transformed with values of A
equal to -1.0, -0.9, ... , 0, 0.1, ... , 1.0, the transformed series mean
standardized, and the model parameters estimated by weighted least squares.

The identification of Py and £ ); k = 1,2,3, was carried

S ¢ )
k k1 kp,

out for X = 0 at each of the stations; this is at, or near, the final values

15



chosen. It became evident that the residuals of the fitted models were
essentially uncorrelated from season to season, so L = cov (En) was restricted

to be a diagonal matrix: I = diag (012)’ where O 2 _ Var (en Y. In this

i i
case, the weighted least squares estimates are the same as the ordinary least
squares estimates. Results for the three stations are summarized in table 2.
The R2 value for season i is interpreted as the percentage of the variation of
the observed data for season i from 1945 to 1979 (allowing for lag consider-
ations) which is accounted for by the nonrandom component of the model. Note
that the last season has a low R2 value. This does not indicate model in-
adequacy but rather shows that season three variation is nearly random with
respect to previous values in the series. However, season 3 is important in
predicting season 1 of the following year and hence should be included in the
model.

It was assumed that [En’ n = O,l...] are independent, identically dis-
tributed normal random variables, with E (Eﬁ) = 0 and Cov (En) =D
(a diagonal matrix), or that the errors are independent from season to season.
To check these assumptions, residuals from the models for 1945 to 1979 were
examined. Some residual statistics are in table 3, which reveals no highly
significant deviations from normality or from the assumption that E(En) = 0.
A graph of the residual series for Odessa from 1945 to 1979 is shown in figure
6; it is observed that no obvious trends are taking place. To check the
assumption of no correlation between seasons, lag autocorrelation matrices for
the residuals were examined. The lag k autocorrelation matrix of the residual
vector £y is defined as Cov (En’ En-k) (note that lags are now in years).

Estimates of these matrices for k = 0,1,2,3 appear in table 4. Each estimate

is based on about 35 observations, and a rough standard error of the estimate

16



Table 2.--Individual-station streamflow models

Overton

_ o1 T
Z, ;= Ext,i +0.01) 1] [(-0.1) ~u, L i=1,2,3

Seasonal mean vector u' = (ul,uz,p3) = (5.9000, 5.548, 5.569)

Z

0.3632 * Z +0.1449 * 2 L+ e

t,l t-1,3 1,1 t,1
Zt,2 = 1.0756 * Zt,l + Et,z
Zt,3 = 0.4646 * Zt,2 + 0.2631 * Zt—2,3 + Et,3
Season: 1 2 3 Overall R2 = 33 percent
R2 pegzent pezgent peiiéﬁt Cov(e,) = diag (0.00706, 0.00825, 0.08944)
Odessa
zt’i = log, (Xt,i + 0.01) - wy o»1=1,2,3
u' = (8.8427, 8.0965, 7.9568)
Zpp = 03423 %2, ) S+ 01461 %2 ) e
Zt,2 = 0.9168 * Zt,l - 0.0982 * Zt—l,l + et’z
Zy 3 =0.7850 %z , +e .
Season: 1 2 3 Overall R2 = 28 percent
R%: 67 66 12 Cov(e ) = diag (0.05082, 0.06616, 0.77623)
percent percent percent —t
Grand Island
Zt,i = loge (Xt,i + 0.01) - By i=1,2,3
u' = (8.7668, 8.2185, 8.0729)
Zt,l = 0.4198 * Zt—1,3 - 0.0469 * Zt—l,l + 0.1284 * Zt-2,3 + Et,l
Z, ., =0.6715 %z | -0.0049 *z , , +e ,
Zt,3 = 0.7757 * Zt,Z + €. 3
Season: ! 2 > Overall R2 = 26 percent
R2: 68 50 8.2

percent percent percent Cov(et) = diag (0.07431, 0.08806, 0.74906)

17



Table 3.--Restdual statistics from individual-station models,

1945 to 1979 (water years)

Overton Sept. to Feb. March to April May to August
Mean 0.004 ~-0.002 0.000
Variance .007 .008 .089
Skewness .053 -.055 .253
Kurtosis -.761 1.216 -.872
Minimum values -.175 -.261 -.569
Maximum values 174 .222 .625

Odessa Sept. to Feb. March to April May to August
Mean 0.003 0.000 0.004
Variance .051 .067 776
Skewness .098 -.563 -.045
Kurtosis -.499 .287 -.107
Minimum values ~.493 ~.675 ~-2.206
Maximum values .500 .528 1.732
Grand Island Sept. to Feb. March to April May to August
Mean 0.011 -0.002 ~-0.006
Variance .074 .088 .749
Skewness .218 -.110 -.110
Kurtosis .362 124 .124
Minimum vélues -.658 -.632 -2.259
Maximum values .610 .654 1.713

18
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is 1/¥35 = 0.17. Therefore, any value below about 0.3 in absolute value can
be considered insignificant. The only problem is the lag 1 correlation for
season 2 (Corr(en 9 €1 2)), which is around 0.4 for each station but drops

off to near zero for the remaining lags. This correlation can be preserved

in the model by allowing €, to follow a moving average process of order 1

)2

(see Box and Jenkins, 1975). In other words, ¢ = Wn » + 0 with

n,?2 Yh-1,2

{v _ } a white-noise process. Moment estimates of 8 for each
n,2, n=0,1...

~

station were determined to be 8 = 0.63 for Overton and é = 0.5 for Odessa and
Grand Island. A precise statement of the models with moving-average compon-
ents included will be given in the next section.

As a final check, the models were used to simulate 10 realizations of 37
years each, the same length as the historical series, and the properties of
the simulations were compared to the historical series. Some statistics of
the simulations are in tables 5, 6, and 7. Care must be taken in interpret-
ing the tables due to high variability of the skewness and kurtosis coef-
ficients for such short data sets. The standard deviations for most of the
simulations are lower than the respective observed standard deviations. This
could indicate two things: (1) The observed standard deviation is higher
than the long term standard deviation; or (2) the standard deviations of
model simulations are biased, possibly due to the inverse transformation of
model output. However, for purposes of this report, these differences did
not warrant further investigation. Seasons 2 and 3 are of primary interest;
the only problem is that the second season skewness ;nd kurtosis coefficients
for Odessa and Grand Island are consistently low. A graph of a typical simu-

lation for Overton is in figure 7; for Odessa, in figure 8; and for Grand

Island, in figure 9. It should be emphasized that these figures are results

21



£S0° 2T v8L°¢ 908t 81cy 60097 G09°¢ 8991 YiLe T09°¢ %66 ° 1 96¢€¢E 86£8 0T
80L° Y 720°¢ (YXAY 98¢% £€69° 010°T 6081 soLE e’ €€6” z80% 6518 6
69€° 6 8€8°C [4YAY 0€£9¢C 701"~ T 60TT ze0t [xa Y7 %89¢ 0%0¢ 8
162~ £06° LZ261 8¢ 960"~ 629° 0%01 Syie 8LT" ~ 9th " GZ81 2069 L
SET €T wLT e £98Y £GTS T91°Y 68L°T 9€61 900% 9¢8° G80° T 7L0¢€ 1018 9
£62°1 002°1 6%LE 19¢€S z0z° 01 0€8°¢ 6867 2L9Y G88°Y S6L°T 7%0Y .68 S
Got°II 912°¢ T99% €Lty o1s” £68” LeLt 60LE 191 - 668" Tive 066¢ Y
10079 68%°C 96h¢ LT0OY 16577 [7A% 9L91 S0LE 866" el 1 0t Lt 96LL €
8E8°¢E JAYANY 5967 266¢ L68°C T18°1 ¢LIT 66¢¢ 9L ELARE €662 TL69 [4
€T16°TT 620°¢ 66LY 766y 1% 066° 06ST 0$L¢E 209~ 961" 228¢ 6898 T
SUoTIBTNWS
76578 706°C 80T¢ 018y L6 Tl £70° ¢ %%0¢ y9e 89011 816°C £C6¢ £608
S1503aN)  SSauMdg GMHMMMMMM ueay sTS03INy  SSaumMaYg CMMMMMMMM ues) STS03any  SS3umays§ :MMMMMWMM ueay vlep 1BRIOY

Isngny 03 Ael

1712dy 031 yoaey

Lienaqag 031 aequaidag

HmzuCOElm\mum Uy 31 SUOTIRTASP PJIEpuURIS puUB SUBIY]

vYSVAqBN ‘U0 IDA)

a0f yibus) suws oyz fo suorIPINULS JPPOU O PUDL DIDP M01fumsdls Juniop J0f 8014813038 ]DUUSDIS--'G TqEL

22



L8 ¢ 168°1 £012C £€8C 919 - £8y° 8611 06TE T190° - GL9° 6£6T %€L9 01
£1L°C 809°1 S69C £8%¢€ 780° - £86° S8CT [44AS 9%76° 6L 8¢t 9699 6
|2 e 6£6° 12ze 6TZe VAL 9T0°T o%eT T1¢ee 691°2 %0L*® 87¢ £8TL 8
€08 11 781°¢ 6GSY LL8E ST 890°1 6£8T1 L8%¢ 8ce°¢ 04971 6L%¢E 61741 L
v0T°¢ 918° 1 [3YAS 6YEL [4AAN) £60°T 0TST L0L¢ 10s° [TARN 999¢ £€69 9
199°% 64072 678% S96Y L £8¢°C S0LT 92s¢ SL0°1 9¢0°1 6€6¢ 1691 S
L6S°Y L0€°2 S9%6 Sv9Y 08T1°1 61Z°T (A £98¢€ VA G S 8£9°1 6£82 £16¢ Y
¢0s° 1T [A VAL 8609 L86€ XA 7i6° 8TST 6LE€ 96T°1 681°1 057 6449 €
99¢°¢ 81°¢ 126% 815y 908°1 8Ly T 8077 T19¢ $89°1 STET T t9¢e S%9L 4
L6170 %86°0 6.9T 219t 1072 891°1 6941 £ive S8L°0- 80170 192 (YA ¥4 T
SUOTICTNUTS

89€° L 699°C 196% £9¢ey 8EY°6 819°¢ €907 799¢ LGL°6 949°2 798¢ $86¢

STS03INY  SSIUMIG UOTIELASP ueop SYsS03any  Ssoumadyg UOTIETARP ueay STS03any  Ssaumayg uotIeTASD ueay BIRD 1BNIDY

paepuelg piepuelg paepuely
Isngény 03 £Ley 17ady 03 yoaey Lienaqa] 07 asquaidag

ﬁm:u:oslm\mum u} 9Ie SUOTIBRTA®P PABpUB]S puk Surdj]

vysvAqey ‘88D

aof yybus) swps ayg fOo su0ILINWLS TOPVU QT PUL DIVP (01 umsdqs Jrnaov Jof 80198271098 ]PUOSDES--"9 STqR]

23



TL€°- G66° 79¢eY TvéY 86L” €L0°T 8961 €LY A2 2 £8¢” 16€€ ©69L oL
189° ¢ €19°¢ £068 €CsL L98°1 Tee' 1 T62T £88Y% 866°T T6€°T 910¢ H616 6
%80°8T1 896°¢ LET8 £609 oy 0LL°Y 966¢ LeLy (V] Y AR L%6° 11ty £€v8L 8
018°9 €€9°¢ 6909 968Y €8L° 79171 8¢0¢ £0Ty S0T°'¢ 619°1 Gt 0549 L
76L° T 8¢ T 966€ Y9y 981" LoL- 1491 6L2Y 8t°T 6¢C°1 091¢ 5989 9
e ST 809°¢ Vi%4'] €065 EVAERY 796°1 1681 8€9¢ €16°C 9¢6°1 STie 7569 S
8CL° €T 6€L" Y 61¢8 0SS 91" T 200" 1 181 820% T€9°01 818°¢ 98¢eY v8LL k4
86t "¢ S8L°T 626Y 98¢€8 841"~ 70L° LYt ovye £99°¢ 7$9°1 6T8¢ v€9L £
968° EECT 10L% [ARA) fAvA »18° 0Z6T oSy 199°1 EST°1 890% 6188 C
186°6 L18°C 918Y% 00%Yy LET™9 €00°¢ L8T1 8¢¢Yy eLe"s 641°C 6L9% 049L 1
suorjzejnuyg

G9%°9 8yh°t w99y €S9y %96°9 $90°¢ €L6T 890% 296°01 098¢ 781Y 61ZL

SFS0INY  SSaUMING :M“MMMMMM ueay STS03aNy  SsoumMdyg :MMMNHMMM uesy S1503I0)  SS2UMDYS :MHMMMMNM ueay elep Jen3oy

3sn8ny o031 Ken

1F1dy 03 yoaey

Lxenigqay 03 1aquaides

Hm:ucoe.nm\muu U] 91e SUOLIBTADD pIBpUE]S pue SUBI|]

DYSDIGON PuUD]SI Puvdy

Z0f yjbua] vwps syz fo su01ILINWIS JopPOUW (I PUD DIDP MO Jubdd3s 10NIOD JIOf 8017873038 (DUOSDIG--"[ ITqEL

24



(43

*Topow UOT3IEIS TENPTATPUT 22Ul woij
eYseIqeaN ‘uo3isAaQ 3B 20uonbas Iead-/¢ B 103 MOTJwedI]S [RUOSEDS pajelnuig --°/ 2An8TJ

SNOSY3S 40 43aWNN JAILYINWND
80t 96 v8 zL 09 i:14 9€ ve zi

| I | | | | I | I

8¢

9L

vit

csi

06i

:144

992

z--0L » SHINOW—ANOJ3S Y3d 1334 318ND NI ‘NOSV3IS 404 IDYVHISIA 40 WNS

25



*1opow UOTIBRIS TENPTATPUT BYJ WOI]

BYSe1goN ‘essap( e 20uanbos JiedA-/¢ B 10] MOTJWRSI]S [RUOSEIS DPOIBTNWIS --'g 2In3T4
SNOSV3S 40 43gWNN JAILLYTINWND
ocL 80L 96 v8 (44 09 514 9€ 124 ZL oo
| | | 1 I | ] |
] :
- 9L
— : - ViL
— —2SL
| ] ] | | | ] ] | 061

z—0L « SHINOW—ANOQOD3S 43d 1334 218N NI

‘NOSV3S 404 394VHOSIA 40 KNS



ozL

‘puBTST pueiy 3B

*[9pow UOIIBIS-TENPTIATPUT 33Ul WOIJ BYSBIQSN
9ouanbas 1e9L-/¢ B 103J MOTJWEaI3S TBUOSEBIS PIIB[NUIS —--°¢ 2InIT4

SNOSY3S 40 H3gWNN JALLYINWND

801 96 v8 zL 09 8v 9¢ vz 4} 0
I ] T I | I T T I
| ] 1 l I ] I 1 |

é
o =
O
M
=
73
O
X
8¢ w
m
m
O
-]
A
9 »
(7
(o]
=
-
e
viL S
(@]
m
m
m
s
o
6L 3
%
m
(@)
(@]
2
P
=
omw.U
E
7]
*
3
82
N

27



of the univariate models and hence generated values will not be correlated
across stations. The next section will address the correlation between

stations.

COMBINED-STATION MODEL

Thus far, cross correlations between the stations have not been con-
sidered. However, if simulations of more than one station are generated,
these simulations should maintain continuity between the stations. This will
allow simulation of average flow series for two or three of the stations by
simulating from the combined-station model and averaging the appropriate
values. One method of maintaining station continuity is to allow the residual
vectors, €. to be correlated from station to station. Let gn be the resid-
uals for Overton; Yo the residuals for Odessa; and éﬂ the residuals for
Grand Island. The results are easier to interpret if the residuals are
grouped together by season rather than by station, so define [En(i)]' =
(gni’ Yoi0 Gni) for i = 1,2,3 and En' = (gn(l)', Eﬂ(Z)', gn(B)'). The auto-
correlation matrices Corr (En’ En-k) (note that lag values are now in years)
were estimated for k = 0,1,2,3; no significant values were found among the
submatrices Corr (Eﬂ (1), -k (i)), k=0,..,3 and i # j. All correlations
between the residuals occur within the same season. Among the matrices

Corr (En(i), k(i)) the only significant values occur for k = 0, i =1,2,3;

€
-
and k = 1, i = 2. These matrices are given in table 8.

Recall from the individual models that a moving average component was

added to the residuals for the second season. In particular, we have

KX *

i * * * *
Ep =& +t0.638 ., v, =y, +0.5v 4 § o =68 +0.56 , where

x k% % % % .
(gn, \ Gn) and (gt, Yeo Gt) are independent for n # t.
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Table 8.--Significant cross correlations between residuals
from individual-station models

[Lag, in years]

Overton Odessa §2i22d
Season 1
(September to February) Lag O Overton 1.0 0.941 0.871
Odessa .941 1.0 .913
Grand Island .871 .913 1.0
Season 2
(March and April) Lag 0 Overton 1.0 .893 .864
Odessa .893 1.0 .910
Grand Island .864 .910 1.0
Lag 1 Overton 446 .436 .430
Odessa .387 .403 .395
Grand Island .420 .410 .395
Season 3
(May to August) Lag O Overton 1.0 .945 .918
Odessa . 945 1.0 .988
Grand Island .918 .988 1.0
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* . * * *
Let (_e_n) (En’ Yn’ Gn)-

*
It is straightforward to show that if Cov(gn) 0.00591 0.01586 0.01772
.01586 .05293 .05558

.01772 .05558 .07045

then Corr (g (2), g (2)) = [1.0 0.893 0.864
.893 1.0 .910
. .864 .910 1.0 U

and Corr (gn 2, €1 (2)) =10.450 0.428 0.414

.339 .400 . 364

L. .328 .364 .400
It is evident that the lag 1 matrix for season 2 in table 8 can be explained
by the moving average components.

It should be noted that the same parameter estimates obtained for the
single~station models were used for the combined model rather than estimating
the parameters multivariately. These estimates can easily be shown to cor-
respond to the ordinary least squares estimates. This should not greatly
affect the performance of the model for simulation. The main differences
between the multivariate and ordinary least squares estimates lie in their
standard errors.

The final statement of the model is: Let {Zt i (0v)} be the transformed

b

and mean standardized values for Overton; let {Zt i (0d)} be the transformed
’

and mean standardized values for Odessa; and let {Zt 5 (GI)1 be the transformed
s

and mean standardized values for Grand Island (see table 2). The final model

becomes:

30



Zt,l(ov)
Overton Zt,Z(OV)

Zt,B(OV)

Zt,l(Od)
Odessa Zt,2(0d)

Zt,3(0d)

zt,l(GI)

Grand

Island Zt 2(GI)

b

Zt’3(GI)

. . * * X
Let (E‘t (1)) - (gt,l, Yt,l, St,l), (Et (2)) - (Et’ Yt, (St

= 0.3632 *

= 1.0756 *

= 0.4646

= 0.3423 *

= 0.9168

= 0.7850

= 0.4198 *

+ 0.1284 *

= 0.6715

0.7757

21,3

* Z (ov) +

t,2

2¢21,3

* -
Zt,l(Od)

* zt,Z(Od) +

" 21,3

2e22,3

% Zt,l(GI) -

%
Zt,Z(GI) + St

Zt’l(Ov) +

(Ov) + 0.1449 * Z

(0d) + 0.1461 * Z

Ye,3

0.2631 * Z

0.0982 * Z

t-1

* 5 0.63 £
gt * Et--l

t-2,3

t-1

t-1,1

,1¢

ov) + gt 1

o) + &, 4

,1¢

0d) + vy  + .5y
(0d) + vy + .5 v _

od) + Yt,l

(GI) - 0.0469 * z__, (GI)

(GI) + Gt,l

»3

(Bp 3> Vi 30 8¢ 90+ Then: e (3), 3= 1,23, ¢

normal random vectors with

0.

Cov (gt an

]
o

Cov (gt (2))

1]
o

Cov (gt (3))

E e (§) =0 for j=

00706

.01782
.01993

.00591
.01586
.01772

. 08944
.24913

.23767

1,2,3

0.01782
.05082
.05608

0.01586
.05293
.05558

0724913
.77623

. 75345

0.01993
.05608
.07431

0.01772
.05558
.07045

-

0.23767
. 75345

. 74906
-
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* *
*
0.0949 * Z__; ((GI) + 6  + .5 6 _

), (g, BN =

are independent
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Graphs of 50-year simulations from the combined-station model are given
in figures 10, 11, and 12. The unusually high discharge values for the 72nd
simulated values at Odessa and Grand Island (73,396 ft3/s-months for Odessa
and 96,266 ft3/s—months for Grand Island) may seem at first to point to a
model inadequacy. However, out of five hundred 50-year combined-station
simulations from the next section, only eight contained values greater than
90,000, which indicates that this particular simulation happened to be an

extreme case.

SIMULATION AND EVALUATION OF PROBABILITIES

The model of the previous section can easily be used for simulation of
3-station, 3-season flow series over the next 50 years. The complicated
dependence structure between seasons and between stations causes direct
evaluation of probabilities of most events of interest to be difficult.
However, if one obtains N 50-year simulations from the model, n of which
exhibit a certain event, then an estimate of the probability of that event
occurring over the next 50 years would be n/N, assuming that all simulations
are equally likely.

Suppose one has data for years 0, 1, ..., t (t corresponds to 1979 here)
and wants to simulate from the model for years t+1, ..., t+50. Referring
back to table 2 and to the equations of the last section, one would proceed
as follows: (call the final model of the last section equation (M))

1. Obtain the values of the series from vears t and t-1 that are

needed in equation (M) for year t+1l; these values are trans-

formed as in table 2.
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W @ @ G, s,

2. Generate random vectors €
St 0 St 0 Sthf 0 —t4 )

The easiest way to do this is to generate a vector of three
independent standard normal random varidables for each season and

each year and then transform them to obtain the desired covariance
AN

matrices. For instance, if Cov (E{(j)) = Ej’ then Ej can be written
as T! I',, where T', is 3x3 of rank 3. Hence, if e (3 is a 3x1
3 3 =3 —t+l
standard normal random vector (Cov (gtii)) = I), then
G W . . .
—j9t+1 Eeq) s a normal random vector, with covariance matrix

r‘'r.=zx,. TI! for j =1, 2, 3 is shown in table 9.
-3 ] —J -3
Note that for season 2’~St (2) is not observable from the past

series. The following is observable:

% % % * % *
EE + 0.63 gt—l’ Yt + 0.5 Yi 1o Gt + 0.5 gt—l'

There are ways to estimate Et(Z) from the available data, but since
the initial effect of E{(Z) on the simulations will die off quickly
and the simulations are so long, the effect of using gt(Z)
generated as above will be negligible.

3. Now all the quantities necessary for the generation of__Z_t+l for

each station are secured. Using equation (M), generate Zt+l 1
b

followed by Zt+l,2 and Zt+l,3 for each station. Once Zt+j is
generated, Z{+j+1 can be generated by using Zt+j and
(k) -
Et+j+l’ k=1, 2, 3.
4. Untransform the simulated values to get the series in terms of the

original units.
Results of a simulation study involving some flow events for season 2

(March through April) and season 3 (May through August) are presented in
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Table 9.--Full-rank decompositions of seasonal-covariance

matrices

[z, = I} 1))

]

Season 1: r' 0.08402
.21208

.23719

Season 2: r' = .07688
.20631

. 23050

Season 3: r' = .29906
.83303

.79471

.07643

.07557

.10182

.07883

.28686

.31873

.11108

.10538

.12612
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table 10. The flow events represent a range of discharges that can be related
to certain habitat characteristics.

Based on a study by R. T. Hurr (1981) it was found that ground-water
levels at Mormon Island would rise to within 8 inches of the land surface, if
the discharge in the channels was 3,000 ft3/s. For season two, this is equiva-
lent to a seasonal sum of 6,000 ft3/s—months. A seasonal value of 8,000 ft3/s—
months would raise the levels to within about 4 inches of land surface, while
a value of 4,000 ft3/s—months would drop the levels to about one foot below
land surface. These values are assumed to encompass the critical ground-water
levels necessary for an acceptable wet-meadow habitat in this area. Probability
values based on these flows are presented also for Overton and Odessa, although
the groundwater-streamflow relationships regarding possible wet-meadow complexes
in these areas have not been determined.

Season 3, May through August, is the seed-germination period within the
critical habitat reach. If the process of channel maintenance occurs during
this period, the flows should be sufficient to prevent seedling establishment,
as well as to transport the sediment necessary for erosional processes of
channel formation. Channel-geometry plots from Eschner (1981) show that a
width of 500 feet near Odessa is associated with an instantaneous discharge of
approximately 3,000 ft3/s. This width is estimated as the minimum unobstructed
width necessary for suitable crane habitat. Therefore, as an approximation
for each reach, seasonal streamflow means of 4,000, 12,000, and 20,000 ft3/s-
months were chosen as channel-maintenance discharge reference points for cal-
culation of exceedence probabilities. These streamflow means are presented

as seasonal values because of limited model resolution. They do not imply
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that these discharges are necessary throughout season 3 to maintain the
channel; in fact, flows listed in table 10 are probably necessary for no more
than 15 percent of season 3 to maintain the channel.

Critical discharge levels for maintenance of both wet meadows and
channel cross sections can be compared to the probabilities of achieving
these levels over the next 50 years using table 10. This comparison guide
should assist habitat managers and water users in the area to plan effective
utilization of available flows to satisfy projected water demands. Five
hundred 50-year simulations from (M) were generated and the probabilities of
the events of table 9 evaluated by counting the number, n, of the 500 simu-
lations that satisfied the event, and taking n/500 as an estimate of the

probability. Estimates below about 0.02 are not very reliable.

CONCLUSIONS

The primary problems confronted in modeling seasonal streamflow were:
(1) the trade-off between overfitting the historical data versus adequately
describing the driving mechanism behind the series; (2) the heterogeneity of
the autocorrelation structure among seasons for each station; (3) nonnormality
of the marginal distributions; and (4) the need to maintain correlation among
stations. The first problem is present in any time-series analysis but was
intensified here by the short length of record. The main statistics used to
determine the model were seasonal autocorrelations and between-station cor-
relations. Care was taken not to overfit by including nonsignificant values;
but, all significant values up to a lag of three years (nine seasons) were
included to insure adequate description of the correlation structure.

Periodic autoregressions, with moving-average components in the residuals,
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afforded the flexibility to model the heterogeneous seasonal autocorrelation
structure. From a set of power transformations including the natural log, the
transformation for which residuals most closely followed a normal distribution
was determined. The reader should exercise caution in applying this technique,
because it does not guarantee normality; the residuals should be examined to
determine if the transformation is adequate. Correlation among stations was
maintained by building a correlation structure into the residuals from
individual-station models. The reasoning for this approach follows: (1) Any
subset of the stations can be generated independently of the others; and (2)
the procedures for model identification and parameter estimation are more
straightforward than those with all stations included as possible predictors
for any one station although both approaches accomplish the same objectives.
The final model is intended to be used as a tool for simulation and
evaluation of probabilities of interest, assuming present conditions are
maintained. It can be used in conjunction with discharge-versus-channel
width models, and discharge-versus-depth to water-table models to determine

the need for future wildlife-management alternatives.
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