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INTRODUCT ION

Chemical analyses of water samples from hot springs, geysers, and
pools emerging in Yellowstone National Park have been reported by
var jous researchers for nearly one hundred years (Gooch and Whitfield,
1888; Allen and Day, 1935; White and others 1963; Noguchi and Nix, 1963;
Scott, 1964; Rowe and others, 1973; Thompson and others, 1975; Thompson
and Yadav, 1979; Stauffer and others, 1980). Until this work, springs
issuing along and near Boundary Creek were not collected nor chemically
analyzed because they are relatively remote. The possibility of
geothermal exploration in the nearby Island Park Geothermal Area (IPGA)
(Fig. 1) drew our attention to the hydrothermal activity in the
southwestern corner of Yellowstone National Park. We have collected and
chemically analyzed several samples of hot spring water and gas~from
this area in order to help assess changes in the thermal activity in the
National Park that might result from exploitation of geothermal

resources in the IPGA.



SAMPLE COLLECTION

Water samples from thermal and non-thermal springs were collected
within or as close as possible to the primary orifices. Water samples
collected from creeks are "grab" samples as no integrated sampling was
attempted. Most water samples were collected during October 1979.

Water samples were collected as described by Thompson (1975).
Anions (HCO%, SOE‘, C17, F7, and Br ) and boron were
analyzed using 250 ml of water that was not filtered nor acidified in the
field. Cations were analyzed using 125 ml of water that was filtered in
the field with a 0.45um membrane filter and then immediately acidified with
0.5 ml of 12N HC1 per 125 ml of water (4 ml of 12N HC1 per liter). All
samples were collected in conventional polyethylene bottles. Those bottles
used for cation analyses had been previously soaked in 10 percent HN03
for 5 days, thoroughly rinsed with deionized-distilled water, and soaked
another 5 days in deionized-distilled water.

Gas samples were obtained by positioning a large, inverted, plastic
funnel and attached plastic tubing, all filled with spring water, over a
vent discharging sufficient gas so that the funnel rapidly filled with
gas. After flushing the funnel and tubing with gas from the spring and
without allowing any air to get into the apparatus, additional gas was
carefully transfered into a 500 ml evacuated glass bottle containing 100 ml
of 4 NaOH. The gas flow was interrupted whenever the water came within 5
can of the top of the funnel. The above procedure was repeated until the
rate of transfer of gas became quite slow (caused by increasing gas
pressure in the once evacuated gas bottle) or the bottle became too hot to
handle safely (caused by the exothermic reaction in the formation of

2-
o3 ).



FIELD ANALYSIS

A1l temperature measurements of hot spring waters were obtained with a
total immersion, maximum reading, mercury-in-glass thermometer; those of
creeks and nonthermal springs were obtained with a total immersion,
mercury-in-glass, conventional thermometer. Field determinations of pH
were made with E.M. Colorphast—/ pH strips. Ammonia and hydrogen sulfide
concentrations were determined in the field with a Bausch and Lomb (B and
L) minispec 20—/ spectrophotometer and B and L spectrokits -/ for
ammonia and hydrogen sulfide which are based on APHA (1975) procedures 418B
and 428C, respectively. Due to lack of time only half of the samples were
analyzed for ammonia and a third for hydrogen sulfide. A visual discharge
estimate was made for all springs where the complete discharge could be
observed. Discharges estimates were not attempted for any creek samples.

LABORATORY ANALYSES
Water Analyses

Silica was analyzed at 640 nm by a modification of the molybdenum blue
spectrophotometric procedure described by Shapiro and Brannock (1956) using
10 mL of spring water sample diluted in the field to approximately 60 mL
and then brought to 100 mL total volume immediately prior to the
determination.

Boron was determined spectrophotometrically by the carmin procedure at
600 nm (Brown and others, 1970).

Bicarbonate was determined as alkalinity using a constant drive buret,
a combination pH glass electrode, an Orion 801 specific ion meter, a strip

chart recorder, and standardized sul furic acid (0.05N). The laboratory pH

was taken as the start of the alkalinity titration.

_/ The use of trade names in this publication is for decriptive purposes
only and does constitute an endorsement by the U.S. Geological Survey.
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Sul fate was determined by a spectrophotometric titration using the
thorin procedure (Brown and others, 1970) at 520 nm.

Chloride was determined by potentiometric titration using the same
equipment as the alkalinity determination except that a silver billet
electrode, a double junction reference electrode, and standardized
silver nitrate (.015N) replaced the electrode and acid used for the
alkalinity determination above.

Fluoride was determined by an Orion ion specific electrode; TISAB II
was mixed 1:1 with samples and standards.

Bromi de was determined spectrophotometrically at 590 nm by a
modi fication of the phenol red method (APHA, 1975): the oxidizer
concentration was increased 2x and the developing time was reduced to
approximately two minutes.

Sodium and 1ithium were determined by flame emission spectroscopy
(FES) in a fuel rich, air-acetylene flame with added potassium ion (0.1
percent v/v) at 589.0 nm and 670.8 nm respectively.

Potassium was determined also by FES in a fuel rich, air-acetylene
flame with added cesium ion (0.1 percent v/v) at 766.5 nm.

Rubidium and cesium were determined by FES simultaneously in a fuel

rich, air-acetylene flame with added potassium ion (0.1 percent v/v) at

780.0 and 852.1 nm, respectively.



Calcium and magnesium were determined simultaneously by atomic
absorption spectroscopy (AAS) in a stoichiometric air-acetylene flame
with added La(III) (1.0 percent v/v) at 422.7 and 285.2 nm,
respectively.

Barium and strontium were determined simultaneously by AAS in a

nitrous oxide-acetylene flame with added potassium ion (.1 percent v/v)
at 553.5 and 460.7 nm, respectively.

Iron and manganese were determined simul taneously by AAS in an

oxidizing, background corrected, air- acetylene flame at 248.3 and 279.5
nm, respectively.
Gas Analyses

Argon, methane, nitrogen, and oxygen were determined by gas

chromatography with helium as the carrier gas at an inlet pressure of
414 kPa (60 psi) using a 2 meter Porapak Q and a 7 meter molecular sieve
5A column.

Heljum and Hydrogen were determined by gas chromatography with argon

as the carrier gas at an inlet pressure of 345 kPa (50 psi) using a 2
meter Porapak Q and a 7 meter molecular sieve column.

Ammonia was determined with an ammonia specific electrode on an
aliquot from the sodium hydroxide solution.

Hydrogen sul fide was determined gravimetrically by oxidizing an
2-

aliquot of the sodium hydroxide solution with H202 to form SO4

and precipitating the dissolved 3042' with Bat. The resul ting
precipitate was collected, dried, and weighed. A1l sulfur gases are,

therefore, reported as hydrogen sulfide.



Carbon dioxide dissolved in the sodium hydroxide solution in the gas

collecting bottle was determined gravimetrically by adjusting the pH of
the solution to 9 with HC1 and then precipitating the dissolved

2= with sr2t.

CO3 The SrCO3 precipitate was carefully filtered,
dried, and weighed.

The results of the water analyses are presented in table 1, and the
results of the gas analyses in table 2.

RESULTS and DISCUSSION

The thermal waters from the Southern, Central, and Silver Scarf
Thermal Areas (Fig.l) are neutral sodium bicarbonate-chloride type
water. Thermal waters collected from the Northern Thermal Area are from
slightly acidic, relatively iron-rich springs (see sample nos. J7941 and
J7942). Results of chemical geothermometry (Table 1) indicate that
spring waters from the Southern, Central, and Silver Scarf Thermal Areas
last equilibrated with rock at a temperature between 150 to 170°C. 1In
the Northern Thermal Areas, only sample J7943 may be representative of a
deep water component. The other thermal water samples (J7937, J7938,
J7941, and J7942) all contain very low dissolved chloride concentrations
when compared to typical Yellowstone thermal waters. The Boundary Creek
Thermal Area waters are not at all similar to the deep Yellowstone
thermal waters described by Fournier, White and Truesdell (1976) which
equilibrated with rock at an estimated reservoir temperature of 200 to
340°C. Thompson and Hutchinson (1980) compared Boundary Creek thermal
waters to Upper Geyser Basin hot spring waters (Hillside Springs, Ear

Spring, and Bonita Pool), and proposed that the Boundary Creek and



Hiliside Springs thermal waters may have a common origin. Hutchinson
(1980) described the principle locations of the thermal activity in the
southwestern corner of Yellowstone National Park and inferred that
thermal water emerging along and near Boundary Creek is flowing along
the Buffalo Lake Rhyolite and the Summit Lake Rhyolite contact. If so
there might be a means of water flow from one side of the plateau to the
other. The relatively high bicarbonate and low chloride concentrations
from Boundary Creek thermal area waters indicate that these waters have
not been extensively boiled (boiling would exsolve much of the
bicarbonate) and that the deep component of the water has been diluted,
probably by cold meteoric water.

The predominant gas in all the Yellowstone thermal spring,
including those from the Boundary Creek thermal area, is CO2 with
varying amounts of dissolved air components. However, in the Boundary
Creek thermal springs area there appears to be more helium and a lower
nitrogen/argon ratio than in gases from springs in Upper and Lower
Geyser Basins. This may be indicative of a radiogenic contribution
and/or changes in relative solubilities with temperature and pressure
and/or reduction of nitrogen.
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Table 2.--Boundary Creek Thermal Area Gases
(analyses in mole percent).

Samp No. o CH

2 HZS NH3 He H2 Ar 02 2 4
J7925 42.9 0 0 .0597 0.0 0.0 8.12 44.2 0.63
J7928 92.0 O 0 .0012 .0023 .21 .60 6.0 .37
J7934 48.4 0 0 .0056 0 * 5.2 40.7 .75
J7942 8.4 0 0 .0043 0 .41 .20 12.7 1.1

* Repor ted as 02 + Ar
Gas analyses by N.L. Nehring, U.S.G.S.
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SENERALIZED LOCATION MAP OF THE SOUTHWEST

CORNER OF YELLOWSTONE NATIONAL PARK AND
THE ISLAND PARK GEOTHERMAL AREA ,  MONTANA
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