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PREFACE

This paper concerns certain aspects of applied statistics which can 
be used for analyzing thematic maps and mapping for accuracy. The 
concepts for this application have been developed over the past several 
years and have been documented in a series of papers most of which have 
been recently published (Rosenfield, 1981; Rosenfield, 1982; Rosenfield 
and Melly, 1980; and Rosenfield and others, 1982). This paper brings 
together these separate ideas into a cohesive body. The thoughts of this 
paper have been presented during the Symposium on Machine Processing of 
Remotely Sensed Data at Purdue University/LARS, June 3-6, 1980, at the 
conference dealing with techniques for assessing Landsat classification 
accuracy at the EROS Data Center, November 12-14, 1980 (Mead and Szajgin, 
1982), at the March 1982 meeting of Mid-Atlantic Division, Association of 
American Geographers, George Mason University, Fairfax, Va., and at the 
meeting of URISA, August 22-25, 1982, Minneapolis, Minn.
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ANALYZING THEMATIC MAPS AND MAPPING FOR ACCURACY 

By George H. Rosenfield

ABSTRACT

Two problems which exist while attempting to test the accuracy of 
thematic maps and mapping are: (1) evaluating the accuracy of thematic 
content, and (2) evaluating the effects of the variables on thematic 
mapping. Statistical analysis techniques are applicable to both these 
problems and include techniques for sampling the data and determining 
their accuracy. In addition, techniques for hypothesis testing, or 
inferential statistics, are used when comparing the effects of variables.

A comprehensive and valid accuracy test of a classification project, 
such as thematic mapping from remotely sensed data, includes the following 
components of statistical analysis: (1) sample design, including the 
sample distribution, sample size, size of the sample unit, and sampling 
procedure; and (2) accuracy estimation, including estimation of the 
variance and confidence limits. Careful consideration must be given to 
the minimum sample size necessary to validate the accuracy of a given 
classification category.

The results of an accuracy test are presented in a contingency table 
sometimes called a classification error matrix. Usually the rows 
represent the interpretation, and the columns represent the verifica­ 
tion. The diagonal elements represent the correct classifications. The 
remaining elements of the rows represent errors by commission, and the 
remaining elements of the columns represent the errors of omission.

For tests of hypothesis that compare variables, the general practice 
has been to use only the diagonal elements from several related classifi­ 
cation error matrices. These data are arranged in the form of another 
contingency table. The columns of the table represent the different 
variables being compared, such as different scales of mapping. The rows 
represent the blocking characteristics, such as the various categories of 
classification. The values in the cells of the tables might be the



counts of correct classification or the binomial proportions of these 
counts divided by either the row totals or the column totals from the 
original classification error matrices.

In hypothesis testing, when the results of tests of multiple sample 
cases prove to be significant, some form of statistical test must be used 
to separate any results that differ significantly from the others.

In the past, many analyses of the data in this error matrix were made 
by comparing the relative magnitudes of the percentage of correct classi­ 
fications, for either individual categories, the entire map or both. 
More rigorous analyses have used data transformations and (or) two-way 
classification analysis of variance. A more sophisticated step of data 
analysis techniques would be to use the entire classification error 
matrices using the methods of discrete multivariate analysis or of multi- 
viariate analysis of variance.

INTRODUCTION

Two statistical problems which occur in analyzing thematic maps and 
mapping are: (1) evaluating the accuracy of thematic content, and (2) 
evaluating the effects of the variables on thematic mapping. Statistical 
procedures which apply to,both these problems include techniques for 
sampling the data and determining their accuracy. In addition, tech­ 
niques for hypothesis testing, or inferential statistics, are used when 
comparing the effects of variables.

A comprehensive and valid accuracy test of a classification project, 
such as thematic mapping from remotely sensed data, includes the following 
components of statistical analyses: (1) sample design which covers 
sampling within the population, and includes consideration of the sample 
distribution, determination of the sample size, size of the sample unit, 
the sampling procedure, and estimation of the population means, totals, 
variances, and confidence limits from the sample information; and (2) 
accuracy estimation which includes estimation of the variance and 
confidence limits. Careful consideration must be given to the minimum 
sample size necessary to validate the accuracy of a given classification 
category.



1. SAMPLE DESIGN 
1.1 Sample Distribution

If a given measurement (y) of a variable (such as yield of a crop) is 
made at each sample unit, and if repeated random samples of a certain 
size (n) are taken from any population, the frequency distribution of the 
sample mean (y) tends to become normal as n increases. The central limit 
theorem (Snedecor and Cochran, 1967, p. 51) allows the normal distribu­ 
tion to be used with sample means, regardless of the frequency distribu­ 
tion of the original population. If the area belonging to a particular 
category is measured at each sample unit, then the area measurement can 
be considered equivalent to the variate (y) selected by simple random 
sampling from a normal distribution.

If the category of the sample unit is considered as being in agree­ 
ment or disagreement with some particular category, and if a value of 1 
is assigned to signify agreement and a value of 0 to signify disagree­ 
ment, then the population of Ts and O's would be described by the 
binomial distribution. In some cases, the binomial distribution would 
apply even when the observations are nominal data of particular category 
rather than count data of 1 or 0 if the unit of interest is the propor­ 
tion of given category to all units sampled (Cochran, 1977, p. 50).

When a number of categories are involved (other than two classes such 
as agreement or disagreement), the probability distribution of the 
proportions in each category is that of the multinomial distribution. 
Cochran (1977, p. 60) explains that the multinomial distribution is the 
appropriate extension of the binomial distribution and is a good approxi­ 
mation to the probability of drawing the observed sample, if the sample 
size (n) is small in relation to the total number of units (A) in the 
category. In addition, Cochran (1977, p. 55 and 60) points out that the 
binomial and multinomial distributions of the proportions (p) and (p.) 
respectively for each category are special cases of the hypergeometric 
distribution, which does not require that the population be large in 
relation to the sample. The hypergeometric distribution is based on the 
actual sample counts for each category (a), and the sample size (n),
rather than on the respective proportions (p.) for each category.
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Cochran (1977, p. 64) also points out that the probabilities and 
methods of the binomial and multinomial distributions are not valid If 
each sample unit is a cluster of elements and if an estimate of the 
proportion of elements that fall in each category is desired. Note that 
the formulations for cluster sampling are similar to those for simple 
random sampling from the normal distribution, with the proportions (p) 
substituted for the random variables (y).

Thus, the difference between using the probabilities of the binomial 
or multinomial distributions versus those of the normal distribution for 
the proportions (p), is a function of the size and use of the sample 
unit. For point samples, the sample proportions are taken as belonging 
to the binomial or multinomial distributions. For cluster samples, the 
distribution of sample proportions can usually be approximated by the 
normal distribution.

1.2 Sample Size

Statistical formulas exist for determining sample size for sampling 
populations within each of the above distributions: the normal, binomial, 
and multinomial distributions (for example: Mace, 1974). Snedecor and 
Cochran (1967, p. 59) summarize that the parameters to be considered for 
estimating sample size are an upper limit to the amount of error that can 
be tolerated in the estimate, the desired probability that the estimate 
will lie within this error, and an a priori estimate of the population 
standard deviation.

Several formulas are applicable for determining sample size when the 
random variables are considered as having been sampled from a population 
having the normal distribution:

(1) When it is desired to define the true mean within certain limits 
of error, the concept of confidence intervals for normal means is 
used.



(2) When it is desired to define the true variance within certain 
limits of error, the concept of confidence interval for normal 
variances is used.

(3) When it is desired to estimate the standard deviation as a percent 
of its true value, the concept of using the half length of the 
confidence interval about the true standard deviation as a 
percentage of the true standard deviation is used (Greenwood and 
Sandomire, 1950). This procedure was simplified into chart form 
by Natrella (1963).

When the sample variates belong to the binomial distribution, and it 
is desired to define the true mean within certain limits of error, then 
the concept of confidence interval for proportions is used to determine 
the sample size.

Tortora (1978) gives a method and example for estimating the sample 
size for multinomial proportions based on the approximate large sample 
equations for the simultaneous confidence limits. The end points for the
simultaneous confidence intervals for the category proportions (pj,j
with the joint confidence coefficient being approximately 1-a, are 
reported by Johnson and Kotz (1969, p. 289).

1.3 Sampling Procedure

Berry (1962) used the stratified systematic unaligned sampling 
procedure to select samples in similar type studies and recommends this 
procedure (Berry and Baker, 1968, p. 91-100) for use in accuracy testing 
of the land use and land cover maps produced by the U.S. Geological 
Survey. Cochran (1977, p. 227-228) discusses systematic sampling in two 
dimensions, that it has been found that the square grid had about the 
same precision as simple random sampling in two dimensions, and that the 
unaligned pattern within the square grid will often be superior to both a 
systematic pattern within the square grid and to stratified random 
sampling. He cites (p. 221) Matern (1947) as proposing this function as 
a model for the natural populations for forestry and land use surveys.



Systematic sampling distributes the sample units equitably over the 
entire region of Interest, and may be treated as if it were random 
provided that systematic effects in the population are made ineffective 
by the sampling (Freund and Williams, 1972, p. 416).

The same sample selection can be applied directly to the entire 
mapped region. If the region is large, a selection is first made of 
quadrangles or blocks of areas within the larger region, and then within 
those quadrangles or blocks, smaller regions are selected. This tech­ 
nique is called subsampling, or two-stage sampling.

1.4 Minimum Sample Size for a Category

Van Genderen and others (1978) report that researchers faced with the 
problem of adequately representing important minor categories on thematic 
maps have tended to use some form of stratified sampling rather than 
strictly random sampling without fully describing their methods for 
selecting sample sizes. Experience, however, (Fitzpatrick-Lins, 1980) 
has shown that the stratified systematic unaligned sampling technique is 
clearly area weighted (proportional allocation). That is, most of the 
sample points are selected in those categories that cover most of the map 
area, and the fewest points are from categories that cover the least 
area. Some small polygons in sparse categories might not be sampled at 
all. Sampling a limited number of points for some categories would give 
a poor estimate of the overall accuracy of the map. A sample of the map, 
with an adequate sample size from each category, is needed to represent 
all categories and to adequately evaluate the overall accuracy of the 
thematic map.

The theoretical development of the method to determine the minimum 
sample size to validate the accuracy of any category is based on the 
cumulative binomial distribution. Let p be the probability that a certain 
category in a thematic map was interpreted correctly. (Such a probability 
(p) will likely vary from category to category.) For example, if "the 
minimum level of interpretation accuracy in the identification of land 
use and land cover categories from remote sensor data should be at least



85 percent" (Anderson and others, 1976, p. 5), then p _> 0.85. Solution 
for n is effected for given values of p , o, and E (Rosenfield and 

others, 1982).
Given the preliminary estimate (pQ ) for the expected accuracy of 

each category, a computer program based on the solution for the cumula­ 
tive binomial probability can be used to calculate the minimum sample 
size n for each category. For example, for those categories with the 
assumed p j> 85 percent, the minimum sample size n would be 19 with 
E * 10 percent, with 95 percent confidence (Rosenfield and others, 1982).

1.5 Size of the Sample Unit

Cochran (1977, p. 233) states the well known principal that in 
cluster sampling, the size of the sample unit must be selected to give 
the smallest variance for a given cost or the smallest cost for a given 
variance. Cochran (1977, p. 243-244) discusses variance functions for 
surveys such as soil sampling which utilize an area sample unit. The 
problem of finding the optimum size unit requires predicting the variance 
between units in the population as a function of the unit size by the 
analysis of variance.

2. TESTING ACCURACY FOR A CATEGORY

The theoretical development of the method to determine whether a 
given category meets the expected accuracy value for the number of points 
in the sample, with specified confidence, is based on the cumulative 
binomial distribution. The critical level is defined as one less than 
the minimum number of points which must be correctly interpreted from any 
given sample, in order to accept the hypothesis at a given significance 
level that the category is interpreted within the tolerance for the



specified accuracy. When the number of correctly interpreted sample 
points for the category is larger than the critical level, for a given 
sample size, the category accuracy equals or exceeds the expected limit 
with some predetermined probability (Rosenfield and others, 1982).

The critical level determination can be made based upon tests of two 
different hypotheses. The first hypothesis to test is that the category 
accuracy equals or exceeds an expected value, e.g. 85 percent, at some 
predetermined probability level, e.g. a « 0.05. If the number correct 
does not exceed the critical level, find the largest integer c (the 
critical level), and reject the hypothesis at the 5-percent level. For 
example, for the sample size of 45, reject the hypothesis of 85 percent 
accuracy at the 5-percent level when the number correct does not exceed 
33 (Rosenfield and others, 1982).

The second hypothesis to test is that the category accuracy is less 
than an expected value, e.g. 85 percent, at some predetermined proba­ 
bility level, e.g. o * 0.05. If the number correct exceeds the critical 
level, find the smallest integer c (the critical level), and reject the 
hypothesis at the 5-percent level. For example, for the sample size of 
45, we will reject the hypothesis of accuracy less than 85 percent at the 
5-percent level when the number correct exceeds 43. The critical level 
values for test two are similar to those determined by Ginevan (1979) in 
developing his tables of optimum sample size (Rosenfield and others, 
1982).

3. ACCURACY OF A THEMATIC MAP

The accuracy of a thematic map has been a very complex issue both in 
definition and measurement. For a polygon to be correctly interpreted, 
both its boundary and its classification must be correct. The thematic 
map accuracy can be expressed as either: (1) the probability (E-.) that 
any randomly selected point on the map is classified correctly (expressed 
as a percentage of area) or (2) by the probability (£ ) that any 
polygon in the map is classified correctly (expressed as a percentage of 
the total number of polygons). The probability E, is A,/A the ratio
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of the area with correct interpretation to the total area of the map 
(using point data as a surrogate for area data). The probability E2 is 
R/N the ratio of the number of polygons with correct interpretation to 
the total number of polygons in the map (Rosenfield and others, 1982).

These two accuracy measures have their advantages and disadvantages, 
depending on the users 1 needs. For some particular maps, such as those 
having one predominant category with an intermixture of several small 
polygons in different categories, these two accuracy measures differ 
greatly. Therefore, a carefully planned sampling procedure must be 
adopted to incorporate the advantages of both, before conducting an 
independent evaluation.

To simplify quantifying the accuracy of area data, point data are 
used as a surrogate for area data. The total number of points selected 
would be representative of the total area of the map, and the number of 
points correct would be representative of the area of correct interpreta­ 
tion. The analysis is then based on point data rather than on area 
data. The resulting percentage of correctly classified points is an 
estimate for the accuracy of the map as a whole, but not for the accuracy 
of the classification of individual categories. Not every polygon need 
be sampled, but every category should have the necessary number of points 
sampled to provide a reliable estimate of accuracy. A composite of these 
two measures of accuracy can provide a reliable estimate of map classifi­ 
cation accuracy.

3.1 Overall Accuracy Based on Total Sample Points

In the classical method of estimating the accuracy of a thematic map, 
the overall accuracy is the ratio of the number of correctly interpreted 
sample points to the total number of sample points, expressed as a 
percentage. This ratio can be derived from an area-weighted sampling 
technique such as some form of stratified systematic sampling in two 
dimensions.



3.2 Overall Accuracy Based on Stratified Sampling

The sample obtained by the area-weighted method, the stratified 
systematic unaligned sampling procedure, may be augmented with additional 
sample points in the sparse categories so that there is at least the 
desired minimum number of points in each category. This amounts to 
sampling in two frames (A and B) where frame A is the area of the map, 
and frame B is the list of interior points for each category. Because 
the selected sample now has additional points for the sparse categories, 
the sample 1s no longer area weighted. An accuracy value computed as the 
simple average would give undue weight to these sparse categories in an 
overall value for the map. It is therefore necessary to weight the 
Individual category accuracies by the proportion of its area in order to 
again achieve an area-weighted overall accuracy value.

For an area-weighted accuracy estimate, the weight W, is the ratio 
of the area of the h.. category to the total area of the map. Further­ 
more, this single accuracy value is not, in itself, sufficient. The 
accuracy and confidence limits for each category in the map should also 
be reported as a table in the marginal information on the map.

Since the sample size for the entire map is large, the estimated mean 
will be approximately normally distributed, and the 95-percent confidence 
limits about the accuracy value can be computed in the normal manner.

When evaluating the accuracy value for an individual category the 
confidence limits about that accuracy value should be considered, based 
upon the number of points in the respective sample. The confidence 
limits indicate the interval which contains the true percentage in the 
sampled population, with some pre-established confidence value. Hord and 
Brooner (1976) have a table showing the upper and lower 95-percent 
confidence limits for sample sizes of 50 to 400 (in steps of 50), and for 
accuracy values from 80 percent to 100 percent, although they neglect to 
apply the *c6rfect1on for continuity" (Snedecor and Cochran, 1967, 
p. 209-213).

For sample sizes in excess of 30, confidence limits which Include the 
correction for continuity may be computed from the normal approximation 
(Snedecor and Cochran, 1967, p. 31, and p. 210-211).
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For sample sizes of 30 or less, exact confidence limits are computed 
from the binomial distribution. A table for the 95 percent and 99 percent 
confidence interval for the binomial distribution is given in Snedecor and 
Cochran (1967, p. 6 and 7).

3.3 Results of Accuracy Checking

The results of the accuracy test of the observations are given in the 
form of a row by column (RxC) contingency table sometimes called a 
classification error matrix. Usually the rows represent the interpreta­ 
tion and the columns represent the verification. The diagonal elements 
represent the correct classifications. The remaining elements of the 
rows represent the errors by commission (row-wise for the erroneous 
classification committed by the interpreter). The remaining elements of 
the columns represent the errors of omission (column-wise for the true 
classifications that were omitted by the interpreter).

4. COMPARING FACTORS IN THEMATIC MAPPING EXPERIMENTS

Thematic mapping experiments are conducted to evaluate different 
variables that operate simultaneously to affect classification by thematic 
categories. Such variables might include three scales of aerial photo­ 
graphs, two types of images, several algorithms or equipment of digital 
classification, different physiographic regions, etc. Data obtained from 
thematic mapping experiments can be evaluated by the analysis of variance 
method, which has been defined by Scheffex (1959, p. 3) as a "statistical 
technique for analyzing measurements depending on several kinds of 
effects operating simultaneously, to decide which kinds of effects are 
important and to estimate the effects. 11

For tests of hypothesis that compare variables, the general practice 
has been to use only the diagonal elements from several related classi­ 
fication error matrices. These data are arranged in the form of another 
contingency table. The columns of the table represent the different
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variables being compared, such as different scales of mapping. The rows 
represent the blocking characteristics, such as the various categories of 
classification. The values in the cells of the tables might be the 
counts of correct classification or the binomial proportions of these 
counts divided by either the row totals or the column totals from the 
original classification error matrices.

In the past, many analyses of the data in this error matrix were made 
by comparing the relative magnitudes of the percentage of correct classi­ 
fications, for either individual categories, the entire map or both. 
More rigorous analyses have used data transformations and (or) two-way 
classification analysis of variance.

4.1 Two-way Analysis of Variance Without Replication

Two-way analysis of variance provides an efficient procedure for 
comparing two or more sets of data. For the case in which there are only 
two sets without replication the t-test for comparing sets is equivalent 
to a one-way analysis of variance. However, two-way analysis of variance 
provides a measure of the variance component among the rows of data. 
Also, for more than two sets, the analysis of variance is more efficient 
than the t-test, and has a variance reducing effect.

Many computer programs are available that can perform an analysis of 
variance. The two-way analysis of variance without replication is 
described by Sokal and Rohlf (1969, p. 299). The hypothesis to be tested 
is that the several samples came from the same population. If the 
alternate hypothesis is that the population means are not equal, then the 
two-tailed test is applied. If the hypothesis is accepted, it may be 
concluded that the populations under study for that variable are not 
significantly different.

The btnomial proportion, or the percentage of items that agree, is 
the mean for that category. This value represents a single observation 
per cell for the analysis of variance. However, the mean, which is a 
proportion bounded between 0 and 1, does not satisfy the assumption of 
normality required for analysis of variance. Therefore, the arcsine
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transformation replaces the proportion p... Special tables and tech-  j 
niques have been developed for small sample sizes. The analysis of
variance and the tests of significance are performed on the transformed 

data.
The analysis of variance study uses only the diagonal elements of the 

classification error matrices. All thematic mapping experiments peformed 
in the past have used only the diagonal elements for analysis. A more 
sophisticated step of data analysis techniques would be to use the entire 
classification error matrices in such studies. An attempt is already 
being made in this direction as evidenced by the presentation of Congalton 
(1980). His approach uses discrete multivariate analysis (Bishop and 
others, 1975). Another approach using the entire classification error 
matrices would be the techniques of multivariate analysis of variance.

4.2 Multiple Comparisons Tests

Multiple comparisons tests are described by Sokal and Rohlf (1969, 
p. 226-227 and p. 235-246) as a posteriori tests performed after the 
analysis of variance to distinguish differences between means or groups 
of means. They are performed only if the analysis of variance is 
significant.

One such method is the Duncan multiple range test for variable 
response (Steel and Torrie, 1960, p. 107-109; and Duncan, D.B., 1955). 
Duncan's multiple range test is a multiple comparisons test to compare 
each treatment mean with every other treatment mean. The method takes 
into account the number of treatments in the experiment, whereas previous 
methods based on the least significant difference (LSD) do not. When an 
F-test determines that the differences between one or more of treatment 
means are significant, it does not specify which, if any, are not, but 
these multiple range tests indicate which differences are significant, 
and which are not.
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