
U.S. Department of the Interior

Geological Survey

DSGS Mineralogy Laboratory User's Guide to the TECO

Editing Program for the DEC RT-11 Operating System

(Part C of the DSGS Mineralogy Laboratory User's

Guide to the DEC RT-11 Operating System)

By

Richard E. Phillips and Phoebe L. Hauff

Open-Pile Report 82-177

1982

This report is preliminary and has not been reviewed for conformity with
U.S. Geological Survey editorial standards. Any use of trade names is for
descriptive purposes only and does not imply endorsement by the USGS.

CONTENTS

Page

Introduction to the TECO Editing Program.......................... 1

Some basic TECO concepts.. 3

TECO MONITOR SYMBOL.. 3
ESCAPE KEY... 3
COMMANDS... 3
COMMAND STRINGS.. 3
INCORRECT COMMANDS... 4
TYPING ERRORS.. 4
POINTER.. 4
NON-PRINTING CODES... 5
PAGE... 5
EDIT... 6
TO EXIT.. 6
CARRIAGE RETURN SYMBOL....................................... 6

The TECO Command Set - Abbreviated................................ 7

File Specification Commands.................................. 7
The RT-11 EDIT Command.................................. 8

EDIT/INSPECT....................................... 3
EDIT/CREATE.. 9
EDIT... 10
EDIT/OUTPUT.. 11

Page Manipulation Command.................................... 12
PULL... 12

Buffer Pointer Manipulation Commands......................... 12
JUMP... 13
LINE... 13
CHARACTER.. 13
REVERSE.. 14

Buffer Pointer Manipulation and Non-printing Codes........... 14

Text Type-out Commands....................................... 15
TYPE... 15
VERIFY... 16

Text Modification Commands................................... 17
KILL... 17
DELETE... 18
INSERT... 18

Search Commands.. 20
SEARCH... 20
NON-STOP SEARCH.................................... 21
SEARCH/REPLACE..................................... 21
NON-STOP SEARCH/REPLACE............................ 22

Command Summary Chart... 23

TECO Examples ... 26
Creating a file with TECO.......................... 26
Editing a file with TECO........................... 28

ii

INTRODUCTION TO THE TECO EDITING PROGRAM

The file editing program used with this computer system is known as TECO.

TECO, an acronym for Text Editor and Corrector, is a character-oriented editor

rather than a line editor. TECO allows the user to create or modify files

consisting of ASCII characters, such as those containing data, source

programs, or manuscripts.

In the TECO section of this manual, the word "text" is used to represent

any group of ASCII characters in a file that is to be edited by TECO. In

other words, "text" may consist of numbers, alphabetic characters, or any

other members of the ASCII character set.

The TECO editor uses a portion of the computer's memory known as a

"buffer" to hold part of the file's contents while that file is being edited

or created. Text can be entered directly into the buffer by the user or it

can be read into the buffer from an existing file. The buffer occupies a

finite area of memory and can therefore contain only a limited amount of

material at one time. This varies with the amount of space available in the

computer's memory. Once editing is complete on the portion of the file held

in the buffer, it is written into an output file and deleted from the buffer

to make space available for additional input of text from the original file.

This process is diagrammed in figure T-l.

This manual will give the user a working knowledge of TECO, some of its

basic concepts, an outline and discussion of the more useful parts of the TECO

command set, and examples showing TECO applied to some U.S. Geological Survey

applications.

Much of the information contained in this manual is taken from the DEC

"TECO Manual-Version 28," which serves as the prime reference for questions

regarding TECO.

H
O
W
 T
E
C
O

W
O
R
K
S

IN
PU
T

N
>

A
S
C
I
I

fi

le

pa
ge

1

pa
ge

2

pa
ge

3

C
E
N
T
R
A
L

P
R
O
C
E
S
S
I
N
G

U
N
I
T

B
U
F
F
E
R

pa
ge

1

pa
ge

2

pa
ge

3

AS
CI
I

fi
le

OU
TP
UT

Fi
gu

re

T-
l.
 D
ia

gr
am

ma
ti

c
re

pr
es

en
ta

ti
on

of

th

e
pr
oc
es
se
s

of

bu

il
di

ng

a

TE
CO

fi

le
.

SOME BASIC TECO CONCEPTS

Before TECO can be utilized, there are some basic concepts of its

structure and nomenclature that must be understood. The following section

describes the more important and useful of these.

* An "*" printed on the left-hand margin indicates that

TECO is in memory and that the editor is ready to accept

commands. This is similar to the period printed by the

RT-11 monitor.

$ This is the symbol typed on the terminal when the ESC

(ESCAPE) key is depressed; it does not represent a dollar

sign. The ESC key is typed singularly to terminate

certain commands and twice to execute a command or

command string.

COMMANDS These generally consist of one- or two-character codes

that direct the editor to manipulate text characters or

lines of text. The codes are alphabetic characters and

may be preceded by numeric characters which designate how

many times the command is to be executed. Other commands

are followed by ASCII characters that give additional

information needed for the execution of the command.

COMMAND STRINGS Several commands may be strung together before they are

all executed. Commands to which ASCII characters have

been appended must be separated from following commands

by a single "$" (ESC). The commands in the command

string are executed from left to right.

INCORRECT

COMMANDS

Whenever TECO detects an incorrect command, an error

message is printed and command execution stops at that

point. Immediately after the error message is printed,

an "*" is printed indicating that TECO is ready to accept

new commands. The commands following the error in the

command string are ignored.

The faulty command in a command string can be located by

typing a question mark (?). TECO will then print out all

commands in that string up to and including the character

which caused the error.

TYPING ERRORS Typing errors are corrected in the same way as with the

RT-11 operating system.

DELETE The DELETE key is used for single character erasure. A

"/" is not printed when the DELETE key is used, as is the

case at the RT-11 monitor level. However, TECO reprints

the deleted character.

CTRL/U The CTRL/U command is used to delete the entire command

line. This command is executed by typing a U while

holding the CTRL (CONTROL) key down.

POINTER The most important concept in TECO is that of the

"pointer." The pointer indicates the current position of

the editor in the buffer. This pointer does not point to

a character; it points between two characters. There are

commands to position the pointer at any point in a line,

or at the beginning or end of the text in the buffer.

Once positioned at the designated place, the pointer

serves as a "target" for any editing commands. The user

must understand how to manipulate the pointer to be able

to successfully operate within TECO.

NON-PRINTING

CODES

Line Feed

Carriage Return

Space

Included in the main body of textual material in a file

are codes that are inserted whenever the LINE FEED, SPACE

bar, or RETURN key is typed. These are all known as non­

printing codes because a character is not printed on the

terminal when these keys are typed. The code for the

RETURN key actually consists of two codes; one for

the carriage return followed by one for the line feed.

When the completed file is printed on a terminal, no

specific character is typed when one of these codes is

encountered by the computer, but the action specified by

the code is taken; that is, a space is inserted when the

"space code" is read.

PAGE TECO breaks up large units of text (contained in a file

or entered by the user) into smaller units known as

"pages." TECO edits one page of text at a time. Page

manipulation commands are used to read a page into the

buffer or to write a page from the buffer to the output

file.

The amount of text contained in a page can be limited by

inserting a special code at the end of each page. For

example, if the user wants the page size to be 60 lines

of text, the end-of page code is inserted after every 60

lines of text. This method is discussed on page 22 of

the DEC "TECO Manual."

If the main body of text being edited does not contain

end-of-page codes, TECO uses its own method to define the

size of a page. In this case, TECO considers one page to

consist of the amount of text that can be entered

directly or read into the buffer until it is three-

quarters full. Upon reaching this point, TECO will

terminate Input to the buffer after the next line-feed

code is encountered. This is the method normally used in

the applications at the USGS Mineralogy Laboratory.

Under normal operating conditions, over 150 lines of text

with 80 characters per line can be entered into the

buffer at one time. Many more lines of text can be

entered if each line contains less than 80 characters per

line.

.EDIT This command loads the TECO.SAV file into memory.

However, the actual entry into TECO is more complicated

and explained in detail later in this manual.

TO EXIT FROM TECO

EX

There are several commands that allow the user to exit

from TECO. The most commonly used is EX. This returns

the user to the monitor command level of the RT-11

operating system. When this command is executed, the

TECO program moves all the remaining text in the buffer

or the input file to the output file and then closes the

output file. All the edited text and the unedited

portion of the original text is now saved in the output

file.

This is the symbol used in this manual for a carriage

return/line feed.

THE TECO COMMAND SET ABBREVIATED

The TECO Command Set is large and gives the user a great amount of editing

versatility. However, the average user needs to know only a small number of

the commands to satisfy most of his file editing needs. In the following

paragraphs, basic commands are introduced and information on their use is

given. In addition, some of the common error and warning messages issued by

TECO when commands are used incorrectly are also introduced.

The commands are grouped according to their functions. The group headings

used here are the same as those used in the DEC "TECO Manual" so that

additional commands in each group are easily accessible. The "TECO Pocket

Guide" also lists these commands, but only gives a brief description of each

one. Included in this manual are some commands for file selection, text

buffer input/output, pointer positioning, text buffer type-out, text editing,

and character string searching.

The error and warning messages are introduced along with the commands to which

they refer.

FILE SPECIFICATION COMMANDS

If the material to be edited is already contained in a file, this file will be

known as the input file to the text buffer. After being edited in the buffer,

the material is written to another file known as the output file. Input and

output files are selected either by TECO file specification commands or by

using the RT-11 "EDIT" command and its options.

Once the user is operating within TECO, the input and output files may be

changed with two-letter TECO file specification commands. The three most

commonly used commands are:

ER (edit read)

EW (edit write)

EB (edit backup)

Each of these must be followed by the file name. Because the "EDIT" command

is more commonly used for entering TECO and specifying input and output files,

the above three commands will not be discussed in this manual. The reader is

referred to the DEC "TECO Manual," section 2.1 for their descriptions.

THE RT-11 "EDIT" COMMAND

The "EDIT" command loads TECO into memory and also reads the first page of

text into the buffer from the input file. The options for the "EDIT"

command are:

/CREATE

/INSPECT

/OUTPUT

The "EDIT" command is followed by the file name and extension.

The general format for each of the "EDIT" command options along with a

description of the option and specific examples follows:

EDIT/INSPECT device:file name.extension^

Example:

EDIT/INSPECT MCI .-QUARTZ.DAT

This command opens the specified

file as the input file for the

text buffer. This option is used

when the contents of a file needs

to be inspected, but not changed.

The command in this example does

three things: 1) Loads TECO into

memory; 2) opens the file

QUARTZ.DAT on the MCI: storage

device for input to the buffer;

and 3) reads the first page of the

file into the buffer so the user

may inspect its contents.

EDIT/CREATE devicerfile name.extension This command is used to create a

new file. A file with the name

and extension specified by the

user is opened on the specified

storage device to receive output

from the text buffer. It is

important to remember that once

material has been placed in the

output file it cannot be re-

entered into the buffer unless the

file is closed and then re-opened

as an input file.

Example:

EDIT/CREATE MINI.LSI The command in this example loads

TECO into memory and creates a new

file, MIN1.LST, on the default

storage device.

EDIT device:file name.extension When the "EDIT" command is used

without any options, the specified

file is opened for input to the

text buffer and an output file

with the same specifications is

created.

This form of the command has a

very useful safety feature; when

this command is used the original

input file is always retained.

This can be very useful if for

some reason TECO is aborted or the

computer unexpectedly shuts

down. In this situation the

output file, which contains the

edited text, will be lost, but the

original file will remain-with its

original name and extension.

If the user exits from TECO

in a normal manner, as with the

"EX" command, the original file

and the edited file are

retained. However, the extension

of the original file is changed to

.BAK, which indicates that it is a

.BAK

"backup" file. The edited file is

given the name and extension of

the original file.

This is the command to use if the

edited file is to have the same

specifications (same name,

extension and storage device) as

the original file and if a copy of

the original file, unedited, is to

be retained.

Example:

EDIT RL0:STARTS.COM The command in this example does

four things: 1) loads TECO into

memory; 2) designates the

STARTS.COM file on the RL0:

storage device as the input file;

3) reads the first page of this

file into the buffer; and 4) opens

an output file with the same

specifications as the input file.

10

Upon exiting TECO, the original

file will be labeled STARTS. BAK

and the new, edited version will

be labeled STARTS. COM.

EDIT/OUTPUT .-device: file name. extension device:file name, ext ens ion

(output file) (input file)

This command allows the user to

specify both an input and an

output file. If the

specifications for the input file

are different from the

specifications for the output

file, the input file will remain

unchanged upon exiting from

TECO. At least one of the three

file identifiers (device name,

file name, or extension) must be

different.

% SUPERSEDING EXISTING FILE

Example:

EDIT/OUTPUT:MC1:2EOL1.DAT MClrZEOL.DAT

If both files have the exact same

name and extension the warning "%

SUPERSEDING EXISTING FILE" will be

typed on the terminal. This

indicates that when TECO is exited

(as with the "EX" command), only

one file will remain the output

file with edited text. No copy of

the original file will remain; it

will be deleted.

The command in this example does

four things: 1) loads TECO into

memory; 2) designates ZEOL.DAT as

11

PAGE MANIPULATION COMMAND

the input file; 3) designates

ZEOL1.DAT as the output file; and

4) reads the first page of

ZEOL.DAT into the buffer. The

text in ZEOL.DAT is to be edited,

and the edited text is to be

written in ZEOL1.DAT. Since the

two files have different names,

the file ZEOL.DAT will be retained

after exiting from TECO.

The page manipulation command controls the transfer of textual material

between the input/output files and the text buffer. It permits pages of text

to be read into the buffer from an input file and written from the buffer into

the output file. The PULL (P or nP) command is discussed below.

P (Pull) Writes the contents of the text

buffer into the output file,

clears the buffer, and reads the

next page from the input file into

the buffer.

nP Executes the P command "n" times,

where n is an integer £ 1. A

value of 1 is assumed if n is not

specified.

BUFFER POINTER MANIPULATION COMMANDS

The buffer pointer is the only means of specifying the location within a block

of text in which insertions, deletions, or corrections are to be made. The

following commands permit the buffer pointer to be moved to a position between

any two adjacent characters in the buffer. TECO positions the pointer before

12

the first character in the buffer after "EDIT" is executed or after every "P"

command is executed. The JUMP (J, ZJ), LINE (L, nL), CHARACTER (C, nC) and

REVERSE (R, nR) commands are introduced below.

J (Jump) Moves the pointer to the beginning

of the buffer, before the first

character.

ZJ Moves the pointer to a position

immediately following the last

character in the buffer.

L (Line) Advances the pointer to the

beginning of the next line.

nL Executes the "L" command n times,

where n is any integer. A

positive value of n moves the

pointer to the beginning of the

nth line following the current

pointer position. A negative

-nL value moves the pointer backward n

lines and positions it at the

beginning of the nth line

preceding the current

0L position. If n is zero, the

pointer is moved to the beginning

of the line on which it is

currently positioned.

C (Character) Moves the pointer forward across

one character.

13

nC Executes the "C" command n

times. A positive value of n

moves the pointer forward across

-nC n characters. A negative value of

n moves the pointer backward

across n characters. If n is

zero, the pointer position is not

changed.

R (Reverse) Moves the pointer backwards across

one character.

nR Executes the "R" command n times.

These commands may be used to move the buffer pointer within a page but not

across page boundaries. If a "C" command attempts to move the pointer beyond

the beginning or end of the buffer, the error message

?POP Pointer off page

is printed and the command is ignored.

If an "L" command attempts to exceed the page boundaries in this manner, the

pointer is positioned at the boundary that would have been exceeded. The

command "-1000L" would position the pointer before the first character in the

buffer. The command "1000L" would position the pointer after the last

character in the buffer. No error message is printed in either case.

BUFFER POINTER MANIPULATION AND NON-PRINTING CODES

When editing text is is easy to forget about the presence of non-printing

codes within the body of text. It is especially important to remember that

two of these codes are added to the end of each line: one is the code for

carriage return (CR) and the other a line feed (LF). Whenever the RETURN key

is typed, these two codes are added to the text being edited or created; CR is

added first, followed by LF. They must be considered when manipulating the

pointer near or at the end of a line.

It is possible to remove only one of these codes with an editing command. For

example, if the "CR" code is deleted, leaving the "LF" code, the terminal will

advance to the next line, but the carriage will not move to the left-hand

margin. If the "LF" code is deleted, leaving the "CR" code will return to the

beginning of the line just typed thus causing overprinting. It can become

very confusing determining "what happened" during an editing session if only

one of these codes is inadvertently deleted.

TEXT TYPE-OUT COMMANDS

The following commands permit portions of the text in the buffer to be printed

for examination. These commands do not move the buffer pointer. The Type (T,

nT, HT) and Verify (V) commands are introduced.

T (Type) Types the contents of the text

buffer from the current position

of the pointer through and

including the next line feed

character.

nT Types n lines. A positive

value for n causes the next n

-nT lines following the pointer to

be typed. If n is negative,

0T the n lines preceding the

pointer are typed. If n is

zero, the portion of the line

on which the pointer is

located is typed from its

beginning up to and including

the last character preceding

the pointer's locations.

Before issuing text deletion

or insertion commands, the

user must know the exact

15

location of the pointer. The

"0T" command is particularly

useful for determining its

position. This command should

be used frequently to

determine that the pointer is

actually located where the

user expects it to be.

HT Types the entire contents of

the text buffer.

V (Verify) Types the entire line on which

the pointer is currently

located.

16

TEXT MODIFICATION COMMANDS

Text modification commands permit the user to insert or delete text from the

buffer. This collection of commands is a condensation of commands from two

groups of commands as they are presented in the "TECO Manual," They are from

the text insertion and text deletion command groups. Those presented here

include: Kill (K, nK), Delete (D, nD), and Insert text (I text$).

K (Kill) Deletes all the characters between

the current position of the

pointer and the following "CR" and

"LF" codes, including the "CR" and

"LF" codes.

nK Performs the "K" command n

times. A positive value of n

causes the n lines following

-nK the pointer to be deleted. A

negative value of n causes the

0K n lines preceding the pointer

to be deleted. If n is zero,

text from the beginning of the

line on which the pointer is

located up to the pointer is

deleted.

0LK Deletes the entire line. This

is a combination of the "0L"

and "K" commands. The "0L"

command moves the pointer to

the beginning of the line, and

then the "K" command deletes

the entire line.

The "K" command will not delete

text across a page boundary.

If directed to do so, it will

17

delete text up to the boundary

of the buffer and then stop.

D (Delete) Deletes the character following

the buffer pointer.

nD

-nD

?DTB Delete too big

Performs the "D" command n

times. A positive value of n

causes the next n characters

following the pointer to be

deleted. A negative value of n

causes the n characters

preceding the pointer to be

deleted. If n is zero, the

command is ignored.

The "D" command will not delete

text across a page boundary. A

"D" command attempting to do so

results in a "?DTB" error

message and the command is

ignored.

Itext$ (Insert) The letter "I" stands for

"Insert," and the word "text"

represents a string of ASCII

characters that are inserted

into the buffer at the current

position of the pointer. After

text insertion, the pointer is

positioned immediately after

the last character of the

inserted text.

This is the command that allows

the user to enter an entire

page of material directly into

18

the buffer when building a

file, or to insert a single

character somewhere in a body

of text while editing. In

other words, the word "text"

between the command and the

"ESCAPE" ($) symbol can

represent either a single

character or an entire page of

material.

19

SEARCH COMMANDS

The following commands may be used to search for a specified string of

characters which occur somewhere in the input file. If the specified string

of characters is found, the buffer pointer is positioned immediately after the

last character in the string. The SEARCH, (S), NON-STOP SEARCH (N),

SEARCH/REPLACE (FS), and NON-STOP SEARCH/REPLACE (FN) commands are introduced.

Stext$ (Search) Searches the text buffer for

the next occurrence of the

character string following the

current pointer position.

?SRH Search failure "text"

The word "text" between the "S"

and the "ESCAPE" symbol ($)

represents the string of ASCII

characters for which the user

wishes to search. If the

string is found, the pointer is

positioned immediately after

the last character of the

string. If it is not found,

the pointer is positioned

immediately before the first

character in the buffer and the

error message "?SRH" is

printed. The word "text"

represents the ASCII character

string that was searched for.

-Stext$ Identical to the "SText$"

command except that the search

proceeds in the reverse

direction. The text preceding

the current pointer position is

searched for the specified

string of characters.

20

Ntext$ (Non-stop search)

This command performs the same

function as the "S" command

except that the search is

continued beyond the present

contents of the buffer (i.e.,

across page boundaries) if

necessary. If the search

reaches the end of the buffer

without finding a match for the

character string, it writes the

contents of the buffer into the

output file, clears the buffer,

then reads the next page of the

input file into the buffer and

continues the search. If the

end of the input file is

reached before the character

string is found, the error

message "?SRH" is printed. It

is then necessary to close the

output file and reopen it as an

input file before any further

editing may be done on that

file.

FStextl$text2$ (Search/Replace) Executes a search similar to a

"Stext$" search command. When

the character string "textl" is

found, it is deleted and then

replaced with the character

string "text2."

21

-FStextl$text2$ Performs a search similar to a

FStextl$text2$ search, except

that the search/replace

operation proceeds backwards

from the present position of

the pointer.

FNtextl$text2$

(Non-Stop Search/Replace)

Executes a continuous

search/replace operation

through the entire file (across

page boundaries).

All of the search commands execute a search by attempting to match the

specified string of ASCII characters with portions of the buffer contents.

They begin searching for the specified character string at the current

position of the pointer. However, only the "-Stext$" and "-FStextl$text2$"

commands will locate any occurrence of the character string which precedes the

current pointer position. None of the commands will locate any character

string which extends across a page boundary; i.e., if portions of the

character string are on two different pages, none of the search commands will

locate the string.

These commands are very useful for quickly moving the pointer to a desired

position for editing purposes. With them the user does not need to count the

number of lines or characters from the present pointer position to the desired

position as he would if using the "L" or "C" commands for pointer movement.

However, the user should make certain that the search terminates at the

correct position and not at the end of an identical character string located

in a different position in the text than the one desired. It is useful to

execute a typing command after a search command to verify the location of the

pointer.

22

COMMAND SUMMARY CHART

23

.EDIT

*

$

$$

RETURN (CRXLF)

QUICK GUIDE TO TECO COMMANDS

Getting Started

This command gets the user into TECO - see the "Input/Output File
Designation" section.

Indicates that TECO is ready to accept a command.

Character typed on the terminal when the ESC (escape) key is typed
- used to separate and end commands.

Typed after a command or command string to execute it.

Everytime the RETURN key is hit, a carriage return (CR) and a line
feed (LF) code are added to the text.

Input/Output File Designation

All of these commands place TECO into memory and, when applicable,
read the first page of the input file into the buffer.

EDIT/CREATE device:file name.extension

EDIT/INSPECT device:file name.extension

EDIT device:file name.extension

Creates a new file with the specifications
listed.

Opens the specified file as the input file
only.

Opens the specified file as the input file
and creates a new file with the same
specifications as the output file. Upon.
exiting from TECO, a copy of the original
file is retained, but given a .BAK
extension.

EDIT/OUTPUT:device:file name.extension device:file name.extension
(output file) (input file)

Opens the specified files as the input and
the output files. If the two file
specifications differ - the input file is
retained; if they are the same - the input
file is deleted upon exiting from TECO.

Reading File Contents into the Buffer

P (Page) Writes the present contents of the buffer into the output
file, clears the buffer, reads the next page of the input file into
the buffer, and positions the pointer at the beginning of the buffer.

Moving the Pointer

(Jump) Moves the pointer to the beginning of the buffer.

(Jump to the End) Moves the pointer to the end of the buffer.

(Line) Moves the pointer to the beginning of the next line.

Moves the pointer to the beginning of the "nth" line. Positive value
of n - move forward; negative - move backwards; 0 - move to the
beginning of the line on which the pointer is currently located.

(Character) Moves the pointer ahead by one character.

J

ZJ

L

nL

24

nC

R

nR

HT

T

nT

SText$

Ntext$

FStextl$text2$

Itext$

K

nK

D

nD

EX

Moves the pointer n characters from its present position. If n is
positive - move forward; negative - move backwards; 0 - no movement.

(Reverse) Reverses, or backs up, the pointer across one character.

Executes the "R" command n times.

Typing out the Buffer Contents (pointer does not move)

Types out the entire contents of the buffer.

(Type) Types the current line, from the present position of the
pointer to the end of the line.

Types n lines before or after the line on which the pointer is
currently located. If n is positive - type n lines following the
pointer; negative - n lines preceding; 0 - type from the beginning of
the line on which the pointer is located up to and including the
character preceding the location of the pointer.

(Verify) Types the entire line on which the pointer is currently
located.

Searching for a String of Characters

(Search) Searches from the current pointer position to the end of the
buffer for the specified character string (text).

(Non-Stop Search) The same as Stext$ except that the search continues
to the end of the input file if necessary.

(Search/Replace) Performs a Stext$ search for "textl" and replaces it
with "text2."

For all three commands, the pointer is positioned after the last
character in the string if the search is successful.

Inserting and Deleting Text

(Insert) Inserts the specified text at the current pointer
location. After text insertion, the pointer is located after the
last character inserted.

(Kill) On the line containing the pointer, deletes all the characters
following the pointer up to and including the next "CR" and "LF."

Executes the "K" command n times. If n is positive - delete n lines
following the pointer; if negative - n lines preceding; 0 - delete
all characters preceding the pointer on the line which currently
contains the pointer.

(Delete) Deletes a single character following the pointer.

Deletes n characters. If n is positive - delete n characters
following the pointer; negative - n characters preceding; 0 - no
effect.

Exiting from TECO

(Exit) Takes the user out of TECO and returns him to monitor command
level.

25

TECO EXAMPLES

The TECO program will be used in this section to create and then edit a

file containing X-ray diffraction data. The following examples are

specifically tailored for use at the USGS facility. If the user plans to

recreate the examples as they are presented, diskette #1 (MC0: Master

Diskette) must be in unit MC0: and a blank diskette (or the one used in

earlier examples) in drive unit MCI:. The examples are presented with the

same format that is used for the monitor command language examples.

1. Creating a file with TECO.

The following describes how to create a new file. In this example, a

data file which consists mostly of numerical data is created. However, the

same instructions apply to any type of ASCII file.

At this point it is assumed that the RT-11 operating system has been

invoked (boot-strapped) and the monitor is ready to accept a command.

.EDIT/CREATE HC1;CUBIC.DAT^ The RT-11 "EDIT" command is used to

load the TECO.SAV file into memory.

Since the user is creating a new file,

the "/CREATE" option is used to open a

new file named CUBIC.DAT, which is

located on the MCI: storage device.

This file will serve as the output file

for all text entered into the buffer.

As soon as the "EDIT" command is

executed, an "*" appears indicating

that TECO is in memory and ready to

accept a command.

26

After the asterisk, the "I" (insert)

*ITITLE!URANINIT£ CUBIC SYSTEM TEST BATA
SYSTH;CUBIC1
A i 5.3700 il
THEMX; 61.000001,
PUL ; 1.54173 \
DSPAC; 1 3.090 111}
DSPAC! 2 2.636 0 0 0)
DSPAC; 3 1.900 0 0 Oj
DSPAC; 4 1.620 0 0 05
DSPAC: 5 1.540 0 0

*I

command is used to let TECO know that

everything following the tf l" is to be

placed directly into the buffer

beginning at the current location of

the pointer. Since TECO has just been

loaded into memory, the pointer is at

the beginning of the buffer.

Between the "I" and the next "$" are

the contents of the file being

created. The user should try to copy

this file exactly as it is presented.

Especially pay attention to the

location of spaces and the alignment of

entries within a column.

If the data listed in a file such as

this is to be used by a particular

program, it must be arranged in the

exact format required by the program

specifications. If this format is not

followed exactly, incorrect data may be

transferred to the program from this

file. Incorrect formatting may cause

the program to abort when it attempts

to use this data.

After the ESCAPE symbol ($) terminating

the insert command, the "EX" command is

entered. Both the exit and insert

commands are then executed by typing

ESC twice ($$). "EX" is used to exit

27

from TECO and return to the RT-11

monitor command level. However, before

this happens, all the text in the

buffer is written to the file CUBIC.DAT

and the file is closed.

,DIR HC1tCUBIC.DAT).
01-Jan-82

CUBIC .DAT 1 01-Jan-82
1 Files, 1 Blocks
65? Free blocks

A return to monitor command level is

indicated by a dot typed on the left

margin. Use the "DIR" command to

confirm the existence of the file just

created.

.TYPE HC1;CUBIC.DATJ.

TITIE:URANINITE CUBIC SYSTEM TEST DATA
SYSTM:CUBIC
A :
THEMX:
PUL :
DSPAC:
BSPAC:
DSPAC:
DSPAC:
DSPAC:

5.3700
61.00000

,54178 -
3.070 1 1 1
2.686 000
1.900 000
1.620 000
1.540 000

The "TYPE" command is used to confirm

that this file contains all the

information that was entered into it

with TECO.

Notice that the first line of the file

begins on the left margin, not three

characters to the right of the margin

where typing began during creation of

the file. The asterisk and the "I"

command, which occupied the first and

second spaces, were not entered into

the buffer.

2. Editing a file with TECO

Now that a file has been created, the user may want to correct errors,

add additional data, or delete data from the file. All of these operations

can be easily performed with TECO editing commands. A file named CUBIC1.DAT

on the MC0: storage device will be used for this example. It contains the

same data as CTJBIC.DAT, but with numerous errors. In this example, long

command strings are repeatedly used. At first they may seem cumbersome to the

user, but by the end of the exercise the user should feel comfortable with

them.

28

In several cases the most efficient method of correcting a particular

error has not been used. This has been done on purpose so that the user can

gain experience with a large number of commands and manipulating the pointer.

Load TECO into memory using the RT-11
.EDIT HCO»CUmi.»AT> ^ COImiandi Hone of the optlons are

required to simply edit a file. TECO

then retrieves the previously created

CUBIC1.DAT from the MC0: storage

device. CUBIC1.DAT is now designated

as both the input and output files, and

a copy of the original file (unedited)

will be retained as a .BAR file after

the user exits XECO.

Use of the "EDIT" command also results

in the first page of the input file (in

this case the entire file) being read

into the buffer.

As soon as the "EDIT" command is

executed, an asterisk is typed at the

left hand margin to indicate that TECO

is ready to accept commands.

To view the contents of the buffer (and

in this case the entire file) "HT" is

used, which requests that the entire

contents of the buffer be typed out.

This command is then executed by typing

the ESC key twice, indicated by the two

$ after the "HT".

Once the "HT" command has been

executed, the contents of CUBIC1.DAT

29

TITKE:URAMINITE CUBIC SYSREM TEST DATA
SYSTM-.CUBIC

A : 5.3700
THEMX: 61.50000
PUL : 1.54173
DSPAC: 1
DSPAC: 2
DSPAC: 2
DSPAC: 4
DSPAC: 5

3.070 1 1 1
2.636 000

1.700 000
1.630 674
1.540 000

are typed out. The contents of this

file are the same as the contents of

CUBIC.DAT except that this one contains

eleven errors. The eleven errors are

marked on a copy of the file listed

below.

Line
Number.

1. TITlfe:URANINITE CUBIC SYSlfel TEST DATA

2. SYSTM:CUBIC

3. (blank line?

4. A : 5.3700

5. THEMX: 61.50000

6. PUL : 1.54173

7. DSPAC: 1

8. DSPAC: 2

3.070 1 1 1

5
2.686 000

9. DSPAC: I 1.700 000

1.6^0 I ^ 41010. DSPAC: 4

11. DSPAC: £ 1.540 000

The procedure for correcting each

mistake is given below. In general,

each mistake is corrected by using one

command string. So that the Individual

commands can be identified more easily,

each command string is broken down into

its component commands, separated by

spaces, at the beginning of each

subsection.

30

To correct the misspelled word "TITKE"

on line 1.

TITKE rURANINITE,

Command string: 3C D IL$ V $$

Before issuing any commands, the

current position of the pointer must be

ascertained. Since the "P" command was

used earlier, the buffer pointer is

located at the beginning of the buffer.

Use the "C" command to move the pointer

to the right by three characters (3C)

so that is is between T and K.

TITKE:URANINITE.....
T

Delete the next character (K) with a

single "D" (Delete) command. Now

insert the letter L in this position

with the "I" (Insert) command, which

always must be terminated by typing a

single ESC. Finally, to check the

results of this command string, use the

T!TLE:URANINITE CUBIC SYSREM TEST DATA "v" (Verify) command to have the entire

line typed out. A double ESC executes

the command string.

(2) To correct the misspelled word

"SYSREM11 on line 1.

...CUBIC SYSREM TEST DATA

Command string: SSYS$ D IT$ V $$

31

E:URAHIN1TE CUBIC SYSREM TEST DATA

To find the current location of the

pointer use the "T" (Type) command,

which types the line on which the

pointer is located, beginning at the

current position of the pointer* The

portion of the line typed out indicates

that it is located between the letters

L and E in the word TITLE.

URANINITE,TITLE:

This indicates that after the "I"

command is used, the pointer is located

directly after the inserted characters.

The "S tf (Search) command instructs TECO

to search for the character string SYS

and then place the pointer after the

string. This will place the pointer

between the letters S and R in the'

misspelled word "SYSREM."

TITLE:URAHINITE CUBIC SYSTEM TEST DATA

...CUBIC SYSREM TEST DATA
t

The "D" command deletes the next letter

after the pointer (R) and then the "I"

command is used to insert the letter T

in its place. To check the results,

the "V" command is used to have the

entire line typed out.

The first line is now correct.

32

(3) To remove the blank line after line

2.

Command string: 2L K -L 2T $$

Use the command "2L" (Line) to advance

the pointer by two lines. Whenever the

"L" command is used, the pointer is

positioned at the beginning of the line

to which it is instructed to go. The

pointer is now at the beginning of the

blank line.

*2LK-L2TU

The "Kn (Kill) command deletes the

entire line. To check the results, the

pointer is moved back by one line (-L)

and then the command "2T" is used to

have the next two lines following the

current pointer position typed out.

SYSTHiCUBIC
A : 5.3700

The typed lines reveal that the blank

line has been removed.

(4) To change the number 61.5 on line 5

to 61.0.

THEMX: 61.50000

Command string: FS61.5$61.0$ V $$

THEHX: 61.00000

To easily change the number 61.5 on

line 5 to 61.0, the search/replace

command, FS61.5$61.0$, is used. The

number 61.5 is searched for and then

replaced with the number 61.0. The "V"

command is used to check the results.

33

After execution of this command, the

pointer is located after the first zero

in the number 61.00000.

THEMX: 61.00000
t

(5) To move all the numbers on line 8

to the right by one space.

DSPAC: 2 2.000 0 0 0

Command string: 3L 6C I $ -L 3T $$

The pointer is currently on the line

just corrected, "THEMX: 61.0000,"

which is line 5. By using the "3L"

command it will be positioned at the

beginning of line 8.

DSPAC: 2

If a single space is inserted between

the colon and the number 2, the entire

portion of the line following this

point will be moved to the right by a

single space. The command "6C" moves

the pointer to the proper position.

DSPAC: 2....
T

A blank is then inserted with the "I"

command. To check that the numbers in

this line are now aligned with those of

the lines above and below, the "-L"

command is used to move the pointer

back by one line (to the beginning of

34

*3L6CI $-L3TI$

DSPAC: 1
DSPAC: 2
DSPAC! 2

3.090 1 1 1
2.486 000
1.900 000

line 7) and then the next three lines

are typed out with the "31" command.

(6) To replace the number 2 following

the colon in line 9 with the number 3.

DSPAC: 2 1.900 000

Command string: 2L8CDI3$V$$

DSPAC: 1 3.090 1 t 1

First, check the current location of

the pointer with the "V" command.

This indicates that the pointer is on

line 7, so the "2L" command is used to

place it at the beginning of line 9.

t
DSPAC: 2 1.900....

It is then moved to the right by eight

characters (8C).

 -'2L3CDI3W*

DSPAC: 3 1.900 000

DSPAC: 2 1.900....

The following character (2) is then

deleted (D) and replaced with the

number 3 (13$). The "V" command is

then used to check the results.

(7) To change the number 1.630 on line

10 to the number 1.620.

DSPAC: 4 1.630 674

Command string: SI.6$ D 12$ 0T $$

35

The search command, SI.6$, is used to

position the pointer between the

characters 6 and 3.

DSPAC: 4 1.630 674

The 3 is then deleted and replaced with

a 2. To both check the results and

locate the pointer, the "01" command is

used. When this command is executed

the line on which the pointer is

DSPAC: 4 1.62 located is typed out up to the

character preceding the pointer. The

portion of the line typed out reveals

that the pointer is in the position

indicated below.

DSPAC: 4 1.620 6 7 4
t

(8), (9), (10) To change the last three

numbers on line 10 to zeros.

DSPAC: 4 1.620 6 7 4

Command string: 3C D 10$ 2C D 10$

2C D 10$ V $$

Now that the user knows that the

pointer is located between the

characters 2 and 0 on line 10, he can

use the "3C" command to move it just to

the left of the number 6.

DSPAC: 4 1.620 674
t

This number is deleted (D) and a zero

36

Is inserted In its place (10$). The

pointer is then advanced two characters

(in this case they are blanks) to the

right (2C) and the number 7 is changed

to 0 (10$).

*3CDIO*2CDIO*2CDIO*V«

DSPAC: A 1.620 000

1.620 074

1.620 0 0. 4

DSPAC: 4

DSPAC: 4

The number 4 is similarly changed to

0. Finally, the results are checked

with the "V" command.

(11) To move the number 5 in the last

line to the right by one space.

DSPAC: 5 1.540 000

Command string: L 6C I $ 2C D V $$

First, the pointer is moved from its

current position on the second to last

line to the beginning of the last line

by using the "L" command. It is then

advanced six characters to the right

(6C) which places it directly after the

colon.

DSPAC:. 5
t

1.540 000

A blank is inserted here (I $), which

will cause the portion of the line to

the right of this point to be moved to

the right by a single space (as with

mistake #5). Since the user wishes to

move only the number 5 to the right, a

37

space must be removed after the number

5. This will bring the portion of the

line following the number 5 back to its

original position. Advancing the

pointer by two characters (2C) brings

it to the right of number 5.

*L6CI -I2CDV-H

DSPAC: 5 1.540 000

DSPAC: 5
t

1.540 000

The character following 5, which is a

space, is then deleted (D). The

results are then checked with the "V"

command.

TITLE:URANINITE CUBIC SYSTEM TEST DATA
SYSTM:CUBIC
A : 5.3700
THEMX: 61.00000
PUL : 1.54173
DSPAC: 1 3.090 1 1 1
DSPAC: 2 2.636 000
DSPAC: 3 1.900 000
DSPAC: 4 1.620 000
DSPAC: 5 1.540 000

The "HT" command is then used so that

the entire file is typed out for

inspection.

The user may now return to monitor

command level with the "EX" command.

Once this command is executed, a copy

of both the original file and the

edited version will be on the MC0:

storage device. The original file is

labeled CUBIC1.BAK and the edited file

is labeled CUBIC1.DAT.

.BIR HCO:CUSIC1 .DAT.f1CO;CUBIC1 .BAK d.

Ol-JAN-32
CUB1C1.BAT 1 01-JAN-32
CUBIC1.BAK 1 01-JAN-32
2 Files, 2 Blocks
12 Free blocks

When the computer returns to the RT-11

command level, the user may use the

"DIR" (DIRECTORY) command to verify

that these files exist. The message

typed out reveals that both files exist

and are on the MC0: storage device.

38

.TYPE HCOiCUBId.BAK^
TITKE:URANINITE CUBIC SYSREN TEST DATA
SYSTMrCUBIC

A : 5.3700
THEMX: 61.50000
PUL : 1.54178
DSPAC: 1 3.090 1 1 1
DSPAC: 2 2.686 000
DSPAC: 2 1.700 000
DSPAC: 4 1.630 674
DSPAC: 5 1.540 000

To verify that CUBIC1.BAK contains the

original (unedited) file and that

CUBIC1.DAT contains the edited file,

use the "TYPE" command to check the

contents of each file.

.TYPE HCO;CUBIC1.DATJ
TITLE:URANINITE CUBIC SYSTEM TEST DATA
SYSTM:CUBIC
A : 5.3700
THEMX: 61.00000 *
PUL : 1.54173
DSPAC: 1 3.090 1 1 1
DSPAC: 2 2.686 000
DSPAC: 3 1.900 000
DSP&C: 4 1.620 000
DSPAC: 5 1.540 000

39

